
iSeries

CICS for iSeries Application
Programming Guide
Version 5

SC41-5454-02

ERserver

���

iSeries

CICS for iSeries Application
Programming Guide
Version 5

SC41-5454-02

ERserver

���

Note
Before using this information and the product it supports, be sure to read the information in
Appendix F, “Notices,” on page 585.

Third Edition (April 2004)

This edition applies to version 5, release 3, modification 0 of IBM CICS Transaction Server for iSeries (product
number 5722–DFH) and to all subsequent releases and modifications until otherwise indicated in new editions. This
version does not run on all reduced instruction set computer (RISC) models nor does it run on CISC models.

This edition replaces SC41-5454-01.

© Copyright International Business Machines Corporation 1998, 2004. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|
|
|

|

Contents

Figures ix

Tables xi

About CICS® for iSeries Application
Programming Guide (SC41-5454) . . . xiii
Who should read this book xiii
What you need to know to understand this book xiii
Conventions and terminology used in this book xiii
Prerequisite and related information xiv

CICS/400 library xiv
Books from related libraries xiv

How to send your comments xv

Part 1. Introduction 1

Chapter 1. Introducing CICS for iSeries
application programming 3
If CICS is new to you 3
What’s different about CICS programs? 3
Benefits of CICS for iSeries to CICS programmers . . 3

Chapter 2. Portability and migration
considerations 5
Migrating from another CICS platform 5

CICS/400 5
BMS 6
Terminal Control 6
COBOL 6
ILE C 9
SQL 9
iSeries 9
Source code 9

Migrating from another CICS/400 release 10
BMS 10
Application programs 10
Resource definitions 10

Chapter 3. Preparing and writing CICS
applications in COBOL 11
Preparing a COBOL application 11

Coding CICS statements in COBOL applications 12
Preprocessing 13
Translating a COBOL program 13
Compiling an application program 16

Writing CICS programs in COBOL 17
Modular programming 18
Pointer-based addressing 18
Getting map set storage 19
Source code considerations 20

Calling programs from COBOL 22
Using CICS commands 22
Using COBOL CALL statements 23

Rules governing calling CICS COBOL programs 24
Program activation 25

Sample application programs 27
Data declarations used by the ACCT sample . . 28
Defining resources for the ACCT sample . . . 29
Running the ACCT sample 29
Displaying an account record 29
Adding an account record 30
Searching by account holder’s name 31
Modifying an account record 31
Deleting an account record 32
Printing an account record 33

Chapter 4. Preparing and writing CICS
applications in ILE C 35
Preparing an ILE C application 35

Coding CICS statements in iSeries applications 37
Preprocessing 38
Translating an ILE C program 38
Compiling an application program 40

Writing CICS programs in ILE C 41
Modular programming 42
Pointer-based addressing 42
Getting map set storage 44
Passing arguments by value 44
Exception handling 46
Data declarations needed for ILE C 47
Naming EIB fields 47
Source code considerations 47

Calling programs and ILE procedures from ILE C 48
Using EXEC CICS commands 48
Using C language calls 49
Rules governing calling CICS ILE C programs . . 50
Program activation 51

Sample application programs 53
Data declarations used by the FILEA sample . . 55
Defining resources for the FILEA sample . . . 55
Running the FILEA sample 56

Part 2. Application design 59

Chapter 5. Designing efficient
applications 61
Program size and structure 61
Choosing between pseudoconversational and
conversational design 61

General programming techniques 63
Processor usage 64
Recovery design implications 64
Terminal interruptibility 66
Summary of pseudoconversational and
conversational design 66

Using resources effectively 66
Processor storage 66

© Copyright IBM Corp. 1998, 2004 iii

Processor time 67
Exclusive-use resources 67
Line transmission capacity 67

Other suggestions 67
Auxiliary trace 67
Unnecessary commands 68
Resource retention 68
Data definition and manipulation considerations 68

Storing data within a transaction 68
Transaction work area (TWA) 69
User storage 69
COMMAREA in EXEC CICS LINK and EXEC
CICS XCTL commands 70
Program storage 70

Sharing data across transactions 70
Common work area (CWA) 71
TCTTE user area (TCTUA) 71
COMMAREA in EXEC CICS RETURN
commands 72
Display screen 72
Temporary storage 73
Intrapartition transient data 74
Your own files 74

Data operations 75
Emulating VSAM files 75
Browsing files 76
Logging files 76
Sequential file access 76

Terminal operations 77
Data stream considerations 77
BMS considerations 77
Additional terminal control considerations . . . 80

Performance considerations 81
CICS and multiprocessor AS/400s 81
CICS SIT parameters 81
COBOL application code 82
ILE C application code 83
*DEBUG or *NODEBUG 83
EXEC CICS LINK command or host language
call 83
Terminal communication 84

Chapter 6. Dealing with exception
conditions 87
Programs in any supported language 87

How to use the RESP and RESP2 options . . . 87
How to use the NOHANDLE option 90

COBOL programs only 91
How to use the EXEC CICS IGNORE
CONDITION command 91
Passing control to a specified label 92
Relying on the system default action 95
Mixing the methods 98

How CICS keeps track of what to do 99

Chapter 7. Testing your application 101
Testing applications 101
Screen usage, checks and considerations 101
Types of problems 102
Levels of testing 103

Finding a problem in application code on a
production system 103

Chapter 8. Recovery considerations 105
CICS and OS/400 commitment control recovery 105
Defining recoverable files to CICS (an overview) 105
Syncpointing 106
User journaling 106

Journal records 106
Journal output synchronization 107

Chapter 9. Abnormal termination
recovery 109
Creating a program-level abend exit 110
Restrictions on retrying operations 110
Trace 111

Trace entry points 112
Dump 112

Part 3. Files and databases 113

Chapter 10. File control 115
Emulated VSAM files 115

Key-sequenced file (KSDS) 116
Entry-sequenced file (ESDS) 116
Relative record file (RRDS) 116
VSAM-like logical views 116

Reading records 117
Direct reading (using EXEC CICS READ) . . . 118
Sequential reading (browsing) 119
Skip-sequential processing 121

Updating records 122
Specifying record length 122

Deleting records 123
Deleting groups of records (generic delete) . . 123

Adding records 123
Adding to a KSDS 123
Adding to an ESDS 124
Adding to an RRDS 124
Specifying record length 124

Review of file control command options 124
The RIDFLD option 124
The INTO and SET options 125
The FROM option 125

Avoiding transaction deadlocks 126
KEYLENGTH option for remote files 127
Record identification 127

Identifying records by key 127
Relative byte address (RBA) and relative record
number (RRN) 128

CICS locking of emulated VSAM records in
recoverable files 128

Part 4. Data communication 131

Chapter 11. Introduction to data
communication 133

iv CICS for iSeries Application Programming Guide V5

Chapter 12. Introduction to basic
mapping support (BMS) 135
How BMS affects programming 135
BMS maps 136

BMS map definition 136
Creating BMS map sets 137
Cataloging BMS map sets 137

BMS commands 138
Level of BMS 139

Base and towers architecture 139
Summary of support for CICS/400 BMS 139

Chapter 13. CICS/400 basic mapping
support (BMS) 141
Information display systems 141

IBM 3270 Information Display System 141
IBM 5250 Information Display System 141
Input operations 141
Output operations 143
Display field concepts 143
Attribute character 144

Screen layout design 146
Screen sizes 147

Defining BMS maps 147
Defining a map set 147
Defining maps within a map set 147
Defining fields within a BMS map 148
Terminating a map set definition 148

Creating BMS maps 148
Symbolic description map 148
Physical map 149
Map set suffixing 149

Writing programs to use BMS services 151
Copying symbolic description maps 152
Data structures 152
Sending data to a display device 155
Cursor positioning 159
Accessing data outside the program 159
Receiving data from a display 160
Responding to terminal input 162

Text processing 164
Display characters in text 164
Control characters in text 165
Character attribute control (3270 devices only) 165
Graphic data fields 166

Printed output 167
Using the hardware print key 167
Using asynchronous page build transaction . . 167
Printer formatting considerations 168

Chapter 14. Terminal control 169
Terminal-oriented task identification 170
Logical unit communication protocol 170

Send/receive mode 170
Send/receive protocol (INVITE option) 171
Chaining the input data 171
Chaining the output data 171
Response protocol 172
Preventing interruptions (bracket protocol) . . 172

Handling attention identifiers (EXEC CICS
HANDLE AID) 173
OS/400 display data streams 174
Terminal control and DBCS 174

Chapter 15. Intercommunication
considerations 175
Design considerations 175
Transaction routing 175
Function shipping 176
Distributed program link (DPL) 176

Using the distributed program link function . . 177
Examples of distributed program link 178
Programming considerations for distributed
program link 182

Asynchronous processing 185
Distributed transaction processing (DTP) 186

Common Programming Interface
Communications (CPI Communications) . . . 186

Part 5. CICS management
functions 187

Chapter 16. Control region 189

Chapter 17. Application shell 191

Chapter 18. Interval control 193
Timer-related tasks 194
Expiration times 194
Request identifiers 196

Chapter 19. Task control 197

Chapter 20. Program control 199
Defining and using CICS tables 199
Application program logical levels 200
Link to another program expecting return 200
Passing data to other programs 201

COMMAREA 201
INPUTMSG 203
Using the INPUTMSG option on the EXEC
CICS RETURN command 205
Other ways of passing data 205
Examples of passing data 205

Chapter 21. Access to system
information 211
System programming commands 211
EXEC interface block (EIB) 211

Chapter 22. Storage control 213

Chapter 23. Transient data control 215
Intrapartition destinations 215
Extrapartition destinations 215
Indirect destinations 216

Contents v

Automatic transaction initiation (ATI) 216

Chapter 24. Temporary storage
control 219
Temporary storage queues 219
Temporary storage commands 220
Typical uses of temporary storage control 220

Chapter 25. Printer spooling 223
When are printer spooling files closed? 223

Part 6. Supplied transactions . . . 225

Chapter 26. Introduction to
CICS-supplied transactions 227

Chapter 27. Execution diagnostic
facility (EDF) 229
Getting started 229

Restrictions when using EDF 229
Where does EDF intercept the program? 230
What does EDF display? 231

The header 231
The body 231
How you can intervene in program execution 234
EDF menu functions 235

How to use EDF 238
Using EDF in single-screen mode 238
Using EDF in dual-screen mode 240
Stopping EDF 240
Overtyping to make changes 240

Chapter 28. Temporary storage
browse (CEBR) 243
How to use the CEBR transaction 243
What does the CEBR transaction display? 244

The header 244
The command area 244
The body 244
The message line 245
The CEBR options on function keys 245

The CEBR commands 246
Using the CEBR transaction with transient data 248
Security considerations 248

Chapter 29. Command-level
interpreter (CECI) 249
How to use CECI 249
What does CECI display? 250

The command line 250
The status line 251
The body 253
The message line 254
CECI options on function keys 254

Additional displays 255
Expanded area 255
Variables 255
The EXEC interface block (EIB) 257

Error messages display 257
Making changes 258
How CECI runs 258

CECI sessions 258
Abends 259
Exception conditions 259
Program control commands 259
Terminal Sharing 259
Saving commands 260

Security considerations 261

Part 7. Programming reference 263

Chapter 30. OS/400 control language
(CL) commands 265
Interpreting the syntax diagrams 265
CRTCICSCBL 266
CRTCICSC 286
CRTCICSMAP 301

Chapter 31. Programming reference 305
Introduction to EXEC CICS commands 305
Command format 305
CICS syntax notation used 306
Argument values 307

COBOL argument values 308
ILE C argument values 309

CICS-value data areas (CVDAs) 309
DATASET option 311
INTO and SET options 311
LENGTH options 312
NOHANDLE option 312
RESP and RESP2 options 313
System programming commands 314

INQUIRE and SET commands 315
PERFORM command 318
DISCARD commands 318

Commands by function 319
Abend support 319
APPC mapped conversation 319
BMS 319
Built-in function 319
Diagnostic services 319
Environment services 319
Exception support 320
File control 320
Interval control 321
Journaling 321
Printer spooling 321
Program control 321
Storage control 321
Syncpoint 321
Task control 321
Temporary storage control 321
Terminal control 322
Transient data control 322

Chapter 32. Application programming
commands - reference 323

vi CICS for iSeries Application Programming Guide V5

ABEND 323
ADDRESS 324
ALLOCATE 325
ASKTIME 326
ASSIGN 327
BIF DEEDIT 332
CANCEL 333
CONNECT PROCESS 335
CONVERSE (APPC) 337
CONVERSE (5250 or 3270 logical) 339
DELAY 341
DELETE 344
DELETEQ TD 348
DELETEQ TS 349
DEQ 350
DUMP TRANSACTION 352
ENDBR 353
ENQ 355
ENTER TRACENUM 357
EXTRACT ATTRIBUTES (APPC) 359
EXTRACT PROCESS 360
FORMATTIME 361
FREE (APPC) 364
FREEMAIN 365
GETMAIN 367
HANDLE ABEND 369
HANDLE AID 371
HANDLE CONDITION 372
IGNORE CONDITION 373
ISSUE ABEND 374
ISSUE CONFIRMATION 375
ISSUE ERASEAUP 376
ISSUE ERROR 377
ISSUE PREPARE 378
ISSUE SIGNAL (APPC) 379
LINK 380
LOAD 385
POP HANDLE 386
POST 387
PUSH HANDLE 389
READ 390
READNEXT 395
READPREV 400
READQ TD 404
READQ TS 407
RECEIVE (APPC) 410
RECEIVE (5250 or 3270 logical) 412
RECEIVE MAP 415
RELEASE 417
RESETBR 418
RETRIEVE 421
RETURN 424
REWRITE 427
SEND (APPC) 430
SEND (SCS) 432
SEND (5250 or 3270 logical) 433
SEND CONTROL 435
SEND MAP 436
SEND TEXT 439
SPOOLCLOSE 441
SPOOLOPEN OUTPUT 442

SPOOLWRITE 444
START 445
STARTBR 452
SUSPEND 457
SYNCPOINT 457
SYNCPOINT ROLLBACK 458
UNLOCK 458
WAIT CONVID 461
WAIT EVENT 461
WAIT JOURNALNUM 462
WRITE 463
WRITE JOURNALNUM 467
WRITEQ TD 469
WRITEQ TS 471
XCTL 474

Chapter 33. System programming
reference 477
DISCARD commands 477
DISCARD AUTINSTMODEL 477
DISCARD FILE 478
DISCARD PROGRAM 478
DISCARD TRANSACTION 479
INQUIRE commands 480
INQUIRE AUTINSTMODEL 480
INQUIRE AUTINSTMODEL (browse) 480
INQUIRE CONNECTION 481
INQUIRE CONNECTION (browse) 483
NQUIRE FILE 484
INQUIRE FILE (browse) 487
INQUIRE JOURNALNUM 488
INQUIRE JOURNALNUM (browse) 489
INQUIRE PROGRAM 490
INQUIRE PROGRAM (browse) 492
INQUIRE SYSTEM 493
INQUIRE TASK 494
INQUIRE TDQUEUE 496
INQUIRE TDQUEUE (browse) 499
INQUIRE TERMINAL or NETNAME 500
INQUIRE TERMINAL (browse) 504
INQUIRE TRACEDEST 505
INQUIRE TRANSACTION 506
INQUIRE TRANSACTION (browse) 508
PERFORM SHUTDOWN command 509
SET commands 509
SET CONNECTION 509
SET FILE 511
SET JOURNALNUM 514
SET PROGRAM 515
SET SYSTEM 517
SET TASK 517
SET TDQUEUE 518
SET TERMINAL 520
SET TRACEDEST 522
SET TRANSACTION 524

Part 8. Appendixes 527

Appendix A. EXEC interface block 529
EIB fields 529

Contents vii

Appendix B. BMS-related constants 545
Field attribute and printer control characters . . . 545
Attention identifier constants, DFHAID 548

Appendix C. Terminal control 549
Commands and options for terminals and logical
units 549

Fullword lengths 549
Read from terminal or logical unit (EXEC CICS
RECEIVE) 549
Write to terminal or logical unit (EXEC CICS
SEND) 550
Converse with terminal or logical unit (EXEC
CICS CONVERSE) 550

Display device operations 550
Erase all unprotected fields (EXEC CICS ISSUE
ERASEAUP) 551
Input operation without data (EXEC CICS
RECEIVE) 551

Appendix D. BMS macro summary 553
Defining map sets, maps, and fields 553

Map set definition macro (DFHMSD) 553
Map definition macro (DFHMDI) 553

Field definition macro (DFHMDF) 553
Ending a map set definition 553

Defining field groups 553
DFHMSD 555
DFHMDI 562
DFHMDF 566
Sample map with DBCS data definitions 576

Appendix E. CICS-value data areas
supported by CICS/400 579
CVDAs by symbolic name 579
CVDAs by numeric value 581
CVDAs returned by the INQUIRE
TERMINAL|NETNAME DEVICE command . . . 583

Appendix F. Notices 585
Programming Interface Information 586
Trademarks 586

Glossary 589

Index 599

viii CICS for iSeries Application Programming Guide V5

Figures

 1. Preparing a COBOL application program 12
 2. Screen showing an example of using source

type CICSCBL 17
 3. Example of an SEU screen showing code

containing CICS commands 18
 4. Example of pointer-based addressing in a

COBOL program 19
 5. Example of processing BMS maps in a COBOL

program 20
 6. Control is returned to the next higher logical

level. 23
 7. Flow of control between COBOL programs and

run units in CICS/400 27
 8. ACCT sample screen: Working with the ACCT

samples 28
 9. ACCT sample screen: Menu 29
10. ACCT sample screen: Displaying a record 30
11. ACCT sample screen: Adding a new record 31
12. ACCT sample screen: Searching by account

holder’s name 31
13. ACCT sample screen: Modifying a record 32
14. ACCT sample screen: Deleting a record 33
15. Preparing an ILE C application program 37
16. An example of using source type QCSRC 41
17. Example of using pointer-based addressing in

a ILE C program 43
18. Example of processing BMS maps in an ILE C

program 45
19. Control is returned to the next higher logical

level. 48
20. Flow of control between ILE C programs and

activation groups in CICS 53
21. Screen showing the members of file QCSRC

containing the FILEA application programs . . 54
22. Screen showing the members of file

QMAPSRC containing FILEA sample maps . . 55
23. Data stream conversion 84
24. An extract from COBOL program ACCT01 89
25. Trapping the unexpected with the EXEC CICS

HANDLE CONDITION ERROR command . . 94
26. Using EXEC CICS PUSH HANDLE and EXEC

CICS POP HANDLE commands 96
27. How CICS selects whether to take the system

default action 98
28. ABEND exit processing 111
29. BMS map set suffixing logic 150
30. Some suffixes and subfields 153

31. Setting output map data structure to nulls 154
32. Modifying map field attributes 155
33. Illustration of distributed program link 177
34. COBOL example of a distributed program

link 178
35. Using distributed program link with the

SYNCONRETURN option 181
36. Using distributed program link without the

SYNCONRETURN option 182
37. Example of mixing DPL and DTP 183
38. API commands prohibited in programs

invoked by distributed program link 185
39. Application program logical levels 201
40. Use of INPUTMSG in a linked-to chain 204
41. COBOL example–EXEC CICS LINK command 206
42. ILE C example–EXEC CICS LINK command 207
43. COBOL example–EXEC CICS RETURN

command 208
44. ILE C example–EXEC CICS RETURN

command 209
45. Typical EDF display 231
46. Typical EDF display at program initiation 232
47. Typical EDF display at start of execution of a

CICS command 232
48. Typical EDF display at completion of a CICS

command 233
49. Typical EDF display at program termination 233
50. Typical EDF display at task termination 233
51. Typical EDF display when an abend occurs 234
52. Typical EDF display at abnormal task

termination 234
53. Typical EDF display for STOP CONDITIONS 237
54. Typical CEBR display of temporary storage

queue contents 243
55. Typical CEBR display of default temporary

storage queue 244
56. Typical CECI display for command syntax

check 250
57. Typical CECI display for about to start

command 252
58. Typical CECI display for command completed 253
59. Typical CECI display of variables associated

with CECI session 255
60. Typical CECI display of the EIB 257
61. Typical CECI display of the message display 257
62. Sample map with DBCS data definitions 577

© Copyright IBM Corp. 1998, 2004 ix

x CICS for iSeries Application Programming Guide V5

Tables

 1. COBOL compiler limits 21
 2. Rules to be used with CICS COBOL programs 24
 3. Rules for passing values as arguments in

EXEC CICS commands 46
 4. Rules to be used with ILE C programs . . . 50
 5. Requests that require exclusive use and when

the reservation terminates 75
 6. Commands that hold position and when the

hold is released 75
 7. Correspondence between 5250 and 3270 AIDs 143
 8. CICS/400 LU protocol options 170
 9. Options on EXEC CICS LINK command

supporting DPL 178

10. ADDCICSPPT and CHGCICSPPT CL
command parameters supporting DPL . . . 178

11. Language identifiers 283
12. Command syntax conventions 306
13. Standard attribute and printer control

character list, DFHBMSCA 545
14. Bit map for attributes 547
15. Standard attention identifier constants list,

DFHAID 548
16. BMS terminal types 560

© Copyright IBM Corp. 1998, 2004 xi

||

xii CICS for iSeries Application Programming Guide V5

About CICS® for iSeries Application Programming Guide
(SC41-5454)

This book contains two types of information. Parts 1-6 of this book give guidance
in using the CICS/400 application programming interface; they are complemented
by the reference information in Part 7, “Programming reference,” on page 263.

Who should read this book
This book is for CICS application programmers. If you are an experienced
programmer, you do not need to read all of the information in the guidance section
of this manual (parts 1-6). If you are less experienced, you should find the
guidance information helpful. If you are new to CICS programming, you should
consider reading the CICS Application Programming Primer, SC33-0674, which will
give you a basic introduction to CICS application programming. The primer is
primarily for mainframe CICS users, but most of the content of the book also
applies to CICS/400 application programming. Also see Chapter 1, “Introducing
CICS for iSeries application programming,” on page 3 of this book to determine
what material you should become familiar with.

What you need to know to understand this book
You must be able to program in either COBOL/400, ILE COBOL or ILE C. You
need general knowledge about CICS and the general concepts of the Integrated
Language Environment® (ILE).

Conventions and terminology used in this book
v CICS refers to CICS/400 unless otherwise stated.
v API refers to the CICS command-level application programming interface.
v COBOL refers to COBOL/400 or ILE COBOL unless specifically stated

otherwise.
v C refers to ILE C unless specifically stated otherwise.
v As a general rule, any files, parameters, and messages whose names start with

the letters “AEG” or “DFH” belong to CICS.
v Any item whose name begins with an asterisk and is spelled in capitals is a

special name recognized by the iSeries, either an object type (see Glossary), such
as *PRTF for printer file, or a special value that can be assumed by an option of
a command. For example: *NOSOURCE is a special value of the CICSOPT
options on the CRTCICSCBL (create CICS COBOL) CL command.

v The term mainframe is used to refer to CICS products that run on computers of
the S/370™, System/390®, or zSeries® family. (Not all of these products run on
all of these computers, for example, CICS Transaction Server for ZOS Version 2
does not run on System/370™).
– CICS Transaction Server for z/OS® Version 2, program number 5697-E93
– CICS Transaction Server for OS/390® Version 1, program number 5655-147
– CICS/ESA® Version 4, program number 5655-018
– CICS Transaction Server for VSE/ESA™, program number 5648-054
– CICS/VSE Version 2, program number 5686-026

© Copyright IBM Corp. 1998, 2004 xiii

|
|
|

|
|

Prerequisite and related information

CICS/400 library
These books form the CICS/400 library that is delivered with the product:
 CICS for iSeries Administration and Operations Guide, SC41-5455-00

 This guide gives introductory information about CICS/400. It then provides
information about system and resource definition, setup of a system, and
operator commands.

 CICS for iSeries Application Programming Guide, SC41-5454-02
 This manual provides programming guidance information, in narrative form

with examples. This is followed by the reference section describing the
syntax and use of each command.

 CICS for iSeries Intercommunication, SC41-5456-00
 This manual describes the CICS/400 side of communication between CICS

systems running on different platforms. There is a similar manual for each
CICS platform.

 CICS for iSeries Problem Determination, SC41-5453-00
 This manual provides guidance in problem determination for users of

CICS/400.
 CICS Family: Interproduct Communication, SC34-6267-00

 This manual, which is also part of the libraries of the other CICS family
members, gives an overview of communication between CICS systems
running on different platforms.

 CICS Family: API Structure, SC33-1007-02
 This manual, which is also part of the libraries of the other CICS family

members, gives a quick reference to the level of support that each member
of the CICS family gives to the CICS application programming interface. It
is designed for customers and software vendors developing applications
able to run on more than one CICS platform and porting applications from
one platform to another.

Books from related libraries

Other CICS books
 CICS Application Programming Primer, SC33-0674–01

Compilers

ILE C:

 ILE Concepts, SC41-5606-07
 WebSphere Development Studio: ILE C/C++ Language Reference, SC09-7852-00
 WebSphere Development Studio: ILE C/C++ Programmer’s Guide, SC09-2712-04

ILE COBOL:

 ILE Concepts, SC41-5606-07
 WebSphere Development Studio: ILE COBOL Reference, SC09-2539-04
 WebSphere Development Studio: ILE COBOL Programmer’s Guide, SC09-2540-04

COBOL/400®:

 COBOL/400 User’s Guide, SC09-1812-00

xiv CICS for iSeries Application Programming Guide V5

|

|

|

|

|

COBOL/400 Reference, SC09-1813-00
 SAA® CPI COBOL Reference, SC26-4354–02

SQL
 Refer to the Database topic and File and file systems topic in the iSeries

Information Center.

System Programming Support, Control language (CL)
 CL Programming, SC41-5721-06
 Refer to the Programming topic in the iSeries Information Center.

Common user access
* (CUA®*)
 SAA CUA Basic Interface Design Guide, SC26-4583-00

Miscellaneous books
 3270 Device Emulation Support, SC41-5408-00
 Refer to the Database topic and File and file systems topic in the iSeries

Information Center.
 Backup and Recovery, SC41-5304-07
 Performance Tools for iSeries, SC41-5340-01
 Install, upgrade, or delete OS/400 and related software, SC41-5120-07
 Refer to the Programming APIs topic in the iSeries™ Information Center.
 iSeries Security Reference, SC41-5302-07
 3270 Data Stream Programmer’s Reference, GA23-0059–07

Use the iSeries Information Center as your starting point for looking up iSeries
technical information. You can access the Information Center two ways:
v From the following Web site:

http://www.ibm.com/eserver/iseries/infocenter

v From the iSeries Information Center, SK3T-4091-04 CD-ROM. This CD-ROM ships
with your new iSeries hardware or IBM Operating System/400 software upgrade
order. You can also order the CD-ROM from the IBM® Publications Center:
http://www.ibm.com/shop/publications/order

The iSeries Information Center contains new and updated iSeries information such
as software and hardware installation, Linux, WebSphere®, Java™, high availability,
database, logical partitions, CL commands, and system application programming
interfaces (APIs). In addition, it provides advisors and finders to assist in planning,
troubleshooting, and configuring your iSeries hardware and software.

With every new hardware order, you receive the iSeries Setup and Operations
CD-ROM, SK3T-4098-02. This CD-ROM contains IBM Eserver IBM e(logo)server
iSeries Access for Windows and the EZ-Setup wizard. iSeries Access Family offers
a powerful set of client and server capabilities for connecting PCs to iSeries
servers. The EZ-Setup wizard automates many of the iSeries setup tasks.

How to send your comments
Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any other
iSeries documentation, fill out the readers’ comment form at the back of this book.

About CICS® for iSeries Application Programming Guide (SC41-5454) xv

|
|

|
|

|

|

|
|
|
|
|

|
|
|
|
|

v If you prefer to send comments by mail, use the readers’ comment form with the
address that is printed on the back. If you are mailing a readers’ comment form
from a country or region other than the United States, you can give the form to
the local IBM branch office or IBM representative for postage-paid mailing.

v If you prefer to send comments by FAX, use either of the following numbers:
– United States, Canada, and Puerto Rico: 1-800-937-3430
– Other countries or regions: 1-507-253-5192

v If you prefer to send comments electronically, use one of these e-mail addresses:
– Comments on books:

 RCHCLERK@us.ibm.com
– Comments on the iSeries Information Center:

 RCHINFOC@us.ibm.com

Be sure to include the following:
v The name of the book or iSeries Information Center topic.
v The publication number of a book.
v The page number or topic of a book to which your comment applies.

xvi CICS for iSeries Application Programming Guide V5

Part 1. Introduction

Chapter 1. Introducing CICS for iSeries
application programming 3
If CICS is new to you 3
What’s different about CICS programs? 3
Benefits of CICS for iSeries to CICS programmers . . 3

Chapter 2. Portability and migration
considerations 5
Migrating from another CICS platform 5

CICS/400 5
BMS 6
Terminal Control 6
COBOL 6
ILE C 9
SQL 9
iSeries 9
Source code 9

Migrating from another CICS/400 release 10
BMS 10
Application programs 10
Resource definitions 10

Chapter 3. Preparing and writing CICS
applications in COBOL 11
Preparing a COBOL application 11

Coding CICS statements in COBOL applications 12
Preprocessing 13
Translating a COBOL program 13

Characteristics of the input source file . . . 14
CCSID of source files 15
Output from the translator 15

Compiling an application program 16
Writing CICS programs in COBOL 17

Modular programming 18
Pointer-based addressing 18

Example of using pointer variables 19
Getting map set storage 19
Source code considerations 20

Calling programs from COBOL 22
Using CICS commands 22
Using COBOL CALL statements 23

Static COBOL call 23
Dynamic COBOL call 24

Rules governing calling CICS COBOL programs 24
Program activation 25

Sample application programs 27
Data declarations used by the ACCT sample . . 28
Defining resources for the ACCT sample . . . 29
Running the ACCT sample 29
Displaying an account record 29
Adding an account record 30
Searching by account holder’s name 31
Modifying an account record 31
Deleting an account record 32
Printing an account record 33

Chapter 4. Preparing and writing CICS
applications in ILE C 35
Preparing an ILE C application 35

Coding CICS statements in iSeries applications 37
Preprocessing 38
Translating an ILE C program 38

Characteristics of the input source file . . . 39
Output from the translator 39

Compiling an application program 40
Writing CICS programs in ILE C 41

Modular programming 42
Use of #include 42
Use of modules 42

Pointer-based addressing 42
Example of using pointer variables 42
EXEC CICS ADDRESS EIB 42
EXEC CICS ADDRESS COMMAREA 43
EXEC CICS READ/REWRITE 43

Getting map set storage 44
Passing arguments by value 44
Exception handling 46
Data declarations needed for ILE C 47
Naming EIB fields 47

Data types 47
Source code considerations 47

Calling programs and ILE procedures from ILE C 48
Using EXEC CICS commands 48
Using C language calls 49

Dynamic program calls 49
Calling procedures 49
Procedure pointer calls 50

Rules governing calling CICS ILE C programs . . 50
Program activation 51

Sample application programs 53
Data declarations used by the FILEA sample . . 55
Defining resources for the FILEA sample . . . 55
Running the FILEA sample 56

Operator instruction sample program 56
Browse sample program 56
Inquiry and update sample program 56
Low balance report sample program 57
Order entry sample program 57
Order entry queue print sample program . . 58

© Copyright IBM Corp. 1998, 2004 1

2 CICS for iSeries Application Programming Guide V5

Chapter 1. Introducing CICS for iSeries application
programming

This manual assumes that you know about CICS in general, and about Original
Program Model (OPM) COBOL/400 or Integrated Language Environment (ILE),
ILE C or ILE COBOL application programming in particular. If you are not
experienced in CICS, read “If CICS is new to you” for a list of recommended
reading. If you are an experienced CICS programmer, and already have some CICS
applications you want to migrate to CICS/400, see Chapter 2, “Portability and
migration considerations,” on page 5.

If CICS is new to you
If you are not familiar with the basic concepts of CICS programming, you need to
read some introductory text before reading this manual, for example the CICS
Application Programming Primer, SC33-0674-01. The primer was written for CICS
mainframe users, but most of the content of the book also applies to CICS/400
application programming.

There are significant differences, so consider the following points when reading the
primer:
v CICS/400 supports emulated VSAM and SQL databases. It does not support

DL/I.
v Basic mapping support is for minimum function BMS and the EXEC CICS SEND

TEXT command.
v CICS/400 supports both 3270 and 5250 terminals. However, the programmer

uses the same options for either terminal.
v OS/400 jobs use Control Language (CL) instead of Job Control Language (JCL).
v Resource definition is handled differently from the way it is in CICS

mainframes. For information about setting up CICS tables, see the CICS for
iSeries Administration and Operations Guide, SC41-5455-00.

v The architecture of the iSeries is different from that of CICS mainframe
implementations. For example: partitions are not used, storage requests are
handled differently, and security is controlled by OS/400 rather than by CICS.

What’s different about CICS programs?
There is not very much different about CICS programs. A typical CICS transaction
is like the core of a program in which a single input is processed, with CICS taking
care of opening and closing the files for you.

With CICS programs, you request operating system services, such as file
input/output, by issuing an EXEC CICS command instead of using the
corresponding language facility (for example, READ or WRITE).

Benefits of CICS for iSeries to CICS programmers
v OS/400 offers online help and messaging for all OS/400 CL commands used in

the development of CICS/400 applications
v You can port CICS COBOL and C applications from any CICS platform to

individual iSeries systems with minimal work.

© Copyright IBM Corp. 1998, 2004 3

|
|
|
|
|
|
|

v The execution diagnostic facility (EDF) similar to mainframe CICS EDF is
available for debugging both COBOL and C application programs.

v CICS/400 programs can access mainframe VSAM data transparently through
function shipping. Access to data in the OS/400 is through a CICS VSAM
interface. CICS/400 cannot function-ship requests for DL/I (IMS) databases, but
these can be accessed by using distributed transaction processing or the
distributed program link function.

v Communication facilities may be used on iSeries-to-mainframe links or in
peer-to-peer processing in a LAN. In addition to function shipping, the full
range of CICS intercommunication facilities between systems is available:
– Transactions can be run on a remote system (transaction routing). The remote

system may be a CICS/400 system or that of another CICS platform. Terminal
definitions may be shipped to a mainframe on request or duplicated there
permanently. You effect transaction routing either by defining a transaction as
remote, or by using the CRTE routing transaction.

– Distributed transaction processing enables transactions to initiate and
communicate synchronously with transactions in remote systems. To do this,
transactions issue CICS commands for APPC conversations.

– Transactions may also start remote transactions using asynchronous
processing.

– Distributed program link allows you to use the EXEC CICS LINK command
from CICS/400 to link to a program on a remote system.

v CICS/400 supports:
– Both mainframe and iSeries temporary storage (TS). Local TS requests are

always mapped to auxiliary storage whether the request is main or auxiliary.
– Transient data (TD), including extrapartition TD destinations.
– Recoverable and unrecoverable queues.
– Interval control start and automatic transaction initiation (ATI) from TD

trigger level.
v Data integrity, both in and between iSeries and mainframe, is achieved by

dynamic transaction backout, emergency restart, coordination of iSeries and
mainframe syncpoints, and coordination support for external resource managers.

v CICS/400 provides server support for CICS clients. A CICS client is a front-end
CICS system running in a workstation. A CICS client gains access to a CICS
network through a communications link with a CICS server. The client requests
that are supported by a CICS/400 server are transaction routing and function
shipping. To the CICS/400 application program, it is transparent whether the
request is from a CICS client or from a peer system.

v CICS/400 supports two-phase commitment of protected resources.

4 CICS for iSeries Application Programming Guide V5

Chapter 2. Portability and migration considerations

This chapter lists some specific items that have been identified as possible
migration considerations. You should read it if you are migrating application
programs, either from another CICS platform, or from one release of CICS/400 to
another.

Migrating from another CICS platform
This section lists some points that you should consider when migrating to
CICS/400 from another CICS platform.

CICS/400
v The CICS Family: API Structure, SC33-1007-02 manual describes the differences at

the keyword level (for the supported commands, options, and conditions)
between the CICS application programming interface (API) implementation on
the various CICS platforms.

v CICS/400 supports the command-level interface only. The CICS/400 API is a
subset of that defined by the CICS architecture.

v The virtual storage access method (VSAM) is emulated. BDAM and DL/I are not
supported. Support is provided for KSDS, ESDS, and RRDS file structures. Read
Part 3, “Files and databases,” on page 113 for details.

v Relative byte address (RBA) record identification is not supported for
key-sequenced files on the EXEC CICS DELETE, EXEC CICS READ, EXEC CICS
READNEXT, EXEC CICS READPREV, EXEC CICS RESETBR, EXEC CICS
STARTBR, and EXEC CICS WRITE commands.

v CICS/400 accommodates connectivity between itself and other CICS products,
by using the intersystem communication facilities of OS/400 for handling the LU
6.2 communication protocol. For further information, see Chapter 15,
“Intercommunication considerations,” on page 175.

v CICS/400 uses the prefix “AEG” for naming internal CICS/400 files and
functions. But for portability, the prefix “DFH” is recognized, to allow CICS
application programs to be compatible with CICS/400. The BMS macros have
the “DFH” prefix, see Appendix D, “BMS macro summary,” on page 553, as do
the BMS-related constants, see Appendix B, “BMS-related constants,” on page
545, and copybook members.

v CICS/400 does not suspend HANDLE processing if a subprogram is invoked by
a host language call. You can use the EXEC CICS LINK command as an
alternative, or if programming in COBOL/400, place the EXEC CICS PUSH
HANDLE command before and the EXEC CICS POP HANDLE command after
the host language call.

v EXEC CICS commands that specify an INTO option and some length parameters
require special care. A mismatch between the length specified on the EXEC CICS
command, and the actual length of the INTO area may provide unpredictable
results.

v CICS task numbers may not be unique in CICS/400. The task number is based
on the job number of the user running a CICS shell, followed by a single digit.
This digit is incremented each time a new task is initiated within the shell.
When the digit reaches 9, it is reset to zero. In addition, the task number is reset
to the job number+1 each time the CICS shell is started. If the user repeatedly

© Copyright IBM Corp. 1998, 2004 5

stops and starts CICS shells without signing off OS/400 completely, the first task
in each shell will have the same task number. If any part of your application
relies on a unique task numbers (for example, when allocating temporary
storage queue names), the code must be changed.

v The following commands and options are retained for compatibility but are
treated as no-operations:
– EXEC CICS SUSPEND, EXEC CICS WAIT JOURNAL and EXEC CICS WAIT

JOURNALNUM
– MASSINSERT option on EXEC CICS WRITE
– WAIT, STARTIO, and NOSUSPEND options on EXEC CICS WRITE

JOURNALNUM
– DEFRESP option on EXEC CICS CONVERSE
– BELOW and ANY options on EXEC CICS GETMAIN
– LAST, CNOTCOMPL, and DEFRESP options on EXEC CICS SEND command

Note: The LAST option is available if you are sending data in an APPC
mapped conversation.

BMS
v CICS/400 basic mapping support (BMS) most closely matches minimum

function BMS, with the addition of EXEC CICS SEND TEXT. See “Level of BMS”
on page 139 for a discussion of the levels of BMS. See Chapter 13, “CICS/400
basic mapping support (BMS),” on page 141 for a discussion of the support
provided for BMS.

v BMS macro source input is the only acceptable input for CICS/400 map
generation.

v You must remove any non-BMS assembler-language statements (for example,
PRINT NOGEN) from BMS source maps.

v On CICS/400, when a user begins a conversational or pseudoconversational
transaction, no messages can be delivered to that user’s terminal from any
source except the transaction being processed. On other CICS platforms,
pseudoconversational sequences deliver these messages as soon as no
transaction is running for that user’s terminal, which may be immediately after
any screen in the sequence.

v To override the attribute data displayed by BMS, you can set the corresponding
subfield in the data structure to X'00', if using 3270 devices, but should use X'40'
if using 5250 devices.

Terminal Control
v An application that uses EXEC CICS RECEIVE rather than EXEC CICS RECEIVE

MAP should allow for the addition of SBA data to the front of data returned
from a 5250 terminal.

COBOL
CICS/400® supports both the COBOL/400 and ILE COBOL compilers. In the
following discussion, the term COBOL isused to apply to both compilers.
v If you want to use your own source code line numbers for debugging purposes,

you do not have to use a CRTCBLPGM option. You can use the NUMBER
option of the COBOL PROCESS statement in your source to get columns 1–6
(the statement numbers) as the reference numbers for the compile.

6 CICS for iSeries Application Programming Guide V5

|
|

v USAGE IS POINTER fields cannot be used in data areas associated with the
FROM option of EXEC CICS START, WRITEQ TD, and WRITEQ TS commands,
because the process used to pass the data results in the value not being
recognized as a pointer by OS/400.

v CICS/400 does not support BLL cells.
v You should check COBOL conditional statements of the form:

IF A = B OR C
 because complicated, abbreviated, combined conditions may fail. You should
consider using the form:
IF A = B OR A = C

to avoid possible compiler errors.
v Any COBOL statements containing redefined groups, for example:

01 A PIC X(100)
01 B REDEFINES A.
01 C REDEFINES B.
 cause OS/400® to issue warning messages. You should consider adding PIC to
the redefines to avoid warning messages, for example:
01 A PIC X(100)
01 B REDEFINES A PIC X(2).
01 C REDEFINES B PIC X(2).

v Any COBOL OCCURS statements must be of the form:
02 A PIC X(02) OCCURS 1 TO 100 TIMES DEPENDING ON X
 instead of
OCCURS 100 TIMES

v Any COMPUTE statements must be:
COMPUTE X = Y
 rather than
COMPUTE X EQUAL Y

v You must change all COMP and USAGE IS COMPUTATIONAL fields to
BINARY (COMP equates to COMP-3 in CICS/400).

v You should bear in mind the following restrictions when using pointers in
COBOL:
– Pointers are 16 bytes.
– Pointer arithmetic is not allowed.
– Pointer variables should be defined as USAGE IS POINTER.
– Redefining pointers is not recommended.
– Writing a pointer to a file nullifies the pointer.
v OS/400 initializes working storage depending upon whether the *STDINZ or

the *NOSTDINZ compiler option in used, as given in the following table:

 *STDINZ *NOSTDINZ

Group XX'40'. The value in the VALUE clause,
else XX'00'.

Single item The value in the VALUE clause,
else a default appropriate for the
type of field, for example zero for
numeric fields.

The value in the VALUE clause,
else XX'00'.

v You must change SELECT statement ASSIGN clauses to DATABASE-XXX or
PRINTER-XXX.

Chapter 2. Portability and migration considerations 7

|

|

|
|

|
|
|

|

|
|

|

|

|

|

|

|||
|

||
|
|
|

|
|

v You should remove any LABEL RECORD clauses in the sort description of
your SORT files.

v A GROUP item that contains spaces does not compare equal to zeros. You will
receive a warning message if you code the following in COBOL under
OS/400:
IF NBR-FLD = SPACES

v If there are any pointer fields used by the program, it is advisable to compile
migrated code with the MAP compiler option specified on the COBOL
PROCESS statement. You should also examine the layout of storage in the
linkage section and working storage section. This is because the amount of
storage used for a pointer on OS/400 is 16 bytes, whereas on MVS™ and ESA
it is 4 bytes. The compiler attempts to insert fillers to achieve the correct
alignment but these do not always lead to the most efficient use of storage,
nor to the correct positioning within data structures.

v NOSYNC must be used for COBOL programs using CICS maps. Aligned
maps create an output copybook where the USAGE BINARY fields are SYNC.
COBOL ignores this; the compiler option default is NOSYNC. If you use the
process option of SYNC, there may be serious problems with CICS maps.

v COBOL does not do a propagated MOVE. For example, with COBOL, the
code:
 01 GROUPC.
 03 DATA01 PIC X.
 03 DATA02 PIC X(30).

 01 GROUPD PIC X(31) VALUE "ABCDEFGHIJKLMNOPQRSTUVWXYZ12345".

 MOVE GROUPD TO GROUPC.
 MOVE SPACE TO DATA01.
 MOVE GROUPC TO DATA02.
 results in the following:
 Statement Resulting Value in GROUPC

 MOVE GROUPD TO GROUPC "ABCDEFGHIJKLMNOPQRSTUVWXYZ12345"
 MOVE SPACE TO DATA01 " BCDEFGHIJKLMNOPQRSTUVWXYZ12345"
 MOVE GROUPC TO DATA02 " "
 With COBOL, the same code results in the following:
 Statement Resulting Value in GROUPC

 MOVE GROUPD TO GROUPC "ABCDEFGHIJKLMNOPQRSTUVWXYZ12345"
 MOVE SPACE TO DATA01 " BCDEFGHIJKLMNOPQRSTUVWXYZ12345"
 MOVE GROUPC TO DATA02 " BCDEFGHIJKLMNOPQRSTUVWXYZ1234"

v If you are migrating copybooks that contain EXEC CICS statements, they can
be translated and the generated source copied into COBOL programs.
However, if your copybook contains EXEC CICS HANDLE or EXEC CICS
IGNORE statements, the generated source should not be copied into the CICS
application. EXEC CICS HANDLE and EXEC CICS IGNORE statements must
be translated as inline source statements.

v If you are migrating COBOL applications from platforms that support
non-AD/Cycle COBOL structures, you must check that all continuation
statements start in the correct column. A valid CICS for MVS/ESA COBOL
program can contain continuation statements that start in column 8, (following
the hyphen in column 7). To conform to AD/Cycle®, continuation statements
must not start before column 12. If your continuation statements start before
column 12, the CICS/400 translator will not recognize them.

v COBOL does not support a graphic data type. VS COBOL II programs can use
“PIC G” definitions, but these are not currently supported in COBOL/400.

8 CICS for iSeries Application Programming Guide V5

|
|
|

|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

You can define graphic fields in DDS copybooks, and COBOL accepts fields
defined in this way, but converts the fields to alphanumeric fields in the
compiled program. For ILE COBOL, these fields are converted to fixed-length
G-type fields if *PICGGRAPHIC is defined as a CICS option.

v COBOL programs may contain “DBCS only” literals, or DBCS/SBCS literals,
but not both types of literal.
 “DBCS only” fields may contain a maximum of 80 DBCS characters for OPM
COBOL and 128 DBCS characters for ILE COBOL. Both may be continued
from one line in a program to the next. The method of this continuation is
consistent with that of VS COBOL II.
 DBCS/SBCS literals cannot continue across lines and are restricted to AREA B
on one line.
 DBCS characters can be used only in literals and comments, and there are
some restrictions for literals such as the CALL and CANCEL statements. You
should refer to the COBOL/400 publications for complete details of these
restrictions. (See “Books from related libraries” on page xiv.)

v Differences exist in the rules governing methods of calling subprograms,
specifically with respect to the initialization of COBOL working storage in
subprograms called by COBOL calls. See Table 2 on page 24.

ILE C
v CICS/400 does not support use of the #pragma XOPTS directive. All CICS

translator options must be specified on the CRTCICSC CL command used to
invoke the ILE C translator.

v CICS/400 does not pass the TRANSID to main() in argv[0]. CICS conforms to
the OSI C standard by providing the program name in argv[0]. Access to the
TRANSID can be obtained through the EIB.

SQL
v SQL column names cannot be longer than 10 characters; this also affects

Distributed Relational Database Architecture™ (DRDA®) applications.

iSeries
v CICS/400 does not support, and cannot be run, within a System/36™ or

System/38™ emulated environment.
v Read Chapter 14, “Terminal control,” on page 169 for information about 5250

terminals. If you want to communicate with other CICS systems, read
Chapter 15, “Intercommunication considerations,” on page 175.

v The OS/400 CL command manuals describe the details of the control language,
which is different from JCL. “Books from related libraries” on page xiv gives a
list of specific manual references.

Source code
v Imbedded hexadecimal characters with a value less than X'40' cannot be edited

by the source entry utility (SEU). You must remove them from your program
source code because the translator will not be able to handle them.

Chapter 2. Portability and migration considerations 9

|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|

Migrating from another CICS/400 release
This section lists some points that you should consider when migrating from one
release of CICS/400 to another. Further information on release-to-release
compatibility can be found in the CICS for iSeries Administration and Operations
Guide, SC41-5455-00.

BMS
v You cannot use BMS maps created under the current release on a previous

release, but you can use BMS maps created under a previous release on the
current release.

Application programs
v You can run application programs from a previous release under the current

release, and those from the current release under a previous release, provided
that you specify the TGTRLS(*PRV) option on the CL compilation command.

Resource definitions
v The previous releases that are supported for migration purposes are the last

release of the previous version and the previous release of the current version.
v You cannot use current release resource definition files on previous releases, but

you can migrate to a supported previous release using the SAVCICSGRP
command.

v You can convert previous release resource definition files to the current release.
You can use either the INZCICS command after the new version has been
installed or the CONVERT parameter of the STRCICS command. See the CICS
for iSeries Administration and Operations Guide.

10 CICS for iSeries Application Programming Guide V5

Chapter 3. Preparing and writing CICS applications in COBOL

This chapter describes:
v “Preparing a COBOL application”

– “Coding CICS statements in COBOL applications” on page 12
– “Preprocessing” on page 13
– “Translating a COBOL program” on page 13
– “Compiling an application program” on page 16

v “Writing CICS programs in COBOL” on page 17
– “Modular programming” on page 18
– “Pointer-based addressing” on page 18
– “Getting map set storage” on page 19
– “Source code considerations” on page 20

v “Calling programs from COBOL” on page 22
v “Sample application programs” on page 27

Preparing a COBOL application
The iSeries provides two compilers for COBOL applications using CICS:
v COBOL/400. This is the Original Program Model compiler.
v ILE COBOL. This compiler creates programs that run in the Integrated Language

Environment (ILE) environment.

To create a CICS COBOL application you select the appropriate compiler by using
on of the following values for the Compile Type option in the CRTCICSCBL
command:
v The *PGM option is the default value and is used to create a CICS program

using the COBOL/400 compiler.
v Either the *BNDPGM or *MODULE options may be used to create a CICS

COBOL program or module using the ILE COBOL compiler.

You use the CRTCICSCBL CL command to invoke the CICS/400 precompiler,
which in turn invokes the following:
v The EXEC CICS command language translator, to convert the EXEC CICS

commands in your applications into COBOL statements that the compiler
understands. See “Translating a COBOL program” on page 13 for more
information about how to do this.

v The SQL precompiler, if any SQL statements are encountered in your source
program.

v The appropriate COBOL compiler, to produce a program object that is stored in
an OS/400 library.

When your application program is executed, the statements inserted by the
translator invoke the EXEC interface program. This program then provides the
functions requested by each command by invoking one or more CICS service
programs. The EXEC interface program also obtains and provides addressability to
required areas of storage, and releases them automatically when they are no longer
required.

© Copyright IBM Corp. 1998, 2004 11

|

|

|
|

|
|
|

|
|

|
|

|
|
|
|

|
|

As you can see from Figure 1, three listings can be produced. You can use these
listings to check for any syntax errors.

Coding CICS statements in COBOL applications
When you need a CICS system service, for example when reading a record from a
file, you include an EXEC CICS command in your code.

Each command specifies the function you want; for example, EXEC CICS READ to
read a file. You then supply a number of options. Each option takes the form of a
keyword, and may require an argument. For example, if you are reading a file, you
use the FILE option, supplying the file name as the argument to the option. Some
options do not require an argument; for example, the UPDATE option on the
READ command simply tells CICS that you are updating the file. You mark the
end of the command with the words END-EXEC.

For more information on the EXEC CICS command format, see Chapter 31,
“Programming reference,” on page 305. The commands and their options are
described in Chapter 32, “Application programming commands - reference,” on
page 323.

Figure 1. Preparing a COBOL application program. This picture shows the CICS/400 translator, CRTCICSCBL, with a
COBOL source file as input, a translator output file, and the three listings that may be produced; the translation listing,
the SQL translation listing, and the COBOL compile listing.

12 CICS for iSeries Application Programming Guide V5

When you specify an argument value, you can use a literal, or a data area where
the value you want is stored. If you use a literal, follow the usual COBOL rules
and put it in quotes unless it is a number. In other types of commands, these
values may be paragraph names in your program, telling CICS where to go if a
certain type of exception condition arises. Do not use quotes around paragraph
names.

The statements generated by the translator never contain periods, unless you
include one explicitly after the END-EXEC. This means you can use CICS
commands within control statements (by leaving the period out of the command),
or you can end a sentence with the command (by including the period). See
“Translating a COBOL program” for more information about the translator.

Preprocessing
You may use a preprocessor to process source statements before the CICS
translator is invoked. However, any preprocessor run before CICS translation must
be able to ignore CICS statements.

Translating a COBOL program
The CICS application program interface translator translates COBOL programs
with embedded EXEC CICS commands. The CICS translator program scans each
statement and:
v Verifies that each CICS statement is valid and free of syntax errors. The

validation procedure lists error messages in the output listing to help you correct
any syntax errors.

v Prepares each CICS statement for compilation in the host language. For most
EXEC CICS statements, the CICS translator inserts a comment, a series of
COBOL MOVE statements, a CALL statement to the CICS interface program
(AEGEIPGM), and possibly more COBOL MOVE statements.

v Flags any SQL statements that are found within the source code. When all
CICS statements have been validated and prepared for compilation, the SQL
translator is invoked if SQL statements are encountered within this source code,
provided that the *GEN (default) option has been used on the CICSOPT
parameter of the CRTCICSCBL CL command. Otherwise the translation process
stops at the end of translation of the CICS commands.

To obtain diagnostic information when you translate a program, specify the
*SOURCE and *XREFCICS translator options of the CICSOPT parameter. This
creates an output spool file showing you the results of the translation process.

The translator translates the EXEC commands into MOVE statements followed by
a CALL statement in COBOL, and possibly more MOVE statements. The purpose
of the MOVE statements is to assign constants to COBOL data variables; this
enables constants and names to be specified as arguments to options in the
commands.

Declarations for the generated variables are included automatically in working
storage by the translator inserting a COBOL COPY statement. The variables
included by this COPY statement are reserved and all begin with a “DFH” prefix.

Note: Do not use EXEC, CICS, END-EXEC, or names starting with “DFH”, as
names for user variables.

Chapter 3. Preparing and writing CICS applications in COBOL 13

|

|
|
|
|
|

|
|
|

The translator modifies the linkage section by inserting the EIB structure as the
first parameter, and inserts a DFHCOMMAREA as the second parameter, if one is
not already present. It also inserts declarations for the variables used as the
receiving fields for the COBOL MOVE statements inserted by the translator.

You specify translator options using the OS/400 CL command, CRTCICSCBL. The
translator provides a number of optional facilities; for example, to specify what
information is required on the listing. The translator options and their defaults are
listed in Chapter 30, “OS/400 control language (CL) commands,” on page 265.

Example

A command such as:
EXEC CICS RECEIVE MAP(’MAPA’) END-EXEC.

may be translated to:
MOVE 0 TO DFH-ARG-INDEX(6).
MOVE ’MAPA’
 TO DFH-STRING-VALUE(1).
MOVE 1 TO DFH-ARG-INDEX(9).
MOVE 8 TO DFH-ARG-CODE(1).
MOVE X"00008120" TO DFH-ARG-MASK(1).
MOVE X"00000000" TO DFH-ARG-MASK(2).
MOVE X"00000000" TO DFH-ARG-MASK(3).
MOVE X"00000000" TO DFH-ARG-MASK(4).
MOVE 3 TO DFH-ARG-COUNT.
MOVE -1 TO DFH-DEBUG-LINE.
MOVE 62 TO DFH-FN-CODE.
CALL "AEGEIPGM" USING DFHTTFTR,
 MAPAI.
IF DFH-EIBLABEL NOT EQUAL TO 0
 GO TO AEG-API-ERROR.
END-IF.

The CICS translator assumes that the host language statements are syntactically
correct. If they are not, the translator may not correctly identify CICS statements.
There are limits on the forms of source statements that can be passed through the
translator. For example, literals and comments (which are not accepted by the
application language compiler) can interfere with the translator source scanning
process and cause errors.

Characteristics of the input source file
The translator reads input from the source physical file member specified. This
source file contains language source statements in COBOL. It may contain the
following items of relevance to the translator:
v EXEC CICS commands
v DFHRESP built-in functions
v DFHVALUE built-in functions

For COBOL the translator writes its output to the QACYCICS file of the QTEMP
library. The specific member is given the same name as the source member. This
contains the translated application program with the CICS functions commented
out and followed by the equivalent language statements or function calls.

Note: If *NOGEN is specified as a CICSOPT option, the translation process ends at
the end of the translation of the CICS commands.

Example

14 CICS for iSeries Application Programming Guide V5

|

|
|

|
|

The following example uses the CRTCICSCBL command to create a COBOL
program named SAMPLE in library USERLIB1. See Chapter 30, “OS/400 control
language (CL) commands,” on page 265 for more details.

CCSID of source files
The SQL translator reads the source records using the coded character set identifier
(CCSID) of the source file. When processing SQL INCLUDE statements, the
included source is converted to the CCSID of the original source file if necessary. If
the included source cannot be converted to the CCSID of the original source file,
an error occurs.

If double-byte character set (DBCS) literals are specified in the application program
source, the CCSID, for converting DBCS characters, must indicate that the system
supports DBCS literals. For more information about CCSID, see the Database and
File and file systems topics in the iSeries Information Center. Before using the
translator for DBCS purposes, you should refer to the COBOL/400 User’s Guide or
WebSphere Development Studio: ILE COBOL Programmer’s Guide and become familiar
with the DBCS support provided by COBOL.

If the second byte of a DBCS character has the code point X'7F', which is an SBCS
double quotation mark, then if the string is surrounded by or contains double
quotation marks, it will be misinterpreted by the translator. To avoid this, you are
recommended to surround a string in a COBOL application, with single quotation
marks instead of double quotation marks, if it contains any DBCS characters.

Output from the translator
The translator produces:
v Listings
v temporary source file members

Listings: The following listings are output by the translator to the printer file:

Translator options
Options specified in the CRTCICSCBL CL command.

Translator source
Source statements, with record numbers assigned by the translator, if you
specify the *SOURCE option.

Translator cross-reference
Cross-reference listing (if you specify the CICSOPT options *XREFCICS
and *SRC) showing the translator line numbers of CICS statements in
which host names and column names are referred to.

Translator diagnostics
Messages showing the translator record numbers of statements in error.

The output to the printer file uses a CCSID value of 65535. The data is not
converted when it is output to the printer file.

Temporary source file members: Source statements processed by the translator
are written to QACYCICS in the QTEMP library. In your translator-changed source
code, CICS statements have been converted to a comment, MOVE, or CALL to the

CRTCICSCBL PGM(USERLIB1/SAMPLE)
 CICSOPT(*SRC *XREFCICS)

Chapter 3. Preparing and writing CICS applications in COBOL 15

|
|
|
|
|
|
|

CICS interface program AEGEIPGM. The name of the temporary source file
member is the same as that of the original source file member. When CICS creates
the QACYCICS file, it uses the CCSID value of the source file as the CCSID value
for QACYCICS.

QACYCICS can be moved to a permanent library after translation, if you want to
compile at a later time.

Compiling an application program
Having prepared your program source, and translated it to remove any EXEC
CICS statements, you next need to compile it to create an executable program.

Unless *NOGEN is specified, the CICS precompiler automatically calls the relevant
compiler after the successful completion of the translation.
v The CRTCICSCBL CL program using the *PGM option automatically calls either

CRTCBLPGM or CRTSQLCBL depending on whether the input source contains
EXEC SQL commands. The CRTCBLPGM command is run specifying the
program name, source file name, translator created source member name, text
and USRPRF.
 the following options under CICSOPT are passed to the COBOL/400 compiler:
– *SRC, *NOSRC
– *SOURCE, *NOSOURCE
– *APOST, *QUOTE
– SECLVL, *NOSECLVL

v The CRTCICSCBL CL program using the *BNDPGM option automatically calls
the CRTBNDCBL or the CRTSQLCBLI compiler depending on whether the input
source contains EXEC SQL commands. If the *MODULE option is selected to
create a COBOL module rather than a program, CRTDBLMOD is called. If this
option is used, then CRTPGM must be used to create an executable program.
 The following options under CICSOPT are passed to the ILE COBOL compiler:
– *SRC, *NOSRC
– *SOURCE, *NOSOURCE
– *APOST, *QUOTE
– *SECLVL, *NOSECLVL
– *STDTRUNC, *NOSTDTRUNC
– *RANGE, NORANGE
– *PICXGRAPHIC, *NOPICXGRAPHIC, *PICGGRAPHIC, *NOPICGGRAPHIC

(See “Conventions and terminology used in this book” on page xiii for a discussion
of the formation of these option names.) COBOL compiler defaults are used for all
other parameters.

See page 266 for an explanation of the limitations on the SQL options that the
COBOL compiler CL commands can pass to the SQL preprocessor.

Notes:

1. You must not change the translated source member in QTEMP/QACYCICS
before issuing the CRTCBLPGM, CRTSQLCBL, CRTBNDCBL or the
CRTSQLCBLI command, or the compile may fail. The REPLACE option is
passed on to the CRTCBLPGM command.

2. When setting the compiler options, check that PIC S9(4) BINARY fields are
regarded as having a range -32 767 through +32 767; otherwise you might

16 CICS for iSeries Application Programming Guide V5

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|

|

|
|
|
|

|
|

experience problems with LENGTH fields greater than 9999 bytes. If you have
problems with this, refer to the ILE COBOL/400 manuals for more details
about the NOTRUNC option.

Writing CICS programs in COBOL
This section describes some things you should be aware of when writing COBOL
programs.

COBOL programs are usually coded as members of source type CICSCBL in source
file QLBLSRC. See Figure 2 for an example of using source type CICSCBL.

Syntax checking for CICS COBOL applications is provided by the Source Entry
Utility (SEU) when source type CICSCBL is used. All EXEC CICS commands are
marked by the word CICS in the line number field, as shown in Figure 3 on page
18.

 Work with Members Using PDM
 File QLBLSRC
 Library QCICSSAMP Position to
 Type options, press Enter.
 2=Edit 3=Copy 4=Delete 5=Display 6=Print
 7=Rename 8=Display description 9=Save 13=Change text ...
 Opt Member Type Text
 ACCTREC CICSCBL Account file record format
 ACCTSET CICSCBL ACCT Sample Transaction
 ACCT00 CICSCBL ACCT00 CICS COBOL Source
 ACCT01 CICSCBL ACCT01 CICS COBOL Source
 ACCT02 CICSCBL ACCT02 CICS COBOL Source
 ACCT03 CICSCBL ACCT03 CICS COBOL Source
 ACCT04 CICSCBL ACCT04 CICS COBOL Source
 ACIXREC CICSCBL Index file record format
 More...
 Parameters or command
 ===>
 F3=Exit F4=Prompt F5=Refresh F6=Create
 F9=Retrieve F10=Command entry F23=More options F24=More keys

Figure 2. Screen showing an example of using source type CICSCBL

Chapter 3. Preparing and writing CICS applications in COBOL 17

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|
|

|
|

For general information about writing COBOL programs, refer to the WebSphere
Development Studio: ILE COBOL Reference.

Modular programming
If there is common code that is shared among many programs it can be saved as a
member of a copybook. It must be translated before being stored, but do not edit
the translated output. If you copy or manipulate statements originally inserted by
the CICS translator in an application program, you may get unpredictable results.

Segments of programs to be copied into the procedure division can be translated
by the command language translator, stored in their translated form, and later
copied into the program to be compiled.

Note: Any command using a LABEL option can not be pre-translated and later
copied into application programs. EXEC CICS HANDLE CONDITION,
EXEC CICS HANDLE ABEND, and EXEC CICS HANDLE AID commands
cannot be made common code because the code generated by the translator
for these commands varies depending on their placement in the application
program.

When using ILE, you can create modules for common code. These modules can
then be combined with other modules to create an executable program. The source
code for the module can contain EXEC CICS statements.

Pointer-based addressing
CICS application programs need to access data dynamically when it is in a CICS
internal area, and only the address is passed to the program. Examples are:
v CICS areas such as the CWA, TWA, and TCTTE user area (TCTUA), accessed

using the EXEC CICS ADDRESS command
v Input data, obtained by EXEC CICS commands such as READ and RECEIVE

with the SET option

COBOL provides a simple method of obtaining addressability to the data areas
defined in the linkage section, using pointer variables and the ADDRESS special

 Columns . . . : 1 71 Edit SAMPLE/QLBLSRC
 SEU==> SAMPLE
 FMT CB-A+++B++
0006.00 ENVIRONMENT DIVISION.
0006.01
0007.00 DATA DIVISION.
0007.01
0008.00 WORKING-STORAGE SECTION.
0009.00
0010.00 01 MSG-TEXT PIC X(23) VALUE IS
0011.00 ’ 5722DFH CICS ’.
0012.00
0013.00 PROCEDURE DIVISION.
0014.00
CICS EXEC CICS SEND TEXT FROM(MSG-TEXT) LENGTH(23) ERASE
CICS END-EXEC
CICS EXEC CICS RETURN NOHANDLE END-EXEC.
0017.01
0018.00 EPILOG.
0019.00 GOBACK.
 ****************** End of data *********************************
 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor
 F16=Repeat find F17=Repeat change F24=More keys

Figure 3. Example of an SEU screen showing code containing CICS commands

18 CICS for iSeries Application Programming Guide V5

|
|

|
|
|

register. The ADDRESS special register holds the address of a record defined in the
linkage section with level 01 or 77. This register can be used in the SET option of
the EXEC CICS commands GETMAIN, LOAD, READ, and READQ.

Example of using pointer variables
Figure 4 shows how to obtain addressability to the data for pointer addressing. If
the records in the EXEC CICS READ or EXEC CICS REWRITE commands are
fixed-length, COBOL does not require a LENGTH option. This example assumes
variable-length records. After the EXEC CICS READ command, you can get the
length of the record from the field named in the LENGTH option (here,
LRECL-REC1). In the EXEC CICS REWRITE command, you must code a LENGTH
option if you want to replace the updated record with a record of a different
length.

Note: In the above example, COMP-4 has been used. You can specify BINARY in
preference to COMP-4. However, you must not specify COMP because the
COBOL compiler treats this as equivalent to packed decimal (that is,
COMP-3). COBOL compilers on other systems may treat COMP as
equivalent to COMP-4.

Getting map set storage
If your basic mapping support (BMS) map is in the linkage section, you must
acquire map storage dynamically with the EXEC CICS GETMAIN command. You
may either release storage with the EXEC CICS FREEMAIN command or keep it
until the task is complete. Early release helps you to optimize storage use, and can
be useful in a long conversational transaction. See Chapter 12, “Introduction to
basic mapping support (BMS),” on page 135 for further information about BMS.

WORKING-STORAGE SECTION.

77 LRECL-REC1 PIC S9(4) COMP-4.

LINKAGE SECTION.

01 REC-1.
 02 FLAG1 PIC X.
 02 MAIN-DATA PIC X(5000).
 02 OPTL-DATA PIC X(1000).

01 REC-2.
 02 ...

PROCEDURE DIVISION.

 EXEC CICS READ UPDATE...
 SET(ADDRESS OF REC-1)
 LENGTH(LRECL-REC1)
 END-EXEC.

 IF FLAG1 EQUAL ‘Y’
 MOVE OPTL-DATA TO ...
 .

 EXEC CICS REWRITE...
 FROM(REC-1)
 END-EXEC.

Figure 4. Example of pointer-based addressing in a COBOL program

Chapter 3. Preparing and writing CICS applications in COBOL 19

With other COBOL compilers you must determine the necessary amount of
storage, which must be sufficient for the largest map in your map sets. This can be
difficult to determine, and probably involves examining all the map assemblies.
With COBOL, use the LENGTH special register:

In COBOL, the actual processing of maps in the linkage section is simplified by the
elimination of BLL cells.

Figure 5 shows the method of processing BMS maps in the linkage section. The
highlighted material describes the contents of the MAPSET1 COBOL copybook.
MAPSET1 was defined as follows:

In this example, it is assumed that the COBOL program has been compiled and
that MAPSET1 has been included in the program.

Source code considerations
You do not define your files in a CICS COBOL program, but in the CICS
file-control table entries. At most sites this table is updated by the system
administrator. See the CICS for iSeries Administration and Operations Guide for more
information about setting up entries in the file control table.

EXEC CICS GETMAIN
 SET(ADDRESS OF datarea)
 LENGTH(LENGTH OF datarea)
END-EXEC.

MAPSET1 DFHMSD TYPE=DSECT,
 LANG=COBOL,
 STORAGE=AUTO,
 MODE=IN

 WORKING-STORAGE SECTION.
 77 FLD0 PIC X VALUE IS LOW-VALUE.

 LINKAGE SECTION.

 COPY MAPSET1.

 01 MAP1I.
 02 FILLER PIC X(12).
 02 FILLER1L BINARY PIC S9(4).
 .
 .
 .
 02 FIELD90 PIC X(20).

 PROCEDURE DIVISION.

 EXEC CICS GETMAIN
 FLENGTH(LENGTH OF MAP1I)
 SET(ADDRESS OF MAP1I)
 INITIMG(FLD0)
 END-EXEC.

Figure 5. Example of processing BMS maps in a COBOL program

20 CICS for iSeries Application Programming Guide V5

v Do not use the entries in the environment division and the data division that are
normally associated with files. In particular, the entire file section is omitted
from the data division. However, you still need to code the headers for both of
these divisions. Put the record formats that usually appear there in either the
working storage or linkage sections.

v Do not use the COBOL READ, WRITE, OPEN, and CLOSE statements. Use the
appropriate CICS commands for storing and retrieving data, and for
communication with terminals.

v The translator expands all CICS commands to COBOL CALL commands, so the
compiler expects a return to the calling program. Control returns to CICS after
the EXEC CICS RETURN command.

v The COBOL compiler limits are given in Table 1. See the appropriate COBOL
compiler reference book for other compiler limits.

 Table 1. COBOL compiler limits

Language element COBOL/400 Limit ILE COBOL Limit

Table size—mixed length (bytes) 3 000 000 16 711 568

Table size—variable length (bytes) 32 767 16 711 568

Table element size (bytes) 32 767 16 711 568

GO TO proc-name DEPENDING
ON

255 Virtually no limit

v If both the identification and procedure divisions are presented to the translator
in the form of a source program or copybook, the following coding is produced
or expanded:

DFHWRKSTART
inserted at the beginning of the working storage section. This indicates
the beginning of WORKING STORAGE.

DFHTTFTR
inserted at the end of the working storage section. This brings in a 01
level of the same name containing a number of COBOL data areas used
as receiver fields by COBOL statements inserted by the translator.

DFHWRKEND
inserted at the end of the working storage section. This indicates the end
of working storage.

DFHEIBLK
inserted at the start of the linkage section as the first 01 level in the
section. This brings in the EXEC interface block (EIB). See Appendix A,
“EXEC interface block,” on page 529 for a description of the fields in the
EIB.

DFHCOMMAREA
generated, if not specified, as the second 01 level in the linkage section.
This brings in the communication area. See “COMMAREA in EXEC
CICS LINK and EXEC CICS XCTL commands” on page 70 for more
information about the communication area.

 If no identification division is present, only the CICS commands are expanded.

 If the identification division only is present, only DFHEIBLK and
DFHCOMMAREA are produced.

Chapter 3. Preparing and writing CICS applications in COBOL 21

|
|

||

|||

|||

|||

|||

|
|
||

|

|

v If a debugging line is to be used as a comment, it must not contain any
unmatched quotation marks.

v Statements that produce variable-length areas, such as OCCURS DEPENDING
ON, should be used with caution within the working storage section.

v Avoid invoking interactive CICS shells from within a COBOL program.
 The STRCICSUSR CL command, which starts an interactive application shell,
invokes an intermediate COBOL program before invoking the shell program.
This intermediate program deactivates the COBOL run unit to enable CICS error
handling.
 When the shell terminates, the run unit is not reactivated. If the shell was
invoked from a higher level COBOL program then unpredictable results could
occur during exceptions.

v Using PERFORM to execute a COBOL subroutine is much more efficient than
using CICS to link to, or transfer control to, another program. However, each
PERFORM brings in a copy of the designated subroutine. Repeating the
subroutine in each of your COBOL application programs uses much more
storage. Like other COBOL compilers, the COBOL compiler allows a COBOL
program to use a CALL to external routines. The called routines can issue CICS
commands. This avoids the CICS overhead of transferring control between
programs, but it does mean loading the routines for every calling program. Try
to keep the code you PERFORM as near as you can to the controlling PERFORM
statement, to minimize the risk of the two items being in separate pages of
storage.
 Using PERFORM with code that isn’t a true “subroutine” (as in structured
programming) may also affect response time. Consider these guidelines when
using PERFORM:
– Use PERFORM to help structure code, at the cost of increased paging.
– Keep called code as close as possible to the PERFORM statement.
– Use PERFORM for long code, or code used in a great many places.

Calling programs from COBOL
In a CICS system, there are two ways of transferring control to another program:
v Using EXEC CICS LINK and XCTL commands
v Using host language calls

Using CICS commands
In an COBOL CICS application, you can invoke CICS services to link or transfer
control to an external program.

The calling program contains one of the following CICS commands:
v EXEC CICS LINK

 EXEC CICS LINK PROGRAM(‘SUBPGM’)
 END-EXEC.
 EXEC CICS LINK PROGRAM(subpgm)
 END-EXEC.

v EXEC CICS XCTL
 EXEC CICS XCTL PROGRAM(‘PGMNAME’)
 END-EXEC.
 EXEC CICS XCTL PROGRAM(pgmname)
 END-EXEC.

22 CICS for iSeries Application Programming Guide V5

Note: The called program may be named explicitly as a non-numeric literal within
quotation marks or as a COBOL data area with length equal to that required
for the name of the program.

Figure 6 provides an overview of how control is transferred between programs
when either the EXEC CICS LINK or the EXEC CICS XCTL (transfer control)
command is used.

The EXEC CICS LINK command transfers control to the specified program (B) at a
new logical level. Program B could use the EXEC CICS RETURN command to
cause control to return to the calling program (A). This is similar to the use of a
COBOL CALL statement.

The EXEC CICS XCTL command in Program B transfers control to Program C at
the same logical level. You cannot return control to the calling program (B) using
an EXEC CICS RETURN command or a host language statement. When program C
completes, control returns to program A.

In a CICS system, when control is transferred from an active program to an
external program, but the transferring program remains active and control can be
returned to it, the program to which control is transferred is called a subprogram.

Using COBOL CALL statements
In a COBOL application, there are two types of call that can be made during run
time:
v Static call
v Dynamic call

Static COBOL call
The calling program contains a COBOL statement of the form:
 CALL ‘subpgname’

The called subprogram is explicitly named as a literal string and the reference to
the called program is determined at compile time.

Figure 6. Control is returned to the next higher logical level.

Chapter 3. Preparing and writing CICS applications in COBOL 23

|
|
|
|

|
|

|

|

Dynamic COBOL call
The calling program contains a COBOL statement of the form:
 CALL identifier

The identifier is the name of a COBOL data area that must contain the name of the
called subprogram.

Rules governing calling CICS COBOL programs
Whether you use CICS commands or host language calls to call subprograms
depends on a number of factors including functionality, portability, and
performance. Table 2 outlines some of the requirements and conventions that you
need to consider when choosing your implementation. This table defines
requirements when a COBOL program is called as a main transaction program
(called by CICS at logical level 1) or as a subprogram.

 Table 2. Rules to be used with CICS COBOL programs

Programming requirement Main program Subprogram called by
EXEC CICS LINK/XCTL

Subprogram called by
language call

Install in control region
Processing Program Table
(PPT)

REQUIRED
Transaction will abend
APCT if not found or
not authorized.

REQUIRED
If not defined, not
found, or disabled,
a PGMIDERR
condition is raised
in the calling program.

OPTIONAL

Translation REQUIRED
Control is passed to the COBOL program entry
point.

OPTIONAL

Source code Any COBOL function supported by CICS, including precompiled EXEC SQL
statements.

Parameters and shared data If the COMMAREA is used, it must be passed in the
EXEC CICS LINK command.

If translated, may receive
data passed by any of the
standard CICS methods
(COMMAREA, TCTUA, TS
queues, TWA).

When using language calls
to call a translated CICS
COBOL program, the
calling program must
supply pointers to the
EXEC Interface Block and
the COMMAREA as the
first two parameters as
expected.

Returning control to the
calling program

Use EXEC CICS RETURN.
Optionally, use GOBACK, EXIT PROGRAM, or
STOP RUN. For ILE COBOL, use
EXIT PROGRAM AND CONTINUE RUN UNIT.

Use GOBACK or EXIT
PROGRAM. Use of EXEC
CICS RETURN or STOP
RUN may give
unpredictable results.

24 CICS for iSeries Application Programming Guide V5

Table 2. Rules to be used with CICS COBOL programs (continued)

Programming requirement Main program Subprogram called by
EXEC CICS LINK/XCTL

Subprogram called by
language call

Program activation On each entry, a CICS run unit is initialized and a new
initialized copy of WORKING STORAGE is provided. In
some circumstances, this can cause a performance
degradation. CICS supports recursive program links.
Native COBOL run-unit processing is suspended during
a CICS application shell. If performance is unsatisfactory
with LINK commands, COBOL calls may give improved
results.

On first entry to the called
subprogram, WORKING
STORAGE is initialized. On
subsequent entries to the
called subprogram,
WORKING STORAGE is
provided in its last-used
state; that is, no storage is
freed, acquired, or
initialized.

The subprogram is
deactivated only when the
run unit ends or when an
appropriate COBOL
CANCEL statement is
issued.

Recursive calls may give
unpredictable results.

Condition AID and abend
handling

Condition AID and abend
handling is initially
defaulted.

The system default action
for unhandled conditions is
usually to abend the task.

EIBAID and EIBRESP fields
may be tested if
NOHANDLE or RESP
options are coded on CICS
commands.

For more information on
exception handling, see
Chapter 6, “Dealing with
exception conditions,” on
page 87.

On entry to the run unit,
no condition or abend
handling is active. Within
the subprogram, the normal
CICS rules apply. If an
abend occurs while no
abend handling is active,
CICS searches successively
higher logical levels
(starting with the caller)
and passes control to the
label or program specified
in the first active HANDLE
ABEND command found. If
none is found, the
transaction abends.

If translated, CICS assumes
that the calling program
has issued a PUSH
HANDLE command to
suspend HANDLE
processing. In order to
establish an abend or
condition handling
environment that will exist
for the duration of the
subprogram, new HANDLE
commands should be
issued on entry to the
subprogram. The
environment created
remains in effect until
either another HANDLE
command is issued, or the
subprogram returns control
to the caller. Upon return
from the called
subprogram, the calling
program should issue a
POP HANDLE command
to restore HANDLE
processing.

Program activation
Activation is the process of preparing a program to run. It includes allocating the
data or static storage needed by the program. There are rules that govern when a
program is activated and deactivated.

A run unit is a running set of one or more programs that communicate with each
other by COBOL CALL statements. In a CICS environment, a run unit is created by

Chapter 3. Preparing and writing CICS applications in COBOL 25

the first program in a CICS task or by a program invoked by an EXEC CICS LINK
or EXEC CICS XCTL command. The first program in a run unit is usually referred
to as the main program.

Native COBOL run unit processing is suspended within a CICS/400 application
shell. The run unit main program, which is a PPT resource defined to CICS, is
activated by CICS. Subprograms called using COBOL CALL statements are
activated the first time they are called. On subsequent calls, COBOL WORKING
STORAGE will be in its ‘last-used’ state and the re-initialization of any items
becomes the responsibility of the programmer. Such subprograms are deactivated
only when the run unit ends or when an appropriate COBOL CANCEL statement
is issued.

A called program must not directly or indirectly execute its caller (such as program
X calling program Y; program Y calling program Z; and program Z then calling
program X). This is called a recursive call. COBOL allows recursion in both main
programs and subprograms. However, if you want your programs to conform to
Systems Application Architecture® (SAA) standards, do not use recursive calls
within a run unit.

Because each EXEC CICS LINK or EXEC CICS XCTL command initiates a new run
unit, each time you link to a COBOL program working storage will be reinitialized.

Figure 7 on page 27 shows run units, logical levels, and the effects of using CICS
commands and COBOL verbs to transfer control between programs. The dashed
boxes marked A, B, and C show the scope of COBOL run units.

26 CICS for iSeries Application Programming Guide V5

Sample application programs

Disclaimer:

Figure 7. Flow of control between COBOL programs and run units in CICS/400

Chapter 3. Preparing and writing CICS applications in COBOL 27

The ACCT sample application contains programming source code for
your consideration. This sample has not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, performance or function of the programs. All programs
herein are provided to you “as is”. IBM EXPRESSLY DISCLAIMS ALL
WARRANTIES, INCLUDING THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

A set of sample application programs, called ACCT, is provided as an example of
how CICS commands can be used in a program written in the COBOL language.
All ACCT objects are in the QCICSSAMP library.

If the COBOL compiler is installed on your system, you can modify the ACCT
sample programs. Figure 8 is a screen showing the members of file QLBLSRC that
contain the source for the ACCT application programs. Note that the TYPE of the
members containing CICS code is CICSCBL.

The BMS maps used by the ACCT sample are contained in a single mapset. The
source for this mapset is in member ACCTSET of file QMAPSRC. The TYPE of the
source members is CICSMAP.

Data declarations used by the ACCT sample
v The data for each account for the ACCT sample is stored in a physical file,

ACCTFIL, in the QCICSSAMP library. The record format for this file is declared
to a program by copying the copybook ACCTFIL into the working storage
section. The source for the copybook is in member ACCTFIL of file QDDSSRC.

v The ACCT sample uses a physical file, ACCTIX, as an index of the account data
by customer name. The copybook for the record format is called ACIXREC and
the source is in ACCTIX; both ACIXREC and ACCTIX are members of file
QDDSSRC. Note that logical files can be used to provide alternative indexes into
a physical file.

 Work with Members Using PDM AS400A
 File QLBLSRC
 Library QCICSSAMP Position to
 Type options, press Enter.
2=Edit 3=Copy 4=Delete 5=Display 6=Print 7=Rename
8=Display descr. 9=Save 13=Change text 14=Compile 15=Create module.

 Opt Member Type Text
 ACCTREC CBL Account file record format
 ACCTSET CBL ACCTSET CICS BMS Source
 ACCT00 CICSCBL ACCT00 CICS COBOL Source
 ACCT01 CICSCBL ACCT01 CICS COBOL Source
 ACCT02 CICSCBL ACCT02 CICS COBOL Source
 ACCT03 CICSCBL ACCT03 CICS COBOL Source
 ACCT04 CICSCBL ACCT04 CICS COBOL Source
 ACIXREC CBL Index file record format
 Bottom
 Parameters or command
 ===>
 F3=Exit F4=Prompt F5=Refresh F6=Create
 F9=Retrieve F10=Command entry F23=More options F24=More keys

Figure 8. ACCT sample screen: Working with the ACCT samples

28 CICS for iSeries Application Programming Guide V5

Defining resources for the ACCT sample
A sample program, CRTSAMP, is provided to simplify resource definition for the
ACCT sample. This program creates a CICS group, called ACCT, and other
necessary resources for a control region. You specify the name of the control region
and the library in which the resources are created as parameters for the program.
When the CICS resources have been defined, the control region is started.

To run the CRTSAMP program, enter:
CALL CRTSAMP library-name sys-id

where sys-id is the name of the sample control region to be created and
library-name is the library that the CICS resources are stored in. These are
required parameters. The source for CRTSAMP is in member CRTSAMP of file
QCLSRC in library QCICSSAMP.

Running the ACCT sample
1. Use CRTSAMP to create a control region and the CICS group, ACCT, that

defines all the CICS resources needed to run the ACCT sample.
2. Start a CICS user shell for the control region created in step 1.
3. When the user shell has started, enter the transaction identifier ACCT to start the

ACCT sample. The BMS map shown in Figure 9 is displayed at the terminal.

Note: The input fields in Figure 9 are marked with underscores, but these do not
appear on the actual screen.

If you press the CLEAR key, the application ends and control passes back to CICS.

To request a function, fill in the appropriate fields on the map and press ENTER. If
the request is invalid, the menu map is redisplayed, with a message that describes
the error.

Displaying an account record
To display an account record, starting from the ACCT menu display, enter ‘D’ in
the REQUEST TYPE field and the account number in the ACCOUNT field and press
ENTER. The account details are displayed. Figure 10 on page 30 is an example of
what the screen might look like following a request to display an account record.

ACCOUNT FILE: MENU

TO SEARCH BY NAME, ENTER: ONLY SURNAME
 REQUIRED. EITHER
 SURNAME: ____________ FIRST NAME: _______ MAY BE PARTIAL.

FOR INDIVIDUAL RECORDS, ENTER:
 PRINTER REQUIRED
 REQUEST TYPE: _ ACCOUNT: _____ PRINTER: ____ ONLY FOR PRINT
 REQUESTS.
 REQUEST TYPES: D = DISPLAY A = ADD X = DELETE
 P = PRINT M = MODIFY

THEN PRESS "ENTER" -OR- PRESS "CLEAR" TO EXIT

Figure 9. ACCT sample screen: Menu

Chapter 3. Preparing and writing CICS applications in COBOL 29

Adding an account record
To add an account record, starting from the ACCT menu display, enter ‘A’ in the
REQUEST TYPE field and the account number in the ACCOUNT field and press ENTER. If
an account already exists with the account number specified, the application
returns to the menu with a message that describes the error. Figure 11 on page 31
shows the map displayed on the screen, with details for a new account already
entered. The ACCOUNT NUMBER field is already set to the value entered on the menu.
To continue with the request, enter the account details into the map and press
ENTER; otherwise press CLEAR to cancel the request. If any of the details added are
invalid, the map is redisplayed with the current data, and the field containing the
invalid data is highlighted with asterisks.

Note: The CARD CODE field indicates whether the card is lost (L), stolen (S), new (N),
or reissued (R). No checking is done on the REASON and SPECIAL CODES fields.

ACCOUNT FILE: RECORD DISPLAY

ACCOUNT NO: 11111 SURNAME: Matthews
 FIRST: Dan MI: TITLE: MR
TELEPHONE: 0001234567 ADDRESS: 1, The House
 The Road
 The City
OTHERS WHO MAY CHARGE:

NO. CARDS ISSUED: 1 DATE ISSUED: 02 04 93 REASON: N
CARD CODE: N APPROVED BY: ISW SPECIAL CODES: L

ACCOUNT STATUS: N CHARGE LIMIT: 1000.00

HISTORY: BALANCE BILLED AMOUNT PAID AMOUNT
 0.00 00/00/00 0.00 00/00/00 0.00
 0.00 00/00/00 0.00 00/00/00 0.00
 0.00 00/00/00 0.00 00/00/00 0.00

PRESS ’CLEAR’ OR ’ENTER’ WHEN FINISHED

Figure 10. ACCT sample screen: Displaying a record

30 CICS for iSeries Application Programming Guide V5

Searching by account holder’s name
You can search for account information by name, instead of by account number. To
do this, you enter a name in the SURNAME field and, optionally, in the FIRST NAME
field on the menu map, and press ENTER. If the name entered is not valid (not
alphabetic), or no match can be found, the menu map is redisplayed with a
message. Figure 12 shows an example of the display returned when you search for
a name.

Modifying an account record
To modify an account record, starting from the ACCT menu display, enter ‘M’ in
the REQUEST TYPE field and the account number in the ACCOUNT field and press
ENTER. If the account does not exist or is already in use, the application returns to
the menu display with a message.

ACCOUNT FILE: NEW RECORD

ACCOUNT NO: 11111 SURNAME: Matthews
 FIRST: Dan MI: TITLE: MR
TELEPHONE: 01234567 ADDRESS: 1, The House
 The Road
 The City
OTHERS WHO MAY CHARGE:

NO. CARDS ISSUED: 1 DATE ISSUED: 02 04 93 REASON: N
CARD CODE: N APPROVED BY: ISW SPECIAL CODES: L

FILL IN AND PRESS ’ENTER,’ OR ’CLEAR’ TO CANCEL

Figure 11. ACCT sample screen: Adding a new record

ACCOUNT FILE: MENU

TO SEARCH BY NAME, ENTER: ONLY SURNAME
 REQUIRED. EITHER
 SURNAME: FIRST NAME: MAY BE PARTIAL.

FOR INDIVIDUAL RECORDS, ENTER:

 PRINTER REQUIRED
 REQUEST TYPE: ACCOUNT: PRINTER: ONLY FOR PRINT
 REQUESTS.
 REQUEST TYPES: D = DISPLAY A = ADD X = DELETE
 P = PRINT M = MODIFY

THEN PRESS "ENTER" -OR- PRESS "CLEAR" TO EXIT

ACCT SURNAME FIRST MI TTL ADDRESS ST LIMIT
11111 Matthews Dan MR 1, The House N 1000.00

Figure 12. ACCT sample screen: Searching by account holder’s name

Chapter 3. Preparing and writing CICS applications in COBOL 31

Figure 13 shows an update map for an example account record Changes are made
to the record by typing over the current values. If an invalid change is made, the
map is redisplayed and the field containing the invalid data is highlighted with
asterisks.

When you have entered your request, the record is updated and you are returned
to the menu with a message confirming that the operation was successful.

Deleting an account record
To delete an account record, starting from the ACCT menu display, enter ‘X’ in the
REQUEST TYPE field and the account number to be deleted in the ACCOUNT field and
press ENTER. If the account does not exist or is already in use, the application
returns to the menu with a message informing you of the error. Figure 14 on page
33 is an account deletion map for an example account record.

ACCOUNT FILE: RECORD CHANGE

ACCOUNT NO: 11111 SURNAME: Matthews
 FIRST: Dan MI: TITLE: MR
TELEPHONE: 0001234567 ADDRESS: 1, The House
 The Road
 The City
OTHERS WHO MAY CHARGE:

NO. CARDS ISSUED: 1 DATE ISSUED: 02 04 93 REASON: N
CARD CODE: N APPROVED BY: ISW SPECIAL CODES: L

ACCOUNT STATUS: N CHARGE LIMIT: 1000.00

HISTORY: BALANCE BILLED AMOUNT PAID AMOUNT
 0.00 00/00/00 0.00 00/00/00 0.00
 0.00 00/00/00 0.00 00/00/00 0.00
 0.00 00/00/00 0.00 00/00/00 0.00

MAKE CHANGES AND ’ENTER’ OR ’CLEAR’ TO CANCEL

Figure 13. ACCT sample screen: Modifying a record

32 CICS for iSeries Application Programming Guide V5

You are asked to confirm the deletion request. When you have done so, the record
is deleted and you are returned to the menu with a message confirming that the
operation was successful.

Printing an account record
To do this, starting from the ACCT menu display, enter ‘P’ in the REQUEST TYPE
field and the account number to be printed in the ACCOUNT field and press ENTER. If
the account does not exist, or is already in use, the application returns to the menu
with a message informing you of the error. When you have entered your request,
the record is sent to the printer and you see a message confirming that the
operation was successful.

To print the change log, enter the transaction identifier ACLG from a blank entry
screen in CICS. The change log is sent to the device specified to CICS as L86O in
the CICS terminal control table and you see a message confirming that the
operation was successful.

ACCOUNT FILE: DELETION

ACCOUNT NO: 11111 SURNAME: Matthews
 FIRST: Dan MI: TITLE: MR
TELEPHONE: 0001234567 ADDRESS: 1, The House
 The Road
 The City
OTHERS WHO MAY CHARGE:

NO. CARDS ISSUED: 1 DATE ISSUED: 02 04 93 REASON: N
CARD CODE: N APPROVED BY: ISW SPECIAL CODES: L

ACCOUNT STATUS: N CHARGE LIMIT: 1000.00

HISTORY: BALANCE BILLED AMOUNT PAID AMOUNT
 0.00 00/00/00 0.00 00/00/00 0.00
 0.00 00/00/00 0.00 00/00/00 0.00
 0.00 00/00/00 0.00 00/00/00 0.00

ENTER ’Y’ TO CONFIRM OR ’CLEAR’ TO CANCEL

Figure 14. ACCT sample screen: Deleting a record

Chapter 3. Preparing and writing CICS applications in COBOL 33

34 CICS for iSeries Application Programming Guide V5

Chapter 4. Preparing and writing CICS applications in ILE C

This chapter covers:
v “Preparing an ILE C application”

– “Coding CICS statements in iSeries applications” on page 37
– “Preprocessing” on page 38
– “Translating an ILE C program” on page 38
– “Compiling an application program” on page 40

v “Writing CICS programs in ILE C” on page 41
– “Modular programming” on page 42
– “Pointer-based addressing” on page 42
– “Getting map set storage” on page 44
– “Passing arguments by value” on page 44
– “Exception handling” on page 46
– “Data declarations needed for ILE C” on page 47
– “Naming EIB fields” on page 47
– “Source code considerations” on page 47

v “Calling programs and ILE procedures from ILE C” on page 48
v “Sample application programs” on page 53

Preparing an ILE C application
The tasks involved for preparing an ILE CICS application program are:
v Preprocessing an ILE C CICS program
v Translating an ILE C CICS program
v Compiling the output from the translator into an ILE module
v Binding of one or more modules into a program

ILE modules appear language independent to the program binder. Modules in any
supported ILE language can be bound together into one program.

Note: For CICS/400 Version 5, the only supported ILE language is ILE C. You can
also mix ILE and AD/Cycle applications across and within logical levels,
using the EXEC CICS LINK and XCTL commands. See “Calling programs
and ILE procedures from ILE C” on page 48 for details of logical levels.

You use the CRTCICSC CL command to invoke the CICS/400 precompiler, which
performs the following steps:
1. Calls the ILE C preprocessor to include header files and expand macro

definitions, if selected by including the value *PP in the CICSOPT parameter
list.

2. Calls the CICS C translator to convert the EXEC CICS commands in your
application into C statements that can be compiled by the ILE C compiler. See
“Translating an ILE C program” on page 38 for more information about the
CICS C translator.

© Copyright IBM Corp. 1998, 2004 35

If conversion errors occur, or the *NOGEN option has been specified on the
CICSOPT parameter list, processing stops at this point. The converted output
will have been written to the file member specified by the OUTFILE and
OUTMBR parameters.

3. If the program source contains EXEC SQL statements, the CRTSQLCI CL
command is called to convert EXEC SQL statements.
 If conversion errors occur, or the *NOGEN option has been specified on the
SQLOPT parameter list, processing stops at this point.

4. Calls the CRTMOD CL command to invoke the ILE C compiler and create a
module, if OBJTYPE(*MODULE) was specified.

5. If the *PGM option has been specified for the OBJTYPE parameter, the
CRTPGM CL command is called to create a bound program.

When your application program is executed, the statements inserted by the
translator invoke the EXEC interface program. This program then provides the
functions requested by each command by invoking one or more CICS service
programs. The EXEC interface program also obtains and provides addressability to
required areas of storage, and releases them automatically when they are no longer
required.

As you can see from Figure 15 on page 37, three listings can be produced. You can
use these listings to check for any syntax errors.

36 CICS for iSeries Application Programming Guide V5

Coding CICS statements in iSeries applications
When you need a CICS system service, for example when reading a record from a
file, you include an EXEC CICS command in your code.

Each command specifies the function you want; for example, EXEC CICS READ to
read a file. You then supply a number of options. Each option takes the form of a
keyword, and may require an argument. For example, if you are reading a file, you
use the FILE option, supplying the file name as the argument to the option. Some
options do not require an argument; for example, the UPDATE option on the
READ command simply tells CICS that you are updating the file. You mark the
end of the command with a semi-colon (;).

For more information on the EXEC CICS command format, see Chapter 31,
“Programming reference,” on page 305. The commands and their options are
described in Chapter 32, “Application programming commands - reference,” on
page 323.

Figure 15. Preparing an ILE C application program. This picture shows the CICS/400 precompiler, CRTCICSC, with a
ILE C source file as input, a translator output file, and the three listings that may be produced: the translation listing,
the SQL translation listing, and the ILE C compile listing.

Chapter 4. Preparing and writing CICS applications in ILE C 37

When you specify an argument value, you can use a literal, or a data area where
the value you want is stored. If you use a literal, follow the usual iSeries rules. See
“Translating an ILE C program” for more information about the translator.

Preprocessing
If the CICSOPT parameter of the CRTCICSC CL command is set to *PP, the ILE C
preprocessor is called to resolve any #define and #include statements before the
translator is called. This stage is optional and is omitted by default.

Translating an ILE C program
The CICS translator converts ILE C programs with embedded EXEC CICS
commands. The CICS translator scans each statement and:
v Verifies that each CICS statement is valid and free of syntax errors. The

validation procedure lists error messages in the output listing to help you correct
any syntax errors.

v Prepares each CICS statement for compilation by the ILE C compiler. For most
EXEC CICS statements, the CICS translator inserts comment limiters round the
EXEC CICS commands, a series of C assignments in place of the EXEC CICS
commands, a function call to the CICS interface module (AEGEIPGM), and more
C assignments.

v Flags any SQL statements that are found within the source code. When all
CICS statements have been validated and prepared for compilation, the SQL
translator is invoked if SQL statements are encountered within this source code,
provided that the *GEN (default) option is used on the CICSOPT parameter of
the CRTCICSC CL command. Otherwise, the translation process ends after the
translation of the CICS commands.

To obtain diagnostic information when you translate, specify the *SOURCE and
*XREFCICS translator options of the CICSOPT parameter. This creates an output
spool file showing you the results of the translation process.

The translator comments out the EXEC commands and inserts ILE C statements
that assign constants to ILE C data variables; this enables constants and names to
be specified as arguments to options in the commands.

The file DFHTTFTR.H contains the declarations for the generated variables. The
translator inserts a #include statement for this file at the beginning of the
translated source file. The variables included by this #include statement are
reserved and all begin with a “DFH” prefix.

Note: Do not use EXEC, CICS, or names starting with “AEG”, “DFH”, or “FAA”,
as names for user variables.

The file DFHEIBLK.H contains the EXEC interface block (EIB) structure. The
translator inserts a #include statement for this file at the beginning of the
translated source file. See Appendix A, “EXEC interface block,” on page 529 for
details of the EIB.

The translator provides a number of optional facilities. For example, you can
specify the information you require on the listing. You specify translator options on
the CICSOPT option of the CRTCICSC CL command. See “CRTCICSC” on page
286 for details.

38 CICS for iSeries Application Programming Guide V5

The CICS translator assumes that the host language statements are syntactically
correct. If they are not, the translator may not correctly identify CICS statements.

Characteristics of the input source file
The translator reads input from the source physical file member specified. This
source file contains language source statements in ILE C. It may contain the
following items of relevance to the translator:
v EXEC CICS commands
v DFHRESP built-in functions
v DFHVALUE built-in functions

You can specify the name of the library and file to be used for the translator
output. By default, the translator writes its output to file QACYCICS in the
QTEMP library, and the specific member is given the same name as the source
member. This contains the translated application program with the CICS functions
commented out and followed by the equivalent language statements or function
calls.

Note: If *NOGEN is specified as a CICSOPT option, compilation terminates at the
end of the CICS translation process.

Example

The following example uses the CRTCICSC CL command to create a ILE C module
named SAMPLE in library USERLIB1. See Chapter 30, “OS/400 control language
(CL) commands,” on page 265 for more details.

Output from the translator
The translator produces:
v Listings
v Temporary source files

Listings: The following listings are output by the translator to the printer file:

Translator options
Options specified in the CICSOPT parameter of the CRTCICSC CL
command.

Translator source
Source statements, with record numbers assigned by the translator,
if you specify the *SOURCE option.

Translator cross-reference
Cross-reference listing (if you specify the CICSOPT options
*XREFCICS and *SRC) showing the line numbers of CICS
statements in which host names and column names are referenced.

Translator diagnostics
Messages showing the record numbers of statements in error.

Temporary source file members: Statements generated by the translator are
written to the file and library specified in the OUTFILE option, and the member

CRTCICSC OBJ(USERLIB1/SAMPLE)
 CICSOPT(*SRC *XREFCICS)

Chapter 4. Preparing and writing CICS applications in ILE C 39

specified in the OUTMBR option, of the CRTCICSC CL command. By default, file
QACYCICS in the QTEMP library is used.

In your translated source code, CICS statements have been converted to a
comment, assignments, and a function call to the CICS interface module
AEGEIPGM. The name of the temporary source file is given in the OUTMBR
option of the CRTCICSC CL command. When CICS creates the QACYCICS file, it
uses the coded character-set identifier (CCSID) value of the source file as the
CCSID value for QACYCICS.

Example

For an ILE C application program, each command is replaced by one or more
assignment statements and function calls. For example, a command such as:

may be translated to:

Compiling an application program
Having preprocessed your program source code to resolve #include and #define
statements, and translated it to remove any CICS and SQL statements, you next
compile the program to create a program module. If the program is a simple one
containing only one module, you can create the module and bind it in one step.

Unless the *NOGEN option is selected on the CICSOPT parameter list, the CICS
precompiler calls the CRTMOD CL command to invoke the ILE C compiler and
create a module. For simple, one-module programs you may specify
OBJTYPE(*PGM), in which case the CRTPGM CL command is called to create a
bound program. The program is bound to the CICS interface service program,
AEGEIPGM. When preparing more complex applications, specify
OBJTYPE(*MODULE). Then you can bind the compiled module with other
modules or to service programs as required, using the CRTPGM or CRTSRVPGM
CL commands.

EXEC CICS RECEIVE MAP("MAPA");

/*
EXEC CICS RECEIVE MAP("MAPA");
*/
{\
 cpyblap(dfhttftr.ArgData[0].StringValue,16, \
 "MAPA", (short)7,’ ’); \
 dfhttftr.ArgIndx[5] = 0; \
 dfhttftr.ArgIndx[1].DataArea = &mapa.mapai; \
 dfhttftr.ArgIndx[8] = 1; \
 dfhttftr.ArgMask[0] = 0x00008120; \
 dfhttftr.ArgMask[1] = 0x00000000; \
 dfhttftr.ArgMask[2] = 0x00000000; \
 dfhttftr.ArgMask[3] = 0x00000000; \
 dfhttftr.ArgCount = 3; \
 dfhttftr.FnCode = 62; \
 dfhttftr.DebugLine = -1; \
 AEGEIPGM(&dfhttftr); \
}

40 CICS for iSeries Application Programming Guide V5

Note: You must specify the value QCICS/AEGEIPGM in the BNDSRVPGM
parameter list to resolve the static procedure calls made to the CICS
application interface routines.

The following options under CICSOPT are passed to the ILE C compiler:
v *SRC, *NOSRC
v *SOURCE, *NOSOURCE
v *SECLVL, *NOSECLVL

(See “Conventions and terminology used in this book” on page xiii for a discussion
of the formation of these option names.)

The REPLACE option is passed onto the CRTSQLCI, CRTCMOD, and CRTBNDC
commands. See page 266 for an explanation of the limitations on the SQL options
that the CRTCICSC CL command can pass to the SQL preprocessor.

Note: You must not change the translated source member before compilation or
the compilation may fail.

Writing CICS programs in ILE C
CICS/400 Version 5 supports ILE C programs. You can define and use both ILE C,
ILE COBOL and COBOL/400 programs in a CICS/400 control region.

ILE C programs are normally coded as members of source type CICSC in source
file QCSRC. See Figure 16 for an example of using source type CICSC.

See the ILE Concepts manual for information about ILE and the benefits of running
applications under ILE.

For more general information about writing ILE C programs, refer to the WebSphere
Development Studio: ILE C/C++ Language Reference,WebSphere Development Studio: ILE
C/C++ Programmer’s Guide, andWebSphere Development Studio: ILE C/C++ Compiler
Reference.

 Work with Members Using PDM AS4001
 File QCSRC
 Library QCICSSAMP Position to

 Type options, press Enter.
 2=Edit 3=Copy 4=Delete 5=Display 6=Print 7=Rename
 8=Display description 9=Save 13=Change text 14=Compile 15=Create module...

 Opt Member Type Text
 DFH$DALL CICSC FILEA Inquiry/Update program
 DFH$DBRW CICSC FILEA Browse program
 DFH$DCOM CICSC FILEA Order entry queue print program
 DFH$DMNU CICSC FILEA Operator instruction program
 DFH$DREN CICSC FILEA Order entry program
 DFH$DREP CICSC FILEA Low balance report program
 Bottom
 Parameters or command
 ===>
 F3=Exit F4=Prompt F5=Refresh F6=Create
 F9=Retrieve F10=Command entry F23=More options F24=More keys
 This is a subsetted list.

Figure 16. An example of using source type QCSRC

Chapter 4. Preparing and writing CICS applications in ILE C 41

|
|

|
|
|
|

Modular programming
This section describes some considerations for modular programming.

Use of #include
Source code containing CICS statements that is shared among many programs can
be included in the programs using the #include statement. There are two methods
of handling include files containing CICS statements:
1. Translate the include file before it is stored, but do not edit the translated

output. If you copy or manipulate statements inserted by the CICS translator
into an application program, the results may be unpredictable.

2. Specify the *PP option in the CICSOPT parameter of the CRTCICSC CL
command. The CICS precompiler calls the ILE C compiler preprocessor to
resolve the #include statements in the source code before calling the CICS C
translator to convert EXEC CICS commands into C statements.

Use of modules
A module is an ILE object that is created when OBJTYPE(*MODULE) is specified
on the CRTCICSC CL command. A module can be run only if it is bound into an
ILE program or service program using the Create Program (CRTPGM) or Create
Service Program (CRTSRVPGM) command. Several modules are usually bound
together, but a module can be bound by itself.

A service program provides a means of packaging externally-supported callable
routines (functions or procedures) into a separate object. Bound programs and
other service programs can access these routines by resolving their imports to the
exports provided by a service program. The connections to these services are made
when the calling programs are created. This improves call performance to these
routines without including the code in the calling program.

When the Create Program (CRTPGM) or Create Service Program (CRTSRVPGM)
command is used to bind CICS modules into a program or service program object,
the CICS service program AEGEIPGM must be included in the BNDSRVPGM
option of the command.

Pointer-based addressing
CICS application programs need to access data from CICS internal areas using only
the address passed to the program. Examples are:
v CICS areas such as the EIB, CWA, TWA, and TCTTE user area (TCTUA),

obtained using the EXEC CICS ADDRESS command
v Input data, obtained by EXEC CICS commands such as READ and RECEIVE

with the SET option

Example of using pointer variables
The use of these pointers is illustrated in Figure 17 on page 43.

EXEC CICS ADDRESS EIB
Following CICS conventions, the address of the EXEC Interface Block (EIB) is not
passed as an argument to an ILE C main() function. In order to obtain the address
of the EIB, an EXEC CICS ADDRESS EIB command is required at the beginning of
each program that requires access to the EIB. This includes any program that codes
EXEC CICS commands with RESP or RESP2 options.

42 CICS for iSeries Application Programming Guide V5

EXEC CICS ADDRESS COMMAREA
The address of the communication area is also not passed as an argument to a ILE
C main() function. This means that ILE C functions must use ADDRESS
COMMAREA to obtain the address of the communication area.

EXEC CICS READ/REWRITE
Figure 17 shows how to obtain addressability to the data for pointer addressing.
Note that ILE C always requires a LENGTH option on EXEC CICS READ and
WRITE commands. After the EXEC CICS READ command, you can get the length
of the record from the field named in the LENGTH option (in Figure 17,

struct filea_struct {
 unsigned char stat;
 unsigned char numb[6];
 unsigned char name[20];
 unsigned char addrx[20];
 unsigned char phone[8];
 unsigned char datex[8];
 unsigned char amount[8];
 unsigned char comment[9];
};

static struct filea_struct filea;
static signed short int filea_size = sizeof(filea);
static struct filea_struct *commarea; /* COMMAREA Structure */
static short int comlen; /* Length of COMMAREA */
int rcode; /* RESP value */
main(int argc, char *argv[])
{
 EXEC CICS ADDRESS EIB(dfheiptr); /* Address of EIB */
 EXEC CICS ADDRESS COMMAREA(commarea); /* Address of COMMAREA */
 :
 EXEC CICS READ UPDATE FILE("FILEA ") INTO(&filea)
 LENGTH(filea_size) RIDFLD(commarea->numb) RESP(rcode);
 switch (rcode)
 {
 case DFHRESP(NORMAL) :
 break;
 case DFHRESP(NOTFND) :
 Notfound();
 default:
 Errors();
 }
 :
 EXEC CICS REWRITE FILE("FILEA ") FROM(&filea)
 LENGTH(filea_size) RESP(rcode);
 switch(rcode) {
 case DFHRESP(NORMAL) :
 break;
 case DFHRESP(DUPREC) :
 DupRec();
 default:
 Errors();
 }
 :
 :
 EXEC CICS RETURN TRANSID(dfheiptr->eibtrnid)
 COMMAREA(commarea) LENGTH(comlen);
}

Figure 17. Example of using pointer-based addressing in a ILE C program

Chapter 4. Preparing and writing CICS applications in ILE C 43

filea_size). In the EXEC CICS REWRITE command, you must code a LENGTH
option if you want to replace the updated record with a record of a different
length.

Getting map set storage
If you specify BASE=name in a DFHMSD macro, the logical map contains only a
variable declaration for a variable of type mapstruct*.

You must acquire map storage dynamically using the EXEC CICS GETMAIN
command. You may either release storage with the EXEC CICS FREEMAIN
command or keep it until the task is complete. Early release helps you to optimize
storage use, and can be useful in a long conversational transaction. See Chapter 12,
“Introduction to basic mapping support (BMS),” on page 135 for further
information about BMS.

Figure 18 on page 45 shows a method of processing BMS maps. The highlighted
material describes the contents of the MAPSET1.H ILE C header file. MAPSET1
was defined as follows:

In this example, STORAGE=AUTO has been specified. Therefore, the MAPSET1.H
logical map declares an automatic global variable of type mapstruct. You do not
need to acquire or release map storage.

Passing arguments by value
In ILE C, arguments are normally passed by value rather than by reference. By value
means that when you pass arguments to a function, for example:
 function(arg1, arg2, arg3);

the ILE C compiler builds a data area containing copies of the arguments to be
passed to the function.

Other languages, such as COBOL/400, pass their arguments by reference, which
means that the compiler passes a list of addresses pointing to the arguments to be
passed. This is the call interface supported by CICS.

In order to provide a more compatible interface to the OS environment, the ILE C
compiler provides a #pragma (an implementation-defined instruction to the
compiler) to influence the linkage conventions used when generating code.
Accordingly, the translator generates the following line of code in the translated
output:
 #pragma arguments(DFHEIPGM,OS,nowiden)

This designates the function DFHEIPGM as having its arguments passed
conforming to the OS linkage conventions. Non-address arguments are copied to
temporary locations, and the address of the copy is passed to the CICS procedure
DFHEIPGM. Arguments that are addresses or pointers are passed directly to
DFHEIPGM.

MAPSET1 DFHMSD TYPE=DSECT,
 LANG=C,
 STORAGE=AUTO,
 MODE=INOUT

44 CICS for iSeries Application Programming Guide V5

When you send values from a ILE C program to CICS, the translator takes the
necessary action to generate code that will result in an argument list of the correct
format being passed to CICS. to pass it The translator prefixes arguments (where
possible) with the & (address of) operator. This generates a pointer to the data
item; the address of the data item is placed directly into the parameter list.

However, the translator often cannot determine the data type being passed and
therefore relies on your passing a suitable argument.

For example, if the translator is presented with the following line of C source:
 EXEC CICS RECEIVE INTO(myarea) LENGTH(mylen);

it generates this ILE C replacement code:
 DFHEIPGM(.... ,myarea,&mylen);

This works, provided the variable myarea is a pointer (or equivalent, for example,
the name of a character array). If myarea is defined as a structure, for example:
 struct {
 char header_info[8];
 char the_message[80];
 } myarea;

the compiler makes a copy of myarea into some temporary storage and passes the
address of the copy in the parameter list. The variable myarea remains unchanged,
that is, CICS updates the copy instead.

Table 3 on page 46 shows the rules that apply when passing values as arguments
in EXEC CICS commands.

#include <stdio.h>
#include "MAPSET1.H"
 union {
 _Packed struct {
 char dfhms1[12];
 short int msgl;
 char msgf;
 char msgi[39];
 short int keyl;
 char keyf;
 char keyi[6];
 } dfhdgai;
 _Packed struct {
 char dfhms2[12];
 short int dfhms3;
 char msga;
 char msgo[39];
 short int dfhms4;
 char keya;
 char keyo[6];
 } dfhdgao;
 } dfhdga;
main()
{
 EXEC CICS SEND MAP("DFHDGA ") MAPSET("MAPSET1")
 MAPONLY ERASE;
 EXEC CICS RETURN;
}

Figure 18. Example of processing BMS maps in an ILE C program

Chapter 4. Preparing and writing CICS applications in ILE C 45

Table 3. Rules for passing values as arguments in EXEC CICS commands

Data type Usage Handling the argument

Character array Data area (R)
Data value (S)

Only the name of the array should be passed. ILE C generates a pointer to the
data location.

Integer
variables
(halfword)

Data area (R) The translator prefixes the variable with &.

Data value (S) The translator does nothing.

Integer
variables
(fullword)

Data area (R) The translator prefixes the variable with &.

Data value (S) The translator does nothing.

Integer literals
(halfword)

Data value (S) The translator does nothing.

Integer literals
(fullword)

Data value (S) The translator does nothing.

Pointers Data area (R)
Data value (S)

The translator prefixes the variable with &.

Structures Data area (R)
Data value (S)

You should prefix the structure name with & so that CICS is passed the address
of your structure and not the address of a copy. Failure to do this will result in
the loss of any data passed back in the structure.

Note: With the SEND and RECEIVE MAP BMS commands, the translator interprets that a structure is being passed
in the FROM and INTO options and automatically prefixes the name with an &.

Character
variables

Data area (R) The translator prefixes the variable with &.

Data value (S) The translator does nothing.

Character
literals

Data value (S) The translator does nothing.

Note: “(R)” indicates “Receiver”, where data is being received from CICS; “(S)”
indicates “Sender”, where data is being passed to CICS.

Thoroughly review your programs for correct pointer usage.

Exception handling
In ILE C applications, you cannot use the EXEC CICS commands related to
nonstructured exception handling. The commands are:
v EXEC CICS HANDLE CONDITION option (with or without a label)
v EXEC CICS HANDLE AID option (with or without a label)
v EXEC CICS IGNORE CONDITION option
v EXEC CICS PUSH HANDLE
v EXEC CICS POP HANDLE
v EXEC CICS HANDLE ABEND LABEL

Use of these commands is diagnosed by the translator.

EXEC CICS HANDLE ABEND PROGRAM commands are allowed, but you cannot
use EXEC CICS PUSH HANDLE or POP HANDLE commands to suspend the
active abend exit program.

In an ILE C application, every EXEC CICS command which does not explicitly
specify either the NOHANDLE or the RESP option is treated as if it had the
NOHANDLE option specified. This means that the set of “system action”

46 CICS for iSeries Application Programming Guide V5

transaction abends that result from a condition occurring but not being handled, is
not possible in a ILE C application. Control always flows to the next instruction,
and it is up to the application to test for a normal response. For more information
on condition handling, see Chapter 6, “Dealing with exception conditions,” on
page 87.

Data declarations needed for ILE C
The following data declarations are provided by CICS for ILE C in file QCICS/H:
v Execution interface block (EIB) definitions.

 The DFHEIBLK.H C header file includes a definition of the EIB.
v BMS screen attributes definitions.

 ILE C versions of the DFHBMSCA, DFHMSRCA, and DFHAID files are
supplied by CICS, and may be included by the application programmer when
using BMS.

The EIB declarations are enclosed by #infdef and #endif, and are included in all
translated files. The ILE C compiler ignores duplicated declarations.

Naming EIB fields
Within a ILE C application program, fields in the EIB are referred to in lowercase
and fully qualified as, for example, dfheiptr->eibtrnid, in contrast to EIBTRNID as
used in other programming languages.

Data types
The following mapping of data types is used:
v Halfword binary integers are defined as “short int”
v Fullword binary integers are defined as “long int”
v Single-character fields are defined as “unsigned char”
v Character strings are defined as “unsigned char” arrays

Source code considerations
If at all possible, you should use CICS commands to request operating system
functions, rather than the equivalent ILE C statements. For example, use the EXEC
CICS GETMAIN command rather than malloc(), because CICS will free the storage
for you at the end of the task. If you have to use ILE C statements rather than
CICS commands, it is your responsibility to do the inverse operation to clean up.
For example, if you open a file, you must also close it.

The following restrictions apply to a ILE C program that is to be used as a CICS
application program:
v You can use upper, lower, or mixed case for keywords and arguments on EXEC

CICS commands, with the exception of the words EXEC CICS. A name, such as
a file name or a transaction id, must be coded in the same case as the external
definitions.

v Do not omit the LENGTH option from commands that require a LENGTH
option (for example, READ, READNEXT, READPREV, and WRITE).

v All strings passed to CICS/400 commands from ILE C programs must be
delimited with double quotation marks.
 ILE C string manipulation functions are allowed, but they result in a null byte
being appended as an end-of-string marker. This is not acceptable if the string is
to be passed to CICS/400. In particular, names of temporary storage queues

Chapter 4. Preparing and writing CICS applications in ILE C 47

(which may contain null characters) must be supplied as eight characters.
CICS/400 does not perform any padding to fill out short queue names supplied
by ILE C applications.

v Where CICS expects a fixed-length character string such as a program name,
map name, or queue name, any literals passed must be padded with blanks up
to the required length.

Calling programs and ILE procedures from ILE C
In a CICS system, there are two ways of transferring control to another program:
v Using EXEC CICS LINK and XCTL commands
v Using ILE C language calls

Using EXEC CICS commands
In a ILE C CICS application you can invoke CICS services to link or transfer
control to an external program.

The calling program contains one of the following CICS commands:
v EXEC CICS LINK

 EXEC CICS LINK PROGRAM(“SUBPGM”) ;
 EXEC CICS LINK PROGRAM(SubPgmPtr) ;

v EXEC CICS XCTL
 EXEC CICS XCTL PROGRAM(“PGMNAME”) ;
 EXEC CICS XCTL PROGRAM(PgmPtr) ;

Note: The called program may be stated explicitly as a constant string literal
within quotation marks or as a variable of type char *.

Figure 19 provides an overview of how control is transferred between programs
when either the EXEC CICS LINK or the EXEC CICS XCTL (transfer control)
command is used.

Figure 19. Control is returned to the next higher logical level.

48 CICS for iSeries Application Programming Guide V5

The EXEC CICS LINK command transfers control to the specified program (B) at a
new logical level. Program B could use the EXEC CICS RETURN command to
cause control to return to the calling program (A). This is similar to the use of an
ILE C dynamic program call.

The EXEC CICS XCTL command in Program B transfers control to Program C at
the same logical level. You cannot return control to the calling program (B) using
an EXEC CICS RETURN command or a host language statement. When Program C
completes, control returns to Program A.

In a CICS system, when control is transferred from an active program to an
external program, but the transferring program remains active and control can be
returned to it, the program to which control is transferred is called a subprogram.

Using C language calls
In an ILE C application, there are three types of call that can be made during run
time:
v Dynamic program calls
v Static procedure calls
v Procedure pointer calls

Dynamic program calls
A dynamic program call is a call made to a program object (*PGM). A call to an
ILE C program or an OPM program are all examples of dynamic program calls.

If you have an ILE C program calling a program (*PGM) use the #pragma linkage
(PGMNAME, OS) directive in your ILE Csource to tell the compiler that
PGMNAME is an external program, not a bound ILE procedure.

In contrast to static procedure calls, which are bound at compile time, symbols for
dynamic program calls are resolved to addresses when the call is performed. As a
result, a dynamic program call uses more system resources than a static procedure
call.

Calling procedures
ILE C programs are called by dynamic program calls, but the procedures within an
activated ILE C program can be accessed using static procedure calls or procedure
pointer calls. ILE C programs that have not been activated yet must be called by a
dynamic program call.

A call to an ILE procedure adds a new call stack entry to the bottom of the stack
and passes control to the specified procedure. Examples include any of the
following:
1. A call to a procedure in the same module
2. A call to a procedure in a different module in the same ILE program or service

program
3. A call to a procedure that has been exported from an ILE service program

For a static procedure call, the called procedure must be bound to the calling
procedure during binding. The call always accesses the same procedure. This
contrasts with a call to a procedure through a pointer, where the target of the call
can vary with each call.

The term procedure in ILE is equivalent to the term function in ILE C.

Chapter 4. Preparing and writing CICS applications in ILE C 49

ILE C allows arguments to be passed between procedures that are written in
different ILE high-level languages (HLLs). The calling function must make sure
that the arguments are the size and type expected by the called function.

Procedure pointer calls
Procedure pointer calls provide a way to call a procedure dynamically. For
example, by manipulating arrays, or tables, of procedure names or addresses, you
can dynamically route a procedure call to different procedures.

Procedure pointer calls add entries to the call stack in exactly the same manner as
static procedure calls. Any procedure that can be called using a static procedure
call can also be called through a procedure pointer. If the called procedure is in the
same activation group, the cost of a procedure pointer call is almost identical to the
cost of a static procedure call. Procedure pointer calls can additionally access
procedures in any ILE program that has been activated.

Note: Calls to bound procedures are not supported by the EXEC CICS LINK and
XCTL commands. You must use static procedure or procedure pointer calls
when calling bound procedures.

Rules governing calling CICS ILE C programs
Whether you use CICS commands or host language calls to call subprograms
depends on a number of factors including functionality, portability, and
performance. Table 4 outlines some of the requirements and conventions that you
need to consider when choosing your implementation. This table defines
requirements when a ILE C program is called as a main transaction program
(called by CICS at logical level 1) or as a subprogram.

 Table 4. Rules to be used with ILE C programs

Programming requirement Main program Subprogram called by
EXEC CICS LINK/XCTL

Subprogram called by
language call

Install in control region
Processing Program Table
(PPT).

REQUIRED
Transaction abends APCT if
not found or not
authorized.

REQUIRED
If not defined, not found,
or disabled, a PGMIDERR
condition is raised in the
calling program.

OPTIONAL

Translation REQUIRED
Control is passed to the program entry point (PEP) of the
called program.

OPTIONAL
If translated and compiled
with CRTCICSC
OBJTYPE(*MODULE), then
bound into an ILE *PGM or
*SRVPGM), may be called
using a static procedure
call.

Source code Any ILE C function calls including precompiled EXEC SQL statements.

Parameters and shared data No automatic addressability to CICS control areas.
Use EXEC CICS ADDRESS COMMAREA and
ADDRESS EIB.
When using language calls to call a translated CICS
COBOL/400 program, the calling program must supply
pointers to the EXEC Interface Block and the
COMMAREA as parameters as expected.

If translated, may receive
data passed by any of the
standard CICS methods
(COMMAREA, TCTUA, TS
queues).

50 CICS for iSeries Application Programming Guide V5

Table 4. Rules to be used with ILE C programs (continued)

Programming requirement Main program Subprogram called by
EXEC CICS LINK/XCTL

Subprogram called by
language call

Return control to the
calling program

Use EXEC CICS RETURN
Optionally, use exit() or return() from main(). Return
codes specified by exit() or return() are stored in
dfheiptr->eibresp2.
Declare program as int PGM(void).

Use exit() or return().
Use of EXEC CICS
RETURN may give
unpredictable results.

Program activation Programs are activated according to the ACTGRP() attribute of the program as
assigned at bind time.

Applications ported from other members of the CICS
family normally require ACTGRP(*NEW) to ensure
equivalent activation rules. See “Program activation.”

Will normally be
ACTGRP(*CALLER).

Exception handling On entry to a new logical level, no abend handling is active. If an abend occurs while
no higher abend handling is active, CICS searches successively higher logical levels
(starting with the caller) and passes control to the program specified in the first active
HANDLE ABEND PROGRAM found. If no active HANDLE ABEND PROGRAM is
found, the transaction ends with that abend code.
Note: EXEC CICS HANDLE AID and HANDLE CONDITION commands are not
supported in CICS ILE C applications.

Program activation
Activation is the process of preparing a program or service program to run. It
includes allocating the data or static variables needed by the program. The
necessary storage space is allocated from an activation group.

There are rules which govern when an ILE program is activated and deactivated. A
program is activated the first time that it is called. A program may remain
activated even when it completes normally and is no longer active on the call
stack. On subsequent calls to an activated program, static storage will be in its
‘last-used’ state and reinitialization of any items becomes the responsibility of the
programmer.

If a called program requires a new activation group - ACTGRP(*NEW) - or
specifies a named activation group which has not been specified on any program
previously activated in your OS/400 job, a new activation group will be started to
manage allocation of storage and other data management facilities for the program.
A program is only deactivated when its activation group ends.

The CICS/400 application developer can create ILE programs and service
programs with activation group attributes of *NEW, *CALLER, or username. Use of
activation groups will determine the run-time semantics of the CICS application.
To provide equivalent semantics to those of other CICS platforms, you are
recommended to compile with ACTGRP(*NEW) all programs that are defined in
the PPT. This will ensure that static storage is in its first-use state on every call or
link to the program and that recursive or reentrant calls are supported.

If your application design does not require static storage to be initialized on every
call, you may use ACTGRP(*CALLER). This will result in improved performance.
If you do not require support for a recursive program link, but do require static
storage to be initialized on every LINK or XCTL to a program, you may specifiy
the ACTGRP(*CALLER) and ALWRINZ(*YES) options on the OS/400 CRTPGM
command. This use of the ALWRINZ option is peculiar to CICS/400 and allows
you to gain the performance benefits of ACTGRP(*CALLER) with the static storage

Chapter 4. Preparing and writing CICS applications in ILE C 51

reinitialization properties of standard CICS program activation after LINK or XCTL
commands. Static storage of a program created with ALWRINZ(*YES) is not
reinitialized if the program is invoked through a dynamic program call rather than
through the CICS program control commands. Recursive links to a program
compiled with ALWRINZ(*YES) may result in task abends or other unpredictable
results.

For further information on controlling the effects of activation groups, refer to the
ILE Concepts manual and the WebSphere Development Studio: ILE C/C++ Programmer’s
Guide.

Figure 20 on page 53 shows logical levels, activation groups, and the effects of
using CICS commands and native C to transfer control between programs. The
dashed boxes marked A, B, C, and D show the scope of activation groups.

52 CICS for iSeries Application Programming Guide V5

Sample application programs

Disclaimer:

Figure 20. Flow of control between ILE C programs and activation groups in CICS

Chapter 4. Preparing and writing CICS applications in ILE C 53

The FILEA sample application contains programming source code for
your consideration. This sample has not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
servicability, performance or function of the programs. All programs
herein are provided to you “as is”. IBM EXPRESSLY DISCLAIMS ALL
WARRANTIES, INCLUDING THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

A set of sample application programs, called FILEA, is provided as an example of
how CICS commands can be used in a program written in the C language. All
FILEA objects are in the QCICSSAMP library.

If the ILE C compiler is installed on your system then you can modify the FILEA
sample programs. Figure 21 is a screen showing the members of file QCSRC that
contain the source for the FILEA application programs. Note that the TYPE of the
source members is CICSC.

Figure 22 on page 55 is a screen showing the members of file QMAPSRC that
contain the source for the BMS maps used in the FILEA sample. Note that the
TYPE of the source members is CICSMAP.

 Work with Members Using PDM AS4001

 File QCSRC
 Library QCICSSAMP Position to

 Type options, press Enter.
 2=Edit 3=Copy 4=Delete 5=Display 6=Print 7=Rename
 8=Display description 9=Save 13=Change text 14=Compile 15=Create module...

 Opt Member Type Text
 DFH$DALL CICSC FILEA Inquiry/Update program
 DFH$DBRW CICSC FILEA Browse program
 DFH$DCOM CICSC FILEA Order entry queue print program
 DFH$DMNU CICSC FILEA Operator intruction program
 DFH$DREN CICSC FILEA Order entry program
 DFH$DREP CICSC FILEA Low balance report program

 Bottom
 Parameters or command
 ===>
 F3=Exit F4=Prompt F5=Refresh F6=Create
 F9=Retrieve F10=Command entry F23=More options F24=More keys
 This is a subsetted list.

Figure 21. Screen showing the members of file QCSRC containing the FILEA application
programs

54 CICS for iSeries Application Programming Guide V5

Data declarations used by the FILEA sample
v The data for each account for the FILEA sample is stored in a physical file,

FILEA, in the QCICSSAMP library. The record format for this file is declared to
the FILEA sample programs by including the header file DFH£DFIL.H. This
header file is member DFH£DFIL in file H in library QCICSSAMP.

v The FILEA sample uses the L86O transient data queue for order processing. The
data for each order is of a specific format and consists of several fields. This
format is declared to the FILEA sample programs by including the header file
DFH£DL86.H. This header file is member DFH£DL86 in file H in library
QCICSSAMP.
 The LOGA transient data queue also has an ILE C data structure associated with
it, however this is declared in the source of the sample programs and hence no
header file is required.

Defining resources for the FILEA sample
A sample program, CRTSAMP, is provided to simplify resource definition for the
FILEA sample. This program creates a CICS group, called FILEA, and other
necessary resources for a control region. You specify the name of the control region
and the library in which the resources are created as parameters for the program.
When the CICS resources have been defined, the control region is started.

To run the CRTSAMP program, enter:
CALL CRTSAMP library-name sys-id

where sys-id is the name of the sample control region to be created and
library-name is the library that the CICS resources are stored in. These are
required parameters. The source for CRTSAMP is in member CRTSAMP of file
QCLSRC in library QCICSSAMP.

 Work with Members Using PDM AS4001

 File QMAPSRC
 Library QCICSSAMP Position to

 Type options, press Enter.
 2=Edit 3=Copy 4=Delete 5=Display 6=Print 7=Rename
 8=Display description 9=Save 13=Change text 14=Compile 15=Create module...

 Opt Member Type Text
 DFH$DGA CICSMAP Operator instruction map
 DFH$DGB CICSMAP Record display/entry map
 DFH$DGC CICSMAP Browse map
 DFH$DGD CICSMAP Low balance report map
 DFH$DGK CICSMAP Order entry map
 DFH$DGL CICSMAP Order entry queue print map

 Bottom
 Parameters or command
 ===>
 F3=Exit F4=Prompt F5=Refresh F6=Create
 F9=Retrieve F10=Command entry F23=More options F24=More keys
 This is a subsetted list.

Figure 22. Screen showing the members of file QMAPSRC containing FILEA sample maps

Chapter 4. Preparing and writing CICS applications in ILE C 55

Running the FILEA sample
To run the FILEA sample:
1. Use CRTSAMP to create a control region and the CICS group, FILEA, that

defines all the CICS resources needed to run the FILEA sample.
2. Start a CICS user shell for the control region created in step 1.

When the user shell has started, enter the transaction identifier DMNU to start the
FILEA transaction.

The FILEA sample consists of six programs:
v The operator instruction sample program
v The browse sample program
v The inquiry and update sample program
v The low balance report sample program
v The order entry sample program
v The order entry queue print sample program

These samples are described in the following sections.

Operator instruction sample program
 Program Transaction Identifiers BMS maps

DFH$DMNU DMNU DFH$DGA

 The instruction program displays a map containing operator instructions. This map
lists some of the FILEA sample application programs and the transaction identifiers
that can be used to invoke them. To initiate the browse, add, update, or inquiry
programs, the appropriate transaction identifier must be entered on the menu map.

Browse sample program
 Program Transaction Identifiers BMS maps

DFH$DBRW DBRW DFH$DGA, DFH$DGC

 The browse program sequentially retrieves pages or sets of records for display,
starting at a point in the FILEA data file specified by the operator. To start a
browse, type the transaction identifier and the account number into the menu and
press the Enter key. If the account number is omitted, browsing begins at the start
of the file. Press the PF1 key, or type F and press the Enter key, to page forward
through the data. Press the PF2 key, or type B and press the Enter key, to page
backward through the data.

Inquiry and update sample program
 Program Transaction Identifiers BMS maps

DFH$DALL DADD, DINQ, DUPD DFHDGA, DFHDGB

 The inquiry and update sample program lets you make an inquiry about, add to,
or update records in a file. You can select one of these actions by entering the
appropriate transaction identifier in the operator instruction menu.

56 CICS for iSeries Application Programming Guide V5

To make an inquiry, enter the transaction identifier for the inquiry transaction, and
an account number into the menu. The program maps in the account number and
reads the record from the FILEA data file. The details of the requested record are
displayed on the screen.

To add a record, enter the transaction identifier and the account number into the
operator menu. A map is displayed with the title FILE ADD, the account number
and a set of empty data fields. Once data has been entered, the addition is written
to the FILEA data file and recorded on the LOGA transient data queue. The
operator menu is then displayed with the message RECORD ADDED.

To update a record, enter the relevant transaction identifier and the account
number into the menu. The program reads and displays the requested FILEA
record. Once entered, the updated record is rewritten to the FILEA data file and
the update is recorded on the LOGA transient data queue. The application then
returns to the operator menu with the message RECORD UPDATED.

Low balance report sample program
 Program Transaction Identifiers BMS maps

DFH$DREP DREP DFH$DGD

 The low balance report sample program produces a report that lists all records in
the FILEA data file for which the account balance is less than or equal to $50.00. To
run the report, enter the transaction identifier on the operator menu or on a clear
screen. If an account number is specified, it is ignored.

Order entry sample program
 Program Transaction Identifiers BMS maps

DFH$DREN DORD DFH$DGK

 The order-entry sample program provides a data entry facility for customer orders
for parts from a warehouse. Orders are recorded on a transient data queue that is
defined so as to start the order entry queue print transaction automatically when a
fixed number of orders have been accumulated. The queue print transaction sends
the orders to a printer terminal at the warehouse. To begin order entry, type the
transaction identifier on to a blank screen and press ENTER. The order entry
program displays a map on the screen requesting the operator to enter order
details. The customer number must be valid, that is, it must exist in the FILEA
data file. The order details are mapped in and checked; an invalid order is
redisplayed for correction. When valid, an order is written to the transient data
queue L86O and the order entry screen is redisplayed ready for the next order to
be entered. If CLEAR is pressed, the order entry program terminates. L86O, the
name of the transient data queue, is also the name of the terminal where the order
entry queue print transaction is to be triggered when the number of items on the
queue reaches 30. The trigger level may be changed using the CEMT command as
follows:
CEMT SET QUEUE(L86O) TRIGGER(n)

where n is the destination trigger level.

Chapter 4. Preparing and writing CICS applications in ILE C 57

Order entry queue print sample program
 Program Transaction Identifiers BMS maps

DFH$DCOM DORQ DFH$DGL

 The order entry queue print sample program sends customer orders to a printer
terminal at the warehouse. This program reads the transient data queue written to
by the order entry sample program. The queue print transaction can be invoked in
one of three ways:
v You can type the transaction identifier on to a clear screen. The program finds

that the terminal identifier is not L86O and issues a START command to begin
printing in one hour. The message PROCESSING COMPLETE is displayed and
your terminal is available for other work.

v One hour after you enter this transaction identifier the queue print transaction is
automatically invoked by CICS interval control. In this case the terminal
identifier, specified by START, is L86O so the program prints the orders at the
warehouse.

v The queue print transaction is started when the number of items (customer
orders) on the transient data queue reaches 30. The trigger level is specified in
the destination control table (DCT) entry for L86O. In this case, the terminal
identifier is the same as the queue name (L86O) and the program prints the
orders.

When invoked with a terminal identifier of L86O, the program reads each order,
checks the customer’s credit, and either prints the order at the warehouse or writes
the rejected order to LOGA, the same transient data queue as used by the inquiry
and update FILEA sample program. When all orders have been processed, or if
there were no orders to process, the message ORDER QUEUE IS EMPTY is printed
at the warehouse.

58 CICS for iSeries Application Programming Guide V5

Part 2. Application design

Chapter 5. Designing efficient applications . . . 61
Program size and structure 61
Choosing between pseudoconversational and
conversational design 61

General programming techniques 63
Storage usage 63
Minimizing memory requirements 63

Processor usage 64
Recovery design implications 64
Terminal interruptibility 66
Summary of pseudoconversational and
conversational design 66

Using resources effectively 66
Processor storage 66
Processor time 67
Exclusive-use resources 67
Line transmission capacity 67

Other suggestions 67
Auxiliary trace 67
Unnecessary commands 68
Resource retention 68
Data definition and manipulation considerations 68

Storing data within a transaction 68
Transaction work area (TWA) 69
User storage 69
COMMAREA in EXEC CICS LINK and EXEC
CICS XCTL commands 70
Program storage 70

Sharing data across transactions 70
Common work area (CWA) 71
TCTTE user area (TCTUA) 71
COMMAREA in EXEC CICS RETURN
commands 72
Display screen 72
Temporary storage 73
Intrapartition transient data 74
Your own files 74

Data operations 75
Emulating VSAM files 75
Browsing files 76
Logging files 76
Sequential file access 76

Terminal operations 77
Data stream considerations 77
BMS considerations 77

Avoid turning on modified data tags (MDTs)
unnecessarily 77
Use FRSET to reduce inbound traffic 78
Do not send blank fields to the screen . . . 78
Use the MAPONLY option when possible . . 78
Send only changed fields to an existing screen 78
Design data entry operations to reduce line
traffic 79
Compress data sent to the screen 79
Use nulls instead of blanks 79

Use methods that avoid the need for nulls or
blanks 80
Sending messages to destinations other than
the input terminal 80

Additional terminal control considerations . . . 80
Use only one EXEC CICS SEND command per
screen 80
Use the EXEC CICS CONVERSE command . . 80
Avoid using unnecessary transactions . . . 80
Send unformatted data without maps . . . 81

Performance considerations 81
CICS and multiprocessor AS/400s 81
CICS SIT parameters 81

CICS internal trace (INTTRCCTL) and
auxiliary trace (AUXTRCCTL) 81
CICS files left open count and open timeout
(FILECTL) 81
CICS interval control processing (ITVCTL) . . 82
BMS map set suffixing (DEVCTL) 82

COBOL application code 82
COBOL generation options 82

ILE C application code 83
ILE C generation options 83

*DEBUG or *NODEBUG 83
EXEC CICS LINK command or host language
call 83
Terminal communication 84

BMS and terminal types 84
BMS DATAONLY option 84
Data stream compression 84

Chapter 6. Dealing with exception conditions . . 87
Programs in any supported language 87

How to use the RESP and RESP2 options . . . 87
Example of coding and testing a RESP value 88

How to use the NOHANDLE option 90
COBOL programs only 91

How to use the EXEC CICS IGNORE
CONDITION command 91
Passing control to a specified label 92

How to use the EXEC CICS HANDLE
CONDITION condition command 92
How to use the EXEC CICS HANDLE
CONDITION ERROR command 94

Relying on the system default action 95
How to use EXEC CICS PUSH HANDLE and
POP HANDLE commands 95
How to use an EXEC CICS HANDLE
CONDITION condition command 97
How CICS selects whether to take the system
default action 97

Mixing the methods 98
How CICS keeps track of what to do 99

Chapter 7. Testing your application 101
Testing applications 101

© Copyright IBM Corp. 1998, 2004 59

Screen usage, checks and considerations 101
Types of problems 102
Levels of testing 103
Finding a problem in application code on a
production system 103

Chapter 8. Recovery considerations 105
CICS and OS/400 commitment control recovery 105
Defining recoverable files to CICS (an overview) 105
Syncpointing 106
User journaling 106

Journal records 106
Journal output synchronization 107

Chapter 9. Abnormal termination recovery . . . 109
Creating a program-level abend exit 110
Restrictions on retrying operations 110
Trace 111

Trace entry points 112
System trace entry points 112
User trace entry points 112

Dump 112

60 CICS for iSeries Application Programming Guide V5

Chapter 5. Designing efficient applications

In this chapter, design changes are suggested that can improve performance and
efficiency without much change to the application program itself.

Program size and structure
The most efficient structure for a program is to have all the code in one program,
with no subprograms. This structure can mean that programs are difficult to
maintain. To overcome these potential problems, you might like to consider the
following guidelines on program structure.

For modestly sized blocks of code that are processed sequentially, inline code is
most efficient. The exceptions to this rule are blocks of code that are:
v Fairly long and used independently at several different points in the application
v Subject to frequent change (in which case, you balance the overhead of EXEC

CICS LINK or EXEC CICS XCTL commands with ease of maintenance)
v Infrequently used, such as error recovery logic and code to handle uncommon

data combinations

If you have a block of code that, for one of these reasons, has to be written as a
subroutine, the best way of dealing with this from a performance viewpoint is to
use a closed subroutine within the invoking program (for example, code that is
dealt with by a PERFORM command in COBOL). If it is needed by other
programs, it should be a separate program. A separate program can be invoked
using either an EXEC CICS LINK or XCTL command, or by a host language call.
Host language calls are more efficient than the EXEC CICS commands, but are
functionally different in areas such as working storage initialization. See either
“Calling programs from COBOL” on page 22 or “Calling programs and ILE
procedures from ILE C” on page 48 for more information.

Choosing between pseudoconversational and conversational design
In a conversational transaction, the length of time spent in processing each of a
user’s responses is extremely short when compared to the amount of time waiting
for the input. A conversational transaction is one that involves more than one input
from the terminal, so that the transaction and the user enter into a conversation. A
nonconversational transaction has only one input (the one that causes the
transaction to be invoked). It processes that input, responds to the terminal, and
terminates.

Processor speeds are considerably faster than terminal transmission times, which,
in turn, are considerably faster than user response times. This is especially true if
users have to think about the entry or have to enter many characters of input.
Consequently, conversational transactions tie up storage and other resources for
much longer than nonconversational transactions.

A pseudoconversational transaction sequence contains a series of
nonconversational transactions that look to the user like a single conversational
transaction involving several screens of input. Each transaction in the sequence
handles one input, sends back the response, and terminates.

© Copyright IBM Corp. 1998, 2004 61

Before a pseudoconversational transaction terminates, it can pass data forward to
be used by the next transaction initiated from the same terminal, whenever that
transaction arrives. A pseudoconversational transaction can specify what the next
transaction is to be, and it does this by setting the transaction identifier of the
transaction that handles the next input. However, you should be aware that if
another transaction is started for that device, it may interrupt the
pseudoconversational chain you have designed.

No transaction exists for the terminal from the time a response is written until the
user sends the next input and CICS starts the next transaction to respond to it.
Information that would normally be stored in the program between inputs is
passed from one transaction in the sequence to the next using the COMMAREA or
one of the other facilities that CICS provides for this purpose. (See “Sharing data
across transactions” on page 70 for details.)

There are two major issues to consider in choosing between conversational and
pseudoconversational programming. The effect of the transaction on contention
resources, such as storage and processor usage. Storage is required for control
blocks, data areas, and programs that make up a transaction, and the processor is
required to start, process, and terminate tasks. Conversational programs have a
very high impact on storage, because they last so long, relative to the sum of the
transactions that would make up an equivalent pseudoconversational sequence.
However, there is less processor overhead, because only one transaction is initiated
instead of one for every input.

The second issue is the effect on exclusive-use resources, such as records in
recoverable files, recoverable transient data queues, enqueue items, and so on.
Again, a conversational transaction holds on to these resources for much longer
than the corresponding sequence of nonconversational transactions.

CICS ensures that changes to recoverable resources (such as files, transient data,
and temporary storage) made by a logical unit of work (LUW) are made
completely or not at all. An LUW is equivalent to a transaction, unless that
transaction issues EXEC CICS SYNCPOINT commands, in which case an LUW
lasts between syncpoints.

When a transaction makes a change to a recoverable resource, CICS makes that
resource unavailable to any other transaction that wants to change it until the
original transaction has completed. In the case of a conversational transaction, the
resources in question may be unavailable to other terminals for relatively long
periods.

For example, if one user tries to update a particular record in a recoverable data
set, and another user tries to do so before the first one finishes, the second user’s
transaction is suspended. This has advantages and disadvantages. You would not
want the second user to begin updating the record while the first user is changing
it, because one of them would be working from what is about to become an
obsolete version of the record, and these changes would erase the other user’s
changes. On the other hand, you also do not want the second user to experience
the long, unexplained wait that occurs when that transaction attempts to read for
update the record that is being changed.

If you use pseudoconversational transactions, however, the resources are only
briefly unavailable (that is, during the short component transactions). However,
unless all recoverable resources can be updated in just one of these transactions,

62 CICS for iSeries Application Programming Guide V5

recovery is impossible because LUWs cannot extend across transactions. So, if you
cannot isolate updates to recoverable resources in this way, you must use
conversational transactions.

The previous example poses a further problem for pseudoconversational
transactions. Although you could confine all updating to the final transaction of
the sequence, there is nothing to prevent a second user from beginning an update
transaction against the same record while the first user is still entering changes.
This means that you need additional application logic to ensure integrity. You can
use some form of enqueuing, or you can have the transaction compare the original
version of the record with the current version before actually applying the update.

There are factors other than performance overhead to consider when choosing
between pseudoconversational and conversational design for CICS applications.
The method you choose can affect how you write the application programs. You
may need extra CICS requests for pseudoconversations, particularly if you are
updating recoverable files. After you have done this, however, operational control
(performance monitoring, capacity planning, recovery, system shutdown, and
distributing system messages) may be much easier.

General programming techniques
Programming techniques can affect the performance and efficiency of the CICS
system.

Storage usage
A truly conversational CICS task is one that converses with the terminal user for
several or many interactions, by issuing a terminal read request after each write
(for example, using either an EXEC CICS SEND command followed by an EXEC
CICS RECEIVE command, or an EXEC CICS CONVERSE command). This means
that the task spends most of its extended life waiting for the next input from the
terminal user.

Any CICS task requires some storage throughout its life and, in a conversational
task, some of this storage is carried over the periods when the task is waiting for
terminal I/O. The storage areas involved include the TCA and associated task
control blocks and the storage required for all programs that are in use when any
terminal read request is issued. Also included are the work areas (such as copies of
COBOL/400 working storage) associated with this task’s use of those programs.

With careful design, you can sometimes arrange for only one very small program
to be retained during the period of the conversation. The storage needed could be
shared by other users. You must multiply the rest of the virtual storage
requirement by the number of concurrent conversational sessions using that code.

By contrast, a pseudoconversational sequence of tasks requires almost all of its
storage only for the period actually spent processing message pairs. Typically, this
takes a period of 1–3 seconds in each minute (the rest being time waiting for
operator input). The overall requirement for multiple concurrent users is thus
perhaps five percent of that needed for conversational tasks. However, you should
allow for data areas that are passed from each task to the next. This may be a
COMMAREA of a few bytes or a large area of temporary storage.

Minimizing memory requirements
To improve performance, you should try to minimize the size of memory required.
You can do this by:

Chapter 5. Designing efficient applications 63

v Writing modular programs and structuring the modules according to frequency
and anticipated time of reference. Do not modularize merely for the sake of size;
consider duplicate code inline as opposed to subroutines or separate modules.

v Using separate subprograms whenever the flow of the program suggests that
execution will not be sequential.

v Not tying up memory awaiting a reply from a terminal user.
v Using command-level file control locate-mode input/output rather than

move-mode. Use of multiple temporary storage queues is restricted. programs,
using static storage for constant data.

v Avoiding the use of EXEC CICS LINK commands where possible, because they
generate requests for memory and require additional processor time.

v Specifying constants as literals in the procedure division, rather than as data
variables in the WORKING STORAGE SECTION. The reason for this is that
there is a separate copy of working storage for every task executing the
program, whereas literals are considered part of the program itself, of which
only one copy is used in CICS.

v Using static storage in ILE C for data that is genuinely constant, for the same
reason as in the point above. Static storage is the same between different
invocations of the same transaction and is shared between them.
v Reusing data areas in the program as much as possible. You can do this with

the REDEFINES clause in COBOL and the union clause in ILE C. In particular,
if you have a map set that uses only one map at a time, code the DFHMSD
map set definition without specifying either the STORAGE=AUTO or the
BASE operand. This allows the maps in the map set to redefine one another.
Refer to “DFHMSD” on page 555 for more information.

Refer to data directly by:
v Avoiding long searches for data in tables
v Using data structures that can be addressed directly, such as arrays, rather

than structures that must be searched, such as chain
v Avoiding methods that simulate indirect addressing
v Using binary or hash search algorithms

Processor usage
Pseudoconversational tasks require a new task to be created to process each
message-pair, and to be deleted when that task has finished. These may include
the cost of initializing a new work area for the program that is first entered. (In a
conversational task, this area is retained permanently, as already mentioned.)

There may also be extra processor overhead because of extra requests needed to
retrieve data passed from the previous task of the pseudoconversation, and
possibly to pass data to the next task.

Recovery design implications
The fundamental and powerful recovery facilities that CICS provides have
performance implications. CICS serializes updates to recoverable resources so that,
if a transaction fails, its changes to those resources can be backed out
independently of those made by any other transaction. Therefore, a transaction
updating a recoverable resource gets control of that resource until it terminates or
indicates with an EXEC CICS SYNCPOINT command that it wants to commit
those changes. Other transactions requiring the same resource for update must
wait until the first transaction finishes with it.

64 CICS for iSeries Application Programming Guide V5

The primary resources that produce these enqueue delays are files, databases,
temporary storage, and transient data queues. For transient data, the “read” end of
the queue is considered a separate resource from the “write” end (that is, one
transaction can read from a queue while another is writing to it, provided that the
records are committed).

To reduce transaction delays from contention for resource ownership, the length of
time between the claiming of the resource and its release (the end of the LUW)
should be minimized. In particular, conversational transactions should not own a
critical resource across a terminal read.

Note: Even for nonrecoverable files, CICS prevents two transactions from reading
the same record for update at the same time. This enqueue ends as soon as
the update is complete, rather than at the end of the LUW.

This protection scheme can also produce deadlocks as well as delays, unless
specific conventions are observed. If two transactions update more than one
recoverable resource, they must update the resources in the same order. If they
each update two files, for example, file “A” should be updated before file “B” in
all transactions. Similarly, if transactions update several records in a single file,
they should always do so in some predictable order (low key to high, or
conversely). Transient data and temporary storage must be included among such
resources.

Many applications require a succession of interactions with the user to get all the
data needed to create a file record. A conversational application might create a
partial order record and then update it in stages, as the terminal operator enters
items. If all the updates are to be committed and backed out together, this means
retaining the protective enqueues on records throughout the conversation until the
order is complete. You may need to protect both the current order being entered
and the stock records that have been decreased by the number of items ordered.
Thus, a whole series of enqueues could be carried forward through the
conversation for several minutes, and any other user making a conflicting request
might wait without warning until the end of the order. Lastly, if the conversation
went on to another order, presumably a CICS syncpoint would be taken to commit
the previous one.

In a pseudoconversational implementation, the above approach is not possible
because updates on one task are committed independently of any other. Therefore,
an order that must be complete “in one piece” must be created by just one task.
However many interactions it takes to get all the necessary input, the final task has
to be the one that creates the order. Data supplied earlier in the conversation must
be saved somewhere between transactions—usually in temporary storage on disk.
That is, you must incur extra overhead in I/O to TS while the order is built up.

If the operator is taking orders over the telephone, with no written backup
material on paper, then maybe the TS data itself should be made recoverable to
avoid the remote client having to dictate the order again later on.

To summarize the issue: recovery places separate design constraints on both
conversational and pseudoconversational implementations, but the performance
cost of the pseudoconversational approach is usually more acceptable.

Chapter 5. Designing efficient applications 65

Terminal interruptibility
When a conversational task is running, CICS allows nothing else to send messages
to that task’s terminal. This has advantages and disadvantages. The advantage is
that unexpected messages (for example, broadcasts) cannot interrupt the
user-machine dialogue and, worse, corrupt the formatted screen. The disadvantage
is that the end user cannot then be informed of important information, such as the
intention of the control operator to shut down CICS after 10 minutes. More
importantly, the unwitting failure of the end user to terminate the conversation
may in fact prevent or delay a normal CICS shutdown.

Pseudoconversational applications can allow messages to come through between
message pairs of a conversation. This means that notices like shutdown warnings
can be delivered. This might disturb the display screen contents, and can
sometimes interfere with transaction sequences controlled by the EXEC CICS
RETURN command with the TRANSID option. However, this can be prevented by
forcing the terminal into NOATI status during the middle of a linked sequence of
interactions (like building one order in the example above), or by judiciously
allowing space at the top or bottom of the screen for use by any message being
sent to the screen.

The main problem is that CICS shutdown could occur in mid sequence—in our
example, when an order is only partly built. This is because CICS cannot
distinguish between the last CICS task of a user transaction and any other. You can
guard against this by ensuring that users are warned of any intended shutdown
sufficiently far in advance, so they do not start work that they might not complete
in time.

Summary of pseudoconversational and conversational design
Conversational tasks may be easier to write, and may require less processor time,
but they have serious disadvantages in their need for more memory and in their
effect on the overall operability of the CICS systems containing them.

Using resources effectively
This section gives advice about designing application programs to minimize the
use of resources.

When you have decided which services you want an application to provide, you
need to consider what resources you must conserve while providing these services.
These are:
v Processor storage
v Processor time
v Exclusive-use resources (such as terminals, file records, and scratch-pad areas)
v Line transmission capacity

There will occasionally be conflict when trying to save one resource at the cost of
another. The appropriate compromises will vary from one application to the next.

Processor storage
Your applications use up processor storage in two ways. First, there are the CICS
control blocks associated with any transaction being processed. Second, there are
the programs being executed to run the transaction. The programs, in turn, take up
space both for executable code and for working storage areas. In an online system,

66 CICS for iSeries Application Programming Guide V5

the storage needs for these purposes fluctuate, existing at most for the duration of
a transaction. You should consider the following guidelines in your application
programs:
v Keep programs short.
v Keep working storage short.
v Keep programs short in duration of use.
v Keep GOTOs to a minimum.
v Avoid long searches for data.
v Place subroutines near the code that calls them.

Processor time
Calls for operating system services take much longer than straight application
code. This is true whether you are coding in CICS, where a call takes the form of a
CICS command, or a programming language, where a call is implicit in your
input-output statements (OPEN, READ, WRITE). Careful attention to CICS design
can reduce processor time much more than fine tuning your code. In a similar
manner you can also code a single input/output operation in a regular program.

Consider the following guidelines to use processor time effectively:
v Avoid unnecessary operating system services.
v Avoid excessively long calculations.

Exclusive-use resources
Some resources can be used by only one transaction at a time. An example of this
is a file record, which CICS allows only one transaction to update at any one time.
CICS does this by providing the enqueue mechanisms to prevent conflicts between
transactions over such resources. When one user has update access to such a
resource, everyone else who wants it has to wait. You should therefore minimize
the duration of transactions that require exclusive-use of resources. For a more
thorough discussion of enqueue, see Chapter 19, “Task control,” on page 197.

Line transmission capacity
In an online system with terminals located a long way from the processor, signals
carried over the network take time to reach their destination. Transmission time,
especially over a congested line, may be a major component of the total response
time.

To lessen the effect of this, you should avoid sending unnecessary data to and
from screens.

For the most part, CICS does this for you automatically, using the terminal
hardware features.

Other suggestions
Here are some other suggestions that can improve the performance of application
code.

Auxiliary trace
Use auxiliary trace to review your application programs. For example, it can show
up any obviously unnecessary code, such as a file browse from the beginning of a
file instead of by key, too many or too large EXEC CICS GETMAIN commands,

Chapter 5. Designing efficient applications 67

failure to release storage when it is no longer needed, unintentional logic loops,
and failure to unlock records held for exclusive control that are no longer needed.

Note: Any form of tracing incurs a significant performance overhead. Consider
carefully whether you really need TRACE in a production system.

Unnecessary commands
Avoid unnecessary commands. For example, an EXEC CICS ASKTIME command
may be unnecessary, because the start of transaction time in the EIB is adequate for
most purposes.

Resource retention
Be aware that file control EXEC CICS READ UPDATE and EXEC CICS DELETE
commands, and any activity on recoverable resources, imply a lock on the
resource. Ensure that tasks cannot be deadlocked because of crossed locks—insist
on a standard order that resources are acquired.

Where CICS recovery forces retention of resources to end-of-task (or to user
syncpoint), reduce resource retention by acquiring as late as possible. That is, issue
the EXEC CICS READ UPDATE command only after the completion of other work
such as editing and table lookups. Similarly, release resources quickly by one of the
following methods:
v Issue an EXEC CICS WRITE, an EXEC CICS REWRITE, an EXEC CICS DELETE

or an EXEC CICS RETURN command.
v Use the EXEC CICS UNLOCK command if the update will not be completed.
v Issue an EXEC CICS SYNCPOINT command as soon as the data can be

committed.

Data definition and manipulation considerations
Avoid browsing or updating too many records at one time.

Define data in its most readily usable form; that is, do not make array indexes in
zoned decimal format.

Avoid repeated conversion of data. If the converted form is needed several times,
use work fields to hold the data that has been converted.

Avoid repeated subscript references to the same source of data. It is better to
transfer the data once to a work field, and refer to it there.

Storing data within a transaction
CICS provides a variety of facilities for storing data within and between
transactions. Each one differs according to how available it leaves data to other
programs within a transaction and to other transactions; in the way it is
implemented; and in its overhead, recovery, and enqueuing characteristics.

Storage facilities that exist for the lifetime of a transaction include:
v Transaction work area (TWA)
v User storage (via an EXEC CICS GETMAIN command issued without the

SHARED option)
v COMMAREA
v Program storage

68 CICS for iSeries Application Programming Guide V5

All of these areas are main storage facilities and come from the same basic
source—CICS storage services. However, program storage is allocated by the
operating system. None of these storage areas is recoverable. They differ, however,
in accessibility and duration, and therefore each meets a different set of storage
needs.

Transaction work area (TWA)
The transaction work area (TWA) is allocated when a transaction is initiated. It
lasts for the entire duration of the transaction, and is accessible to all local
programs in the transaction. Any remote programs that are linked via a distributed
program link command do not have access to the TWA of the client transaction.
The size of the TWA is determined by the TWASIZE parameter in the
ADDCICSPCT CL command. If this is entered as TWASIZE=nnn, then the TWA is
always allocated, lasts for the entire duration of the transaction, and is accessible to
all of the programs in a transaction. See the CICS for iSeries Administration and
Operations Guide for more information about specifying the TWASIZE.

Processor overhead associated with using the TWA is minimal. You do not need an
EXEC CICS GETMAIN command to access it, and you address it using a single
EXEC CICS ADDRESS command.

The TWA is suitable for fairly small data storage requirements and for larger
requirements that are both relatively fixed in size and are used more or less for the
duration of the transaction. Because the TWA exists for the entire transaction, a
large TWA size has much greater effect for conversational than for
nonconversational transactions.

User storage
User storage is available to all the programs in a transaction, but some effort is
required to pass it between programs using EXEC CICS LINK or EXEC CICS
XCTL commands. Its size is not fixed, and it can be obtained (using EXEC CICS
GETMAIN commands) just when the transaction requires it and returned as soon
as it is not needed. Therefore, user storage is useful for large storage requirements
that are variable in size or are shorter-lived than the transaction.

The SHARED option of the EXEC CICS GETMAIN command causes the acquired
storage to be retained after the end of the task. The storage can be passed in the
communication area from one task to the next at the same terminal. The first task
returns the address of the communication area in the COMMAREA option of the
EXEC CICS RETURN command. The second task accesses the address in the
COMMAREA option of the EXEC CICS ADDRESS command. The second task
does not necessarily have to issue the EXEC CICS ADDRESS command to get the
address of the COMMAREA, since the COMMAREA address is automatically
passed to the next program in a pseudoconversational sequence.

The amount of processor overhead involved in an EXEC CICS GETMAIN
command means that you should not use it for a small amount of storage. You
should use the TWA for the smaller amounts or group them together into a larger
request. Although the storage acquired by an EXEC CICS GETMAIN command
may be held somewhat longer when using combined requests, the processor
overhead and the reference set size are both reduced.

Chapter 5. Designing efficient applications 69

COMMAREA in EXEC CICS LINK and EXEC CICS XCTL
commands

A communication area (COMMAREA) is used to transfer information between two
programs within a transaction or between two transactions from the same terminal.
For information about using COMMAREA between transactions, see
“COMMAREA in EXEC CICS RETURN commands” on page 72.

Information in COMMAREA is available only to the two participating programs,
unless those programs take explicit steps to make the data available to other
programs that may be invoked later in the transaction. When one program links to
another, the COMMAREA may be any data area to which the linking program has
access. It is often in the working storage or LINKAGE SECTION of that program.
In this area, the linking program can both pass data to the program it is invoking
and receive results from that program. When one program transfers control (using
an EXEC CICS XCTL command) to another, CICS may copy the specified
COMMAREA into a new area of storage, because the invoking program and its
control blocks may no longer be available after it transfers control. In either case,
the address of the area is passed to the program that is receiving control, and the
CICS command-level interface sets up addressability. See “Program control
commands” on page 259 for further information.

Program storage
CICS creates a separate copy of the variable area of a CICS command-level
program for each transaction using the program. This area is known as program
storage. This area is called the WORKING-STORAGE SECTION in COBOL/400
and automatic storage in ILE C. Like the TWA, this area is of fixed size and is
allocated by CICS without you having to issue an EXEC CICS GETMAIN
command. Unlike the TWA, however, this storage lasts only while the program is
being run. This makes it useful for data areas that are not required outside the
program and that are either small or, if large, are fixed in size and are required for
all or most of the execution time of the program.

Sharing data across transactions
CICS facilities for sharing data across transactions include:
v Common work area (CWA)
v TCTTE user area (TCTUA)
v COMMAREA in EXEC CICS RETURN commands
v Display screen
v Temporary storage
v Intrapartition transient data
v Your own files

The last three items provide more flexibility and function than the other items in
the list, and therefore involve somewhat more overhead. You can also use any of
these methods within transactions.

With the exception of COMMAREA, the display screen, and the TCTUA, data
stored in these facilities is available to any transaction in the system. Subject to
resource-level security restrictions, any transaction may write to them and any
transaction may read them.

70 CICS for iSeries Application Programming Guide V5

Common work area (CWA)
The common work area (CWA) is a single control block that is allocated at system
startup time and exists for the duration of that CICS session. The size is fixed, as
specified in the WRKARASIZE parameter of the system initialization table. The
CWA has the following characteristics:
v There is almost no overhead in storing or retrieving data from the CWA.

Command-level programs must issue one EXEC CICS ADDRESS command to
get the address of the area but, after that, they can access it directly.

v Data in the CWA is not recovered if a transaction or the system fails.
v CICS does not regulate use of the CWA. All programs in all applications that use

the CWA must follow the same rules for shared use. These are usually set down
by the system programmers, in cooperation with application developers, and
require all programs to use the same “copy” module to describe the layout of
the area.

v The CWA is especially suitable for small amounts of data, such as status
information, that are read or updated frequently by multiple programs in an
application.

v The CWA is not suitable for large-volume or short-lived data because it is
always allocated.

You should ensure that data used in one transaction does not overlay data used in
another. Do not exceed the length of the CWA.

TCTTE user area (TCTUA)
The TCTTE user area (TCTUA) is defined using the USRARASIZE parameter on
the ADDCICSTCT CL command. Each entry in the TCT specifies whether the
TCTUA is present and, if so, how long it is.

TCTUAs have the following characteristics in common with the CWA:
v Minimal processor overhead (only one EXEC CICS ADDRESS command needed)
v No recovery
v No regulation of use by CICS
v Fixed length
v Unsuitability for large-volume or short-lived data

Unlike the CWA, however, the TCTUA for a particular terminal is shared only
among transactions using that terminal. It is therefore useful for storing small
amounts of data of fairly standard length between a series of transactions in a
pseudoconversational sequence. Another difference is that it is not necessarily
permanently allocated, because the TCTUA only exists while the TCTTE is set up.
For nonautoinstall terminals the TCTUA is allocated from system startup; for
autoinstall terminals the TCTUA is allocated when the TCTTE is generated.

Using the TCTUA in this way does not require special discipline among using
transactions, because data is always read by the transaction following the one that
wrote it. However, if you use TCTUAs to store longer-term data (for example,
terminal or operator information needed by an entire application), they require the
same care as the CWA to ensure that data used in one transaction does not overlay
data used in another. You should not exceed the length of the allocated TCTUA,
because this produces a storage violation.

Chapter 5. Designing efficient applications 71

COMMAREA in EXEC CICS RETURN commands
COMMAREA is used to pass information between application programs. The
pointer reference is set to the address of the communication area. If the
communication area does not exist, the length of the COMMAREA in the EIB,
EIBCALEN, is set to zero.

The COMMAREA option of the EXEC CICS RETURN command is designed
specifically for passing data between successive transactions in a
pseudoconversational sequence. It is implemented as a special form of user
storage, although the EXEC interface, rather than the application program,
manages COMMAREAs.

The COMMAREA is main storage allocated from the CICS nonshared user storage,
and is pointed to by a TCTTE, for instance, between tasks of a
pseudoconversational application. The COMMAREA is freed unless it is passed to
the next task.

To summarize:
v It is not recoverable.
v It is not suitable for large amounts of data (because main storage is used, and it

is held until the terminal user responds).
v As with using COMMAREA to transfer data between programs, it is available

only to the first program in a transaction, unless that program explicitly passes
the data or its address to succeeding programs.

Display screen
You can also store data between pseudoconversational transactions from a 3270 or
5250 display terminal on the display screen itself. For example, if users make errors
in data that they are asked to enter on a screen, the transaction processing the
input usually points out the errors on the screen (with highlights or messages), sets
the next transaction identifier to point to itself (so that it processes the corrected
input), and returns to CICS.

The transaction has two ways of using the valid data. It can save it (for example,
in COMMAREA), and pass it on for the next time it is run. In this case, the
transaction must merge the changed data on the screen with the data from
previous entries. Alternatively, it can save the data on the screen by not turning off
the modified data tags of the keyed fields.

Saving the data on the screen is easy to code, but has two limitations. Firstly, you
must not use it with screens that contain large amounts of data if the likelihood of
errors is high. This is because of the additional network traffic needed to resend
the unchanged data. It does not apply to locally attached terminals.

Secondly, if the user presses the CLEAR key, the screen data is lost, and the
transaction must be able to recover from this. You can avoid this by defining the
CLEAR key to mean CANCEL or QUIT, if this is appropriate for the application
concerned.

Data other than keyed data may also be stored on the screen. This data can be
protected from changes (except those caused by CLEAR) and can be nondisplay, if
necessary.

72 CICS for iSeries Application Programming Guide V5

Temporary storage
Temporary storage is the primary CICS facility for storing data that must be
available to multiple transactions.

Data items in temporary storage are kept in queues whose names are assigned
dynamically by the program storing the data. A temporary storage queue
containing multiple items can be thought of as a small file whose records can be
addressed either sequentially or directly, by item number. If a queue contains only
a single item, it can be thought of as a named scratch-pad area.

Temporary storage is implemented in two different ways. The one used for a
particular queue is determined by what is specified on the command that creates
the first item. Specifying the MAIN option means that the queue is kept in main
storage, in space taken from the shared storage area. The AUXILIARY option
means that the queue is written to a physical file. Whichever method you use,
CICS maintains an index of items in main storage.

Both these methods have characteristics that you should bear in mind:
v Main temporary storage requires much more internal storage than auxiliary. In

general, you should use it only for small queues that have short lifetimes or are
accessed frequently. Auxiliary temporary storage is specifically designed for
relatively large amounts of data that have a relatively long lifetime or are
accessed infrequently.

v You can make queues in auxiliary storage recoverable, but not queues in main
storage. Only one transaction at a time can update a recoverable temporary
storage queue. So, if you choose to make queues recoverable, bear in mind the
probability of enqueues.

v If a task tries to write to temporary storage and there is no space available, CICS
normally suspends the task. The task is not resumed until another task frees the
necessary space in storage or the auxiliary TS file. This can produce unexplained
response delays, especially if the waiting task owns exclusive-use resources, in
which case all other tasks needing those resources must also wait.

v It can be more efficient to use main temporary storage exclusively in
low-volume systems that have no need for recovery.

The following points apply to temporary storage in general:
v You must use an EXEC CICS command every time data is written to or read

from a temporary storage queue, and CICS must find or insert the data using its
internal index. This means that the overhead for using main temporary storage
is greater than for the CWA or TCTUA. With auxiliary storage there is usually
file I/O, which increases overhead even more.

v You need not allocate temporary storage until it is required; you need keep it
only as long as it is required, and the item size is not fixed until you issue the
command that creates it. This makes it a good choice for relatively high-volume
data and data that varies in length or duration.

v The fact that temporary storage queues can be named as they are created
provides a powerful form of direct access to saved data. You can access
scratch-pad areas for terminals, records, and so on, simply by including the
terminal name or record key in the queue name.

v Resource-level protection for auxiliary temporary storage queues is provided by
security authorization to physical files.

Chapter 5. Designing efficient applications 73

Intrapartition transient data
Intrapartition transient data has some characteristics in common with auxiliary
temporary storage. (See “Sequential file access” on page 76 for information about
extrapartition transient data.) Like temporary storage, intrapartition transient data
consists of queues of data, kept together in a single file, with an index that CICS
maintains in main storage.

You can use transient data for many of the purposes for which you would use
auxiliary temporary storage, but there are some important differences:
v Transient data queue names must be defined in the destination control table

(DCT) before CICS is started. You cannot define them arbitrarily at the time the
data is created. Thus, transient data does not have the same random access
characteristics as temporary storage.

v Transient data queues must be read sequentially. That is, after a transaction
reads an item, that item is removed from the queue and is not available to any
other transaction. In contrast, items in temporary storage queues may be read
either sequentially or directly (by item number). They can be read any number
of times and are not removed from the queue until the entire queue is purged.
 These two characteristics make transient data inappropriate for scratch-pad data
but suitable for queued data such as audit trails and output to be printed. In
fact, for data that is read sequentially once, transient data is preferable to
temporary storage.

v Items in a temporary storage queue can be changed; items in transient data
queues cannot.

v Transient data queues are always written to a file. (There is no form of transient
data that corresponds to main temporary storage.)

v You can define transient data queues so that writing items to the queue causes a
specific transaction to be initiated (for example, to process the queue).
Temporary storage has nothing that corresponds to this “trigger” mechanism,
although you may be able to use an EXEC CICS START command to perform a
similar function.

v For recoverable transient data queues, uncommitted records can only be read by
a second task when the writing task has completed a logical unit of work. For
temporary storage queues, the writing task does not need to complete a logical
unit of work before another task can read the records written.

v Because the commands for intrapartition and extrapartition transient data are
identical, you can switch easily between the internal CICS facility (intrapartition)
and an external file, described in “Sequential file access” on page 76. To do this,
you need only change the DCT, not your application programs. Temporary
storage has no corresponding function of this kind.

Your own files
You can also use your own files to save data between transactions. This method
probably has the largest overhead in terms of instructions processed, buffers,
control blocks, and user programming requirements, but does provide extra
functions and flexibility.

74 CICS for iSeries Application Programming Guide V5

Data operations
CICS supports:
v Emulation of VSAM files
v Browsing
v Logging
v Sequential data set access

Emulating VSAM files
The efficiency of database and file operations is an important factor in the
performance of any CICS system.

To minimize contention delays using VSAM emulated files:
v Minimize the time that they are reserved for exclusive use. The exclusive-use

enqueue is the way CICS and OS/400 prevent concurrent updates. It is held on
the record level. The AS/400® also holds a lock on the file level while the file is
opened. The hold for exclusive use ends when either the request is completed, at
the next syncpoint, or when the task has completed, depending on whether or
not the resource is recoverable. For nonrecoverable files, the exclusive use that
starts with an EXEC CICS READ UPDATE command ends when OS/400 data
management has completed the EXEC CICS REWRITE command. For
recoverable files, the CICS exclusive use ends at either a syncpoint or end of
task.
 The table shows which requests require exclusive use and when that reservation
terminates.

 Table 5. Requests that require exclusive use and when the reservation terminates

Command Released by

READ UPDATE REWRITE/DELETE/UNLOCK/
SYNCPOINT

WRITE MASSINSERT1 Completion of WRITE

WRITE Completion of WRITE

DELETE RIDFLD Completion of DELETE

v Hold position in an emulated VSAM file for as short a time as possible. The
table shows which commands hold position and when the hold is released.

 Table 6. Commands that hold position and when the hold is released

Command Released by

READ UPDATE REWRITE/DELETE/UNLOCK/
SYNCPOINT

WRITE MASSINSERT1 Completion of WRITE

STARTBR ENDBR

1If a request is made to close a file (using SET™ FILE), the file is not closed until
the task has terminated. For nonrecoverable files, EXEC CICS UNLOCK or EXEC
CICS SYNCPOINT commands also close the file. For recoverable files, only the
next EXEC CICS SYNCPOINT command also closes the file.

To minimize processor overhead in emulated VSAM files:

Chapter 5. Designing efficient applications 75

v Minimize the number of open files within a CICS shell. CICS opens files within
each CICS shell when they are first referred to. Open processing on the iSeries is
a relatively expensive operation in terms of processor resources and system
storage requirements. CICS attempts to optimize the open processing by keeping
files opened across task completion boundaries on the probability that a
subsequent task will access the same file. The programmer should be aware that
too many opened files may cause excessive demand of system storage and
increase page faults.

v Ideally, you would want CICS to have the files used by an application already
opened. However, if your users are executing a mixture of applications that
access a multitude of files, you can reduce the number of files that CICS keeps
open across tasks with the FILECTL system initialization parameter.

v Use skip-sequential processing if you are reading many nonadjacent records in
sequence. (Skip-sequential processing begins with an EXEC CICS STARTBR
command. Each record is retrieved with an EXEC CICS READNEXT command,
but the key feedback area pointed to by the RIDFLD option is supplied with the
key of the next requested record before the EXEC CICS READNEXT command is
issued.)

v Use the GENERIC option on the EXEC CICS DELETE command when deleting
a group of records in a KSDS whose keys start with a common character string.
CICS internally optimizes an EXEC CICS DELETE GENERIC command.

Browsing files
CICS provides the ability to browse emulated VSAM files in an optimized manner
that is very efficient. You should use the browse function when you are reading
records sequentially.

Logging files
Both CICS and OS/400 provide options to log activity using either CICS journal
control facilities or OS/400 journals against a file. Logging using CICS journal
control facilities enables you to use the logged file for postprocessing, or you may
want to log reads for security reasons. OS/400 journals are primarily used by
OS/400 commitment control during syncpoint processing, thus providing data
integrity for the file. You have to balance the need for postprocessing, security and
data integrity, against the overhead of user journaling.

Sequential file access
CICS provides a number of different sequential processing options. Temporary
storage and intrapartition transient data queues (already discussed in “Temporary
storage” on page 73 and in “Intrapartition transient data” on page 74) are the most
efficient to use, but they must be created and processed entirely within CICS. The
following methods apply to sequential files that must be processed externally to
CICS:
v Extrapartition transient data
v VSAM entry-sequenced files
v Journals

Extrapartition transient data is the CICS way of handling standard sequential files.
It is the least efficient of the three forms of sequential support listed, because CICS
has to synchronize access to the files. Moreover, extrapartition transient files are
not recoverable.

76 CICS for iSeries Application Programming Guide V5

Emulated VSAM ESDSs, on the other hand, are more efficient. CICS journals
provide another good alternative to extrapartition transient data, although
primarily for output files.

Journal records are written in a special format. Each record has a system prefix and
an optional user-built prefix, and record length is variable. Journals are opened for
output and many users can share one journal.

You can only use journals for output (online) while CICS is running. Reading
records from a journal is possible only offline by means of a batch job.

Terminal operations
There are some design factors, related to communicating with terminals, that may
affect performance.

Data stream considerations
Good screen design and effective use of display devices can significantly affect the
number of bytes transmitted on a network link. It is particularly important to keep
the number of bytes as small as possible because, in most cases, this is the slowest
part of the path a transaction takes. The efficiency of the data stream therefore
affects both response time and line usage.

BMS considerations
Basic Mapping Support (BMS) is discussed in detail in Chapter 13, “CICS/400
basic mapping support (BMS),” on page 141.

When building a formatted data stream with BMS, you should bear in mind, the
factors described in the following sections.

Avoid turning on modified data tags (MDTs) unnecessarily
The MDT is the bit in the attribute byte that determines whether a field should be
transmitted on a READ MODIFIED command (the command used by CICS for all
but copy operations).

The MDT for a field is normally turned on by the 5250 or 3270 hardware when the
user enters data into a field. However, you can also turn on the tag when you send
a map to the screen, either by specifying FSET in the map or by sending an
override attribute byte that has the tag on. You should never set the tag on in this
way for a field that is constant in the map, or for a field that has no label (and
therefore is not sent to the program that receives the map).

Also, you do not normally need to specify FSET for an ordinary input field. This is
because, as already mentioned, the MDT is turned on automatically in any field in
which the user enters data. The MDT is then received in the next EXEC CICS
RECEIVE MAP command. These tags remain on, no matter how many times the
screen is sent, until explicitly turned off by the program (by the FRSET,
ERASEAUP, or ERASE option, or by an override attribute with the tag off).

You can store information, between inputs, that the user did not enter on the
screen. This is an intended reason for turning the MDT on by a program. However,
this storage technique is appropriate only to small amounts of data, and is more
suitable for local than for remote terminals, because of the transmission overhead
involved. For example, this technique is particularly useful for storing default
values for input fields. In some applications, the user must complete a screen in

Chapter 5. Designing efficient applications 77

which some fields already contain default values. A user who does not want to
change a default just skips that field. The program processing the input has to be
informed what these defaults are. If they are always the same, they can be
supplied as constants in the program. If they are variable, however, and depend on
earlier inputs, you can simply save them on the screen by turning the MDT on
with FSET in the map that writes the screen. The program reading the screen then
receives the default value from a user who does not change the field and the new
value from a user who does.

Note: The saved values are not returned to the screen if the CLEAR, PA1, PA2, or
PA3 key is pressed.

Use FRSET to reduce inbound traffic
If you have a screen with many input fields, which you may have to read several
times, you can reduce the length of the input data stream by specifying FRSET
when you write back to the screen in preparation for the next read. FRSET turns
off the MDTs, so that fields entered before that write are not present unless the
user reenters them the next time. If you are dealing with a relatively full screen
and a process where there may be a number of error cycles (or repeat
transmissions for some other reason), this can be a substantial saving. However,
because only changed fields are sent on subsequent reads, the program must save
input from each cycle and merge the new data with the old. This is not necessary
if you are not using FRSET, because the MDTs remain on, and all fields are sent
regardless of when they were entered.

Do not send blank fields to the screen
Sending fields to the screen that consist entirely of blanks or that are filled out on
the right by trailing blanks usually wastes line capacity. The only case in which
BMS requires you to do this is when you need to erase a field on the screen that
currently contains data, or to replace it with data shorter than that currently on the
screen, without changing the rest of the screen.

This is because, when BMS builds the data stream representing your map, it
includes blanks (X'40') but omits nulls (X'00'). This makes the output data stream
shorter. BMS omits any field whose first data character is null, regardless of
subsequent characters in the field.

BMS requires you to initialize to nulls any area to be used to build a map. This is
done by moving nulls (X'00') to the mapnameO field in the symbolic map
structure. See “Output map data structures” on page 153. BMS uses nulls in
attribute positions and in the first position of data to indicate that no change is to
be made to the value in the map. If you are reusing a map area in a program or in
a TIOA, you should take special care to clear it in this way.

Use the MAPONLY option when possible
The MAPONLY option sends only the constant data in a map, and does not merge
any variable data from the program. The resulting data stream is not always
shorter, but the operation has a shorter path length in BMS. When you send a
skeleton screen to be used for data entry, you can often use MAPONLY.

Send only changed fields to an existing screen
Sending only changed fields is important when, for example, a message is added
to the screen, or one or two fields on an input screen are highlighted to show
errors. In these situations, you should use the DATAONLY option to send a map
that consists of nulls except for the changed fields. For fields in which only the
attribute byte has changed, you need send only that byte, and send the remaining

78 CICS for iSeries Application Programming Guide V5

fields as nulls. BMS uses this input to build a data stream consisting of only the
fields in question, and all other fields on the screen remain unchanged.

For example, when a program that is checking an input screen for errors finds one,
there are two options. It can simply add the error information to the input map
(highlighted attributes, error messages, and so on) and resend it, or it can build an
entirely new screen, consisting of just the error and message fields. The former is
slightly easier to code (you do not need to have two map areas or move any
fields), but it may result in much longer transmissions because the output data
stream contains the correct input fields as well as the error and message fields. In
fact, it may even be longer than the original input stream because, if there were
empty or short fields in the input, BMS may have replaced the missing characters
with blanks or zeros.

For 5250 terminals, additional processing is required to support the DATAONLY
option. In a network of predominantly 5250 devices, you may want to avoid this
option.

With the 3270 hardware, if the input stream for a terminal exceeds 256 bytes, the
terminal control unit automatically breaks it up into separate transmissions of 256
bytes maximum. This means that a long input stream may require several physical
I/O operations. Although this is not apparent to the application program, it does
cause additional line and processor overhead. The output stream is generally sent
in a single transmission.

Design data entry operations to reduce line traffic
Often, users are required to complete the same screen several times. Only the data
changes on each cycle; the titles, field labels, instructions, and so on remain
unchanged. In this situation, when an entry is accepted and processed, you can
respond with an EXEC CICS SEND CONTROL ERASEAUP command (or a map
that contains only a short confirmation message and specifies the ERASEAUP
option). This causes all of the unprotected fields on the screen (that is, all of the
input data from the last entry) to be erased and to have their MDTs reset. The
labels and other text, which are in protected fields, are unchanged, the screen is
ready for the next data-entry cycle, and only the necessary data has been sent.

Compress data sent to the screen
When you send unformatted data to the screen, or create a formatted screen
outside BMS, you can compress the data further by inserting set buffer address
(SBA) and repeat-to-address (RA) orders into the data stream. SBA allows you to
position data on the screen, and RA causes the character following it to be
generated from the current point in the buffer until a specified ending address.
SBA is useful whenever there are substantial unused areas on the screen that are
followed by data. RA is useful when there are long sequences of the same
character, such as blanks or dashes, on the screen. However, you should note that
the speed with which RA processes is not uniform across all display devices. You
should check how it applies to your configuration before using it.

Use nulls instead of blanks
You should note that, outside BMS, nulls have no special significance in an output
data stream. If you need a blank area on a screen, you can send either blanks or
nulls to it; they take up the same space in the output stream. However, if the blank
field is likely to be changed by the user and subsequently read, use nulls, because
they are not transmitted back.

Chapter 5. Designing efficient applications 79

Use methods that avoid the need for nulls or blanks
For any large area of a screen that needs to be blank, you should consider methods
other than transmitting blanks or nulls; for example, using BMS, putting SBA and
RA orders directly into the data stream, or using the ERASE and ERASEAUP
options.

Sending messages to destinations other than the input terminal
You have a choice of two other methods of delivering output to a terminal not
associated with the transaction.
1. You can use an EXEC CICS START command, with the TERMID option, to

specify the terminal to which you want to write and the FROM option to
specify the data you want to send. The started transaction issues an EXEC CICS
RETRIEVE command for the message and then sends it to its own terminal.

2. Similarly, you can put messages destined for a particular terminal on a
transient data queue that has the same name as the terminal. The DCT entry
for the queue must specify DEVTYPE(*TERMINAL), a trigger level (usually 1),
and a transaction. Your own transaction reads the transient data queue and
sends the message to its terminal. It repeats this sequence until the queue is
empty, and then terminates. The trigger level you specified means that it is
invoked every time messages are placed on the queue.

Note: This requires coding a DCT entry for each possible terminal destination,
with the resulting storage overhead.

Additional terminal control considerations
The following sections describe additional points to consider when using the CICS
terminal control services.

Use only one EXEC CICS SEND command per screen
It is important to send the screen in a single physical output to the terminal. It is
very inefficient to build a screen in parts and send each part with a separate
command, because of the additional processor overhead of using several
commands and the additional line and access method overhead. If your program is
pseudoconversational, it has only one EXEC CICS SEND command, by definition.
(See “Choosing between pseudoconversational and conversational design” on page
61) Unless you require notification to this program of an error on the EXEC CICS
SEND command, omit the WAIT option. This allows CICS task control to reclaim
the control blocks and user storage for your program long before it would
otherwise be able to do so. Use of the WAIT option reduces substantially the
savings effected by pseudoconversational programming.

Use the EXEC CICS CONVERSE command
Use the EXEC CICS CONVERSE command rather than the EXEC CICS SEND and
EXEC CICS RECEIVE commands (or an EXEC CICS SEND, EXEC CICS WAIT,
EXEC CICS RECEIVE command sequence if your program is conversational). They
are functionally equivalent, but the EXEC CICS CONVERSE command crosses the
CICS services interface only once, which saves processor time.

Avoid using unnecessary transactions
Avoid situations that may cause users to enter an incorrect transaction or to use
the CLEAR key unnecessarily, thus adding to terminal input, task control
processing, terminal output, and overhead. Good screen design and standardized
PF and PA key assignments should minimize this.

80 CICS for iSeries Application Programming Guide V5

Send unformatted data without maps
If your output to a terminal is entirely or even mostly unformatted, you can send
it using terminal control commands rather than BMS commands (that is, using an
EXEC CICS SEND command without the MAP or TEXT options). However, these
commands can be less efficient when using 5250 terminals. See “Terminal
communication” on page 84.

Performance considerations
This section covers general performance considerations for CICS, including advice
relating specifically to CICS in the AS/400 environment. Where this affects
application design, you should also consider any possible effects on the portability
of the program to CICS in other environments.

CICS and multiprocessor AS/400s
The CICS/400 architecture is generally able to exploit each of the processors in a
multiprocessor AS/400 without the need for multiple CICS regions. This is because
the CICS/400 architecture uses individual AS/400 jobs for user shells and the
dispatch of the jobs is controlled by internal OS/400 dispatching mechanisms.

A simplified explanation follows. An individual task is likely to be executed on a
specific processor due to internal affinities. Another task running from the same
user shell could execute on a different processor. The choice of which processor is
dispatched to run the task is controlled by the operating system, not CICS, and
uses a combination of priority, eligibility, and cache affinity. Cache affinity is used
to dispatch tasks to the processor on which they are most likely to have residual
data in cache and, therefore, the processor on which they are likely to experience
the best performance.

CICS SIT parameters
There are performance considerations that relate to specific SIT parameter settings.

CICS internal trace (INTTRCCTL) and auxiliary trace
(AUXTRCCTL)
CICS trace is a powerful debugging aid, but there is a significant performance
overhead incurred when trace is enabled. This is because of the additional
processor time required to generate and record trace data.

The CICS supplied defaults have trace switched off, and it is recommended that it
is left off in stable production systems for best performance. If you experience
problems that you believe are caused by IBM code however, you will need to
provide debugging information which will include CICS traces.

The overhead of CICS auxiliary tracing is greater than that for an internal trace.

CICS files left open count and open timeout (FILECTL)
In the SIT parameter FILECTL:
 Element 1 controls the maximum number of files left open to a user shell at

task termination.
 Element 2 controls how long a file can be kept open by a shell without being

referenced.

Each user shell separately opens and closes files, unlike mainframe CICS where the
single CICS job opens the files on behalf of all the tasks in the system.

Chapter 5. Designing efficient applications 81

Opening, and to a lesser extent, closing files is a relatively expensive operation in
terms of processor cycles. The default setting for this parameter is therefore zero,
which means that CICS keeps files open for the user shell once they have been
referenced. They remain open until the shell shuts down or the open inactivity
limit expires.

Leaving files open saves processor time in opening and closing files, but increases
memory use in relation to the number of open files.

The impact on memory use depends on the configuration of your AS/400 and the
nature of your application. As an initial estimate, you might regard up to 20 open
files per user shell as a threshold. For larger numbers of files, consider using the
maximum file open and time out close parameters in conjunction.

Setting the maximum number of open files too low could cause additional opening
and closing of files, which then increases the processor use and response time of
the transaction.

Note: CICS allows a task to access more than the maximum number of files
defined in the first FILECTL parameter during the processing of that task. A
check is made at task termination to see whether the maximum is exceeded;
if it has, those files least recently used will be closed. Any files opened to
the shell, including those for temporary storage and transient data are
eligible for automatic closure.

CICS interval control processing (ITVCTL)
In the interval control parameter (ITVCTL):
 Element 1 controls the maximum number of batch shells concurrently active for

interval control.
 Element 2 controls how many batch shells will be kept active when there is no

ongoing interval control processing.

Starting and stopping the batch shells used for interval control processing uses
relatively high amounts of processor and elapsed time. To get good response time
and efficient processing, you should ensure that sufficient shells exist and are
available for reuse.

BMS map set suffixing (DEVCTL)
In the SIT parameter DEVCTL:
 Element 3 is set to *DDS by default, enabling map set suffixing when suffixed

map sets are in use. When map sets are not suffixed, you can improve
performance by setting this element to *NODDS as unnecessary searches are
avoided.

COBOL application code
There are performance considerations that relate to the design and implementation
of COBOL applications.

COBOL generation options
The performance of a CICS application is influenced by how efficient your
application code is, and how the program is compiled. The COBOL/400 User’s
Guide describes COBOL/400 compilation and generation options.

Note that, if the program contains SQL statements, the generation options are
passed to the SQL precompiler but not to the COBOL compiler.

82 CICS for iSeries Application Programming Guide V5

The CICS/400 CL command CRTCICSCBL allows the use of two generation
options that affect performance.

*NORANGE
The default generation option used by the CICS/400 translator is *RANGE.
This causes the compiler to generate code to check that subscripts are
within range. For example, it ensures that you are not attempting to
reference the 21st element of a 20-element array. If you specify the
*NORANGE option this additional code is not generated. Specifying the
*NORANGE option can give worthwhile performance improvements in
programs with significant subscript activity,

*OPTIMIZE
The default generation option used by the CICS/400 translator is
*NOOPTIMIZE. This causes the compiler to perform only standard
optimization for the program. If you specify the *OPTIMIZE option, the
program object created may run more efficiently and may require less
storage. However, specifying the *OPTIMIZE option can substantially
increase the time required to compile a program, so you may decide to use
this only for production programs.

 See page 266 for the format of the CRTCICSCBL command.

ILE C application code
There are performance considerations that relate to the design and implementation
of C applications.

ILE C generation options
The CRTCICSC CL command does not support the ILE C optimization parameter
(OPTIMIZE) on the CRTCMOD CL command. You can, however, use the
CHGMOD, CHGPGM, or CHGSRVPGM CL commands to select
OPTIMIZE(*BASIC) or OPTIMIZE(*FULL) before using a module, program, or
service program in a production environment.

See page 286 for the format of the CRTCICSC command.

*DEBUG or *NODEBUG
Setting the *DEBUG translator option could affect the performance of your
program. The *NODEBUG translator option has no effect on the performance of
your program.

EXEC CICS LINK command or host language call
There is a greater processor cost in using an EXEC CICS LINK command to pass
control between programs than using a host language call. If your application
makes extensive use of, for example, an interface program to access various
different file access methods, you may wish to consider the use of a host language
call rather than an EXEC CICS LINK command.

When using an EXEC CICS LINK command, the linked to program will have its
working or automatic storage initialized every time it is invoked, but this will only
occur on the first entry in a run time unit when a host language call is used. In
COBOL/400 applications, this could mean you would need to change the
application code to use MOVE statements in the procedure division to initialize
fields rather than VALUE clauses in the WORKING STORAGE SECTION.

Chapter 5. Designing efficient applications 83

Terminal communication
These performance considerations relate to terminal communication.

BMS and terminal types
CICS/400 supports both 3270 and 5250 terminals, and there is logic within the
Terminal Control and BMS functions to deal with the differing needs of these
devices.

For BMS, CICS creates the appropriate 3270 or 5250 data stream to communicate
with the attached device, when that device is connected to the local AS/400.
Terminals attached to remote AS/400 or other processors are dealt with as 3270
devices, and data stream conversion is avoided.

The CICS logic for locally attached devices is designed to avoid data stream
conversion wherever possible. The matrix of when data stream conversion is
required is shown in Figure 23.

In the case of terminal control, the CICS application sends a 3270 data stream, and
CICS terminal control determines from the device characteristics of the destination
unit whether conversion is required.

BMS DATAONLY option
3270 devices can benefit from reduced line traffic by use of the DATAONLY option
of the EXEC CICS SEND MAP command.

5250 devices need additional processing to process a DATAONLY request in
merging the new data with the existing screen. This option therefore incurs a
processor overhead and may not significantly reduce line traffic.

Data stream compression
Depending on definitions in the system initialization table (SIT) and terminal
control table (TCT), CICS can compress outbound data being sent to 3270 and 5250
devices. This is of particular relevance to terminals connected to the AS/400 by
low-speed synchronous data link control (SDLC) links, where the outbound data
stream is typically up to ten times longer than the inbound data stream.

Figure 23. Data stream conversion

84 CICS for iSeries Application Programming Guide V5

It is possible to reduce the size of the outbound data stream by replacing repeated
characters with a Repeat to Address (RA) order. This technique can substantially
reduce the amount of outbound data and therefore give quicker transaction
response time.

The CICS/400 data stream compressor causes all outbound CICS data streams to
be parsed for repeating sequences of the same character, replacing them with
equivalent RA orders. These are automatically expanded to the correct size at their
destination as this is an integral part of data-stream architecture.

This facility is only effective for CICS generated data streams. You may also choose
to use the AS/400 3270 data stream optimizer. This optimizes data streams
generated by the AS/400 system through non-CICS activity. It uses similar
methods to the CICS/400 compressor, and makes additional size reductions by
maintaining details of screen images and avoiding unnecessary sending of
unchanged data. Using this facility may cause an increase in processor activity.

The AS/400 data stream optimizer is only effective for AS/400 generated 3270 data
streams targeted for remotely attached 3270’s, Distributed Host Command Facility
(DHCF) devices, Network Routing Facility (NRF) devices, and 3270 TELNET
devices.

Chapter 5. Designing efficient applications 85

86 CICS for iSeries Application Programming Guide V5

Chapter 6. Dealing with exception conditions

Every time you process an EXEC CICS command in one of your applications, CICS
automatically raises a condition to tell you how the command worked. This
condition (which is usually NORMAL) is passed back by the CICS EXEC interface
program to your application. If something out of the ordinary happens, you get an
“exception condition”, which simply means a condition other than NORMAL. By
testing this condition, you can find out what has happened, and possibly why.
Each condition has a name (such as LENGERR, for length error) and a matching
number. There is a general condition named ERROR that you can use as a
“catch-all” and whose default action is to terminate the task abnormally. There is
also a NOTAUTH condition—a general condition that is raised when a resource
security check on a command has failed.

Not all conditions denote an error situation, even if they are not NORMAL. (For
example, if you get an ENDFILE condition on an EXEC CICS READNEXT
command during a file browse, it might be exactly what you expect.) For
information about all possible conditions and the commands on which they can
occur, see Chapter 32, “Application programming commands - reference,” on page
323..

Programs in any supported language
When a condition is raised, you should let the program continue, with control
coming straight back from CICS to whatever instruction in your program
immediately follows the EXEC CICS command that has just been executed. You
can then find out what happened by testing the RESP and RESP2 values. The
result of this test enables you decide what to do next. For details, see “How to use
the RESP and RESP2 options.”

All ILE C applications, and any new CICS applications written in COBOL, should
use this method of handling conditions. It lends itself to structured code and
removes the need for implied GOTOs that CICS required in the past.

You do not need to change any existing applications that are currently working
perfectly well using one of the older methods of handling conditions.

How to use the RESP and RESP2 options
CICS sets return codes in the EXEC interface block (EIB), so you can test for
particular conditions right after each CICS command, by executing the command
and then immediately testing, for example, the RESP value to check whether it did
what you wanted.

CICS makes it easy to test the RESP value by using a built-in function named
DFHRESP. With this, your code can examine RESP values symbolically. This is a lot
easier than looking at hexadecimal values that are less meaningful to someone
reading the code.

Simply code the RESP option on your CICS command and follow it immediately
with tests on the returned RESP value.

© Copyright IBM Corp. 1998, 2004 87

You can use the RESP option with any command to test whether an exception
condition was raised during its processing. With some commands, a condition may
be raised for more than one reason. If you have already specified a RESP option,
then you can use the RESP2 option to determine exactly why a condition was
raised.

RESP(xxx)
“xxx” is a user-defined fullword binary data area. On return from the
command, it contains a value corresponding to the condition that may have
been raised, or to a normal return, that is, xxx=DFHRESP(NORMAL). You can
test this value using DFHRESP, as follows:

 For ILE C, the test is:

RESP2(yyy)
“yyy” is a user-defined fullword binary data area. On return from the
command, it contains a value that further qualifies the response to certain
commands. RESP2 values are given in the description of each command that
returns them.

 RESP2 values are included in the “Exception conditions” section of the command
descriptions in Part 7, “Programming reference,” on page 263, where applicable.
Where no RESP2(yyy) value is noted, the RESP2 field is reserved and the returned
value is undefined.

Example of coding and testing a RESP value
Consider the section of COBOL code from program ACCT01 shown in Figure 24 on
page 89:

 EXEC CICS WRITEQ TD FROM(abc)
 QUEUE(qname)
 RESP(xxx)
 END-EXEC.
 ...
 IF xxx=DFHRESP(QIDERR) THEN ...

 EXEC CICS WRITEQ TS FROM(abc)
 QUEUE(qname)
 RESP(xxx);
 ...
 if (xxx==DFHRESP(NOSPACE))
 { ...

88 CICS for iSeries Application Programming Guide V5

An equivalent piece of code in ILE C might be:

In this example, the first thing to do after the EXEC CICS RECEIVE MAP
command is to test the value CICS puts into RESPONSE to check whether it
worked. You start by looking explicitly for condition MAPFAIL because it can
occur without there being any serious error (if, for example, the user presses
CLEAR at this point in the application) and you have to be able to recover. Note,
however, that MAPFAIL is by no means the only condition that can arise on an
EXEC CICS RECEIVE MAP command.

You can either test explicitly for all possible conditions after each command, or test
for some subset of those conditions and somehow deal with all other possibilities

* GET INPUT AND CHECK REQUEST TYPE FURTHER.
 EXEC CICS RECEIVE MAP(’ACCTMNU’)
 MAPSET(’ACCTSET’)
 RESP(RESPONSE)
 END-EXEC.
 IF RESPONSE = DFHRESP(MAPFAIL)
 GO TO NO-MAP.
 IF RESPONSE NOT = DFHRESP(NORMAL)
 GO TO OTHER-ERRORS.
 /* Resume processing */ ...
* PROCESSING FOR UNEXPECTED ERRORS.
 OTHER-ERRORS.
 MOVE EIBFN TO ERR-FN.
 MOVE EIBRCODE TO ERR-RCODE.
 MOVE EIBFN TO ERR-COMMAND.
 MOVE EIBRESP TO ERR-RESP.
 EXEC CICS HANDLE CONDITION ERROR END-EXEC.
 EXEC CICS LINK PROGRAM(’ACCT04’)
 COMMAREA(COMMAREA-FOR-ACCT04)
 LENGTH(14) END-EXEC.
 GOBACK.

Figure 24. An extract from COBOL program ACCT01

* Get input and check request type further.
 EXEC CICS RECEIVE MAP("ACCTMNU")
 MAPSET("ACCTSET")
 RESP(RESPONSE);

 switch(response)
 {
 case DFHRESP(MAPFAIL):
 /* Code to handle MAPFAIL condition */
 ...
 break;
 case DFHRESP(NORMAL):
 break;
 default:
 /* Code to handle any other condition */
 ...
 EXEC CICS LINK PROGRAM("ACCT04")
 COMMAREA(COMMAREA-FOR-ACCT04)
 LENGTH(14);
 break;
 }

Chapter 6. Dealing with exception conditions 89

elsewhere in your program. (Usually, “somehow” means taking the system default
action if all else fails. However, in most cases, because you are using the RESP
option, you must make sure that you allow for all possible conditions somewhere
in your code. This is because there is no system default in this case, because CICS
returns straight to the application program—see “How CICS keeps track of what to
do” on page 99.)

Here, the decision is that any value other than NORMAL is to be dealt with by a
general error processing subroutine. In the COBOL example, this involves a branch
to the paragraph at label OTHER-ERRORS. The code at paragraph
OTHER-ERRORS is to catch all other conditions. ACCT01 picks up what
information it can about what has happened, and then links to the error-handling
program ACCT04 where a user abend is issued, and displays a final error message
to the user.

Finally, with all condition testing out of the way, you can resume normal
processing.

Specifying RESP on a command implies the NOHANDLE condition. See “How to
use the NOHANDLE option” for information about NOHANDLE. For more
information about the RESP and RESP2 options, see page 313.

How to use the NOHANDLE option

Note: The NOHANDLE option is implicit on all EXEC CICS commands in ILE C
programs. The application code has to test for exception conditions and raise
any abends.

You can code a NOHANDLE option on any command to ensure that no action is
taken for any condition resulting from the execution of that command.

The NOHANDLE option suspends the error handling that was specified in
previous EXEC CICS HANDLE CONDITION commands (or with the CICS
defaults) but only for the command on which you put the NOHANDLE option. It
has no effect on later commands, or on the error handling set by other EXEC CICS
HANDLE commands.

To use the NOHANDLE option on an EXEC CICS RECEIVE MAP command, in
ILE C you write:

The equivalent in COBOL is:

 EXEC CICS RECEIVE MAP("ACCTMNU")
 MAPSET("ACCTSET") NOHANDLE;
 ...
 if (EIBRESP==DFHRESP(MAPFAIL))
 { ...

90 CICS for iSeries Application Programming Guide V5

Note: Using RESP implies NOHANDLE, so be careful when using RESP with the
EXEC CICS RECEIVE command, because NOHANDLE overrides the EXEC
CICS HANDLE AID command in addition to the EXEC CICS HANDLE
CONDITION command. (This means that PF key responses are ignored, and
is the reason for testing them earlier in the ACCT code.) See “The EXEC
CICS HANDLE AID command” on page 163.

COBOL programs only
The methods described in this section may be used in COBOL programs only. For
new applications you are recommended to use the methods described in
“Programs in any supported language” on page 87, but for portability of existing
applications between CICS platforms, you can:
1. Let the program continue, which means allowing control to return from CICS

to whatever instruction in your program immediately follows the EXEC CICS
command that has just been executed. You have three ways of doing this:
v Put the RESP and RESP2 options on the command. For details, see “How to

use the RESP and RESP2 options” on page 87.
v Put the NOHANDLE option on the command. For details, see “How to use

the NOHANDLE option” on page 90.
v Use an EXEC CICS IGNORE CONDITION command. For details, see “How

to use the EXEC CICS IGNORE CONDITION command” on page 91.
2. Pass control to a specified label if a named condition arises. You do this by

using an EXEC CICS HANDLE CONDITION command to name both the
condition and the label of a routine in your code to deal with it. For details, see
“Passing control to a specified label” on page 92.

3. Rely on the CICS system default action, which is a perfectly sensible option in
some cases, and means that you do nothing by way of testing or handling
conditions. The default action is normally (but not always) to abend the task1.
For details, see “Relying on the system default action” on page 95.

4. Mix the methods in any way you choose. For details, see “Mixing the
methods” on page 98.

How to use the EXEC CICS IGNORE CONDITION command
In COBOL, just as you can arrange for control to pass to a particular label for a
specific condition with an EXEC CICS HANDLE CONDITION command, so you
can have the program continue when a specific condition occurs. You do this by
setting up an EXEC CICS IGNORE CONDITION command to ignore one or more
of the conditions that can potentially arise on a command. The EXEC CICS
IGNORE CONDITION command means that no action is to be taken if any of the
conditions specified on the EXEC CICS IGNORE CONDITION command occur.

1. For the conditions ENQBUSY, NOSTG, QBUSY, and SYSBUSY, the default is to force the task to “wait” until the required
resource, for example, storage, becomes available, and then resume processing the command. The NOSUSPEND option can be
used to cause processing to resume immediately following the command.

 EXEC CICS RECEIVE MAP(’ACCTMNU’)
 MAPSET(’ACCTSET’) NOHANDLE
 END-EXEC.
 ...
 IF EIBRESP=DFHRESP(MAPFAIL) THEN ...

Chapter 6. Dealing with exception conditions 91

Control returns to the instruction following the command and return codes are set
in the EIB. The following example ignores the MAPFAIL condition:

While a single EXEC CICS command is being processed, it can raise several
conditions. For example, you may have a file control command that is not only
invalid but also applies to a file not defined in the file control table. CICS checks
these and passes back to your application program the first one that is not ignored
(by your EXEC CICS IGNORE CONDITION command). CICS passes back only
one exception condition at a time to your application program.

An EXEC CICS IGNORE CONDITION command for a given condition applies
only to the program you put it in, and it remains active while the program is
running, or until a later EXEC CICS HANDLE CONDITION command naming the
same condition is met, in which case the EXEC CICS IGNORE CONDITION
command is overridden.

You can choose an EXEC CICS IGNORE CONDITION command if you have a
program reading records that are sometimes longer than the space you provided,
but you do not consider this an error and do not want anything done about it. You
might, therefore, code EXEC CICS IGNORE CONDITION LENGERR before issuing
your EXEC CICS READ commands.

You can also use an EXEC CICS IGNORE CONDITION ERROR command to
enable the application to handle any condition considered as an error for which
there is no currently active EXEC CICS HANDLE CONDITION command that
includes a label. When an error occurs, control is passed to the next statement and
it is up to the program to check for return codes in the EIB. See the footnote 3 on
page 91 for examples of conditions that are not considered as errors.

You cannot code more than 16 conditions in the same command; the conditions
must be separated by at least one space. You may specify additional conditions in
further EXEC CICS IGNORE CONDITION commands.

Passing control to a specified label
You have two ways of passing control to a specified label:
1. Use an EXEC CICS HANDLE CONDITION condition(label) command, where

condition is the name of an exception condition
2. Use an EXEC CICS HANDLE CONDITION ERROR(label) command

How to use the EXEC CICS HANDLE CONDITION condition
command
You use the EXEC CICS HANDLE CONDITION condition command to specify the
label to which control is to be passed if a condition occurs. You must include the
name of the condition and, optionally, a label to which control is to be passed if
the condition occurs. You must ensure that the EXEC CICS HANDLE CONDITION
condition command is executed before the command that may give rise to the
associated condition.

You cannot include more than 16 conditions in the same command; the conditions
must be separated by at least one space. You may specify any additional conditions
in further EXEC CICS HANDLE CONDITION commands. You can also use the

 EXEC CICS IGNORE CONDITION MAPFAIL
 END-EXEC.

92 CICS for iSeries Application Programming Guide V5

ERROR condition within the same list to specify that all other conditions are to
cause control to be passed to the same label.

The EXEC CICS HANDLE CONDITION command for a given condition applies
only to the program in which it is specified. The EXEC CICS HANDLE
CONDITION command:
v Remains active while the program is running, or until:

– An EXEC CICS IGNORE CONDITION command for the same condition is
met, in which case the EXEC CICS HANDLE CONDITION command is
overridden

– Another EXEC CICS HANDLE CONDITION command for the same
condition is met, in which case the new command overrides the previous one

v Is temporarily deactivated by the NOHANDLE or RESP and RESP2 options on a
command

When control passes to another program, via an EXEC CICS LINK or EXEC CICS
XCTL command, the EXEC CICS HANDLE CONDITION commands that were
active in the calling program are deactivated. When control returns to a program
from a program at a lower logical level, the EXEC CICS HANDLE CONDITION
commands that were active in the higher-level program before control was
transferred from it are reactivated, and those in the lower-level program are
deactivated. (Refer to Chapter 20, “Program control,” on page 199 for information
about logical levels.)

The following example shows you how to handle conditions, such as DUPREC,
LENGERR, and so on, that can occur when you use an EXEC CICS WRITE
command to add a record to a file. Suppose that you want DUPREC to be handled
as a special case; that you want standard system action (that is, to terminate the
task abnormally) to be taken for LENGERR; and that you want all other conditions
to be handled by the error routine ERRHANDL. You would code:

The same condition can arise, in some cases, on many different commands, and for
a variety of reasons. For example, you can get an IOERR condition during file
control operations, interval control operations, and others. One of your first tasks
in the error handling routine, therefore, is to sort out which command has raised a
particular condition; only when you have discovered that, can you begin to
investigate why it has happened. This, for many programmers, is reason enough to
start using the RESP option in their new CICS applications. (Although you need
only one EXEC CICS HANDLE CONDITION command to set your error-handling
for several conditions, it can sometimes be awkward to pinpoint exactly which of
several EXEC CICS HANDLE CONDITION commands is currently active when a
CICS command fails somewhere in your code.)

If you do not name the condition and it arises, you get the default action for it,
unless this is to abend the task, in which case you get the ERROR condition. (If
you do not name the ERROR condition either, the task will abend.) If you name
the condition but leave out its label, any EXEC CICS HANDLE CONDITION
command for that condition is deactivated, and you revert to the default action for
it, if and when it occurs.

 EXEC CICS HANDLE CONDITION
 ERROR(ERRHANDL)
 DUPREC(DUPRTN) LENGERR
 END-EXEC.

Chapter 6. Dealing with exception conditions 93

Bearing in mind the distinction between an error condition and a condition that
merely causes a “wait” (see the footnote 3 on page 91), an EXEC CICS HANDLE
CONDITION command is active after an EXEC CICS HANDLE CONDITION
condition(label), or EXEC CICS HANDLE CONDITION ERROR(label) command
has been run in your application.

The need to deal with all conditions can be a common source of errors when using
the EXEC CICS HANDLE CONDITION command. Even if you then issue EXEC
CICS HANDLE commands for all of these, you may not finish all the
error-handling code adequately. The outcome is sometimes an error-handling
routine that, by issuing an EXEC CICS RETURN command, allows incomplete or
incorrect data changes to be committed.

The best approach is not to use the EXEC CICS HANDLE CONDITION command,
but let the system default action take over if you cannot see an obvious way round
a particular problem.

If you use EXEC CICS HANDLE CONDITION commands, or are maintaining an
application that uses them, do not include any commands in your error routine
that can cause the same condition that gave you the original branch to the routine,
because you will cause a loop. Notice, also, that one EXEC CICS HANDLE
CONDITION command can name up to 16 conditions, and that one of these could
be the ERROR condition to deal with all remaining conditions.

Take special care not to cause a loop on the ERROR condition itself. You can avoid
a loop by reverting temporarily to the system default action for the ERROR
condition. Do this by coding an EXEC CICS HANDLE CONDITION ERROR
command with no label specified. At the end of your error processing routine, you
can reinstate your error action by including an EXEC CICS HANDLE CONDITION
ERROR command with the appropriate label. If you know the previous EXEC
CICS HANDLE CONDITION state, you can do this explicitly. In a general
subroutine, which might be called from several different points in your code, the
EXEC CICS PUSH HANDLE and EXEC CICS POP HANDLE commands may be
useful—see “Relying on the system default action” on page 95.

How to use the EXEC CICS HANDLE CONDITION ERROR
command
Figure 25 shows the first of only two EXEC CICS HANDLE CONDITION
commands used in the sample program ACCT01:

It passes control to the paragraph at label OTHER-ERRORS if any condition arises
for a command that does not specify NOHANDLE or RESP.

The EXEC CICS HANDLE CONDITION ERROR command is the first command
executed in the procedure division of this COBOL program. This is because an

 PROCEDURE DIVISION.
*
* INITIALIZE.
* TRAP ANY UNEXPECTED ERRORS.
 EXEC CICS HANDLE CONDITION
 ERROR(OTHER-ERRORS)
 END-EXEC.
*

Figure 25. Trapping the unexpected with the EXEC CICS HANDLE CONDITION ERROR
command

94 CICS for iSeries Application Programming Guide V5

EXEC CICS HANDLE CONDITION command must be processed before any CICS
command is processed that can raise the condition being handled. Otherwise, the
EXEC CICS HANDLE CONDITION command does not take effect. Note, however,
that your program does not see the effects when it processes the EXEC CICS
HANDLE CONDITION command; it only sees them later, if and when it issues a
CICS command that actually raises one of the named conditions.

In this, and the other ACCT programs, you generally use the RESP option. All the
commands specifying the RESP option have been written with a “catch-all” test (IF
RESPONSE NOT = DFHRESP(NORMAL) GO TO OTHER-ERRORS) after any
explicit tests for specific conditions. So any exceptions, other than those you might
particularly “expect”, take control to the paragraph at OTHER-ERRORS in each
program. Those relatively few commands that do not have RESP on them take
control to exactly the same place if they result in any condition other than
NORMAL because of this EXEC CICS HANDLE CONDITION ERROR command.

Relying on the system default action
You have three ways of relying on the system default action:
v Use an EXEC CICS PUSH HANDLE command.
v Use an EXEC CICS HANDLE CONDITION command without a label.
v Do nothing about the condition.

You may choose quite deliberately to ignore the condition because you want the
default action to happen. However, this can be a potential source of program
maintenance problems, especially if the CICS system defaults ever change over a
period of time.

If you omit to cater for an obscure condition on an unfamiliar command and you
do not have an EXEC CICS HANDLE CONDITION command to cope with that
condition, you get the standard system (default) action. With the exception of
“wait” conditions, or the EOC condition on the EXEC CICS RECEIVE or
CONVERSE commands, the system abends the task.

How to use EXEC CICS PUSH HANDLE and POP HANDLE
commands
The EXEC CICS PUSH HANDLE command allows you to “nest” your
condition-handling code. For example, when calling a subroutine you may want a
completely different set of EXEC CICS HANDLE CONDITION commands while in
the subroutine. (EXEC CICS PUSH HANDLE and EXEC CICS POP HANDLE
commands enable you to suspend all current EXEC CICS HANDLE CONDITION,
EXEC CICS IGNORE CONDITION, EXEC CICS HANDLE AID, and EXEC CICS
HANDLE ABEND commands. This can be useful, for example, during a branch to
a subroutine embedded in a main program.) For information about these
commands, see Chapter 32, “Application programming commands - reference,” on
page 323.

The EXEC CICS PUSH HANDLE and EXEC CICS POP HANDLE commands are
not supported for applications written in ILE C.

Normally, when a CICS program passes control other than by an EXEC CICS LINK
or EXEC CICS XCTL command to a subroutine, the program or routine that
receives control inherits the current EXEC CICS HANDLE commands. These
commands may not be appropriate within the called program. The called program
can use EXEC CICS PUSH HANDLE to suspend existing EXEC CICS HANDLE
commands.

Chapter 6. Dealing with exception conditions 95

Use EXEC CICS PUSH HANDLE, therefore, to save your present set of EXEC CICS
HANDLE CONDITION commands unaltered while you use a new set in the
routine. On exit, you can reinstate the original set of EXEC CICS HANDLE
CONDITION commands by using a corresponding EXEC CICS POP HANDLE
command.

You can nest EXEC CICS PUSH HANDLE...EXEC CICS POP HANDLE command
sequences within a task. Each EXEC CICS PUSH HANDLE command stacks a set
of specifications; the EXEC CICS POP HANDLE that follows it restores them. To
give you some idea of what is involved, look at Figure 26.

Suppose that, in the code in Figure 24 on page 89, instead of linking to the
error-handling program ACCT04, you choose to include the error lookup and error
message display in one of the other programs in your application.

*
* PROCESSING FOR UNEXPECTED ERRORS.
 OTHER-ERRORS.
* FIRST, STACK THE CURRENT CONDITION HANDLING
 EXEC CICS PUSH HANDLE
 END-EXEC.
* NOW, SET THE SYSTEM DEFAULT ACTION
* FOR A "NOSPACE" ERROR
 EXEC CICS HANDLE CONDITION NOSPACE
 END-EXEC.
* PROCEED WITH PROCESSING
 MOVE EIBFN TO ERR-FN.
 MOVE EIBRCODE TO ERR-RCODE.
 MOVE EIBFN TO ERR-COMMAND.
 MOVE EIBRESP TO ERR-RESP.
 MOVE LOW-VALUES TO ACCTERRO.
 MOVE EIBTRNID TO TRANEO.
 MOVE ERR-PGRMID TO PGMEO.
 PERFORM REASON-LOOKUP
 THROUGH REASON-END
 VARYING I FROM 1 BY 1 UNTIL I NOT < IXR.
 MOVE ERR-MSG (IXR) TO RSNEO.
 IF IXR < 12 MOVE EIBDS TO DSN,
 MOVE DSN-MSG TO FILEEO.
 PERFORM COMMAND-LOOKUP
 THROUGH COMMAND-END
 VARYING I FROM 1 BY 1 UNTIL I NOT < IXC.
 MOVE COMMAND-NAME (IXC) TO CMDEO.
 IF ERR-RESP < 94
 MOVE RESPVAL (ERR-RESP) TO RESPEO
 ELSE MOVE RESPVAL (94) TO RESPEO.
 EXEC CICS SEND MAP(’ACCTERR’)
 MAPSET(’ACCTSET’) ERASE FREEKB
 END-EXEC.
 EXEC CICS WRITEQ TS QUEUE(’ACERLOG’)
 FROM(ACCTERRO)
 LENGTH(ERR-LNG)
 END-EXEC.
* IF CONDITION NOSPACE OCCURS,
* WAIT FOR TS TO BECOME AVAILABLE
* NOW RESET THE PREVIOUS CONDITION HANDLING
 EXEC CICS POP HANDLE
 END-EXEC.

Figure 26. Using EXEC CICS PUSH HANDLE and EXEC CICS POP HANDLE commands

96 CICS for iSeries Application Programming Guide V5

You might do this if you do not want to link to a separate program, and you arrive
at this piece of code from many different points in the application. There are
several points to note:
v EXEC CICS PUSH HANDLE commands can be nested. The EXEC CICS PUSH

HANDLE command suspends the current set of EXEC CICS HANDLE
commands (saving them for later use), and the EXEC CICS POP HANDLE
command restores the most recent set suspended.

v When you link to another program, an EXEC CICS PUSH HANDLE command
is implied.
 That is, an EXEC CICS PUSH HANDLE command occurs between the EXEC
CICS LINK command and the first instruction of the linked-to program, which
begins with the system defaults. It may or may not do some of its own EXEC
CICS HANDLE commands and EXEC CICS PUSH HANDLE or EXEC CICS
POP HANDLE commands, but afterwards, the stack is popped back to the point
where the EXEC CICS LINK command occurred, to restore the HANDLE status
of the linking program when control is returned there. That is, CICS pushes at
each EXEC CICS LINK command and pops at each EXEC CICS RETURN
command.

v When you transfer control to another program (using the EXEC CICS XCTL
command), the current table of conditions that instructs CICS what to do is
cleared, except for EXEC CICS HANDLE ABEND commands, which remain
active. (See “How CICS keeps track of what to do” on page 99.)

One flaw in this example, of course, is that you do not know where to go at the
end of the code and you do not need such sophistication if you are not going back.

(You could have all your EXEC CICS HANDLE commands sent to different labels,
each of which would consist of PERFORM OTHER-ERRORS, GO TO “back”,
which would be wherever this particular error occurred. This shows some of the
limitations of EXEC CICS HANDLE commands, even with EXEC CICS PUSH
HANDLE and EXEC CICS POP HANDLE commands.)

How to use an EXEC CICS HANDLE CONDITION condition
command
The easiest way to restore the system default action for a given condition is to code
an EXEC CICS HANDLE CONDITION command without a label on a named
condition.

You might do this when, having “exhausted” the more likely conditions, you
decide that anything else is either so unlikely, or so disastrous, that the only
feasible option is the abend that the system default action generally gives you.

How CICS selects whether to take the system default action
CICS selects whether to take the system default action for a given condition
according to the sequence of tests shown in the flowchart shown in Figure 27 on
page 98.

Chapter 6. Dealing with exception conditions 97

Mixing the methods
You can temporarily deactivate the effect of any EXEC CICS HANDLE
CONDITION command by using the RESP or NOHANDLE option on a command.
If you do this, you lose the ability to use any system default action for that
command. In other words, you have to do your own “catch-all” error processing.

You can also switch from ignoring a condition to handling it, or to using the
system default action. For example, you could code:

Figure 27. How CICS selects whether to take the system default action

98 CICS for iSeries Application Programming Guide V5

This code initially ignores condition LENGERR, so if the program raises a
LENGERR condition, nothing happens; the application simply continues its
processing. However, your program might not be able to continue if this condition
has arisen.

Later in the code, you can explicitly set condition LENGERR to the system default
action by naming it in an EXEC CICS HANDLE CONDITION command without a
label. When this command has been executed, the program no longer ignores
condition LENGERR, and if it subsequently occurs, it now causes the system
default action.

The point is, you can mix methods and each condition is treated separately.

How CICS keeps track of what to do
CICS has a table of the conditions referred to by EXEC CICS HANDLE
CONDITION and EXEC CICS IGNORE CONDITION commands in your
application. Each execution of one of these commands either updates an existing
entry in this table, or causes CICS to make a new entry if this is the first time the
condition has been quoted in such a command. Each entry tells CICS what to do
by indicating one of the three exception-handling states your application can be in,
namely:
1. Taking no action, where control returns to the next instruction following the

command that has failed
2. With an EXEC CICS HANDLE CONDITION or EXEC CICS HANDLE

CONDITION ERROR command active, where control goes to the appropriate
label in your program defined earlier by the command

3. Taking the system default action, where for most conditions, this is to
terminate the task abnormally

CICS keeps a table of these conditions for each link level and each unpopped
EXEC CICS PUSH HANDLE command. Essentially, therefore, each program level
has its own HANDLE state table governing its own condition handling.

When each condition occurs, CICS performs the sequence of tests shown in
Figure 27 on page 98.

The commands EXEC CICS ALLOCATE, EXEC CICS ENQ, EXEC CICS GETMAIN,
EXEC CICS READQ TD, and EXEC CICS WRITEQ TS can all raise conditions for
which the default action is to suspend your application program until the specified
resource becomes available. So, on these commands, you have the NOSUSPEND
option to inhibit this waiting and return immediately to the next instruction in
your application program.

* MIXED ERROR PROCESSING
 EXEC CICS IGNORE CONDITION LENGERR
 END-EXEC. ...
 EXEC CICS HANDLE CONDITION DUPREC(DUPRTN)
 LENGERR
 ERROR(ERRHANDL)
 END-EXEC.

Chapter 6. Dealing with exception conditions 99

Some conditions can occur during the execution of a number of unrelated
commands. If you want the same action for all occurrences, code a single EXEC
CICS HANDLE CONDITION command at the start of your program.

100 CICS for iSeries Application Programming Guide V5

Chapter 7. Testing your application

This chapter describes ways of making your applications more error-free.

Often two systems that run perfectly by themselves, when run together cause
performance degradation and you begin experiencing “lockouts” or waits. In this
case, the scope of each system has not been defined adequately.

The key points in a well-designed application system are:
v At all levels, each function is defined clearly with inputs and outputs well

stated.
v Resources that the system uses are well defined.
v Interactions with other systems are known.

Testing applications
The following general rules apply to testing applications:
v Don’t test on a production CICS system—use a test system, where you can

isolate errors without affecting “live” databases.
v Have the testing done by someone other than the application developer, if

possible.
v Document the data you use for testing.
v Test your applications several times, exercising as much program logic as is

practical.
v Use the OS/400 and CICS/400 facilities to trace and debug your application

during initial testing. See “Trace” on page 111.
v Starting the CICS/400 user shell before using OS/400 debug facilities can reduce

the size and complexity of the output.
v Use stress or volume testing to catch problems that may not arise in a

single-user environment.
v Test whether the application can handle correct data and incorrect data.

– When correct data is entered, does your program acknowledge its receipt?
– When incorrect data is entered, do you get an appropriate error message?

v Check whether files and databases are updated correctly.
v Test against complete copies of the related databases.
v Before you move an application to the production system, it is also good

practice to run a final set of tests against a copy of the production database to
catch any errors.

Screen usage, checks and considerations
The following lists some screen considerations for CICS programmers:
v Check whether screens are displayed in the expected sequence.
v All headings and captions should be placed correctly.
v Check for any misspellings.
v Ensure that your screen is easy to read and to use.

© Copyright IBM Corp. 1998, 2004 101

v Check whether the cursor is positioned correctly initially, and that the cursor
moves correctly from field to field.

v Check whether each field has the desired attributes set.
v Check whether PF keys function as required; and that their functions are

indicated to the user.
v Check whether all work fields are cleared properly after each valid transaction.
v If incorrect data is entered, you should ensure that an appropriate error message

is returned to the screen; and that the cursor is positioned at the first field in
error and the field is highlighted.

v You need to ensure that the error message is no longer issued when the user
corrects the error.

Types of problems
The problems you meet when testing your code can be grouped by symptom into
four general types. This classification is useful, because you need to take a slightly
different approach to solve each type. Also, it is the same problem-classification
scheme used by IBM programming support representatives (PSRs), so if you
require assistance, it will help you in identifying your problem to IBM. The four
types are:
v Abends
v Loops
v Waits
v Incorrect output

Abends: When a transaction terminates abnormally, CICS sends this message both
to the terminal associated with the transaction and to the transient data message
destination CSMT. (At most CICS installations, this message destination is directed
to a printer used by the system administrator, to provide a second immediate
notification of the event.)

Loops: A loop can contain COBOL/400, ILE C, or CICS code, but CICS/400 may
not detect it. The problem symptom is that the transaction never ends. It usually
produces less than all of the expected output and may leave the keyboard locked
as well.

Waits: The symptoms of a transaction in the “wait” state are the same as those
described for a loop containing a CICS command: the transaction never ends and
may not produce all of its outputs. If your transaction behaves like this, you can
tell whether you have a loop or a wait by using the CEMT transaction. Display the
task:
 CEMT INQUIRE TASK FACILITY(tttt)

(“tttt” is the name of the terminal from which the transaction was entered.) If the
task still exists and is active, wait a minute and repeat the inquiry. If the same task
is still there, the program is probably in a loop that contains a CICS command.
Using EDF from a second terminal will help you to discover the CICS command in
the loop. For more information about EDF, see Chapter 27, “Execution diagnostic
facility (EDF),” on page 229.

If the task is not active but suspended, repeat the display once or twice. If the task
remains suspended, it’s probably waiting for some event that’s never going to
happen.

102 CICS for iSeries Application Programming Guide V5

Incorrect output: The last category of problem covers those situations in which the
transaction appears to run successfully but produces the wrong results. It includes
wrong answers, missing or extra records in files, screens filled with what appear to
be random characters, or no output at all.

Levels of testing
A single-thread or unit test takes one application transaction at a time, in an
otherwise “empty” CICS system, and checks how it behaves. This enables you to
test the program logic, and also shows you whether or not the basic CICS
information (such as resource definitions) is correct. It’s quite feasible to test this
single application in a test CICS control region while your normal, online
production CICS system is active in another control region.

A multithread or string test involves several, concurrently active transactions.
Naturally, all the transactions are running under the same CICS control region, so
you can readily test the ability of a new transaction to coexist with other
transactions.

You may find that a transaction that works perfectly in its single-thread testing
fails in the multithread test. Also, it may cause other transactions to fail, or even
terminate a task.

A regression test is used to make sure that all the transactions in a system
continue to do their processing in the same way both before and after changes are
applied to the system. This is to ensure that fixes that have been applied to solve
one problem don’t go on to cause further problems. It’s often a good idea to build
a set of miniature files to perform your tests, because it’s much easier to examine a
small data file for changes.

A good regression test exercises all the code in every program—that is, it explores
all tests and possible conditions. As your system develops to include more
transactions, and more possible conditions, add these to your test system. The
results of each test should match those from the previous round of testing. Any
discrepancies are grounds for suspicion. You should compare terminal output, file
changes, and log entries for validity.

Finding a problem in application code on a production system
If an offending piece of application code slips through the net of testing and into
the production system, try the following:
v Monitor the JOBLOG and CSMT log (if defined in your system), check for

transaction errors, and use the trace facilities to find failing programs.
v Check for incorrectly addressed data areas or data areas that are too small.

Chapter 7. Testing your application 103

104 CICS for iSeries Application Programming Guide V5

Chapter 8. Recovery considerations

There are two techniques available to help recover or reconstruct events or data
changes during CICS execution:
v Standard recovery (syncpoints)
v CICS user journals

But you may not need to use CICS user journals for data recovery purposes. By
properly defining recoverable files to CICS, by accurately maintaining this
information, and by using OS/400 commitment control, you may find that the
OS/400 facilities are adequate for recovery.

Before discussing recovery techniques, some information is needed about how
CICS uses the commitment control facilities of OS/400.

CICS and OS/400 commitment control recovery
CICS uses the OS/400 commitment control facilities to control the backout and
recovery of CICS resources defined as recoverable. CICS/400 is no different from
any native OS/400 application running under commitment control.

To facilitate recovery in the event of abnormal termination of a CICS task or of a
failure of a CICS/400 control region, the CICS system administrator can, during
CICS table generation, define specific CICS resources (mainly file resources) as
recoverable.

Each recoverable CICS resource is opened within CICS under the commitment
control facilities of OS/400. Each recoverable CICS file must be registered by the
system administrator to an OS/400 journal and journal receiver. These OS/400
objects are used by OS/400 to retain the information necessary to perform
commitment and rollback on files opened under commitment control.

Note: The OS/400 journal and journal receiver objects are not to be confused with
a CICS user journal. While the use of OS/400 journals as a recovery
mechanism may be similar to the use of a CICS user journal, they are not
the same. Only CICS user journals are accessed by CICS journal control
commands. See “User journaling” on page 106.

For a more complete description of commitment control, refer to the Backup and
Recovery. For further information about defining CICS recoverable resources, refer
to the CICS for iSeries Administration and Operations Guide.

Defining recoverable files to CICS (an overview)
The system administrator creates an OS/400 journal receiver (or a number of them)
using the CRTJRNRCV CL command. Once a journal receiver is created, it is
attached to a specific OS/400 journal by using the CRTJRN CL command. Each file
to be opened under commitment control is registered to an OS/400 journal using
the Start Journal Physical File (STRJRNPF) CL command. Using the STRJRNPF
command, the system administrator indicates which file images are to be captured
(before update, after update, or both) and whether open and close operations are
to be journaled. When the STRJRNPF command has been run successfully, any

© Copyright IBM Corp. 1998, 2004 105

changes to the file by any process is logged in the journal receiver. Commitment
control of the transactions for a particular process using that file does not start
until the process starts commitment control. More information about recoverability
can be found in the CICS for iSeries Administration and Operations Guide.

Syncpointing
To facilitate recovery in the event of abnormal termination of a CICS task or of
failure of the CICS system, the system programmer can, during CICS table
generation, define specific resources (for example, files) as recoverable. If a task is
terminated abnormally, these resources are restored to the condition they were in
at the start of the task, which can then be rerun. The process of restoring the
resources associated with a task is termed backout.

If an individual task fails, backout is performed by the commitment control
facilities of OS/400 and by CICS component modules. If the CICS system fails,
backout is performed as part of the emergency restart process.

However, for long-running programs, it may be undesirable to have a large
number of changes, accumulated over a period of time, exposed to the possibility
of backout in the event of task or system failure. This possibility can be avoided by
using the EXEC CICS SYNCPOINT command to split the program into logically
separate sections known as logical units of work (LUWs); the end of an LUW is
referred to as a synchronization point (syncpoint).

If failure occurs after a syncpoint but before the task has been completed, only
changes made after the syncpoint are backed out.

LUWs must be entirely logically independent, not merely with regard to protected
resources, but also with regard to execution flow. Typically, an LUW comprises a
complete conversational operation bounded by EXEC CICS SEND and EXEC CICS
RECEIVE commands. A browse is another example of an LUW; an EXEC CICS
ENDBR command must therefore precede the syncpoint.

User journaling
CICS provides facilities for defining and managing CICS user journals during
CICS processing. CICS user journals are special-purpose nonrecoverable sequential
files.

CICS user journals may be used as an audit trail, or as a change file of file updates
and additions, or for any other purpose needed by a CICS application program.

Journal control commands are provided to allow the application programmer to
create a journal record (EXEC CICS WRITE JOURNALNUM).

Exception conditions that occur during execution of a journal control command are
handled as described in Chapter 6, “Dealing with exception conditions,” on page
87..

Journal records
CICS user journals are defined to CICS in the journal control table (JCT). Data may
be written to any journal specified in the JCT. The JCT may define one or more
journals on direct access storage. Each journal is identified by a number known as
the journal identifier. This number is in the range from 1 through 99. Generally the

106 CICS for iSeries Application Programming Guide V5

system administrator is responsible for defining the JCT entries. For more
information about defining journals, see the CICS for iSeries Administration and
Operations Guide.

Each journal record begins with a standard length field (LL), a user-specified
identifier, and a system-supplied prefix. This data is followed in the journal record
by any user-supplied prefix data (optional), and finally by the user-specified data.
Journal control is designed so that the application programmer requesting output
services need not be concerned further with the detailed layout and precise
contents of journal records. The programmer needs to know which journal to use,
what user data to specify, and what user-identifier to supply.

The layout of the journal records is defined in the CICS for iSeries Administration
and Operations Guide. CICS user journals are defined as variable-length record
physical files. To use these files in a batch application, you must know the physical
file information for the journal you want, and the format of the CICS user journal
records.

The use of the information recorded on a CICS user journal is left up to the needs
of the application. This information can be used by reading the physical file
records on the journal. For example:
v An application could use any before and after record images recorded on a CICS

user journal to recreate updates to a file if desired.
v The application may create an audit trail report indicating the updates that took

place and the areas of the records that had changed.
v The application could also report the date and time of the update, the id of the

user performing the update, and the CICS terminal ID where the changes were
made.

Journal output synchronization
References to journals in this section mean CICS user journals.

Journal output takes place at the time of the EXEC CICS WRITE JOURNALNUM
command. The WAIT and STARTIO options are allowed within CICS/400, but are
treated as null operations (no-ops).

If an out-of-space condition occurs while trying to execute an EXEC CICS WRITE
JOURNALNUM command, the action taken by CICS varies based on how the
journal file is defined in the JCT. See the CICS for iSeries Administration and
Operations Guide for details.

If the requested journal file is defined as switchable, CICS switches to a new
journal file and writes the journal record to the newly created journal file
automatically when the first journal file is full. The task requesting the write waits
until the journal record is written to the new journal file. If the second file becomes
full, another switch to a new journal file occurs. Journal switching occurs when
necessary, until the maximum number of switched journal files has been reached. If
this occurs, the JCT entry for that journal file is marked CLOSED and DISABLED.

If the journal file is defined as nonswitchable, CICS closes the journal file, marks
the JCT entry as CLOSED and returns an IOERR condition to the application
program. If the program has an active EXEC CICS HANDLE CONDITION
command set up to deal with an IOERR condition, control is returned to the
program (to the location requested in the HANDLE CONDITION request). If there

Chapter 8. Recovery considerations 107

is no HANDLE CONDITION command set for an IOERR condition, the default
action for an IOERR condition is taken; that is, to abend the transaction.

108 CICS for iSeries Application Programming Guide V5

Chapter 9. Abnormal termination recovery

A program-level abend exit facility is provided in CICS so that you can write exits
of your own that can be given control during abnormal termination of a task. An
example of a function performed by such an abend exit is the “cleanup” of a
program that has started but not completed normally.

Abnormal termination can occur because of:
v A user request by, for example:

EXEC CICS ABEND ABCODE(...)

v A CICS request as a result of an invalid user request.

The EXEC CICS HANDLE ABEND command activates or reactivates a
program-level abend exit within your application program; you can also use this
command to cancel a previously activated exit.

When activating an exit, you must use the PROGRAM option to specify the name
of a program to receive control, or (in COBOL) the LABEL option to specify a
routine label to which control will branch when an abnormal termination condition
occurs.

An EXEC CICS HANDLE ABEND command overrides any preceding such
command in any application program at the same logical level. Each application
program of a transaction can have its own abend exit, but only one abend exit at
each logical level can be active. (Logical levels are explained in Chapter 20,
“Program control,” on page 199.)

When a task is abnormally terminated, CICS searches for an active abend exit,
starting at the logical level of the application program in which the abend
occurred, and proceeding, if necessary, to successively higher levels. The first active
abend exit found, if any, is given control. This procedure is shown in Figure 28 on
page 111, which also shows how subsequent abend processing is determined by
the user-written abend exit.

If no abend exit is found, CICS terminates the task abnormally.

To prevent recursive abends in an abend exit, CICS deactivates the exit upon entry
to the exit routine or program. If a retry of the operation is desired, the application
programmer can branch to a point in the program that was in control at the time
of the abend and issue an EXEC CICS HANDLE ABEND RESET command to
reactivate the abend exit. This command can also be used to reactivate an abend
exit (at the logical level of the issuing program) that was canceled previously by an
EXEC CICS HANDLE ABEND CANCEL command. You can suspend the EXEC
CICS HANDLE ABEND command by means of the EXEC CICS PUSH HANDLE
and EXEC CICS POP HANDLE commands as described in “How to use EXEC
CICS PUSH HANDLE and POP HANDLE commands” on page 95.

The EXEC CICS HANDLE ABEND command cannot intercept abends resulting
from OS/400 machine event errors.

© Copyright IBM Corp. 1998, 2004 109

Creating a program-level abend exit
Abend exit programs can be coded in any supported language, but abend exit
routines must be coded in the same language as their program.

Upon entry to an abend exit program, no addressability can be assumed other than
that normally assumed for any application program coded in that language.

There are three means of terminating processing in an abend exit routine or
program, as listed below. Note, however, that all abend routines should terminate
with an abend, except for those handling abends generated as a result of
application program logic.
v Using an EXEC CICS RETURN command to indicate that the task is to continue

running with control passed to the program on the next higher logical level. If
no such program exists, the task is terminated normally.

v Using an EXEC CICS ABEND command to indicate that the task is to be
abnormally terminated with control passed either to an abend exit specified for a
program on a higher logical level or, if there is not one, CICS for abnormal
termination processing.

v Branching to retry an operation. When you are using this method of retrying an
operation, and you want to reenter the original abend exit routine or program if
a second failure occurs, the abend exit routine or program should issue the
EXEC CICS HANDLE ABEND RESET command before branching. This is
because CICS will have disabled the exit routine or program to prevent it
reentering the abend exit.

Restrictions on retrying operations
If an abend occurs during the invocation of a CICS service, you should be aware
that issuing a further request for the same service may cause unpredictable results,
because the reinitialization of pointers and work areas, and the freeing of storage
areas in the exit routine, may not have been completed.

You should not try to recover from ATNI or AEXI abends by attempting further
I/O operations. Either of these abends results in a TERMERR condition, requiring
the session to be terminated in all cases.

If intersystem communication (ISC) is being used, an abend in the remote system
may cause a branch to the specified program or label, but subsequent requests to
use resources in the remote system will fail.

If an abend occurs as a result of a BMS command, control blocks are not tidied up
before control is returned to the BMS program, and results are unpredictable if the
command is retried.

110 CICS for iSeries Application Programming Guide V5

Trace
CICS trace is a debugging aid for application programmers, system programmers,
and IBM field engineers. It produces trace entries in response to trace commands.
The trace entries can be sent to any trace destination that is currently active. The
destinations are:
v Internal trace table
v Auxiliary trace user spaces

For information about trace destinations, see the CICS for iSeries Problem
Determination.

You can:
v Specify user trace entry points (EXEC CICS ENTER TRACENUM).
v Switch CICS internal trace on or off using the EXEC CICS SET TRACEDEST

command. For information about this command, see “SET TRACEDEST” on
page 522.

Figure 28. ABEND exit processing

Chapter 9. Abnormal termination recovery 111

v Switch auxiliary trace user spaces using the EXEC CICS SET TRACEDEST
command. The EXEC CICS SET TRACEDEST command is also used to set
auxiliary trace on and off.

Trace entry points
There are two types of trace entry produced during CICS operations: system trace
entry points and user trace entry points.

System trace entry points
These are points within CICS at which trace control requests are made. The most
important system trace entry points for application programmers are for the EXEC
interface program. These produce entries in the trace table whenever a CICS
command is processed.

Two trace entries are made: the first when the command is issued, and the second
when CICS has performed the required function and is about to return control to
your application program. Between them, these two trace entries allow you to trace
the flow of control through an application, and to check which exception
conditions, if any, occurred during its execution.

User trace entry points
These are additional points within your application program that you can include
in the trace table to allow complete program debugging. For example, you could
specify an entry for a program loop containing a counter value showing the
number of times that the loop had been entered.

A trace entry is produced wherever the EXEC CICS ENTER TRACENUM
command is run. Each trace entry request, which can be given a unique identifier,
causes data to be placed in the trace table.

Dump
CICS/400 provides a diagnostic dump facility that takes advantage of dump
facilities provided within OS/400. Dump output is directed to a DPFHDMP spool
file. CICS/400 sets the user data (USRDTA) attribute of the spool file to indicate
the CICS abend code that caused the dump.

Dump support is provided for:
v EXEC CICS DUMP command
v EXEC CICS ABEND command
v CEMT PERFORM SNAP command
v Internal dump requests; for example, an unhandled transaction abend

Transaction abends result in dump information only if the Dump on abend field of
the PCT entry for the active transaction is set to *YES. When the dump is run for a
program that has a PPT Calling convention (PGMLNG) parameter value of
*COBOL, CICS/400 provides a COBOL/400 formatted dump. In other
circumstances, CICS/400 uses the DMPJOB CL command to dump the appropriate
level of information.

Note: Use of the DMPJOB CL command may be restricted at your installation.

112 CICS for iSeries Application Programming Guide V5

Part 3. Files and databases

Chapter 10. File control 115
Emulated VSAM files 115

Key-sequenced file (KSDS) 116
Entry-sequenced file (ESDS) 116
Relative record file (RRDS) 116
VSAM-like logical views 116

Reading records 117
Direct reading (using EXEC CICS READ) . . . 118

Direct reading from a KSDS 118
Direct reading from an ESDS 118
Direct reading from an RRDS 119
Direct reading by way of a path 119

Sequential reading (browsing) 119
Browsing through a KSDS 119
Browsing through an ESDS 120
Browsing through an RRDS 120
Browsing using a path 120
Ending the browse 121
Simultaneous browse operations 121

Skip-sequential processing 121
Updating records 122

Specifying record length 122
Deleting records 123

Deleting groups of records (generic delete) . . 123
Adding records 123

Adding to a KSDS 123
Adding to an ESDS 124
Adding to an RRDS 124
Specifying record length 124

Review of file control command options 124
The RIDFLD option 124
The INTO and SET options 125
The FROM option 125

Avoiding transaction deadlocks 126
KEYLENGTH option for remote files 127
Record identification 127

Identifying records by key 127
Relative byte address (RBA) and relative record
number (RRN) 128

RBA 128
RRN 128

CICS locking of emulated VSAM records in
recoverable files 128

© Copyright IBM Corp. 1998, 2004 113

114 CICS for iSeries Application Programming Guide V5

Chapter 10. File control

This chapter discusses CICS file control under the following headings:
v “Emulated VSAM files”
v “Reading records” on page 117
v “Updating records” on page 122
v “Deleting records” on page 123
v “Adding records” on page 123
v “Review of file control command options” on page 124
v “Avoiding transaction deadlocks” on page 126
v “KEYLENGTH option for remote files” on page 127
v “Record identification” on page 127
v “CICS locking of emulated VSAM records in recoverable files” on page 128

CICS file control lets you read, update, add, browse, and delete data in emulated
VSAM files.

The following API commands provide basic operations against files within CICS:
v EXEC CICS WRITE command (adds a file record)
v EXEC CICS REWRITE command (updates a file record)
v EXEC CICS READ command (retrieves a file record)
v EXEC CICS DELETE command (deletes one or more file records)
v EXEC CICS UNLOCK command (releases a record lock)
v EXEC CICS STARTBR, EXEC CICS READNEXT, EXEC CICS READPREV, EXEC

CICS RESETBR, and EXEC CICS ENDBR commands (read sequentially or
browse records in a file)

For detailed guidance on the use of these commands, see Chapter 32, “Application
programming commands - reference,” on page 323. In general, you need not worry
about the physical organization of data in the file.

A CICS application program reads and writes individual records. Each read or
write request is made by a CICS command. To access a record, the application
program must identify both the record and the file that contains it. Unless you
specify the SET option, it must also specify the storage area into which the record
is to be read, or from which the record is to be written.

CICS file control offers you access to OS/400 physical files that are managed by an
emulated virtual storage access method (VSAM). These files must be defined
within the file control table (FCT).

Emulated VSAM files
CICS supports access to the three types of emulated VSAM files:
v Key-sequenced file (KSDS)
v Entry-sequenced file (ESDS)
v Relative record file (RRDS)

© Copyright IBM Corp. 1998, 2004 115

Key-sequenced file (KSDS)
A key-sequenced file has each of its records identified by a key. (The key of each
record is simply a field in a predefined position within the record.) Each key must
be unique in the file.

When the file is initially loaded with data, or when new records are added, the
logical order of the records depends on the collating sequence of the key field. This
also fixes the order in which you retrieve records when you browse through the
file. The physical order in which records are written to the file is determined by
OS/400.

To find the physical location of a record in a KSDS, the iSeries database facility
creates and maintains an index. This relates the key of each record to the record’s
relative location in the file. When you add or delete records, this index is updated
accordingly.

Entry-sequenced file (ESDS)
An entry-sequenced file is one in which each record is identified by its relative
byte address (RBA).

Records are held in an ESDS in the order in which they were first loaded into the
file. New records added to an ESDS always go after the last record in the file. You
may not delete records or alter their lengths. After a record has been stored in an
ESDS, its RBA remains constant. When browsing, records are retrieved in the order
in which they were added to the file.

Relative record file (RRDS)
A relative record file has fixed-length slots, predefined to emulated VSAM, in
which records may be stored. An RRDS record is always fixed-length, equal to the
slot size. A record in an RRDS is identified by the relative record number (RRN) of
the slot that holds it. When a new record is added to an RRDS, emulated VSAM
uses the number you supply with the file control request.

VSAM-like logical views
Sometimes you want to access the same set of records in different ways. For
example, you may have records in a personnel file that have as their key an
employee number. No matter how many Smiths you had, each of them would
have its own, unique employee number. Think of this as the primary key.

If you were producing a telephone directory from the file, you would want to list
people by name rather than by employee number. You can identify records in a file
with a secondary (alternate) key instead of the primary key described above. So
the primary key is the employee number, and the employee name is the alternate
key. Alternate keys are just like the primary key in a KSDS—fields of fixed length
and fixed position within the record. You can have any number of alternate keys
per base file and, unlike the primary or base key, alternate keys need not be
unique.

To continue the personnel example, the employee’s department code might be
defined as a further alternate key.

Emulated VSAM allows KSDS and ESDS (but not RRDS) files to have alternate
keys. When the file is added to or amended on the base file, one secondary or
alternate index is built for each alternate key in the record and is related to the

116 CICS for iSeries Application Programming Guide V5

primary or base key. To access records using an alternate key, you must define a
logical view, using the OS/400 create logical file (CRTLF) command, which
provides a path through the file. This view behaves as if it were a KSDS where
records are accessed using the alternate key. When you add or update a record that
has an alternative view, whether you use the primary key or a path, the record is
maintained on the base file, and the corresponding alternate index is updated to
reflect the change.

A CICS application program determines whether it is accessing a file by means of
its primary key (base), or by means of a path, by the file name you specify. In a
running CICS system, accesses to a single base file can be made by way of the base
and by any of the paths defined to it, if each such access route is defined in the file
control table (FCT).

Reading records
There are several methods of reading records: direct reading, sequential reading
(browsing), and skip-sequential browsing.

A file can be defined in the FCT as containing either fixed-length or variable-length
records.

Fixed-length records should be defined only if:
v The definition of the emulated VSAM file (using OS/400 database creation

facilities) specifies no variable-length fields within the file’s associated data
definition services (DDS) description, or if the file was created without a DDS
description
 or

v The definition of the file contains multiple variable-length fields as specified
within the file’s associated DDS, or contains a variable-length field that is not
the last field defined within the file’s record.

Variable-length records should be defined only if:
v The definition of the file contains one variable-length field as specified within

the file’s associated DDS, and it is the last field defined within the record
 and

v The definition of the emulated VSAM file is not a logical view (alternate path)
that either contains multiple record formats or is a join of multiple files.

Note: Unless you are concerned about portability to other CICS platforms, files
with variable-length records can be defined to CICS in the FCT as having
fixed-length records and each variable-length field will be preceded with a
2-byte binary length field. If defined to CICS as a variable-length record,
the variable-length field would not be preceded with a 2-byte binary
length field.

For direct reading and browsing, if the file contains fixed-length records, and if
the application program provides an area where the record is to be read, that
area must be of the defined length. If the file contains variable-length records,
the command must also specify the length of the area provided to hold them
(normally the maximum length of records in the file).

For fixed-length records and for records retrieved into CICS-provided SET
storage, you need not specify the length argument. However, you may like to do

Chapter 10. File control 117

so, to check that the record being read is not too long for the available data area.
If you provide the length argument, CICS uses the length field to return the
actual length of the record retrieved.

Direct reading (using EXEC CICS READ)
You read a record in the file with the EXEC CICS READ command. This command
must identify the record you want and say whether it is to be read into an area of
storage provided by your application program (EXEC CICS READ INTO), or into
CICS SET storage acquired by file control (EXEC CICS READ SET). If the latter, the
address of the data in the CICS SET storage is returned to your program. For
further information, see the SET option on “READ” on page 390.

The length of time that the CICS SET storage remains valid depends on whether
the EXEC CICS READ command is for update or not. The SET storage for a
nonupdate EXEC CICS READ command survives until another nonupdate or
EXEC CICS READ UPDATE command (either INTO or SET) is encountered,
regardless of syncpoint. The SET storage for an EXEC CICS READ UPDATE
command survives until the next EXEC CICS REWRITE, EXEC CICS UNLOCK,
EXEC CICS DELETE (without the RIDFLD option), or EXEC CICS SYNCPOINT
command, whichever is encountered first.

For both update and nonupdate commands, you must identify the record to be
retrieved by the record identification field specified in the RIDFLD option.
Immediately after completion of an EXEC CICS READ UPDATE command, the
RIDFLD data area is available for reuse by the application program.

You can specify only one update operation at a time for each file within a
transaction. To avoid deadlock when accessing an emulated VSAM file, your next
command to the file must be an EXEC CICS REWRITE, EXEC CICS DELETE
without RIDFLD, or EXEC CICS UNLOCK command.

Direct reading from a KSDS
When reading from an emulated VSAM KSDS, the record you want is usually
identified by specifying its full key. You can, however, also specify a partial
(generic) key. Emulated VSAM retrieves from the file the first record whose
leftmost characters match the partial key. Or you can retrieve the record in the file
whose key is greater than or equal to the full key provided with the command.
Finally, you can also identify the record you want by providing a generic key
together with the “greater than or equal” (GTEQ) option.

An EXEC CICS READ command raises the NOTFND condition if no record with
the key specified is found; or with the GTEQ option, if no record is found with a
key greater than or equal to the specified key. EQUAL requests a record with
exactly the key specified. GTEQ requests the first record with a key greater than or
equal to the key specified.

Direct reading from an ESDS
When reading from an emulated VSAM ESDS, the individual record you want is
identified by an RBA. Because the RBA of a record in an ESDS cannot change,
unless the ESDS has another logical view that allows it, or the file is updated
outside of the CICS-provided facilities, your application program can keep track of
the values of the RBAs corresponding to the records it wants to access. An access
to an emulated VSAM ESDS specifying an incorrect RBA, or an RBA where there is
no record, returns the ILLOGIC condition.

118 CICS for iSeries Application Programming Guide V5

Direct reading from an RRDS
When reading from an emulated VSAM RRDS, the record to be retrieved is
identified by its relative record number. The application program must know the
RRN values of the records it wants. For records not present in the file, the
NOTFND condition is returned.

Direct reading by way of a path
If a KSDS or an ESDS has an alternate index and an alternate index path (and an
appropriate entry in the FCT), you can retrieve a record in the file by using the
alternate key that you set up in the alternate index. The GENERIC option and the
GTEQ (greater than or equal to) option still work in the same way as for a read
from a KSDS using the primary key.

If the alternate key in an EXEC CICS READ command isn’t unique, the first record
in the file with that key is read and you get the DUPKEY condition. To retrieve
other records with the same alternate key, you have to start a browse operation at
this point.

Sequential reading (browsing)
You start a browse with the EXEC CICS STARTBR command, identifying a
particular record in the same way as for a direct read. However, the EXEC CICS
STARTBR command only identifies the starting position for the browse; it doesn’t
retrieve a record.

You can reset a browse at any time using the EXEC CICS RESETBR command. Use
an EXEC CICS RESETBR command to define a new starting position for the
browse, or to change the type of search argument used.

The EXEC CICS READNEXT command reads records sequentially from the file,
from the starting point set by the EXEC CICS STARTBR command. CICS updates
the field specified in the RIDFLD option on the EXEC CICS READNEXT command
with the complete key, relative byte address, or relative record number of the
record retrieved each time an EXEC CICS READNEXT command is processed.

The record (as in the case of a direct read) may be read into an area of storage
supplied by the application program (the EXEC CICS READNEXT INTO
command), or into CICS-provided SET storage (the EXEC CICS READNEXT SET
command). In the latter case, the CICS SET storage remains valid until the next
EXEC CICS ENDBR command for this REQID, or an EXEC CICS SYNCPOINT
command is issued.

The EXEC CICS READPREV command is like the EXEC CICS READNEXT
command, except that records are read sequentially backward from the starting
point set by the EXEC CICS STARTBR command.

Note that if you change from an EXEC CICS READNEXT command to an EXEC
CICS READPREV command, or the converse, the same record is retrieved twice,
because these commands also serve to change the current browse position in the
file.

Browsing through a KSDS
You can use a generic key on the EXEC CICS STARTBR command when browsing
through an emulated VSAM KSDS. However, the browse can only continue
forward through the file. If you process an EXEC CICS READPREV command
during such a browse, you get the INVREQ condition.

Chapter 10. File control 119

You can use the options “key equal to” (EQUAL) and “key greater than or equal
to” (GTEQ) on the EXEC CICS STARTBR command. The default is the “key greater
than or equal to” option. If you specify the “key equal to” option and no record
matches the key specified, you get the NOTFND condition.

An EXEC CICS READNEXT or EXEC CICS READPREV command works only
after the successful execution of an EXEC CICS STARTBR command.

You can start a forward browse through an emulated VSAM KSDS at the start of
the file by specifying a key of hexadecimal zeros and the GTEQ option, or by
specifying options GENERIC, GTEQ, and KEYLENGTH(0) on the EXEC CICS
STARTBR or EXEC CICS RESETBR commands. (In the latter case, you need the
RIDFLD keyword although its value isn’t used and, after the command completes,
CICS will be using a generic key length of one.)

You can start from the end of the file by specifying a complete key of X'FF'
characters on the EXEC CICS STARTBR or EXEC CICS RESETBR command. This
points to the last record in the file ready for a backward browse.

An EXEC CICS STARTBR, EXEC CICS RESETBR, or EXEC CICS READNEXT
command having the option KEYLENGTH(0) is always treated as if
KEYLENGTH(1) and a partial key of one byte of binary zeros have been specified.

Browsing through an ESDS
You cannot use the GTEQ option on the EXEC CICS STARTBR command when
browsing through an emulated VSAM ESDS. If no record matches the RBA
specified in the EXEC CICS STARTBR command, you get the ILLOGIC condition.
Like emulated VSAM KSDS, keys of X'00' characters and X'FF' characters on the
EXEC CICS STARTBR command enable browses to start at the first or last record
respectively.

Browsing through an RRDS
You can use the GTEQ option on an EXEC CICS STARTBR command when
browsing through an RRDS. It is the default, even though on a direct EXEC CICS
READ this option has no effect. A direct read command with the GTEQ option that
specifies an RRN that doesn’t exist returns the NOTFND condition, because only
the EQUAL option is taken. However, an EXEC CICS STARTBR GTEQ command
using the same RRN completes successfully, if there is a record with an RRN
higher than that specified. It also sets a pointer to the relevant position in the file
for the start of the browse. The first record in the file is identified using an RRN of
1, and the last record by X'FF' characters.

Browsing using a path
Browsing can also use an alternate index path to an emulated VSAM KSDS or an
ESDS. The browse is just like that for an emulated VSAM KSDS, but using the
alternate key. The records are retrieved in alternate key order.

When nonunique alternate keys are involved, a browse operation retrieves all
records with the same alternate key. The EXEC CICS READNEXT command
retrieves those records in the order that they were added to the file. (You could use
the EXEC CICS READPREV command, but these records are returned in the same
order as for the EXEC CICS READNEXT command.)

If you have nonunique keys and switch from an EXEC CICS READNEXT
command to an EXEC CICS READPREV command, or from an EXEC CICS
READPREV command to an EXEC CICS READNEXT command, the next record
obtained is the first occurrence of this key. The DUPKEY condition is returned for

120 CICS for iSeries Application Programming Guide V5

each retrieval operation except the last. For example, if there are three records with
the same alternate key, the DUPKEY condition is raised for retrieval of the first
two, but not the third. You can design the application program to revert from
browsing to direct reading, when the DUPKEY condition no longer occurs.

Ending the browse
Trying to browse past the last record in a file raises the ENDFILE condition. Stop a
browse with the EXEC CICS ENDBR command. You must issue the EXEC CICS
ENDBR command before performing an update operation on the same file (an
EXEC CICS READ UPDATE, EXEC CICS DELETE with RIDFLD, or EXEC CICS
WRITE command), before a syncpoint, or before task termination. If you don’t, you
get unpredictable results, possibly including deadlock within your own transaction.

Simultaneous browse operations
CICS allows a transaction to perform more than one browse on the same file at the
same time. You distinguish between browse operations by including the REQID
option on each browse command.

Skip-sequential processing
For quick direct access to records, you can browse using skip-sequential
processing. This reduces index search time. It is useful if the records are retrieved
in ascending or descending order, relatively close to each other, but not necessarily
adjacent.

CICS automatically reinitiates skip-sequential processing when the sequence is
broken.

You can use skip-sequential processing if you change the key, RBA, or RRN in the
RIDFLD option of the EXEC CICS READNEXT or EXEC CICS READPREV
command to point to the next record you want. You can even do this on the first
EXEC CICS READNEXT or EXEC CICS READPREV command after an EXEC CICS
STARTBR or EXEC CICS RESETBR command.

Note: The RIDFLD option on the EXEC CICS READNEXT or EXEC CICS
READPREV command must be in the same form (key, RBA or RRN) as that
used in the EXEC CICS STARTBR command or last EXEC CICS RESETBR
command. If you use generic keys on a forward browse, the new RIDFLD
must also be a generic key, although it need not be of the same length.

Including the KEYLENGTH option on the EXEC CICS READNEXT command has
the same effect as an EXEC CICS RESETBR command, because the key length has
been changed. To continue browsing from this new point, remove the
KEYLENGTH option from subsequent EXEC CICS READNEXT commands.

Note also that if a “key equal to” search is specified on an EXEC CICS STARTBR
command or on an EXEC CICS RESETBR command, an EXEC CICS READNEXT
command using skip-sequential processing may give a NOTFND condition. It is
not possible to obtain the last record on the file by specifying a complete key of
X'FF's during skip sequential processing. You must use an EXEC CICS RESETBR
command to specify the key in this form.

Chapter 10. File control 121

Updating records
To update a record, you must first retrieve it using an EXEC CICS READ
command with the UPDATE option. The record is identified in exactly the same
way as for a direct read. In an emulated VSAM KSDS or ESDS, the record may (as
with a direct read) be accessed by way of an FCT entry that refers either to the
base, or to a path defined to it.

After modification by the application program, the record is written back to the file
using the EXEC CICS REWRITE command. The EXEC CICS REWRITE command
does not identify the record being rewritten, because in any one transaction CICS
allows only a single update to a given file to be in progress at any time.

A record retrieved as part of a browse operation cannot be updated during the
browse. The application program must end the browse, read the desired record
with an EXEC CICS READ UPDATE command, and perform the update. Failure to
end the browse before issuing the EXEC CICS READ UPDATE command may
cause a deadlock.

The record to be updated may (as in the case of a direct read) be read into an area
of storage supplied by the application program or into storage set by CICS. If the
record is read into CICS SET storage, it should normally be copied into application
storage and rewritten from that storage. For an EXEC CICS READ UPDATE
command, CICS SET storage remains valid until the next EXEC CICS REWRITE,
EXEC CICS UNLOCK, EXEC CICS DELETE without RIDFLD, or EXEC CICS
SYNCPOINT command, whichever is encountered first.

If you want to release the string held by an EXEC CICS READ UPDATE command
without rewriting or deleting the record, use the EXEC CICS UNLOCK command.
This releases any CICS storage acquired for the EXEC CICS READ command and
releases emulated VSAM resources held by the EXEC CICS READ command.

For an emulated VSAM KSDS, the primary key embedded in the record should not
be altered when the record is modified. Similarly, if the update is being made by
way of a path, the embedded alternate key used to identify the record should not
be altered either, although other alternate keys may be altered. This is because if
the embedded key in the record were altered, the record’s location in the file
would be changed and therefore the locking afforded by the UPDATE request
would no longer apply. When rewriting a record, the original record read for
update would be discarded and a new record (with a new key) would be written.
No exception conditions would be raised.

If the FCT entry allows variable-length records, the length of the record may be
changed. The length of records in an ESDS, an RRDS, and a fixed-length KSDS
must not be changed on update.

Specifying record length
For a file defined to CICS as containing fixed-length records, the length of record
being rewritten must equal the length defined to emulated VSAM, which may be
obtained by issuing the iSeries display file definition (DSPFD) command or by
looking at the related FCT entry. For variable-length records, you must specify the
length with both the EXEC CICS READ and the EXEC CICS REWRITE commands.
The length must not be greater than the maximum defined for the file at file
definition.

122 CICS for iSeries Application Programming Guide V5

Deleting records
You can not delete records directly from an ESDS. However, if you access the file
through an alternate path, CICS/400 sees the file as a KSDS and allows records to
be deleted from it. This is different from mainframe CICS, where VSAM prevents
the deletion of records from an underlying ESDS. To prevent the deletion of
records from an arrival-sequenced physical file object in CICS/400, you should put
object authority on the file so as not to allow deletes. Then, if deletion is attempted
against an alternate path, CICS/400 will return a NOTAUTH condition.

You can delete a record in an emulated VSAM KSDS or RRDS by first retrieving it
for update and then issuing an EXEC CICS DELETE command. As in the case of
the EXEC CICS REWRITE command, the record to be deleted must not be
identified within the EXEC CICS DELETE command; it is, by default, the record
most recently read for update. When an EXEC CICS DELETE command follows an
EXEC CICS READ UPDATE command, it must not include the RIDFLD option. If
the RIDFLD option is included, an INVREQ condition is returned to the
application program.

You can also delete a record in a single operation, again using the EXEC CICS
DELETE command. In this case, you identify the record to be deleted as part of the
command. You do this by specifying the RIDFLD option.

If a full key is used either on an EXEC CICS READ UPDATE command before an
EXEC CICS DELETE command, or with the EXEC CICS DELETE command, a
single record with that key is deleted. So, if the file is being accessed by way of a
logical view that allows nonunique alternate keys, only the first record with that
key is deleted. After the deletion, the DUPKEY condition occurs if records still
exist with the same alternate key.

If you want to release the string held by an EXEC CICS READ UPDATE command
without rewriting or deleting the record, use the EXEC CICS UNLOCK command.
This releases any CICS storage acquired for the EXEC CICS READ command and
releases emulated VSAM resources held by the EXEC CICS READ command.

Deleting groups of records (generic delete)
You can use a generic key with the EXEC CICS DELETE command. Then, instead
of deleting a single record, all the records in the file whose keys match the generic
key are deleted with the single command. However, this cannot be used if the
KEYLENGTH value is equal to the length of the whole key (even if duplicate keys
are allowed). The number of records deleted is returned to the application program
if the NUMREC option is included with the command. If access is by way of a
logical view, the records deleted are all those whose alternate keys match the
generic key.

Adding records
Add new records to a file with the EXEC CICS WRITE command. They must
always be written from an area provided by the application program.

Adding to a KSDS
When adding a record to an emulated VSAM KSDS, the base key of the record
identifies the position in the file where the record is to be inserted. Although the
key is part of the record, CICS also requires the application program to specify the
key separately using the RIDFLD option on the EXEC CICS WRITE command. If

Chapter 10. File control 123

the key specified in the RIDFLD option differs from the one embedded in the
record, the embedded key takes precedence. You are not recommended to make
use of this fact because the record locking protocol may be compromised.

A record added to a KSDS by way of a logical view is also inserted into the file in
the logical position determined by the base key. The physical position is
determined by OS/400. However, the command must also include the alternate
index key as the record identifier.

Adding to an ESDS
A record added to an ESDS is always added to the end of the file, if the file was
created with the OS/400 CRTPF command with the reuse deleted records
(REUSEDLT) option set to *NO. You cannot insert a record in an ESDS between
existing records. After the operation is completed, the relative byte address in the
file where the record was placed is returned to the application program in the field
specified in the RIDFLD option.

When adding a record to an ESDS by way of a logical view the record is also
placed at the end of the file. The command must include the alternate key in the
same way as for a KSDS path.

Adding to an RRDS
To add a record to an RRDS, include the relative record number as a record
identifier on the EXEC CICS WRITE command. The record is then stored in the file
in the position corresponding to the RRN.

Specifying record length
When writing to a fixed-length emulated VSAM file, the record length must match
the value specified at the time the file was created. In this case you need not
include the length with the command, although you may do so to check whether
the length agrees with that originally defined to emulated VSAM. If the file is
defined as containing variable-length records, the command must always include
the length of the record.

Review of file control command options
Some of the file control command options you may specify are:
v RIDFLD
v INTO or SET
v FROM
v LENGTH

Use of the LENGTH option varies, depending on how you use the other options.

The RIDFLD option
Whatever you do to a record (read, add, delete (except when you have read the
record for update first), or start a browse), you identify the record by the RIDFLD
option. Further, during a browse using EXEC CICS READNEXT or EXEC CICS
READPREV commands, you must include the RIDFLD option to give CICS a way
to return the identifier of each record retrieved.

The RIDFLD option identifies a field containing the record identification
appropriate to the access method and the type of file being accessed.

124 CICS for iSeries Application Programming Guide V5

The RIDFLD option by itself isn’t always enough to identify a specific record in the
file. So, when retrieving records from an emulated VSAM KSDS, or an emulated
VSAM KSDS or ESDS by way of an alternate index path, or when setting a starting
position for a browse in this type of file, you can have one or both of the further
options GTEQ and GENERIC with your command.

With EXEC CICS READNEXT or EXEC CICS READPREV commands, the
application program would not usually set the RIDFLD field. After each command,
CICS updates this field with the actual identifier of the record retrieved. (You can
alter the RIDFLD value to set a new position from which to continue the browse.)

The INTO and SET options
With the EXEC CICS READ, EXEC CICS READNEXT, or EXEC CICS READPREV
commands, the record is retrieved and put in main storage according to your
INTO and SET options.

The INTO option specifies the main storage area into which the record is to be put.

For fixed-length records, you need not include the LENGTH option. If you do, the
length specified must exactly match the defined length; otherwise, you get the
LENGERR condition.

For variable-length records, always specify (in the LENGTH option) the longest
record your application program accepts (which must correspond with the value
defined emulated VSAM as the maximum record size when the file was created);
otherwise, you get the LENGERR condition. LENGERR occurs if the record
exceeds this maximum length, and the record is then truncated to that length.
After the record retrieval, if you include the LENGTH option, the data area
specified in it is set to the actual record length (before any truncation occurs).

The SET option specifies a pointer to the address of the buffer in main storage
acquired by CICS to hold the record. When using the SET option, you need not
include the LENGTH option. If you do include it, the data area specified is set to
the actual record length after the record has been retrieved.

The FROM option
When you add records (using the EXEC CICS WRITE command), or update
records (using the EXEC CICS REWRITE command), specify the record to be
written with the FROM option.

The FROM option specifies the main storage area that contains the record to be
written. In general, this area is part of the storage owned by your application
program. With the EXEC CICS REWRITE command, the FROM area is usually (but
not necessarily) the same as the corresponding INTO area on the EXEC CICS
READ UPDATE command. The length of the record can be changed when
rewriting to a emulated VSAM KSDS with variable-length records.

Always include the LENGTH option when writing to a file with variable-length
records. If the value specified exceeds the maximum allowed in the definition,
LENGERR is raised when the command is executed. LENGERR is also raised if the
LENGTH option is omitted when accessing a file with variable-length records.

When writing to a file with fixed-length records, CICS uses the length specified in
the definition as the length of the record to be written, so you need not have the

Chapter 10. File control 125

LENGTH option. If you do, its value is checked against the defined value and you
get a LENGERR condition if the values don’t match.

Avoiding transaction deadlocks
Design your applications so as to avoid transaction deadlocks. A deadlock occurs if
each of two transactions (for example, A and B) needs exclusive use of some
resource (for example, a particular record in a file) that the other already holds.
Transaction A waits for the resource to become available. However, if transaction B
isn’t in a position to release it because it, in turn, is waiting on some resource held
by A, both are deadlocked and the only way of breaking the deadlock is to cancel
one of the transactions, thus releasing its resources.

A transaction may have to wait for a resource for several reasons while executing
file control commands:
v Any record that is being modified is held in exclusive control by the access

method for the duration of the request.
v If a transaction has modified a record in a recoverable file, CICS locks that

record to the transaction even after the request that performed the change has
completed. The transaction can continue to access and modify the same record;
other transactions must wait until the transaction releases the lock, either by
terminating or by issuing a syncpoint request. For more information, see
“Syncpointing” on page 106.

Whether a deadlock actually occurs depends on the relative timing of the
acquisition and release of the resources by different concurrent transactions.
Application programs may continue to be used for some time before meeting
circumstances that cause a deadlock; so it’s important to recognize and allow for
the possibility of deadlock early in the application program design stages.

Here are examples of different types of deadlock:
v Two transactions running concurrently are modifying records within a single

recoverable file, through the same FCT entry, as follows:
Trans.1: READ UPDATE rec.1
 REWRITE rec.1
Trans.2: DELETE rec.2
Trans.1: WRITE rec.2
Trans.2: READ UPDATE rec.1
 REWRITE rec.1
 Transaction 1 has acquired the record lock for record 1. Transaction 2 has
similarly acquired the record lock for record 2. The transactions are deadlocked
because each wants to acquire the lock held by the other.

v Two transactions running concurrently are modifying two recoverable files as
follows:
Trans.1: READ UPDATE file 1 rec.1
 REWRITE file 1 rec.1
Trans.2: READ UPDATE file 2 rec.2
 REWRITE file 2 rec.2
Trans.1: READ UPDATE file 2 rec.2
 REWRITE file 2 rec.2
Trans.2: READ UPDATE file 1 rec.1
 REWRITE file 1 rec.1
 Here the record locks have been acquired on different files as well as different
records; however, the deadlock is similar to the first example.

When an application cannot get exclusive control of a record (for example, during
a deadlock situation), the OS/400 database facilities wait for the record for a

126 CICS for iSeries Application Programming Guide V5

maximum time as specified in the maximum record wait time (WAITRCD) defined
for the file. If this time is exceeded, the OS/400 database facility issues a time-out
exception and CICS returns the IOERR condition to your application program,
qualified by additional OS/400 information in the EIBRCODE field.

You can avoid deadlocks by following these rules:
v All applications that update (modify) multiple resources must do so in the same

order. For instance, if a transaction is updating more than one record in a file, it
can do so in ascending key order. A transaction that is accessing more than one
file should always do so in the same predefined sequence of files.

v An application that issues an EXEC CICS READ UPDATE command must
follow it with an EXEC CICS REWRITE, EXEC CICS DELETE without RIDFLD,
or EXEC CICS UNLOCK command to release the position before doing anything
else to the file, and in any case as soon as possible.

v An application must end all browses on a file by means of EXEC CICS ENDBR
commands (thereby releasing the position) before issuing an EXEC CICS READ
UPDATE, EXEC CICS WRITE, or EXEC CICS DELETE with RIDFLD command,
to the file.

KEYLENGTH option for remote files
In general, file control commands need the RIDFLD and KEYLENGTH options.
The KEYLENGTH option can be specified explicitly in the command, or
determined implicitly from the FCT.

For remote files for which the SYSID option has been specified, the KEYLENGTH
option must be specified if the RIDFLD option is passing a key to file control. If
the remote file is being browsed, the KEYLENGTH option is not required for the
EXEC CICS READNEXT or EXEC CICS READPREV command.

Record identification
You have three ways to identify records in emulated VSAM files:
v Key
v Relative byte address (RBA)
v Relative record number (RRN)

Identifying records by key
Generally, if you use a key, you can specify either a complete key or a generic
(partial) key. The exception to this rule is when you write a record to a KSDS, in
which case you must specify the complete key in the RIDFLD option of the
command.

When you use a generic key, you must specify its length in the KEYLENGTH
option and you must specify the GENERIC option on the command. A generic key
cannot have a key length equal to the full key length. You must define it to be
shorter than the complete key.

You can also specify the GTEQ option on certain commands, for both complete
and generic keys. The command then positions at, or applies to, the record with
the next higher key if a matching key cannot be found. When accessing a file by
way of an alternate index path, the record identified is the one with the next
higher alternate key when a matching record cannot be found.

Chapter 10. File control 127

Even when using generic keys, always use a storage area for the record
identification field that is equal in length to the length of the complete key. During
a browse operation, after retrieving a record, CICS copies into the record
identification area the actual identifier of the record retrieved. CICS returns a
complete key to your application, even when you specified a generic key on the
command. For example, a generic browse through an emulated VSAM KSDS
returns the complete key to your application on each EXEC CICS READNEXT and
EXEC CICS READPREV command.

Relative byte address (RBA) and relative record number (RRN)
You can use the RBA and RRN options on most commands. The RBA option can
only be used on ESDS emulated VSAM files, whereas the RRN option can only be
used on an RRDS file. In effect, they define the format of the record identification
field (RIDFLD). Unless you specify either the RBA or the RRN, the RIDFLD option
should hold a key to be used for accessing an emulated VSAM KSDS (or an
emulated VSAM KSDS or ESDS by way of an alternate index).

RBA
RBA specifies that the record identification field contains the relative byte address
of the record to be accessed. A relative byte address is used to access an emulated
VSAM ESDS. All file control commands that refer to an ESDS base, and specify the
RIDFLD option, must also specify the RBA option.

RRN
RRN specifies that the record identification field contains the relative record
number of the record to be accessed. The first record in the file is number one. All
file control commands that refer to an RRDS, and specify the RIDFLD option, must
also specify the RRN option. The RRN option cannot be used on KSDS or ESDS
emulated VSAM files.

CICS locking of emulated VSAM records in recoverable files
Whenever records within a recoverable file are modified, record locks are issued by
the OS/400 database facility on behalf of the I/O operation performed by CICS.

Record locks of CICS recoverable files, along with data integrity, are managed by
the OS/400 commitment control facility, even for files shared between two CICS
systems or between CICS and other AS/400 jobs. When a CICS shell begins, the
OS/400 commitment control environment is started by CICS with a lock level
(LCKLVL) of *CHG. Record locks are issued whenever records in a recoverable file
are modified. The locks are held for the transaction doing the change until it issues
a syncpoint request or terminates (a syncpoint is automatically performed). For
emulated VSAM recoverable file processing, note the following:
v Whenever an emulated VSAM record is obtained for modification or deletion,

the record is locked by OS/400. This permits only one transaction at a time to
modify or delete the record. Other transactions have to wait until the first
transaction has reached a syncpoint, or the first transaction unlocks the record.

v For the EXEC CICS READ UPDATE and EXEC CICS REWRITE-related
commands, the record lock is acquired as soon as the EXEC CICS READ
UPDATE command has been issued.
 If the record read with the EXEC CICS READ UPDATE command has not been
modified or deleted, you can release the record lock with the EXEC CICS
UNLOCK command.

128 CICS for iSeries Application Programming Guide V5

For an EXEC CICS DELETE command that has not been preceded by an EXEC
CICS READ UPDATE command, the record lock is acquired at the time the
emulated VSAM command is run. The same is true for an EXEC CICS WRITE
command.
 For an EXEC CICS DELETE GENERIC command, each record deleted acquires a
separate lock for the transaction issuing the request.

Note: If a transaction has either added or modified a record within a recoverable
file but has not yet reached a syncpoint, that record can be read by another
transaction if the UPDATE option of the EXEC CICS READ command was
not specified.

Chapter 10. File control 129

130 CICS for iSeries Application Programming Guide V5

Part 4. Data communication

Chapter 11. Introduction to data communication 133

Chapter 12. Introduction to basic mapping
support (BMS) 135
How BMS affects programming 135
BMS maps 136

BMS map definition 136
Creating BMS map sets 137
Cataloging BMS map sets 137

BMS commands 138
Level of BMS 139

Base and towers architecture 139
Summary of support for CICS/400 BMS 139

Chapter 13. CICS/400 basic mapping support
(BMS) 141
Information display systems 141

IBM 3270 Information Display System 141
IBM 5250 Information Display System 141
Input operations 141

Sending data 142
Modified data tags 142
Attention identifiers 142

Output operations 143
Display field concepts 143
Attribute character 144

Screen layout design 146
Screen sizes 147

Defining BMS maps 147
Defining a map set 147
Defining maps within a map set 147

Data fields 148
Maps without fields 148

Defining fields within a BMS map 148
Terminating a map set definition 148

Creating BMS maps 148
Symbolic description map 148
Physical map 149
Map set suffixing 149

Writing programs to use BMS services 151
Copying symbolic description maps 152
Data structures 152

Input map data structures 153
Input field suffixes 153
Output map data structures 153
Attribute constants 154
Incorrect data 155

Sending data to a display device 155
Composite displays 156
Refreshing and modifying displays 156
Getting storage for a data structure 156
Alternative data structures 158
Device control options 158

Cursor positioning 159
Normal cursor positioning 159
Initial display position 159

Symbolic cursor positioning 159
Accessing data outside the program 159
Receiving data from a display 160

Receiving data into an alternative data
structure 160
Uppercase translation 161
Mapping data from another data area . . . 161

Responding to terminal input 162
Exception conditions 162
The EIBAID field 162
The EXEC CICS HANDLE AID command 163

Text processing 164
Display characters in text 164
Control characters in text 165
Character attribute control (3270 devices only) 165

Unsupported attributes 166
Graphic data fields 166

Printed output 167
Using the hardware print key 167
Using asynchronous page build transaction . . 167
Printer formatting considerations 168

Blank lines and 3270 printers 168
Setting the printer page width 168
Form feed characters 168

Chapter 14. Terminal control 169
Terminal-oriented task identification 170
Logical unit communication protocol 170

Send/receive mode 170
Send/receive protocol (INVITE option) 171
Chaining the input data 171
Chaining the output data 171
Response protocol 172
Preventing interruptions (bracket protocol) . . 172

Handling attention identifiers (EXEC CICS
HANDLE AID) 173
OS/400 display data streams 174
Terminal control and DBCS 174

Chapter 15. Intercommunication considerations 175
Design considerations 175
Transaction routing 175
Function shipping 176
Distributed program link (DPL) 176

Using the distributed program link function . . 177
Examples of distributed program link 178
Programming considerations for distributed
program link 182

Issuing multiple distributed program links
from the same client task 182
Sharing resources between the client program
and server program 183
Mixing DPL and function shipping to the
same CICS system 183
Mixing DPL and DTP to the same CICS
system 183

© Copyright IBM Corp. 1998, 2004 131

Restricting a program to the distributed
program link subset 183
Determining how a program was invoked 184
Exception conditions for EXEC CICS LINK
command 184

Asynchronous processing 185
Distributed transaction processing (DTP) 186

Common Programming Interface
Communications (CPI Communications) . . . 186

132 CICS for iSeries Application Programming Guide V5

Chapter 11. Introduction to data communication

You have two basic ways of communicating with the terminals and logical units in
the network:
1. Basic mapping support provides commands and options that can be used to

format data in a standard manner. BMS converts data streams provided by the
application program to conform to the requirements of the devices. Conversely,
data received from a device is converted by BMS to a standard form. However,
not all devices supported by CICS can be used with BMS and, for those that
cannot, terminal control must be used. In CICS/400 BMS, device support is
provided only for 3270 and 5250 terminals, and for SCS printers. BMS is
described in Chapter 12, “Introduction to basic mapping support (BMS),” on
page 135 and Chapter 13, “CICS/400 basic mapping support (BMS),” on page
141..

2. Terminal control is the basic method for communicating with devices. BMS
extends the facilities of terminal control to simplify further the handling of data
streams. BMS uses terminal control facilities when invoked by an application
program. Terminal control provides commands and options that can be
specified in various combinations according to the requirements of the devices.
However, application programs written in this way are dependent on the data
formatting requirements of these devices, and a detailed knowledge of the
devices is required. Terminal control is described in Chapter 14, “Terminal
control,” on page 169.

Intercommunication is another area of communication that you may be concerned
with. It is described in Chapter 15, “Intercommunication considerations,” on page
175.. The principal facilities in this area that you might use are:
v Transaction routing enables a terminal in one CICS system to run a transaction

in another CICS system. See “Transaction routing” on page 175.
v Function shipping allows you to access resources in a remote system. See

“Function shipping” on page 176.
v Distributed program link (DPL) enables an application program running on one

CICS system to link to another application program running in a remote CICS
system. See “Distributed program link (DPL)” on page 176.

v Asynchronous processing enables a CICS transaction to initiate a transaction in
a remote system and to pass data to it. See “Asynchronous processing” on page
185..

v Distributed transaction processing (DTP) enables a CICS transaction to
communicate with a transaction running in another system. See “Distributed
transaction processing (DTP)” on page 186.

© Copyright IBM Corp. 1998, 2004 133

134 CICS for iSeries Application Programming Guide V5

Chapter 12. Introduction to basic mapping support (BMS)

Basic mapping support (BMS) is an interface between CICS application programs
and terminal devices, including printers.

A CICS application program can use BMS or terminal control commands to
perform input and output. BMS has most of the facilities you need, and is easier to
use than terminal control. However, you might sometimes need to use terminal
control.

BMS lets you separate the tasks of display design and CICS application
programming. It interprets generalized device-independent application program
output commands, and generates device-dependent data streams for specific output
devices. It also transforms incoming data streams to a form acceptable to
application programs. BMS learns about the format of the data stream for the
terminal from the terminal control table terminal entry (the TCTTE) for the task,
not from the application program.

You can use the same BMS input or output commands in your application
program to talk to different kinds of devices. A single BMS command in your
program applies equally to various devices because BMS interprets commands
differently for different device types.

BMS commands are quite simple, because all the low-level formatting information
is held separately, in maps. This makes your application programs easier to write
and less affected by changes to the system or its devices. You can change the
layout of the information on the terminal device just by changing the map source
and recreating the maps.

For the OS/400 programmer who is new to the concepts of the CICS family, BMS
can be most easily described as similar to OS/400 data description specifications
that would be used to describe a display image or printer file. See the DDS
information in the Database and file systems topic in the iSeries Information
Center for DDS reference information and the ADTS for AS/400: Screen Design Aid
manual for further details.

BMS definitions are held in members of a physical source file just like the source
for any other high-level language program on the iSeries. There is a version of this
physical source file called QMAPSRC which you can use as a sample for your BMS
maps.

How BMS affects programming
Different versions of a display map can exploit the features of the IBM 3270 or IBM
5250 terminals. By having the screen data in fields (that is, defining data as having
field format), you can address predefined fields in a display symbolically by name
from within your application, without knowing the actual screen positions of those
fields.

Changing field data to and from its displayable form is called mapping.

Although the same fields must appear in all versions of a display image, you can
move them around in the different versions. This is useful when you’re

© Copyright IBM Corp. 1998, 2004 135

programming for a mixture of display screen sizes. See “Map set suffixing” on
page 149 for information about applications that use multiple terminal types.

You can also display data in text format. This presents data as a series of lines on a
display screen or printer. To format text data, BMS breaks it into strings that are, as
nearly as possible, the same length as each line of the display device. BMS assumes
that text is a sequence of words separated by blanks, and breaks the text into lines
at an appropriate point.

BMS maps
Maps tell BMS how to format field data; they are not needed for text data. Every
BMS mapping command names a map that contains formatting instructions. Each
map has two forms, physical and symbolic.

Maps must belong to a map set. You usually group related maps together into one
map set. You define a map set by coding a series of BMS macros. The first of these
macros (DFHMSD) defines the map set itself; the second (DFHMDI) defines the
first or subsequent maps. The third macro (DFHMDF) defines fields within a map.

The physical map tells BMS where the fields are to be placed on the terminal
device, and what their attributes are.

A symbolic description map is a source language data structure that BMS runtime
support uses to resolve source program references to fields in the map. Symbolic
description maps are described in more detail in Chapter 13, “CICS/400 basic
mapping support (BMS),” on page 141.

The CICS CL command CRTCICSMAP generates both types of maps in one run. A
standard OS/400 prompt screen is produced showing all available parameters and
their defaults if you enter just the command name and press the PF4 key. Optional
help text is also available if you press the PF1 key.

You could define a single map set to suit every particular terminal attached to a
CICS system. However, you might want (or need) to format the same data
differently for different devices. For example, the same transaction might be
initiated from displays of various screen sizes.

BMS map definition
You define map sets, maps, and fields within maps with the following macros:

DFHMSD
Define a map set.

DFHMDI
Define a map.

DFHMDF
Define a field.

Use of these macros is explained in “Defining BMS maps” on page 147.

The macros define the size, shape, position (row and column), potential content,
and characteristics (such as color, protected or unprotected, and bright or dark).
You can optionally use them to define initial data for one or more fields to be
displayed at a terminal. You should design the layout and content of a display
before attempting to code the macros.

136 CICS for iSeries Application Programming Guide V5

Always start a map definition with the DFHMSD macro, specifying TYPE=MAP, as
follows:
DFHMSD TYPE=MAP

DFHMSD is always followed by a DFHMDI macro for the first (or only) map in
the map set:
DFHMSD TYPE=MAP
DFHMDI ...

After DFHMDI come the DFHMDF macros (if any) to define the individual fields
within the map:
DFHMSD TYPE=MAP
DFHMDI ...
DFHMDF ...
DFHMDF ...

If there is more than one map in your map set, repeat the sequence of DFHMDI
and DFHMDF macros for each subsequent map in the set. End the map set
definition with a DFHMSD macro with the TYPE=FINAL operand.

So for two maps, the sequence of macros may be as follows:
DFHMSD TYPE=MAP
DFHMDI ...
DFHMDF ...
DFHMDF ...
DFHMDI ...
DFHMDF ...
DFHMDF ...
DFHMDF ...
DFHMSD TYPE=FINAL

Specify attributes of map sets, maps, and fields by using operands in the
appropriate macros. Some operands can be specified on both the DFHMDF and
DFHMDI macros, and some can be specified on both the DFHMSD and DFHMDI
macros. In such cases, specifying the operand on the DFHMDI (map definition)
macro defines the default value for all fields within the map. For example, if you
want to define a map with most fields blue, you can specify COLOR=BLUE on the
DFHMDI macro; and only specify the color operand for the individual DFHMDF
macros which need to be different. Similarly, operands on DFHMSD macro can
define defaults for all maps within the map set and all fields within those maps.

Some facilities of 3270 devices, such as color, are not provided by all terminal
models. Attempts to use a facility that the terminal does not provide are ignored.
This means that different 3270 terminals do not necessarily need different maps.
Some of the 3270 extended attributes are not supported on 5250 devices. Details
are given in the descriptions of the operands in Appendix D, “BMS macro
summary,” on page 553.

Creating BMS map sets
The create CICS map (CRTCICSMAP) CL command is used to generate screens
from BMS source files. For an explanation of the syntax and parameters available
with this command, see page 301.

Cataloging BMS map sets
You can use the same set of DFHMSD, DFHMDI, and DFHMDF macros to define
both the physical maps and symbolic description maps of a map set. When you

Chapter 12. Introduction to basic mapping support (BMS) 137

use the CRTCICSMAP CL command, physical and symbolic maps are created in
the library. Symbolic maps are created either as COBOL copybooks in file
QLBLSRC or C header files in file H, depending on the value of the LANG
parameter on the DFHMSD macro. You can select a different target file using the
LMAPSRC and LMAPMBR parameters. The physical map is created as a user
space object in the library. You can copy the symbolic map structure into any
application program that refers to the map set before compiling a program.

Note: You must define a physical map as a processing program table (PPT) entry
with CICSMAP(*YES) using CICS resource definition commands. The name
of the map generated by CRTCICSMAP is the name that belongs in the PPT.

BMS commands
BMS performs input and output operations in response to commands in your
application program. These commands are like other CICS commands, but they
always name the map containing the mapping information. Application program
statements, other than EXEC CICS commands, can refer to fields in a map by
name. With BMS commands, not only can you read and change the contents of
fields; you can also set or modify their attributes (for example, color or protected).
The attributes are provided in the symbolic description maps for applications to set
through normal application programming statements.

The BMS application programming interface provides the following functions for
application programs.
v Mapping

 The EXEC CICS SEND MAP command merges the data in the physical map
(derived from the source map you defined) with data values set in the
application data structure by the application program, and generates an
appropriate device-dependent data stream to display this merged data at a
terminal.
 The EXEC CICS RECEIVE MAP command takes a device-dependent data stream
from a terminal, and interprets it based on the specified physical map. When the
positions (row and column) of a data-stream field and a map field match, BMS
updates the corresponding part of the application data structure with the
data-stream data.

v Text processing

 The EXEC CICS SEND TEXT command provides very basic text support. BMS
can split text into lines and pages that fit on the target display device. It honors
new line characters embedded in the text and builds the display image such that
words are not split across lines.

v Device control

 BMS provides a “high-level” way of specifying device controls (such as: ERASE,
ERASEAUP, and ALARM). You can specify them together with EXEC CICS
SEND MAP or EXEC CICS SEND TEXT commands, or independently using
EXEC CICS SEND CONTROL.

The Basic Mapping Support API commands are designed to support 3270
architecture. When CICS/400 applications communicate with DBCS-capable 5250
devices, the data streams are converted between 3270 and 5250 formats using
iSeries system facilities.

138 CICS for iSeries Application Programming Guide V5

Level of BMS
In some other CICS environments there are three pregenerated versions of BMS:
1. Minimum function
2. Standard function
3. Full function

In CICS/400, minimum function BMS plus the EXEC CICS SEND TEXT
command is supported. Support is provided for 3270-2, 3270-5, 5250, and ASCII
terminal devices, and for SCS printers. The other levels are listed here so you can
understand their function. The levels of BMS have the following meanings:
v MINIMUM

 This level is a small, fast, basic function mapping program. It has a substantially
shorter path length than standard or full BMS and handles the most frequently
used BMS requests.
 In CICS/400, BMS supports 3270 display devices and printers, 5250 display
devices and printers, and SCS printers. It supports extended attributes and large
screens, but not partitions, outboard formats, or MSR control. It supports the
EXEC CICS SEND MAP, EXEC CICS RECEIVE MAP, EXEC CICS SEND TEXT
(subset), and EXEC CICS SEND CONTROL commands only, with no cumulative
mapping, terminal operator paging, routing, or message switching.

v STANDARD
 This level supports the EXEC CICS SEND MAP, EXEC CICS RECEIVE MAP,
EXEC CICS SEND TEXT, EXEC CICS SEND CONTROL, EXEC CICS SEND
PARTNSET, and EXEC CICS RECEIVE PARTN commands. It does not support
cumulative mapping, terminal operator paging, or message switching.

v FULL
 This level generates a full-function BMS, with full device support. You need this
level of support if you need to use the BMS paging transaction CSPG and the
message switching transaction CMSG.

Base and towers architecture
The architecture of the CICS family API has been defined as a base-and-towers
specification, in the CICS Family: API Structure manual. In this book, the BMS
levels of minimum, standard, and full disappear. CICS/400 BMS conforms to this
architecture specification as follows:

BMS Application Programming Base
Supported in full

BMS Map Definition Base Supported with minor deviations

All defined BMS subsets None supported

Summary of support for CICS/400 BMS
The following is a list of devices and functions supported for BMS within
CICS/400:
v Basic 3270 and 5250 display devices
v SCS printers
v Default and alternate screen sizes
v Extended attributes
v Formfeed control

Chapter 12. Introduction to basic mapping support (BMS) 139

v Command-level requests
v EXEC CICS SEND MAP
v EXEC CICS SEND CONTROL
v EXEC CICS RECEIVE MAP and EXEC CICS RECEIVE MAP FROM
v Subset of EXEC CICS SEND TEXT
v Map set suffixing
v Block data
v Automatic setting of write control character (WCC) line width
v ERASE, ERASEAUP, FORMFEED, CURSOR, and WCC options

140 CICS for iSeries Application Programming Guide V5

Chapter 13. CICS/400 basic mapping support (BMS)

In CICS/400, BMS supports the IBM 3270 and IBM 5250 range of display devices
and printers. See “Level of BMS” on page 139 for a definition of the level of BMS
supported in CICS/400. This chapter introduces:
v The IBM 3270 and IBM 5250 display devices
v The principles of display layout design
v The way that you specify display layouts to CICS/400
v The commands and options BMS has for communicating with a display that has

a predefined layout

Information display systems
The following describes the two types of information display systems supported
by CICS/400:

IBM 3270 Information Display System
The 3270 data stream conveys both displayable data characters and nondisplayable
control characters between the host processor and a terminal. To use BMS
commands, you do not have to understand the format of the data stream. But you
need to know what the data stream allows you to do. Refer to the 3270 Data Stream
Programmer’s Reference manual for more information about the 3270 data stream,
and the features available on 3270 terminals.

IBM 5250 Information Display System
The 5250 data stream, not unlike the 3270 data stream, provides displayable and
nondisplayable control characteristics between the host processor and a terminal.
CICS/400 provides the ability for the 5250 device to emulate a 3270 device. The
5250 keys are translated into 3270 function keys. The COBOL program refers to the
3270-type attributes and 3270 function keys. At run time, BMS translates the
3270-type data to 5250 data. The 5250 attention identifier (AID) keys are converted
to 3270 AID keys and stored in the EIBAID field. The 5250 page-up, page-down,
and HOME keys are not currently supported.

Input operations
The operations you perform at a 3270 or 5250 terminal need not always result in
data being sent to the host processor. For example, your user can press the
alphanumeric keys indefinitely without sending data. However, certain actions
(such as pressing ENTER) always cause your terminal to send a data stream, even
if you haven’t provided any data.

Apart from the alphanumeric keys, other keys that you can press without sending
data include:
v Repeat-action keys
v Forward and backward tabbing keys
v New line tabbing key
v Horizontal cursor positioning keys
v Vertical cursor positioning keys
v Backspace key

© Copyright IBM Corp. 1998, 2004 141

v Erase input (ERASE INPUT) key
v Erase end-of-field (ERASE EOF) key
v Insert mode (INS MODE) key
v Delete (DEL) key

These keys and special features of individual terminal models make it easier for
you to enter data.

Sending data
When you have typed data on to a display and want to send it to the host
processor, you can:
v Press the ENTER key
v Press a program function (PF) key

Although the display sends modified data when you press the PF keys, the PF
keys are not normally used for this. Generally, the programmer has assigned a
specific meaning to the key itself.

If a field is initialized by an output map or contains data from any other source,
data that is entered as input overwrites only the equivalent length of existing data;
any surplus existing data remains in the field and could cause unexpected
interpretation of the new data.

Modified data tags
If you want to send data without having to enter it explicitly, you can set the
modified data tag (MDT) for the required field. The MDT can be set by:
v An output command
v Entering data in the field

Note: Be aware that setting the MDT is device-dependent. It is possible that not all
models support this function.

Attention identifiers
An attention identifier (AID) character is always sent to the host processor
whenever an input operation is performed. This indicates the cause of the input
operation.

CICS ensures that an application program receives the input data intended for it.
The AID allows the application program to react differently, depending on the
input operation. The effect of different combinations of data and AIDs depends
entirely on the design of the application program.

If you want to get the attention of the host processor without sending data, you
can generate an AID by:
v Pressing the CLEAR key, but remember that this erases any displayed map and

data
v On a 3270, pressing a program access (PA) key; on a 5250, sending a record

backspace AID by pressing the HOME key once or twice, depending on the
current cursor position. See note 2 for more information about the record
backspace AID

In some cases, the keys on the 5250 and 3270 keyboards that cause an AID to be
sent are different. The interpretation of 5250 AIDs by BMS is shown in Table 7 on
page 143.

142 CICS for iSeries Application Programming Guide V5

Table 7. Correspondence between 5250 and 3270 AIDs

5250 AID Interpreted as

PF1 - PF24 PF1 - PF24

ENTER ENTER

CLEAR CLEAR

Record backspace PA1 (See notes)

Help PF1

Notes:

1. PA2 and PA3 are not emulated on 5250 devices.
2. The record backspace AID is generated when the HOME key is pressed,

provided that the cursor is in the home position. For 5250 terminals, the home
position on a blank CICS screen is (1,2). Otherwise, the home position is at the
start of the first unprotected field on the screen. If the cursor is not in the home
position, pressing the HOME key moves the cursor to the home position but
does not generate an AID. The HOME key must be pressed a second time to
generate the AID.

Output operations
A terminal can receive data from an application program, or send data back to the
program. Some of the data can be displayed; the rest consists of device controls.
Through data streams containing device controls built by BMS, you can, for
example:
v Sound the audible alarm (if the terminal has one)
v Reset the modified data tag (MDT) of each field
v Print the contents of a display screen
v Erase all unprotected fields
v Position the cursor

The way you use these features is up to you. However, they can improve the
usability of your application program.

Display field concepts
Using BMS maps, a screen of data can be divided up into fields. Application
programs interact with these fields by using the symbolic description maps
associated with the BMS maps.

A field starts with an attribute character, continues with data characters, and ends
at the next attribute character. A field may contain a single character only or it can
span several lines; the last character on a line is logically followed by the first
character on the next line.

If the screen width is the same as the map width, BMS allows a field to “wrap
around” from the end of one line to the start of the next. Because of its
dependence on resource definitions, an application design should not rely on this
function.

Normally a display image is divided into several fields by the program, but it is
possible to have an unformatted input (no SBA characters), or an AID key with no
user input data. An unformatted data stream can occur if a CLEAR key was

Chapter 13. CICS/400 basic mapping support (BMS) 143

previously pressed to erase the display image. Pressing the CLEAR key clears not
only the visible data, but also unformats the display screen.

Note: Set buffer address (SBA) is a data stream control field that is used in both
outbound and inbound data streams. An SBA is indicated by X'11'.
Outbound data streams contain SBAs to describe the screen positions where
user data is to be placed. SBAs in the inbound data stream describe to BMS
what fields were entered by the user.

When an attention key is pressed, such as CLEAR, PA1, PA2, or PA3, only the AID
key and cursor position is transmitted. No user-entered data or MDT fields are
transmitted. Both above situations cause a MAPFAIL condition to be raised.

An application programmer can use the EXEC CICS HANDLE CONDITION
command to detect a MAPFAIL condition. The EXEC CICS HANDLE CONDITION
command is described in Chapter 6, “Dealing with exception conditions,” on page
87,, and the EXEC CICS HANDLE AID command is described in “The EXEC CICS
HANDLE AID command” on page 163.

Attribute character
The attribute character is always the first character of a field. It occupies a
character position on the display screen but appears as a blank.

Attribute bytes can convey the following field characteristics:
v Unprotected

 You can enter any keyboard character into an unprotected field.
v Numeric-only

 A numeric-only field is unprotected and only the digits 0 through 9 and the
special characters period, dash, and DUP may be entered. If the keyboard
numeric lock feature is installed on the 3270 and the operator attempts to enter
any other characters, the keyboard is locked. If the keyboard numeric lock
feature is not installed, any data can be entered in the field. On a data entry
keyboard, a numeric-only field causes a numeric shift to occur.

v Protected

 Data cannot be entered in a protected field. If the operator attempts to enter
data, the keyboard is locked. A 1-byte protect field (stopper field) is usually
defined following an input field. This protects the operator from entering more
characters than the input field allows.

v Autoskip

 An autoskip field is a protected field that automatically skips the cursor to the
next unprotected field. Keyword fields and stopper fields following fixed-length
data fields are normally defined with autoskip attribute characters.

Note: The unprotected, numeric-only, protected, and autoskip characteristics of
the attribute character are mutually exclusive. Only one may be selected
for each field.

v Normal intensity

 A normal-intensity field displays the data at the normal operating intensity.
v Bright intensity

 A bright-intensity field displays the data at a brighter than normal intensity. This
feature is often used to highlight keywords, errors, or operator messages.

v Nondisplay

144 CICS for iSeries Application Programming Guide V5

A nondisplay field does not display the data on the screen for operator viewing.
Nor can you print the data contained in a nondisplay field. Nondisplay fields
might be used to enter security data when the screen is visible to others. This
attribute characteristic should be used with care, because the operator loses the
ability to verify the data entered in a nondisplay field. This field might also be
used to store messages on the display screen. The messages can be displayed
later by changing the attribute character to bright or normal intensity.

Note: The normal, bright, and nondisplay characteristics of the attribute
character are mutually exclusive. Only one may be selected for each field.

v Base color

 The IBM 3279 Model 2A or 3A display device (3270 terminal with extended
attributes) produces a base color image by using the PROTECT and INTENSIFY
attributes of the 3270 standard data stream to select four colors: white, red, blue,
and green. A switch on the display control panel permits the operator to select
default color, causing the display to behave as a monochrome 3270 display, with
white representing INTENSIFY. The protect bit retains its protect function when
conveying color information. You can change the field colors of input, intensified
input, protected, and intensified-protected fields on some devices.
 The IBM 5292 (limited color) displays white when representing INTENSIFY.
Specific settings on other models are device-dependent.

v Extended color

 The IBM 3279 Model 2B or 3B, and IBM 5292 (full color) use extended color
attributes in an extended data stream to determine the colors of display
elements. The data stream can specify the colors of multicharacter fields. Seven
colors can be selected: blue, red, pink, green, turquoise, yellow, and neutral.
Selecting neutral sets the field to the default color for the specific device (usually
white for terminals and black for printers).
 An IBM 3279 Model 2B or 3B acts as a Model 2A or 3A until it detects an
extended color attribute byte in the data stream. It displays the image in default
color or base color, according to the setting of the switch on the control panel.
 If an extended color attribute is received, the display treats the whole image as
an extended color image. Fields that have no color attribute adopt the default
colors (green for normal intensity, white for bright). If the color control switch
has been set to base color, the part of the image that has already been displayed
changes from base color to default color. Such a change, which could disturb an
operator, can be avoided by applying an extended color attribute to the first
field in any image that uses extended color.
 The device interprets extended color attributes to determine the colors of fields
in an image.

v Extended highlighting

 Extended highlighting can be applied to characters, or character fields, in a
display that uses the extended data stream. It can take one of three forms:
BLINK, REVERSE, or UNDERSCORE.

v Modified data tag (MDT)

 The modified data tag is turned on whenever fields are modified by the
operator. When the operator presses the ENTER key or a PF key, only fields that
have been modified by the operator or selected by the cursor select are
transmitted to the processor. The program may send fields to the terminals with
the modified data tag already on to guarantee that the field is returned with the
next inbound transmission.

Chapter 13. CICS/400 basic mapping support (BMS) 145

Note: Causing data to be sent back is not necessarily an efficient way to pass
data from program to program.

v Insert-cursor indicator

 The insert-cursor indicator is not a field attribute. Instead, it places the cursor
under the first data character of the field whenever the map is sent with the
ERASE option. If the insert-cursor indicator is specified for more than one field,
the cursor is placed under the first data character of the last field specified. If no
insert-cursor indicator is specified, the cursor is placed at position zero (row one,
column one) on the display screen.

Note: If symbolic cursor is explicitly specified, this overrides the insert-cursor
indicator option.

v Background transparency

 Background transparency determines whether the background of an
alphanumeric field is transparent or opaque; that is, whether an underlying
(graphic) presentation space is visible between the characters.
 This feature is not supported by the 5250 architecture. However, you may define
this feature in maps because BMS will prevent the attribute being placed in
output data streams to a 5250 device.

v Field outlining

 Field outlining allows lines to be included above, below, to the left, and to the
right of a field. You can use these lines in any combination to construct boxes
around fields or groups of fields.

v SO/SI creation

 SO/SI creation indicates that the field may contain a mixture of single-byte and
double-byte character set (DBCS) data. The DBCS subfields within an EBCDIC
field are delimited by SO (shift out) and SI (shift in) characters. SO and SI both
occupy a single screen position (normally displayed as a blank). They can be
included in any non-DBCS field on output if they are correctly paired. The
terminal user can transmit them inbound if they are already present in the field,
but may only add them to an EBCDIC field if the field has the SOSI attribute.

Not all devices support all the attributes. BMS ensures that attributes not
supported by the device (as specified in the terminal definition) are ignored when
building the data stream.

Screen layout design
The features of the 3270 system allow screen layouts to be designed for operator
convenience and efficiency. The success of an online system depends on its ease of
use, screen clarity, and terminal operator acceptance.

Refer to the following manual for information about screen layout design and user
dialog flows:
v SAA CUA Basic Interface Design Guide, SC26–4583

The following features of some 3270 and 5250 displays make it easier for the
layout designer to meet the requirement of ease of use:
v Color
v Field highlighting
v Ease of correction
v Numeric shift for numeric data

146 CICS for iSeries Application Programming Guide V5

v Validation
v Field delimiters or stoppers (to control the length of data entered)

The maximum number of fields that may be sent to a 5250 display device is 256.
You should bear this limit in mind when designing screens for use on 5250
devices.

Screen sizes
Screen sizes supported are 24 X 80 and 27 X 132.

The system administrator uses the CEDA transaction (see the CICS for iSeries
Administration and Operations Guide) or native OS/400 CL commands (see the CICS
for iSeries Administration and Operations Guide) to:
v Specify the alternate screen sizes, by means of the ALTSCN parameter on the

ADDCICSTCT or CHGCICSTCT CL command.
v Specify whether the default or alternate screen size is to be used by the

transaction, by means of the SCRNSZE parameter on the ADDCICSPCT or
CHGCICSPCT CL command.

Defining BMS maps
This section describes the three macros DFHMSD, DFHMDI, and DFHMDF. They
are used to define BMS map sets, maps, and fields. It shows how to use the
macros to define a simple map set, and how to create this map set for use by
application programs.

You must define all maps (including a single map) as part of a map set. You
always start your map set definition with a DFHMSD TYPE=MAP or
TYPE=DSECT macro, and must always end it with a DFHMSD TYPE=FINAL
macro. Labels start in column 1, macros start in column 10, operands start in
column 15, and continuation characters are placed in column 72, with the
continued operands in column 16. Comments may be included in the source by
coding an asterisk (*) in column 1, followed by the comment text.

Defining a map set
You use the DFHMSD macro to define a set of maps (a map set). The macro
consists of operands that define characteristics of the map or maps in the map set.
Some of the operands of DFHMSD macros establish defaults for subsequent
DFHMDI and DFHMDF macros. The map set source files can be stored before
assembly.

For information about the syntax of the DFHMSD macro, see page 555. You should
also see “Getting storage for a data structure” on page 156 for information about
storing maps, and “Creating BMS maps” on page 148 for information about
suffixing map set names.

Defining maps within a map set
Each map in a map set is defined using the DFHMDI macro. This macro is similar
in form to DFHMSD and specifies defaults for fields within the map. It allows you
to override some of the options inherited from DFHMSD, and to specify some new
ones. For information about the full syntax of the DFHMDI macro, see page 562.

Chapter 13. CICS/400 basic mapping support (BMS) 147

A map set definition must contain at least one map definition. Where you have
more than one map, you code their definitions one after another, the end of one
being marked by the next DFHMDI macro or by a DFHMSD TYPE=FINAL macro.

All maps in a map set are loaded whenever any one of them is used. If all the
maps in a map set are used during a single invocation of the program, the single
load of all maps is more efficient than loading each map as it is required. You
should ensure that you use unique names for maps within a map set, or within
multiple map sets that are copied into an application program.

Another reason for loading several maps at the same time is that more than one of
them can appear on the screen at one time. This is because a map definition can
specify where a map is to be placed on the screen. When BMS sends a map to a
display, it does not erase the existing contents of the display unless you code the
ERASE option. Instead, it uses your program data, plus constant map data, to
overlay part of the display screen. If you design your maps so that they occupy
different parts of a screen, you can display them at the same time. Alternatively,
you can design some maps in a map set so that they overlay one another and
allow you to erase parts of the contents of the screen without affecting the rest of
the screen.

Data fields
A map usually consists of one or more data fields. Each field contains display data,
and has a set of associated attributes that are initialized by coding operands in a
DFHMDF macro. All field definition macros following a map definition macro
belong to that map. The end of one field definition is indicated by the beginning of
another, by the next DFHMDI macro, or by a DFHMSD TYPE=FINAL macro.

Maps without fields
You can define maps that have no fields. You do this to reserve part of the screen
for use by another program. By defining such a null map, you ensure that BMS
has no effect on data that appears in the reserved part of the screen.

There are other considerations when coordinating the use of a screen between BMS
and other programs; see “Accessing data outside the program” on page 159.

Defining fields within a BMS map
The DFHMDF macro is used to specify initial attributes to be given to fields within
a map. For the syntax of the DFHMDF macro, see page 566.

Terminating a map set definition
The macro DFHMSD TYPE=FINAL terminates a map set definition. For the full
syntax of the DFHMSD macro, see page 555. If you specify the name of the map
set, it must match that specified in the DFHMSD macro.

Creating BMS maps
You create a BMS map definition, generating a symbolic description map
(sometimes referred to as a logical map) and a physical map.

Symbolic description map
A symbolic-description map-set definition is created as either a COBOL copybook
or C header file containing the record layout or structure, depending on the value
of the LANG option on the DFHMSD macro. It is stored as a member of a source
file defined by the LMAPSRC and LMAPMBR parameters of the CRTCICSMAP CL

148 CICS for iSeries Application Programming Guide V5

command. The member name is usually the same as the name of the map set, but
it need not be. The symbolic description map must be copied into the application
program before it can be used.

Physical map
A physical map-set definition is created as *USRSPC in the library specified.

When you create the physical map set, you should consider whether to add a
suffix to its name (specified with the SUFFIX operand on the DFHMSD macro).
The reason for suffixing a map set is that you might want to produce alternative
versions of it (each with a different suffix) for different terminal models.

Map set suffixing
If you want to execute the same transaction from more than one type of terminal,
you might need to use BMS map set suffixing. If you are prepared to use the same
map to format data for all your terminals, you need not read the rest of this
section. If however, you want to organize output data according to the terminal in
use, making best use of its features, you ought to consider suffixing map sets.

To avoid problems at the creation stage you should:
v use the SUFFIX or TERM operand on your DFHMSD macros (you can safely use

the same name for your map set and your maps)
v ensure that your physical maps are created with the correct suffixes
v ensure that the PPT entry for the physical map uses the correctly suffixed name

Chapter 13. CICS/400 basic mapping support (BMS) 149

If you have displays with screens of different sizes, you might want to arrange
display fields differently for each size of screen, ensuring that each display appears
“balanced”. For different versions of the same map, fields must be in the same

Figure 29. BMS map set suffixing logic

150 CICS for iSeries Application Programming Guide V5

order in each map definition macro, but the screen order can be different for each
version. You add a different suffix to each version of the same map. You can also
use map set suffixing to send maps to another terminal in a different language. For
example, you may want to create the map with a suffix that denotes German, and
then send a map to a terminal or signed-on user in Germany.

When a mapping operation is requested by a BMS command, CICS adds a suffix
to the map set name specified in the command, and attempts to load a map set
with that suffixed name.

The search for a suitable map set is carried out as follows:
1. If the terminal is a 5250, CICS looks for a map set with the specified name

suffixed with Z.
2. If this test fails or if the device is a 3270, CICS looks for a map set with the

specified name suffixed with M.
3. If this test fails, CICS looks for a map set with the specified name and no

suffix.

Although a map set created specifically for use with a 5250 terminal is suffixed
with Z, CICS allows for the fact that the 5250 may be in use only as a 3270
emulator and therefore a map set suffixed with M or an unsuffixed map set, would
be valid.

Display devices can be of two screen sizes: 80 characters by 24 lines, or 132 by 27.
For example, a 3278 Model 5 display device has a screen that is 132 characters
wide, and 27 lines deep. If your terminal has different characteristics, you may use
a suffix of your own choice, using the SUFFIX operand. Map set suffixing can
provide separate physical map layouts with the same symbolic description map
definition. If you do not need to distinguish between maps for the two types, you
need produce only one version, and should give it an unsuffixed name.

You can code SUFFIX, instead of TERM, on DFHMSD if you need to create a
special version of a map. By specifying SCRNSZE(*ALT) when you define the PCT
entry for the transaction that uses the map, you tell BMS to try to load a special
version of the map. This is the version of the physical map whose suffix is
specified by the ALTSUFFIX operand of the TCT entry for the terminal. Table
entries such as these are usually defined by a system administrator.

If all your map sets are unsuffixed, you get better performance if NODDS is
specified in the device dependent suffixing element (element 3) of the DEVCTL
parameter of the ADDCICSSIT command. However, if your system has been
initialized with the default DDS option, you will get better performance if all your
map sets are suffixed. Figure 29 on page 150 shows why this is so.

Writing programs to use BMS services
The layout of a BMS input or output display is defined by one or more maps.
These can define display data fields that can be addressed by name from the
application program. This means that the attributes (that is, color, highlighting, and
so on) and contents of such fields can be changed dynamically.

Application programs use the BMS EXEC CICS SEND MAP and EXEC CICS
RECEIVE MAP commands to send and receive display data. The remainder of this

Chapter 13. CICS/400 basic mapping support (BMS) 151

chapter shows the syntax of these and other commands, and demonstrates their
use. It also explains how to produce a printed copy of a screen image, and to
output data to a printer.

Copying symbolic description maps
The section “Defining BMS maps” on page 147 describes how to define the
symbolic version of a map set. The created version of a map set (the symbolic
storage definition) is an application data structure that must be copied into any
application program that refers to fields in its maps.

The following example shows you how to copy these structures for each
programming language. In this example, mapsetname1, mapsetname2, and
mapsetname3 are the names of members in the source library that contain BMS
symbolic map definitions. These member names are the same as the names used
for the symbolic description maps, as described in “Creating BMS maps” on page
148..
v A COBOL/400 program should contain a COBOL/400 COPY statement for each

symbolic map definition. Generally, you should code the COPY statements in the
working-storage section of a program:
WORKING-STORAGE SECTION.
COPY mapsetname1.
COPY mapsetname2.
COPY mapsetname3. ...
 If the maps are located in the linkage section, storage must be allocated first if
an EXEC CICS SEND MAP FROM command is issued before an EXEC CICS
RECEIVE MAP command. BMS only preallocates storage for the SET option at
receive time, not send time.

v A ILE C program must contain a #include statement for each symbolic storage
definition:
#include mapsetname1;
#include mapsetname2;
#include mapsetname3; ...

Data structures
The symbolic map data structures that result from executing map and field
definition macros contain extended versions of the fields, each one consisting of
subfields. Each subfield can be referred to by the name assigned to the field, plus a
single-letter suffix. Each kind of subfield has a different suffix.

Furthermore, the entire input or output data structure can be addressed by its
suffixed name. The suffixed name of an input map is its original name extended
by the suffix “I”. The corresponding suffix for the output map is “O”.

In this example, the 12-byte prefix is generated for compatibility with the terminal
input-output area (TIOA) prefix option.

152 CICS for iSeries Application Programming Guide V5

Input map data structures
The suffixes used to address subfields, and the contents of those subfields, in input
maps are:

F A flag byte. This is normally set to X'00'. If the field has been modified but
no data is sent (that is, the field is cleared), the flag byte is set to X'80'.

I Input data read from the display. It is set to X'00' if no data is entered for
that field.

 If the previous map sent specified FSET for this field, the data previously
sent is returned even if the operator did not key into this field.

L A halfword binary length value. This defines the number of characters that
are returned into the data field before the application program refers to it.

Input field suffixes
Having read data, a program can process it by issuing ordinary application
programming commands that address fields by name.

Consider a field, called INPUT, in an input map. A program can test that either its
length field INPUTL contains a value greater than 0 (data has been entered) or that
its flag byte INPUTF indicates that the field has been cleared. If one of these
conditions is true, it can, for example, move the first INPUTL characters from
INPUTI to another data area.

The suffix on the data structure for the entire map enables you to manipulate the
entire data structure. For example, you can write simple commands to copy the
entire structure into another data area.

Output map data structures
The suffixes used to address subfields, and the contents of those subfields, in
output maps are:

A An attribute byte defining the characteristics of the field (for example,
protected or unprotected).

C An attribute byte specifying the color of the field.

01 B169MAPI
 02 FILLER PIC X(12).
 02 TRANSL BINARY PIC S9(4).
 02 TRANSF PICTURE X.
 02 FILLER REDEFINES TRANSF.
 03 TRANSA PICTURE X.
 02 TRANSI PIC X(4).
 02 NUMBL BINARY PIC S9(4).
 02 NUMBF PICTURE X.
 02 FILLER REDEFINES NUMBF.
 03 NUMBA PICTURE X.
 02 NUMBI PIC 9999.
01 B169MAPO REDEFINES B169MAPI.
 02 FILLER PIC X(12).
 02 FILLER PICTURE X(3).
 02 TRANSO PIC X(4).
 02 FILLER PICTURE X(3).
 02 NUMBO PIC X(4).

Figure 30. Some suffixes and subfields

Chapter 13. CICS/400 basic mapping support (BMS) 153

H An attribute byte defining the extended highlighting to be used for the
field.

M An attribute byte defining that SO/SI creation is to be used.

O Output data to be sent to the display. The program usually stores data in
such a field before sending the map. If the contents of the field begin with
a null character (X'00') the entire field is ignored, and the contents of the
display field are taken from the physical map. If you want to send a blank
field, you must store blanks (X'40') in the symbolic map data structure.
Being nonnull, this overrides the contents of the physical map.

P An attribute byte defining the programmed symbol set to be used within a
field in a display. CICS/400 supports only PS=8.

U An attribute byte defining the outline to be used.

V An attribute byte defining the kind of validation to be performed on data
typed into a display field.

If MODE=INOUT is specified, the “fieldnameA” subfield is defined in the input
map data structure. (In COBOL/400, compiler errors occur if a MOVE statement
modifying an attribute byte is qualified to refer to the output map.)

Subfields with suffixes C, H, M, P, and U are generated if specified in the DSATTS
operand of the DFHMDI and DFHMSD macros in the BMS map source.

As with input data fields, a program can address individual subfields in an output
field, verifying or changing their contents. For example, an application program
can check a calculated data value, for example, BALANCE. If the value is found to
be negative, the color attribute constant BALANCEC in a field called BALANCE
can be set to produce red characters when displayed. The data value in the field
occupies subfield BALANCEO.

You can also manipulate the entire output data structure using its suffixed name.
For example, you can copy data into it from another area. You are recommended to
write commands to set the entire data structure to nulls (X'00') before using its
corresponding physical map in an output operation. By doing this, you ensure that
fields and attributes in the output display inherit the default contents of the
physical map, not whatever happens to be in the symbolic data structure. Figure 31
shows how you might do this.

Attribute constants
Subfield suffixing allows an application program to change the data within a data
structure. However, the bit patterns representing particular attributes are difficult
to remember, so CICS provides a list of named standard attribute bytes. You can
code these names in a program instead of their hexadecimal equivalents. To use
them, you must copy the list into your program, using the name DFHBMSCA, or
you may set up your own copybook with names that are meaningful to you. For
information about the constants and their meanings, see Appendix B, “BMS-related
constants,” on page 545.

COBOL/400 MOVE LOW-VALUES TO MAPO
ILE C memset(mapo,X’00’sizeof(mapo));

Figure 31. Setting output map data structure to nulls

154 CICS for iSeries Application Programming Guide V5

Using attribute constants and subfield suffixing, a program can modify field
attributes using simple commands. Figure 32 gives an example of how you could
(1) put data into an output data field, (2) set the color attribute of the output data
field, and (3) set the highlighting attribute of the output data field:

Additional installation-defined named attribute constants can be created in
DFHBMSCA in the source library.

Incorrect data
BMS does not check the validity of attribute and data values in the symbolic data
structure. However BMS does ensure that attributes are not sent to terminals that
do not support them. Incorrect data may be transmitted to the terminal. Some
terminals can detect this incorrect data and send error information to CICS. This
error information is handled by CICS code and can result in an abnormal
termination of the transaction with an ATNI abend code.

Sending data to a display device
You use the EXEC CICS SEND MAP command to send mapped data to a display
device.

You are recommended to use this command in preference to the EXEC CICS SEND
TEXT command when sending data to DBCS capable devices, particularly when
the device is a 5250.

If you use DBCS data, you can use the EXEC CICS SEND MAP command to send
maps to 3270 displays without any problem. However, when the map is sent to a
5250 display, the right most character is lost. You should consider reserving the
right most position in fields defined as PS=8 as a redundant character.

You can send three kinds of data using the EXEC CICS SEND MAP command,
depending on the options you specify, as follows:
1. Constant display data (with attributes) such as headings, footings, prompt

fields, and comments
2. Variable display data (with attributes) such as user data or warning messages
3. Device control data such as instructions to clear the screen or sound an alarm

before displaying data

For the full syntax of the EXEC CICS SEND MAP command, see page 436.

The MAP option names the map that is used to format the data, and the MAPSET
option names the map set where the map belongs.

If the MAPSET option is omitted in an EXEC CICS SEND MAP command, the
name in the MAP option is taken as the map set name, and the map set is
assumed to contain a single map. If the map set has more than one map, the first
is used, regardless of individual map names.

COBOL/400 MOVE CUSTNO TO ACCOUNTO.... (1)
 MOVE DFHBLUE TO ACCOUNTC... (2)
 MOVE DFHBLINK TO ACCOUNTH.. (3)
ILE C accounto=CUSTNO;.... (1)
 accountc=DFHBLUE;... (2)
 accounth=DFHBLINK;.. (3)

Figure 32. Modifying map field attributes

Chapter 13. CICS/400 basic mapping support (BMS) 155

In its simplest form, the EXEC CICS SEND MAP command is used as follows:
v The application program assigns values to variables named in the symbolic

description map.
v The program issues an EXEC CICS SEND MAP command. This uses the

application data in the application data structure to replace default data and
attributes in the physical map, and sends the modified map to the display.

For example, if the first map in a map set called DISPLAY is an output map of the
same name, the map can be displayed using the command:
EXEC CICS SEND MAP(’DISPLAY’)

Another map, called ERROR, in the same map set can be displayed by:
EXEC CICS SEND MAP(’ERROR’) MAPSET(’DISPLAY’)

Note: The omission of the MAPSET option in an EXEC CICS SEND MAP
command is not recommended, except when the map set contains only one
map. By default, BMS displays application data or attribute data from the
application data structure rather than default data from the physical map. To
override this for a given field, your program must set the corresponding
subfield in the data structure to hexadecimal zeros (X'00') before issuing an
EXEC CICS SEND MAP command.

Composite displays
If your program sends a succession of maps to a display device, the final form of
the display depends on both the design of the maps, and the form of the EXEC
CICS SEND MAP command. For example, if the final map fills the screen, or the
EXEC CICS SEND MAP command includes the ERASE option (see “Device control
options” on page 158), it obliterates all previous output. However, if you design
your maps to occupy different parts of the screen, or to overlay each other only
partially (see “Defining maps within a map set” on page 147), you can combine
them to produce the final display.

Refreshing and modifying displays
You use the MAPONLY option of the EXEC CICS SEND MAP command to build a
display using data from the physical map, without inserting user data. This can be
useful when sending a menu to a display device, because no data is sent with the
map, and input data fields regain their default data values (perhaps blank).

You use the DATAONLY option to modify the variable data in a display image
that has already been created by a previous EXEC CICS SEND MAP command.
BMS transmits variable data but no physical map data.

No data is sent for fields that you have cleared to nulls (X'00'). You can use EXEC
CICS SEND MAP DATAONLY to ensure that only changed fields are sent. The
value X'00' is a valid field attribute only on 3270 devices. (It means UNPROT,
NORM, or NO MDT.) If you wish to change a field’s attribute to UNPROT,
NORM, or NO MDT on a 5250 device, you should use the graphic character
equivalent, which is X'40'. All the graphic character equivalents for BMS attributes
are defined in Appendix B, “BMS-related constants,” on page 545.

Getting storage for a data structure
You have now seen how to map data from one or more data structures. Depending
on how you define your map sets, a program might have to issue commands to
acquire main storage for the data structures it uses. It does this by issuing EXEC
CICS GETMAIN commands. You can usually avoid having to code EXEC CICS
GETMAIN commands by coding STORAGE=AUTO on the DFHMSD macro.

156 CICS for iSeries Application Programming Guide V5

It has been assumed so far in this chapter that every output map has its own data
structure. However, you might decide that this uses too much storage. To save
storage, you can specify that different maps are to use the same storage area. You
do this by coding BASE=name (or nothing at all), instead of STORAGE=AUTO, on
the DFHMSD macro. This section describes what happens when you code each
operand, and how it affects application programs. For the full syntax of the BASE
operand, see “DFHMSD” on page 555.

Remember that, however you acquire storage, you should clear its contents (to
X'00') before issuing an EXEC CICS SEND MAP command. If you do not do this,
existing data in storage can modify the output display unpredictably. If you use an
EXEC CICS GETMAIN command to acquire storage, you can clear the storage by
coding the INITIMG option.

COBOL/400:

STORAGE=AUTO
The data structure must be copied into the working-storage
section. CICS acquires storage automatically for every map; you do
not have to code an EXEC CICS GETMAIN command.

BASE=name The map set must be copied into the linkage section. You must
code an EXEC CICS GETMAIN command to acquire enough main
storage to contain the largest map in the set.

Nothing specified
If the map set is copied into the working-storage section, you don’t
have to code an EXEC CICS GETMAIN command, but you should
place the largest map first in the set.

 If the map set is copied into the linkage section, you must code an
EXEC CICS GETMAIN command to get storage for it.

Note: When you use an EXEC CICS GETMAIN command to get main storage for
a COBOL/400 map, you must ensure that you establish addressability for
the map. For further information about the EXEC CICS GETMAIN
command, see page 367.

ILE C:

STORAGE=AUTO
specifies that the symbolic description maps are to be declared as
having the AUTOMATIC storage class. If STORAGE=AUTO is not
specified, they are declared as pointers. You cannot specify both
BASE=name and STORAGE=AUTO for the same map set. If
STORAGE=AUTO is specified and TIOAPFX is not, TIOAPFX=YES
is assumed.

BASE=name You must code an EXEC CICS GETMAIN command that gets at
least enough main storage to contain the largest symbolic map in
the map sets sharing this base.

 The name specified in the BASE operand is used as the name of
the pointer variable on which the symbolic description map is
based. If you omit this operand, the default name (BMSMAPBR) is
used for the pointer variable. You must establish addressability for
the based structures.

Nothing specified
You must code an EXEC CICS GETMAIN command that sets the

Chapter 13. CICS/400 basic mapping support (BMS) 157

pointer BMSMAPBR to the address of the acquired data area. The
EXEC CICS GETMAIN command must get at least enough storage
to contain the largest map in the sets.

Alternative data structures
The examples so far have shown EXEC CICS SEND MAP commands that contain
literal map names. If the map name referred to by your program is to be a
variable, you need to code additional options, FROM and LENGTH, on the EXEC
CICS SEND MAP command. Also, you may want to use your own data area rather
than the data structures from the symbolic description map, even when you use a
literal map name.

FROM enables you to display data stored in a data area other than the data
structure for the symbolic description map. In the command syntax summary,
“data-area” represents the name of the alternative data area.

FROM and MAPONLY are mutually exclusive.

LENGTH specifies the length of the data string stored in the FROM data area. You
must specify the LENGTH option if the data to be mapped is shorter than the data
area expected by the map.

Device control options
In addition to transmitting application data to a display, BMS can relay device
control commands. An application program uses options on the EXEC CICS SEND
command to specify which controls are to be activated. Alternatively, it can use the
BMS EXEC CICS SEND CONTROL command, which transmits device control
commands without also sending application data.

For example, the following EXEC CICS SEND MAP command erases the screen
before data is displayed.

You can code one or more of the following device control options in an EXEC
CICS SEND MAP command:

ALARM Sound audible alarm on displaying data.

CURSOR Specify position of cursor after output. The cursor position is a
halfword binary value, representing the absolute screen address of
the cursor. However, you need not always specify a value. For
more information, see “Cursor positioning” on page 159. If a value
is specified for the cursor option, it must be positive, because a
negative value may cause unpredictable results.

ERASE Erase screen and place cursor in top left-hand corner of screen
before output, unless the cursor is positioned specifically, either in
the map definition or by the CURSOR option.

 The first EXEC CICS SEND MAP command of any CICS
application program should specify ERASE. This ensures that the
size of the screen is set to default or alternate, according to the
SCRNSZE parameter defined in the PCT for this transaction.

ERASEAUP Erase all unprotected fields before output.

EXEC CICS SEND MAP(’ERROR’) MAPSET(’DISPLAY’)
 ERASE

158 CICS for iSeries Application Programming Guide V5

FORMFEED Send a form feed character as the first character in the
device-dependent data stream.

FREEKB Unlock the keyboard for data input.

FRSET Reset all modified data tags (to “not modified” state) before
output.

PRINT Start printing (when terminal is a printer).

Cursor positioning
You can control the positioning of the display cursor in three different ways, as
described below.

Normal cursor positioning
You can specify a 2-byte cursor position on the BMS EXEC CICS SEND commands.
This enables you to specify the absolute value of the cursor position on the display
screen after the EXEC CICS SEND command has been performed. Note that the
first location on the display screen is address zero.

You specify the address on CURSOR option, as in the following example:
CURSOR(44)

Initial display position
If you omit the CURSOR option on an EXEC CICS SEND MAP command with the
ERASE option, BMS searches the map for a field with the IC attribute. (You would
have given it this attribute by coding ATTRB=IC on the DFHMDF macro for the
field.) If there is more than one field with the IC attribute, BMS places the cursor at
the beginning of the last one. If there is no such field, BMS places the cursor at
screen address zero.

If you omit the CURSOR option from an EXEC CICS SEND CONTROL command,
or from an EXEC CICS SEND MAP command without the ERASE option, cursor
position remains unchanged.

Symbolic cursor positioning
You can use symbolic cursor positioning instead of coding an explicit value on the
CURSOR option of the EXEC CICS SEND MAP command.

To do this:
1. Specify MODE=INOUT in the DFHMSD macro.
2. Set the length of the field (where the cursor is to be positioned) to −1.
3. Execute the EXEC CICS SEND command, specifying CURSOR without an

argument.

CICS then places the cursor under the first data byte in the field on the output
screen. If the length of more than one field is set to −1, the cursor is placed at the
beginning of the first of those fields.

If you use symbolic cursor positioning with the EXEC CICS SEND CONTROL
command, the cursor is always positioned at position zero of the panel.

Accessing data outside the program
Sometimes your program needs access to information held by CICS. The EXEC
CICS ASSIGN command allows it such access.

Chapter 13. CICS/400 basic mapping support (BMS) 159

Some EXEC CICS ASSIGN command options apply exclusively to BMS; for
information about these options, see page 327. However, the only EXEC CICS
ASSIGN command options you can use under BMS are those concerned with the
position and size of maps. These are particularly useful with null maps. (Null
maps have already been described under “Maps without fields” on page 148.) The
EXEC CICS ASSIGN command options you can use are:

MAPLINE Requests the number of the line, on a display, that contains the
origin of the most recently sent map.

MAPCOLUMN
Requests the number of the column, on a display, that contains the
origin of the most recently sent map.

MAPWIDTH Returns the width of the most recently sent map.

MAPHEIGHT Returns the height of the most recently sent map.

Receiving data from a display
You use the EXEC CICS RECEIVE MAP command to receive data from a display.
The data from the display is mapped into a data area in an application program.
This command is not sensitive to DBCS data and so works in the same way for
DBCS data as for SBCS data.

For the full syntax of the EXEC CICS RECEIVE MAP command, see page 415. The
MAP option names the map that is used to convert the data to its unformatted
form, and the MAPSET option names the map set where the map belongs. The
effect of omitting the MAPSET option is the same as explained for an EXEC CICS
SEND MAP command on 155.

For example, in its simplest form the RECEIVE MAP command is coded as:

This command tells BMS to map the input data into a symbolic map data structure
called DISPLAY. The example assumes that the name of the map set is also
DISPLAY.

Another map, MENU, in the same map set can be read by:

This command tells BMS to map the input data into a symbolic map data structure
called MENU.

After an EXEC CICS RECEIVE MAP command, your program can determine the
inbound cursor position by inspecting the halfword binary value stored in
EIBCPOSN. In doing this, the application program becomes dependent on the
physical layout of the screen, although BMS separates the screen layout from the
application for other interfaces.

Receiving data into an alternative data structure
The sample EXEC CICS RECEIVE MAP commands shown above use a literal for
the name of the map or map set. You can also use a variable for these names, but
you must use one of the INTO or SET options.

EXEC CICS RECEIVE MAP(’DISPLAY’)

EXEC CICS RECEIVE MAP(’MENU’) MAPSET(’DISPLAY’)

160 CICS for iSeries Application Programming Guide V5

If you code the INTO option, display data is mapped into the named data area
rather than into the data structure for the symbolic description.

If you code the SET option, BMS acquires a data area for you, maps the display
data into it, and stores the address of the data area in the named pointer reference.

The rules for getting main storage for an input operation are the same as for
output. For more information, see “Getting storage for a data structure” on page
156..

BMS sets the receiving area to nulls (X'00') before performing the receive operation,
so you should save any data in this area before performing a receive operation.
Furthermore, if you depend on BMS to set a data area to nulls for you during a
receive operation, you should be aware that, if the MAPFAIL condition occurs,
BMS does not set the input map to nulls.

If an operator types into a BMS input map, but does not fill one of the fields, BMS
justifies the input data and pads the empty part of the field according to
predefined rules. These depend on what you specify with the JUSTIFY operand of
the DFHMDF macro. For general-usage programming interface information about
the JUSTIFY operand, see “DFHMDF” on page 566.

The MAPFAIL condition can occur unexpectedly after an EXEC CICS RECEIVE
MAP command. For example, it occurs if the terminal operator presses a PA key
when CICS is waiting to perform an EXEC CICS RECEIVE MAP command. The
PA1, PA2, PA3, or CLEAR keys will produce MAPFAIL conditions. PF keys or the
enter key produce the MAPFAIL condition only if no user data was entered into a
field, with MDT off, on the area of the screen defined for the received map.
Therefore, you should always consider using the RESP option and inspecting the
returned code, or coding an EXEC CICS HANDLE CONDITION command for the
MAPFAIL condition.

Uppercase translation
By default, the data to be mapped is assumed to come from a terminal. The
terminal control table entry for the terminal can specify that all input data is to be
translated to uppercase by specifying UCTRN(*YES) in the TCT definition for the
terminal. You can override this for any individual EXEC CICS RECEIVE command
by specifying ASIS. Note, however, that ASIS has no effect on the first EXEC CICS
RECEIVE MAP command of a transaction. (This means that ASIS is irrelevant to
pseudoconversational transactions that issue only one EXEC CICS RECEIVE MAP
command.)

Mapping data from another data area
Sometimes you need to perform an input mapping operation in two stages;
accepting and storing the input data in one stage, and mapping it in the second.
For example, your program might receive (but not map) data using a terminal
control EXEC CICS RECEIVE command. It would then have to map the data from
the storage area or pass the data to a subsequent program to map the data.

This might be done to avoid the overhead incurred by BMS mapping, if the
received data does not need to be processed by the first program.

You use the FROM and LENGTH options of the EXEC CICS RECEIVE MAP
command to specify that data is to be mapped from a data area instead of from a
terminal. The FROM option names the data area; the LENGTH option indicates the
number of bytes of data to be mapped. If the data is produced by a terminal

Chapter 13. CICS/400 basic mapping support (BMS) 161

control EXEC CICS RECEIVE command, the LENGTH value of the EXEC CICS
RECEIVE MAP command must match that returned by the original EXEC CICS
RECEIVE command.

The LENGTH option is used when multiple maps in a map set have been sent to
the display device. When an EXEC CICS RECEIVE INTO command is executed,
this can only be done once against the input data stream. Otherwise, the next
EXEC CICS RECEIVE INTO causes a read request to be issued to the device. A
technique of the EXEC CICS RECEIVE MAP FROM command allows the
programmer to issue multiple receive requests to determine on which map of the
map set the user entered data.

Before issuing an EXEC CICS RECEIVE MAP command, the program should
inspect EIBAID for the program function keys.

You cannot issue the EXEC CICS RECEIVE MAP command in a task not associated
with a terminal, because BMS needs to refer to terminal information to analyze the
data stream.

For general programming information about the terminal control EXEC CICS
RECEIVE command, see page 412.

Note: The data obtained from an EXEC CICS RECEIVE BUFFER command cannot
be mapped, because the data does not contain set buffer address (SBA)
orders and a MAPFAIL condition is raised.

Responding to terminal input
Some operator actions cause an AID to be sent to CICS. Each such action generates
a different AID. The AID is a single character value, which an application program
can test by inspecting the contents of the EIBAID field and comparing it to the
values supplied in the DFHAID copybook. This can be used as a mechanism for
controlling program flow. The EXEC CICS HANDLE AID command controls
conditional branching caused by AIDs. If any of the RESP, RESP2, and
NOHANDLE options have been specified, the HANDLE AID function is
suspended for that command.

Exception conditions
CICS exception conditions have already been introduced under Chapter 6,
“Dealing with exception conditions,” on page 87. Exception conditions can occur
when you are using BMS commands. For general-usage programming interface
information about the BMS commands, and the default system action they invoke,
see Chapter 32, “Application programming commands - reference,” on page 323.

An exception condition is not necessarily an error condition. Sometimes you might
even want to treat an exception condition as part of the normal course of events.

If a RESP, RESP2, or NOHANDLE option is specified on the BMS command, then
any HANDLE CONDITION function is suspended for that command.

The EIBAID field
A program can examine the value of the EIBAID field in the EIB to find out which
attention key has been pressed. The 3270 and 5250 terminal transmits an AID
character stored in field EIBAID. The program can compare the contents of EIBAID
with the constants supplied in the CICS copybook DFHAID. Using EIBAID is

162 CICS for iSeries Application Programming Guide V5

particularly suited to a structured programming environment. For general-usage
programming interface information about DFHAID, see Appendix B, “BMS-related
constants,” on page 545.

The EXEC CICS HANDLE AID command
For COBOL/400 programs only, instead of examining the contents of EIBAID, you
can use the EXEC CICS HANDLE AID command to pass control to a specified
label when CICS receives an AID from a display device; control is passed after the
input operation is completed. In the absence of an EXEC CICS HANDLE AID
command for an AID, control returns to the application program at the point
immediately following the input request.

You can suspend the EXEC CICS HANDLE AID command using the EXEC CICS
PUSH HANDLE and EXEC CICS POP HANDLE commands as described in
Chapter 6, “Dealing with exception conditions,” on page 87. Note that the RESP
option (invokes NOHANDLE) suspends the HANDLE AID function in the same
way as it does with the HANDLE CONDITION function, and is better suited to a
structured programming environment.

An EXEC CICS HANDLE AID command takes precedence over an EXEC CICS
HANDLE CONDITION command, unless the exception condition stops receipt of
the AID. If an AID is received during an input operation that an EXEC CICS
HANDLE AID command is active for, control passes to the label specified in the
EXEC CICS HANDLE AID command, regardless of any exception conditions that
occur.

The EXEC CICS HANDLE AID command options that can be specified under BMS
are:

ANYKEY
Any PF key, or the CLEAR key, but not ENTER; in addition, for a 3270
device, any PA key and, for a 5250 device, record backspace are included.
See note 2 on page 143 for more information about record backspace

CLEAR
The key of that name

ENTER
The key of that name

PA1, PA2, or PA3 (3270), and record backspace (5250)
Any of the program access keys for a 3270 device, or record backspace for
a 5250 device. See note 2 on page 143 for more information about record
backspace.

PF1 through PF24
Any of the program function keys.

An EXEC CICS HANDLE AID command for a specified AID remains active until
the task is terminated or until another EXEC CICS HANDLE AID command is
issued for that AID. (If no label is specified in the new request, the existing EXEC
CICS HANDLE AID command is suspended.)

A EXEC CICS HANDLE AID command is valid only for the program that issues it.
Each new program in a task starts without any active HANDLE AID settings.
When control returns to a program from a program at a lower logical level, the
EXEC CICS HANDLE AID commands that were active in the higher-level program
before control was transferred from it are reactivated, and any EXEC CICS
HANDLE AID commands activated in the lower-level program are deactivated.

Chapter 13. CICS/400 basic mapping support (BMS) 163

If an AID covered by the general option ANYKEY is received and there is no
active EXEC CICS HANDLE AID command for the specified AID but there is an
active EXEC CICS HANDLE AID ANYKEY command, control passes to the label
specified in this command. A HANDLE AID command for an AID overrides the
HANDLE AID ANYKEY command in relation to that AID.

The following example shows an EXEC CICS HANDLE AID command that
specifies one label (LAB1) for the PA1 key AID, a second label (LAB2) for the PA2
and PA3 key AIDs, all of the PF key AIDs except PF10, and the CLEAR key AID:

You cannot code more than 16 options in a single EXEC CICS HANDLE AID
command.

Text processing
You use the EXEC CICS SEND TEXT command to send text to a terminal. You
cannot send DBCS data to a 5250 device using this command nor are you
recommended to use it to send DBCS data to 3270 devices. You should use the
EXEC CICS SEND MAP command instead. However, you can use the EXEC CICS
SEND TEXT command to send SBCS data to DBCS-capable devices. For
information about the syntax of the EXEC CICS SEND TEXT command, see “SEND
TEXT” on page 439.

The data area containing the text to be sent is specified in the FROM option. The
LENGTH option specifies the length of data sent from this area. To help control the
format of the display, the text may contain embedded new line characters (X'15')
and embedded blanks (X'40'). Character attribute controls may be embedded for
3270 devices but will be removed for 5250 devices. Character attribute controls are
discussed in “Character attribute control (3270 devices only)” on page 165.

DBCS data in the text must be preceded by an SA order sequence of X'2843F8'. If
SBCS data follows the DBCS data, the DBCS data must be delimited with another
SA order to reset the DBCS indication. This can be done either with the SA order
sequence of X'284300' or X'280000'.

Display characters in text
When formatting the text, BMS splits it into lines of length less than or equal to the
terminal page width. The terminal page width is assumed to be 80 bytes, unless
the transaction uses the alternate screen size of 27x132, in which case the terminal
page width is 132 bytes. Terminal screen width is specified using the ALTSCN
parameter of the TCT resource definition. See the CICS for iSeries Administration and
Operations Guide for further information about defining TCT entries.

BMS pads the ends of lines with blanks rather than splitting words. BMS starts
each line with a single blank corresponding to the attribute byte. On a 3270 display
device, the attribute byte is set to unprotected, autoskip, and normal intensity.

EXEC CICS HANDLE AID
 PA1(LAB1)
 ANYKEY(LAB2)
 PF10
END-EXEC.

164 CICS for iSeries Application Programming Guide V5

If a line of text ends with a character, however, and the next character is a blank,
BMS processes the data as if it were a sentence, that is, the blank will be removed
and the next character positioned in the first column of the next line.

Where a line of text ends with a blank and the next character is also a blank, BMS
honors all blanks to process the data as if it were in table format.

When DBCS data is being formatted, BMS looks for the DBCS blank character
(X'4040') not the SBCS blank (X'40').

BMS prevents the first byte of a DBCS character being placed in the last column
position of a row. A single null value is placed in this position.

Control characters in text
BMS accepts either of two control characters in the text.

The newline character which has the SBCS value of X'15', or the DBCS value of
X'0015', forces BMS to skip to the next line on the display. When used in a DBCS
field, the newline character must be coded in its two-byte DBCS representation.
BMS removes the newline character from the output data stream.

The null character which has the SBCS value of X'00', or the DBCS value of X'0000',
is treated as a display character. Unlike the blank character, it is not used by BMS
to determine the splitting of data between lines.

When used in a DBCS field, the null character must be coded in its two-byte DBCS
representation. BMS retains null characters in the output data stream.

No other control characters are accepted by BMS. Their use would result in an
abend with code ABMY.

If the FROM data area contains more text than fits on a single page, BMS creates
more than one page. These overwrite each other on a display terminal.

The other options of the EXEC CICS SEND TEXT command have the same effect
as the corresponding options of the EXEC CICS SEND MAP command, as
described in “Sending data to a display device” on page 155.

Character attribute control (3270 devices only)
When data is destined for a device that supports the 3270 extended data stream,
you can include SA (set attribute) orders in the data area specified in the FROM
option. These orders enable you to apply extended attributes to characters or
words in the data stream. The text may contain SA (Set Attribute) sequences for
the following types:
v Reset All Attribute Types (type value of x’00’)
v Extended Highlighting (type value of x’41’)
v Foreground Color (type value of x’42’)
v Character Set (type value of x’43’)
v Transparency (type value of x’46’)

You should refer to the 3270 Data Stream Programmer’s Reference manual for details
of coding SA sequences. BMS will accept any of the above values as an attribute
type value, but does not validate the setting of that attribute. For example, if you
code the SA order X'2842F1', BMS recognizes the 28 as an SA order, and then

Chapter 13. CICS/400 basic mapping support (BMS) 165

validates the 42 as the attribute type value for COLOR. Although in this example
the F1 which follows is valid and represents BLUE, BMS accepts any value in this
position. You are responsible for ensuring this value is correct.

Orders for extended attributes not supported by a terminal are removed from the
data stream by BMS. If a sequence of orders is less than three characters long, or
contains an invalid attribute type, the transaction is terminated abnormally with
abend code ABMX.

Attributes remain effective until overridden by subsequent orders. Attributes are
reset to their default values by a subsequent EXEC CICS SEND TEXT command.

As described in Appendix B, “BMS-related constants,” on page 545, copybook
DFHBMSCA contains a selection of predefined constants that you can use in your
programs.

Unsupported attributes
The Field Outlining attribute is supported only in the 3270 data stream architecture
as a field based attribute, not a character attribute. Because the EXEC CICS SEND
TEXT command supports only character attributes, field outlining cannot be used.

The Background Color attribute is supported in the 3270 data stream architecture
as both a field-based and a character attribute. However, since CICS has never
supported it in either capacity, it is regarded as invalid by the EXEC CICS SEND
TEXT command.

The SOSI attribute is also supported in the 3270 data stream architecture as both a
field-based and a character attribute. However, CICS supports SOSI only as a
field-based attribute and it is therefore regarded as invalid by the EXEC CICS
SEND TEXT command.

Graphic data fields
Graphic data fields are fields that contain only DBCS characters. These fields are
also referred to as “DBCS-only” fields, and in the mainframe environment they are
referred to as “pure DBCS” fields.

In the 3270 architecture, data in graphic fields is not enclosed by SO and SI
characters. The data is defined as graphic by using the PS (Programmed Symbols)
extended attribute with a type value of X'F8'.

However, in the 5250 architecture, unless the new ideographic fields support of the
5494 controller is in effect, graphic data fields must be enclosed in SO and SI
characters.

This usually means that the iSeries data conversion routines remove one DBCS
character from graphic fields to make space for an SO and an SI character. The
rightmost character is removed from the fields.

If a graphic field wraps around from the bottom line of the display to the top line,
several DBCS characters may be removed from the field. Although BMS prevents
fields wrapping in this way, this might occur as a result of a terminal control EXEC
CICS SEND command when the application is building the data stream.

The loss of the single character in each field could be overcome by placing a DBCS
blank character at the rightmost position in each graphic field.

166 CICS for iSeries Application Programming Guide V5

Printed output
Very often you may want printed output (hardcopy) in addition, or instead of, the
screen images produced by a transaction. You can use the hardware print key to
print the contents of your display screen, or you can use the asynchronous page
build transaction of CICS to produce hardcopy on a printer.

Using the hardware print key
Some display terminal models have a hardware print key. Pressing this key
initiates a print process involving only the terminal, its controller, and a printer
attached to the controller. This allows you to print the contents of your display
screen. Neither the host processor, nor CICS, nor your application program can
control this process.

Using asynchronous page build transaction
The method of printing described so far has the advantage of being simple to
implement. However, it does not provide the flexibility often needed in commercial
applications. In particular, it does not allow your program to combine mapped
output data to produce an entire printed page.

Before looking at how this might be done, first consider how a program uses a
printer.

For an SCS printer, the print data is formatted into an OS/400 object known as a
print file, which is associated with a particular printer. This print file is named in
the TCT entry for the printer. Any type of EXEC CICS SEND command issued by a
program running against this TCT entry causes CICS to format data into a print
file.

For BMS commands, CICS emulates 3270 printer buffering. Data is formatted into
the print file when either the PRINT option is specified on an EXEC CICS SEND
MAP, EXEC CICS SEND TEXT, or EXEC CICS SEND CONTROL command, or the
PRINT option is defined on the DFHMSD or DFHMDI macro for the map. The
data is erased only if BMS receives an EXEC CICS SEND MAP or EXEC CICS
SEND CONTROL command that specifies the ERASE option.

Two ways of printing a page built from multiple maps are:
1. Using the interval control EXEC CICS START command.

 You use the EXEC CICS START command to initiate a secondary CICS task.
This is a print task if the TERMID option of the command names a printer as
its principal facility. Your initial transaction can pass data to the print task by
specifying the FROM and LENGTH options of the EXEC CICS START
command. If the primary transaction has already created a series of output data
structures in the FROM area, the secondary transaction can map the data into
the printer buffer, then initiate printing using a BMS EXEC CICS SEND
command with the PRINT option.

2. Using a transient data queue with a trigger level.
 You can send symbolic map data structures to a transient data queue using the
EXEC CICS WRITEQ command. CICS can be made to initiate a print
transaction when a specific number of records have been written to the queue.
The name of the transaction to be initiated, the identifier of the printer that is
to be its principal facility, and the trigger level it is started at, are defined in the
destination control table (DCT).

Chapter 13. CICS/400 basic mapping support (BMS) 167

Note, however, that output from several instances of your transaction may be
interleaved on the transient data queue. This can be avoided if all the data to
be printed by an instance of your transaction is stored in a single transient data
queue item, or if the transient data queue record contains the name of an
alternative resource (for example, a temporary storage queue) on which the
records to be printed are stored. Alternatively, each instance of your transaction
can get exclusive control of the transient data queue by using the EXEC CICS
ENQ and EXEC CICS DEQ commands.

Printer formatting considerations
You should note the following when sending data to a printer.

Blank lines and 3270 printers
Every line in a map for a 3270 printer must contain field data (blanks if necessary),
because the 3270 does not print empty lines (that is, lines of null characters).

Setting the printer page width
The 3270 printer prints data using a line width specified in the write control
character (WCC). This line width must be set to 40, 64, or 80 columns, or the
printer platen width. The WCC line width is set by BMS from the TCT page width.
Unexpected results occur if the TCT page width is not 40, 64, or 80 columns, or is
not the printer platen width. For printers, the line width is one byte less than the
width of the print file associated with the TCT resource definition for the printer.

Form feed characters
You can code an option called FORMFEED on the EXEC CICS SEND MAP and
EXEC CICS SEND CONTROL commands. This generates a form feed character
(X'0C') at the start of the data stream. If you code this option for a terminal that
doesn’t support form feed, CICS simply ignores the request.

The form feed character occupies screen position 1 (the top left-hand corner) on a
3270 display or printer. It can be overwritten by other data sent to the terminal,
but then the form feed does not occur.

The FORMFEED option on 3270 displays is particularly useful if the screen is to be
printed using the hardware local-copy key. Its use ensures that the screen image is
printed on a new page.

Be careful when using the FORMFEED option on an EXEC CICS SEND CONTROL
command. The EXEC CICS SEND CONTROL command always generates a
complete blank page. Thus an EXEC CICS SEND CONTROL FORMFEED skips to
a new page and also sends this as a blank page. However, as described earlier,
3270 printers sometimes suppress null lines so that a blank page is printed as a
single line.

168 CICS for iSeries Application Programming Guide V5

Chapter 14. Terminal control

This chapter introduces the CICS terminal control program, which allows
user-written application programs and terminals and logical units to communicate
using terminal control commands.

Terminal control is used to control communication with logical units. A logical unit
can represent a terminal device, such as a display or printer device, or it can
represent another system (for example, another iSeries).

CICS/400 terminal control commands support the following types of SNA logical
units:
v LU 1—communication with application programs or devices. In CICS/400, this

LU is for 3270-type SNA character string (SCS) printers.
v LU 2—communication with 3270-type display devices.
v LU 3—communication with 3270-type data stream printers.
v LU 6.2—Advanced Program-to-Program Communication (APPC) for

CICS-to-CICS sessions and communication with other systems such as the
System/36, and other communication interfaces such as CPI-C and APPC on any
platform, and OS/400 ICF.

Devices of the 5250-type are supported through data stream translation. For an
explanation of this process, see “OS/400 display data streams” on page 174.

Terminal control uses the standard OS/400 data management function to
communicate with logical units. It uses the following types of device files:
v Printer file (*PRTF)—used for LU type 1 SCS printers.
v Display file (*DSPF)—used for LU type 2.
v Intersystem communication function file (*ICFF)—used for LU type 6.2, APPC.

Note: For an explanation of the naming convention used above, see “Conventions
and terminology used in this book” on page xiii.

Terminal control handles data translation, synchronization of input and output
operations, and the session control needed to read from or write to a terminal. This
frees the application from controlling terminals.

You can use terminal control to communicate with a remote system by means of
distributed transaction processing (DTP), which is described in the CICS for iSeries
Intercommunication book.

Commands and options that apply specifically to logical units are described in
“Logical unit communication protocol” on page 170.

You can use the following terminal control commands (provided they apply to
your terminal or logical unit):

EXEC CICS RECEIVE Read data from a terminal or logical unit

EXEC CICS SEND Write data to a terminal or logical unit

EXEC CICS CONVERSE Converse with a terminal or logical unit

© Copyright IBM Corp. 1998, 2004 169

EXEC CICS ISSUE SIGNAL Send an asynchronous interrupt

When using EXEC CICS RECEIVE to receive data from a terminal, you should be
aware that the data stream returned may contain SBA data if the screen was in a
formatted state or was a 5250. In this case, you should consider using an EXEC
CICS RECEIVE MAP command instead.

Terminal-oriented task identification
When CICS receives input from a logical unit to which no task is attached, it has
to determine which transaction is to be initiated. The CICS/400 application shell
performs this transaction identification and task attachment. The methods by
which the user can specify the transaction to be initiated and the sequence in
which CICS tests these specifications are covered in the STRCICSUSR CL
command in the CICS for iSeries Administration and Operations Guide.

When the task is attached, the application program for the transaction is connected
to the logical unit for the duration of the task. The application shell directs
terminal control to make this connection. The application program then
communicates with the logical unit through terminal control commands.

Logical unit communication protocol
An application program communicates with an SNA logical unit by using terminal
control commands. However, communication with logical units is governed by the
conventions (protocols) that apply to each type of logical unit. This section
describes the additional commands and options provided by CICS to enable
application programs to comply with these protocols.

The following table summarizes the EXEC CICS command options that CICS/400
provides for these protocols. It shows the CICS/400 support for these options by
logical unit type.

 Table 8. CICS/400 LU protocol options

Option LU 1 LU 2 LU 3 LU 6.2

INVITE Passed Yes Yes Yes

CNOTCOMPL Passed N/A N/A N/A

DEFRESP Passed Passed Passed N/A

LAST Passed Passed Passed Yes

Note: Yes—Option is supported. Passed—Option is ignored for logical units owned by the
local CICS/400 system, but is passed to remote systems during transaction routing.
N/A—Option is not applicable to this logical unit.

Send/receive mode
For SNA logical units, only one of the two ends of the session can be in send mode
at any one time, that is, one is in send mode, the other is in receive mode. An
application program in send mode can issue any commands for the logical unit.
On the other hand, one in receive mode, can issue only receive requests until the
mode is changed back to send. The EIB indicator EIBRECV informs the application
program that it is in receive mode and that it must perform the above operations.

170 CICS for iSeries Application Programming Guide V5

For displays, the transaction would normally be in send mode, if the INVITE
option is not used, and can ignore the EIBRECV indicator. Displays work with a
subset of the full protocols.

Send/receive protocol (INVITE option)
The INVITE option of an EXEC CICS SEND command informs the session partner
that it is now in send mode and that it should send a reply. At the same time it
places the transaction in receive mode. The transaction should now issue an EXEC
CICS RECEIVE command as its next operation.

Chaining the input data
You can present the data to the program in assembled chains. The unit of data
from a logical unit is the request unit (RU). One or more RUs can be grouped
together and treated as a chain. Chain assembly is done by OS/400, depending on
logical unit type. When chain assembly is done, instead of an input request being
satisfied by one RU at a time until the chain is complete, the whole chain is
assembled and is sent to the CICS application program satisfying just one request.
This ensures that the integrity of the whole chain is known before it is presented to
the application program.

The last RU in a chain (even if it is the only RU in the chain) raises an
end-of-chain (EOC) condition. For logical units that do not send chained data (for
example, the 3270 logical unit), the EOC condition occurs for every receive request.
For logical units that send chained data, the EOC condition usually occurs for
every receive request, but it may not, depending on the length of the data. By
using RESP options, you can detect the EOC condition and pass control to the next
instruction in the program, where a decision can be made on subsequent
processing. See “How to use the RESP and RESP2 options” on page 87 for further
information about using RESP.

An EXEC CICS HANDLE CONDITION EOC command gives control to a
user-written routine, which can do any additional processing required when the
complete chain has been received. You can use the EXEC CICS IGNORE
CONDITION command to ignore the EOC condition in cases where it is raised on
every EXEC CICS RECEIVE command.

Chaining the output data
As in the case of input data, output data is sent as request units (RUs). If the
length of the data to be sent exceeds the RU size, the data is broken into several
RUs and they are sent as a chain. During transmission from CICS to the logical
unit, the RUs are marked FIC (first-in-chain), MIC (middle-in-chain), or EOC
(end-of-chain) to denote their position in the chain. An RU that is the only one in a
chain is marked OIC (only-in-chain).

For some logical unit types, the application program can control the chaining of
outbound data. You can chain the outbound data by including the CNOTCOMPL
(chain-not-complete) option on EXEC CICS SEND commands. This indicates the
continuation of the chain. Excluding the CNOTCOMPL option on the last RU
completes the chain. In general, the CNOTCOMPL option should not be used.
Once an output request with CNOTCOMPL specified has been made, subsequent
output requests may not use the LAST option until the beginning of the next chain
(that is, the first output request following an output request in which
CNOTCOMPL is omitted).

Chapter 14. Terminal control 171

Response protocol
The two types of response that CICS can request for outbound data for an
application program are:
v Definite response
v Exception response

“Definite response” means a response, even if an error does not occur. The
“exception response” means a response only if an error occurs.

If exception response protocol is used, an exception response may not be received
and handled immediately after it arises.

CICS/400 does not allow specification of which response is required; OS/400
controls the type of response used. Remote terminal-owning systems, used with
transaction routing, may allow the system programmer to specify which response
type is required.

The use of definite response protocol has some performance disadvantages, but
may be necessary for some application programs. The DEFRESP option on the
EXEC CICS SEND command provides a more flexible method of specifying the
protocol to be used. One example of the use of this option is to request a definite
response for every tenth output command, with exception response being the
general rule.

Because a definite response can be requested only on the last element in the chain,
the DEFRESP and CNOTCOMPL options are mutually exclusive.

Preventing interruptions (bracket protocol)
Bracket protocol prevents the interruption of a transaction between CICS and a
logical unit. Generally, a bracket can be initiated by CICS or by the logical unit,
and ended only by CICS unless it is for an APPC (LU6.2) logical unit, in which
case the logical unit can end it. A bracket can also delimit conversation between
CICS and the logical unit or merely the transmission of a series of data chains in
one direction.

Bracket protocol is used when CICS communicates with specific logical units. The
use of brackets is not usually apparent to the application program.

Only on the last output request of a task to a logical unit does the bracket protocol
become apparent to the application program. On the last output request to a
logical unit, the application program may specify the LAST option on the EXEC
CICS SEND command. The last output request is defined as either the last EXEC
CICS SEND command specified for a task without chain control; or as the output
request that transmits the FIC or OIC marker of the last chain of a transaction with
chain control.

The LAST option causes CICS to transmit an end-bracket indicator with the final
output message to the logical unit. This indicator notifies the logical unit that the
current transaction is ending. If the LAST option is not specified, CICS waits until
the task detaches before sending the end-bracket indicator. Because an end-bracket
indicator is transmitted only with the first RU of a chain, the LAST option is
ignored for a transaction with chain control unless FIC or OIC is also specified.

172 CICS for iSeries Application Programming Guide V5

Including an EXEC CICS FREE command after an EXEC CICS SEND command
with the LAST (LU6.2 only) option may be useful if the transaction does not
terminate immediately after issuing the EXEC CICS SEND command. This allows
another transaction to be initiated from the LU or from CICS.

Handling attention identifiers (EXEC CICS HANDLE AID)

Note: This information applies to COBOL programs only.

The RESP, RESP2, and NOHANDLE options on EXEC CICS commands suspend
the use of the EXEC CICS HANDLE AID command. In the absence of an EXEC
CICS HANDLE AID command, control returns to the application program at the
point immediately following the input command. You can suspend the EXEC CICS
HANDLE AID command using the EXEC CICS PUSH HANDLE and EXEC CICS
POP HANDLE commands.

An EXEC CICS HANDLE AID command takes precedence over an EXEC CICS
HANDLE CONDITION command. If an AID is received during an input operation
for which an EXEC CICS HANDLE AID command is active, control passes to the
label specified in that command regardless of any conditions that may have
occurred (but which did not stop receipt of the AID).

The EXEC CICS HANDLE AID command for a given AID applies only to the
program in which it is specified, remaining active until the program is ended, or
until another EXEC CICS HANDLE AID command for the same AID is met, in
which case the new command overrides the previous one.

When control returns to a program from a program at a lower logical level, the
EXEC CICS HANDLE AID commands that were active in the higher-level program
before control was transferred from it are reactivated, and those in the lower-level
program are deactivated.

If no EXEC CICS HANDLE AID command is active for any PA key, PF key, or the
CLEAR key, but one is active for ANYKEY, control is passed to the label specified
for ANYKEY. An EXEC CICS HANDLE AID command for an AID overrides the
EXEC CICS HANDLE AID ANYKEY command for that AID.

If a task is initiated from a terminal by use of an AID, the first EXEC CICS
RECEIVE command in the task does not read from the terminal but only copies
the input buffer (even if the length of the data is zero) so that control may be
passed by means of an EXEC CICS HANDLE AID command for that AID.

An EXEC CICS RECEIVE MAP command with the FROM option does not cause
an EXEC CICS HANDLE AID command to be invoked because no terminal input
is involved. For information about this command, see page 371.

Note: If you use the NOHANDLE option (or RESP or RESP2 options, which
invoke NOHANDLE), it suspends the EXEC CICS HANDLE AID function.
If you want to change the program processing, depending on the attention
key pressed, compare the contents of EIBAID with the fields in the standard
attention identifier list (DFHAID), and then transfer control to the routine
needed to perform the function you want.

Chapter 14. Terminal control 173

OS/400 display data streams
Terminal control handles data stream translation for display devices and printers.
This enables CICS application programs, using only 3270 data streams, to work
with all types of display devices and printers attached to the OS/400:
v ASCII display devices and printers
v 3270-type display devices and printers
v 5250-type display devices and printers

Display devices and printers attached to OS/400 are normally seen as 5250-type
devices by programs running on OS/400. ASCII and 3270-type display devices and
printers must have their data streams translated to and from 5250 data streams.
OS/400 does this translation. It also maps the ASCII and 3270 keyboards into
logical 5250 keyboards.

CICS/400 application programs, using terminal control commands, see display
devices and printers as 3270-type devices (LUTYPE2/LUTYPE3). Application
programs send and receive 3270 data streams with terminal control commands.
Terminal control translates these data streams into the 5250 data streams that
OS/400 uses.

CICS uses the OS/400 supplied data stream translation functions. OS/400 3270
Device Emulation uses these functions also. This gives CICS/400 and OS/400 3270
DE the same keyboard mapping. See the 3270 Device Emulation Support manual for
information about keyboard differences.

Terminal control and DBCS
The terminal control API commands EXEC CICS SEND and EXEC CICS RECEIVE
can be used against DBCS capable display devices. However, when using these
commands, the application is responsible for building and interpreting the device
data streams.

Data streams must be in 3270 data stream format, even when the device associated
with the transaction is a 5250. In other words, for an EXEC CICS SEND command
the application must build a 3270 data stream, and for an EXEC CICS RECEIVE
command the application must interpret a 3270 data stream, whether the actual
device is a 3270 or a 5250.

When the device is a 5250, the data stream is translated and there may be some
loss of data in graphic fields. You are advised to avoid the use of character
attributes when sending data to 5250 devices. Refer to the 3270 Device Emulation
Support manual for more information about DBCS data stream translation for 3270
emulation.

174 CICS for iSeries Application Programming Guide V5

Chapter 15. Intercommunication considerations

This chapter provides only a summary of what you need to consider when you
write applications that communicate with other CICS systems. For further
information, see the CICS Family: Interproduct Communication book and the CICS for
iSeries Intercommunication book.

You can run application programs in a CICS intercommunication environment
using one or more of the following:
v Transaction routing—enables a terminal in one CICS system to run a transaction

in another CICS system.
v Function shipping—enables your application program to access resources in

another CICS system.
v Distributed program link (DPL)—enables an application program running in

one CICS system to link to another application program running in a remote
CICS system.

v Asynchronous processing—enables a CICS transaction to start another
transaction in a remote system and optionally pass data to it.

v Distributed transaction processing (DTP)—enables a CICS transaction to
communicate with a transaction running in another system.
 There is one interface available for DTP: command-level EXEC CICS. The
Systems Application Architecture* (SAA) interface for DTP called CPI
Communications (Common Programming Interface Communications) is not
directly supported by CICS/400.

Design considerations
If your application program uses more than one of these facilities, you obviously
need to bear in mind the design considerations for each one. Also, if your program
uses more than one intersystem session for distributed transaction processing, it
must control each session according to the rules for that type of session.

Transaction routing
Transactions that can be invoked from a terminal owned by another CICS system,
or that can acquire a terminal owned by another CICS system during transaction
initiation, must be able to run in a transaction routing environment.

Generally, you can design and code such a transaction just like one used in a local
environment. However, there are a few restrictions related to basic mapping
support (BMS), pseudoconversational transactions, and the terminal on which your
transaction is to run. All programs, tables, and maps that are used by a transaction
must reside on the system that owns the transaction. (You can duplicate them in as
many systems as you need.)

Some CICS transactions are related to one another, for example, through common
access to the CWA or through shared storage acquired using an EXEC CICS
GETMAIN command. When this is true, the system programmer must ensure that
these transactions are routed to the same CICS system.

© Copyright IBM Corp. 1998, 2004 175

When a request to process a transaction is transmitted from one CICS system to
another, transaction identifiers can be translated from local names to remote
names. However, a transaction identifier specified in an EXEC CICS RETURN
command is not translated when it is transmitted from the transaction-owning
system to the terminal-owning system.

Function shipping
You code a program to access resources in a remote system in much the same way
as if they were on the local system. You can use:
v File control commands to access files on remote systems
v Temporary storage commands to access data from temporary storage queues on

remote systems
v Transient data commands to access transient data queues on remote systems

Three additional exception conditions can occur with remote resources. They occur
if the remote system is not available (SYSIDERR), if a request is invalid
(ISCINVREQ), or if the mirror transaction 2 abends (ATNI for ISC connections).

Distributed program link (DPL)
The distributed program link function in CICS/400 adds to the distributed
transaction functions available in CICS by enabling a CICS program (the client
program) to call another CICS program (the server program) in a remote CICS
system. There are several reasons why you might want to design your application
to use distributed program link. Some of these are:
v To separate the end-user interface (for example, BMS screen handling) from the

application business logic, such as accessing and processing data, to enable parts
of the applications to be ported from host to workstation more readily

v To obtain performance benefits from running programs closer to the resources
they access, and thus reduce the need for repeated function shipping requests

v To offer a simple alternative, in many cases, to writing distributed transaction
processing (DTP) applications

You can specify that the program to which an application is linking is remote by
specifying the remote system name either on the EXEC CICS LINK command or
by using the SYSID parameter of the ADDCICSPPT or CHGCICSPPT CL
commands.

The basic flow in distributed program link is described in the CICS Family:
Interproduct Communication book. The following terms, illustrated in Figure 33 on
page 177, are used in the discussion of distributed program link:

Client system The CICS system running an application program that issues a link
to a program in another CICS system

Server system The CICS system to which a client system ships a link request

Client program
The application program that issues a remote link request

2. A CICS-supplied transaction that recreates a request that is function shipped from one system to another, issues the request on the
second system, and passes the acquired data back to the first system.

176 CICS for iSeries Application Programming Guide V5

Server program
The application program specified on the link request, and which
is executed in the server system

Using the distributed program link function
The distributed program link function provides a number of options. You can
specify:
v The name of the remote system (the server system).
v The name of the server program, if it is known by a different name in the server

system.
v That you want to run the linked program locally, but restrict it to the distributed

program link subset of the application programming interface (API) for testing
purposes. (Server programs cannot use the entire CICS API when executed
remotely; the restrictions are listed in Figure 38 on page 185).

v That the server system will take a syncpoint independently from the client.
v The name of the transaction you want the program to run under in the server

system.
v The data length of the COMMAREA being passed.

A server program can itself issue a distributed program link and act as a client
program with respect to the program it links to.

The options shown in Table 9 on page 178, and the parameters shown in Table 10
on page 178, are used on the EXEC CICS LINK command and on the PPT
respectively, in support of the distributed program link facility.

Figure 33. Illustration of distributed program link

Chapter 15. Intercommunication considerations 177

Note: The full syntax of the EXEC CICS LINK command is given page 380.

 Table 9. Options on EXEC CICS LINK command supporting DPL

Option Description

DATALENGTH Specifies the length of the contiguous area of storage (from
the start of the COMMAREA) that the application is
sending to a server program.

SYSID Specifies the name of the connection to the server system to
which you want the client system to ship the program link
request.
Note: SYSID specified on the EXEC CICS LINK command
overrides the remote SYSID specified in the PPT entry.

SYNCONRETURN Specifies that you want the server system to take a
syncpoint on successful completion of the server program.
Note: This option is unique to the EXEC CICS LINK
command and cannot be specified on the PPT.

TRANSID Specifies the name of the transaction that the server system
is to attach for execution of the server program.
Note: TRANSID specified on the EXEC CICS LINK
command overrides any remote TRANSID specified on the
PPT.

 Table 10. ADDCICSPPT and CHGCICSPPT CL command parameters supporting DPL

Keyword Description

SYSID Specifies the name of the connection to the server system
(SYSID) to which you want the client system to ship the
program link request.

RMTPGMID Specifies the name by which the program is known in the
server system (if different from the local name).

APISET Specifies whether the program is restricted to the
distributed program link subset of the CICS API.
Note: This option is unique to the PPT and cannot be
specified on the EXEC CICS LINK command.

TRANSID Specifies the name of the transaction that the server system
is to attach for execution of the server program.

Examples of distributed program link
A COBOL example of a distributed program link command is shown in Figure 34.
The numbers down the right-hand side of the example refer to the numbered
sections, following the figure, which give information about each option.

�1�The program name of the server program
A program may have different names in the client and server systems. The

EXEC CICS LINK PROGRAM(’DPLPROG’) �1�
 COMMAREA(DPLPROG-DATA-AREA) �2�
 LENGTH(24000) �2�
 DATALENGTH(100) �2�
 SYSID(’CICR’) �3�
 TRANSID(’AC20’) �4�
 SYNCONRETURN �5�
END-EXEC.

Figure 34. COBOL example of a distributed program link

178 CICS for iSeries Application Programming Guide V5

name you specify on the EXEC CICS LINK command depends on whether or
not you specify the SYSID option, and also on whether the PPT entry in the
client system specifies the RMTPGMID parameter.

 If the program link command specifies a remote system on the SYSID option,
CICS ships the link request to the server system without reference to the PPT
entry in the client system. In this case, the program name specified on the link
command must be the name by which the program is known in the server
system.

 If you do not specify the SYSID option on an EXEC CICS LINK command,
however, the local name of the program is used. CICS looks up the PPT entry
in the local (client) system. If the program is remote, CICS ships the request to
the system specified in the SYSID parameter using the name by which the
program is known in the server system. This is the RMTPGMID value if one
was specified; otherwise the local name is used.

 If the system name (SYSID) on the EXEC CICS LINK command is the same
name as the client system, CICS initially processes the request as though it is a
local link. CICS checks the local PPT entry and, if it specifies a remote system
name, the client system ships the request to the system specified in the SYSID
parameter. In this case, the remote system name on the PPT entry overrides the
SYSID name on the program link command. If SYSID is not specified in the
PPT entry, or it names the local system name, CICS invokes the program in the
client system (a local link).

�2�The communication data area (COMMAREA)
To improve performance, you can specify the DATALENGTH option on the
EXEC CICS LINK command. This allows you to specify the amount of
COMMAREA data you want the client system to pass to the server program.
Typically, you use this option when a large COMMAREA is required to hold
data that the server program is to return to the client program, but only a
small amount of data needs to be sent to the server program by the client
program, as in the example.

�3�The remote system ID (SYSID)
The SYSID option on the EXEC CICS LINK command enables you to specify a
4-character name for the server system to which you want the client system to
ship a program link request. This is the name of the terminal control system
table (TCS®) entry installed in the client system defining the connection with
the server system. (CICS uses the connection name in a table look-up to obtain
the netname of the server system.) The name of the server system you specify
on the SYSID parameter can be the name of the client system in which case the
program is run locally.

 If the server system is unable to load or run the requested program (DPLPROG
in our example), CICS returns the PGMIDERR condition to the client program
in response to the link request. Note that EIBRESP2 values are not returned
over the link for a distributed program link request where the error is detected
in the server system. For errors detected in the client system, EIBRESP2 values
are returned.

�4�The remote transaction (TRANSID) to be attached
The TRANSID option is available on both the EXEC CICS LINK command and
also on the ADDCICSPPT and the CHGCICSPPT CL commands. This enables
you to tell the server system what transaction identifier to use when it attaches
the mirror task under which the server program runs. If you specify the
TRANSID option, you must define the transaction in the server system, and
associate it with the supplied mirror program AEGFSMIR. This option allows

Chapter 15. Intercommunication considerations 179

you to specify your own attributes on the transaction definition for the
purpose of performance and fine tuning. For example, you could vary the task
priority and transaction class attributes.

 You are recommended to specify the transaction identifier of the client
program as the transaction identifier for the server program. This enables any
statistics and monitoring data you collect to be correlated correctly under the
same transaction.

 The transaction identifier used on a distributed program link request is passed
to the server program as follows:
v If you specify your own transaction identifier for the distributed program

link request, this is passed to the server program in the EIBTRNID field of
the EIB.

v If you do not specify a transaction identifier for the DPL request, CICS
copies the transaction identifier under which the client program is running,
into the EIBTRNID field of the server program.

�5�The synchronization option for the server program
When you specify the SYNCONRETURN option, it means that the resources
on the server are committed in a separate logical unit of work immediately
before returning control to the client; that is, an implicit syncpoint is issued for
the server just before the server returns control to the client. Figure 35 on page
181 shows an example of using distributed program link with the
SYNCONRETURN option. The SYNCONRETURN option is intended for use
when the client program is not updating any recoverable resources, for
example, when performing screen handling. However, if the client does have
recoverable resources, they are not committed at this point. They will be
committed when the client itself reaches a syncpoint or in the implicit
syncpoint at client task end. You must ensure that the client and server
programs are designed correctly for this purpose, and that you are not risking
data integrity. For example, if your client program has shipped data to the
server that results in the server updating a database owned by the server
system, you only specify an independent syncpoint if it is safe to do so, and
when there is no dependency on what happens in the client program. This
option has no effect if the server program runs locally in the client system
unless APISET(*DPLSUBSET) is specified. In this case, the syncpoint rules
governing a local link apply.

 Without the SYNCONRETURN option, the client commits the logical unit of
work for both the client and the server resources, with either explicit
commands or the implicit syncpoint at task end. Thus, in this case, the server
resources are committed at the same time as the client resources are
committed. Figure 36 on page 182 shows an example of using distributed
program link without the SYNCONRETURN option.

180 CICS for iSeries Application Programming Guide V5

Note: This includes three logical units of work: one for the client and two for the
server. The client resources are committed separately from the server.

Figure 35. Using distributed program link with the SYNCONRETURN option

Chapter 15. Intercommunication considerations 181

Note: The implicit or explicit syncpoint causes all client and server resources to be
committed. There is only one logical unit of work because the client is
responsible for determining when both the client and server resources are
committed.

You need to consider the case when the client has an EXEC CICS HANDLE
ABEND command. When the client is handling abends in the server, then the
client gets control when the server abends. This is also true when the
SYNCONRETURN option has been specified on the EXEC CICS LINK command.
In this case, it is recommended that the client issue an abend after doing the
minimum of cleanup. This causes both the client logical unit of work and the
server logical unit of work to be backed out.

Programming considerations for distributed program link
There are some factors you should consider when writing application programs
that use distributed program link.

Issuing multiple distributed program links from the same client
task
A client task cannot request distributed program links to a single CICS server
system using more than one transaction code in a single client unit of work unless
the SYNCONRETURN option is specified. It can issue multiple distributed
program links to one CICS server system with the same or the default transaction
code.

Figure 36. Using distributed program link without the SYNCONRETURN option

182 CICS for iSeries Application Programming Guide V5

Sharing resources between the client program and server
program
The server program does not have access to the lifetime storage of tasks on the
client, for example, the TWA. Nor does it necessarily have access to the resources
that the client program is using, for example, files, unless the file requests are
being function shipped.

Mixing DPL and function shipping to the same CICS system
Great care should be taken when mixing function shipping and DPL to the same
CICS system, from the same client task. These are some considerations:
v A client task cannot function ship requests and then use distributed program

link with the SYNCONRETURN option in the same client logical unit of work.
The distributed program link would fail with an INVREQ response. In this case
EIBRESP2 is set to 14.

v A client task cannot function ship requests and then use distributed program
link with the TRANSID option in the same client logical unit of work. The
distributed program link would fail with an INVREQ response. In this case,
EIBRESP2 is set to 15.

v Any function-shipped requests that follow a DPL request with the
SYNCONRETURN option run in a separate logical unit of work from the server
logical unit of work.

v Any function-shipped requests running that follow a DPL request with the
TRANSID option to the same server system will run under the transaction code
specified on the TRANSID option, instead of under the default mirror
transaction code. The function-shipped requests will be committed as part of the
overall client logical unit of work when the client commits.

v Any function-shipped requests running before or after a DPL request without
the SYNCONRETURN or TRANSID options are committed as part of the overall
client logical unit of work when the client commits.

See the book, the CICS Family: API Structure book and the CICS for iSeries
Intercommunication book for more information about function shipping.

Mixing DPL and DTP to the same CICS system
Care should be taken when using both DPL and DTP in the same application,
particularly using DTP in the server program. For example, if you have not used
the SYNCONRETURN option, you must avoid taking a syncpoint in the DTP
partner which requires the DPL server program to syncpoint.

Restricting a program to the distributed program link subset

Note: For a description of the naming convention used in this section, see
“Conventions and terminology used in this book” on page xiii.

Figure 37. Example of mixing DPL and DTP

Chapter 15. Intercommunication considerations 183

When a program executes as the result of a distributed program link, it is
restricted to a subset of the full CICS API called the distributed program link
subset. The commands that are prohibited in a server program are summarized in
Figure 38 on page 185.

You can specify, in the program resource definition only, that you want to restrict a
program invoked by a local EXEC CICS LINK command to this subset with the
APISET(*DPLSUBSET) option. The use of any prohibited commands can then be
detected before an application program is used in a distributed environment. The
APISET(*DPLSUBSET) option should be used for early testing purposes only, and
should never be used in production.

When the server program is running locally the following considerations apply:
v If APISET(*DPLSUBSET) is specified on the server program then the

SYNCONRETURN option causes an implicit syncpoint to be taken in the local
server program, prior to returning control to the client program. In this case,
because the server program is running locally, both the client and server
resources are committed. However, you should note that SYNCONRETURN is
intended for use when the client has no recoverable resources.

v If APISET(*FULLAPI) is specified on the server program then the
SYNCONRETURN option is ignored.

v The TRANSID and DATALENGTH options are ignored when processing the
local link, but the format of the arguments is checked, for example, the
TRANSID argument cannot be all blank.

Determining how a program was invoked
The 2-byte values returned on the STARTCODE option of the EXEC CICS ASSIGN
command are extended in support of the distributed program link function
enabling the server program to find out that it is restricted to the distributed
program link subset. See “ASSIGN” on page 327 for details.

Exception conditions for EXEC CICS LINK command
There are some exception conditions on the EXEC CICS LINK command that relate
specifically to DPL. See page 380 for a description of these exception conditions.

Exception conditions returned to the client program: Condition codes returned
to a client program describe such events as “remote system not known” or “failure
to commit” in the server program. There are different reasons, identified by
EIBRESP2 values, for raising the INVREQ and LENGERR conditions on an EXEC
CICS LINK command. The ROLLEDBACK, SYSIDERR, and TERMERR conditions
may also be raised. See page 380 for details.

The PGMIDERR condition is raised on the EXEC CICS HANDLE ABEND
PROGRAM, EXEC CICS LOAD, EXEC CICS RELEASE, and EXEC CICS XCTL
commands if the local program definition specifies that the program is remote.
This exception is qualified by an EIBRESP2 value of 9.

Exception conditions returned to the server program: The INVREQ condition
covers the use of prohibited API commands. INVREQ is returned, qualified by an
EIBRESP2 value of 200, to a server program if it issues one of the prohibited
commands summarized in Figure 38 on page 185. If the server program does not
handle the INVREQ condition, the default action is to abend the mirror transaction
under which the server program is running with abend code ADPL.

184 CICS for iSeries Application Programming Guide V5

Note: Where only certain options are prohibited on the command, they are shown.
All the APPC commands listed are prohibited only when they refer to the
principal facility. One of these, the EXEC CICS CONNECT PROCESS
command, causes an error even if it refers to the principal facility in a
non-DPL environment. It is included here because, if an EXEC CICS
CONNECT PROCESS command refers to its principal facility in a server
program, the exception condition raised indicates a DPL error.

Asynchronous processing
The response from a remotely initiated transaction is not necessarily returned to
the task that initiated the transaction, which is why the processing is referred to as
asynchronous. Asynchronous processing is useful when you do not need or want
to tie up local resources while having a remote request processed. For example,

v ADDRESS

 TCTUA

v ASSIGN

 BTRANS COLOR EXTDS FACILITY FCI HILIGHT
 KATAKANA MAPCOLUMN MAPHEIGHT MAPLINE
 MAPWIDTH OPCLASS OUTLINE PS QNAME SCRNHT SCRNWD
 SIGDATA SOSI TCTUALENG TERMCODE UNATTEND VALIDATION

v CONNECT PROCESS

v CONVERSE

v EXTRACT ATTRIBUTES

v EXTRACT PROCESS

v FREE

v HANDLE AID

v ISSUE ABEND

v ISSUE CONFIRMATION

v ISSUE ERASEAUP

v ISSUE ERROR

v ISSUE SIGNAL

v LINK

 INPUTMSG INPUTMSGLEN

v RECEIVE

v RECEIVE MAP

v RETURN

 INPUTMSG INPUTMSGLEN

v SEND

v SEND CONTROL

v SEND MAP

v SEND TEXT

v SYNCPOINT (but can be issued in the server program if SYNCONRETURN is
specified on the EXEC CICS LINK command)

v WAIT CONVID

v XCTL

 INPUTMSG INPUTMSGLEN

Figure 38. API commands prohibited in programs invoked by distributed program link

Chapter 15. Intercommunication considerations 185

with online inquiry on remote databases, terminal operators can continue entering
inquiries without having to wait for an answer to the first one.

You can start a transaction on a remote system using an EXEC CICS START
command just like a local transaction. You can use the EXEC CICS RETRIEVE
command to retrieve data that has been stored for a task as a result of a remotely
issued EXEC CICS START, EXEC CICS CANCEL, EXEC CICS SEND, or EXEC
CICS RECEIVE command, as if it were a local transaction.

Distributed transaction processing (DTP)
The main advantage of DTP is that it allows the two transactions to have exclusive
control of a session and to “converse”. DTP is particularly useful when you need
remote resources to be processed remotely or if you need to transfer data between
systems. It also allows you to design flexible and efficient applications.

DTP can be used with a variety of partners, including both CICS and non-CICS
platforms, as long as they support APPC. For further information, see theCICS
Family: Interproduct Communication book and the CICS for iSeries Intercommunication
book.

Common Programming Interface Communications (CPI
Communications)

Systems Application Architecture (SAA) CPI Communications provides an
alternative API to existing CICS APPC support. CPI Communications can be used
in SAA languages (outside of CICS/400 API support).

CPI Communications defines an API that can be used in APPC networks that
include multiple system platforms, where the consistency of a common API is seen
to be of benefit.

The CPI Communications interface can converse with applications on any system
that provides an APPC API. This includes applications on CICS platforms. You
may use EXEC CICS APPC API commands on one end of a conversation and CPI
Communications commands on the other.

CPI Communications is not directly supported by CICS/400. CPI Communications
API usage is managed by native OS/400 communication facilities. For information
on restrictions, see the CICS for iSeries Intercommunication book.

186 CICS for iSeries Application Programming Guide V5

Part 5. CICS management functions

Chapter 16. Control region 189

Chapter 17. Application shell 191

Chapter 18. Interval control 193
Timer-related tasks 194
Expiration times 194
Request identifiers 196

Chapter 19. Task control 197

Chapter 20. Program control 199
Defining and using CICS tables 199
Application program logical levels 200
Link to another program expecting return 200
Passing data to other programs 201

COMMAREA 201
INPUTMSG 203
Using the INPUTMSG option on the EXEC
CICS RETURN command 205
Other ways of passing data 205
Examples of passing data 205

Chapter 21. Access to system information . . . 211
System programming commands 211
EXEC interface block (EIB) 211

Chapter 22. Storage control 213

Chapter 23. Transient data control 215
Intrapartition destinations 215
Extrapartition destinations 215
Indirect destinations 216
Automatic transaction initiation (ATI) 216

Chapter 24. Temporary storage control 219
Temporary storage queues 219
Temporary storage commands 220
Typical uses of temporary storage control 220

Chapter 25. Printer spooling 223
When are printer spooling files closed? 223

© Copyright IBM Corp. 1998, 2004 187

188 CICS for iSeries Application Programming Guide V5

Chapter 16. Control region

The control region (CR) facility provides for the control, scheduling, and work
management mechanisms necessary to coordinate all the shared resources of a
CICS environment:
v Shared system and user storage areas are initialized, managed, and released.
v Runtime resource definitions are built and validated.
v Resource status is initialized or reset depending on startup options.
v Cleanup of shared resources from previous control region execution is provided

when appropriate.

The application programmer interfaces with the application shell facility in
CICS/400. No user programs actually run in the control region; only CICS service
modules do. A brief description is provided here because the control region is the
controlling mechanism that allows the user shells to run and gain access to the
necessary control blocks.

Control region initialization builds the shared resource environment common to all
CICS jobs running under the same CTLRGN (or SYSID).

Initialization consists of those tasks that are performed once per system, and
which affect all users:
v Making shared system code available
v Acquiring shared storage areas
v Loading CICS resource tables
v Building shared control blocks (for example, Common Work Area)
v Establishing entry points for CICS

When control region initialization is complete, CICS users are allowed to access
CICS transactions through use of the application shell facility. The shell must be
initiated with the same CTLRGN as the control region under which it is to run.

During the processing loop, the control region waits for shell service requests,
shell status updates, or timer-driven processes.
v Shell service requests include resource status changes, extrapartition transient

data requests, completion of ISC Logical Units of Work (LUW), and control
region status changes.

v Timer events include expiration of interval control start request times, and
periodic housekeeping requests.

Shutdown of the control region can be caused by:
v The master terminal operator entering the CEMT PERFORM SHUTDOWN

command
v Operator-initiated ENDSBS command, for the control region currently running

under a separate subsystem
v Operator-initiated ENDCICS CL command
v Critical internal errors

© Copyright IBM Corp. 1998, 2004 189

The OS/400 system operator is notified that shutdown has begun. No new work
may enter the system. Shell startup requests are rejected. The batch and user shells
are notified by user queue messages of the control region shutdown and type of
shutdown. If a non-immediate shutdown is requested, the control region waits
until all the batch and user shells have completed. If an immediate shutdown is
requested, the control region sends immediate shutdown messages to all shell jobs.

Note: The STRCICS CL command used to bring up a CICS/400 control region, and
the ENDCICS CL command used to end an active control region are
described in more detail in the CICS for iSeries Administration and Operations
Guide. Both commands are normally initiated by the system administrator.

190 CICS for iSeries Application Programming Guide V5

Chapter 17. Application shell

The application shell provides the task scheduling work management mechanisms
needed to build and refresh the application programming environment for CICS
transactions. The CICS application shell provides CICS programs with an interface
to resources managed by host language calls.

CICS application programs are executed only in an application shell. There are
three types of shell:
v Interactive shells are started when a user causes a STRCICSUSR CL command to

be entered.
v IC batch shells are started and stopped under the control of the interval control

facilities running in the control region.
v ISC inbound shells are started either by a “start prestart job” (STRPJ) command

issued at control region startup, or by the inbound OS/400 EVOKE processing.

Transactions are scheduled from four sources:
v Terminal input (including the STRCICSUSR CL command)
v Automatic transaction initiation (ATI) by transient data queue trigger levels
v Interval control starts
v Inbound intersystem communication (ISC) requests

CICS terminal users either explicitly or implicitly (by user profile or OS/400 menu
selection) cause a STRCICSUSR CL command to be entered. Automatic transaction
initialization and interval control starts are processed in a similar manner. They are
essentially timer-driven transactions.

An interactive or terminal shell is started by the following OS/400 control
language (CL) command, where sysid refers to the control region this shell is
associated with:
 STRCICSUSR CTLRGN(sysid)

For a description of other optional parameters that can be used, and a more
detailed explanation of this command, see the CICS for iSeries Administration and
Operations Guide.

CICS-managed batch shells are started with an internal CICS transaction that
completes the initialization of the specific batch shell function. CICS-managed
batch shells are terminated when their function is complete, when ISC links are
disabled, or by CICS shutdown.

User application initialization builds the background environment common to all
CICS sessions. This includes:
v Verifying that the CICS control region is up and available
v Invoking shell resource initialization routines
v Establishing a protected environment to insulate CICS from application errors
v Optionally starting an initial transaction

Initialization also consists of those tasks which must be performed individually for
each user the first time they run a CICS transaction:

© Copyright IBM Corp. 1998, 2004 191

v Opening shared files and queues
v Opening private files and queues (if any)
v Acquiring storage areas unique to each user
v Building private control blocks (for example: task control area (TCA), terminal

control table terminal entries (TCTTE), and EXEC interface block (EIB))

When initialization is complete, a CICS user is allowed to enter transactions.

After initialization, the shell coordinates the repetitive process of event (ATI, IC
START, ISC, or terminal input) scheduling and task termination with syncpoint
and rollback processing.

Note: The shell can receive work from a data queue, display file, or ICF file.

The runtime processing of the shell can be described in the following steps:
1. Check for interval control activity.
2. Call terminal control to accept input by means of data queue records.
3. If a CICS data queue message is returned, call the internal CICS function.
4. If a terminal input output area (TIOA) is returned:

a. Determine a transaction ID
b. Ensure that the transaction is valid and available
c. Initialize the EIB
d. Link to the application program
e. Perform a default syncpoint commit or rollback at task termination
f. Perform a scan of task termination deferred work elements (DWE) for work

ready to process
5. Check whether CICS is in shutdown mode. If not, processing is repeated until

shutdown is indicated.

Termination can be caused by one of the following:
v Terminal input (CESF transaction)
v If a “single shot transaction” was specified (an initial transaction was entered for

the TRANID parameter on the STRCICSUSR CL command)
v Completion of the ATI or IC START work (nonterminal shells)
v ISC link shutdown
v CICS control region shutdown requests

Termination provides for a controlled reversal of the initialization process. CICS
resources are freed. Work is allowed to complete unless an immediate shutdown is
indicated. The user is returned to the point from which the STRCICSUSR CL
command was issued.

If termination is caused by a CICS shutdown, the user is informed of the
involuntary shutdown. Control is returned to OS/400 facilities.

Nonterminal users are terminated by internal data queue commands or ISC
conversation link termination.

192 CICS for iSeries Application Programming Guide V5

Chapter 18. Interval control

The CICS interval control program, in conjunction with a time-of-day machine
instruction (MI) interface maintained by CICS, provides functions that can be
performed at a specific time; such functions are known as time-controlled
functions. The primary task of the CICS interval control facility is the handling,
synchronization, and initiation of tasks requested by user application programs
and CICS internal service modules. Other functions include obtaining and
formatting time requests for the user.

Using interval control commands, you can:
v Start a task at a specified time or after a specified interval and pass data to it

(EXEC CICS START command).
v Retrieve data passed on an EXEC CICS START command (EXEC CICS

RETRIEVE command).
v Delay the processing of a task (EXEC CICS DELAY command).
v Request notification when a specified time has expired (EXEC CICS POST

command).
v Wait for an event to occur (EXEC CICS WAIT EVENT command).
v Cancel the effect of previous interval control commands (EXEC CICS CANCEL

command).
v Request the current date and time of day (EXEC CICS ASKTIME command).
v Select the format of date and time (EXEC CICS FORMATTIME command).

The above CICS commands may be divided into four groups:
1. Retrieving and formatting time

 The EXEC CICS ASKTIME and EXEC CICS FORMATTIME commands merely
request or format timer values. The time is obtained from MI interfaces (EXEC
CICS ASKTIME command), or supplied by an application program (EXEC CICS
FORMATTIME command), and formatted according to the options requested.

2. Timer-related event control management
 The EXEC CICS DELAY, EXEC CICS POST, and EXEC CICS WAIT EVENT
commands cause processing to be suspended or restarted after a time interval.

3. Timer-related task initialization
 The EXEC CICS START command is associated with starting a new CICS task.
A specified task may be started, either at a given terminal (that may be
remote), or without a terminal, at a specified time (immediately or in the
future). Optionally data may be passed to that task. The data can then be
accessed by the started task by means of the EXEC CICS RETRIEVE command.

4. Cancelation of a timer-related event or task
 The EXEC CICS CANCEL command nullifies a previous (but still unfulfilled)
interval control request. This previous request may have been an EXEC CICS
DELAY, EXEC CICS POST, or EXEC CICS START command. The appropriate
entry is removed from the list of pending events, so the result is as if the
corresponding request had never been issued. EXEC CICS CANCEL can also be
used to nullify an unexpired EXEC CICS START command on a remote system.

For more details about specific CICS commands, see Chapter 32, “Application
programming commands - reference,” on page 323.

© Copyright IBM Corp. 1998, 2004 193

Timer-related tasks
Interval control includes timer-event driven tasks that initiate actions scheduled by
CICS commands. This facility examines the interval control element (ICE) storage
chain contained in the CICS shared system storage for expired events, and initiates
the appropriate action. After the ICE has expired, its entry is removed from the
chain.

A timer-related task can be in any of three states:
v Unexpired—the expiration time for the task or event is still in the future
v Expired but suspended due to a CICS resource being unavailable
v Expired and awaiting execution

When a task expires, interval control attempts to schedule the task for execution if
all the CICS resources that it requires are available. If any of the resources are not
available, the entry is said to be suspended waiting for a resource to become
available. When it is determined that all resources are available, the entry is then
said to be enabled awaiting execution.

Expiration times
The time at which a time-controlled function is to be started is known as the
expiration time. You can specify expiration times absolutely, as a time of day
(using the TIME option), or as an interval that is to elapse before the function is to
be performed (using the INTERVAL option). For the EXEC CICS DELAY, EXEC
CICS POST, and EXEC CICS START commands, both INTERVAL and TIME
options are available. For the EXEC CICS DELAY command, you can use the FOR
and UNTIL options; and for the EXEC CICS START command, you can use the
AFTER and AT® options. See Chapter 32, “Application programming commands -
reference,” on page 323 for information about these commands.

You use an interval to tell CICS to start a transaction in a specified number of
hours, minutes, and seconds from the current time. A nonzero INTERVAL value
always indicates a time in the future—the current time plus the interval you
specify. The hours may be 0–99, but the minutes and seconds must not be greater
than 59. For example, to start a task in 40 hours and 10 minutes, you would code:

To use the AFTER option for the same example, you would code:

You use an absolute time to tell CICS to start a transaction at a specific time, again
using hhmmss. For example, to start a transaction at 3:30 in the afternoon, you
would code:

EXEC CICS START INTERVAL(401000)

 EXEC CICS START AFTER HOURS(40) MINUTES(10)

or

 EXEC CICS START AFTER MINUTES(2410)

194 CICS for iSeries Application Programming Guide V5

An absolute time is always relative to the midnight before the current time and
may therefore be earlier than the current time. TIME may be either in the future or
the past relative to the time at which the command is executed.

To use the AT option for the same example, you would code:

CICS uses the following rules:
v If you specify a task to start at any time within the previous six hours, it will

start immediately, unless the start time is before midnight (past) of the day on
which you specify it. For example:

 This command, issued at 05:00 or 07:00 on Monday expires at 12:30 on the same
day.

 This command, issued at 05:00 or 07:00 on Monday expires immediately because
the specified time is within the preceding six hours.

 This command, issued at 05:00 on Monday expires immediately because the
specified time is within the preceding six hours. However, if it is issued at 07:00
on Monday, it expires at 00:30 on Tuesday, because the specified time is not
within the preceding six hours.

 This command, issued at 02:00 on Monday expires immediately because the
specified time is within the preceding six hours.

v If you specify a time with an hours component that is greater than 23, you are
specifying a time on a day following the current one. For example, a time of
250000 means 1 a.m. on the day following the current one, and 490000 means 1
a.m. on the day after that.

EXEC CICS START TIME(153000)

 EXEC CICS START AT HOURS(15) MINUTES(30)

or

 EXEC CICS START AT MINUTES(930)

EXEC CICS START TIME(123000)

EXEC CICS START TIME(020000)

EXEC CICS START TIME(003000)

EXEC CICS START TIME(230000)

Chapter 18. Interval control 195

If you do not specify an expiration time or interval option on the EXEC CICS
DELAY, EXEC CICS POST, or EXEC CICS START command, CICS responds using
the default of INTERVAL(0), which means immediately.

Because each end of an intersystem link may be in a different time zone, you
should use the INTERVAL form of expiration time when the transaction to be
started is in a remote system.

If the system fails, the times you have specified are retained as interval control
elements (ICEs) in recoverable temporary storage.

Request identifiers
As a means of identifying the request and any data associated with it, a unique
request identifier is assigned by CICS to each EXEC CICS DELAY, EXEC CICS
POST, and EXEC CICS START command. You can specify your own request
identifier by means of the REQID option but it must be unique. If you do not,
CICS assigns (for EXEC CICS POST and EXEC CICS START commands only) a
unique request identifier and places it in field EIBREQID in the EXEC interface
block (EIB). You must specify a request identifier if you want the request to be
canceled at a later time by an EXEC CICS CANCEL command.

196 CICS for iSeries Application Programming Guide V5

Chapter 19. Task control

The CICS task control program provides functions that synchronize task activity, or
that control the use of resources. Within CICS/400, enqueuing and dequeuing of
resources occurs in the CICS/400 user shells. The OS/400 system administrator
should distribute shell priorities so that a user shell does not enqueue a resource,
and then not have a priority high enough to allow it to complete processing.

OS/400 processes tasks according to priorities assigned by the CICS/400 system
administrator. Control is given to the highest priority task that is ready to be
processed, and is returned to the operating system when no further work can be
done by CICS or by your application programs.

Task control supports the EXEC CICS ENQ and EXEC CICS DEQ commands. In
CICS/400 the EXEC CICS SUSPEND command is acceptable as a current
command, but is treated as a null operation. These commands are described in
more detail in “DEQ” on page 350 and “ENQ” on page 355.

You can schedule the use of a resource by a task (ENQ and DEQ). This is often
useful in protecting a resource from concurrent use by more than one task; that is,
making that resource serially reusable. Each task that is to use the resource issues
an enqueue (EXEC CICS ENQ) command. The first task to enqueue has the use of
the resource immediately. Subsequent EXEC CICS ENQ commands for the
resource, issued by other tasks, result in those tasks being suspended until the
resource is available (assuming that an EXEC CICS HANDLE CONDITION
ENQBUSY command has not been issued). Using the ENQ/DEQ mechanism, there
is no way to guarantee that two or more tasks issuing EXEC CICS ENQ and EXEC
CICS DEQ commands will issue these commands in a given sequence relative to
each other. By inspecting the contents of the EIBRESP field, you can check whether
the EXEC CICS ENQ command was successful or not. For more information, see
“How to use the RESP and RESP2 options” on page 87.

Each task using a resource should issue a dequeue (EXEC CICS DEQ) command
when finished, to release the resource for use by other tasks. The enqueue is also
released automatically at the end of the task, or of the logical unit of work (LUW)
if task is not specified on the EXEC CICS ENQ command.

© Copyright IBM Corp. 1998, 2004 197

198 CICS for iSeries Application Programming Guide V5

Chapter 20. Program control

The CICS program control program governs the flow of control between
application programs in a CICS system. The name of the application referred to in
a program control command must have been defined as a program to CICS. You
can use program control commands to:
v Link one of your application programs to another program in the same region,

anticipating subsequent return to the requesting program (EXEC CICS LINK
command). The COMMAREA and INPUTMSG options of this command allow
data to be passed to the requested application program.

v Link one of your application programs to another program in a separate CICS
region, anticipating subsequent return to the requesting program (EXEC CICS
LINK command). The COMMAREA option of this command allows data to be
passed to the requested application program. This is referred to as distributed
program link (DPL). You cannot use the INPUTMSG and INPUTMSGLEN
options of the EXEC CICS LINK command when using DPL. See page 380 for
more details about this restriction. For more information about DPL, see
Chapter 15, “Intercommunication considerations,” on page 175.

v Transfer control from one of your application programs to another, with no
return to the requesting program (EXEC CICS XCTL command). The
COMMAREA and INPUTMSG options of this command allow data to be passed
to the requested application program. You cannot use the INPUTMSG and
INPUTMSGLEN options of the EXEC CICS XCTL command when using DPL.
See 424 for more details about this restriction.

v Return control from one of your application programs to another, or to CICS
(EXEC CICS RETURN command). The COMMAREA and INPUTMSG options of
this command allow data to be passed to a newly initiated transaction. You
cannot use the INPUTMSG and INPUTMSGLEN options of the EXEC CICS
RETURN command when using DPL. See 424 for more details about this
restriction.

You can use the RESP option to deal with abnormal terminations.

Defining and using CICS tables
The equivalent of a CICS table on CICS/400 is a *USRSPC object. The *USRSPC
objects are identified to CICS/400 by PPT entries with CICSMAP(*YES) specified.
For example:

If you are using CICS tables, program control commands allow you to:
v Provide first-byte addressability to a *USRSPC object defined to CICS/400 as a

map set (LOAD).

Note: EXEC CICS LOAD cannot be used in CICS/400 to load an application
program.

v Remove first-byte addressability to a *USRSPC object defined to CICS/400 as a
map (EXEC CICS RELEASE command) that has been previously loaded.

ADDCICSPPT LIB(QCICSSAMP) GROUP(USPC) PGMID(USERTBL)
 CICSMAP(*YES) PGMOBJ(TESTER/USERTABLE)

© Copyright IBM Corp. 1998, 2004 199

To load a *USRSPC object, use the following LOAD commands:

If the contents of a *USRSPC are changed by a CICS program, the *USRSPC will be
changed for all users accessing the *USRSPC and the changes are permanent across
all user shells and control region starts. (This is not true for other CICS platforms.)
You can avoid this in the following ways:
v Put the *USRSPC in a library that is not accessed by CICS or give it a name that

is not used by CICS. Use the CRTDUPOBJ command using the name in the PPT
either before the control region is started or before each user shell is started.

v Use the OS/400 security facilities to make the *USRSPC object read only. See the
iSeries Security Reference for details.

Application program logical levels
Application programs running under CICS are executed at various logical levels.
The first program to receive control within a task is at the highest logical level.
When an application program is linked to another, expecting an eventual return of
control, the linked-to program is considered to reside at the next lower logical
level. When control is simply transferred from one application program to another,
without expecting return of control, the two programs are considered to reside at
the same logical level.

Link to another program expecting return
The EXEC CICS LINK command is used to pass control from an application
program at one logical level to an application program at the next lower logical
level. If the linked-to program is not already in main storage, it is loaded. When
the EXEC CICS RETURN command is processed in the linked-to program, control
is returned to the program that initiated the link, at the next sequential process
instruction.

The linked-to program operates independently of the program that issues the
EXEC CICS LINK command with regard to handling exception conditions,
attention identifiers, and abends. For example, the effects of EXEC CICS HANDLE
commands in the linking program are not inherited by the linked-to program, but
the original EXEC CICS HANDLE commands are restored on return to the linking
program. You can use the EXEC CICS HANDLE ABEND command to deal with
abnormal terminations in other link levels. See “HANDLE ABEND” on page 369
for information about this command. Figure 39 shows the concept of logical levels.

EXEC CICS LOAD PROGRAM(USERTBL)
 SET(ls-header-record) ...

200 CICS for iSeries Application Programming Guide V5

Passing data to other programs
You can pass data to another program when control is passed to that other
program using a program control command.

COMMAREA
The COMMAREA option of the EXEC CICS LINK and EXEC CICS XCTL
commands specifies the name of a data area (known as a communication area) in
which data is passed to the program being invoked.

In a similar manner, the COMMAREA option of the EXEC CICS RETURN
command specifies the name of a communication area in which data is passed to

Figure 39. Application program logical levels

Chapter 20. Program control 201

the transaction identified in the TRANSID option. (The TRANSID option specifies
a transaction that is initiated when the next input is received from the terminal
associated with the task.)

The invoked program receives the data as a parameter. The program must contain
a definition of a data area to allow access to the passed data.

In a receiving COBOL program, you must give the data area the name
DFHCOMMAREA. If a COBOL program passes a COMMAREA as part of an
EXEC CICS LINK, an EXEC CICS XCTL, or an EXEC CICS RETURN command,
either the working-storage or the linkage section can contain the data area. A
program receiving a COMMAREA should specify the data in the linkage section.
This applies when the program is either of the following:
v The receiving program during an EXEC CICS LINK or an EXEC CICS XCTL

command where a COMMAREA is passed
v The initial program where the EXEC CICS RETURN command of a previously

called task specified a COMMAREA and TRANSID

In a ILE C program that is receiving a COMMAREA, the COMMAREA must be
defined as a structure based on a pointer. The program then must issue the EXEC
CICS ADDRESS COMMAREA command to gain addressability to the passed data.

The receiving data area need not be of the same length as the original
communication area; if access is required only to the first part of the data, the new
data area can be shorter. However, it must not be longer than the length of the
communication area being passed, because if it is, your transaction may
inadvertently attempt to read data outside the area that has been passed. This may
cause your transaction to have unpredictable results. It may also overwrite data
outside the area, which could cause an abend.

To avoid this happening, your program should check whether the length of any
communication area that has been passed to it is as expected by accessing the
EIBCALEN field in the EIB of the task. If no communication area has been passed,
the value of EIBCALEN is zero; otherwise, EIBCALEN always contains the value
specified in the LENGTH option of the EXEC CICS LINK, EXEC CICS XCTL, or
EXEC CICS RETURN command, regardless of the size of the data area in the
invoked program. You should ensure that the value in EIBCALEN matches the
value expected by your program, and make sure that your transaction is accessing
data within that area.

You may also add an identifier to COMMAREA as an additional check on the data
that is being passed. This identifier is sent with the sending transaction and
checked for by the receiving transaction.

When a communication area is passed using an EXEC CICS LINK command, the
invoked program is passed a pointer to the communication area itself. Any
changes made to the contents of the data area in the invoked program are available
to the invoking program, when control returns to it; to access any such changes,
the program names the data area specified in the original COMMAREA option.

When a communication area is passed using an EXEC CICS XCTL command, a
copy of that area is made unless the area to be passed has the same address and
length as the area that was passed to the program issuing the command. For
example in Figure 39 on page 201, if program A issues an EXEC CICS LINK
command to program B, which in turn issues an EXEC CICS XCTL command to

202 CICS for iSeries Application Programming Guide V5

program C, and if B passes to C the same communication area that A passed to B,
program C will be passed addressability to the communication area that belongs to
A (not a copy of it), and any changes made by C will be available to A when
control returns to it.

When a lower-level program, which is a linked-to program, issues the EXEC CICS
RETURN command, control passes back one logical level higher than the program
returning control. If the task is associated with a terminal, the TRANSID option
can be used at the lower level to specify the transaction identifier for the next
transaction to be associated with that terminal. The transaction identifier comes
into play only after the highest logical level has relinquished control to CICS using
the EXEC CICS RETURN command and input is received from the terminal. Any
input entered from the terminal, apart from an attention key, is interpreted wholly
as data. You may use the TRANSID option without COMMAREA when returning
from any link level, but be aware that it might be overridden on a later EXEC
CICS RETURN command. If an EXEC CICS RETURN command fails at the top
level because of an invalid COMMAREA, the TRANSID becomes null. Also, you
can only specify COMMAREA or IMMEDIATE at the highest level, otherwise you
will get an INVREQ with RESP2=2.

In addition, the COMMAREA option can be used to pass data to the new task that
is to be started.

The invoked program can determine which type of command invoked it by
accessing field EIBFN in the EIB. This field must be tested before any CICS
commands are issued. If the program was invoked by an EXEC CICS LINK or
EXEC CICS XCTL command, the appropriate code is found in the EIBFN field; if it
was invoked by an EXEC CICS RETURN command, no CICS commands have
been issued in the task, and the field contains zeros. Figures 41 through 44 show
some examples of passing data.

INPUTMSG
The INPUTMSG option of the EXEC CICS LINK, EXEC CICS XCTL, and EXEC
CICS RETURN commands is another way of specifying the name of a data area to
be passed to the program being invoked. For information about the use of these
commands see Chapter 32, “Application programming commands - reference,” on
page 323. In this case the invoked program gets the data by processing an EXEC
CICS RECEIVE command. This option enables you to invoke (“front-end”)
application programs that were written to be invoked directly from a terminal, and
which contain EXEC CICS RECEIVE commands to obtain initial terminal input.

If a linked-to program issues an EXEC CICS RECEIVE command to obtain initial
input from a terminal, but the initial RECEIVE request has already been issued by
a higher-level program, there is no data for the program to receive. In this case, the
application waits on input from the terminal. You can ensure that the original
terminal input continues to be available to a linked-to program by invoking it with
the INPUTMSG option.

When an application program invokes another program, specifying INPUTMSG on
the EXEC CICS LINK (or EXEC CICS XCTL or EXEC CICS RETURN) command,
the data specified on the INPUTMSG continues to be available even if the linked-to
program itself does not issue an EXEC CICS RECEIVE command, but instead
invokes yet another application program. See Figure 40 on page 204 for an
illustration of INPUTMSG.

Chapter 20. Program control 203

Notes:

1. In this example, the “real” first EXEC CICS RECEIVE command is issued by
program A. By linking to program B with the INPUTMSG option, it ensures
that the next program to issue an EXEC CICS RECEIVE request can also receive
the terminal input. This can be either program B or program C.

2. If program A simply wants to pass on the unmodified terminal input that it
received, it can name the same data area for the INPUTMSG option that it used
for the EXEC CICS RECEIVE command. For example:

3. As soon as one program in a linked-to chain issues an EXEC CICS RECEIVE
command, the INPUTMSG data ceases to be available to any subsequent EXEC
CICS RECEIVE command. In other words, in the example shown, if B issues an
EXEC CICS RECEIVE request before linking to C, the INPUTMSG data area is
not available for C.

Figure 40. Use of INPUTMSG in a linked-to chain

EXEC CICS RECEIVE
 INTO(TERMINAL-INPUT) ...
EXEC CICS LINK
 PROGRAM(PROGRAMB)
 INPUTMSG(TERMINAL-INPUT) ...

204 CICS for iSeries Application Programming Guide V5

4. This method of communicating data from one program to another can be used
for any kind of data—it does not have to originate from a user terminal. In our
example, program A could move any data into the named data area, and
invoke program B with INPUTMSG referencing the data.

5. The “terminal-data” passed on INPUTMSG also ceases to be available when
control is eventually returned to the program that issued the link with
INPUTMSG. In our example, if C returns to B, and B returns to A, and neither
B nor C issues an EXEC CICS RECEIVE command, the data is assumed by A to
have been received. If A then invokes another program (for example, D), the
original INPUTMSG data is no longer available to D, unless the INPUTMSG
option is specified.

Using the INPUTMSG option on the EXEC CICS RETURN
command

You can specify INPUTMSG to pass data to the next transaction specified on an
EXEC CICS RETURN command with the TRANSID option. To do this, the EXEC
CICS RETURN command must be issued at the highest logical level to return
control to CICS, and the command must also specify the IMMEDIATE option. If
you specify INPUTMSG with TRANSID, and do not also specify IMMEDIATE, the
next real input from the terminal overrides the INPUTMSG data, which is therefore
lost. See page 424 for details of the EXEC CICS RETURN command.

Other ways of passing data
Data can also be passed between application programs and transactions in other
ways. For example, the data can be stored in a CICS storage area outside the local
environment of the application program, such as the transaction work area (TWA).
Another way is to store the data in temporary storage; see Chapter 24, “Temporary
storage control,” on page 219 for details.

Examples of passing data
Figures 41 and 42 show how, in COBOL and ILE C, the EXEC CICS LINK
command causes data to be passed to the program being linked to; the EXEC CICS
XCTL command is coded in a similar way.

Figures 43 and 44 show how, in COBOL and C, the EXEC CICS RETURN
command is used to pass data to a new transaction.

Chapter 20. Program control 205

Invoking program
IDENTIFICATION DIVISION.
PROGRAM ID. ’PROG1’.
 .
 .
WORKING-STORAGE SECTION.
01 COM-REGION.
 02 FIELD PICTURE X(3).
 .
 .
PROCEDURE DIVISION.
 MOVE ’ABC’ TO FIELD.
 EXEC CICS LINK PROGRAM(’PROG2’)
 COMMAREA(COM-REGION)
 LENGTH(3) END-EXEC.
 .
 .

 Invoked program
IDENTIFICATION DIVISION.
PROGRAM-ID. ’PROG2’.
 .
 .
LINKAGE SECTION.
01 DFHCOMMAREA.
 02 FIELD PICTURE X(3).
 .
 .
PROCEDURE DIVISION.
 IF EIBCALEN GREATER ZERO
 THEN
 IF FIELD EQUALS ’ABC’

Figure 41. COBOL example–EXEC CICS LINK command

206 CICS for iSeries Application Programming Guide V5

Invoking program
 .
 .
struct com_struct
{
 unsigned char field[3];
} com_reg;
 .
 .
main()
{
 memcpy(com_reg.field,"ABC",3);
 EXEC CICS LINK PROGRAM("PROG2")
 COMMAREA(&com_reg)
 LENGTH(3);
}
 .
 .
 Invoked program
 .
 .
struct comm_struct
{
 unsigned char field[3];
} *commarea;
 .
 .
main()
{
 EXEC CICS ADDRESS EIB(dfheiptr);
 EXEC CICS ADDRESS COMMAREA(commarea);
 if (dfheiptr->eibcalen > 0)
 {
 if (memcmp(commarea->field,"ABC",3) == 0)
 {

Figure 42. ILE C example–EXEC CICS LINK command

Chapter 20. Program control 207

Invoking program
IDENTIFICATION DIVISION.
PROGRAM-ID. ’PROG1’.
 .
 .
WORKING-STORAGE SECTION.
01 TERMINAL-STORAGE.
 02 FIELD PICTURE X(3).
 02 DATAFLD PICTURE X(17).
 .
 .
PROCEDURE DIVISION.
 MOVE ’XYZ’ TO FIELD.
 EXEC CICS RETURN TRANSID(’TRN2’)
 COMMAREA(TERMINAL-STORAGE)
 LENGTH(20) END-EXEC.
 .
 .

 Invoked program
IDENTIFICATION DIVISION.
PROGRAM-ID. ’PROG2’
 .
 .
 .
LINKAGE SECTION.
01 DFHCOMMAREA.
 02 FIELD PICTURE X(3).
 02 DATAFLD PICTURE X(17).
 .
 .
PROCEDURE DIVISION.
 IF EIBCALEN GREATER ZERO
 THEN
 IF FIELD EQUALS ’XYZ’
 MOVE ’ABC’ TO FIELD.
 EXEC CICS RETURN END-EXEC.

Figure 43. COBOL example–EXEC CICS RETURN command

208 CICS for iSeries Application Programming Guide V5

Invoking program
 .
 .
struct ter_struct
{
 unsigned char field [3];
 unsigned char datafld [17];
 } ter_stor;
 .
 .
main()
{
 memcpy(ter_stor.field,"XYZ",3);
 EXEC CICS RETURN TRANSID("TRN2")
 COMMAREA(&ter_stor)
 LENGTH(sizeof(ter-stor);
}
 .
 .
 Invoked program
 .
 .
struct term_struct
{
 unsigned char field[3];
 unsigned char datafld[17];
 } *commarea;
 .
 .
main()
{
 EXEC CICS ADDRESS EIB(dfheiptr);
 EXEC CICS ADDRESS COMMAREA(commarea);
 if (dfheiptr->eibcalen > 0)
 {
 if (memcmp(commarea->field,"XYZ",3) == 0)
 {
 memcpy(commarea->field,"ABC",3);
 }
 }
 EXEC CICS RETURN;
}

Figure 44. ILE C example–EXEC CICS RETURN command

Chapter 20. Program control 209

210 CICS for iSeries Application Programming Guide V5

Chapter 21. Access to system information

You can write many application programs using the CICS command-level interface
without any knowledge of, or reference to, the fields in the CICS control blocks
and storage areas. However, you might sometimes need to get information that is
valid outside the local environment of your application program. You use the
EXEC CICS ADDRESS and EXEC CICS ASSIGN commands to access such
information. For information about these commands, see page 324 and page 327
respectively.

When using the EXEC CICS ADDRESS and EXEC CICS ASSIGN commands,
various fields can be read but should not be set or used in any other way. This
means that you should not use any of the CICS fields as arguments in CICS
commands, because these fields may be altered by the EXEC interface modules.

System programming commands
The EXEC CICS DISCARD, EXEC CICS INQUIRE, EXEC CICS SET, and EXEC
CICS PERFORM commands allow application programs to access and modify
information about CICS resources. The application program can retrieve and
modify information for CICS files, terminals, system entries, system attributes,
connections, queued requests, TD queues, tracing, TS queues, programs, and
transactions. These commands are primarily for the use of the system
administrator. For information, see Chapter 33, “System programming reference,”
on page 477.

EXEC interface block (EIB)
In addition to the usual CICS control blocks, each task in a command-level
environment has a control block known as the EXEC interface block (EIB)
associated with it.

An application program can access all of the fields in the EIB by name. The EIB
contains information that is useful during the execution of an application program,
such as the transaction identifier, the time and date (initially when the task is
started, and subsequently, if updated by the application program), and the cursor
position on a display device. The EIB also contains information that is helpful
when a dump is being used to debug a program. For information about EIB fields,
see Appendix A, “EXEC interface block,” on page 529.

© Copyright IBM Corp. 1998, 2004 211

212 CICS for iSeries Application Programming Guide V5

Chapter 22. Storage control

The CICS storage control program controls requests for main storage to provide
intermediate work areas and other main storage not provided automatically by
CICS but needed to process a transaction.

If you need working storage in addition to the working storage provided
automatically by CICS, you can use the following commands:
v EXEC CICS GETMAIN to get and initialize main storage
v EXEC CICS FREEMAIN to release main storage

You can initialize the acquired main storage to any bit configuration by supplying
the INITIMG option on the EXEC CICS GETMAIN command; for example, zeros
or EBCDIC blanks.

CICS releases all main storage associated with a task when the task is ended
normally or abnormally. This includes any storage acquired, and not subsequently
released, by your application program, except for areas obtained with the SHARED
option. This option of the EXEC CICS GETMAIN command prevents storage being
released automatically when a task completes.

There are two types of storage that can be obtained through the EXEC CICS
GETMAIN command:

Shared
Storage areas are available beyond a CICS task boundary and are
accessible by any transaction. Shared storage must be returned to the
system by using an EXEC CICS FREEMAIN command, or automatically at
CICS control region shutdown.

Nonshared
Nonshared storage areas are available only to the CICS task that acquires
them and only for the life of the task. Nonshared storage is returned to the
system by using an EXEC CICS FREEMAIN command or automatically
when the task terminates normally or abnormally.

For shared storage GETMAIN requests, storage control supports an implied
SUSPEND option if sufficient storage for the request cannot be obtained. When this
condition is present, storage control places the requesting task in a wait state until
sufficient storage becomes available.

For a more thorough discussion of the EXEC CICS FREEMAIN and EXEC CICS
GETMAIN commands and their options, see page 365 and page 367.

Note: If you do not specify NOSUSPEND on the EXEC CICS GETMAIN
command, and the associated transaction has PURGE(*YES) and WAITTIME
greater than zero, your transaction or CICS may fail. The PURGE and
WAITTIME parameters are specified in the ADDCICSPCT CL command,
when defining the CICS transaction.

OS/400 makes storage available for each COBOL/400 program, including the CICS
COBOL program. Chapter 5, “Designing efficient applications,” on page 61
describes storage within individual programs.

© Copyright IBM Corp. 1998, 2004 213

214 CICS for iSeries Application Programming Guide V5

Chapter 23. Transient data control

The CICS transient data control program provides a generalized queuing facility.
Data can be queued (stored) for subsequent internal or external processing.
Selected data, specified in the application program, can be routed to or from
predefined symbolic destinations, either intrapartition or extrapartition.

Destinations are intrapartition if associated with a facility allocated to the CICS
system, and extrapartition if the data is directed to a destination that is external to
the CICS system. The destinations must be defined in the destination control table
(DCT) by the system administrator when the CICS control region is generated. A
DCT entry can be added by using the CEDA transaction or by using the
ADDCICSDCT CL command. Both the initial entry and the use of the CEDA
transaction are described in the CICS for iSeries Administration and Operations Guide.

You can:
v Write data to a transient data queue (EXEC CICS WRITEQ TD command)
v Read data from a transient data queue (EXEC CICS READQ TD command)
v Delete an intrapartition transient data queue (EXEC CICS DELETEQ TD

command)

If the TD keyword is omitted, the command is assumed to be for temporary
storage. (See Chapter 24, “Temporary storage control,” on page 219.)

The EXEC CICS READQ TD command also causes the entry to be deleted (that is,
it can be read only once).

Intrapartition destinations
“Intrapartition” refers to data on direct-access storage devices for use with one or
more programs running as separate tasks. Data directed to or from these internal
destinations is referred to as intrapartition data; it must consist of variable-length
records. Intrapartition destinations can be associated with either a terminal or an
output file. Intrapartition data may ultimately be transmitted upon request to the
destination terminal or retrieved sequentially from the output file.

Typical uses of intrapartition data include:
v Message switching
v Broadcasting
v Database access
v Routing of output to several terminals (for example, for order distribution)
v Queuing of data (for example, for assignment of order numbers or priority by

arrival)

Extrapartition destinations
Extrapartition destinations are queues (files) residing on any sequential device
(DASD, tape, printer, and so on) that are accessible by programs outside (or
within) the CICS system. In general, sequential extrapartition destinations are used
for storing and retrieving data outside the CICS system. For example, one task
may read data from a remote terminal, edit the data, and write the results to a

© Copyright IBM Corp. 1998, 2004 215

physical file for subsequent processing in another system. Logging data, statistics,
and transaction error messages are examples of data that can be written to
extrapartition destinations. In general, extrapartition data created by CICS is
intended for subsequent batched input to non-CICS programs. Data can also be
routed to an output device such as a printer.

Data directed to or from an external destination is referred to as extrapartition data
and consists of sequential records that are fixed-length or variable-length. The
record format for an extrapartition destination must be defined in the DCT by the
system administrator. (Refer to the CICS for iSeries Administration and Operations
Guide for details.)

All extrapartition transient data queue requests are processed through the control
region. The security level of the individual user is not used.

Note that you cannot delete an extrapartition queue. If you try to do so, you cause
an INVREQ condition.

Indirect destinations
Intrapartition and extrapartition destinations can be used as indirect destinations.
Indirect destinations provide some flexibility in program maintenance in that data
can be routed to one of several destinations with only the DCT, not the program,
having to be changed.

When the DCT has been changed, application programs continue to route data to
the destination using the original symbolic name; however, this name is now an
indirect destination that refers to the new symbolic name. Because indirect
destinations are established by means of DCT table entries, the application
programmer need not usually be concerned with how this is done. Further
information is available in the CICS for iSeries Administration and Operations Guide.

Automatic transaction initiation (ATI)
For intrapartition destinations, CICS provides the option of automatic transaction
initiation (ATI). A basis for ATI is established by the system programmer by
specifying a nonzero trigger level for a particular intrapartition destination in the
DCT. When the number of entries (created by EXEC CICS WRITEQ TD commands
issued by one or more programs) in the queue (destination) reaches the specified
trigger level, a task specified in the definition of the destination is automatically
initiated. Control is passed to a program that processes the data in the queue; the
program must issue repetitive EXEC CICS READQ TD commands to deplete the
queue.

When the queue has been emptied, a new ATI cycle begins. That is, a new task is
scheduled for initiation when the specified trigger level is again reached, whether
or not execution of the earlier task has ended.

If an automatically initiated task does not empty the queue, access to the queue is
not inhibited.

The task may be normally or abnormally ended before the queue is emptied (that
is, before a QZERO condition occurs in response to an EXEC CICS READQ TD
command).

216 CICS for iSeries Application Programming Guide V5

If the destination is a terminal, the fact that QZERO has not been reached means
that trigger processing has not been reset and the same task will be reinitiated
later. Without the reset of trigger processing, a subsequent EXEC CICS WRITEQ
TD command will not trigger a new task.

If the destination is a file, the task termination has the same effect as QZERO (that
is, trigger processing is reset) and the next EXEC CICS WRITEQ TD command
initiates the trigger transaction (if the trigger level has been reached).

In addition, the task is not reinitiated if a resource (terminal, program, or
transaction) is not available. If the trigger level of a queue is zero, no task is
automatically initiated.

If a queue is logically recoverable, initiation of the trigger transaction is deferred
until the next syncpoint.

If the trigger level is already exceeded because the last triggered transaction
abended before clearing the queue, then for DEVTYPE(*TERMINAL) on the
ADDCICSDCT CL command, another task is not scheduled because QZERO has
not been raised to reset trigger processing. The already scheduled task is initiated
again when possible. For DEVTYPE(*FILE) on the ADDCICSDCT CL command,
the termination of the task resets trigger processing and so the next EXEC CICS
WRITEQ TD command triggers a new task.

To ensure that completion of an automatically initiated task occurs when the queue
is empty, the application program should test for a QZERO condition rather than
for some application-dependent factor such as an anticipated number of records;
only the QZERO condition indicates an emptied queue.

Chapter 23. Transient data control 217

218 CICS for iSeries Application Programming Guide V5

Chapter 24. Temporary storage control

The CICS temporary storage control program provides the application programmer
with the ability to store data in temporary storage queues, either in main storage,
or in auxiliary storage on a direct-access storage device. Data stored in a temporary
storage queue is known as temporary data. Temporary storage provides a
scratch-pad area for holding data created by one transaction, to be used later by
the same transaction or by a different one.

You can:
v Write data to a temporary storage queue (EXEC CICS WRITEQ TS command)
v Update data in a temporary storage queue (EXEC CICS WRITEQ TS REWRITE

command)
v Read data from a temporary storage queue (EXEC CICS READQ TS command)
v Read the next data from a temporary storage queue (EXEC CICS READQ TS

NEXT command)
v Delete a temporary storage queue (EXEC CICS DELETEQ TS command)

Exception conditions that occur during execution of a temporary storage control
command are handled as described in Chapter 6, “Dealing with exception
conditions,” on page 87.

Temporary storage queues
Temporary storage queues are identified by symbolic names that may be up to
eight characters assigned by the user application during program execution.
Temporary data can be retrieved by the originating task or by any other task using
the symbolic name assigned to it. To avoid conflicts caused by duplicate names, a
naming convention should be established, for example, the operator identifier,
terminal identifier, or transaction identifier could be used as a prefix or suffix to
each programmer-supplied symbolic name. Specific items (logical records) within a
queue are referred to by relative position numbers.

Temporary storage queues remain intact until they are deleted by the originating
task, by any other task, or by a cold start; before deletion, they can be accessed any
number of times. Even after the originating task is terminated, data on temporary
storage queues can be accessed by other tasks through references to the symbolic
name under which it is stored.

Temporary data can be stored either in main storage or in auxiliary storage.
v Main storage

 Generally, main storage should be used if the data is needed for short periods of
time and does not require recovery. Data in main storage does not survive from
one CICS run to the next. Main storage might be used to pass data from task to
task, or for unique storage that allows programs to meet the requirement of
CICS that they be quasi-reentrant (that is, serially reusable between entry and
exit points of the program).

v Auxiliary storage
 In CICS, auxiliary storage is a physical file. Auxiliary storage should be used to
store large amounts of data or data needed for a long period of time. Data

© Copyright IBM Corp. 1998, 2004 219

stored in auxiliary storage is retained after CICS termination and can be
recovered in a subsequent restart. In CICS, data in auxiliary storage can be
designated as either recoverable or nonrecoverable. This is indicated in the
temporary storage table.

For a description of main and auxiliary storage queue usage, see “Temporary
storage” on page 73.

Temporary storage commands
The EXEC CICS READQ TS command is used to read records from a temporary
storage queue. Queue records may be read sequentially by using the NEXT option,
or randomly by using the ITEM option. The EXEC CICS WRITEQ TS command is
used to write records to a TS queue. The EXEC CICS DELETEQ TS command is
used to delete the entire temporary storage queue; you cannot delete an individual
record. For a discussion of these commands, see Chapter 32, “Application
programming commands - reference,” on page 323.

Typical uses of temporary storage control
A temporary storage queue having only one record can be treated as a single unit
of data that can be accessed using its symbolic name. Using temporary storage
control in this way provides a typical “scratch-pad” capability. This type of storage
should be accessed using the EXEC CICS READQ TS command with the ITEM
option; not doing so may cause the ITEMERR condition to be raised.

In general, temporary storage queues of more than one record should be used only
when direct access or repeated access to records is necessary. (Transient data
control is better for efficient handling of sequential files.)

Some uses of temporary storage queues are:

Terminal paging
A task could retrieve a large master record from a direct-access file, format
it into several screen images (using basic mapping support), store the
screen images temporarily in auxiliary storage, and then ask the terminal
operator which “page” (screen image) is desired. The application
programmer can provide a program (as a generalized routine or unique to
a single application) to advance page by page, advance or back up a
relative number of pages, and so on.

A suspend file
Suppose a data collection task is in progress at a terminal. The task reads
one or more units of input and then allows the terminal operator to
interrupt the process by some kind of coded input. If not interrupted, the
task repeats the data collection process. If interrupted, the task writes its
“incomplete” data to temporary storage and terminates. The terminal is
now free to process a different transaction (perhaps a high-priority
inquiry). When the terminal is available to continue data collection, the
operator initiates the task in a “resume” mode, causing the task to recall its
suspended data from temporary storage and continue as though it had not
been interrupted.

Preprinted forms
An application program can accept data to be written as output on a
preprinted form. This data can be stored in temporary storage as it arrives.

220 CICS for iSeries Application Programming Guide V5

When all the data has been stored, it can first be validated and then
transmitted in the order required by the format of the preprinted form.

Chapter 24. Temporary storage control 221

222 CICS for iSeries Application Programming Guide V5

Chapter 25. Printer spooling

The CICS/400 printer spooling support allows access to OS/400 printer files. These
printer files can be set up to print directly to an active writer or to spool the
output.

The printer files must be defined to the system before the execution of the EXEC
CICS SPOOLOPEN command. The CLASS option on the EXEC CICS SPOOLOPEN
command is used to identify the printer file. Refer to the CICS for iSeries
Administration and Operations Guide for information about creating these files.

After the EXEC CICS SPOOLOPEN command has been issued successfully, the
TOKEN returned by CICS is used for subsequent printer spooling requests.

You must specify either the RESP option or the NOHANDLE option when you use
any of the printer spooling commands. Failure to do so causes your program to
abend with abend code APST.

When are printer spooling files closed?
Unlike other files opened by CICS, files opened by way of the EXEC CICS
SPOOLOPEN command are closed under two conditions; at task termination, or
when a syncpoint or commit occurs.

If an EXEC CICS SPOOLCLOSE or EXEC CICS SPOOLWRITE command is issued
after a syncpoint occurs, without an intervening EXEC CICS SPOOLOPEN
command, the EXEC CICS SPOOLCLOSE or EXEC CICS SPOOLWRITE command
will fail.

© Copyright IBM Corp. 1998, 2004 223

224 CICS for iSeries Application Programming Guide V5

Part 6. Supplied transactions

Chapter 26. Introduction to CICS-supplied
transactions 227

Chapter 27. Execution diagnostic facility (EDF) 229
Getting started 229

Restrictions when using EDF 229
Where does EDF intercept the program? 230
What does EDF display? 231

The header 231
The body 231
How you can intervene in program execution 234
EDF menu functions 235

How to use EDF 238
Using EDF in single-screen mode 238

Checking pseudoconversational programs 239
Using EDF in dual-screen mode 240
Stopping EDF 240
Overtyping to make changes 240

EDF responses 242

Chapter 28. Temporary storage browse (CEBR) 243
How to use the CEBR transaction 243
What does the CEBR transaction display? 244

The header 244
The command area 244
The body 244
The message line 245
The CEBR options on function keys 245

The CEBR commands 246
Using the CEBR transaction with transient data 248
Security considerations 248

Chapter 29. Command-level interpreter (CECI) 249
How to use CECI 249
What does CECI display? 250

The command line 250
The status line 251

Command syntax check 251
About to start command 252
Command completed 252

The body 253
The message line 254
CECI options on function keys 254

Additional displays 255
Expanded area 255
Variables 255

Defining variables 256
The EXEC interface block (EIB) 257
Error messages display 257

Making changes 258
How CECI runs 258

CECI sessions 258
Abends 259
Exception conditions 259
Program control commands 259

Terminal Sharing 259
Saving commands 260

Security considerations 261

© Copyright IBM Corp. 1998, 2004 225

226 CICS for iSeries Application Programming Guide V5

Chapter 26. Introduction to CICS-supplied transactions

In general, you start a CICS-supplied transaction by entering its CICS transaction
identification code (transid) in the top left hand corner of the screen (column 1 line
1). The transid is used by CICS to identify the CICS application programs that
handle the specified CICS transactions, and to establish a CICS task to process
them.

CICS-supplied transactions have identification codes that start with “C”, and are 4
characters long; for example, CECI.

Three CICS-supplied transactions (CEBR, CECI, and CEDF) are used by
applications programmers to debug their programs.

The CEDF transaction is the tool most commonly used to debug CICS programs.
Execution Diagnostic Facility (EDF) lets you monitor a command-level program by
intercepting all the CICS commands that the program issues.

As a CICS task is executed it is interrupted by CICS at several key points. At any
of these points you can examine or change the contents of working storage or the
EXEC interface block (EIB). These interception points are listed below:
v Before a new program begins to be executed
v Before any CICS command is executed
v After a CICS command is executed
v After a program ends
v When a CICS task ends
v Whenever an abend occurs

For full details on the use of the CEDF transaction, see Chapter 27, “Execution
diagnostic facility (EDF),” on page 229.

The CEBR transaction lets you browse the contents of a specified CICS temporary
storage queue. It is therefore useful if your program wrote data out to a CICS
temporary storage queue. If you do not specify a default queue name, your
terminal ID preceded by CEBR is used. For full details, see Chapter 28, “Temporary
storage browse (CEBR),” on page 243.

The CECI transaction, the command-level interpreter, is a CICS-supplied
transaction that interactively checks the syntax of CICS commands, and optionally
executes the command.

You can enter part or all of a CICS command. The CECI transaction responds by
displaying the complete syntax for the command. When you have selected the
options you want, and the command passes the syntax check, you can then execute
the command. Variables can be defined to pass data between commands. See
“Variables” on page 255 for details on how to use this function in the CECI
transaction.

The other CICS-supplied transactions available in CICS/400 are described in the
CICS for iSeries Administration and Operations Guide.

© Copyright IBM Corp. 1998, 2004 227

228 CICS for iSeries Application Programming Guide V5

Chapter 27. Execution diagnostic facility (EDF)

The CICS Execution Diagnostic Facility (EDF) can be used with the OS/400
COBOL and ILE C debugging tools to debug CICS application programs. See
either the COBOL/400 User’s Guide or the WebSphere Development Studio: ILE COBOL
Programmer’s Guide for debugging information.

You can use the execution diagnostic facility (EDF) to test an application program
online, without modifying the program or the program-preparation procedure. The
names of your programs must not begin with the letters “AEG” or “DFH” because
these prefixes are used for CICS system modules and samples. Attempting to use
the CEDF transaction on a CICS-supplied transaction has no effect. However, you
can use the CEDF transaction with CICS sample programs.

EDF intercepts the execution of CICS commands in the application program at
various points, allowing you to see what is happening. Each command is
displayed before execution, and most are displayed after execution is complete.
Screens sent by the application program are preserved, so you can converse with
the application program during testing, just as a user would on a production
system.

Each time EDF interrupts the execution of the application program a new CEDF
task is started. Each CEDF task is short lived, lasting only long enough for the
appropriate display to be processed.

Getting started
You can use EDF on the same terminal as the transaction you are testing or on a
different one. On the same terminal, you must start by clearing the screen and
entering the transaction code CEDF, otherwise you may get unpredictable results.
The message: THIS TERMINAL: EDF MODE ON is displayed at the top of an
empty screen. You clear the screen again and run your transaction in the normal
way.

If you are using two terminals, you enter:
CEDF tttt

at one, naming the second in “tttt”. Then you run your transaction on the second
terminal. “How to use EDF” on page 238 gives all the details.

Restrictions when using EDF
Before you start using EDF, you should be aware of the following points:
v EDF can be used to test only user application programs that use the CICS

application programming interface (API).
v EDF can be used only in single-screen mode when running a remote transaction.
v User application programs that are to be debugged using EDF must be compiled

with *DEBUG as one of the CICSOPT options on the CRTCICSCBL or
CRTCICSC CL command. If *DEBUG is specified, the translator inserts
additional COBOL/400 or ILE C statements used to interface the application
program with EDF.

© Copyright IBM Corp. 1998, 2004 229

Note that there is a performance advantage in specifying *NODEBUG, and the
*NODEBUG option is useful in preventing EXEC CICS commands in
well-debugged programs from appearing in EDF.

v EDF runs as a CICS transaction. You invoke it using the CEDF transaction
identifier.

v The program you want to test must be defined in the PPT as being executable
with EDF. The CICS for iSeries Administration and Operations Guide provides
information about how to do this.

v Note that you can use EDF only from a 3270, 5250, or APPC terminal that has a
screen width of 80 columns or more and a screen depth of 24 lines or more.

v When using CEDF on a 5250 screen, the cursor is not positioned on the first
input field, but in the top left hand corner of the screen.

v An APPC session ID cannot be specified as the termid for EDF. If an APPC
session ID is entered, an error message is displayed indicating the error.

Where does EDF intercept the program?
When a transaction runs under EDF control, EDF intercepts it at the following
points, allowing you to interact with it:
v At program initiation, after the EXEC interface block (EIB) has been updated,

but before the program is given control. For general-usage programming
interface information about EIB values, see Appendix A, “EXEC interface block,”
on page 529.

v At the start of execution of every request that goes through the CICS control
region, EDF displays the command, including keywords, options, and argument
values. You can display the information in hexadecimal or character format
(switching from one to the other) by pressing the PF2 key. The command is
identified by transaction identifier, program name, the hexadecimal offset within
the program, and the line number of the command as given in the translator
source listing.

v At the end of the execution of every command except for EXEC CICS ABEND,
EXEC CICS XCTL, and EXEC CICS RETURN commands (although these
commands could raise an error condition that EDF displays). EDF intercepts the
transaction when it has finished processing the command, but before the EXEC
CICS HANDLE CONDITION mechanism is invoked, and before the response
trace entry is made.

v At program termination. Indication that this point has been reached is returned
to the terminal.

v At normal task termination. Indication that this point has been reached is
returned to the terminal.

v When an ABEND occurs and after abnormal task termination. EDF displays the
values of the fields in the EIB and the abend code.

Note: For a program translated with the option *NODEBUG, this still applies,
apart from before and after the execution of each command. For a program
with CEDF defined as NO by resource definition online, the program
initiation and termination screens are suppressed as well.

230 CICS for iSeries Application Programming Guide V5

What does EDF display?
All EDF displays have the same general format, but the contents depend on the
point at which the task was interrupted. The display indicates which of these
interception points has been reached and shows information relevant to that point.
Figure 45 shows a typical display; it occurred after execution of an EXEC CICS
SEND MAP command.

The display consists of a header, a body (the primary display area), a message line,
and a menu of functions you can select at this point. If the body does not fit on
one screen, EDF creates multiple screens, which you can scroll through using PF7
and PF8. The header, menu and message areas are repeated on each screen.

The header
The header shows:
v The identifier of the transaction being executed
v The name of the program being executed
v The internal task number assigned by CICS to the transaction
v A display number
v STATUS, that is, the reason for the interception by EDF

The body
The body or main part of the display contains the information that varies with the
point of intercept.
v At program initiation, as shown in Figure 46 on page 232, EDF displays the

COMMAREA and the contents of the principal fields in the EIB. For information
about these EIB fields, see Appendix A, “EXEC interface block,” on page 529. If
there is no COMMAREA value supplied then line 3 on the screen is left blank
and EIBCALEN has a value of zero.

 TRANSACTION: ACCT PROGRAM: ACCT00 TASK NUMBER: 0236191 DISPLAY: 00
 STATUS: COMMAND COMPLETED 1
 EXEC CICS SEND MAP
 MAP ’ACCTMNU’ 2
 MAPSET ’ACCTSET’
 MAPONLY
 ERASE
 FREEKB
 LINE: 31 EIBFN= X’1804’
 RESPONSE: NORMAL EIBRESP= 0
 ENTER: CONTINUE 3
 PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
 PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY 4
 PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
 PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: ABEND USER TASK

Note: 1Header 2Body 3Message line 4Menu of options

Figure 45. Typical EDF display

Chapter 27. Execution diagnostic facility (EDF) 231

v At the start of execution of a CICS command, EDF displays the command,
including keywords, options, and argument values, as shown in Figure 47. You
can display the information in hexadecimal or character form (and switch from
one to the other) by pressing PF2. If character format is requested, numeric
arguments are shown in signed numeric character format.

v At the end of execution of a command, EDF provides a display in the same
format as at the start of the command. At this point, you can see the effects of
executing the command, in the values of the variables returned or changed and
in the response code. EDF does not provide this display for the EXEC CICS
ABEND, EXEC CICS XCTL, and EXEC CICS RETURN commands (although
these commands could raise an error condition that EDF displays). The
completion screen corresponding to the about to start command screen in
Figure 47 is shown in Figure 48 on page 233.

 TRANSACTION: ACCT PROGRAM: ACCT00 TASK NUMBER: 0236191 DISPLAY: 00
 STATUS: PROGRAM INITIATION
 COMMAREA =
 EIBTIME = 181447
 EIBDATE = 93252
 EIBTRNID = ’ACCT’
 EIBTASKN = 0236191
 EIBTRMID = ’T1S1’
 EIBCPOSN = 5
 EIBCALEN = 0
 EIBAID = X’7D’ AT X’0000001E’
 EIBFN = X’0000’ AT X’0000001F’
 EIBRCODE = X’000000000000’ AT X’00000021’
 EIBDS = ’........’
 EIBREQID = ’........’
 + EIBRSRCE = ’ ’
 ENTER: CONTINUE
 PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
 PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
 PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
 PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: UNDEFINED

Figure 46. Typical EDF display at program initiation

 TRANSACTION: ACCT PROGRAM: ACCT00 TASK NUMBER: 0236191 DISPLAY: 00
 STATUS: ABOUT TO START COMMAND
 EXEC CICS SEND MAP
 MAP ’ACCTMNU’
 MAPSET ’ACCTSET’
 MAPONLY
 ERASE
 FREEKB
 LINE: 31 EIBFN= X’1804’
 ENTER: CONTINUE
 PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : UNDEFINED
 PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
 PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
 PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: ABEND USER TASK

Figure 47. Typical EDF display at start of execution of a CICS command

232 CICS for iSeries Application Programming Guide V5

For CICS commands, response codes are described both by name (for example,
NORMAL or NOTFND) and by the corresponding EIBRESP value in decimal
form.

v At program termination and normal task termination, there is no body
information; all the pertinent information is in the header. Figure 49 and
Figure 50 show typical screens for program and task termination.

v When an abend or abnormal task termination occurs, EDF displays the screens
shown in Figure 51 on page 234 and Figure 52 on page 234.

 TRANSACTION: ACCT PROGRAM: ACCT00 TASK NUMBER: 0236191 DISPLAY: 00
 STATUS: COMMAND COMPLETED
 EXEC CICS SEND MAP
 MAP ’ACCTMNU’
 MAPSET ’ACCTSET’
 MAPONLY
 ERASE
 FREEKB
 LINE: 31 EIBFN= X’1804’
 RESPONSE: NORMAL EIBRESP= 0
 ENTER: CONTINUE
 PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
 PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
 PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
 PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: ABEND USER TASK

Figure 48. Typical EDF display at completion of a CICS command

TRANSACTION: ACCT PROGRAM: ACCT00 TASK NUMBER: 0236191 DISPLAY: 00
STATUS: PROGRAM TERMINATION
ENTER: CONTINUE
PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : UNDEFINED
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : UNDEFINED PF8 : UNDEFINED PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: ABEND USER TASK

Figure 49. Typical EDF display at program termination

 TRANSACTION: ACCT PROGRAM: TASK NUMBER: 0036032 DISPLAY: 00
 STATUS: NORMAL TASK TERMINATION
 TO CONTINUE EDF SESSION REPLY YES REPLY: NO
 ENTER: CONTINUE
 PF1 : UNDEFINED PF2 : UNDEFINED PF3 : END EDF SESSION
 PF4 : UNDEFINED PF5 : WORKING STORAGE PF6 : USER DISPLAY
 PF7 : UNDEFINED PF8 : UNDEFINED PF9 : STOP CONDITIONS
 PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: UNDEFINED

Figure 50. Typical EDF display at task termination

Chapter 27. Execution diagnostic facility (EDF) 233

The body displays the COMMAREA and the values of the fields in the EIB as
well as the abend code.

How you can intervene in program execution
The power of EDF lies in what you can do at each of the intercept points. For
example, you can:
v Change the argument values before a command is executed. For CICS

commands you can’t change the actual command, or add or delete options, but
you can change the value associated with any option. You can also suppress
execution of the command entirely using NOOP. See page 241 for further details.

v Change the results of a command, either by changing the argument values
returned by execution or by modifying the response code. This allows you to
test branches of the program that are hard to reach using ordinary test data (for

 TRANSACTION: ACCT PROGRAM: ACCT00 TASK NUMBER: 0236191 DISPLAY: 00
 STATUS: AN ABEND HAS OCCURRED
 COMMAREA =
 EIBTIME = 181447
 EIBDATE = 93252
 EIBTRNID = ’ACCT’
 EIBTASKN = 0236191
 EIBTRMID = ’T1S1’
 EIBCPOSN = 5
 EIBCALEN = 0
 EIBAID = X’7D’ AT X’0000001E’
 EIBFN = X’0E08’ RETURN AT X’0000001F’
 EIBRCODE = X’000000000000’ AT X’00000021’
 EIBDS = ’........’
 EIBREQID = ’........’
 + EIBRSRCE = ’........’
 ABEND: ASRB
 ENTER: CONTINUE
 PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
 PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
 PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
 PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: UNDEFINED

Figure 51. Typical EDF display when an abend occurs

 TRANSACTION: ACCT PROGRAM: TASK NUMBER: 0236191 DISPLAY: 00
 STATUS: ABNORMAL TASK TERMINATION
 COMMAREA =
 EIBTIME = 181447
 EIBDATE = 93252
 EIBTRNID = ’ACCT’
 EIBTASKN = 0236191
 EIBTRMID = ’T1S1’
 EIBCPOSN = 5
 EIBCALEN = 0
 EIBAID = X’7D’ AT X’0000001E’
 EIBFN = X’0E08’ RETURN AT X’0000001F’
 EIBRCODE = X’000000000000’ AT X’00000021’
 EIBDS = ’........’
 EIBREQID = ’........’
 + EIBRSRCE = ’........’
 ABEND: ASRB
 TO CONTINUE EDF SESSION REPLY YES REPLY: NO
 ENTER: CONTINUE
 PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
 PF4 : UNDEFINED PF5 : WORKING STORAGE PF6 : USER DISPLAY
 PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
 PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: UNDEFINED

Figure 52. Typical EDF display at abnormal task termination

234 CICS for iSeries Application Programming Guide V5

example, what happens on an input/output error). It also allows you to bypass
the effects of an error to check whether this eliminates a problem.

v Display any other location in the CICS region.
v Change the working storage of the program and most fields in the EIB. EDF

stops your task from interfering with other tasks by preventing you from
changing other areas of storage.

v Display the contents of temporary storage and transient data queues.
v Suppress EDF displays until one or more of a set of specific conditions is

fulfilled. This speeds up testing.
v Retrieve up to 10 previous EDF displays or saved screens.
v Switch off EDF mode and run the application normally.
v Abend the task.

The first two types of changes are made by overtyping values in the body of the
command displays. “Overtyping to make changes” on page 240 tells you how to
do this. You use the function keys in the menu for the others; “EDF menu
functions” tells you exactly what you can do and how to go about it.

EDF menu functions
The function keys that you can use at any given time are displayed in a menu at
the bottom of every EDF display (see Figure 45 on page 231). The function of the
ENTER key for that display is also shown. Functions that apply to all displays are
always assigned to the same key, but definitions of some keys depend on the
display and the intercept point. To select an option, press the indicated function
key. Where a terminal has 24 function keys, EDF treats PF13 through PF24 as
duplicates of PF1 through PF12 respectively. If your terminal has no PF keys, place
the cursor under the option you want and press the ENTER key.

ABEND USER TASK
terminates the task being monitored. EDF asks you to confirm this action
by displaying the message “ENTER ABEND CODE AND REQUEST
ABEND AGAIN”. After entering the code at the position indicated by the
cursor, the user must request this function again to abend the task with a
transaction dump identified by the specified code.

 Abend codes beginning with the character A are reserved for use by CICS.
Using a CICS abend code may cause unpredictable results.

 You cannot use this function if an abend is already in progress or the task
is terminating.

BROWSE TEMP STORAGE
produces a display of the temporary storage queue CEBRxxxx, where xxxx
is the terminal identifier of the terminal running EDF. This function is only
available from the working storage (PF5) screen. You can then use CEBR
commands, discussed in “The CEBR commands” on page 246, to display
or modify temporary storage queues and to read or write transient data
queues.

CONTINUE
redisplays the current screen if you have made any changes, incorporating
the changes. If you had not made changes, CONTINUE causes the
transaction under test to resume execution up to the next intercept point.
To continue, press ENTER.

CURRENT DISPLAY
redisplays the current screen if you have made any changes, with the

Chapter 27. Execution diagnostic facility (EDF) 235

changes incorporated. If you have not made changes, it causes EDF to
display the command screen for the last intercept point. To execute this
function, press ENTER from the appropriate screen.

EIB DISPLAY
displays the contents of the EIB. This function is only available from the
working-storage screen (PF5). See Figure 46 on page 232 for an example of
an EIB display. See Appendix A, “EXEC interface block,” on page 529 for
information on EIB fields. If COMMAREA exists, EDF also displays its
address and one line of data in the dump format.

END EDF SESSION
ends the EDF control of the transaction. The transaction continues running
from that point but no longer runs in EDF mode.

NEXT DISPLAY
is the reverse of PREVIOUS DISPLAY. When you have returned to a
previous display, this option causes the next one forward to be displayed
and the display number to increase by one.

PREVIOUS DISPLAY
causes the previous display to be sent to the screen. This will be the
previous command display, unless you saved other displays. The number
of the display from the current intercept point is always 00. As you request
previous displays, the display number decreases by 1 to −01 for the first
previous display, −02 for the one before that, and so on, down to the oldest
display, −10. When no more previous screens are available, the PREVIOUS
option disappears from the menu, and the corresponding function key
becomes inoperative.

REMEMBER DISPLAY
places a display that would not usually be kept in memory, such as an EIB
display, in the EDF memory. (EDF automatically saves the displays at the
start and completion of each command.) The memory can hold up to 10
displays. The displays are numbered in reverse chronological order (that is,
−10 is the oldest display, and −01 is the newest). All pages associated with
the display are kept in memory and can be scrolled when recalled. Note,
however, that if you save a working-storage display, only the screen on
view is saved.

SCROLL BACK
applies to an EIB or command display that does not all fit on one screen.
When the screen on view is not the first one of the display, and there is a
plus sign (+) before the first option or field, then you can view previous
screens in the display by selecting SCROLL BACK.

SCROLL FORWARD
applies to an EIB or command display that does not all fit on one screen.
When this happens, a plus sign (+) appears after the last option or field in
the display, to show that there are more screens. See Figure 46 on page 232
for an example. Using SCROLL FORWARD brings up the next screen in
the display.

SCROLL BACK FULL
has the same function for displays of working storage as the SCROLL
BACK option for EIB displays. SCROLL BACK FULL gives a
working-storage display one full screen backward, showing addresses
lower in storage than those on the current screen.

236 CICS for iSeries Application Programming Guide V5

SCROLL FORWARD FULL
has the same function for displays of working storage as the SCROLL
FORWARD option for EIB displays. SCROLL FORWARD FULL gives a
working-storage display one full screen forward, showing addresses higher
in storage than those on the current screen.

SCROLL BACK HALF
is similar to SCROLL BACK FULL, except that the display of working
storage is reversed by only half a screen.

SCROLL FORWARD HALF
is similar to SCROLL FORWARD FULL, except that the display of working
storage is advanced by only half a screen.

STOP CONDITIONS
produces the menu screen shown in Figure 53. You use this screen to tell
EDF when to resume its displays after you have pressed the SUPPRESS
DISPLAYS key. You can use STOP CONDITIONS and SUPPRESS
DISPLAYS together to cut down on the interaction between you and EDF
when you are checking a program that you know is partly working.

 You can specify any or all of these events as STOP CONDITIONS:
v A specific type of function and option, such as EXEC CICS READNEXT

file or EXEC CICS ENQ resource, is encountered.
v The command at a specific offset or on a specific line number.
v A specific exception condition occurs.
v Any exception condition occurs for which the system action is to raise

ERROR; for example, INVREQ or NOTFND.
v An abend occurs.
v The task ends normally.
v The task ends abnormally.

The line number, which is available on the source listing if the program
has been translated, must be specified as it appears on the listing, and
must specify the line on which a CICS command starts. The correct line
number can be determined easily from the translator output listing.

SUPPRESS DISPLAYS
suppresses all EDF displays until one of the specified STOP CONDITIONS
occurs.

 TRANSACTION: ACCT PROGRAM: ACCT00 TASK NUMBER: 0236191 DISPLAY: 00
 DISPLAY ON CONDITION:
 COMMAND: EXEC CICS
 LINE NUMBER:
 CICS EXCEPTIONAL CONDITION:
 ANY CICS EXCEPTIONAL CONDITION YES
 TRANSACTION ABEND YES
 NORMAL TASK TERMINATION YES
 ABNORMAL TASK TERMINATION YES
 ENTER: CURRENT DISPLAY
 PF1 : UNDEFINED PF2 : UNDEFINED PF3 : UNDEFINED
 PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
 PF7 : UNDEFINED PF8 : UNDEFINED PF9 : UNDEFINED
 PF10: UNDEFINED PF11: UNDEFINED PF12: REMEMBER DISPLAY

Figure 53. Typical EDF display for STOP CONDITIONS

Chapter 27. Execution diagnostic facility (EDF) 237

SWITCH HEX/CHAR
switches displays between character and hexadecimal form. The switch
applies only to the command display, and has no effect on previously
remembered displays, STOP CONDITIONS displays, or working-storage
displays.

UNDEFINED
means that the indicated function key is not defined for the current display
at the current intercept point.

USER DISPLAY
causes EDF to display what would be on the screen if the transaction was
not running in EDF mode. (You can use it only for single terminal
checkout.) To return to EDF after using this key, press the ENTER key.

WORKING STORAGE
allows you to see the contents of the working-storage area in your
program, or of any other address in the CICS region.

 The working-storage contents are displayed in a form similar to that of a
dump listing, that is, in both hexadecimal and character representation.
The address of working storage is displayed at the top of the screen. You
can browse through the entire area using the scroll commands, or you can
simply enter a new address at the top of the screen. This address can be
anywhere within the working storage area in your program, or TS and TD
queues. When this key is used, two additional scrolling keys are provided,
and other PF keys allow the EIB to be displayed.

 Working storage can be changed at the screen; either the hexadecimal
section or the character section can be used. Also, the ADDRESS field at
the head of the display can be overtyped with a hexadecimal address;
storage starting at that address is then displayed when ENTER is pressed.
Further information on the use of overtyping is given in “Overtyping to
make changes” on page 240.

 If the initial part of a working-storage display line is blank, the blank
portion is not part of working storage. This can occur because the display
is doubleword aligned.

How to use EDF
You can run EDF on the same terminal as the transaction to be tested (this is called
“single-screen mode”), or on a different terminal (“dual-screen mode”). Generally,
you can use whichever method you prefer, but there are a few situations in which
one or the other is required. You must use single-screen mode for remote
transactions. See “Restrictions when using EDF” on page 229 for other conditions
which affect your choice.

Using EDF in single-screen mode
When you use EDF with just one terminal, the EDF inputs and outputs are
interleaved with those from the transaction. This sounds complicated, but works
quite easily in practice. The only noticeable peculiarity is that when an EXEC CICS
SEND command is followed by an EXEC CICS RECEIVE command, the display
sent by the EXEC CICS SEND command appears twice: once when the EXEC CICS
SEND is executed, and again when the EXEC CICS RECEIVE is executed. It is not
necessary to respond to the first display, but if you do, EDF preserves anything
that was entered from the first display to the second.

238 CICS for iSeries Application Programming Guide V5

You start EDF by:
v Entering transaction code CEDF from a cleared screen, or
v Pressing the appropriate PF key (if one has been defined for EDF)

Next, you start the transaction to be tested by:
1. Pressing the CLEAR key to clear the screen
2. Entering the transaction code of the transaction you want to test

When both EDF and the user transaction are sharing the same terminal, EDF
restores the user transaction display at the following times:
v When the transaction requires input from the operator
v When you change the transaction display
v At the end of the transaction
v When you suppress the EDF displays
v When you request USER DISPLAY

To enable restoration, user displays are remembered at the following times:
1. At start of task, before the first EDF screen for the task is displayed
2. Before the next EDF screen is displayed, if the user display has been changed
3. On leaving SCREEN SUPPRESS mode

If a program has been translated with option *NODEBUG, or has NO specified for
CEDF in its resource definition, it is not possible for EDF to ascertain when the
user display is being changed. This means that, unless either situation 1 or 3 also
apply, the next EDF screen to be displayed overwrites any user display sent by this
program without saving it first, so that it cannot be later restored.

When EDF restores the transaction display, it does not sound the alarm or affect
the keyboard in the same way as the user transaction. The effect of the user
transaction options is seen when the EXEC CICS SEND command is processed, but
not when the screen is restored.

When EDF restores the transaction display on a device that uses color,
programmed symbols, or extended highlighting, these attributes are no longer
present and the display is monochrome without the programmed symbols or
extended highlighting. Also, if the inbound reply mode in the application program
is set to “character” to enable the attribute-setting keys, EDF resets this mode,
causing these keys to be disabled. If these changes will prevent your transaction
from executing properly, you should test in a dual-screen mode.

If you end your EDF session part way through the transaction, EDF restores the
screen with the keyboard locked if the most recent EXEC CICS RECEIVE command
has not been followed by an EXEC CICS SEND command; otherwise, the keyboard
is unlocked.

Checking pseudoconversational programs
EDF makes a special provision for testing pseudoconversational transactions from
a single terminal. If the terminal came out of EDF mode between the several tasks
that make up a pseudoconversational transaction, it would be very hard to do any
debugging after the first task. So, when a task terminates, EDF asks the operator
whether EDF mode is to continue to the next task. If you are debugging a
pseudoconversational task, press enter as the default is “yes”. If you have finished,
reply “no”.

Chapter 27. Execution diagnostic facility (EDF) 239

Using EDF in dual-screen mode
In dual-screen mode, you use one terminal for EDF interaction and another for
sending input to, and receiving output from, the transaction under test.

You start by entering, at the EDF terminal, the transaction:
CEDF tttt

where tttt is the name of the terminal on which the transaction is to be tested.
Terminal identifiers are assigned by the system administrator using the CICSDEV
parameter of the ADDCICSTCT CL command, or alternatively for autoinstall
terminals, the terminal name is generated by the autoinstall process. The terminal
which you are using for the EDF interaction must be in transceive (ATI/TTI) status
and be able to send and receive data. This is the most common status for display
terminals, but you can find out by asking your system programmer to check its
status, or you can use CEMT (or your site replacement):
CEMT INQ TERMINAL(tttt)

and change it if it is not already ATI/TTI:
CEMT SET TERMINAL(tttt) ATI TTI

Enter the transaction to be tested on this second terminal.

You can also use EDF in dual-screen mode to monitor a transaction that is already
running. If, for example, you believe a transaction at a specific terminal to be
looping, you can go to another terminal and enter a CEDF transaction naming the
terminal at which this transaction is running. EDF picks up control at the next
EXEC CICS command executed, and then you can observe the sequence of
commands that are causing the loop, assuming that at least one EXEC CICS
command is executed. (This applies to a transaction running in the same CICS
control region.)

Stopping EDF
If you want to end EDF control of a terminal, the method you use depends on
where you are in the testing. If the transaction under test is still executing and you
want it to continue, but without EDF, press the END EDF SESSION function key. If
you have reached the task termination intercept, EDF asks if you want to continue.
If you don’t, overtype the reply as NO (YES is the default). If no transaction is
executing at the terminal, clear the screen and enter:
CEDF OFF

Overtyping to make changes
Most of the changes you make with EDF involve changing information in memory.
You do this simply by typing over the information shown on the screen with the
information you want used instead. You can change any area where the cursor
stops when you use the tab keys, except for the menu area at the bottom.

Note: If you are using 5250 terminals you may be able to tab to and type over any
area of the screen. You should not attempt to do so.

When you change the screen, you must observe the following rules:
v On CICS command screens, any argument value can be overtyped, but not the

keyword of the argument. An optional argument cannot be removed, nor can an
option be added or deleted.

240 CICS for iSeries Application Programming Guide V5

v When you change an argument in the command display (as opposed to the
working storage screen), you can change only the part shown on the display. If
you attempt to overtype beyond the value displayed, the changes are not made
and no diagnostic message is generated. If the argument is so long that only part
of it appears on the screen, you should change the area in working storage to
which the argument points. (To determine the address, display the argument in
hexadecimal format; the address of the argument location also appears.)

v In character format, numeric values always have a sign field, which can be
overtyped with a minus or a blank only.

v When an argument is to be displayed in character format, some of the characters
may not be displayable (including lowercase characters). EDF replaces each
nondisplayable character with a period. When overtyping a period, you must be
aware that the storage may in fact contain a character other than a period. You
should not overtype any character with a period; if you do, the change is
ignored and no diagnostic message is issued. If you need to overtype a character
with a period, you can do so by switching the display to hexadecimal format,
using PF2, and overtyping with X'4B'.

v When storage is displayed in both character and hexadecimal format and
changes are made to both, the value of the hexadecimal field takes precedence
should the changes conflict; no diagnostic message is issued.
v The arguments for some commands, such as EXEC CICS HANDLE

CONDITION, are program labels rather than numeric or character data. If no
label value is specified on an EXEC CICS HANDLE CONDITION command,
EDF displays the condition name alone without the parentheses.

v The response field can be overtyped with the name of any exception
condition, including ERROR, that can occur for the current function, or with
the word NORMAL. The effect when EDF continues will be that the program
takes whatever action has been prescribed for the specified response.

v If uppercase translation is not specified for the terminal you are using you
must take care to always enter uppercase characters.

v Any command can be overtyped with NOOP or NOP before processing; this
suppresses processing of the command. Use of the ERASE EOF key, or
overtyping with blanks, gives the same effect. When the screen is redisplayed
with NOP, the original verb line can be restored by erasing the whole verb
line with the ERASE EOF key and pressing the ENTER key.

When you overtype a field representing a data area in your program, the change
is made directly in application program storage and is permanent. However, if
you change a field that represents a constant (a program literal), program
storage is not changed, because this may affect other parts of the program that
use the same constant or other tasks using the program. The command is
executed with the changed data, but when the command is displayed after
processing, the original argument values reappear. For example, suppose you are
testing a program containing a command coded:
EXEC CICS SEND MAP(‘MENU’) END-EXEC.

If you change the name MENU to MENU2 under EDF before executing the
command, the map actually used is MENU2, but the map displayed on the
response will be MENU. (You can use the “previous display” key to verify the
map name you used.) If you process the same command more than once, you
must enter this type of change each time.

Chapter 27. Execution diagnostic facility (EDF) 241

EDF responses
The response of EDF to any keyboard entry follows the rules listed below, in the
order shown:
1. If the CLEAR key is used, EDF redisplays the screen with any changes ignored.
2. If invalid changes are made, EDF accepts any valid changes and redisplays the

screen with a diagnostic message.
3. If the display number is changed, EDF accepts any other changes and shows

the requested display.
4. If a PF key is used, EDF accepts any changes and performs the action requested

by the PF key. Pressing ENTER with the cursor under a PF key definition in the
menu at the bottom of the screen is the same as pressing a PF key.

5. If the ENTER key is pressed and the screen has been modified (other than the
REPLY field), EDF redisplays the screen with changes included.

6. If the ENTER key is pressed and the screen has not been modified (other than
the REPLY field), the effect differs according to the meaning of the ENTER key.
If the ENTER key means CONTINUE, the user transaction continues to execute.
If it means CURRENT DISPLAY, EDF redisplays the current status display.

242 CICS for iSeries Application Programming Guide V5

Chapter 28. Temporary storage browse (CEBR)

You can use the browse transaction (CEBR) to browse temporary storage queues
and delete them. You can also use the CEBR transaction to transfer the contents of
a transient data queue to temporary storage in order to look at them, and to
reestablish the transient data queue when you have finished. The CEBR commands
that perform these transfers allow you to add records to a transient data queue
and remove all records from a transient data queue. See “The CEBR commands”
on page 246 and “The CEBR options on function keys” on page 245 for more
information about their use.

How to use the CEBR transaction
You start the CEBR transaction by entering the transaction identifier CEBR,
followed by the name of the queue you want to browse. For example, to display
the temporary storage queue named CEBRS209, you type:
CEBR CEBRS209

and press ENTER. CICS responds with a display of the queue, for example, as
shown in Figure 54:

Alternatively, you can start the CEBR transaction from the CEDF transaction. You
do this by pressing PF5 from the initial CEDF screen (see Figure 45 on page 231)
which takes you to the working-storage screen, and then pressing PF2 from that
screen to browse temporary storage (that is, invoke the CEBR transaction). The
CEBR transaction responds by displaying the temporary storage queue whose
name consists of the four letters CEBR followed by the four letters of your terminal
identifier. (CICS uses this same default queue name if you invoke the CEBR
transaction directly and do not supply a queue name.) The result of invoking the
CEBR transaction without a queue name or from an EDF session at terminal S21A
is shown in Figure 55. If you enter the CEBR transaction from the CEDF
transaction, you return to the EDF panel when you press PF3 from the CEBR
screen.

CEBR TS QUEUE CEBRS209 RECORD 1 OF 3 COL 1 OF 22
ENTER COMMAND ===> __
 ************************* TOP OF QUEUE ************************
00001 000055001234000001S209
00002 000056003456000002S209
00003 000102000564000001S209
 ************************ BOTTOM OF QUEUE **********************
PF1 : HELP PF2 : SWITCH HEX/CHAR PF3 : SESSION ENDED
PF4 : VIEW TOP PF5 : VIEW BOTTOM PF6 : REPEAT LAST FIND
PF7 : SCROLL BACK HALF PF8 : SCROLL FORWARD HALF PF9 : UNDEFINED
PF10: SCROLL BACK FULL PF11: SCROLL FORWARD FULL PF12: UNDEFINED

Figure 54. Typical CEBR display of temporary storage queue contents

© Copyright IBM Corp. 1998, 2004 243

What does the CEBR transaction display?
As shown in Figure 55, a CEBR transaction display consists of a header, a
command area, a body (the primary display area), a message line, and a menu of
functions you can select at this point.

The header
The header shows:
v The transaction being run, that is, CEBR.
v The identifier of the temporary storage queue (CEBRS209 in Figure 54 on page

243 and CEBRS21A in Figure 55). You can overtype this field in the header if you
want to switch the screen to another queue.

v The number of the highlighted record.
v The number of records in the queue (three in CEBRS209 and none in

CEBRS21A).
v The position in each record at which the screen starts (position 1 in both cases)

and the length of the longest record (22 for queue CEBRS209 and zero for queue
CEBRS21A).

The command area
The command area is where you enter commands that control what is to be
displayed and what function is to be performed. “The CEBR commands” on page
246 describes these commands. You can also modify the screen with function keys
shown in the menu of options at the bottom of the screen. The function keys are
explained in “The CEBR options on function keys” on page 245.

The body
The body is where the queue records are shown. Each line of the screen
corresponds to one queue record. If a record is too long for the line, it is truncated.
You can change the portion of the record that is displayed, however, so that you
can see an entire record on successive screens. If the queue contains more records
than will fit on the screen, you can page forward and backward through them, or
specify at what record to start the display, so that you can see all the records you
want.

CEBR TS QUEUE CEBRS21A RECORD 1 OF 0 COL 1 OF 0 �1�
ENTER COMMAND ===> __ �2�
 ************************* TOP OF QUEUE ************************
 ************************ BOTTOM OF QUEUE **********************
 �3�
TEMPORARY STORAGE QUEUE CEBRS21A does not exist. �4�
PF1 : HELP PF2 : SWITCH HEX/CHAR PF3 : SESSION ENDED �5�
PF4 : VIEW TOP PF5 : VIEW BOTTOM PF6 : REPEAT LAST FIND
PF7 : SCROLL BACK HALF PF8 : SCROLL FORWARD HALF PF9 : UNDEFINED
PF10: SCROLL BACK FULL PF11: SCROLL FORWARD FULL PF12: UNDEFINED

Note: �1�Header �2�Command area �3�Body �4�Message line �5�Menu of options

Figure 55. Typical CEBR display of default temporary storage queue

244 CICS for iSeries Application Programming Guide V5

The message line
CEBR uses the message line between the body and menu to display messages to
the user, such as the “TEMPORARY...exist” message in Figure 55 on page 244.

The CEBR options on function keys
The function keys that you can use at any time are displayed at the bottom of
every CEBR transaction screen. The keys have the same meaning on all screens. If
your terminal does not have PF keys, you can simulate their use by placing the
cursor under the description and pressing ENTER. Where a terminal has 24
function keys, The CEBR transaction treats PF13 through PF24 as duplicates of PF1
through PF12 respectively.

PF1 HELP
Displays a help screen that lists all the commands you can use when the
CEBR transaction is running. You can return to the main screen by pressing
ENTER.

PF2 SWITCH HEX/CHAR
Switches the screen from character to hexadecimal format, and back again.

PF3 SESSION ENDED
Terminates the CEBR transaction. If you entered the CEBR transaction
directly, it frees up your terminal for the next transaction. If you entered
from an EDF session, it returns you to the working-storage screen from
which you entered.

PF4 VIEW TOP
Displays the first records in the queue and has the same effect as the TOP
command.

PF5 VIEW BOTTOM
Displays the last records in the queue and has the same effect as the
BOTTOM command.

PF6 REPEAT LAST FIND
Repeats the previous FIND command.

PF7 SCROLL BACK HALF
Moves the display backward by one-half the number of records that fit on
the screen, so that the records on the top half of the screen move to the
bottom half.

PF8 SCROLL FORWARD HALF
Advances the display by one-half the number of records that fit on the
screen, so that the records on the bottom half of the screen move to the top
half.

PF9 VIEW RIGHT (or VIEW LEFT)
Changes the screen to show the columns immediately after (to the right of)
or before (to the left of) the columns currently on display. The key is not
defined if the entire record fits on one line of the screen. It moves you to
the right until the end of the record is reached, and then reverses to move
left back to the beginning of the record. You can also use the COLUMN
command to change the column at which the display begins.

PF10 SCROLL BACK FULL
Moves the screen backward by the number of records that fit on the screen,
to show the records immediately before those currently on display.

Chapter 28. Temporary storage browse (CEBR) 245

PF11 SCROLL FORWARD FULL
Advances the screen by the number of records that will fit on the screen, to
show the records immediately after those currently on display.

The CEBR commands
Here is a list of the CEBR commands that you can use to view and manipulate the
records in the temporary storage queue.

BOTTOM
(Abbreviation: B)

 Shows the last records in the temporary storage queue (as many as fill up
the body of the screen, with the last record on the last line).

COLUMN nnnn
(Abbreviation: C nnnn)

 Displays the records starting at character position (column) nnnn of each
record. The default starting position, assumed when you initiate the CEBR
transaction, is the first character in the record.

FIND /string
(Abbreviation: F /string)

 Finds the next occurrence of the specified string. The search starts in the
record after the current record. The current record is the one that is
highlighted. In the initial display of a queue, the current record is set to
one, and therefore the search begins at record two.

 If the string is found, the record containing the string becomes the
highlighted line, and the display is changed to show this record on the
second line. If you cannot see the search string after a successful FIND, it
is in columns of the record beyond those on display; use the scroll key or
the COLUMN command to shift the display right or left to show the
string.

 For example:
 FIND /05-02-93

will locate the next occurrence of the string “05-02-93”. The / character is a
delimiter. It does not have to be /, but it must not be a character that
appears in the search argument. For example, if the string you were
looking for was “05/02/93” instead of “05-02-93”, you could not use the
following:
 FIND /05/02/93
 There is a slash in the search string. The following examples would work:
 FIND X05/02/93 or FIND S05/07/93
 Any delimiter except a / or one of the digits in the string works. If there
are any spaces in the search string, you must repeat the delimiter at the
end of the string. For example:
 FIND /CLARE JACKSON/
 The search string is not case-sensitive.
 When you have entered a FIND command, you can repeat it (that is, find
the next occurrence of the string) by pressing PF6.

GET xxxx
(Abbreviation: G xxxx)

246 CICS for iSeries Application Programming Guide V5

Transfers the named transient data queue to the end of the temporary
storage queue currently on display. This enables you to browse the
contents of the queue. xxxx must be either the name of an intrapartition
transient data queue, or the name of an extrapartition transient data queue
that has been opened for input. See “Using the CEBR transaction with
transient data” on page 248 for more information about browsing transient
data queues.

LINE nnnn
(Abbreviation: L nnnn)

 Starts the body of the screen at the queue record one prior to nnnn, and
sets the current line to nnnn. (This arrangement causes a subsequent FIND
command to start the search after record nnnn.)

PURGE
(Abbreviation: PUR)

 Deletes the queue being browsed.

 Do not use PURGE to delete the contents of an internally generated queue,
such as a BMS logical message.

Note: If you purge a recoverable temporary storage queue, no other task
can update that queue (add a record, change a record, or purge)
until your task ends. You should not attempt to access a queue you
have purged in the same CEBR session either; doing so will cause
abend ATSP.

PUT xxxx
(Abbreviation: P xxxx)

 Copies the temporary storage queue that is being browsed to the named
transient data queue. xxxx must be either the name of an intrapartition
transient data queue, or the name of an extrapartition transient data queue
that has been opened for output. See “Using the CEBR transaction with
transient data” on page 248 for more about creating or restoring a transient
data queue.

QUEUE xxxxxxxx
(Abbreviation: Q xxxxxxxx)

 Changes the name of the queue you are browsing. The value that you
specify can be in character format (for example, QUEUE ABCD) or in
hexadecimal format (for example, QUEUE X'C1C2C3C4'). The CEBR
transaction responds by displaying the data that is in the named queue.

 You can also change the queue name by overtyping the current value in
the header.

TERMINAL xxxx
(Abbreviation: TE xxxx)

 Changes the name of the queue you are browsing, but is tailored to
applications that use the convention of naming temporary storage queues
that are associated with a terminal by a constant in the first four characters
and the terminal name in the last four. The new queue name is formed
from the first four characters of the current queue name, followed by xxxx.

TOP (Abbreviation: T)

 Causes the CEBR transaction to start the display at the first record in the
queue.

Chapter 28. Temporary storage browse (CEBR) 247

Using the CEBR transaction with transient data
The GET command reads each record in the transient data queue that you specify
and writes it at the end of the temporary storage queue you are browsing, until the
transient data queue is empty. You can then view the records that were in the
transient data queue. When you have finished your inspection, you can copy the
temporary storage queue back to the transient data queue (using the PUT
command). This usually leaves the transient data queue as you found it, but not
always. Here are some points you need to be aware of when using the GET and
PUT commands:
v If you want to restore the transient data queue unchanged after you have

browsed it, make sure that the temporary storage queue on display at the time
of the GET command is empty. Otherwise, the existing temporary storage
records will be copied to the transient data queue when the subsequent PUT
command is issued.

v After you get a transient data queue and before you put it back, other tasks may
write to that transient data queue. When you issue your PUT command, the
records in the temporary storage queue will be copied after the new records, so
that the records in the queue are no longer in the order in which they were
originally created. Some applications depend on sequential processing of the
records in a queue.

v After you get a recoverable transient data queue, no other task can access that
queue until your transaction ends. If you entered the CEBR transaction from the
CEDF transaction, the CEDF transaction must end, although you can respond
“yes” to the “continue” question if you are debugging a pseudoconversational
sequence of transactions. If you invoked the CEBR transaction directly, you must
end it.

v Likewise, after you issue a PUT command to a recoverable transient data queue,
no other task can access that queue until your transaction ends.

The GET and PUT commands do not need to be used as a pair. You can add to a
transient data queue from a temporary storage queue with a PUT command at any
time. If you are debugging code that reads a transient data queue, you can create a
queue in temporary storage (with the CECI transaction, or the CEBR GET
command, or by program) and then refresh the transient data queue as many times
as you like from temporary storage. Similarly, you can empty a transient data
queue by using a GET command without a corresponding PUT command.

Security considerations
Some installations restrict the use of the CEBR transaction, particularly in
production systems, to prevent modifications that were not intended or not
authorized. Installations may also secure individual resources, including the
recoverable and non-recoverable control-region data files used for temporary
storage and transient data queues. If CEBR reports that it is unable to locate a
queue or other resource, the job log may contain security-check information to help
you with problem determination.

248 CICS for iSeries Application Programming Guide V5

Chapter 29. Command-level interpreter (CECI)

You can use the command-level interpreter (CECI) transaction to check the syntax
of CICS commands and process these commands interactively on a 3270 screen.
CECI allows you to follow through most of the commands to execution and
display the results. It also provides you with a reference to the syntax of the whole
of the CICS command-level application programming and system programming
interface.

CECI interacts with your test system to allow you to create or delete test data,
temporary storage queues, or to deliberately introduce wrong data to test out error
logic. You can also use CECI to repair corrupted database records on your
production system.

How to use CECI
You start the command-level interpreter by entering either of two transaction
identifiers, CECS or CECI, followed by the name of the command you want to test.
You can list command options too, although you can also do this later. For
example:

 or

CICS responds with a display of the command and its associated functions,
options, and arguments, as shown in Figure 56 on page 250. If you leave out the
command, CECI provides a list of possible commands to get you started. You can
use any of the commands described in Part 7, “Programming reference,” on page
263..

CECS READ FILE(’FILEA’)

CECI READ FILE(’FILEA’)

© Copyright IBM Corp. 1998, 2004 249

If you use the transaction code CECS, the interpreter simply checks your command
for correct syntax. If you use CECI, you have the option of executing your
command once the syntax is correct. (CICS uses two transaction identifiers to allow
different security to be assigned to syntax checking and execution.)

What does CECI display?
All CECI screens have the same basic layout. As shown in Figure 56, CECI displays
consist of a command input line, a status line, the body or main part of the screen,
a message line, and a menu of functions you can select at this point.

The command line
The command line is the first line of the screen. You enter the command you want
to process or whose syntax you want to check here. This can be the full or
abbreviated syntax. The rules for entering and abbreviating the command are:
v The keywords EXEC CICS are optional.
v The options of a command can be abbreviated to the number of characters

sufficient to make them unique. Valid abbreviations are shown in uppercase
characters in syntax displays in the body of the screen.

v The quotation marks around character strings are optional, and all strings of
characters are treated as character-string constants unless they are preceded by
an ampersand (&), in which case they are treated as variables.

v Options associated with the EXEC CICS ASSIGN or EXEC CICS INQUIRE
commands that receive a value from CICS when the command is processed are
called receivers, and need not be specified. The value received from CICS is
included in the syntax display, and stored in the variable if one has been
specified, after the command has been processed.

The following example shows the abbreviated form of a command. The file control
command:

 READ FILE(’FILEA’) �1�
 STATUS: COMMAND SYNTAX CHECK NAME= �2�
 EXEC CICS READ
 File()
 Into() |
 SEt()
 < Length() >
 RIdfld()
 < Keylength()
 < GEneric > |
 RBa |
 RRn >
 < SYsid() > �3�
 < GTeq |
 Equal >
 < Update >
 S RIDFLD must be specified
 �4�
 PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF �5�

Note: �1�Command line �2�Status line �3�Body �4�Message line �5�Menu of options

Figure 56. Typical CECI display for command syntax check

250 CICS for iSeries Application Programming Guide V5

can be entered on the command input line, as:

 or at a minimum, as:

In the first form, the INTO specification creates a variable, &REC, into which the
data is to be read. However, INTO is a receiver (as defined above) and you can
omit it. When you do, CICS creates a variable for you automatically.

The status line
As you go through the process of interpreting a command, CECI presents a
sequence of displays. The format of the body of the screen is essentially the same
for all; it shows the syntax of the command and the option values selected. The
status line on these screens tells you where you are in the processing of the
command, and is one of:
v COMMAND SYNTAX CHECK
v ABOUT TO START COMMAND
v COMMAND COMPLETED
v COMMAND NOT EXECUTED

From any of these screens, you can select additional displays. When you do, the
body of the screen shows the information requested, and the status line identifies
the display, which may be any of:
v EXPANDED AREA
v VARIABLES
v EXEC INTERFACE BLOCK
v SYNTAX MESSAGES

These screens are described in “Additional displays” on page 255. You can request
them at any time during processing and then return to the command interpretation
sequence.

There is also one input field in the status line called NAME=. This field is used to
create and name variables, as explained in “Variables” on page 255 and “Saving
commands” on page 260.

Command syntax check
When the status line shows command syntax check (as shown in Figure 56 on
page 250), it indicates that the command entered on the command input line has
been syntax checked but is not about to be processed. This is always the status if
you enter CECS or if you precede your command with a question mark. It is also
the status when the syntax check of the command gives severe error messages.

EXEC CICS READ FILE(’FILEA’)
 RIDFLD(’009000’) INTO(&REC)

READ FIL(FILEA) RID(009000)

READ F(FILEA) RI(009000)

Chapter 29. Command-level interpreter (CECI) 251

In addition, you will get this status if you attempt to execute one of the commands
that the interpreter cannot execute. Although any command can be syntax-checked,
using either CECS or CECI, the interpreter cannot process the following commands
any further:
 HANDLE ABEND
 HANDLE AID
 HANDLE CONDITION
 IGNORE CONDITION
 PUSH HANDLE
 POP HANDLE
 GETMAIN
 FREEMAIN
 WAIT EVENT
 FREE
 SEND LAST

About to start command
This display (as shown in Figure 57) appears when none of the reasons for
stopping at command syntax check applies.

If you press the ENTER key at this point without changing the screen, CECI will
execute the command. You can still modify it at this point, however. If you do,
CECI ignores the previous command and processes the new one from scratch. This
means that the next screen displayed will be command syntax check if the
command cannot be executed or else about to start command if the command is
correct.

Command completed
This display (as shown in Figure 58 on page 253) appears after the interpreter has
executed a command, in response to the ENTER key from an unmodified about to
start command screen.

 READ FILE(’FILEA’) RIDFLD(’009000’)
 STATUS: ABOUT TO START COMMAND NAME=
 EXEC CICS READ
 File() FILEA
 Into() |
 SEt()
 < Length() > +32767
 RIdfld() 009000
 < Keylength()
 < GEneric > |
 RBa |
 RRn >
 < SYsid() >
 < GTeq |
 Equal >
 < Update >
 PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 57. Typical CECI display for about to start command

252 CICS for iSeries Application Programming Guide V5

The command has been processed and the results are displayed on the screen.

Any receivers, whether specified or not, together with their CICS-supplied values,
are displayed intensified.

The body
The body of command syntax check, about to start command, and command
completed screens contains information common to all three displays.

The full syntax of the command is displayed. Options specified in the command
line or assumed by default are intensified, to show that they will be used in
executing the command, as are any receivers. The < > brackets indicate that you
can select an option from within these brackets. If you make an error in your
syntax, CECI diagnoses it in the message area that follows the body, described in
“The message line” on page 254. If there are too many diagnostic messages, the
rest of the messages can be displayed using PF9.

Arguments can be displayed in either character or hexadecimal format. You can
use PF2 to switch between formats. In character format, some characters are not
displayable (including lowercase characters on some terminals); CECI shows them
as periods. You need to switch to hexadecimal to show the real values, and you
need to use caution when modifying them, as explained in “Making changes” on
page 258.

If the value of an option is too long for the line, only the first part is displayed
followed by “...” to indicate there is more. You can display the full value by
positioning the cursor at the start of the option value and pressing ENTER. This
produces an expanded display described in “Expanded area” on page 255.

If the command has more options than can fit on one screen, a plus sign (+)
appears at the left-hand side of the last option of the current display to indicate
that there are more. An example of this is shown in Figure 60 on page 257. You can
display additional pages with the PF keys for scrolling.

 READ FILE(’FILEA’) RIDFLD(’009000’) INTO(&IN)
 STATUS: COMMAND COMPLETED NAME=
 EXEC CICS READ
 File() FILEA
 Into() |
 SEt()
 < Length() > +00100
 RIdfld() 009000
 < Keylength()
 < GEneric > |
 RBa |
 RRn >
 < SYsid() >
 < GTeq |
 Equal >
 < Update >
 RESPONSE: FILENOTFOUND EIBRESP = +00000012
 PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 58. Typical CECI display for command completed

Chapter 29. Command-level interpreter (CECI) 253

The message line
CECI uses the message line to display error messages. After execution of a
command, the message line shows the response code. Figure 56 on page 250 shows
an error message, where the user has omitted a required field. The S that precedes
the message indicates that it is severe (bad enough to prevent execution). There are
also warning messages (flagged by W) and error messages (flagged by E), which
provide information without preventing execution. E messages indicate option
combinations unusual enough that they may not be intended and warrant a review
of the command before you proceed with execution.

Where there are multiple error messages, CECI creates a separate display
containing all of them, and uses the message line to tell you how many there are,
and of what severity. You can get the message display with PF9, as explained in
“Additional displays” on page 255.

Figure 58 on page 253 shows the second use of the message line, to show the result
of executing a command. CECI provides the information in both text
(FILENOTFOUND in the example in Figure 58 on page 253) and in decimal form
(the EIBRESP value).

CECI options on function keys
The single line at the foot of the screen provides a menu indicating the effect of the
PF keys for the display. See Figure 56 on page 250.

The PF keys are described below. If the terminal has no PF keys, the same effect
can be obtained by positioning the cursor under the required item in the menu and
pressing ENTER.

PF1 HELP
displays a HELP panel giving more information on how to use the
command interpreter and on the meanings of the PF keys.

PF2 HEX
(SWITCH HEX/CHAR)

 switches the display between hexadecimal and character format. This is a
mode switch; all subsequent screens stay in the chosen mode until the next
time this key is pressed.

PF3 END
(END SESSION)

 ends the current session of the interpreter.

PF4 EIB
(EIB DISPLAY)

 shows the contents of the EXEC interface block (EIB). An example of this
screen is shown in Figure 60 on page 257.

PF5 VAR
(VARIABLES)

 shows all the variables associated with the current command interpreter
session, giving the name, length, and value of each. See “Variables” on
page 255 for more information about the use of this PF key.

PF6 USER
(USER DISPLAY)

254 CICS for iSeries Application Programming Guide V5

shows the current contents of the user display panel (that is, what would
appear on the terminal if the commands processed thus far had been
executed by an ordinary program rather than the interpreter). This key is
not meaningful until a terminal command is executed, such as EXEC CICS
SEND MAP.

PF7 SBH
(SCROLL BACK HALF)

 scrolls the body half a screen backward.

PF8 SFH
(SCROLL FORWARD HALF)

 scrolls the body half a screen forward.

PF9 MSG
(DISPLAY MESSAGES)

 shows all the messages generated during the syntax check of a command.

PF10 SB
(SCROLL BACK)

 scrolls the body one full screen backward.

PF11 SF
(SCROLL FORWARD)

 scrolls the body one full screen forward.

Additional displays
Additional screens of information are available when you press the relevant PF
key. You can get back to your original screen by pressing ENTER from an
unmodified screen.

Expanded area
This display uses the whole of the body of the screen to display a variable selected
with the cursor. The cursor can be positioned at the start of the value of an option
on a syntax display, or under the ampersand of a variable in a variables display.
Pressing ENTER then gives the expanded area display. The scrolling keys can be
used to display all the information if it exceeds a full screen.

Variables
Figure 59 shows the result of requesting a variables display, obtained by pressing
PF5. For each variable associated with the current interpreter session, it shows the
name, length, and value.

 READ FILE(’FILEA’) RIDFLD(’009000’) INTO(&REC)
 VARIABLES
 &AEGC +00016 THIS IS A SAMPLE
 &AEGR +00045 EXEC CICS READQ QUEUE(’ CIS200’) INTO(&AEGC)
 &AEGW +00046 EXEC CICS WRITEQ QUEUE(’ CIS200’) FROM(&AEGC)
 &REC +00080 482554 D694 72 WIDGET, .007 TEST 100
 PF 1 HELP 2 HEX 3 END 4 EIB 6 USER 9 MSG

Figure 59. Typical CECI display of variables associated with CECI session

Chapter 29. Command-level interpreter (CECI) 255

The first three variables displayed are created for you by CECI and always appear
unless you explicitly delete them. They are designed to help you create command
lists, as described in “Saving commands” on page 260, as well as to serve as
examples.

After these three, you will see any variables that you have created. The fourth one
in Figure 59 on page 255, &REC, is the result of executing:
READ FILE(’FILEA’) RID(’009000’) INTO(&REC)

Normally, the value supplied for an option in the command line is taken as a
character string constant. However, sometimes you need to specify a variable to
represent this value, as when you want to connect two commands through option
values.

For example, to change a record with CECI, you might first enter:
EXEC CICS READ UPDATE INTO(&REC)
 FILE(’FILEA’) RID(’009000’)

You would then modify the record as required by changing the variable &REC,
and then enter:
EXEC CICS REWRITE FROM(&REC) FILE(’FILEA’)

The ampersand (&) in the first position tells CECI that you are specifying a
variable.

A variable is also useful when the values of the options cause the command to
exceed the line length of the command input area. Creating variables with the
required values and specifying the variable names in the command overcomes the
line length limitation.

Defining variables
Variables can have a data type of character, fullword, halfword, or packed decimal,
and you can create them in any of the following ways:
v By naming the variable in a receiver (&REC in Figure 59 on page 255, for

example). The variable is created when the command is processed. The data
type and length are implied by the option.

v By adding new entries to the list of variables already defined. To create a new
variable, simply type its name and length in the appropriate columns on the first
unused line of the variables display, and then press ENTER. For character
variables, use the length with which the variable has been defined. For fullwords
or halfwords, type F or H. For packed variables, use the length in bytes,
preceded by a P.
 Character variables are initialized to blanks. The others are initialized to zero in
the appropriate form. Once a variable is created, you can change the value by
modifying the data field on the variables display.

v By using the NAME field on the status line when you have produced an
expanded area display of a particular option. You do this by positioning the
cursor under the option on a syntax display and pressing ENTER. Then you
assign the variable name you want associated with the displayed option value
by typing it into the NAME field and pressing ENTER again.

v By copying an existing variable. You do this by obtaining an expanded area
display of the variable to be copied, overkeying the name displayed with the
name of the new variable, and pressing ENTER.

256 CICS for iSeries Application Programming Guide V5

v By using the NAME field directly on a syntax display. This creates a character
variable whose contents are the character string on the command line, for use in
command lists as explained in “Saving commands” on page 260.

You can also delete a variable, although you don’t usually need to, as CECI
discards all variables at session end. To delete one before session end, position the
cursor under the ampersand that starts the name, press ERASE EOF and then press
ENTER.

The EXEC interface block (EIB)
You can display the EIB associated with the CECI transaction by pressing PF4.
Figure 60 shows an example of the contents of the EXEC interface block (EIB).

The fields in the EIB are defined in Appendix A, “EXEC interface block,” on page
529..

Error messages display
When there are more messages than CECI can display on the message line, you
can display all of them by pressing PF9.

 READ FILE(’FILEA’) RIDFLD(’009000’)
 EXEC INTERFACE BLOCK
 EIBTIME = +0124613
 EIBDATE = +0091175
 EIBTRNID = ’CECI’
 EIBTASKN = +0000046
 EIBTRMID = ’S200’
 EIBCPOSN = +00004
 EIBCALEN = +00000
 EIBAID = X’7D’
 EIBFN = X’0000’ (READ)
 EIBRCODE = X’000000000000’
 EIBDS = ’FILEA...’
 EIBREQID = ’........’
 EIBRSRCE = ’FILEA ’
 EIBSYNC = X’00’
 EIBFREE = X’00’
 EIBRECV = X’00’
 + EIBATT = X’00’
 PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 60. Typical CECI display of the EIB

 READ
 MESSAGES
 S FILE must be specified.
 S RIDFLD must be specified.
 PF 1 HELP 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 10 SB 11 SF

Figure 61. Typical CECI display of the message display

Chapter 29. Command-level interpreter (CECI) 257

Making changes
Until CICS executes a command, you can change it by changing the contents of the
command line, by changing the option values shown in the syntax display in the
body, or by changing the values of variables on the variables screen. (You can still
make changes after a command is executed, but, unless they are in preparation for
another command, they have no effect.)

When you make your changes in the command line or on the variables screen,
they last for the duration of the CECI transaction. If you make them in the body of
the syntax screen, however, they are temporary. They last only until the command
is executed and are not reflected in the command line.

As noted earlier, not all characters are displayable on all terminals. When the
display is in character rather than hexadecimal format, CECI shows these
characters as periods (X'4B'). When you overtype a period, you should be aware
that the current value may not be a period but an undisplayable character.

Furthermore, you cannot change a character to a period when the display is in
character mode. If you attempt this, CECI ignores your change, and does not issue
a diagnostic message. To make such a change, you have to switch the display to
hexadecimal and enter the value (X'4B') that represents a period.

There is a restriction on changes in hexadecimal format as well. If you need to
change a character to a blank, you cannot enter the code (X'40') from a
hexadecimal display. Again, your change is ignored and CECI does not issue a
message. Instead, you must switch to character mode and blank out the character.
Take care not to enter invalid characters when making changes in hexadecimal
format as this may cause an abend.

After every modification, CECI rechecks your syntax to ensure that no errors have
appeared. It restarts processing at the command syntax check if there are any
execution-stoppers, and at about to start command if not. Only after you press
ENTER on an unmodified about to start command screen does CECI execute your
command.

How CECI runs
There are several things you should know about how the interpreter works, in
order to use it properly. These include:
v CECI sessions
v Abends
v Exception conditions
v Program control commands
v Terminal sharing
v Saving commands

CECI sessions
The interpreter runs as a transaction, using programs supplied by CICS. It is
conversational, which means that everything you do between the start of a session
(entering CECI) and the end (PF3) is a single logical unit of work in a single task.
This means that locks and enqueues produced by commands you execute remain
for the duration of your session. If you read a record for update from a recoverable
file, for example, that record is not available to any other task until you end CECI.

258 CICS for iSeries Application Programming Guide V5

Abends
CECI executes all commands with the NOHANDLE option, so that execution
errors do not ordinarily cause abends.

CECI also issues an EXEC CICS HANDLE ABEND command at the beginning of
the session, so that it will not lose control even if an abend occurs. Consequently,
when you get one, CECI handles it and there is no resource backout. If you are
doing a series of related updates to protected resources, you need to be sure that
you do not do some of them and then find you cannot complete the others. If you
find yourself in this situation, you can execute an EXEC CICS SYNCPOINT
ROLLBACK command or an EXEC CICS ABEND command with the CANCEL
option to remove the effects of your earlier commands on recoverable resources.

Exception conditions
For some commands, CECI may return exception conditions even when all
specified options are correct. This occurs because, on some commands, CECI uses
options that you do not specify explicitly. For example, the EXEC CICS ASSIGN
command always returns the exception condition INVREQ under CECI. Even
though it may return the information you requested correctly, it will have
attempted to get information from other options, some of which will be invalid.

Program control commands
Because the interpreter is itself an application program, the interpretation of some
program control commands may produce different results from an application
program executing those commands. For example, EXEC CICS ABEND command
is intercepted, as noted above, unless you use the CANCEL option.

If you execute an EXEC CICS LINK command, the target program executes, but in
the environment of the interpreter, which may not be the one expected. In
particular, if you modify a user display during a linked-to program, the interpreter
will not be aware of the changes.

Similarly, if you interpret an EXEC CICS XCTL command, CECI passes control to
the named program and never gets control back, so that the CECI session is ended.

Terminal Sharing
When the command being interpreted is one that uses the same screen as the
interpreter, the command interpreter manages the sharing of the screen between
the interpreter display and the user display.

The user display is restored:
v When the command being processed requires input from the operator
v When the command being processed is about to modify the user display
v When USER DISPLAY is requested

Thus, when an EXEC CICS SEND command is followed by an EXEC CICS
RECEIVE command, the display sent by the EXEC CICS SEND command appears
twice, once when the EXEC CICS SEND command is processed, and again when
the EXEC CICS RECEIVE command is processed. It is not necessary to respond to
the EXEC CICS SEND command, but, if a response is made, the interpreter stores
it and redisplays it when the screen is restored for the EXEC CICS RECEIVE
command.

Chapter 29. Command-level interpreter (CECI) 259

When the interpreter restores the user display, it does not sound the alarm or affect
the keyboard in the same way as when an EXEC CICS SEND command is
processed. This is similar to EDF (see “Using EDF in single-screen mode” on page
238 for more information).

Saving commands
Sometimes you may want to execute a command, or a series of commands, under
CECI, repeatedly. One technique for doing this is to create a temporary storage
queue containing the commands. You then alternate reading the command from
the queue and executing it.

CECI provides shortcuts both for creating the queue and for executing commands
from it. To create the queue:
1. Start a CECI session.
2. Enter the first (or next) command you want to save on the command line, put

&AEGC in the NAME field in the status line, and press ENTER. This action
causes the usual syntax check, and it also stores your command as the value of
&AEGC, which is the first of those three variables that CECI always defines for
you. (See Figure 59 on page 255.) If you select the variables display at this
point, you will see that &AEGC is the value of your command.

3. After the syntax is correct but before execution (on the about to start command
screen), change the command line to &AEGW and press ENTER. This causes
CECI to use the value of &AEGW for the command to be executed. &AEGW is
the third of the variables CECI supplies, and it contains a command to write
the contents of variable &AEGC (that is, your command) to the temporary
storage queue named “ CItttt”, where “tttt” is the name of your terminal and
two blanks precede the letters “CI”.

4. Execute this EXEC CICS WRITEQ command (through the command completed
screen). This stores your command on the queue.

5. If there is more than one command you want to save, repeat steps (2) through
(4) for each.

When you want to execute the saved commands from the list, do the following:
1. Enter &AEGR on the command line and press ENTER. &AEGR is the second of

the CECI-supplied variables, and it contains a command to read the queue that
was written earlier. Execute this command; it will bring the first (next) of the
commands you saved into the variable &AEGC

2. Then enter &AEGC on the command line and press ENTER. CECI replaces the
command line with the value of &AEGC, which is your command. Press
ENTER to execute your command.

3. Repeat these two steps, alternating &AEGR and &AEGC on the command line,
until you have executed all of the commands you saved.

You can vary this procedure to suit your needs. For example, you can skip
commands in the sequence by simply skipping step (2). You can change the
options of the saved command before executing it in the same way as a command
entered normally.

If you want to repeat execution of the saved sequence, you need to specify the
option ITEM(1) on the first execution of the EXEC CICS READQ command, in
order to reposition your read to the beginning of the queue.

260 CICS for iSeries Application Programming Guide V5

Security considerations
The interpreter is such a powerful tool that your installation may restrict its use.
For information about security, see AS/400 Security - Reference manual and the CICS
for iSeries Administration and Operations Guide.

Chapter 29. Command-level interpreter (CECI) 261

262 CICS for iSeries Application Programming Guide V5

Part 7. Programming reference

Chapter 30. OS/400 control language (CL)
commands 265
Interpreting the syntax diagrams 265
CRTCICSCBL 266
CRTCICSC 286
CRTCICSMAP 301

Chapter 31. Programming reference 305
Introduction to EXEC CICS commands 305
Command format 305
CICS syntax notation used 306
Argument values 307

COBOL argument values 308
ILE C argument values 309

CICS-value data areas (CVDAs) 309
DATASET option 311
INTO and SET options 311
LENGTH options 312
NOHANDLE option 312
RESP and RESP2 options 313
System programming commands 314

INQUIRE and SET commands 315
Browsing resource definitions 315
Null values 317

PERFORM command 318
DISCARD commands 318

Commands by function 319
Abend support 319
APPC mapped conversation 319
BMS 319
Built-in function 319
Diagnostic services 319
Environment services 319
Exception support 320
File control 320
Interval control 321
Journaling 321
Printer spooling 321
Program control 321
Storage control 321
Syncpoint 321
Task control 321
Temporary storage control 321
Terminal control 322
Transient data control 322

Chapter 32. Application programming
commands - reference 323
ABEND 323
ADDRESS 324
ALLOCATE 325
ASKTIME 326
ASSIGN 327
BIF DEEDIT 332
CANCEL 333
CONNECT PROCESS 335

CONVERSE (APPC) 337
CONVERSE (5250 or 3270 logical) 339
DELAY 341
DELETE 344
DELETEQ TD 348
DELETEQ TS 349
DEQ 350
DUMP TRANSACTION 352
ENDBR 353
ENQ 355
ENTER TRACENUM 357
EXTRACT ATTRIBUTES (APPC) 359
EXTRACT PROCESS 360
FORMATTIME 361
FREE (APPC) 364
FREEMAIN 365
GETMAIN 367
HANDLE ABEND 369
HANDLE AID 371
HANDLE CONDITION 372
IGNORE CONDITION 373
ISSUE ABEND 374
ISSUE CONFIRMATION 375
ISSUE ERASEAUP 376
ISSUE ERROR 377
ISSUE PREPARE 378
ISSUE SIGNAL (APPC) 379
LINK 380
LOAD 385
POP HANDLE 386
POST 387
PUSH HANDLE 389
READ 390
READNEXT 395
READPREV 400
READQ TD 404
READQ TS 407
RECEIVE (APPC) 410
RECEIVE (5250 or 3270 logical) 412
RECEIVE MAP 415
RELEASE 417
RESETBR 418
RETRIEVE 421
RETURN 424
REWRITE 427
SEND (APPC) 430
SEND (SCS) 432
SEND (5250 or 3270 logical) 433
SEND CONTROL 435
SEND MAP 436
SEND TEXT 439
SPOOLCLOSE 441
SPOOLOPEN OUTPUT 442
SPOOLWRITE 444
START 445
STARTBR 452

© Copyright IBM Corp. 1998, 2004 263

SUSPEND 457
SYNCPOINT 457
SYNCPOINT ROLLBACK 458
UNLOCK 458
WAIT CONVID 461
WAIT EVENT 461
WAIT JOURNALNUM 462
WRITE 463
WRITE JOURNALNUM 467
WRITEQ TD 469
WRITEQ TS 471
XCTL 474

Chapter 33. System programming reference 477
DISCARD commands 477
DISCARD AUTINSTMODEL 477
DISCARD FILE 478
DISCARD PROGRAM 478
DISCARD TRANSACTION 479
INQUIRE commands 480
INQUIRE AUTINSTMODEL 480
INQUIRE AUTINSTMODEL (browse) 480
INQUIRE CONNECTION 481
INQUIRE CONNECTION (browse) 483
NQUIRE FILE 484
INQUIRE FILE (browse) 487
INQUIRE JOURNALNUM 488
INQUIRE JOURNALNUM (browse) 489
INQUIRE PROGRAM 490
INQUIRE PROGRAM (browse) 492
INQUIRE SYSTEM 493
INQUIRE TASK 494
INQUIRE TDQUEUE 496
INQUIRE TDQUEUE (browse) 499
INQUIRE TERMINAL or NETNAME 500
INQUIRE TERMINAL (browse) 504
INQUIRE TRACEDEST 505
INQUIRE TRANSACTION 506
INQUIRE TRANSACTION (browse) 508
PERFORM SHUTDOWN command 509
SET commands 509
SET CONNECTION 509
SET FILE 511
SET JOURNALNUM 514
SET PROGRAM 515
SET SYSTEM 517
SET TASK 517
SET TDQUEUE 518
SET TERMINAL 520
SET TRACEDEST 522
SET TRANSACTION 524

264 CICS for iSeries Application Programming Guide V5

Chapter 30. OS/400 control language (CL) commands

CICS/400 has three control language (CL) commands for use by application
programmers:

CRTCICSCBL CRTCICSCBL precompiles a COBOL/400 or ILE COBOL program
with embedded CICS commands.

 When you are ready to compile your program, you must first run
it through a precompiler to translate the CICS commands and SQL
commands (if they are used) into COBOL/400 or ILE COBOL
statements.

 CRTCICSCBL is used in the same way as the CRTSQLCBL and
CRTCBLPGM commands. The authority assigned to this command
is PUBLIC(*USE).

 See page 266 for further details.

CRTCICSC CRTCICSC preprocesses and translates ILE C source code,
containing EXEC CICS and SQL commands, and produces one of
the following:
v A program module
v A bound program

CRTCICSC is used in the same way as other CL commands. The
authority assigned to this command is PUBLIC(*USE).

 See page 286 for further details.

CRTCICSMAP
CRTCICSMAP creates BMS physical and symbolic maps.

 The physical map is created as a *USRSPC in the library specified.
The symbolic map is created as a source member in the source
library specified. You can then copy the resulting structure into any
application program that refers to the map set before compiling a
COBOL/400, COBOL or ILE C program.

 Using CICS/400 BMS maps can be considered similar to using
DDS for defining OS/400 display files. CRTCICSMAP should have
the same security restrictions as any other command that generates
program objects. The authority assigned to this command is
PUBLIC(*USE).

 See page 301 for further details.

If you enter just the command with no parameters in the command area and press
the PF4 key, the first prompt screen is displayed, showing all the available
parameters and their defaults. You can scroll through the screens of parameters to
select those you want.

Interpreting the syntax diagrams
Table 12 on page 306 explains the command syntax conventions used in this book.
You interpret the syntax by following the arrows from left to right.

© Copyright IBM Corp. 1998, 2004 265

|
|

|
|
|
|

|
|
|

|

|
|
|
|
|

Syntax diagrams show all the parameters and values used by each CL command.
Each syntax diagram specifies, for one command, the parameters that can be coded
on the command and the choice of values that are valid for each parameter.

Some parameters for a command may be entered without their keywords. The
system determines which parameter is indicated by its position in the list. Refer to
the relevant syntax diagrams for details. All parameters are shown in each diagram
in the order required by the system for positional coding.

All required parameters precede all optional parameters. The required parameters
(if any) are grouped on the same line as the command name at the beginning of
the diagram. All the other parameters are optional and do not have to be coded; a
default value (shown above the line) is assumed for each uncoded parameter for
most commands.

For each parameter that can have a repetition of values, the maximum number of
repetitions that can be coded is shown in the diagram with the parameter’s values.
The syntax diagrams also show (by the use of flow lines and notes) which
parameters are dependent on the values of other parameters (mutually dependent)
and which can be used only if another parameter or value does not cause a conflict
(mutually exclusive).

Entry codes shown in the upper right corner of the diagram indicate the
environment in which the command can be specified. Notes® are also included to
give information needed to interpret the syntax.

For an explanation of the naming convention used in the diagrams, see
“Conventions and terminology used in this book” on page xiii.

CL command defaults
The defaults given in the CL command descriptions are those that are
supplied with the iSeries system. You should check that your installation has
not made any changes to these command default parameters.

CRTCICSCBL
 Job: B,I Pgm: B,I REXX: B,I Exec

��

CRTCICSCBL
 *CURLIB/

PGM(

program-name

)

library-name/

�

�
*LIBL/

QLBLSRC

SRCFILE(

)

*CURLIB/

source-file-name

library-name/

 �

266 CICS for iSeries Application Programming Guide V5

�
*PGM

SRCMBR(

)

source-file-member-name

 �

�
CICSOPT(

CICSOPT details

)

SQLOPT(

SQLOPT details

)

 �

�
 (1)

CBLOPT(

CBLOPT details

)

*CHG

COMMIT(

)

*ALL

*CS

*NONE

�

�
*PGM

OBJTYPE(

)

**BNDPGM

**MODULE

*SRCMBRTXT

TEXT(

)

*BLANK

'description'

 �

�
CICSOPT(

CICSOPT details

)

SQLOPT(

SQLOPT details

)

 �

�
CBLOPT(

CBLOPT details

)

 �

�
QTEMP/

QACYCICS

OUTFILE(

)

*CURLIB/

source-file-name

library-name/

*LIBL/

 �

�
*PGM

OUTMBR(

)

source-member-name

*CURRENT

TGTRLS(

)

release-level

 �

�
QILE

Activation Group(

*NEW

*CALLER

activation group name

 �

Chapter 30. OS/400 control language (CL) commands 267

�
*LIBL/

*SRCFILE

INCFILE(

)

*CURLIB/

source-file-name

library-name/

 �

�
*YES

ALWCPYDTA(

)

*OPTIMIZE

*NO

*READ

ALWBLK(

)

*NONE

*ALLREAD

 �

�
*NO

DLYPRP(

)

*YES

*ENDPGM

CLOSQLCSR(

)

*ENDSQL

*ENDJOB

*ENDACTG

*ENDMOD

 �

�
10

CICSGENLVL(

)

severity-level

 �

�
29

CBLGENLVL(

)

severity-level

10

SQLGENLVL(

)

severity-level

 �

�
*NOFLAG

SAAFLAG(

)

*FLAG

*NONE

FLAGSTD(

)

*ANS

 �

�
0

FLAG(

)

severity-level

 �

�
*HEX

SRTSEQ(

)

*JOB

*JOBRUN

*LANGIDUNQ

*LANGIDSHR

table-name

*LIBL/

*CURLIB/

library-name/

 �

268 CICS for iSeries Application Programming Guide V5

�
*JOBRUN

LANGID(

)

*JOB

language-identifier

*JOB

DATFMT(

)

*USA

*ISO

*EUR

*JIS

*MDY

*DMY

*YMD

*JUL

 �

�
*HMS

TIMFMT(

)

*USA

*ISO

*EUR

*JIS

*JOB

TIMSEP(

)

’:’

’.’

’,’

’ ’

*BLANK

 �

�
*JOB

DATSEP(

)

’/’

’.’

’-’

’,’

’ ’

*BLANK

*YES

REPLACE(

)

*NO

 �

�
*NONE

DFTRDBCOL(

)

collection-name

 ��

Notes:

1 All parameters preceding this point can be specified positionally.

CICSOPT details:

 *NOSRC
*NOSOURCE

*SRC

*SOURCE

*QUOTE

*APOST

 *NOVBREF
*NOXREFCICS

*VBREF

*XREFCICS

*NODEBUG

*DEBUG

*GEN

*NOGEN

�

�
 *NOSECLVL

*SECLVL

*GRAPHIC

 *NOPICXGRAPHIC

*PICXGRAPHIC

 *PICGRAPHIC

*NOPICGRAPHIC

Chapter 30. OS/400 control language (CL) commands 269

||||

SQLOPT details:

 *NOSOURCE
*NOSRC

*SRC

*SOURCE

*NOXREF

*XREF

*GEN

*NOGEN

*QUOTESQL

*APOSTSQL

*QUOTE

*APOST

�

�
 *NOSECLVL

*SECLVL

 *JOB

*SYSVAL

*PERIOD

*COMMA

 *SYS

*SQL

CBLOPT details:

 *NOSRC
*NOSOURCE

*SRC

*SOURCE

*RANGE

*NORANGE

*NOOPTIMIZE

*OPTIMIZE

*NOLSTDBG

*LSTDBG

�

�
 *STDTRUNC

*NOSTDTRUNC

Function
The Create CICS COBOL (CRTCICSCBL) command calls the CICS precompiler,
which precompiles COBOL source containing CICS statements and produces a
temporary source member. If the source program also contains Structured Query
Language (SQL) commands, it optionally calls the SQL precompiler following a
successful CICS precompile. The resulting precompiler output is placed into a
temporary source member. Following the CICS precompilation and the optional
SQL precompilation, the COBOL compiler may optionally be called to compile the
program.

This command calls either the COBOL/400 compiler or the ILE COBOL compiler
based on the value selected in the OBJTYPE parameter.

If the program uses any copybooks, you should make sure that library QCICS and
the library containing your COBOL copybook are on the library list before
attempting to compile the program. For further information, see the CICS for iSeries
Administration and Operations Guide.

Note: It is possible to precompile your SQL statements first by running the
CRTSQLCBL command and specifying the *NOGEN option on the OPTION
parameter. This puts the SQL precompiler output in QSQLTEMP in library
QTEMP. You must then run the CRTCICSCBL command specifying SRCFILE
as QTEMP/QSQLTEMP; the SRCMBR name can be obtained by looking in
this file for your SQL precompiled program source. The rest of the
parameters on CRTCICSCBL can be entered as normal.

270 CICS for iSeries Application Programming Guide V5

||||

||

|
|

It is not recommended that applications be compiled in this way but, if
necessary, it can be done.

Required parameters
Program (PGM)

specifies the qualified name by which the compiled program is known.

 The possible library values are:
 *CURLIB: If a library is not specified, the program is created in the

current library. If no current library entry exists in the library list, QGPL
is used.

 library-name: Specify the name of the library where the compiled
program is created.

 program-name: Specify the name of the program being created that
contains the CICS statements.

Attention: If the program name you specify is the same name as an
existing program, your new program replaces the existing one if the
REPLACE parameter is specified as *YES (the default).

The following parameters are optional for the CICS precompiler source commands.
If you choose not to specify any of the following keywords or their values, the
defaults are used. SQLOPT lists those options that apply to SQL. For more
information, see the Database and file systems topic in the iSeries Information
Center.

Source file (SRCFILE)
specifies the qualified name of the source file that contains the COBOL
source with the EXEC CICS or EXEC SQL statements.

 The possible library values are:
 *LIBL: Specifies that the library list is used to locate the source file.
 *CURLIB: Specifies that the current library for the job is used to locate

the source file. If no current library entry exists in the library list, QGPL
is used.

 library-name: Specify the name of the library where the source file is
located.

QLBLSRC: If a COBOL source file name is not specified, the supplied
source file QLBLSRC contains the COBOL source.

 source-file-name: Specify the name of the source file that contains the
COBOL source. This source file should have a record length of 92 bytes.
The source file can be a database file, device file, or an inline data file.

Source member (SRCMBR)
specifies the name of the source file member that contains the COBOL
source. This parameter is only specified if the source file name in the
SRCFILE parameter is that of a database file.

 *PGM: Specifies that the COBOL source is in the source file member that
has the same member name as that specified in the PGM parameter for the
precompiler command.

 source-file-member-name: Specify the name of the source file member that
contains the COBOL source.

Chapter 30. OS/400 control language (CL) commands 271

Compile type (OBJTYPE)
specifies COBOL compiler to be used and the type of object to be created.

 *PGM: Specifies that the translated CICS source is to be passed to the
CRTCBLPGM command to create a COBOL program object.

 *BNDPGM: Specifies that the translated CICS source is passed to the
CRTBNDCBL command to create a bound ILE COBOL program object.

 *MODULE: Specifies that the translated CICS source is passed to the
CRTCBLMOD command to create a module object.

Note: You can then bind the module with others into a run-time program
using the CRTPGM CL command.

Commitment control (COMMIT)
specifies whether SQL statements in the compiled program are run under
commitment control. Files referred to in the host language source are not
affected by this parameter. Only SQL tables, views, and SQL packages
referred to in SQL statements are affected.

 *CHG: Specifies that the objects referred to in SQL COMMENT ON,
CREATE, DROP, GRANT, LABEL ON, and REVOKE statements and the
rows updated, deleted, and inserted are locked until the end of the unit of
work (transaction). Uncommitted changes in other jobs can be seen.

 *ALL: Specifies that the objects referred to in SQL COMMENT ON,
CREATE, DROP, GRANT, LABEL ON, and REVOKE statements and the
rows updated, deleted, and inserted are locked until the end of the unit of
work (transaction). Uncommitted changes in other jobs cannot be seen.

 *CS: Specifies that the objects referred to in SQL COMMENT ON,
CREATE, DROP, GRANT, LABEL ON, and REVOKE statements and the
rows updated, deleted, and inserted are locked until the end of the unit of
work (transaction). A row that is selected, but not updated, is locked until
the next row is selected. Uncommitted changes in other jobs cannot be
seen.

 *NONE: Specifies that commitment control is not used. COMMIT and
ROLLBACK statements are not allowed. SQL COMMENT ON, CREATE,
DROP, GRANT, LABEL ON, and REVOKE statements and the rows
updated, deleted, and inserted are locked until the end of the unit of work
(transaction). A row that is selected, but not updated, is locked until the
next row is selected. Uncommitted changes in other jobs cannot be seen.

Note: If *CHG, *CS, or *ALL is specified, DROP COLLECTION cannot be
included in the application. The default for this parameter for the
Start SQL (STRSQL) command is *NONE.

Text description (TEXT)
specifies the text relating to the program.

 *SRCMBRTXT: Specifies that the text is to be taken from the source file
member being used to create the program. Text for a database source
member can be added or changed by using the Source Entry Utility
(STRSEU) command, or by using either the Add Physical File Member
(ADDPFM) or the Change Physical File Member (CHGPFM) command. If
the source file is an inline file or a device file, the text is blank.

 *BLANK: No text is specified.

272 CICS for iSeries Application Programming Guide V5

|
|

|
|

|
|

|
|

|
|

‘description’: Specify no more than 50 characters of text, enclosed by
apostrophes.

CICS options (CICSOPT)
specifies whether one or more of the following options are to be used
when the source is translated. If an option is specified more than once, or
if two options conflict, the last option specified is used. If an option is not
specified, the default is used.

 Source listing options

 *NOSRC or *NOSOURCE: Specifies that the CICS translator is not to
produce a source listing.

 *SRC or *SOURCE: Specifies that the CICS translator is to produce a
source listing and error messages.

 COBOL String delimiter options

 *QUOTE: Specifies that a double quotation mark (") is used for string
delimiters within CICS statements, and also for nonnumeric literals and
Boolean literals in the COBOL statements.

 *APOST: Specifies that an apostrophe (') is used for string delimiters
within CICS statements, and also for nonnumeric literals and Boolean
literals in the COBOL statements.

 Cross-reference options

 *NOVBREF or *NOXREFCICS: Specifies that the CICS translator is not to
produce a cross-reference of EXEC CICS names.

 *VBREF or *XREFCICS: Specifies that the CICS translator is to produce a
cross-reference between EXEC CICS names in the program and the
statement numbers in the program that refer to them.

 Debug Options

 *NODEBUG: Specifies that the CICS translator is not to produce code that
will be passed through to CICS to be displayed by the CICS execution
diagnostic facility (EDF).

 *DEBUG: Specifies that the CICS translator is to produce code that will be
passed through to CICS to be displayed by EDF.

 Program creation options

 *GEN: Specifies that the SQL precompiler or ILE C compiler is to be called
after a successful CICS translation.

Note: The SQL precompiler is to be called only if, during the CICS
translation stage, any EXEC SQL statements were found in the ILE C
source code being CICS translated.

 *NOGEN: Specifies that the compilation is to terminate at the end of the
CICS translation.

 String delimiter and literal options

 Second-level help text

 *NOSECLVL: Specifies that no second-level help text is to be printed.

Chapter 30. OS/400 control language (CL) commands 273

|

|
|
|

|
|
|

|

|
|
|

|
|

*SECLVL: Specifies that the second-level help text is to be printed.

Note: The first-level help text is printed automatically each time an error
occurs.

DBCS Enablement Options

 *GRAPHIC: The precompiler recognizes double-byte character set (DBCS)
data when it is found in program literals. The precompiler recognizes shift
out (SO) and shift in (SI) control characters in program literals, and does
not recognize characters on an SBCS basis inside the bounds of a SO/SI
pair. However, the precompiler does not attempt to impose the rules of
COBOL/400 with regard to DBCS only and mixed literals. It assumes that
all literals containing DBCS characters can be continued over one or more
lines and can be of any length. DBCS characters are accepted in program
comments but must not be used in EXEC CICS commands, either as
keywords or as literal arguments.

 *NOPICXGRAPHIC: DBCS-graphic data types are declared as FILLER
fields.

 *PICXGRAPHIC: Fixed-length DBCS-graphic data types are declared as
fixed length alphanumeric fields and are accessible to the ILE COBOL
source program. When the *VARCHAR option is also in use, variable
length DBCS-graphic data types are declared as fixed-length group items
and are accessible to the ILE COBOL source program.

 *PICGRAPHIC: Fixed-length DBCS-graphic data types are declared as
fixed-length G-type fields and are accessible to the ILE COBOL source
program.

 *NOPICGGRAPHIC: DBCS-graphic data types are declared as FILLER
fields.

SQL options
specifies whether one or more of the following options are to be used
when the source is translated. If an option is specified more than once, or
if two options conflict, the last option specified is used. If an option is not
specified, the default is used.

 Source listing options

 *NOSRC or *NOSOURCE: Specifies that the CICS translator is not to
produce a source listing.

 *SRC or *SOURCE: Specifies that the CICS translator is to produce a
source listing and error messages.

 Cross-reference options

 *NOXREF: Specifies that the SQL pre-compiler is not to produce a
cross-reference of EXEC SQL names.

 *XREF: Specifies that the SQL compiler is to produce a cross-reference
between EXEC SQL names in the program and the statement numbers in
the program that refer to them.

 Program creation options

 *GEN: Specifies that the COBOL/400 compiler is to be called after a
successful SQL translation.

 *NOGEN: Specifies that the compilation is to terminate at the end of the
SQL translation.

274 CICS for iSeries Application Programming Guide V5

|

|
|

|
|
|
|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|

SQL Decimal point options

 *JOB: The representation for the decimal point for the job at SQL
pre-compile time is used. If the QDECFMT specifies that the value used as
the decimal point is a comma, any numeric constants in lists (such as in
the SELECT clause or the VALUES clause) must be separated by a comma
followed by a blank. For example, VALUES(1,1, 2,23, 4,1) is equivalent to
VALUES(1.1,2.23,4.1) where the decimal point is a period.

 *SYSVAL: Specifies that the value used for the decimal point in the SQL
pre-compiler is from the QDECFMT system value. If the QDECFMT
specifies that the value used as the decimal point is a comma, any numeric
constants in lists (such as in the SELECT clause or the VALUES clause)
must be separated by a comma followed by a blank. For example,
VALUES(1,1, 2,23, 4,1) is equivalent to VALUES (1.1,2.23,4.1) where the
decimal point is a period.

 *PERIOD: Specifies that the value used for the decimal point in the SQL
pre-compiler is a period.

 *COMMA: Specifies that the value used for the decimal point in the SQL
pre-compiler is a comma. If the QDECFMT specifies that the value used as
the decimal point is a comma, any numeric constants in lists (such as in
the SELECT clause or the VALUES clause) must be separated by a comma
followed by a blank. For example, VALUES(1,1, 2,23, 4,1) is equivalent to
VALUES(1.1,2.23,4.1) where the decimal point is a period.

 SQL String delimiter options

 *QUOTESQL: Specifies that a double quotation mark (") is used for string
delimiters within SQL statements.

 *APOSTSQL: Specifies that an apostrophe (') is used for string delimiters
within SQL statements.

 COBOL String delimiter option

 *QUOTE: Specifies that a double quotation mark (") is used for string
delimiters for nonnumeric literals and Boolean literals in the COBOL
statements.

 *APOST: Specifies that an apostrophe (') is used for string delimiters for
nonnumeric literals and Boolean literals in the COBOL statements.

 Naming Convention option

 *SYS: Specifies that the OS/400 naming convention will be used
(library-name/file-name).

 *SQL: Specifies that the SQL naming conventions will be used
(collection-name.table-name).

 Second-level help text

 *NOSECLVL: Specifies that no second-level help text is to be printed.

 *SECLVL: Specifies that the second-level help text is to be printed.

Note: The first-level help text is printed automatically each time an error
occurs.

COBOL options (CBLOPT)
specifies whether one or more of the following options are used when the

Chapter 30. OS/400 control language (CL) commands 275

|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|

|
|

|
|

|

|
|
|

|
|

|

|
|

|
|

COBOL source is compiled. If an option is specified more than once, or if
two options conflict, the last option specified is used. If an option is not
specified, the default is used.

 Source listing options

 *NOSRC or *NOSOURCE: Specifies that a source listing is not produced
by the compiler.

 *SRC or *SOURCE: Specifies that a source listing is produced by the
compiler, consisting of all the source input and error messages.

 Verify ranges

 *RANGE: At run time, the system verifies that subscripts are within the
correct ranges, but does not verify index ranges. It also checks for reference
modification and compiler-generated substring operations.

 *NORANGE: The system does not verify ranges at run time.

 Optimization

 *NOOPTIMIZE: The compiler performs only standard optimizations for
the program.

 *OPTIMIZE: The program object created may run more efficiently and
may require less storage. However, specifying *OPTIMIZE can
substantially increase the time required to compile a program.

 CODE/400 option

 This option determines the kind of information you see on your
programmable workstation when using the IBM CoOperative Development
Environment/400 (CODE/400) product.

 *NOLSTDBG: The compiler does not produce a listing view or
listing-level debugging information.

 *LSTDBG: The compiler produces a listing view, source-level error
information, and listing-level debugging information.

 Data Truncation Option

 This option determines how the data is truncated if necessary by the
COBOL compiler. This option only applies to USAGE BINARY data. This
option is valid only for ILE COBOL programs.

 *STDTRUNC: When *STDTRUNC is specified, USAGE BINARY data is
truncated to the number of digits in the PICTURE clause of the BINARY
receiving field.

 *NOSTDTRUNC: When *NOSTDTRUNC is specified, BINARY receiving
fields are truncated only at half-word, full-word and double-word
boundaries. BINARY sending fields are also handled as half-words,
fullwords, and double-words. Thus, the full binary content of the field is
significant. Also, the DISPLAY statement will convert the entire content of
the BINARY field, with no truncation.

 CICS output file (OUTFILE)
specifies the qualified name of the intermediate precompiler output.

 The possible library values are:

 *QTEMP: The supplied source file QTEMP is used.

276 CICS for iSeries Application Programming Guide V5

|

|
|
|

|
|
|

|
|
|
|
|
|

|

*CURLIB: The current library is searched. If no library is specified as the
current library for the job, the QGPL library is used.

 library-name: Specify the name of the library where to generate the
intermediate precompiler output.

 *LIBL: All libraries in the user and system portions of the job’s library are
searched.

 QACYCICS: If an output source file name is not specified, the supplied
source file QACYCICS will contain the intermediate precompiler output.

 source-file-name: Specity the name of the source file to contain the
intermediate precompiler output.

CICS output member (OUTMBR)

 specifies the name of the source file member that is to contain the
intermediate precompiler output. If this parameter is not specified, the
object name on the OBJ parameter is used.

 *OBJ: Specifies that the intermediate precompiler output has the same
member name as that specified in the OBJ parameter.

 source-member-name: specifies that the name of the source file member to
which the intermediate precompiler output should be copied.

Target release (TGTRLS)
specifies the release level of the CICS/400 system on which you intend to
use the object being created.

 You can specify an exact release level in the format VxRxMx, where Vx is
the version, Rx is the release, and Mx is the modification level. For
example, V5R3M0 would be version 5, release 2, modification 0.

 The possible values are:

 *CURRENT: Specifies that the object is to be used on the release of
CICS/400 currently running on your system. For example, if V5R3M0 is
running on the system, *CURRENT means that you intend to use the
object on a system with V5R3M0 installed.

 *PRV: The object is to be used on the previous release of CICS/400. If
V5R3M0 is running on your system, *PRV means that you intend to use
the object on a system with V5R3M0 installed.

 release-level: Specify the release level in the format VxRxMx. The object can
be used on a system with the specified release.

 Valid values depend on the current version, release, and modification level,
and they change with each new release. The valid values for this release
are V5R3M0, V5R2M0 and V5R1M0.

Activation Group (ACTGRP)
Specifies which activation group is to be used when this program is called.
This parameter is applied only when the OBJTYPE parameter is *BNDPGM
and if there are no SQL statements in the program. To create a program
which contains both CICS and SQL statements and also uses an activation
group other than QILE, you should use the *MODULE option for the
OBJTYPE parameter value to create a module object and then use the
CRTPGRM command to create a the bound program.

 QILE: Specifies that the program is to be activated in the QILE activation
group. The program remains active as long as the activation group remains

Chapter 30. OS/400 control language (CL) commands 277

|

|

|
|
|

|
|

|
|

|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

in place. Note that this program’s static variables are initialized based on
their VALUE clause the first time the program is called. Secondary calls to
the program use the current values of the data unless the program uses the
INITIAL option for COBOL or uses the ALWRINZ option for CICS. Note
also that data fields that are not initialized based on the VALUE clause are
not assigned any specific value like X'00' (low values).

 *NEW: Specifies that this program is to be activated in a new activation
group each time it is called by CICS. This means that all variables are
initialized to their initial values each time the program is called. When this
program returns to CICS, the activation is terminated and all programs are
deactivated and all files are closed.

 *CALLER: Specifies that this program is activated in the same activation
group as its caller. For CICS, this means that it is activated in the same
activation group as the program that LINKed to it. This program remains
active as long as the activation group remains in place. Note that this
program’s static variables are initialized based on their VALUE clause the
first time the program is called. Secondary calls to the program use the
current values of the data unless the program uses the INITIAL option for
COBOL or uses the ALWRINZ option for CICS. Note also that data fields
that are not initialized based on the VALUE clause are not assigned any
specific value like X'00' (low values).

 activation group name: Specifies that this program is activated in the
named activation group. This program remains active as long as the
activation group remains in place. Note that this program’s static variables
are initialized based on their VALUE clause the first time the program is
called. Secondary calls to the program use the current values of the data
unless the program uses the INITIAL option for COBOL or uses the
ALWRINZ option for CICS. Note also that data fields are not initialized
based on the VALUE clause are not assigned any specific value like X'00'
(low values).

INCLUDE file (INCFILE)
specifies the qualified name of the source file that contains the members
included in the program with any SQL INCLUDE statement.

 The possible library values are:
 *LIBL: Specifies that the library list is used to locate the source file.
 *CURLIB: Specifies that the current library for the job is used to locate

the source file. If no current library entry exists in the library list, QGPL
is used.

 library-name: Specify the name of the library where the source file is
located.

*SRCFILE: Specifies the qualified source file you specified in the SRCFILE
parameter that contains the source file members specified on any SQL
INCLUDE statement.

 source-file-name: Specify the name of the source file that contains the source
file members specified on any SQL INCLUDE statement. The record length
of the source file you specify here must be no less than the record length of
the source file you specified for the SRCFILE parameter.

Allow copy of data (ALWCPYDTA)
specifies whether a copy of the data is allowed in a SELECT statement.

278 CICS for iSeries Application Programming Guide V5

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

*YES: A copy of the data can only be used, if necessary, to run a SELECT
statement.

 *OPTIMIZE: The system chooses whether or not to use the data retrieved
directly from the database or to use a copy of the data. The decision is
based on which choice will provide the best performance.

 This value decreases the time required for the total query. Because the copy
of the data must be made before returning the first row of the result table,
the time to retrieve the first row may be increased.

Note: If *CS or *ALL is specified on the COMMIT parameter, SQL run
time ignores this parameter and uses current data.

 *NO: A copy of the data is not allowed. This option could return a
negative SQLCODE if the clauses in the SELECT statement require a copy
of the data. If the SELECT statement runs successfully, then current data
was used.

Allow blocking (ALWBLK)
specifies whether the database manager can use record blocking, and the
extent to which blocking can be used for read-only cursors.

 *READ: Records are blocked for read-only retrieval of data for cursors
when:
v *NONE is specified on the COMMIT parameter, to indicate that

commitment control is not used.
v The cursor is declared with a FOR FETCH ONLY clause or there are no

dynamic statements that could run a positioned UPDATE or DELETE
statement for the cursor.

Specifying *READ can improve the overall performance of queries that
meet the above conditions and retrieve a large number or records.

 *NONE: Rows are not blocked for retrieval of data for cursors. Specifying
*NONE:
v Guarantees that the data retrieved is current.
v May reduce the amount of time required to retrieve the first row of data

for a query.
v Stops the database manager from retrieving a block of data rows that is

not used by the program when only the first few rows of a query are
retrieved before the query is closed.

v Can degrade the overall performance of a query that retrieves a large
number of rows.

*ALLREAD: Rows are blocked for read-only cursors if *NONE or *CHG is
specified on the COMMIT parameter. All read-only cursors in a program
are opened for read-only processing even though there may be EXECUTE
statements in the program. Specifying *ALLREAD:
v Allows record blocking under commitment control. Specifying *READ

does not.
v Improves the performance of almost all read-only cursors in programs,

but limits queries in the following ways:
– A ROLLBACK statement in host languages, or the ROLLBACK HOLD

SQL statement, does not position the read-only cursor again when
*ALLREAD is specified.

Chapter 30. OS/400 control language (CL) commands 279

– Dynamic running of a positioned UPDATE or DELETE statement (for
example, EXECUTE IMMEDIATE), cannot be used to update a row in
a cursor unless the DECLARE statement for the cursor includes the
FOR UPDATE clause.

Delay prepare (DLYPRP)
specifies whether the dynamic statement validation for a PREPARE
statement is delayed until an OPEN, EXECUTE, or DESCRIBE statement is
run. Delaying validation improves performance by eliminating duplicate
validation.

 *NO: Dynamic statement validation is not delayed. When the dynamic
statement is prepared, the access plan is validated. When the dynamic
statement is used in an OPEN or EXECUTE statement, the access plan is
revalidated. Because the authority or the existence of objects referred to by
the dynamic statement may change, you must still check the SQLCODE or
SQLSTATE after issuing the OPEN or EXECUTE statement, to ensure that
the dynamic statement is still valid.

 *YES: Dynamic statement validation is delayed until the dynamic
statement is used in an OPEN, EXECUTE, or DESCRIBE SQL statement.
When the dynamic statement is used, the validation is completed and an
access plan is built. If you specify *YES on this parameter for precompiled
programs, you should check the SQLCODE and SQLSTATE after running
an OPEN, EXECUTE, or DESCRIBE statement to ensure that the dynamic
statement is valid. If you specify *YES, performance is not improved if the
INTO clause is used on the PREPARE statement or if a DESCRIBE
statement uses the dynamic statement before an OPEN is issued for the
statement.

Close SQL cursor (CLOSQLCSR)
specifies when SQL cursors are implicitly closed, SQL prepared statements
are implicitly discarded, and LOCK TABLE locks are released. SQL cursors
are explicitly closed by issuing the CLOSE, COMMIT (without HOLD), or
ROLLBACK (without HOLD) SQL statements.

 *OBJTYPE: Specifies that SQL cursors are handled according to the value
defined in the *OBJTYPE parameter. If *PGM was specified then
CRTCBLPGM uses *ENDPGM. If *BNDPGM was specified then
CRTBNDCBL uses *ENDACTGRP.

 *ENDPGM: Specifies that SQL cursors are closed, SQL prepared statements
are discarded, and LOCK TABLE locks are released when the program
ends.

 *ENDSQL: Specifies that SQL cursors remain open between calls and can
be fetched without running another SQL OPEN. One of the programs
higher on the call stack must have run at least one SQL statement. SQL
cursors are closed, SQL prepared statements discarded, and LOCK TABLE
locks released when the first SQL program on the call stack ends. If
*ENDSQL is specified for a program that is the first SQL program called
(the first SQL program on the call stack), the program is treated as if
*ENDPGM were specified.

 *ENDJOB: Specifies that SQL cursors remain open between calls and can
be fetched without running another SQL OPEN. None of the programs
higher on the call stack needs to have run SQL statements. SQL cursors are
left open, SQL prepared statements are preserved, and LOCK TABLE locks
are held when the first SQL program on the call stack ends. SQL cursors
are closed, SQL prepared statements are discarded, and LOCK TABLE

280 CICS for iSeries Application Programming Guide V5

|
|
|
|

locks are released when the job ends. If you are running distributed
database and are connected remotely, the connection is dropped.

 *ENDACTGRP: Specifies that SQL cursors are to be closed, SQL prepared
statements are to be released, and LOCK TABLE locks are to be released
when the activation group ends. This option is only allowed when using
an ILE program.

 *ENDMOD: Specifies that SQL cursors are to be closed and SQL prepared
statements are to be discarded when the module is exited. LOCK TABLE
locks are to be released when the activation group ends. This option is
only allowed when using an ILE program.

CICS generation severity level (CICSGENLVL)
specifies a level of CICS translator errors. If errors occur with a severity
level greater than the value specified in this parameter, either the SQL
precompiler is not called (if the CICS translator located any SQL in the
source) or the compiler is not called.

 10: If a severity-level value is not specified, the default severity level is 10.

 severity-level: Specify a number in the range 10 through 40. Some suggested
values are listed below:

10 The level value for warnings.

20 The level value for general error messages.

30 The level value for serious error messages.

40 The level value for system-detected error messages.

Note: The value of CICSGENLVL applies only to messages generated as a
result of CICS translation errors. The specified CICSGENLVL value
is not passed to the SQL precompiler or the compiler.

COBOL generation severity level (CBLGENLVL)
specifies a level of COBOL compiler errors. If errors occur with a severity
level greater than the value specified in this parameter, the COBOL
program object is not created.

 29: If a severity-level value is not specified, the default severity level is 29.

 severity-level: Specify a number in the range 0 through 29.

SQL generation severity level
specifies a level of SQL precompiler errors. If errors occur with a severity
level greater than the value specified in this parameter, the compiler is not
called.

 10: If no value is specified, the default severity level is 10.

 severity-level: Specify a number in the range 10 through 40. Some suggested
values are listed below:

10 The level value for warnings.

20 The level value for general error messages.

30 The level value for serious error messages.

40 The level value for system-detected error messages.

Chapter 30. OS/400 control language (CL) commands 281

|
|
|
|

|
|
|
|

|
|
|

Note: The value of SQLGENLVL only applies to messages generated as a
result of SQL precompilation errors. The specified SQLGENLVL
value is not passed to the compiler.

SAA flagging (SAAFLAG)
specifies whether SQL statements that do not conform to SAA Level 2
Database standards are flagged.

 *NOFLAG: Specifies that the precompiler will not check for conformity to
SAA standards.

 *FLAG: Specifies that the precompiler will check for conformity to SAA
standards.

ANS flagging (FLAGSTD)
specifies whether nonstandard statements are flagged. This parameter
allows you to flag SQL statements to verify that they conform to ANSI
X3.135-1-1989, ANSI X3.168-1989, ISO 9075-1989, and FIPS 127.1 standards.

 *NONE: Specifies that the precompiler will not check for conformity to
ANSI standards.

 *ANS: Specifies that the precompiler will check for conformity to ANSI
standards.

Flagging severity (FLAG)
specifies the minimum severity level of messages to be printed. The
possible values are:

 0: All messages are printed.

 severity-level: Enter a one or two-digit number that specifies the minimum
severity level of messages to be printed. Messages that have severity levels
of the specified value or higher are printed.

Sort sequence (SRTSEQ)
specifies the sort sequence used when NLSSORT is associated with an
alphabet-name in the ALPHABET clause. The SRTSEQ parameter is used
in conjunction with the LANGID parameter to determine which
system-defined or user-defined sort sequence table the program will use.

 The possible values are:

 *HEX: No sort sequence table is used, and the hexadecimal values of the
characters are used to determine the sort sequence.

 *JOB: The sort sequence of the program is resolved and associated with
the program at compile time. The sort sequence table must exist in the
system at compile time.

 *JOBRUN: The sort sequence of the program is resolved and associated
with the program at run time. At compile time, the compiler associates the
sort sequence of the compile job with the program. At run time, this sort
sequence is replaced by the sort sequence associated with the job at run
time.

 *LANGIDUNQ: The sort sequence table being used must contain a unique
weight for each character in the code page. The sort sequence table used is
the unique weighted table associated with the language specified in the
LANGID parameter.

282 CICS for iSeries Application Programming Guide V5

*LANGIDSHR: The sort sequence table being used can contain the same
weight for multiple characters in the code page. The sort sequence table
used is the shared weighted table associated with the language specified in
the LANGID parameter.

 table-name: The name of the sort sequence table to be used. The table
contains weights for all characters in a given code page. A weight is
associated with the character that is defined at the code point. When a sort
sequence table name is specified, you can specify the library in which the
table resides. Valid values are:
 *LIBL: Specifies that the library list is used to locate the sort sequence

table.
 *CURLIB: Specifies that the current library for the job is used to locate

the sort sequence table. If no current library entry exists in the library
list, QGPL is used.

 library-name: Specify the name of the library where the sort sequence
table is located.

The valid PROCESS statement options for the SRTSEQ parameter are:
 SRTSEQ(HEX)
 SRTSEQ(JOB)
 SRTSEQ(JOBRUN)
 SRTSEQ(LANGIDUNQ)
 SRTSEQ(LANGIDSHR)
 SRTSEQ(table-name)
 SRTSEQ(library-name/table-name)
 SRTSEQ(LIBL/table-name)
 SRTSEQ(CURLIB/table-name)

Language identifier (LANGID)
specifies the language identifier that is used in conjunction with the sort
sequence. The LANGID parameter is used only when the SRTSEQ
parameter value specified is either *LANGIDUNQ or *LANGIDSHR.

 The possible values are:

 *JOBRUN: The language identifier of the program is resolved at run time.
When the compiled program is run, the language identifier of the job is
used. This allows a program to be compiled once and used with different
language identifiers at run time.

 *JOB: The language identifier of the program is resolved at compile time.

 language-identifier: A three-character language identifier, which must be one
of the following:

 Table 11. Language identifiers
AFR Afrikaans SQI Albanian
ARA Arabic NLB Belgian Dutch - Flemish
FRB Belgian French PTB Brazilian Portuguese
BGR Bulgarian BEL Byelorussian
FRC Canadian French CAT Catalan
HRV Croatian CSY Czech
DAN Danish NLD Dutch
ENA English Australian ENP English Upper Case
FIN Finnish FRA French

Chapter 30. OS/400 control language (CL) commands 283

Table 11. Language identifiers (continued)
DEU German ELL Greek
HEB Hebrew HUN Hungarian
ISL Icelandic GAE Irish Gaelic
ITA Italian JPN Japanese Katakana
KOR Korean MKD Macedonian
NOR Norwegian - Bokmal NON Norwegian - Nynorsk
PLK Polish PTG Portuguese
RMS Rhaeto-Romanic ROM Romanian
RUS Russian SRB Serbian Cyrillic
SRL Serbian Latin CHS Simplified Chinese
SKY Slovakian SLO Slovenian
ESP Spanish SVE Swedish
FRS Swiss French DES Swiss German
ITS Swiss Italian THA Thai
CHT Traditional Chinese TRK Turkish
ENG UK English ENU US English

 The valid PROCESS statement options for the LANGID parameter are:
 LANGID(JOBRUN)
 LANGID(JOB)
 LANGID(language-identifier)

Date format (DATFMT)
specifies the format used when accessing date result columns. All output
date fields are returned in the specified format. For input date strings, the
specified value is used to determine whether the date is in a valid format.

Note: An input date string that uses format *USA, *ISO, *EUR, or *JIS is
always valid. If you connect to a relational database that is on a
system that is not an OS/400 system, *USA, *ISO, *EUR, or *JIS
must be used.

 *JOB: Specifies the format used for the job at precompilation. Use the
Display Job (DSPJOB) command to determine the current date format for
the job.

 *USA: The United States date format mm/dd/yyyy is used.

 *ISO: The International Organization for Standardization (ISO) date format
yyyy-mm-dd is used.

 *EUR: The European date format dd.mm.yyyy is used.

 *JIS: The Japanese Industrial Standard date format yyyy-mm-dd is used.

 *MDY: The date format mm/dd/yy is used.

 *DMY: The date format dd/mm/yy is used.

 *YMD: The date format yy/mm/dd is used.

 *JUL: The Julian date format yy/ddd is used.

Time format (TIMFMT)
specifies the format used when accessing time result columns. All output

284 CICS for iSeries Application Programming Guide V5

time fields are returned in the specified format. For input time strings, the
specified value is used to determine whether the time is specified in a
valid format.

Note: An input time string that uses the format *USA, *ISO, *EUR, or *JIS
is always valid. If you connect to a relational database that is on a
system that is not an OS/400 system, the time format must be *USA,
*ISO, *EUR, *JIS, or *HMS, with a time separator of colon or period.

 *HMS: The hh:mm:ss format is used.

 *USA: The United States time format hh:mm xx is used, where xx is AM
or PM.

 *ISO: The International Organization for Standardization (ISO) time format
hh.mm.ss is used.

 *EUR: The European time format hh.mm.ss is used.

 *JIS: The Japanese Industrial standard time format hh:mm:ss is used.

Time separator character (TIMSEP)
specifies the separator used when accessing time result columns.

Note: This parameter applies only when *HMS is specified on the
TIMFMT parameter.

 *JOB: The time separator specified for the job at precompile time is used.
Use the Display Job (DSPJOB) command to determine the current value for
the job.

 ':': A colon (:) is used as the time separator.

 '.': A period (.) is used as the time separator.

 ',': A comma (,) is used as the time separator.

 ' ': A blank space is used as the time separator.

 *BLANK: A blank is used as the time separator.

Date separator character (DATSEP)
specifies the separator used when accessing date result columns.

 *JOB: The date separator specified for the job at precompile time is used.
Use the Display Job (DSPJOB) command to determine the current value for
the job.

 '/': A slash (/) is used as the date separator.

 '.': A period (.) is used as the date separator.

 '-': A hyphen (-) is used as the date separator.

 ',': A comma (,) is used as the date separator.

 ' ': A blank space is used as the date separator.

 *BLANK: A blank is used as the date separator.

Chapter 30. OS/400 control language (CL) commands 285

Replace (REPLACE)
specifies whether a program is created when there is an existing program
of the same name in the same library. The value of this parameter is
passed to the CRTCBLPGM command.

 *YES: A program object is created, and any existing program of the same
name in the specified library is moved to QRPLOBJ. The *YES value is
passed to the CRTCBLPGM command that creates the program object.

 *NO: A program is not created if a program of the same name already
exists in the specified library.

Default collection (DFTRDBCOL)
specifies the name of the collection identifier to be used for unqualified
names of tables, views, indexes, and SQL packages. This parameter applies
only to static SQL statements.

 *NONE: The naming convention specified on the SQLOPT parameter is
used.

 collection-name: Specify the name of the collection identifier to be used
instead of the naming convention specified on the SQLOPT parameter.

Examples
CRTCICSCBL PGM(ACCTS/STATS) SRCFILE(ACCTS/ACTIVE)
 TEXT(’Statistical analysis program’)
 This command runs the CICS precompiler, which precompiles the source in file
ACTIVE in library ACCTS and then stores the changed source in the member
STATS in file QACYCICS in library QTEMP. If the source member contains any
EXEC SQL statements, the member STATS in QACYCICS is used as input to the
SQL precompiler. The changed source is stored in the member STATS in file
QSQLTEMP in library QTEMP. If the SQL precompiler is needed, this member is
used as input to the COBOL compiler; otherwise, the member STATS in file
QACYCICS is used as input to the COBOL compiler. The compiled program object,
STATS, is placed in library ACCTS.

CRTCICSC
 Job: B,I Pgm: B,I REXX: B,I Exec

��

CRTCICSC
 *CURLIB/

OBJ(

object-name

)

library-name/

�

�
*LIBL/

QCSRC

SRCFILE(

)

*CURLIB/

source-file-name

library-name/

 �

�
*OBJ

SRCMBR(

)

source-file-member-name

*MODULE

OBJTYPE(

)

*PGM

 �

286 CICS for iSeries Application Programming Guide V5

�
 (1)

*SRCMBRTXT

TEXT(

)

*BLANK

'description'

*NONE

OUTPUT(

)

*PRINT

�

�
*NONE

DBGVIEW(

)

*ALL

*STMT

*SOURCE

*LIST

*NOMAX

30

MSGLMT(

)

limit

severity

 �

�
CICSOPT(

CICSOPT details

)

 �

�
QTEMP/

QACYCICS

OUTFILE(

)

*CURLIB/

source-file-name

library-name/

*LIBL/

 �

�
*OBJ

OUTMBR(

)

source-member-name

 �

�
10

CICSGENLVL(

)

severity-level

1

80

MARGINS(

)

left

right

 �

�
*CURRENT

TGTRLS(

)

release-level

SQLOPT(

SQLOPT details

)

 �

�
*LIBL/

*SRCFILE

INCFILE(

)

*CURLIB/

source-file-name

library-name/

 �

Chapter 30. OS/400 control language (CL) commands 287

�
*CHG

COMMIT(

)

*ALL

*CS

*NONE

*YES

ALWCPYDTA(

)

*OPTIMIZE

*NO

 �

�
*READ

ALWBLK(

)

*NONE

*ALLREAD

*NO

DLYPRP(

)

*YES

 �

�
*ENDACTGRP

CLOSQLCSR(

)

*ENDMOD

10

SQLGENLVL(

)

severity-level

 �

�
*NOFLAG

SAAFLAG(

)

*FLAG

*NONE

FLAGSTD(

)

*ANS

 �

�
*JOB

DATFMT(

)

*USA

*ISO

*EUR

*JIS

*MDY

*DMY

*YMD

*JUL

*HMS

TIMFMT(

)

*USA

*ISO

*EUR

*JIS

 �

�
*JOB

TIMSEP(

)

’:’

’.’

’,’

’ ’

*BLANK

*JOB

DATSEP(

)

’/’

’.’

’-’

’,’

’ ’

*BLANK

 �

�
*NONE

DFTRDBCOL(

)

collection-name

*YES

REPLACE(

)

*NO

 ��

Notes:

1 All parameters preceding this point can be specified positionally.

288 CICS for iSeries Application Programming Guide V5

CICSOPT details:

 *NOSOURCE
*NOSRC

*SRC

*SOURCE

 *NOXREFCICS
*NOVBREF

*VBREF

*XREFCICS

*GEN

*NOGEN

*NOSECLVL

*SECLVL

*NODEBUG

*DEBUG

�

�
 *NOGRAPHIC

*GRAPHIC

 *NOPP

*PP

SQLOPT details:

 *NOSOURCE
*NOSRC

*SRC

*SOURCE

*NOXREF

*XREF

*GEN

*NOGEN

*NOSECLVL

*SECLVL

*SYSVAL

*PERIOD

*COMMA

�

�
 *SYS

*SQL

Function
CRTCICSC calls several functions:
v Preprocessing of any #define and #include statements resolved before the

translator is called.
v Translating of an ILE C program with embedded CICS commands. If the source

program contains any SQL statements, the SQL translator may be called. The
resulting translator output is placed into a temporary source member.

Note: It is possible to translate your SQL statements first by running the
CRTSQLCI command and specifying the *NOGEN option on the OPTION
parameter. This puts the SQL translator output in QSQLTEMP in library
QTEMP. You must then run the CRTCICSC command specifying SRCFILE
as QTEMP/QSQLTEMP; the SRCMBR name can be obtained by looking
in this file for your SQL translated program source. The rest of the
parameters on CRTCICSC can be entered as normal.

It is not recommended that applications be compiled in this way but, if
necessary, it can be done.

v If the translator stages were successful, what happens next depends on the type
of object you wish to produce.
– If the OBJTYPE parameter is set to *MODULE, and provided that the

*NOGEN option has not been specified, CRTCICSC calls CRTCMOD CL
command to create a program module. You can then bind the module with
others into a run-time program using the CRTPGM CL command.

– If the OBJTYPE parameter is set to *PGM, CRTCICSC calls the CRTBNDC CL
command to create a program module and bound program, in one step. You
should use this option only if the program is a simple, one-module program.

Chapter 30. OS/400 control language (CL) commands 289

Required parameters
Object (OBJ)

specifies the name or qualifier of the object being created.

 The name of the object can be qualified by one of the following library values:
 *CURLIB: specifies that the object is to be created in the current library for

the job. If no library is specified as the current library for the job, the object
is created in QGPL.

 library-name: Specify the name of the library in which the object is to be
created.

object-name: Specify the name of the object that is to be created.

 Attention: If the object name you specify is the same as that of an existing
object, and if the REPLACE parameter is specified as *YES (the default), your
new object replaces the existing one.

The following parameters are optional for the CICS translator source commands. If
you choose not to specify any of the following keywords or their values, the
defaults are used. SQLOPT lists those options that apply to SQL. For more
information, see the Database and file systems topic in the iSeries Information
Center.

Source file (SRCFILE)
specifies the qualified name of the source file that contains the ILE C source
code with the EXEC CICS or EXEC SQL statements.

 The source file name can be qualified by one of the following library values:
 *LIBL: Specifies that the library list is used to locate the source file.
 *CURLIB: Specifies that the current library for the job is used to locate the

source file. If no library is specified as the current library for the job, the
QGPL library is used.

 library-name: Specify the library where the source file is located.

QCSRC: specifies that, if a ILE C source file name is not specified, the
supplied source file QCSRC contains the ILE C source.

 source-file-name: Specify the name of the source file that contains the ILE C
source. The source file can be a database file, device file, or an inline data file.

Source member (SRCMBR)
specifies the name of the source file member that contains the ILE C source.
This parameter is specified only if the source file name in the SRCFILE
parameter is that of a database file.

 *OBJ: Specifies that the ILE C source is in the source file member that has the
same member name as that specified in the OBJ parameter of this command.

 source-file-member-name: Specify the name of the source file member that
contains the ILE C source.

Compile type (OBJTYPE)
specifies the type of object to be used.

 *MODULE: Specifies that the translator is to issue the CRTCMOD command to
create a module.

Note: You can then bind the module with others into a run-time program
using the CRTPGM CL command.

290 CICS for iSeries Application Programming Guide V5

*PGM: Specifies that the translator is to issue the CRTBNDC command to
create a module and bound program in one step.

Text description (TEXT)
specifies the text relating to the program.

 *SRCMBRTXT: Specifies that the text is to be taken from the source file
member being used to create the program. Text for a database source member
can be added or changed by using the Source Entry Utility (STRSEU)
command, or by using either the Add Physical File Member (ADDPFM) or the
Change Physical File Member (CHGPFM) command. If the source file is an
inline file or a device file, the text is blank.

 *BLANK: No text is specified.

 ‘description’: Specify no more than 50 characters of text, enclosed by
apostrophes.

Compiler output (OUTPUT)
specifies whether a compiler listing is to be generated.

 The possible values are:

 *NONE: Specifies that a compiler listing is not to be generated.

 *PRINT: Specifies that a compiler listing is to be generated.

Debugging view (DBGVIEW)
specifies which level of debugging is available for the compiled module or
program, and which source views are available for source-level debugging.

 The possible values are:

 *NONE: Disables all of the debug options for debugging the compiled module
or program.

 *ALL: Enables all of the debug options for debugging the compiled module or
program, and produces a source view, as well as a listing view.

 *STMT: Allows the compiled module or program to be debugged using
program statement numbers and symbolic identifiers.

 *SOURCE: Generates the source view for debugging the compiled module or
program.

 *LIST: Generates the listing view for debugging the compiled module or
program.

Compiler messages (MSGLMT)
Specifies the maximum number of messages that can occur before the C
compilation stops.

 message-limit: Specifies the number of messages that can occur.
 *NOMAX: Compilation continues regardless of the number of messages

that have occurred at the specified message severity level. This is the
default.

 maximum-message-limit: Specify the maximum number of messages that
can occur at, or above, the specified message severity level, before
compilation stops. The valid range is 1 to 32767.

message-severity: Specifies the message severity that can occur before
compilation stops.
 0: Specifies that a message-limit of messages at severity 0 or above can occur

before compilation stops.

Chapter 30. OS/400 control language (CL) commands 291

10: Specifies that a message-limit of messages at severity 10 or above can
occur before compilation stops.

 30: Specifies that a message-limit of messages at severity 30 or above can
occur before compilation stops.

CICS options (CICSOPT)
specifies whether one or more of the following options are to be used when
the source is translated. If an option is specified more than once, or if two
options conflict, the last option specified is used. If an option is not specified,
the default is used.

 Source listing options

 *NOSRC or *NOSOURCE: Specifies that the CICS translator is not to produce
a source listing.

 *SRC or *SOURCE: Specifies that the CICS translator is to produce a source
listing and error messages.

 Cross-reference options

 *NOVBREF or *NOXREFCICS: Specifies that the CICS translator is not to
produce a cross-reference of EXEC CICS names.

 *VBREF or *XREFCICS: Specifies that the CICS translator is to produce a
cross-reference between EXEC CICS names in the program and the statement
numbers in the program that refer to them.

 Program creation options

 *GEN: Specifies that the SQL precompiler or ILE C compiler is to be called
after a successful CICS translation.

Note: The SQL precompiler is to be called only if, during the CICS translation
stage, any EXEC SQL statements were found in the ILE C source code
being CICS translated.

 *NOGEN: Specifies that the compilation is to terminate at the end of the CICS
translation.

 Second-level help text

 *NOSECLVL: Specifies that no second-level help text is to be printed.

 *SECLVL: Specifies that the second-level help text is to be printed.

Note: The first-level help text is printed automatically each time an error
occurs.

 Debug options

 *NODEBUG: Specifies that the CICS translator is not to produce code that will
be passed through to CICS to be displayed by the CICS execution diagnostic
facility (EDF).

 *DEBUG: Specifies that the CICS translator is to produce code that will be
passed through to CICS to be displayed by EDF.

 DBCS option

292 CICS for iSeries Application Programming Guide V5

*NOGRAPHIC: specifies that the translator is not to accept double-byte data.

 *GRAPHIC: specifies that the translator is to accept double-byte data. This
data can only appear in columns 7 through 72.

 Preprocessing option

 *NOPP: specifies that the ILE C program is not to be preprocessed.

 *PP: specifies that the ILE C program is to be preprocessed.

CICS output file (OUTFILE)
specifies the qualified name of the intermediate precompiler output.

 The possible library values are:
 QTEMP: The supplied source file QTEMP is used.
 *CURLIB: The current library is searched. If no library is specified as the

current library for the job, the QGPL library is used.
 library-name: Specify the name of the library where to generate the

intermediate precompiler output.
 *LIBL: All libraries in the user and system portions of the job’s library are

searched.

QACYCICS: If an output source file name is not specified, the supplied source
file QACYCICS will contain the intermediate precompiler output.

 source-file-name: Specify the name of the source file to contain the intermediate
precompiler output.

CICS output member (OUTMBR)
specifies the name of the source file member that contains the intermediate
precompiler output. If this parameter is not specified, the object name on the
OBJ parameter is used.

 *OBJ: Specifies that the intermediate precompiler output has the same member
name as that specified in the OBJ parameter.

 source-member-name: specifies that the name of the source file member to which
the intermediate precompiler output should be copied.

CICS message level (CICSGENLVL)
specifies a level of CICS translator errors. If errors occur with a severity level
greater than the value specified in this parameter, either the SQL precompiler
is not called (if the CICS translator located any SQL in the source) or the
compiler is not called.

 10: If a severity-level value is not specified, the default severity level is 10.

 severity-level: Specify a number in the range 10 through 40. Some suggested
values are listed below:

10 The level value for warnings.

20 The level value for general error messages.

30 The level value for serious error messages.

40 The level value for system-detected error messages.

Chapter 30. OS/400 control language (CL) commands 293

Note: The value of CICSGENLVL applies only to messages generated as a
result of CICS translation errors. The specified CICSGENLVL value is
not passed to the SQL precompiler or the compiler.

Source margins (MARGINS)
specifies the part of the translator input record that contains source text.

 The possible values are:

 left-margin: Specify the left-hand, beginning position for the statements. Valid
values range from 1 through 90.

 right-margin: Specify the right-hand, ending position for the statements. Valid
values range from 10 through 100.

Target release (TGTRLS)
specifies the release level of the CICS/400 system on which you intend to use
the object being created.

 You can specify an exact release level in the format VxRxMx, where Vx is the
version, Rx is the release, and Mx is the modification level. For example,
V5R2M0 would be version 5, release 2, modification 0.

 The possible values are:

 *CURRENT: Specifies that the object is to be used on the release of CICS/400
currently running on your system. For example, if V5R3M0 is running on the
system, *CURRENT means that you intend to use the object on a system with
V5R3M0 installed.

 *PRV: The object is to be used on the previous release of CICS/400. If V5R3M0
is running on your system, *PRV means that you intend to use the object on a
system with V5R2M0 installed.

 release-level: Specify the release level in the format VxRxMx. The object can be
used on a system with the specified release.

 Valid values depend on the current version, release, and modification level,
and they change with each new release. The valid values for this release are:
V5R3M0, V5R2M0 and V5R1M0.

SQL options (SQLOPT)
specifies whether one or more of the following options are to be used when
the source is SQL precompiled. If an option is specified more than once, or if
two options conflict, the last option specified is used. If an option is not
specified, the default is used.

 Source listing options

Important note:
Due to a precompiler restriction, an SQL source listing is always
produced, no matter which source listing option you select. Even if you
specify *NOSRC or *NOSOURCE, a source listing is still produced. You
are recommended not to specify an SQL source listing option at all, as
this is liable to change in a future release of CICS/400.

 *NOSRC or *NOSOURCE: Specifies that a source listing is not to be produced
by the SQL precompiler.

 *SRC or *SOURCE: Specifies that a source listing, consisting of all the source
input and error messages, is to be produced by the SQL precompiler.

294 CICS for iSeries Application Programming Guide V5

|
|
|

|
|
|
|

|
|
|

|
|
|

Cross-reference options

 *NOXREF: Specifies that the SQL precompiler is not to produce a
cross-reference of EXEC SQL names.

 *XREF: Specifies that the SQL precompiler is to produce a cross-reference
between items in the program and the numbers of the statements in the
program that refer to these items.

 Program creation options

 *GEN: Specifies that the compiler will be called after a successful SQL
precompilation.

 *NOGEN: specifies that compilation is to terminate at the end of the SQL
precompilation.

 Second-level help text

 *NOSECLVL: Specifies that no second-level help text is to be printed.

 *SECLVL: Specifies that the second-level help text is to be printed.

Note: The first-level help text is printed automatically each time an error
occurs.

 Decimal point options

 *SYSVAL: Specifies that the value to be used as the decimal point is from the
QDECFMT system value.

Note: If QDECFMT specifies that the value to be used as the decimal point is
a comma, any numeric constants in lists (such as in the SELECT clause
or the VALUES clause) must be separated by a comma followed by a
blank. For example, VALUES(1,1, 2,23, 4,1) is equivalent to
VALUES(1.1,2.23,4.1) in which the decimal point is a period.

 *PERIOD: Specifies that the value to be used as a decimal point is a period.

 *COMMA: Specifies that the value to be used as a decimal point is a comma.

Note: Any numeric constants in lists (such as in the SELECT clause, the
VALUES clause, and so on) must be separated by a comma followed by
a blank. For example, VALUES(1,1, 2,23, 4,1) is equivalent to
VALUES(1.1,2.23,4.1), where the decimal point is the period.

 Naming convention options

 *SYS: Specifies that the OS/400 system naming convention is to be used
(library-name/file-name).

 *SQL: Specifies that the SQL naming convention is to be used
(collection-name.table-name).

Chapter 30. OS/400 control language (CL) commands 295

SQL INCLUDE file (INCFILE)
specifies the qualified name of the source file that contains the members
included in the program with any SQL INCLUDE statement.

 The possible library values are:
 *LIBL: Specifies that the library list is used to locate the source file.
 *CURLIB: Specifies that the current library for the job is used to locate the

source file. If no current library entry exists in the library list, QGPL is
used.

 library-name: Specify the name of the library where the source file is located.

*SRCFILE: Specifies the qualified source file you specified in the SRCFILE
parameter that contains the source file members specified on any SQL
INCLUDE statement.

 source-file-name: Specify the name of the source file that contains the source file
members specified on any SQL INCLUDE statement. The record length of the
source file you specify here must be no less than the record length of the
source file you specified for the SRCFILE parameter.

SQL commitment control (COMMIT)
specifies whether SQL statements in the compiled program are run under
commitment control. Files referred to in the host language source are not
affected by this parameter. Only SQL tables, views, and SQL packages referred
to in SQL statements are affected.

 *CHG: Specifies that the objects referred to in SQL COMMENT ON, CREATE,
DROP, GRANT, LABEL ON, and REVOKE statements and the rows updated,
deleted, and inserted are locked until the end of the unit of work (transaction).
Uncommitted changes in other jobs can be seen.

 *ALL: Specifies that the objects referred to in SQL COMMENT ON, CREATE,
DROP, GRANT, LABEL ON, and REVOKE statements and the rows updated,
deleted, and inserted are locked until the end of the unit of work (transaction).
Uncommitted changes in other jobs cannot be seen.

 *CS: Specifies that the objects referred to in SQL COMMENT ON, CREATE,
DROP, GRANT, LABEL ON, and REVOKE statements and the rows updated,
deleted, and inserted are locked until the end of the unit of work (transaction).
A row that is selected, but not updated, is locked until the next row is selected.
Uncommitted changes in other jobs cannot be seen.

 *NONE: Specifies that commitment control is not used. COMMIT and
ROLLBACK statements are not allowed. SQL COMMENT ON, CREATE,
DROP, GRANT, LABEL ON, and REVOKE statements and the rows updated,
deleted, and inserted are locked until the end of the unit of work (transaction).
A row that is selected, but not updated, is locked until the next row is selected.
Uncommitted changes in other jobs cannot be seen.

Note: If *CHG, *CS, or *ALL is specified, DROP COLLECTION cannot be
included in the application. The default for this parameter for the Start
SQL (STRSQL) command is *NONE.

SQL allow copy of data (ALWCPYDTA)
specifies whether a copy of the data is allowed in a SELECT statement.

 *YES: A copy of the data can only be used, if necessary, to run a SELECT
statement.

296 CICS for iSeries Application Programming Guide V5

*OPTIMIZE: The system chooses whether or not to use the data retrieved
directly from the database or to use a copy of the data. The decision is based
on which choice will provide the best performance.

 This value decreases the time required for the total query. Because the copy of
the data must be made before returning the first row of the result table, the
time to retrieve the first row may be increased.

Note: If *CS or *ALL is specified on the COMMIT parameter, SQL run time
ignores this parameter and uses current data.

 *NO: A copy of the data is not allowed. This option could return a negative
SQLCODE if the clauses in the SELECT statement require a copy of the data. If
the SELECT statement runs successfully, then current data was used.

SQL allow blocking (ALWBLK)
specifies whether the database manager can use record blocking, and the extent
to which blocking can be used for read-only cursors.

 *READ: Records are blocked for read-only retrieval of data for cursors when:
v *NONE is specified on the COMMIT parameter, to indicate that commitment

control is not used.
v The cursor is declared with a FOR FETCH ONLY clause or there are no

dynamic statements that could run a positioned UPDATE or DELETE
statement for the cursor.

Specifying *READ can improve the overall performance of queries that meet
the above conditions and retrieve a large number or records.

 *NONE: Rows are not blocked for retrieval of data for cursors. Specifying
*NONE:
v Guarantees that the data retrieved is current.
v May reduce the amount of time required to retrieve the first row of data for

a query.
v Stops the database manager from retrieving a block of data rows that is not

used by the program when only the first few rows of a query are retrieved
before the query is closed.

v Can degrade the overall performance of a query that retrieves a large
number of rows.

*ALLREAD: Rows are blocked for read-only cursors if *NONE or *CHG is
specified on the COMMIT parameter. All read-only cursors in a program are
opened for read-only processing even though there may be EXECUTE
statements in the program. Specifying *ALLREAD:
v Allows record blocking under commitment control. Specifying *READ does

not.
v Improves the performance of almost all read-only cursors in programs, but

limits queries in the following ways:
– A ROLLBACK statement in host languages, or the ROLLBACK HOLD

SQL statement, does not position the read-only cursor again when
*ALLREAD is specified.

– Dynamic running of a positioned UPDATE or DELETE statement (for
example, EXECUTE IMMEDIATE), cannot be used to update a row in a
cursor unless the DECLARE statement for the cursor includes the FOR
UPDATE clause.

Chapter 30. OS/400 control language (CL) commands 297

SQL delay prepare (DLYPRP)
specifies whether the dynamic statement validation for a PREPARE statement
is delayed until an OPEN, EXECUTE, or DESCRIBE statement is run. Delaying
validation improves performance by eliminating duplicate validation.

 *NO: Dynamic statement validation is not delayed. When the dynamic
statement is prepared, the access plan is validated. When the dynamic
statement is used in an OPEN or EXECUTE statement, the access plan is
revalidated. Because the authority or the existence of objects referred to by the
dynamic statement may change, you must still check the SQLCODE or
SQLSTATE after issuing the OPEN or EXECUTE statement, to ensure that the
dynamic statement is still valid.

 *YES: Dynamic statement validation is delayed until the dynamic statement is
used in an OPEN, EXECUTE, or DESCRIBE SQL statement. When the dynamic
statement is used, the validation is completed and an access plan is built. If
you specify *YES on this parameter for precompiled programs, you should
check the SQLCODE and SQLSTATE after running an OPEN, EXECUTE, or
DESCRIBE statement to ensure that the dynamic statement is valid. If you
specify *YES, performance is not improved if the INTO clause is used on the
PREPARE statement or if a DESCRIBE statement uses the dynamic statement
before an OPEN is issued for the statement.

SQL close cursor (CLOSQLCSR)
specifies when SQL cursors are to be explicitly closed; when SQL prepared
statements are to be implicitly disregarded; and when LOCK TABLE locks are
to be released. SQL cursors are explicitly closed by issuing the CLOSE
COMMIT (without HOLD), or ROLLBACK (without HOLD) SQL statements.

 *ENDACTGRP: Specifies that SQL cursors are to be closed, SQL prepared
statements are to be released, and LOCK TABLE locks are to be released when
the activation group ends.

 *ENDMOD: Specifies that SQL cursors are to be closed and SQL prepared
statements are to be discarded when the module is exited. LOCK TABLE locks
are to be released when the activation group ends.

SQL message level (SQLGENLVL)
specifies a level of SQL precompiler errors. If errors occur with a severity level
greater than the value specified in this parameter, the compiler is not called.

 10: If no value is specified, the default severity level is 10.

 severity-level: Specify a number in the range 10 through 40. Some suggested
values are listed below:

10 The level value for warnings.

20 The level value for general error messages.

30 The level value for serious error messages.

40 The level value for system-detected error messages.

Note: The value of SQLGENLVL only applies to messages generated as a
result of SQL precompilation errors. The specified SQLGENLVL value is
not passed to the compiler.

SQL SAA flagging (SAAFLAG)
specifies whether SQL statements that do not conform to SAA Level 2
Database standards are flagged.

298 CICS for iSeries Application Programming Guide V5

|
|
|

*NOFLAG: Specifies that the precompiler will not check for conformity to SAA
standards.

 *FLAG: Specifies that the precompiler will check for conformity to SAA
standards.

SQL ANS flagging (FLAGSTD)
specifies whether nonstandard statements are flagged. This parameter allows
you to flag SQL statements to verify that they conform to ANSI X3.135-1-1989,
ANSI X3.168-1989, ISO 9075-1989, and FIPS 127.1 standards.

 *NONE: Specifies that the precompiler will not check for conformity to ANSI
standards.

 *ANS: Specifies that the precompiler will check for conformity to ANSI
standards.

SQL date format (DATFMT)
specifies the format used when accessing date result columns. All output date
fields are returned in the specified format. For input date strings, the specified
value is used to determine whether the date is in a valid format.

Note: An input date string that uses format *USA, *ISO, *EUR, or *JIS is
always valid. If you connect to a relational database that is on a system
that is not an OS/400 system, *USA, *ISO, *EUR, or *JIS must be used.

 *JOB: Specifies the format used for the job at precompilation. Use the Display
Job (DSPJOB) command to determine the current date format for the job.

 *USA: The United States date format mm/dd/yyyy is used.

 *ISO: The International Organization for Standardization (ISO) date format
yyyy-mm-dd is used.

 *EUR: The European date format dd.mm.yyyy is used.

 *JIS: The Japanese Industrial Standard date format yyyy-mm-dd is used.

 *MDY: The date format mm/dd/yy is used.

 *DMY: The date format dd/mm/yy is used.

 *YMD: The date format yy/mm/dd is used.

 *JUL: The Julian date format yy/ddd is used.

SQL time format (TIMFMT)
specifies the format used when accessing time result columns. All output time
fields are returned in the specified format. For input time strings, the specified
value is used to determine whether the time is specified in a valid format.

Note: An input time string that uses the format *USA, *ISO, *EUR, or *JIS is
always valid. If you connect to a relational database that is on a system
that is not an OS/400 system, the time format must be *USA, *ISO,
*EUR, *JIS, or *HMS, with a time separator of colon or period.

 *HMS: The hh:mm:ss format is used.

Chapter 30. OS/400 control language (CL) commands 299

*USA: The United States time format hh:mm xx is used, where xx is AM or
PM.

 *ISO: The International Organization for Standardization (ISO) time format
hh.mm.ss is used.

 *EUR: The European time format hh.mm.ss is used.

 *JIS: The Japanese Industrial standard time format hh:mm:ss is used.

SQL time separator (TIMSEP)
specifies the separator used when accessing time result columns.

Note: This parameter applies only when *HMS is specified on the TIMFMT
parameter.

 *JOB: The time separator specified for the job at precompile time is used. Use
the Display Job (DSPJOB) command to determine the current value for the job.

 ':': A colon (:) is used as the time separator.

 '.': A period (.) is used as the time separator.

 ',': A comma (,) is used as the time separator.

 ' ': A blank space is used as the time separator.

 *BLANK: A blank is used as the time separator.

SQL date separator (DATSEP)
specifies the separator used when accessing date result columns.

 *JOB: The date separator specified for the job at precompile time is used. Use
the Display Job (DSPJOB) command to determine the current value for the job.

 '/': A slash (/) is used as the date separator.

 '.': A period (.) is used as the date separator.

 '-': A hyphen (-) is used as the date separator.

 ',': A comma (,) is used as the date separator.

 ' ': A blank space is used as the date separator.

 *BLANK: A blank is used as the date separator.

SQL default collection (DFTRDBCOL)
specifies the name of the collection identifier to be used for unqualified names
of tables, views, indexes, and SQL packages. This parameter applies only to
static SQL statements.

 *NONE: The naming convention specified on the SQLOPT parameter is used.

 collection-name: Specify the name of the collection identifier to be used instead
of the naming convention specified on the SQLOPT parameter.

Replace object (REPLACE)
specifies whether a CICS module or program is to be created when there is an
existing program of the same name in the same library. The value of this
parameter is passed to either the CRTCMOD or the CRTBNDC command.

300 CICS for iSeries Application Programming Guide V5

*YES: Specifies that a CICS module, program, or service program is to be
created, and any existing object of the same name and type in the specified
library is to be moved to QRPLOBJ. The *YES value is passed to either the
CRTCMOD or the CRTBNDC command.

 *NO: Specifies that a CICS module or program is not to be created if an object
of the same name and type already exists in the specified library.

Examples
CRTCICSC OBJ(ACCTS/STATS) SRCFILE(ACCTS/ACTIVE)
 TEXT(’Statistical analysis program’)
 This command runs the CICS translator, which translates the source in file ACTIVE
in library ACCTS and then stores the changed source in the member STATS in file
QACYCICS in library QTEMP. If the source member contains any EXEC SQL
statements, the member STATS in QACYCICS is used as input to the SQL
translator. The changed source is stored in the member STATS in file QSQLTEMP
in library QTEMP. If the SQL translator is needed, this member is used as input to
the SQL compiler; otherwise, the member STATS in file QACYCICS is used as
input to the ILE C compiler. The compiled program object, STATS, is placed in
library ACCTS.

CRTCICSMAP
 Job: B,I Pgm: B,I REXX: B,I Exec

��

CRTCICSMAP
 *CURLIB/

CICSMAP(

map-name

)

library-name/

�

�
*LIBL/

QMAPSRC

SRCFILE(

)

*CURLIB/

source-map-name

library-name/

 �

�
 (1)

*MAP

SRCMBR(

)

source-map-member-name

�

�
*LIBL/

*DEFAULT

LMAPSRC(

)

*CURLIB/

symbolic-map-srce-file

library-name/

 �

�
*MAP

LMAPMBR(

)

symbolic-map-srce-member

*YES

REPLACE(

)

*NO

 �

Chapter 30. OS/400 control language (CL) commands 301

�
*CURRENT

TGTRLS(

)

*PRV

release-level

*SRCMBRTXT

TEXT(

)

*BLANK

'description'

 ��

Notes:

1 All parameters preceding this point can be specified positionally.

Function
The Create CICS MAP (CRTCICSMAP) command allows you to create BMS
physical and symbolic maps.

Required parameters
Map object name (CICSMAP)

specifies the qualified name of the generated 3270 or 5250 CICS BMS map.

 The possible library values are:
 *CURLIB: Specifies the library in which the output physical map will

reside.
 library-name: Specify the name of the library in which the physical map is

located.

map-name: Specify the name of the generated map file.

Note: If a suffix operand is specified in the input BMS macro source, the suffix
is attached automatically to the name.

Map source file (SRCFILE)
specifies the qualified name of the input BMS map source from which the 3270
or 5250 maps are created.

 The possible library values are:
 *LIBL: All libraries in the user and system portions of the job’s library list

are searched.
 *CURLIB: The current library is searched. If no library is specified as the

current library for the job, the QGPL library is used.
 library-name: Specify the name of the library where the BMS map source file

is located.

QMAPSRC: If a BMS map source file is not specified, the supplied source file
QMAPSRC contains the map source.

 source-map-name: Specify the name of the BMS map source from which the
physical map file is created.

Map source member name (SRCMBR)
specifies the name of the source file that contains the CICS map source.

 *MAP: Specifies that the CICS map source is in the source file member that
has the same member name as that specified in the CICSMAP parameter.

 source-map-member-name: Specify the name of the source file member that
contains the CICS map source.

302 CICS for iSeries Application Programming Guide V5

Symbolic map source (LMAPSRC)
specifies the qualified name of the output source file that will contain the
symbolic map as either a COBOL copybook or a C header file.

 The possible library values are:
 *LIBL: All libraries in the user and system portions of the job’s library list

are searched.
 *CURLIB: The current library is searched. If no library is specified as the

current library for the job, the QGPL library is searched.
 library-name: Specify the name of the library where the symbolic map will

be generated.

The possible symbolic source file values are:
 *DEFAULT: The source file name defaults according to the value specified

on the LANG operand in the DFHMSD macro in the map source:
– If LANG=COBOL, a source file name of QLBLSRC will be used.
– If LANG=C, a source file name of H will be used.
– If no LANG operand is specified in the map source, COBOL will be

assumed as the source file name will be QLBLSRC.
 symbolic-map-srce-file: Specify the name of the source file to which the

language-specific source statements are to be copied.

Symbolic map source member (LMAPMBR)
specifies the name of the source file member that contains the symbolic map
source. If this parameter is not specified, the map name specified in the
CICSMAP parameter is used.

Note: You should take care when using this parameter that you do not specify
the fully-qualified name of a source member that already exists. If you
do, the existing source member will be replaced.

 *MAP: Specifies that the symbolic map source member name is the same as
the name specified in the CICSMAP parameter of the PPT.

 symbolic-map-srce-member: Specify the name of the source file member to
which the symbolic map source statements are to be copied.

Replace output objects (REPLACE)
specifies whether a CICS BMS map is created when there is an existing CICS
BMS map of the same name in the same library.

 *YES: A CICS BMS map is created. If there is a CICS BMS map of the same
name in the specified library, it is replaced.

 *NO: A CICS BMS map is not created if a CICS BMS map of the same name
already exists in the specified library.

Target release (TGTRLS)
specifies the release level of the CICS/400 system on which you intend to use
the object being created.

 You can specify an exact release level in the format VxRxMx, where Vx is the
version, Rx is the release, and Mx is the modification level. For example,
V5R2M0 would be version 5, release 2, modification 0.

 The possible values are:

Chapter 30. OS/400 control language (CL) commands 303

*CURRENT: Specifies that the object is to be used on the release of CICS/400
currently running on your system. For example, if V5R2M0 is running on the
system, *CURRENT means that you intend to use the object on a system with
V5R2M0 installed.

 *PRV: The object is to be used on the previous release of CICS/400. If V5R2M0
is running on your system, *PRV means that you intend to use the object on a
system with V5R1M0 installed.

 release-level: Specify the release level in the format VxRxMx. The object can be
used on a system with the specified release.

 Valid values depend on the current version, release, and modification level,
and they change with each new release.

Text (TEXT)
specifies the text that briefly describes the new CICS definition.

 *SRCMBRTXT: The text is taken from the source file member being used to
create the CICS map. Text for a database source member can be added or
changed using the Source Entry Utility (STRSEU) command, or by using either
the Add Physical File Member (ADDPFM) or the Change Physical File Member
(CHGPFM) command. If the source file is an inline file or a device file, the text
is blank.

 *BLANK: No text is specified.

 description: Specify no more than 50 characters of text, enclosed by apostrophes.

Examples
 CRTCICSMAP CICSMAP(MYLIB/MYMAP) +
 SRCFILE(MYLIB/QMAPSRC) +
 SRCMBR(*MAP) LMAPSRC(MYLIB/QLBLSRC) +
 LMAPMBR(*MAP) TEXT(’My test BMS map.’)
 This command generates a 3270 or 5250 CICS BMS physical map in library MYLIB
with name MYMAP, and a symbolic map in member MYMAP, in file QLBLSRC,
on library MYLIB.

304 CICS for iSeries Application Programming Guide V5

Chapter 31. Programming reference

Introduction to EXEC CICS commands
This part of the book shows the syntax of each command, describes the purpose
and format of each command and its options, and gives a list of the conditions that
can arise during the execution of each command. There are two groups of
command:
v Application programming commands.
v System programming commands that are used for monitoring and changing

certain parameters within the CICS system, and for resource administration.

Both types of command are executed within application programs. The main
difference between them is that system programming commands affect
system-wide resources. Because system programming commands deal with CICS
resources, you will not want everyone to be able to change parameters within the
system. Use of the system programming commands is normally limited to the
system administrator.

Command format
The general format of a CICS command is EXECUTE CICS (or EXEC CICS)
followed by the name of the required function, and possibly by one or more
options, as follows:
 where:

function describes the operation required (for example, READ).

option describes any of the many optional facilities available with each
command. Some options are followed by an argument in
parentheses. You can write options (including those that require
arguments) in any order.

argument is a value such as “data-value” or “data-area”. A “data-value” can
be a constant. This means that an argument that provides data to
CICS is generally a “data-value”. However, an argument that
receives data from CICS is generally either a “data-area” or a
“ptr-ref”. For further information, see “Argument values” on page
307..

An example of a CICS command is as follows:

EXEC CICS function
 [option[(argument)]]...

EXEC CICS READ
 FILE(’FILEA’)
 INTO(RECORD)
 RIDFLD(KEYNUM)
 UPDATE

© Copyright IBM Corp. 1998, 2004 305

You must add the appropriate end-of-command delimiter: see “CICS syntax
notation used” for further information.

CICS syntax notation used
In the CICS documentation, the syntax of application programming commands is
shown in a standard way. The “EXEC CICS” that always precedes each command’s
function keyword is not included; nor is the delimiter that you must code at the
end of each command. For COBOL programs, this is “END-EXEC”. For ILE C
programs, this is a semicolon (;).

In examples, EXEC CICS is included, but the command delimiter is omitted.

Table 12 explains the command syntax conventions. You interpret the syntax by
following the arrows from left to right, and from top to bottom, along the main
path line.

 Table 12. Command syntax conventions

Symbol Meaning

�� A B ��
Required items appear on the main path line.

�� A
B

C

 ��

If there is more than one required item to choose from,
the items are stacked vertically. This is a set of
alternatives—one of which you must code.

��
A

B

 ��

Optional items appear below the main path line.

��
A

B

C

 ��

If there is more than one optional item to choose from,
the items are stacked vertically below the main path
line. This is a set of alternatives—one of which you may
code.

��
 A

B

C

��

If one item in a set of alternatives is the default, this
item appears above the main path line and all other
items are stacked vertically below the line.

��

�

A

B

��

An arrow returning to the left above items on the main
path line means that the items can be repeated. Such
items may be either required or optional.

306 CICS for iSeries Application Programming Guide V5

Table 12. Command syntax conventions (continued)

Symbol Meaning

��

�

A

B

C

��

An arrow returning to the left above a set of items
means that more than one item can be selected.

�� Name ��

Name:

 A
B

Use with the named section in place of its name.

Punctuation and uppercase
characters

Code exactly as shown.

Lowercase characters appearing
like this

Code your own text, as appropriate.

 For example, with FILE(name) you must code FILE and () unchanged, but are free
to code any valid text string for the name of your file.

Argument values
The parenthesized argument values that follow options in a CICS command are
specified as follows:
v data-value
v data-area
v CICS-value data area (or cvda)
v pointer-value (or ptr-value)
v pointer-ref (or ptr-ref)
v name
v label
v hhmmss

Arguments can be used as either of the following:

Sender
Data is passed from the application to CICS. All argument types can be
used as senders, but data-values and pointer-values are preferred to
data-areas and pointer-references as sending arguments.

Receiver
Data is passed from CICS to the application. Only data-areas, CVDAs, and
pointer-references can be receivers.

Note: An argument used to send and receive data should be defined as a receiver.

Chapter 31. Programming reference 307

COBOL argument values

Conversion note: OS/VS COBOL and COBOL II treat COMP fields as if the
BINARY attribute had been specified, whereas COBOL/400
treats these fields as if the COMP-3 attribute had been specified.
This is because COMP fields default to the numeric
representation that is most efficient for the system concerned. If
you are porting applications from other CICS platforms, you
must check for references to COMP and USAGE IS
COMPUTATIONAL because these may be interpreted differently
on the source and target systems; then change all COMP fields
to BINARY.

The argument values can be replaced as follows:
v “data-value” can be replaced by any COBOL data name of the correct data type

for the argument, or by a constant that can be converted to the correct type for
the argument. The data type can be specified as one of the following:
– Halfword binary—PIC S9(4) COMP
– Fullword binary—PIC S9(8) COMP
– Character string—PIC X(n), where “n” is the number of bytes

“data-value” includes “data-area” as a subset.
v “data-area” can be replaced by any COBOL data name of the correct data type

for the argument. The data type can be specified as one of the following:
– Halfword binary—PIC S9(4) COMP
– Fullword binary—PIC S9(8) COMP
– Character string—PIC X(n), where “n” is the number of bytes

If the data type is unspecified, the data-area can refer to an elementary or group
item.

v “cvda” is described in “CICS-value data areas (CVDAs)” on page 309.
v “pointer-value” or “ptr-value” can be replaced by any COBOL/400 data name

declared as a POINTER variable. Consult the COBOL/400 Reference for details.
v “pointer-ref” or “ptr-ref” can be replaced by any COBOL/400 data name

declared as a POINTER variable. Consult the COBOL/400 Reference for details.
 Fields used as pointers in mainframe CICS are usually defined as PIC S9(8)
COMP. Remember to change this to USAGE IS POINTER for COBOL/400.

v “name” can be replaced by either of the following:
– A character string in single quotation marks (that is, a nonnumeric literal). If

this is shorter than the required length, it is padded on the right with blanks.
– A COBOL data-area with a length equal to the length required for the name.

The value in the data-area is the name to be used by the argument. If the
data-area is shorter than the required length, the excess characters are
undefined.

v “label” can be replaced by any COBOL paragraph name or section name.
v “hhmmss” can be replaced by a decimal constant or by any COBOL data name

of the data type PIC S9(7) COMP-3. The value must be of the form 0HHMMSS+,
where:

HH represents hours from 00 through 99

MM represents minutes from 00 through 59

308 CICS for iSeries Application Programming Guide V5

SS represents seconds from 00 through 59

ILE C argument values
The argument values can be replaced as follows:
v “data-value” can be replaced by any ILE C expression that can be converted to

the correct data type for the argument. The data type can be specified as one of
the following:
– Halfword binary—short int
– Fullword binary—long int
– Character string—char[n], where “n” is the number of bytes

“data-value” includes “data-area” as a subset.
v “data-area” can be replaced by any ILE C data reference that has the correct data

type for the argument. The data type can be specified as one of the following:
– Halfword binary—short int
– Fullword binary—long int
– Character string—char[n], where “n” is the number of bytes

If the data type is unspecified, the data-area can refer to a scalar data type, array,
or structure. The reference must be to contiguous storage.

v “cvda” is described in “CICS-value data areas (CVDAs).”
v “pointer-value” or “ptr-value” (which includes “pointer-ref” as a subset) can be

replaced by any ILE C expression that can be converted to an address.
v “pointer-ref” or “ptr-ref” can be replaced by any ILE C pointer type reference.
v “name” can be replaced by either of the following:

– A character string in double quotation marks (that is, a literal constant).
– Any ILE C expression or data reference whose value can be converted to a

character array with a length equal to the maximum length allowed for the
name. The value of the character array is the name to be used by the
argument.

v “label” is not supported for the ILE C language.
v “hhmmss” can be replaced by a decimal constant or an expression that can be

converted to a long int value. The value must be of the form HHMMSS, where:

HH represents hours from 00 through 99

MM represents minutes from 00 through 59

SS represents seconds from 00 through 59

 For example, the int value 145359 represents 14 hours, 53 minutes, and 59
seconds.

CICS-value data areas (CVDAs)
There are options on some CICS commands that give the status or definition of a
resource. For example, the STATE option on the CONNECT PROCESS command
returns the state of the current conversation. Also, there are many options on
INQUIRE and SET commands that refer to resource status or definition. These
options all have values that are CICS-supplied and are known as CICS-value data
areas. They are shown in the syntax of commands with “cvda” in parentheses after
the option name. In other contexts, uppercase letters (CVDA) are used.

Chapter 31. Programming reference 309

You pass a CVDA value to CICS in one of two ways, depending on the
circumstances:

Flexible form
You can use the DFHVALUE translator built-in function to assign a CVDA
value to the fullword binary data-area that is specified on the command. In
COBOL, this might be:

 This form allows you to change a CVDA value in your program as the
result of other runtime factors.

 The ILE C equivalent is:

 You cannot use DFHVALUE as a keyword argument. CICS/400 does not
support the following:

Short form
If the required CVDA value is always the same for a particular command,
you can specify this value directly as an option on the command. For
example:

You receive a CVDA value by specifying a fullword binary data-area into which it
can be received. You can then use the DFHVALUE translator built-in function to
test the returned value, as in the following COBOL example:

MOVE DFHVALUE(RELEASED) TO AREA-A.
EXEC CICS SET TERMINAL(terminal_id)
 ACQSTATUS(AREA-A)

symb_name = DFHVALUE(RELEASED);
EXEC CICS SET TERMINAL(terminal_id)
 ACQSTATUS(symb_name)

EXEC CICS SET TERMINAL(terminal_id)
 ACQSTATUS(DFHVALUE(RELEASED))
END-EXEC.

EXEC CICS ENQ RESOURCE(RESNAME) LUW

or

EXEC CICS ENQ RESOURCE(RESNAME) TASK

or

EXEC CICS SET TERMINAL(terminal_id)
 RELEASED

310 CICS for iSeries Application Programming Guide V5

The ILE C equivalent is:

Any of the following CVDA values can be returned by CICS/400 as the state of the
current conversation on APPC commands such as CONNECT PROCESS, although
not all values are applicable to each command:
 ALLOCATED
 CONFFREE
 CONFRECEIVE
 CONFSEND
 FREE
 PENDFREE
 PENDRECEIVE
 RECEIVE
 SEND

For a list of the CVDA symbolic names that are supported by CICS/400, together
with their associated numeric values, see Appendix E, “CICS-value data areas
supported by CICS/400,” on page 579.

Note: You should be aware that, when using the command-level interpreter (CECI)
or the execution diagnostic facility (EDF), CVDAs are displayed on the
screen as numeric values rather than their associated symbolic names.

DATASET option
On file control commands, the DATASET option is accepted for compatibility with
CICS application programs that have been ported to CICS/400 from earlier releases
on other CICS platforms, but FILE is the preferred option and should be used for
all new CICS application programs.

Similarly, DSIDERR is supported as a synonym for the FILENOTFOUND
condition. This applies to its use both as an option of the HANDLE CONDITION
command and also as an argument to the DFHRESP built-in function.

INTO and SET options
The INTO and SET options provide alternative ways to specify the address of data
to be received by an application program.

EXEC CICS CONNECT PROCESS ...
 STATE(AREA-A)
END-EXEC.
IF AREA-A = DFHVALUE(ALLOCATED) THEN ...
IF AREA-A = DFHVALUE(CONFFREE) THEN ...

EXEC CICS CONNECT PROCESS ...
 STATE(symb_name);
if (symb_name == DFHVALUE(ALLOCATED)) ...
if (symb_name == DFHVALUE(CONFFREE)) ...
;

Chapter 31. Programming reference 311

If an application expects to receive data by issuing a RECEIVE command, you
must specify either the INTO or the SET option.

If an application issues a RECEIVE command simply to test whether a terminal
user has pressed an attention identifier key (AID), you can omit both the INTO
and the SET option. If an application uses a RECEIVE command to accept an AID,
ensure that a HANDLE AID command is issued before the RECEIVE command.
See the HANDLE AID command for more information about the attention
identifier keys.

LENGTH options
Many commands involve the transfer of data between the application program and
CICS. In most cases, the length of the data to be transferred must be provided by
the application program; the syntax of each command and its associated options
shows whether this rule applies.

For COBOL programs, if a data-area is specified as the source or target on a
command and the translator is able to generate a default length, there is no need
for your program to provide the length explicitly unless you want CICS to use a
length different from that of the variable referred to.

When a CICS command offers the LENGTH option, it is generally expressed as a
signed halfword binary value. This puts a theoretical upper limit of 32 767 bytes on
LENGTH, or 32 763 bytes allowing for the possibility of four bytes of control
information. In practice (depending on issues of recoverability, function shipping,
and so on) the achievable upper limit varies from command to command, but is
somewhat less than this theoretical maximum.

Whatever the CICS command, you are recommended not to use a LENGTH value
greater than 24KB. This recommendation is for consistency with other CICS
platforms, and hence for application portability.

For journaling commands, the record length may be further restricted by the buffer
size of the journal. The journal record length is the sum of the LENGTH and
PFXLENG values.

For temporary storage, transient data, and file control commands, the file
definitions may themselves impose further restrictions.

NOHANDLE option
You can use the NOHANDLE option on any command to specify that you want no
action to be taken for any condition or attention identifier (AID) resulting from the
execution of the command. The NOHANDLE option is available on all EXEC CICS
commands and is not shown on the syntax diagrams in this book.

Note that using the C language implies NOHANDLE on all commands.

The NOHANDLE option covers all conditions that can occur for the commands on
which it is specified; the IGNORE CONDITION command covers specified
conditions for all commands (until its effect is changed by a HANDLE
CONDITION command that names one or more of these conditions).

312 CICS for iSeries Application Programming Guide V5

You must be careful when using NOHANDLE with the RECEIVE command,
because NOHANDLE overrides the HANDLE AID command as well as the
HANDLE CONDITION command, with the result that PF key responses are
ignored.

RESP and RESP2 options
You can use the RESP option with any command to test whether an exception
condition was raised during its execution. With some commands where a condition
can occur for more than one reason, you can use the RESP2 option to determine
more exactly why the condition occurred.

The RESP and RESP2 options are implicit on all EXEC CICS commands and are
not shown on the syntax diagrams in this book.

After every EXEC CICS command CICS sets the RESP field in the Execution
Interface Block (EIB) to reflect the condition raised. This includes the special
condition NORMAL.

Some commands provide more detailed information about why an exception
condition was raised. These commands are typically ones where the same
exception condition can occur for more than one reason. For these commands CICS
sets the RESP2 field in the EIB to further qualify the exception condition value
returned in the RESP field.

Where RESP2 values are defined to further qualify the RESP value, they are
included in the “Exception conditions” section of the command descriptions that
follow. In all other cases the RESP2 field is reserved and the returned value is
undefined.

For more general information on exception conditions see Chapter 6, “Dealing with
exception conditions,” on page 87.

RESP(xxx)
“xxx” is a user-defined fullword binary data-area. On return from the
command, it contains a value corresponding to a condition that may have been
raised or to a normal response, that is, xxx=DFHRESP(NORMAL). You can use
the DFHRESP translator built-in function to test the returned value.

 In COBOL you can test the returned RESP value as follows:

 In ILE C, a similar test would be:

EXEC CICS WRITEQ TS FROM(abc)
 QUEUE(qname)
 RESP(xxx)
END-EXEC.

IF xxx = DFHRESP(NORMAL) THEN ...
IF xxx = DFHRESP(NOSPACE) THEN ...

Chapter 31. Programming reference 313

In ILE C programs you must have issued an EXEC CICS ADDRESS EIB
command to obtain addressability to the EIB prior to using the RESP option.

 As the use of RESP implies NOHANDLE, you must be careful when using
RESP with the RECEIVE command in COBOL programs. See “NOHANDLE
option” on page 312 for further information.

RESP2(yyy)
“yyy” is a user-defined fullword binary data-area. On return from the
command, it contains a value that further qualifies the response to certain
commands. Unlike the RESP values, RESP2 values have no associated symbolic
names and there is no translator built-in function corresponding to DFHRESP,
so you must test the fullword binary value itself.

System programming commands
The system programming commands provide a command-level equivalent to most
of the functions of the master terminal (CEMT). (See the CICS for iSeries
Administration and Operations Guide.) CICS command-level applications can be
written and invoked as CICS transactions to administer the running of the CICS
system. This could, for example, provide a subset of the master terminal function,
for example, for a particular person or group of people.

The system programming commands have all the advantages of the other EXEC
CICS commands. In particular, they are supported by the CICS command
interpreter (CECI), the CICS execution diagnostic facility (CEDF), and the CICS
translator.

Note: There is a difference between the system programming commands and basic
application programming commands in that none of the system
programming commands can be function shipped. If a CICS resource is
defined as remote, its remote definition cannot be retrieved or updated. An
exception to this rule is when a CICS TCT is available in a remote system in
either model or surrogate form. A change can then be made to the remote
definition. The change is not shipped back to the terminal owning region
(TOR). This allows the CICS user to make a change that applies only to the
remote TCT.

The system programming commands are:
 INQUIRE and SET commands
 the PERFORM command
 the DISCARD command

EXEC CICS WRITEQ TS FROM(abc)
 QUEUE(qname)
 RESP(xxx);

switch (xxx) {
 case DFHRESP(NORMAL) : break;
 case DFHRESP(NOSPACE) : Nospace_Cond();
 break;
 default : Errors();
}

314 CICS for iSeries Application Programming Guide V5

INQUIRE and SET commands
The EXEC CICS INQUIRE and EXEC CICS SET commands allow user-written
system programs to look at the information that defines a named CICS resource
(including the installed definition and runtime values) and to change some of the
values.

On CICS, these commands give access to the definitions of the following CICS
resources:
v Autoinstall terminal models
v CICS/400 control region parameters
v Connections
v Files
v Journals
v Programs
v Tasks
v Terminals
v Trace facilities
v Transactions
v Transient data queues

Changes to the resource attributes apply only for the duration of the current CICS
session and are supported only within the local CICS system.

Although the INQUIRE and SET commands have functions that can be used in
application programs, they are intended primarily for user-written system
programs and not for general application programs.

The INQUIRE command also has special forms that enable you to browse all of the
runtime definitions for a particular resource. For more information, see “Browsing
resource definitions.”

The following general points should be noted:
v You do not have to issue an INQUIRE command before issuing a SET command.
v In almost all cases, the items that you can change with a SET command are a

subset of those that you can retrieve with an INQUIRE command. If a CICS
resource is defined as remote, normally you cannot retrieve or alter its remote
definition. This rule applies to the definitions of CICS files, transient data
queues, and transactions.

v CICS does not maintain exclusive control of the information that is returned on
an INQUIRE command. This means that it can be changed at any time, for
example, by issuing a SET command.

v If a condition occurs on an INQUIRE command, the command did not execute
correctly and the validity of the returned values cannot be guaranteed.

v If a condition occurs on a SET command, as few as possible of the requested
changes have been made on return. To establish which, if any, of the changes
have been made, you can issue an INQUIRE command.

Browsing resource definitions
The INQUIRE command allows you to retrieve information about a single named
resource. The command also has special forms that allow you to browse all of the
runtime definitions for a particular resource.

Chapter 31. Programming reference 315

You can browse the definitions for the following resources:
v Autoinstall terminal models
v Connections
v Files
v Journals
v Programs
v Terminals
v Transactions
v Transient data queues

There is no locking of the retrieved information, which means that a definition can
be changed at any time during the browse.

Note that there is no facility for selective browsing; that is, for returning entries
only if they meet certain conditions.

The general command format of a browse operation has the following standard
pattern, where resource represents the resource type (for example, PROGRAM):

Descriptions follow of each of the command forms. The information given applies
to all browse operations.

INQUIRE resource START
This command positions an internal pointer at the first definition in the
relevant CICS resource definitions. It does not retrieve any information, nor
does it allow you to specify a start point.

 Only one browse of a particular resource type is allowed at any one time
in a given task. The ILLOGIC condition occurs if a browse is already in
progress when an INQUIRE START command for the same resource type
is issued.

INQUIRE resource(data-area) NEXT
The first time this command is issued, it retrieves the name and any
requested attributes of the first resource definition. On each successive
occasion, it retrieves the name and attributes of the next resource
definition, if there is one.

�� INQUIRE resource START ��

Condition: ILLOGIC

�� INQUIRE resource (data-area) NEXT �

� Other options as for INQUIRE resource ��

Conditions: END, ILLOGIC

�� INQUIRE resource END ��

Condition: ILLOGIC

316 CICS for iSeries Application Programming Guide V5

The END condition occurs when you have already retrieved all the entries
in the relevant CICS resource definitions. All data-areas specified on the
command are left unchanged. Note that the default action for the END
condition is to terminate the task abnormally, so you need to detect its
occurrence.

 You cannot request a selective browse of the resource definitions, and you
can only browse forward. All optional attributes that you specify are
output fields only and are ignored on input.

 CICS maintains a pointer to the current browse position at transaction
level, and does not reset it when LINK or XCTL commands are issued.

 The ILLOGIC condition occurs if an INQUIRE NEXT command is issued
for a resource type that has had no previous INQUIRE START command
successfully issued.

INQUIRE resource END
This command ends the browse and frees any held resources. You can end
a browse at any time after issuing the INQUIRE START command. If you
do not issue an INQUIRE END command, the browse terminates at the
end of the transaction. A browse operation is not terminated by user
syncpoints.

 The ILLOGIC condition occurs if an INQUIRE END command is issued for
a resource type that has had no previous INQUIRE START command
successfully issued.

The following example shows a browse of the processing program table (PPT) that
retrieves the name and status of each program defined in the PPT. The entire table
is being browsed, so the application issues the INQUIRE PROGRAM NEXT
command until the END condition arises, and then issues the INQUIRE
PROGRAM END command.

Null values
If you issue an INQUIRE command to find out the value of an attribute that is not
applicable to the named resource, a “null” value is returned in the data-area that
you have defined. You also get a null value if the information you have requested
is not available at the time of the inquiry.

Null values depend on the format of the user-defined data-area, and are defined as
follows:
v Character fields are blanks.

Chapter 31. Programming reference 317

v Binary fields are −1.
v Pointer fields are X'FF000000'.
v CVDA fields are DFHVALUE(NOTAPPLIC). For further information about the

use of CVDAs, see “CICS-value data areas (CVDAs)” on page 309.

If you issue a SET command that includes one or more null argument values, the
corresponding attributes are ignored. This allows the possibility of coding general
SET commands in which some attributes may be left as they are, without having to
issue an INQUIRE command first to establish what the current values are. You are
most likely to want to do this when the field is defined as a CVDA. However, in
all cases, if you simply omit an optional attribute from a SET command, its value
remains unchanged.

For CVDAs on SET commands, the null value can be coded as
DFHVALUE(IGNORE), where IGNORE is equivalent to (and has the same numeric
value as) NOTAPPLIC on INQUIRE commands.

The SET command is coded as in the following COBOL example:

This causes the named transient data queue to be enabled, and its open status
remains the same as it was before the SET TDQUEUE command was issued.
Simply omitting the OPENSTATUS option from the command would achieve the
same effect, but this approach lacks flexibility for some coding situations.

For further information about the use of CVDAs, see “CICS-value data areas
(CVDAs)” on page 309.

PERFORM command
The EXEC CICS PERFORM SHUTDOWN command is used for shutting down the
CICS system.

DISCARD commands
The following CICS resource types can be discarded:
v Autoinstall terminal models
v Files
v Programs
v Transactions

The EXEC CICS DISCARD command removes installed CICS resource definitions
from an active CICS/400 control region. The EXEC CICS DISCARD command does
not affect the OS/400 user space used to define the CICS resource, therefore the
resource can be reinstated using the CEDA Install group function. See CICS for
iSeries Administration and Operations Guide for further information about using
CEDA to install resource definitions.

EXEC CICS DISCARD commands have the same security attached to them as
EXEC CICS SET commands. The EXEC CICS DISCARD command takes effect

MOVE DFHVALUE(IGNORE) TO AREA-A.

EXEC CICS SET TDQUEUE(queue_name)
 ENABLED OPENSTATUS(AREA-A)
END-EXEC.

318 CICS for iSeries Application Programming Guide V5

immediately following the issue of the command. You cannot discard CICS
resources that are locked to a user or are resources owned by CICS. These have a
name beginning either with “AEG” or with “C” for CICS-supplied transactions.

Commands by function
The following is a list of commands categorized according to the function they
perform. Commands that are not supported for ILE C programs are shown by the
superscript “1” after the command name in this list. Where a command has one or
more options that are not supported for ILE C programs, this is indicated in the
description of the command.

Abend support
 ABEND
 HANDLE ABEND

APPC mapped conversation
 ALLOCATE
 CONNECT PROCESS
 CONVERSE
 EXTRACT ATTRIBUTES
 EXTRACT PROCESS
 FREE
 ISSUE ABEND
 ISSUE CONFIRMATION
 ISSUE ERROR
 ISSUE PREPARE
 ISSUE SIGNAL
 RECEIVE
 SEND
 WAIT CONVID

BMS
 RECEIVE MAP
 SEND CONTROL
 SEND MAP
 SEND TEXT

Built-in function
 BIF DEEDIT

Diagnostic services
 DUMP TRANSACTION
 ENTER TRACENUM

Environment services
 ADDRESS
 ASSIGN

Chapter 31. Programming reference 319

DISCARD AUTINSTMODEL
 DISCARD FILE
 DISCARD PROGRAM
 DISCARD TRANSACTION
 INQUIRE AUTINSTMODEL
 INQUIRE CONNECTION
 INQUIRE FILE
 INQUIRE JOURNALNUM
 INQUIRE PROGRAM
 INQUIRE SYSTEM
 INQUIRE TASK
 INQUIRE TDQUEUE
 INQUIRE TERMINAL/NETNAME
 INQUIRE TRACEDEST
 INQUIRE TRANSACTION
 PERFORM SHUTDOWN
 SET CONNECTION
 SET FILE
 SET JOURNALNUM
 SET PROGRAM
 SET SYSTEM
 SET TASK
 SET TDQUEUE
 SET TERMINAL
 SET TRACEDEST
 SET TRANSACTION

Exception support
 HANDLE CONDITION1

 IGNORE CONDITION1

 POP HANDLE1

 PUSH HANDLE1

File control
 DELETE
 ENDBR
 READ
 READNEXT
 READPREV
 RESETBR
 REWRITE
 STARTBR
 UNLOCK
 WRITE

320 CICS for iSeries Application Programming Guide V5

Interval control
 ASKTIME
 CANCEL
 DELAY
 FORMATTIME
 POST
 RETRIEVE
 START
 WAIT EVENT

Journaling
 WAIT JOURNALNUM
 WRITE JOURNALNUM

Printer spooling
 SPOOLCLOSE
 SPOOLOPEN OUTPUT
 SPOOLWRITE

Program control
 LINK
 LOAD
 RELEASE
 RETURN
 XCTL

Storage control
 FREEMAIN
 GETMAIN

Syncpoint
 SYNCPOINT
 SYNCPOINT ROLLBACK

Task control
 DEQ
 ENQ
 SUSPEND

Temporary storage control
 DELETEQ TS
 READQ TS
 WRITEQ TS

Chapter 31. Programming reference 321

Terminal control
 CONVERSE (3270 logical)
 HANDLE AID1

 ISSUE ERASEAUP
 RECEIVE (3270 logical)
 SEND (SCS)
 SEND (3270 logical)

Transient data control
 DELETEQ TD
 READQ TD
 WRITEQ TD

322 CICS for iSeries Application Programming Guide V5

Chapter 32. Application programming commands - reference

This chapter shows the syntax for each EXEC CICS command, in alphabetic order,
and describes the options and exception conditions applicable to each command.
For a general introduction to EXEC CICS commands and an explanation of the
syntax notation used, refer to Chapter 31, “Programming reference,” on page 305.

ABEND
Terminate a task abnormally.

ABEND

�� ABEND
ABCODE(

name

)

CANCEL

NODUMP

 ��

Description
ABEND terminates a task abnormally.

The main storage associated with the terminated task is released; optionally, a
transaction dump of this storage can be obtained.

Refer to Chapter 9, “Abnormal termination recovery,” on page 109 for more
information about this command.

Options
ABCODE(name)

specifies that main storage related to the task that is being terminated is to be
dumped. The ABCODE is used as a transaction dumpcode to identify the
dump. The name should have up to four characters and should not contain
any leading or imbedded blanks. If ABCODE is not coded, the dump is
identified by ????.

 Do not start the name with the letter A, because this is reserved for CICS itself.

CANCEL
specifies that exits established by HANDLE ABEND commands are to be
ignored. An ABEND CANCEL command cancels all exits at any level in the
task (and terminates the task abnormally).

NODUMP
allows you to request an abend without causing a dump to be taken.

Examples
The following example shows how to terminate a task abnormally:

EXEC CICS ABEND ABCODE(’BCDE’)

© Copyright IBM Corp. 1998, 2004 323

ADDRESS
Obtain access to CICS storage areas.

�� ADDRESS
COMMAREA

(

ptr-ref

)

CWA

(

ptr-ref

)

 �

�
EIB

(

ptr-ref

)

TCTUA

(

ptr-ref

)

TWA

(

ptr-ref

)

 ��

Condition: INVREQ

Description
ADDRESS accesses the following areas:
v the communication area available to the invoked program (COMMAREA)
v the common work area (CWA)
v the EXEC interface block (EIB)
v the terminal control table user area (TCTUA)
v the transaction work area (TWA).

See pages 68 through 71 for more information about this command.

Options
COMMAREA(ptr-ref)

returns a pointer reference, set to the address of the communication area
(COMMAREA) available to the currently executing program. COMMAREA is
used to pass information between application programs. If the COMMAREA
does not exist, the pointer reference is set to the null value, X'FF000000'.

CWA(ptr-ref)
returns a pointer reference, set to the address of the common work area
(CWA). This area makes information available to applications running in a
single CICS system. If a CWA does not exist, CICS sets the pointer reference to
the null value, X'FF000000'.

EIB(ptr-ref)
returns a pointer reference set to the address of the EXEC interface block (EIB).
You must use this option to get addressability to the EIB when it is not already
available.

TCTUA(ptr-ref)
returns a pointer reference, set to the address of the terminal control table user
area (TCTUA) for the principal facility, not that for any alternate facility that
may have been allocated. This area is used for passing information between
application programs, but only if the same terminal is associated with the
application programs involved. If a TCTUA does not exist, the pointer
reference is set to the null value, X'FF000000'.

TWA(ptr-ref)
returns a pointer reference, set to the address of the transaction work area
(TWA). This area is used for passing information between application
programs, but only if they are in the same task. If a TWA does not exist, the
pointer reference is set to the null value, X'FF000000'.

324 CICS for iSeries Application Programming Guide V5

If TASKDATALOC(ANY) is defined on the transaction definition, the address
of the data may be above or below the 16MB line.

 If TASKDATALOC(BELOW) is defined on the transaction definition, and the
data resides above the 16MB line, the data is copied below the 16MB line, and
the address of this copy is returned.

Exception Conditions
INVREQ

RESP2 values:

200 The TCTUA option is specified on an ADDRESS command issued in a
DPL server program.

 Default action: terminate the task abnormally.

ALLOCATE
Acquire a session to a remote APPC logical unit for use by an APPC mapped
conversation.

�� ALLOCATE SYSID (name)
PROFILE

(

name

)

NOQUEUE

NOSUSPEND

 �

�
STATE

(

cvda

)

 ��

Conditions: INVREQ, SYSBUSY, SYSIDERR

Description
ALLOCATE acquires the session and optionally selects a set of session-processing
options. CICS makes one of the sessions associated with the named system
available to the application program.

CICS returns, in the EIBRSRCE field of the EIB, the 4-byte conversion identifier
(CONVID) for use by the application program in all subsequent commands that
relate to the conversation.

See CICS for iSeries Intercommunicationfor more help on using this command.

Options
NOQUEUE

requests CICS to pass control to the CONNECT command that follows this
ALLOCATE command, if a session is not immediately available from the
requested SYSID. This option is overridden by a previously issued HANDLE
CONDITION(SYSBUSY) command. If NOQUEUE is not specified and a
HANDLE CONDITION(SYSBUSY) command has not been issued, CICS
suspends application execution until a session is available.

NOSUSPEND
is an alternative keyword for NOQUEUE. It means the same.

PROFILE(name)
specifies the name of an OS/400 mode description used during the execution

Chapter 32. Application programming commands - reference 325

of mapped commands for the session specified in the SYSID option. The name
can be up to 8 characters long. If this option is omitted, a default profile,
specified during resource definition, is selected.

STATE(cvda)
gets the state of the current conversation. The following CVDA value is
returned by CICS if the request is successful:
 ALLOCATED

For a complete list of the CVDA values that can be returned on APPC
commands and for information about receiving and testing these values, see
“CICS-value data areas (CVDAs)” on page 309.

SYSID(name)
specifies the name of an APPC connection to the required system. The name
can be up to 4 characters long. This option requests that one of the sessions to
the named system is to be allocated.

Exception Conditions
INVREQ

occurs if the ALLOCATE command is not valid for the device to which it is
directed.

 Default action: Terminate the task abnormally.

SYSBUSY
occurs if no session is immediately available. A previously issued HANDLE
CONDITION(SYSBUSY) command overrides the NOQUEUE option.

 Default action: CICS suspends application execution until a session is available.

SYSIDERR
occurs if CICS is unable to provide the application program with a suitable
session. That is, if:
v The SYSID option specifies a name that is not defined in the terminal control

system table (TCS).
v The mode name derived from the PROFILE option is not one of the mode

names defined for the APPC system entry.
v All the sessions in the group specified by the SYSID option and the mode

name are out of service.
v All sessions to the system specified by the SYSID option are out of service.

Default action: Terminate the task abnormally.

ASKTIME
Request the current date and time of day.

�� ASKTIME
ABSTIME

(

data-area

)

 ��

Description
ASKTIME updates the date (EIBDATE) and CICS time-of-day clock (EIBTIME)
fields in the EIB. These two fields initially contain the date and time when the task
started. Refer to Appendix A, “EXEC interface block,” on page 529 for details of
the EIB.

326 CICS for iSeries Application Programming Guide V5

Options
ABSTIME(data-area)

specifies a user data area to receive the time, in milliseconds since 00:00 on 1
January 1900, as a packed decimal value. For example, after execution of:

 “utime” might contain a value like 002837962864828 in milliseconds.

 The format of the ABSTIME argument is:
COBOL: PIC S9(15) COMP-3
ILE C: char abs_time[8];

ASSIGN
Request values from outside the application program’s local environment.

�� ASSIGN �

�

�

�

ABCODE

(

data-area

)

OUTLINE

(

data-area

)

APPLID

(

data-area

)

PRINSYSID

(

data-area

)

BTRANS

(

data-area

)

PS

(

data-area

)

COLOR

(

data-area

)

QNAME

(

data-area

)

CWALENG

(

data-area

)

RESTART

(

data-area

)

EXTDS

(

data-area

)

SCRNHT

(

data-area

)

FACILITY

(

data-area

)

SCRNWD

(

data-area

)

FCI

(

data-area

)

SIGDATA

(

data-area

)

HILIGHT

(

data-area

)

SOSI

(

data-area

)

KATAKANA

(

data-area

)

STARTCODE

(

data-area

)

MAPCOLUMN

(

data-area

)

SYSID

(

data-area

)

MAPHEIGHT

(

data-area

)

TCTUALENG

(

data-area

)

MAPLINE

(

data-area

)

TERMCODE

(

data-area

)

MAPWIDTH

(

data-area

)

TWALENG

(

data-area

)

NETNAME

(

data-area

)

UNATTEND

(

data-area

)

OPCLASS

(

data-area

)

USERID

(

data-area

)

OPID

(

data-area

)

VALIDATION

(

data-area

)

��

Condition: INVREQ

Description
ASSIGN gets values from outside the local environment of the application
program. The data obtained depends on the specified options. Up to sixteen
options can be specified in one ASSIGN command.

Where any of the following options apply to terminals or terminal-related data, the
reference is always to the principal facility.

If the principal facility is a remote terminal, the data returned is obtained from the
local copy of the information; the request is not routed to the system to which the
remote terminal is attached.

EXEC CICS ASKTIME ABSTIME(utime)

Chapter 32. Application programming commands - reference 327

Transaction routing is as far as possible transparent to the ASSIGN command. In
general, the values returned are the same whether the transaction is local or
remote.

Many of the ASSIGN options cannot be used in a server program invoked by a
distributed program link (DPL), and result in the INVREQ condition if specified.
For further details of the restricted API in the DPL server environment, see the
LINK command on page 380.

The following ASSIGN options are restricted in DPL server programs: BTRANS,
COLOR, EXTDS, FACILITY, FCI, HILIGHT, KATAKANA MAPCOLUMN,
MAPHEIGHT, MAPLINE, MAPWIDTH, OPCLASS, OUTLINE, PS, QNAME,
SCRNHT, SCRNWD, SIGDATA, SOSI TCTUALENG, TERMCODE, UNATTEND,
and VALIDATION.

Options
ABCODE(data-area)

returns a 4-character current abend code. (Abend codes are documented in
CICS/400 Problem Determination.) If an abend has not occurred, the variable is
set to blanks.

APPLID(data-area)
returns an 8-character applid of the CICS system owning the transaction.

BTRANS(data-area)
returns a 1-byte indicator showing whether the terminal is defined as having
the background transparency capability (X'FF') or not (X'00'). If the task is not
initiated from a terminal, INVREQ occurs.

COLOR(data-area)
returns a 1-byte indicator showing whether the terminal is defined as having
the extended color capability (X'FF') or not (X'00'). If the task is not initiated
from a terminal, INVREQ occurs.

CWALENG(data-area)
returns a halfword binary field indicating the length of the CWA. If no CWA
exists, a zero length is returned.

EXTDS(data-area)
returns a 1-byte indicator showing whether the terminal accepts the 3270
extended data stream, (X'FF') or not (X'00'). Extended data stream capability is
required for a terminal that supports the query feature, color, extended
highlighting, programmed symbols or validation.

 If the task is not initiated from a terminal, INVREQ occurs.

FACILITY(data-area)
returns a 4-byte identifier of the facility that initiated the transaction; If this
option is specified, and there is no allocated facility, INVREQ occurs.

Note: You should always use the QNAME option (described on page 330) to
get the name of the transient data intrapartition queue whose trigger
level caused the transaction to be initiated.

FCI(data-area)
returns a 1-byte field giving the facility control indicator code. This indicates
the type of facility associated with the transaction; for example, X'01' indicates
a terminal or logical unit. The obtained value is always returned. This code
indicates the type of facility associated with the transaction.

328 CICS for iSeries Application Programming Guide V5

The codes are listed here as both bit patterns and hexadecimal values.

 Code Meaning
.... ...1 X'01' TERMINAL OR LOGICAL

UNIT
.... ..1. X'02' K C P MACRO FILE MASK
.... .1.. X'04' NONTERMINAL FACILITY

MASK
.... 1... X'08' Triggered task
...1 X'10' START with data
111. X'E0' Reserved

HILIGHT(data-area)
returns a 1-byte indicator showing whether the terminal is defined as having
the extended highlight capability (X'FF') or not (X'00'). If the task is not
initiated from a terminal, INVREQ occurs.

KATAKANA(data-area)
returns a 1-byte indicator showing whether the principal facility supports
Katakana (X'FF') or not (X'00'). If the task is not initiated from a terminal,
INVREQ occurs.

MAPCOLUMN(data-area)
returns a halfword binary number of the column on the display containing the
origin of the most recently positioned map. If no map has yet been positioned,
or if the task is not initiated from a terminal, INVREQ occurs.

MAPHEIGHT(data-area)
returns a halfword binary height of the most recently positioned map. If no
map has yet been positioned, or if the task is not initiated from a terminal,
INVREQ occurs.

MAPLINE(data-area)
returns a halfword binary number of the line on the display containing the
origin of the most recently positioned map. If no map has yet been positioned,
or if the task is not initiated from a terminal, INVREQ occurs.

MAPWIDTH(data-area)
returns a halfword binary width of the most recently positioned map. If no
map has yet been positioned, or if the task is not initiated from a terminal,
INVREQ occurs.

NETNAME(data-area)
returns the 8-character name of the logical unit in the network. If the task is
not initiated from a terminal, INVREQ occurs. If the principal facility is not a
local terminal, CICS no longer returns a null string but the netname of the
remote terminal.

OPCLASS(data-area)
returns a 3-character string indicating the operator class. Operator class codes
are in the range 1 through 24. One bit represents each of the 24 possible
operator classes, but in reverse order (that is, byte 0 corresponds to codes 24
through 17, byte 1 to codes 16 through 9, and byte 2 to codes 8 through 1). If
the task is not initiated from a terminal, INVREQ occurs. CICS/400 accepts this
option for compatibility only.

OPID(data-area)
returns a 3-character string indicating the operator identification. If the task is
not initiated from a terminal, INVREQ occurs. CICS/400 accepts this option for
compatibility only.

Chapter 32. Application programming commands - reference 329

OUTLINE(data-area)
returns a 1-byte indicator showing whether the terminal is defined as having
the field outlining capability (X'FF') or not (X'00'). If the task is not initiated
from a terminal, INVREQ occurs.

PRINSYSID(data-area)
returns a 4-character string that applies when the principal facility is an APPC
session to another CICS system, or to another APPC system or device.

 PRINSYSID is the name by which the other system is known in the local
system; that is, the CONNECTION definition that defines the other system.

 If the task is not initiated from a terminal, or if the principal facility is not an
APPC session, INVREQ occurs.

Note: Special considerations apply generally when transaction routing. In
particular, an EXEC CICS ASSIGN PRINSYSID command cannot be
used in a routed transaction to find the name of the terminal-owning
region. See the CICS/400 Intercommunication book for more information
about transaction routing.

PS(data-area)
returns a 1-byte indicator showing whether the terminal is defined as having
the programmed symbols capability (X'FF') or not (X'00'). If the task is not
initiated from a terminal, INVREQ occurs.

QNAME(data-area)
returns a 4-character name of the transient data intrapartition queue that
caused this task to be initiated by reaching its trigger level. If the task is not
initiated by automatic transaction initiation (ATI), INVREQ occurs.

RESTART(data-area)
returns a 1-byte indicator showing whether a restart of the task (X'FF'), or a
normal start of the task (X'00'), has occurred.

SCRNHT(data-area)
returns a halfword binary variable that contains the height of the 3270 or 5250
screen defined for the current task. If the task is not initiated from a terminal,
INVREQ occurs.

SCRNWD(data-area)
returns a halfword binary variable that contains the width of the 3270 or 5250
screen defined for the current task. If the task is not initiated from a terminal,
INVREQ occurs.

SIGDATA(data-area)
returns a 4-byte character string containing the inbound signal data received
from a logical unit. If the task is not initiated from a terminal, INVREQ occurs.

SOSI(data-area)
returns a 1-byte indicator showing whether the terminal is defined as having
the mixed SBCS/DBCS fields capability (X'FF') or not (X'00'). The DBCS
subfields within an SBCS field are delimited by SO (shift-out) and SI (shift-in)
characters. If the task is not initiated from a terminal, INVREQ occurs.

STARTCODE(data-area)
returns a 2-byte indicator showing how the transaction issuing the request was
started. It can have the following values:

Code Transaction started by

D A distributed program link (DPL) request that did not specify the

330 CICS for iSeries Application Programming Guide V5

SYNCONRETURN option. The task cannot issue I/O requests against
its principal facility, nor can it issue any syncpoint requests. (For
details, see the LINK command on page 380.)

DS A distributed program link (DPL) request, as in code D, that did
specify the SYNCONRETURN option. The task can issue syncpoint
requests.

QD Transient data trigger level.

S START command without data.

SD START command with data.

TD Terminal input or permanent transid.

TP CICS transaction.

U User-attached task.

SYSID(data-area)
returns the 4-character name given to the local CICS control region. This value
may be specified in the SYSID option of a file control, interval control,
temporary storage, or transient data command, in which case the resource to
be accessed is assumed to be on the local system.

TCTUALENG(data-area)
returns a halfword binary length of the terminal control table user area
(TCTUA). If no TCTUA exists, a zero length is returned.

TERMCODE(data-area)
returns a 2-character string giving the type and model number of the terminal
associated with the task.

 The first byte is a code identifying the terminal type; the second byte is a
single-character model number. The terminal type is derived from the
DEVTYPE parameter of the ADDCICSTCT CL command. The model number is
set by the DEVD parameter of the same command. See the CICS/400
Administration and Operations Guide for details of ADDCICSTCT.

 The terminal type codes are listed here as both bit patterns and hexadecimal
values.

Note: The list of possible values is shorter than that for CICS for MVS/ESA
because there are fewer device types supported by CICS/400.

 Code Meaning
1..1 ...1 X'91' T3277R: 5250, 3270, 3270J,

ASCII
1..1 ..11 X'93' T3284L: 3270P, 3270JP
1.11 .11. X'B6' T3790SCSP: SCS

 If the task is not initiated from a terminal, INVREQ occurs.

TWALENG(data-area)
returns a halfword binary length of the transaction work area (TWA). If no
TWA exists, a zero length is returned.

UNATTEND(data-area)
returns a 1-byte indicator showing whether the mode of operation of the
terminal is unattended, that is to say no person is actually attending the

Chapter 32. Application programming commands - reference 331

terminal. These indicators are X'FF' for unattended and X'00' for attended. If
the task is not initiated from a terminal, INVREQ occurs.

USERID(data-area)
returns an 10-character string indicating the user identifier of whoever is
signed on. This option returns a blank string when there is no user identifier.

 If the task is not initiated from a terminal, INVREQ occurs.

VALIDATION(data-area)
returns a 1-byte indicator showing whether the terminal is defined as having
the validation capability (X'FF') or not (X'00'). Validation capability consists of
the mandatory fill, mandatory enter, and trigger attributes. If the task is not
initiated from a terminal, INVREQ occurs.

Exception Conditions
INVREQ

RESP2 values:

2 No BMS command has yet been issued, or no map has yet been
positioned.

4 The task is not initiated by automatic transaction initiation (ATI).

5 The task is not associated with a terminal; or the task has no principal
facility; or the principal facility is not an APPC session.

200 An ASSIGN command in a DPL server program includes one or more
terminal-related options that are not allowed in a server environment.

 Default action: terminate the task abnormally.

BIF DEEDIT
Deediting (built-in function).

�� BIF DEEDIT FIELD (data-area)
LENGTH

(

data-value

)

 ��

Description
BIF DEEDIT provides the built-in function DEEDIT. It specifies that alphabetic and
special characters are removed from an EBCDIC data field, and the remaining
digits right-aligned and padded to the left with zeros as necessary.

If the field ends with a minus sign or a carriage-return (CR), a negative zone (X'D')
is placed in the rightmost (low-order) byte.

If the zone portion of the rightmost byte contains one of the characters X'A'
through X'F', and the numeric portion contains one of the hexadecimal digits X'0'
through X'9', the rightmost byte is returned unaltered (see the example). This
permits the application program to operate on a zoned numeric field. The returned
value is in the field that initially contained the unedited data.

Note that a 1-byte field is returned unaltered, no matter what the field contains.

332 CICS for iSeries Application Programming Guide V5

Options
FIELD(data-area)

specifies the field to be edited.

LENGTH(data-value)
specifies the field length in bytes.

Examples

 This removes all characters other than digits from CONTG, a 9-byte field, and
returns the edited result in that field to the application program. Two examples of
the contents of CONTG before and after execution of the command are:

Note that a decimal point is an EBCDIC special character and as such is removed.

CANCEL
Cancel an interval control request.

�� CANCEL �

�
REQID

(

name

)

TRANSID

(

name

)

SYSID

(

name

)

 ��

Conditions: INVREQ, ISCINVREQ, NOTAUTH, NOTFND, SYSIDERR

Description
CANCEL cancels a previously issued DELAY, POST, or START command. If you
include the SYSID option, the command is shipped to a remote system. If you omit
SYSID, the TRANSID option, if present, determines where the command is to be
executed. The effect of the cancelation varies depending on the type of command
being canceled, as follows:
v A DELAY command can be canceled only before it has expired, and only by a

task other than the task that issued the DELAY command (which is suspended
for the duration of the request). The REQID used by the suspended task must be
specified. The effect of the cancelation is the same as an early expiration of the
original DELAY. That is, the suspended task becomes dispatchable as though the
original expiration time has been reached.

v When a POST command issued by the same task is to be canceled, no REQID
need be specified. Cancelation can be requested either before or after expiration
of the original request. The effect of the cancelation is as if the original request
had never been made.

v When a POST command issued by another task is to be canceled, the REQID of
that command must be specified. The effect of the cancelation is the same as an

EXEC CICS BIF DEEDIT
 FIELD(CONTG)
 LENGTH(9)

Original value Returned value
14-6704/B 00146704B
$25.68 000002568

Chapter 32. Application programming commands - reference 333

early expiration of the original POST request. That is, the timer event control
area for the other task is posted as though the original expiration time had been
reached.

v When a START command is to be canceled, the REQID of the original command
must be specified. The effect of the cancelation is as if the original command had
never been made. The cancelation is effective only before the original command
has expired.

See Chapter 18, “Interval control,” on page 193 for more information.

Options
REQID(name)

specifies a name that uniquely identifies the command to be canceled. The
name can be up to 8 characters long. This name is used as a temporary storage
identifier. The temporary storage queue thus identified must be defined as a
local queue on the CICS system where the CANCEL command is processed.

 This option cannot be used to cancel a POST command issued by the same
task (for which the REQID option is ignored if it is specified).

SYSID(name)
specifies the name of the system to which the request is directed. The name
can be up to 4 characters long.

TRANSID(name)
specifies the symbolic identifier that determines where the CANCEL command
is to be executed. The name can be up to 4 characters long and must have been
defined in the program control table (PCT) unless the SYSID option specifies a
remote system.

 If a nonlocal SYSID is specified, the transaction is assumed to be on a remote
system irrespective of whether the name is defined in the local PCT. Otherwise,
the PCT entry is used to determine whether the transaction is on a local or a
remote system.

Exception Conditions
INVREQ

occurs if the CANCEL command is not valid for processing by CICS.

 Default action: Terminate the task abnormally.

ISCINVREQ
occurs if the remote system indicates a failure that does not correspond to a
known condition.

 Default action: Terminate the task abnormally.

NOTAUTH
occurs if the user requesting the CANCEL command is not authorized to the
CICS/400 temporary storage files for the control region in which the command
is being run.

 Default action: Terminate the task abnormally.

NOTFND
occurs if the request identifier specified fails to match an unexpired interval
control command.

 Default action: Terminate the task abnormally.

334 CICS for iSeries Application Programming Guide V5

SYSIDERR
occurs if the SYSID option specifies either a name that is not defined in the
terminal control system table (TCS), or a system to which the link is closed.

 Default action: Terminate the task abnormally.

CONNECT PROCESS
Initiate APPC mapped conversation.

�� CONNECT PROCESS CONVID (name) �

�
PROCNAME

(

data-area

)

PROCLENGTH

(

data-value

)

 �

� SYNCLEVEL (data-value) �

�
PIPLIST

(

data-area

)

PIPLENGTH

(

data-value

)

 �

�
STATE

(

cvda

)

 ��

Conditions: INVREQ, LENGERR, NOTALLOC

Description
CONNECT PROCESS allows an application to specify a process name and
synchronization level to be passed to CICS and used when the remote partner is
attached.

See part 3 of CICS/400 Intercommunication for more information.

Options
CONVID(name)

identifies the conversation to which the command relates. The 4-character
name specifies the token returned by a previously executed ALLOCATE
command in EIBRSRCE in the EIB.

PIPLENGTH(data-value)
specifies the total length (halfword binary value) of the specified process
initialization parameter (PIP) list.

PIPLIST(data-area)
specifies the PIP data to be sent to the remote system. The PIP list consists of
variable-length records, each containing a single PIP. A PIP starts with a 2-byte
inclusive length field (LL), followed by a 2-byte reserved field, and then the
parameter data.

PROCLENGTH(data-value)
specifies the length (as a halfword binary value) of the process name specified
by the PROCNAME option.

PROCNAME(data-area)
specifies the partner process (that is, the transaction) to be attached in the
remote system.

Chapter 32. Application programming commands - reference 335

One byte is sufficient to identify a CICS transaction. The APPC architecture
allows a range of 1–64 bytes but leaves each product free to set its own
maximum. CICS complies by allowing a range of 1–32 bytes. If the remote
system expects ASCII characters, there are certain restrictions; for full details,
refer to the “AE” character set defined in the SNA publication SNA LU6.2
reference: Verb descriptions, GC30-3084.

STATE(cvda)
gets the state of the current conversation.

 For a complete list of the CVDA values that can be returned on APPC
commands and for information about receiving and testing these values, see
“CICS-value data areas (CVDAs)” on page 309.

SYNCLEVEL(data-value)
specifies the synchronization level (halfword binary value) for the current
conversation. The possible values are:
 0 None
 1 Confirm
 2 Syncpoint

Exception Conditions
INVREQ

RESP2 values:

200 A distributed program link server application specified the
function-shipping session (its principal facility) on the CONVID option.

 also occurs (RESP2 not set) in any of the following situations:
v A synchronization level other than 0, 1, or 2, has been requested in the

SYNCLEVEL option.
v The command is not valid for the terminal or LU in use.
v The CONVID value was obtained by an ASSIGN FACILITY command.

However, the principal facility is not an APPC conversation.

Default action: terminate the task abnormally.

LENGERR
occurs in any of the following situations:
v An out-of-range value is supplied in the PROCLENGTH option.
v The value specified in the PIPLENGTH option is less than 0.
v The value specified in the PIPLENGTH option exceeds the CICS

implementation limit of 32 763.
v A PIPLIST length element (LL) has a value less than 4.
v The sum of the length elements (LLs) in the PIPLIST does not equal the

value specified by PIPLENGTH.

Default action: terminate the task abnormally.

NOTALLOC
occurs if the specified CONVID value does not relate to a conversation owned
by the application.

 Default action: terminate the task abnormally.

336 CICS for iSeries Application Programming Guide V5

CONVERSE (APPC)
Send, then receive, data on an APPC mapped conversation.

Description
CONVERSE sends, then receives, data on an APPC mapped conversation. See CICS
for iSeries Intercommunication for more information.

Options
CONVID(name)

identifies the conversation to which the command relates. The 4-character
name identifies the token returned by a previously executed ALLOCATE
command in the EIBRSRCE field of the EIB. If this option is omitted, the
principal facility for the task is used by default.

FROM(data-area)
specifies the data to be sent to the partner transaction.

FROMFLENGTH(data-value)
is a fullword alternative to FROMLENGTH(data-value).

FROMLENGTH(data-value)
specifies as a halfword binary value the length of the data to be sent.

INTO(data-area)
specifies the application target data area into which data is to be received from
the application program connected to the other end of the current
conversation. The length of this area must be greater than or equal to the
maximum receive length specified in the TOLENGTH, TOFLENGTH,
MAXLENGTH, and MAXFLENGTH options.

MAXFLENGTH(data-value)
is a fullword alternative to MAXLENGTH(data-value).

MAXLENGTH(data-value)
specifies as a halfword binary value the maximum amount of data that CICS is
to recover in response to a CONVERSE command. If INTO is specified,
MAXLENGTH overrides the use of TOLENGTH as an input to CICS. If SET is
specified, MAXLENGTH provides a way for the program to limit the amount
of data that it receives at one time.

 If the length of data exceeds the value specified and the NOTRUNCATE
option is not present, the data is truncated to that value and the LENGERR
condition occurs. The data area specified in the TOLENGTH option is set to
the original length of data (before any truncation).

�� CONVERSE
CONVID

(

name

)

 FROM (data-area) FROMLENGTH (data-value)
FROMFLENGTH

(

data-value

)

 �

� INTO (data-area)
SET

(

ptr-ref

)

 TOLENGTH (data-area)
TOFLENGTH

(

data-area

)

MAXLENGTH

(

data-value

)

MAXFLENGTH

(

data-value

)

 �

�
NOTRUNCATE

STATE

(

cvda

)

 ��

Conditions: EOC, INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

Chapter 32. Application programming commands - reference 337

If the length of data exceeds the value specified and the NOTRUNCATE
option is present, CICS retains the remaining data and uses it to satisfy
subsequent RECEIVE commands. To determine whether all the data has been
received, a program can use the EIBCOMPL field in the EIB. The data area
specified in the TOLENGTH option is set to the length of data returned.

 If MAXLENGTH is omitted, CICS uses the value specified in the TOLENGTH
option as the maximum length that the program accepts.

NOTRUNCATE
specifies that, when the data available exceeds the length requested, the
remaining data is not to be discarded but is to be retained for retrieval by
subsequent RECEIVE commands.

SET(ptr-ref)
specifies a pointer reference to be set to the address of the data received from
the partner transaction. The pointer reference, unless changed by other
commands or statements, is valid until the next CONVERSE (APPC) command
or the end of task.

STATE(cvda)
gets the state of the current conversation. For a complete list of the CVDA
values that can be returned on APPC commands and for information about
receiving and testing these values, see “CICS-value data areas (CVDAs)” on
page 309.

TOFLENGTH(data-area)
is a fullword alternative to TOLENGTH(data-area).

TOLENGTH(data-area)
specifies as a halfword binary value the length of the data to be received. If
you specify INTO, but omit MAXLENGTH, this option specifies the maximum
length that the program accepts.

Exception Conditions
EOC

occurs when no other condition is raised. The EIBEOC field also contains this
indicator.

 Default action: Ignore the condition.

INVREQ
RESP2 values:

v The CONVID value was obtained by an ASSIGN FACILITY command.
However, the principal facility is not an APPC conversation.

200 The command is issued in a DPL server program and refers to the
principal facility.

 Default action: Terminate the task abnormally.

LENGERR
occurs in any of the following situations:
v Received data is discarded by CICS because its length exceeds the maximum

that the program accepts (see the TOLENGTH and MAXLENGTH options),
and the NOTRUNCATE option is not specified.

v An out-of-range value is supplied in one of the options, TOLENGTH,
FROMLENGTH, MAXLENGTH, TOFLENGTH, FROMFLENGTH, or
MAXFLENGTH.

338 CICS for iSeries Application Programming Guide V5

Default action: Terminate the task abnormally.

NOTALLOC
occurs if the specified CONVID value does not relate to a conversation owned
by the application.

 Default action: Terminate the task abnormally.

SIGNAL
occurs if an inbound SIGNAL data-flow control command is received from the
partner transaction. EIBSIG is always set when an inbound signal is received.

 Default action: Ignore the condition.

TERMERR
occurs if there is a session-related error. Any action on that conversation other
than a FREE command causes an ATCV abend.

 Default action: Terminate the task abnormally (with abend code ATNI).

CONVERSE (5250 or 3270 logical)
Communicate on a 5250-display or 3270-display logical unit, or a 3270-printer
logical unit.

�� CONVERSE FROM (data-area) FROMLENGTH (data-value)
FROMFLENGTH

(

data-value

)

 �

� INTO (data-area)
SET

(

ptr-ref

)

ERASE

CTLCHAR

(

data-value

)

STRFIELD

 �

� TOLENGTH (data-area)
TOFLENGTH

(

data-area

)

MAXLENGTH

(

data-value

)

MAXFLENGTH

(

data-value

)

 �

�
DEFRESP

NOTRUNCATE

 ��

Conditions: EOC, INVREQ, LENGERR, TERMERR

Description
The CONVERSE (5250 or 3270 logical) command communicates on a 5250-display
or 3270-display logical unit, or a 3270-printer logical unit. See Chapter 14,
“Terminal control,” on page 169 for more information.

Options
CTLCHAR(data-value)

specifies a 1-byte write control character (WCC) that controls the CONVERSE
command. A COBOL user must specify a data area containing this character. If
the option is omitted, all modified data tags are reset to zero and the keyboard
is restored.

DEFRESP (ignored by CICS/400)
indicates that a definite response is required when the output operation has
been completed.

Chapter 32. Application programming commands - reference 339

ERASE
specifies that the buffer is to be erased or the display image is to be erased and
the cursor returned to the upper left corner of the screen before writing occurs.

 Normally, ERASE should be specified in the first output command of a
transaction. This clears the screen ready for the new output data.

 However, when switching from one screen size to another on a transaction
basis, if ERASE is not specified in the first output command of the transaction,
the screen size is unchanged from its previous setting (that is, the previous
transaction setting, or the default screen size if the CLEAR key has been
pressed).

FROM(data-area)
specifies the data to be written to the logical unit.

FROMFLENGTH(data-value)
is a fullword alternative to FROMLENGTH(data-value).

FROMLENGTH(data-value)
specifies as a halfword binary value the length of the data to be written.

 For a description of a safe upper limit, see “LENGTH options” on page 312.

INTO(data-area)
specifies the receiving field for the data read from the logical unit.

MAXFLENGTH(data-value)
is a fullword alternative to MAXLENGTH(data-value).

MAXLENGTH(data-value)
specifies as a halfword binary value the maximum amount of data that CICS is
to recover in response to a CONVERSE command. If INTO is specified,
MAXLENGTH overrides the use of TOLENGTH as an input to CICS. If SET is
specified, MAXLENGTH provides a way for the program to limit the amount
of data that it receives at one time.

 If the length of data exceeds the value specified and the NOTRUNCATE
option is not present, the data is truncated to that value and the LENGERR
condition occurs. The data area specified in the TOLENGTH option is set to
the original length of data (before any truncation).

 If the length of data exceeds the value specified and the NOTRUNCATE
option is present, CICS retains the remaining data and uses it to satisfy
subsequent RECEIVE commands. The data area specified in the LENGTH
option is set to the length of data returned.

 If MAXLENGTH is omitted, CICS uses the value specified in the TOLENGTH
option as the maximum length that the program accepts.

NOTRUNCATE
specifies that when the data available exceeds the length requested, the
remaining data is not to be discarded but is to be retained for retrieval by
subsequent RECEIVE commands.

SET(ptr-ref)
specifies a pointer reference to be set to the address of the data read from the
terminal or logical unit. The pointer reference, unless changed by other
commands or statements, is valid until the next terminal I/O command or the
end of task.

STRFIELD
specifies that the data area specified in the FROM option contains structured

340 CICS for iSeries Application Programming Guide V5

fields. This option applies to 3270 devices only. When this option is specified,
the contents of all structured fields must be handled by the application
program. (Structured fields are described in the 3270 Data Stream Programmer’s
Reference..)

 CTLCHAR and ERASE are mutually exclusive with STRFIELD, and their use
with STRFIELD generates an error message.

TOFLENGTH(data-area)
is a fullword alternative to TOLENGTH(data-area).

TOLENGTH(data-area)
specifies as a halfword binary value the length of the data to be received. If
you specify INTO, but omit MAXLENGTH, this specifies the maximum length
that the program accepts. If the value is less than zero, zero is assumed. If the
length of data exceeds the value specified, but NOTRUNCATE is omitted, the
data is truncated to that value, and the LENGERR condition occurs. When the
data is received, the data area is set to the length of the data. If you specify the
SET option, the argument must be a data area. When the data has been
received, the data area is set to the length of the data.

 For a description of a safe upper limit, see “LENGTH options” on page 312.

Exception Conditions
EOC

occurs when no other condition is raised. The EIBEOC field also contains this
indicator.

 Default action: Ignore the condition.

INVREQ
RESP2 values:

200 The command is issued in a DPL server program.

 Default action: Terminate the task abnormally.

LENGERR
occurs in any of the following situations:
v Received data is discarded by CICS because its length exceeds the maximum

that the program accepts (see the TOLENGTH, TOFLENGTH,
MAXLENGTH, and MAXFLENGTH options), and the NOTRUNCATE
option is not specified.

v An out-of-range value is supplied in the FROMLENGTH, FROMFLENGTH,
MAXLENGTH, MAXFLENGTH, TOLENGTH, or TOFLENGTH option.

Default action: Terminate the task abnormally.

TERMERR
occurs if there is a terminal-related error.

 Default action: Terminate the task abnormally (with abend code ATNI).

DELAY
Delay the processing of a task.

Chapter 32. Application programming commands - reference 341

��

DELAY

�

�

 INTERVAL (0)

INTERVAL

(

hhmmss

)

TIME

(

hhmmss

)

FOR

HOURS

(

data-value

)

MINUTES

(

data-value

)

SECONDS

(

data-value

)

UNTIL

HOURS

(

data-value

)

MINUTES

(

data-value

)

SECONDS

(

data-value

)

REQID

(

name

)

��

Conditions: EXPIRED, INVREQ

Description
DELAY suspends the processing of the issuing task for a specified interval of time
or until a specified time of day. It supersedes any previously initiated POST
command for the task.

See Chapter 18, “Interval control,” on page 193 for more information.

Options
FOR

together with one or more of the HOURS, MINUTES, and SECONDS options,
specifies the interval of time for which the task processing is to be suspended.

HOURS(data-value)
specifies as a fullword binary value the number of hours for use in conjunction
with FOR or UNTIL. The value must be in the range 0 through 99.

INTERVAL(hhmmss)
specifies the interval of time that is to elapse from the time at which the
DELAY command is issued until processing is resumed. The specified interval
is added to the current clock time by CICS to calculate the expiration time. See
Chapter 18, “Interval control,” on page 193 for an explanation of how
expiration times are used with interval control.

 INTERVAL(0) is the default. The maximum permitted INTERVAL value is
995959.

 For compatibility between CICS platforms, it is recommended that the
INTERVAL option is not used in ILE C programs. You should use the FOR
option instead.

MINUTES(data-value)
specifies as a fullword binary value the number of minutes for use in
conjunction with FOR or UNTIL. The value must be in the range 0 through 59
if HOURS or SECONDS is also specified, or in the range 0 through 5999
otherwise.

REQID(name)
specifies a name that uniquely identifies the DELAY command. The name can
be up to 8 characters long. This name is used as a temporary storage identifier.

342 CICS for iSeries Application Programming Guide V5

This option can be used when another task is to be provided with the
capability of canceling an unexpired DELAY command.

SECONDS(data-value)
specifies as a fullword binary value the number of seconds for use in
conjunction with FOR or UNTIL. The value must be in the range 0 through 59
if HOURS or MINUTES is also specified, or in the range 0 through 359999
otherwise.

TIME(hhmmss)
specifies the time at which the task is to resume processing. See Chapter 18,
“Interval control,” on page 193 for an explanation of how expiration times are
used within interval control.

 For compatibility between CICS platforms, it is recommended that the
INTERVAL option is not used in ILE C programs. You should use the UNTIL
option instead.

UNTIL
together with one or more of the HOURS, MINUTES, and SECONDS options,
specifies the time at which the task is to resume processing.

Exception Conditions
EXPIRED

occurs if the time specified has already expired when the command is issued.

 Default action: Ignore the condition.

INVREQ
RESP2 values:

v The DELAY command is not valid for processing by CICS.

4 Hours are out of range.

5 Minutes are out of range.

6 Seconds are out of range.

v The DELAY command specifies a REQID name that already exists.

 Default action: Terminate the task abnormally.

Examples
The following example shows how to suspend the processing of a task for five
minutes, using the INTERVAL option:

The following example shows how to suspend the processing of a task until 12:45,
using the TIME option:

EXEC CICS DELAY
 INTERVAL(500)
 REQID(’GXLBZQMR’) ...

Chapter 32. Application programming commands - reference 343

ILE C supports the packed decimal argument type and, consequently, the use of
the INTERVAL and TIME options. It is recommended, however, that you use the
FOR and UNTIL options for portability of applications between CICS platforms.
There are two ways to enter the interval or time value using FOR or UNTIL:
1. A combination of at least two of HOURS(0–99), MINUTES(0–59), and

SECONDS(0–59). For example, HOURS(1) SECONDS(3) means one hour and
three seconds (the minutes default to zero).

2. Any one of HOURS(0–99), MINUTES(0–5999), or SECONDS(0–359999). For
example, HOURS(1) means one hour; MINUTES(62) means one hour and two
minutes; and SECONDS(3723) means one hour, two minutes, and three
seconds.

The following example shows how to suspend the processing of a task for five
minutes, using the FOR option:

The following example shows how to suspend the processing of a task until 12:45,
using the UNTIL option:

DELETE
Delete a record.

��

DELETE
 (1)

FILE

(

name

)

SYSID

(

name

)

�

�
RIDFLD

(

data-area

)

KEYLENGTH

(

data-value

)

GENERIC

NUMREC

(

data-area

)

RRN

 ��

Notes:

1 DATASET is also accepted, but FILE is the preferred term (see “DATASET
option” on page 311).

EXEC CICS DELAY
 TIME(124500)
 REQID(’UNIQCODE’) ...

EXEC CICS DELAY
 FOR MINUTES(5)
 REQID(’GXLBZQMR’) ...

EXEC CICS DELAY
 UNTIL HOURS(12) MINUTES(45)
 REQID(’UNIQCODE’) ...

344 CICS for iSeries Application Programming Guide V5

Conditions: DISABLED, DUPKEY, FILENOTFOUND, ILLOGIC, INVREQ, IOERR,
ISCINVREQ, NOTAUTH, NOTFND, NOTOPEN, SYSIDERR

Description
DELETE deletes a record from a file that refers to a KSDS, a path over a KSDS, or
an RRDS. (Records cannot be deleted from an ESDS.) The file may be on a local or
a remote system. You identify, in the RIDFLD option, the specific record to be
deleted.

You can delete a group of records in a similar way with a single invocation of this
command, except that you identify the group by the GENERIC option.

You can also use a different form of this command to delete a single record that
has previously been retrieved for update (by a READ UPDATE command). The
record is deleted, instead of being rewritten, by this command. In this case, you
must not specify the RIDFLD option.

Refer to Chapter 10, “File control,” on page 115 for more information.

Options
FILE(name)

specifies the name of the file to be accessed. The name must be alphanumeric,
up to 8 characters long, and must have been defined in the file control table
(FCT) unless the SYSID option specifies a remote system.

 If a nonlocal SYSID is specified, the underlying file is assumed to be on a
remote system irrespective of whether the name is defined in the local FCT.
Otherwise, the FCT entry is used to determine whether the underlying file is
on a local or a remote system.

GENERIC
specifies that the search key is a generic key with a length specified in the
KEYLENGTH option. The GENERIC option may only be used with a KSDS or
a path over a KSDS. The search for a record is satisfied when a record is found
with a key that has the same starting characters (generic key) as those
specified.

KEYLENGTH(data-value)
specifies as a halfword binary value the length of the key supplied in the
RIDFLD option. If a specified KEYLENGTH value differs from the length
defined for the underlying file and the operation is not generic, the INVREQ
condition occurs.

 INVREQ also occurs if you specify GENERIC, and the KEYLENGTH value is
not less than that defined for the file.

Note: If you specify GENERIC and KEYLENGTH(0), CICS/400 deletes all the
records from the file.

NUMREC(data-area)
specifies a halfword binary data area that CICS sets to the number of records
that have been deleted.

RIDFLD(data-area)
specifies the record identification field. The contents can be a key or a relative
record number. For a relative record number, the format of this field must be
fullword binary and the RIDFLD can be greater than or equal to 1.

Chapter 32. Application programming commands - reference 345

RRN
specifies that the record identification field specified in the RIDFLD option
contains a relative record number. Use this option only when deleting records
from an RRDS.

SYSID(name)
specifies the name of the system to which the request is directed. The name
can be up to 4 characters long.

 If you specify SYSID, and omit RRN, you must also specify KEYLENGTH; it
cannot be found in the FCT.

Exception Conditions

Note: RESP2 values are not set for files that are on remote systems.

DISABLED
RESP2 values:

50 A file is disabled.

 A file may be disabled because:
v It was initially defined as disabled and has not since been enabled.
v It has been disabled by an EXEC CICS SET FILE command.
v It has been disabled by the CEMT transaction.

 This condition cannot occur when deleting a record just read for update.

 Default action: Terminate the task abnormally.

DUPKEY
RESP2 values:

140 A record is deleted from a VSAM emulated file that allows duplicate
keys, and another record with the same key exists.

 Default action: Terminate the task abnormally.

FILENOTFOUND
RESP2 values:

1 The name specified in the FILE option cannot be found in the FCT.

 Default action: Terminate the task abnormally.

ILLOGIC
RESP2 values:

110 There is an error that does not fall within one of the other CICS
response categories. (Further information is available in the EIBRCODE
field; refer to Appendix A, “EXEC interface block,” on page 529 for
details.)

 Default action: Terminate the task abnormally.

INVREQ
RESP2 values:

20 Delete operations are not allowed according to the file entry
specification in the FCT.

21 A DELETE command is issued for a file referring to an ESDS.

346 CICS for iSeries Application Programming Guide V5

22 A generic delete is issued for a file that is not a KSDS.

25 The KEYLENGTH and GENERIC options are specified, and the length
specified in the KEYLENGTH option is greater than or equal to the
length of a full key.

26 The KEYLENGTH option is specified (but the GENERIC option is not
specified), and the specified length differs from the length defined for
the file.

31 A DELETE command without the RIDFLD option is issued for a file
for which no previous READ UPDATE command has been issued.

32 A DELETE command with the RIDFLD option specified is issued for a
file when a READ UPDATE command is outstanding.

42 The KEYLENGTH and GENERIC options are specified, and the length
specified in the KEYLENGTH option is less than zero.

 Default action: Terminate the task abnormally.

IOERR
RESP2 values:

120 There is an I/O error during the file control operation. An I/O error is
any unusual event that is not covered by a CICS exception condition.

 (Further information is available in the EIBRCODE field; refer to
Appendix A, “EXEC interface block,” on page 529 for details.)

 Default action: Terminate the task abnormally.

ISCINVREQ
RESP2 values:

70 The remote system indicates a failure that does not correspond to a
known condition.

 Default action: Terminate the task abnormally.

NOTAUTH
RESP2 values:

101 A resource security check has failed on FILE(name).

 Default action: Terminate the task abnormally.

NOTFND
RESP2 values:

80 An attempt to delete a record based on the search argument provided
is unsuccessful.

 Default action: Terminate the task abnormally.

NOTOPEN
RESP2 values:

60 One of the following has occurred:
v The requested file is CLOSED and UNENABLED. The CLOSED,

UNENABLED state is reached after a close request has been received
against an OPEN ENABLED file and the file is no longer in use.

Chapter 32. Application programming commands - reference 347

v The requested file is OPEN and UNENABLED and in use by other
transactions, but a close request against the file has been received.

This condition does not occur if the request is made to either a
CLOSED, ENABLED file or a CLOSED, DISABLED file. In the first
case, the file is opened as part of executing the request. In the second
case, the DISABLED condition occurs. It also cannot occur when
deleting a record just read for update.

 Default action: Terminate the task abnormally.

SYSIDERR
RESP2 values:

130 The SYSID option specifies either a name that is not defined in the
terminal control system table (TCS), or a system to which the link is
closed.

 Default action: Terminate the task abnormally.

Examples
The following example shows how to delete a group of records in a file:

DELETEQ TD
Delete all the transient data associated with a particular intrapartition destination
(queue).

�� DELETEQ TD QUEUE (name)
SYSID

(

name

)

 ��

Conditions: DISABLED, INVREQ, ISCINVREQ, NOTAUTH, QIDERR, SYSIDERR

Description

Note: You cannot use this command to delete an extrapartition transient data
queue. An attempt to do so results in the INVREQ condition.

See Chapter 23, “Transient data control,” on page 215 for more information.

Options
QUEUE(name)

specifies the symbolic name of the queue to be deleted. The name must be
alphanumeric, up to 4 characters long, and must have been defined in the
destination control table (DCT) unless the SYSID option specifies a remote
system.

EXEC CICS DELETE
 FILE(’MASTVSAM’)
 RIDFLD(ACCTNO)
 KEYLENGTH(LEN)
 GENERIC
 NUMREC(NUMDEL) ...

348 CICS for iSeries Application Programming Guide V5

If a nonlocal SYSID is specified, the queue is assumed to be on a remote
system irrespective of whether the name is defined in the local DCT.
Otherwise, the DCT entry is used to determine whether the queue is on a local
or a remote system.

SYSID(name)
specifies the name of the system to which the request is directed. The name
can be up to 4 characters long.

Exception Conditions
DISABLED

occurs if the queue has been disabled.

 Default action: Terminate the task abnormally.

INVREQ
occurs if DELETEQ names an extrapartition queue.

 Default action: Terminate the task abnormally.

ISCINVREQ
occurs if the remote system indicates a failure that does not correspond to a
known condition.

 Default action: Terminate the task abnormally.

NOTAUTH
occurs if a resource security check has failed on QUEUE(name).

 Default action: Terminate the task abnormally.

QIDERR
occurs if the symbolic destination to be used with DELETEQ TD cannot be
found.

 Default action: Terminate the task abnormally.

SYSIDERR
occurs if the SYSID option specifies either a name that is not defined in the
terminal control system table (TCS), or a system to which the link is closed.

 Default action: Terminate the task abnormally.

DELETEQ TS
Delete a temporary storage queue.

�� DELETEQ TS QUEUE (name)
SYSID

(

name

)

 ��

Conditions: INVREQ, ISCINVREQ, NOTAUTH, QIDERR, SYSIDERR

Description
DELETEQ TS deletes all the temporary data associated with a temporary storage
queue. All storage associated with the queue is freed.

You should delete temporary data as soon as possible to avoid using excessive
amounts of storage.

Chapter 32. Application programming commands - reference 349

When a recoverable temporary storage queue is deleted, you must issue a
syncpoint before issuing a subsequent WRITEQ TS command for the same queue.

See Chapter 24, “Temporary storage control,” on page 219 for more information.

Options
QUEUE(name)

specifies the symbolic name of the queue to be deleted. If the queue name
appears in the temporary storage table (TST), and the entry is marked as
remote, the request is shipped to a remote system. The name must be
alphanumeric, can be up to 8 characters long, and must be unique within the
CICS/400 system. Do not use X'FA' through X'FF' as the first character of the
name; these characters are reserved for CICS use. The name cannot consist
solely of binary zeros.

SYSID(name)
specifies the name of the system to which the request is directed. The name
can be up to 4 characters long.

Exception Conditions
INVREQ

occurs if the queue was created by CICS internal code.

 Default action: Terminate the task abnormally.

ISCINVREQ
occurs if the remote system indicates a failure that does not correspond to a
known condition.

 Default action: Terminate the task abnormally.

NOTAUTH
occurs if a resource security check has failed on QUEUE(name).

 Default action: Terminate the task abnormally.

QIDERR
occurs if the specified queue cannot be found.

 Default action: Terminate the task abnormally.

SYSIDERR
occurs if the SYSID option specifies either a name that is not defined in the
terminal control system table (TCS), or a system to which the link is closed.

 Default action: Terminate the task abnormally.

DEQ
Schedule use of a resource by a task (dequeue).

�� DEQ RESOURCE (data-area)
LENGTH

(

data-value

)

 �

350 CICS for iSeries Application Programming Guide V5

�
 LUW

MAXLIFETIME

(

cvda

)

TASK

��

Conditions: INVREQ, LENGERR

Description
DEQ causes a resource currently enqueued on by the task to be released for use by
other tasks.

If a task enqueues on, but does not dequeue from, a resource, CICS automatically
releases the resource during syncpoint processing or when the task is terminated.
A resource in the context of this command is any string of 1–255 bytes, established
by in-house standards, to protect against conflicting actions between tasks, or to
cause single-threading within a program.

When issuing the DEQ command, the resource to be dequeued from must be
identified by the method used when enqueuing on the resource. (See “ENQ” on
page 355.) If no enqueue has been issued for the resource, the dequeue is ignored.

If more than one ENQ command is issued for a resource by a task, that resource
remains owned by the task until the task issues a matching number of DEQ
commands.

See Chapter 19, “Task control,” on page 197 for more information.

Options
LENGTH(data-value)

specifies as a halfword binary value the length of the resource to be dequeued
from. The value must be in the range 1 through 255; otherwise, the LENGERR
condition occurs. If the LENGTH option is specified in an ENQ command, it
must also be specified in the corresponding DEQ command for that resource,
and the values of these options must be the same.

MAXLIFETIME(cvda)
specifies the duration of the ENQ being released. CVDA values are:

LUW ENQ was acquired with a duration of a logical unit of work. This is
the default value.

TASK ENQ was acquired with a duration of a task.

 For examples of how to code the MAXLIFETIME option, see “CICS-value data
areas (CVDAs)” on page 309.

RESOURCE(data-area)
specifies either an area whose address represents the resource to be dequeued
from, or a variable that contains the resource (an employee name, for example).
In the latter case, you must use the LENGTH option.

Exception Conditions
INVREQ

occurs in any of the following situations:
v The MAXLIFETIME option is set with an incorrect CVDA.

Chapter 32. Application programming commands - reference 351

Default action: terminate the task abnormally.

LENGERR
RESP2 values:

1 The value you specified for the LENGTH option is outside the range 1
through 255.

 Default action: terminate the task abnormally.

Examples
The following examples show how to dequeue from a resource:

DUMP TRANSACTION
Request a transaction dump.

DUMP TRANSACTION

�� DUMP TRANSACTION DUMPCODE (name) ��

Condition: INVREQ

Description
DUMP or DUMP TRANSACTION dumps all of the main storage areas related to a
task.

Note: The TRANSACTION keyword is not necessary on this command. For
compatibility purposes both EXEC CICS DUMP and EXEC CICS DUMP
TRANSACTION are accepted.

See “Dump” on page 112 for more information.

Options
DUMPCODE(name)

specifies a name (1–4 characters) that identifies the dump. The name can be up
to 4 characters long, must not contain any leading or embedded blanks, and
must not start with “A”, which is reserved for CICS.

Exception Conditions
INVREQ

RESP2 values:

13 An incorrect DUMPCODE is specified. DUMPCODE contains
unprintable characters, or leading or imbedded blanks.

EXEC CICS DEQ
 RESOURCE(RESNAME)

EXEC CICS DEQ
 RESOURCE(SOCSECNO)
 LENGTH(8)

352 CICS for iSeries Application Programming Guide V5

Default action: terminate the task abnormally.

Examples
The following example shows how to request a dump of all the task-related
storage areas:

ENDBR
End a browse on a file on a local or a remote system.

��

ENDBR
 (1)

FILE

(

name

)

REQID

(

data-value

)

�

�
SYSID

(

name

)

 ��

Notes:

1 DATASET is also accepted, but FILE is the preferred term (see “DATASET
option” on page 311).

Conditions: FILENOTFOUND, ILLOGIC, INVREQ, ISCINVREQ, NOTAUTH,
SYSIDERR

Description
You must always issue an ENDBR command before performing any update
operations on the same file (READ UPDATE, DELETE with RIDFLD, or WRITE),
and before a syncpoint. You need to issue ENDBR only after a successful STARTBR
command.

Refer to Chapter 10, “File control,” on page 115 for more information.

Options
FILE(name)

specifies the name of the file being browsed. The name must be alphanumeric,
up to 8 characters long, and must have been defined in the file control table
(FCT) unless the SYSID option specifies a remote system.

 If a nonlocal SYSID is specified, the underlying file is assumed to be on a
remote system irrespective of whether the name is defined in the local FCT.
Otherwise, the FCT entry is used to determine whether the underlying file is
on a local or a remote system.

REQID(data-value)
specifies as a halfword binary value a unique request identifier for the browse;
it is used to control multiple browse operations on a file. If this option is not
specified, a default value of zero is assumed.

EXEC CICS DUMP TRANSACTION
 DUMPCODE(’name’) ...

Chapter 32. Application programming commands - reference 353

SYSID(name)
specifies the name of the system to which the request is directed. The name
can be up to 4 characters long.

Exception Conditions

Note: RESP2 values are not set for files that are on remote systems.

FILENOTFOUND
RESP2 values:

1 The name referred to in the FILE option cannot be found in the FCT.

 Default action: Terminate the task abnormally.

ILLOGIC
RESP2 values:

110 There is an error that does not fall within one of the other CICS
response categories. (Further information is available in the EIBRCODE
field; refer to Appendix A, “EXEC interface block,” on page 529 for
details.)

 Default action: Terminate the task abnormally.

INVREQ
RESP2 values:

35 The ENDBR command is issued for a file that has not had a successful
STARTBR command previously issued for it.

 Default action: Terminate the task abnormally.

ISCINVREQ
RESP2 values:

70 The remote system indicates a failure that does not correspond to a
known condition.

 Default action: Terminate the task abnormally.

NOTAUTH
RESP2 values:

101 A resource security check has failed on FILE(name).

 Default action: Terminate the task abnormally.

SYSIDERR
RESP2 values:

130 The SYSID option specifies either a name that is not defined in the
terminal control system table (TCS), or a system to which the link is
closed.

 Default action: Terminate the task abnormally.

354 CICS for iSeries Application Programming Guide V5

ENQ
Schedule use of a resource by a task (enqueue).

�� ENQ RESOURCE (data-area)
LENGTH

(

data-value

)

 �

�
 LUW

MAXLIFETIME

(

cvda

)

TASK

NOSUSPEND

��

Conditions: ENQBUSY, LENGERR, INVREQ

Description
ENQ causes further execution of the task issuing the ENQ command to be
synchronized with the availability of the specified resource; control is returned to
the task when the resource is available.

A resource in the context of this command is any string of 1–255 bytes, established
by in-house standards, to protect against conflicting actions between tasks, or to
cause single threading within a program.

If a task enqueues on a resource but does not dequeue from it, CICS automatically
releases the resource during syncpoint processing or when the task is terminated.
Option LUW on MAXLIFETIME forces the dequeue at the end of a logical unit of
work (LUW). Option TASK on MAXLIFETIME forces the dequeue at the end of a
task. If there are several LUWs in a task, the enqueue carries over the LUWs.

If more than one ENQ command is issued for the same resource by a given task,
the resource remains owned by that task until the task issues a matching number
of DEQ commands.

The resource to be enqueued on must be identified by one of the following
methods:
v Specifying a data area that is the resource. It is the location (address) of the data

area in storage that matters, not its contents.
v Specifying a data area that contains a unique argument (for example, an

employee name) that represents the resource. It is the contents of the data value
that matters, not its location.

If a resource is not available when ENQUEUED, the application program is
suspended until it becomes available. However, if the NOSUSPEND option has
been specified and the resource is unavailable, the ENQBUSY condition is raised,
as it is also raised if you have an active HANDLE condition. This allows the
application program to handle the case of resource unavailability (by HANDLE
CONDITION ENQBUSY) without waiting for the resource to become available.

See Chapter 19, “Task control,” on page 197 for more information.

Options
LENGTH(data-value)

specifies as a halfword binary value the length of the resource to be enqueued
on. The value must be in the range 1 through 255; otherwise, the LENGERR

Chapter 32. Application programming commands - reference 355

condition occurs. If the LENGTH option is specified in an ENQ command, it
must also be specified in the DEQ command for that resource, and the values
of these options must be the same. You must specify LENGTH when using the
method that specifies a data value containing a unique argument, but not for
the method that specifies a data area as the resource. It is the presence or
absence of LENGTH that tells CICS which method you are using.

MAXLIFETIME(cvda)
specifies the duration of the ENQ to be automatically released by CICS. CVDA
values are:

LUW The duration of the ENQ is a logical unit of work. Examples are a
syncpoint rollback or syncpoint, if the application does not issue a
DEQ before the LUW ends. This is the default value.

TASK The duration of the ENQ is a task. The enqueue carries over the LUWs
within the task. Use MAXLIFETIME(TASK) with great care because
other tasks issuing ENQ commands on the same resource could be
suspended until the end of this task.

 There are two ways to code this option.
v You can assign a cvda value with the translator routine DFHVALUE. This

allows you to change a cvda value in the program. For example:

v If the required action is always the same, you can declare the value directly.
For example:

NOSUSPEND
specifies that the application program is not to be suspended if the ENQBUSY
condition occurs.

RESOURCE(data-area)
identifies the resource to be enqueued on by:
v Specifying an area whose address represents the resource.
v Specifying a variable that contains the resource (an employee name, for

example). In this case, you must use the LENGTH option.

Exception Conditions
ENQBUSY

occurs when an ENQ command specifies a resource that is unavailable and the
NOSUSPEND option is specified, or there is an active HANDLE CONDITION
ENQBUSY.

 Default action: wait for the resource to become available.

MOVE DFHVALUE(LUW) TO AREA-A
EXEC CICS ENQ RESOURCE(RESNAME)
 MAXLIFETIME(AREA-A)

EXEC CICS ENQ RESOURCE(RESNAME) LUW

or

EXEC CICS ENQ RESOURCE(RESNAME) TASK

356 CICS for iSeries Application Programming Guide V5

INVREQ
RESP2 values: CVDA values are:

2 The MAXLIFETIME option is set with an incorrect CVDA.

 Default action: terminate the task abnormally.

LENGERR
RESP2 values:

1 The value specified for the LENGTH option is outside the range 1
through 255.

 Default action: terminate the task abnormally.

Examples
Two tasks, enqueuing on the same resource and specifying a data area that is the
resource, must refer to the same location in storage. They could both, for example,
refer to the same location in the CWA.

Two tasks, enqueuing on the same resource and specifying a data area that
contains a unique argument, can refer to the same location or to different locations,
but the contents of the locations must be the same. The length must be supplied in
the LENGTH option. For example, if you define the resource EMPNAME to be the
name of an employee, you could use the ENQ command as follows:

ENTER TRACENUM
Write a trace entry.

Description
ENTER TRACENUM writes a trace entry.

For information about the trace entry format, see CICS/400 Problem Determination.

See “Trace” on page 111 for further information about this command.

EXEC CICS ENQ
 RESOURCE(RESNAME)

EXEC CICS ENQ
 RESOURCE(EMPNAME)
 LENGTH(8) ...

�� ENTER TRACENUM (data-value)
FROM

(

data-area

)

FROMLENGTH

(

data-area

)

 �

�
RESOURCE

(

name

)

 ��

Conditions: INVREQ, LENGERR

Chapter 32. Application programming commands - reference 357

Options
FROM(data-area)

specifies a data area whose contents are to be entered into the data field of the
trace entry. If you omit the FROM option, two fullwords of binary zeros are
supplied.

FROMLENGTH(data-area)
specifies a halfword binary data area containing the length of the trace data.
The value must be in the range 0 through 4000 bytes. If FROMLENGTH is not
specified, a length of 8 bytes is assumed.

RESOURCE(name)
specifies an 8-character name to be entered into the resource field of the trace
entry.

TRACENUM(data-value)
specifies as a halfword binary value the trace identifier for a user trace entry.
The value must be in the range 0 through 199.

Exception Conditions
INVREQ

RESP2 values:

1 TRACENUM is outside the range 0 through 199.

2 There is no valid trace destination.

3 The user trace master flag is set OFF.

 Default action: Terminate the task abnormally.

LENGERR
occurs if FROMLENGTH is outside the range 0 through 4000.

 Default action: Terminate the task abnormally.

Examples
The following example shows how to specify that a user trace entry is to be
produced:

EXEC CICS ENTER TRACENUM(123)
 FROM(MSG) ...

�� EXTRACT ATTRIBUTES
CONVID

(

name

)

 STATE (cvda) ��

Conditions: INVREQ, NOTALLOC

358 CICS for iSeries Application Programming Guide V5

EXTRACT ATTRIBUTES (APPC)
Obtain the state of the APPC conversation.

Description
EXTRACT ATTRIBUTES extracts conversation state information for APPC mapped
conversations.

Options
CONVID(name)

identifies the conversation to which the command relates. The 4-character
name identifies the token returned by a previously executed ALLOCATE
command in EIBRSRCE in the EIB.

 By default, the principal facility is assumed.

STATE(cvda)
gets the state of the transaction program.

 For a complete list of the CVDA values that can be returned on APPC
commands and for information about receiving and testing these values, see
“CICS-value data areas (CVDAs)” on page 309.

Exception Conditions
INVREQ

RESP2 values:

200 A distributed program link server application explicitly, or implicitly
by default, specified the function-shipping session (its principal facility)
on the CONVID option.

 also occurs (RESP2 not set) in any of the following situations:
v The CONVID value was obtained by an ASSIGN FACILITY command.

However, the principal facility is not an APPC conversation.

Default action: terminate the task abnormally.

NOTALLOC
occurs if the specified CONVID value does not relate to a conversation owned
by the application.

 Default action: terminate the task abnormally.

�� EXTRACT ATTRIBUTES
CONVID

(

name

)

 STATE (cvda) ��

Conditions: INVREQ, NOTALLOC

Chapter 32. Application programming commands - reference 359

EXTRACT PROCESS
Retrieve values from APPC conversation attach header.

Description
EXTRACT PROCESS lets an application program access conversation-related data,
specified to CICS when the program is attached. The attach receiver does not have
to execute an EXTRACT PROCESS command unless it requires this information.

The EXTRACT PROCESS command is valid only on an APPC conversation that is
the principal facility for the task. See part 3 of CICS for iSeries Intercommunication
for more information.

Options
CONVID(name)

identifies the conversation to which the command relates. The 4-character
name identifies the token representing the principal session (EIBTRMID).

 If this option is omitted, the principal facility for the task is used by default.

MAXPROCLEN(data-value)
specifies the buffer length of PROCNAME. If MAXPROCLEN is not specified,
the buffer is assumed to have 32 bytes.

PROCLENGTH(data-area)
specifies a halfword data area that is set by CICS to the length of the process
name. If PROCNAME is specified, this option must be specified.

PROCNAME(data-area)
specifies the data area to receive the process name specified by the remote
system that caused the task to start. The data area can be 1–64 bytes long. The
process name is padded on the right with blanks if it is too short. The
PROCNAME data area should not be shorter than the MAXPROCLEN value.

SYNCLEVEL(data-area)
specifies a halfword data area that is set by CICS to the SYNCLEVEL value.
For further information about synchronization levels, see the CICS Family:
Interproduct Communication book and the CICS for iSeries Intercommunication
book.

Exception Conditions
INVREQ

RESP2 values:

�� EXTRACT PROCESS
PROCNAME

(

data-area

)

 �

�
PROCLENGTH

(

data-area

)

MAXPROCLEN

(

data-value

)

CONVID

(

name

)

 �

�
SYNCLEVEL

(

data-area

)

 ��

Conditions: INVREQ, LENGERR, NOTALLOC

360 CICS for iSeries Application Programming Guide V5

200 A distributed program link server application specified the
function-shipping session (its principal facility) on the CONVID option.

 also occurs (RESP2 not set) in any of the following situations:
v EXTRACT PROCESS has been used on a conversation other than APPC

mapped.
v EXTRACT PROCESS has been used on a conversation that was not started

by input from the network and whose principal facility is not an APPC
session.

v The CONVID value was obtained by an ASSIGN FACILITY command.
However, the principal facility is not an APPC session.

Default action: terminate the task abnormally.

LENGERR
occurs if the actual length of PROCNAME is greater than MAXPROCLEN, or
greater than 32 bytes if MAXPROCLEN is not specified.

 Default action: terminate the task abnormally.

NOTALLOC
occurs if the specified CONVID value specified does not relate to a
conversation owned by the application.

 Default action: terminate the task abnormally.

FORMATTIME
Transform absolute date and time into a specified format.

�� FORMATTIME ABSTIME (data-area)
DATE

(

data-area

)

DATEFORM

(

data-area

)

 �

�
DATESEP

(

data-value

)

DAYCOUNT

(

data-area

)

DAYOFMONTH

(

data-area

)

 �

�
DAYOFWEEK

(

data-area

)

DDMMYY

(

data-area

)

DDMMYYYY

(

data-area

)

 �

�
MMDDYY

(

data-area

)

MMDDYYYY

(

data-area

)

MONTHOFYEAR

(

data-area

)

 �

�
TIME

(

data-area

)

TIMESEP

(

data-value

)

YEAR

(

data-area

)

 �

�
YYDDD

(

data-area

)

YYYYDDD

(

data-area

)

YYDDMM

(

data-area

)

 �

�
YYYYDDMM

(

data-area

)

YYMMDD

(

data-area

)

YYYYMMDD

(

data-area

)

 ��

Condition: INVREQ

Chapter 32. Application programming commands - reference 361

Description
FORMATTIME transforms the absolute date and time into any of a variety of
formats. Normally, the ABSTIME argument is the value returned by an ASKTIME
ABSTIME command.

To obtain an elapsed time in a particular format, the ABSTIME data value can be
the difference between two values returned by ASKTIME, and options such as
DAYCOUNT(d) and TIME(t) can be specified.

Options
ABSTIME(data-area)

specifies the data value for the time, in packed decimal, since 00:00 hours on 1
January 1900 (in milliseconds rounded to the nearest hundredth of a second)
that is to be converted to an alternative format.

 The format of the parameter is:

DATE(data-area)
specifies the variable that is to receive the date in the format specified in the
DATFORM system initialization parameter. The returned value is in 8-character
format, and a separator is present or not depending on the DATESEP option.
You should normally use this option only when a date is needed for output
purposes. Where a date is needed for analysis, you should request the date in
explicit form, for example, using the MMDDYY option.

DATEFORM(data-area)
specifies the format of the installation-defined date. CICS returns YYMMDD,
DDMMYY, or MMDDYY (six characters) according to the DATFORM system
initialization parameter.

DATESEP(data-value)
specifies the character to be inserted as the separator between the year and the
month, and between the day and the month; or between the year and the day
if form YYDDD or YYYYDDD is specified.

 If you omit this option, no separator is supplied. If you omit “data-value”, a
slash (/) is assumed as the separator.

DAYCOUNT(data-area)
returns the number of days since 1 January 1900 (day 1), as a fullword binary
number. This is useful if you need to compare the current date with a previous
date that has, for example, been stored in a file.

DAYOFMONTH(data-area)
returns the number of the day in the month as a fullword binary number.

DAYOFWEEK(data-area)
returns the relative day number of the week as a fullword binary number:
Sunday=0, Saturday=6. This number can be converted to a textual form of day
in any language.

DDMMYY(data-area)
specifies the 8-character user field where CICS is to return the date, in
day/month/year format (for example, 21/10/95).

COBOL: PIC S9(15) COMP-3
ILE C: char abs_time[8];

362 CICS for iSeries Application Programming Guide V5

DDMMYYYY(data-area)
specifies the 10-character user field where CICS is to return the date, in
day/month/year format (for example, 21/10/1995).

MMDDYY(data-area)
specifies the 8-character user field in which CICS is to return the date, in
month/day/year format (for example, 10/21/95).

MMDDYYYY(data-area)
specifies the 10-character user field in which CICS is to return the date, in
month/day/year format (for example, 10/21/1995).

MONTHOFYEAR(data-area)
“data-area” is set to the relative month number of the year as a fullword
binary number (January=1, December=12). You can convert this number, in
your application program, to the name of the month in any language.

TIME(data-area)
“data-area” is set as an 8-character field to the current 24-hour clock time in
the form hh:mm:ss, where the separator is specified by the TIMESEP option.

TIMESEP(data-value)
specifies the character to be used as the separator in the returned time. If you
omit this option, no separator is assumed and six bytes are returned in an
8-character field. If you omit the “data-value”, a colon (:) is used as a separator.

YEAR(data-area)
specifies the full 4-figure number of the year as a fullword binary number (for
example, 1995, 2001).

YYDDD(data-area)
specifies the 6-character user field where CICS is to return the date, in
year/day format (for example, 95/301).

YYYYDDD(data-area)
specifies the 8-character user field where CICS is to return the date, in
year/day format (for example, 1995/301).

YYDDMM(data-area)
specifies the 8-character user field where CICS is to return the date, in
year/day/month format (for example, 95/30/10).

YYYYDDMM(data-area)
specifies the 10-character user field where CICS is to return the date, in
year/day/month format (for example, 1995/30/10).

YYMMDD(data-area)
specifies the 8-character user field where CICS is to return the date, in
year/month/day format (for example, 95/10/21).

YYYYMMDD(data-area)
specifies the 10-character user field where CICS is to return the date, in
year/month/day format (for example, 1995/10/21).

Exception Conditions
INVREQ

RESP2 values:

1 The ABSTIME option is in an incorrect form.

 also occurs (RESP2 not set) in any of the following situations:

Chapter 32. Application programming commands - reference 363

v The FORMATTIME command is not valid for processing by CICS.

Default action: terminate the task abnormally.

Examples
The following example shows the effect of some of the options of the command.
Let “utime” contain the value 002837962864828 in milliseconds.

This gives the values 06-12-89 for “date” and 19:01:05 for “time”.

FREE (APPC)
Return an APPC mapped session to CICS.

Description
FREE returns an APPC session to CICS when a transaction owning it no longer
requires it. The session can then be allocated for use by other transactions.

If you omit CONVID, the principal facility is freed. Facilities not freed explicitly
are freed by CICS when the task terminates.

If you are running EDF, and the transaction frees the principal facility, EDF is
terminated.

See part 3 of CICS for iSeries Intercommunication for further information.

Options
CONVID(name)

identifies the APPC mapped session to be freed. The 4-character name
identifies the token returned by a previously executed ALLOCATE command
in the EIBRSRCE field of the EIB.

 If this option is omitted, the principal facility is assumed.

STATE(cvda)
gets the state of the current conversation. The STATE option on a FREE
command returns a cvda code of 00 if there is no longer an active
conversation. For a complete list of other (nonzero) CVDA values that can be
returned on APPC commands and for information about receiving and testing
these values, see “CICS-value data areas (CVDAs)” on page 309.

EXEC CICS ASKTIME ABSTIME(utime)
EXEC CICS FORMATTIME ABSTIME(utime)
 DATESEP(’-’) DDMMYY(date)
 TIME(time) TIMESEP

�� FREE
CONVID

(

name

)

STATE

(

cvda

)

 ��

Conditions: INVREQ, NOTALLOC

364 CICS for iSeries Application Programming Guide V5

Exception Conditions
INVREQ

RESP2 values:

200 A distributed program link server application specified the
function-shipping session (its principal facility) on the CONVID option.

 also occurs (RESP2 not set) in any of the following situations:
v The CONVID option is omitted and the principal facility is not an APPC

session.

Default action: terminate the task abnormally.

NOTALLOC
occurs if the specified CONVID value does not relate to a conversation owned
by the application.

 Default action: terminate the task abnormally.

FREEMAIN
Release main storage acquired by a GETMAIN command.

Description
FREEMAIN releases main storage previously acquired by a GETMAIN command
issued by the application. If the task that acquired the storage does not release it,
CICS releases it at task end, unless the GETMAIN command specified the
SHARED option. In this case, the storage remains allocated until another task
issues a FREEMAIN to release it.

Refer to Chapter 22, “Storage control,” on page 213 for more information.

Options
DATA(data-area)

specifies the location of the main storage to be released.

 This storage must have been acquired by a previous GETMAIN command.

 The length of storage released is the length obtained by the GETMAIN and not
necessarily the length of the data area.

 Note that, in COBOL, when using the DATA option, you must specify a data
area located at the start of the storage that was acquired by the GETMAIN
command; you do not specify the pointer reference that was set to the address
of the acquired storage. So in COBOL/400 it must be a data name.

Exception Conditions
INVREQ

RESP2 values:

�� FREEMAIN DATA (data-area) ��

Condition:
INVREQ

Chapter 32. Application programming commands - reference 365

1 The storage specified in the DATA option is not addressed by a pointer
returned by a GETMAIN command.

 Default action: Terminate the task abnormally.

Examples
Here are some examples of the use of the FREEMAIN command:

COBOL

C

DATA DIVISION.
WORKING-STORAGE SECTION.
 01 WORKING-STORAGE.
 02 AREA-POINTER USAGE IS POINTER.

LINKAGE SECTION.
 01 AREA PIC X(100).

PROCEDURE DIVISION.

 EXEC CICS GETMAIN SET(AREA-POINTER)
 LENGTH(100)
 END-EXEC.
 SET ADDRESS OF AREA TO AREA-POINTER.
 .
 .
 EXEC CICS FREEMAIN DATA(AREA)
 END-EXEC.
 .
 .
 EXEC CICS RETURN
 END-EXEC.

main()
{
 char *buffer;

 EXEC CICS GETMAIN
 SET(buffer)
 LENGTH(100);

 buffer[2] = ’a’;
 .
 .
 .
 EXEC CICS FREEMAIN DATA(buffer);

 EXEC CICS RETURN;
}

366 CICS for iSeries Application Programming Guide V5

GETMAIN
Get main storage.

Description
GETMAIN gets a main storage area of the size indicated by the LENGTH or
FLENGTH option. The address of the area is returned in the pointer reference
supplied in the SET option.

CICS/400 always allocates storage on pointer boundaries, and rounds the
requested length up to the nearest pointer multiple. Because there is no default
initialization, you must use the INITIMG option if you require the storage to be
initialized to a specific bit configuration.

Storage acquired by a task is accessible until it is freed.

When the SHARED option is not specified on the GETMAIN command non-shared
storage is allocated from the task’s private storage space. Non-shared storage is
freed either by the owning task explicitly issuing a FREEMAIN command or by
CICS implicitly freeing the storage at task termination.

Shared storage, on the other hand, is allocated from a common storage space
shared between all tasks in the control region. Shared storage obtained by a
GETMAIN command with the SHARED option must be explicitly freed by a
FREEMAIN command; it is not freed at task termination. The corresponding
FREEMAIN command may be issued by any task. This means that you can use
shared storage in task-to-task communication.

Refer to Chapter 22, “Storage control,” on page 213 for more information.

Options
ANY

retained for compatibility with migrated programs. It is accepted, but ignored,
by CICS/400.

BELOW
retained for compatibility with migrated programs. It is accepted, but ignored,
by CICS/400.

FLENGTH(data-value)
specifies as a fullword binary value the number of bytes of storage required.

�� GETMAIN SET (ptr-ref) LENGTH (data-value)
FLENGTH

(

data-value

)

(1)

BELOW

(1)

ANY

 �

�
INITIMG

(

data-value

)

SHARED

NOSUSPEND

 ��

Notes:

1 Ignored by CICS/400.

Conditions: LENGERR, NOSTG

Chapter 32. Application programming commands - reference 367

The maximum length that you can specify is the size of the storage space from
which the request is satisfied or 65 488 bytes, whichever is smaller.

 If the requested length is greater than the storage space, the LENGERR
condition occurs. If it is not greater than the storage space but is more than is
available, the NOSTG condition occurs.

INITIMG(data-value)
specifies an optional 1-byte initialization value. If you specify INITIMG, CICS
sets every byte of the acquired storage to the bit string you provide. Otherwise,
CICS does not initialize the storage. In COBOL programs, you must use a data
area rather than a data value to define the initialization bit string.

LENGTH(data-value)
specifies as a signed halfword binary value the number of bytes of storage
required. The maximum length you can specify is 32KB. If you need more than
32KB of storage, use the FLENGTH option.

 If the requested length is zero, the LENGERR condition occurs. If it is greater
than the amount of storage available, the NOSTG condition occurs.

NOSUSPEND
changes the CICS default action for the NOSTG condition, causing CICS to
return control to the task without the requested storage instead of suspending
the task until the storage becomes available.

SET(ptr-ref)
specifies a pointer reference to be set to the address of the acquired main
storage. The pointer is set to the first usable byte of the free space (not to the
CICS control information that precedes it).

SHARED
prevents the automatic release of storage obtained by a GETMAIN command
at the end of the task that requested it. This enables task-to-task
communication. An area obtained with SHARED is not released until a
corresponding FREEMAIN is issued, by the requesting task or another task.

Exception Conditions
LENGERR

RESP2 values:

1 The FLENGTH value is less than 1 or greater than the length of the
free spaces from which the request can be satisfied.

v The LENGTH value is zero.

 Default action: Terminate the task abnormally.

NOSTG
RESP2 values:

2 More storage is requested than is currently available.

 Default action: When SHARED storage is requested, either suspend the task
until enough main storage becomes free to satisfy the request or, if the
NOSUSPEND option is specified, return control to the task without the
requested storage. Suspended tasks may subsequently terminate abnormally if
purged (abend code ASCP) or under deadlock timeout control (abend code
AKCS).

368 CICS for iSeries Application Programming Guide V5

When non-shared storage is requested, the task is terminated abnormally. This
is because non-shared storage is a private resource and none would become
available even if the task were suspended.

Examples
The following example shows how to get a 1024-byte area of main storage and
initialize it to spaces:

You must define BLANK in your program as the character representing a space.

HANDLE ABEND
Handle an abnormal termination exit

Description
The HANDLE ABEND command is used to activate, cancel, or reactivate an exit
for abnormal termination processing. You can suspend (and later restore) the
command by means of the PUSH HANDLE and POP HANDLE commands as
described in “How to use EXEC CICS PUSH HANDLE and POP HANDLE
commands” on page 95.

The HANDLE ABEND command cannot intercept abends resulting from AS/400
machine event errors.

For COBOL programs, when the label specified in a HANDLE ABEND LABEL
command is to receive control, control is returned to the HANDLE ABEND
command and a branch occurs to the specified label.

The effect of a HANDLE ABEND command is ended when the issuing program
terminates by issuing an EXEC CICS RETURN command.

The effect of a HANDLE ABEND command is suspended when the issuing
program transfers control by issuing an EXEC CICS LINK command, and is
restored when control is returned from the linked program.

A HANDLE ABEND PROGRAM command remains in effect when the issuing
program transfers control by issuing an EXEC CICS XCTL command. The scope of
the HANDLE command has the same relation to the new program as it formerly
had to the issuing program. Note that this does not apply to HANDLE ABEND
LABEL commands.

EXEC CICS GETMAIN SET(PTR)
 LENGTH(1024) INITIMG(BLANK) ...

��

HANDLE ABEND
 CANCEL

PROGRAM

(

name

)

LABEL

(

label

)

RESET

��

Conditions: NOTAUTH, PGMIDERR

Chapter 32. Application programming commands - reference 369

Refer to Chapter 9, “Abnormal termination recovery,” on page 109 for more
information.

Options
CANCEL

specifies that a previously established exit at the logical level of the application
program in control is to be canceled.

LABEL(label)
specifies the program label of an abnormal termination exit routine to receive
control if the task is terminated abnormally.

 The LABEL option can be used in COBOL programs only.

PROGRAM(name)
specifies the name of an abnormal termination exit program to receive control
if the task is terminated abnormally. The name must be alphanumeric, up to 8
characters long, and must have been defined in the processing program table
(PPT) as a local program.

 The program named in this option should always terminate with an abend,
except when handling abends generated as a result of application program
logic.

RESET
specifies that an exit canceled by a HANDLE ABEND CANCEL command, or
by CICS, is to be reactivated.

 This option is usually issued by an abnormal termination exit routine.

Exception Conditions
NOTAUTH

occurs if a resource security check has failed on PROGRAM(name).

 Default action: Terminate the task abnormally.

PGMIDERR
RESP2 values:

1 The program does not have an installed resource definition.

2 The program is disabled.

9 The program is defined as remote.

 Default action: Terminate the task abnormally.

Examples
The following example shows how to establish a program as an exit:

EXEC CICS HANDLE ABEND
 PROGRAM(’EXITPGM’)
 END-EXEC.

370 CICS for iSeries Application Programming Guide V5

HANDLE AID
Handle attention identifiers (AIDs).

Description
HANDLE AID is used to specify the label to which control is to be passed when
an AID is received from a display device. Control is passed after the input
command is completed; that is, after any data received in addition to the AID has
been passed to the application program.

To cause an AID to be ignored, issue a HANDLE AID command that specifies the
associated option without a label. This deactivates the effect of that option in any
previously-issued HANDLE AID command.

No more than 16 options are allowed in the same command.

The ILE C language does not support HANDLE AID.

The options that can be specified are:
v ANYKEY (any PA key, any PF key, or the CLEAR key, but not ENTER)
v CLEAR (for the key of that name)
v ENTER (for the key of that name)
v PA1, PA2, or PA3 (any of the program access keys)
v PF1 through PF24 (any of the program function keys)

If a task is initiated from a terminal by means of an AID, the first RECEIVE
command in the task does not read from the terminal but copies only the input
buffer (even if the length of the data is zero) so that control may be passed by
means of a HANDLE AID command for that AID.

For the standard attention identifier list (DFHAID), and the standard attribute and
printer control character list (DFHBMSCA), see Appendix B, “BMS-related
constants,” on page 545.

See “Handling attention identifiers (EXEC CICS HANDLE AID)” on page 173 for
more information.

��

HANDLE AID

�

ANYKEY

(

label

)

CLEAR

(

label

)

ENTER

(

label

)

PA1-PA3

(

label

)

PF1-PF24

(

label

)

��

Condition: INVREQ

Chapter 32. Application programming commands - reference 371

Exception Conditions
INVREQ

RESP2 values:

200 The command was issued by a DPL server program.

 Default action: terminate the task abnormally.

Examples
The following example shows a HANDLE AID command that specifies one label
for the PA1 key; and a second label for CLEAR, PA2, PA3, and all the PF keys
except PF10. If a PF10 AID is received or ENTER is pressed, control returns to the
application program at the instruction immediately following the input command.

HANDLE CONDITION
Handle conditions.

Description
HANDLE CONDITION is not supported for C programs.

For information about the conditions, see Appendix A, “EXEC interface block,” on
page 529.

You use this HANDLE CONDITION to specify the label to which control is to be
passed if a condition occurs. You must include the name of the condition and,
optionally, a label to which control is to be passed if the condition occurs. You
must ensure that the HANDLE CONDITION command is executed before the
command that may give rise to the associated condition.

You cannot include more than sixteen conditions in the same command; the
conditions must be separated by at least one space. You may specify additional
conditions in further HANDLE CONDITION commands.

The HANDLE CONDITION command for a given condition applies only to the
program in which it is specified. The HANDLE CONDITION command:
v Remains active while the program is running, or until:

– An IGNORE CONDITION command for the same condition is encountered,
in which case the HANDLE CONDITION command is overridden

– Another HANDLE CONDITION command for the same condition is
encountered, in which case the new command overrides the previous one

v Is temporarily deactivated by the NOHANDLE, RESP, or RESP2 option on a
command

EXEC CICS HANDLE AID PA1(LAB1)
 ANYKEY(LAB2) PF10

��

HANDLE CONDITION

�

condition

(

label

)

��

372 CICS for iSeries Application Programming Guide V5

If a condition occurs that was not specified in a HANDLE CONDITION or
IGNORE CONDITION command, the default action for the condition is taken
unless that action is to terminate the task abnormally, in which case the ERROR
condition occurs. If the ERROR condition was specified in a HANDLE
CONDITION or IGNORE CONDITION command, the action (possibly none) for
ERROR is taken. You can use the ERROR condition in a HANDLE CONDITION
list to specify that all other errors pass control to the same label.

Refer to Chapter 6, “Dealing with exception conditions,” on page 87 for more
information.

Options
condition(label)

specifies the name of the condition; “label” specifies the program label to
which control is to be passed if the condition occurs.

 If you omit “label”, any HANDLE CONDITION command in effect for that
condition is deactivated, and the default action for the condition is taken if the
condition occurs.

Examples
The following example shows how to handle the conditions, including DUPREC
and LENGERR, that can occur when you use a WRITE command to add a record
to a file. Suppose that you want DUPREC to be handled as a special case; that you
want standard system action (that is, to terminate the task abnormally) to be taken
for LENGERR; and that you want all other errors to be handled by the error
routine ERRHANDL. You would code:

IGNORE CONDITION
Ignore conditions.

Description
IGNORE CONDITION is not supported for ILE C programs.

For information about the conditions, see Appendix A, “EXEC interface block,” on
page 529.

You use IGNORE CONDITION to specify that no action is to be taken if a
condition occurs (that is, control returns to the instruction following the command
that has failed to execute, and the EIB is set). Execution of a command could result
in several conditions being raised. CICS checks these in a predetermined order and
only the first one that is not ignored (by your IGNORE CONDITION command) is
passed to your application program.

EXEC CICS HANDLE CONDITION
 ERROR(ERRHANDL)
 DUPREC(DUPRTN) LENGERR
END-EXEC.

��

IGNORE CONDITION

�

condition

��

Chapter 32. Application programming commands - reference 373

The IGNORE CONDITION command for a given condition applies only to the
program in which it is specified, and it remains active while the program is being
executed, or until a HANDLE CONDITION command for the same condition is
encountered, in which case the IGNORE CONDITION command is overridden.

You cannot include more than sixteen conditions in the same command; the
conditions must be separated by at least one space. You may specify additional
conditions in further IGNORE CONDITION commands.

Refer to Chapter 6, “Dealing with exception conditions,” on page 87 for more
information.

Options
condition

specifies the name of the condition to be ignored.

ISSUE ABEND
Abend the mapped conversation with an APPC partner.

Description
ISSUE ABEND abnormally ends the conversation. The partner transaction sees the
TERMERR condition. See part 3 of CICS for iSeries Intercommunication for more
information.

Options
CONVID(name)

identifies the conversation to be abended. The 4-character name identifies the
token returned by a previously executed ALLOCATE command in the
EIBRSRCE field of the EIB.

 If this option is omitted, the principal facility for the task is used by default.

STATE(cvda)
gets the state of the current conversation.

 For a complete list of the CVDA values that can be returned on APPC
commands and for information about receiving and testing these values, see
“CICS-value data areas (CVDAs)” on page 309.

Exception Conditions
INVREQ

RESP2 values:

200 A distributed program link server application specified the
function-shipping session (its principal facility) on the CONVID option.

 also occurs (RESP2 not set) in any of the following situations:

�� ISSUE ABEND
CONVID(name)

STATE(cvda)

 ��

Conditions: INVREQ, NOTALLOC, TERMERR

374 CICS for iSeries Application Programming Guide V5

v The CONVID value was obtained by an ASSIGN FACILITY command.
However, the principal facility is not an APPC conversation.

Default action: terminate the task abnormally.

NOTALLOC
occurs if the specified CONVID value relates to a conversation that is not
owned by the application.

 Default action: terminate the task abnormally.

TERMERR
occurs for a session-related error. Any action on that conversation other than a
FREE command causes an ATCV abend.

 Default action: terminate the task abnormally with abend code ATNI.

ISSUE CONFIRMATION
Issue a positive response to a SEND CONFIRM on an APPC mapped conversation.

Description
ISSUE CONFIRMATION allows an application program to respond positively
when the CONFIRM option has been specified on a SEND command executed by
a partner transaction. See part 3 of CICS for iSeries Intercommunication for more
information.

Options
CONVID(name)

identifies the conversation in which to send the response. The 4-character name
identifies the token returned by a previously executed ALLOCATE command
in the EIBRSRCE field of the EIB. If this option is omitted, the principal facility
for the task is used by default.

STATE(cvda)
gets the state of the current conversation.

 For a complete list of the CVDA values that can be returned on APPC
commands and for information about receiving and testing these values, see
“CICS-value data areas (CVDAs)” on page 309.

Exception Conditions
INVREQ

RESP2 values:

200 A distributed program link server application specified the
function-shipping session on the CONVID option.

 also occurs (RESP2 not set) in any of the following situations:
v ISSUE CONFIRMATION is used on a conversation that is sync level 0.

�� ISSUE CONFIRMATION
CONVID

(

name

)

STATE

(

cvda

)

 ��

Conditions: INVREQ, NOTALLOC, TERMERR

Chapter 32. Application programming commands - reference 375

v The CONVID value was obtained by an ASSIGN FACILITY command.
However, the principal facility is not an APPC conversation.

Default action: terminate the task abnormally.

NOTALLOC
occurs if the specified CONVID value relates to a conversation that is not
owned by the application.

 Default action: terminate the task abnormally.

TERMERR
occurs for a session-related error. Any action on that conversation other than a
FREE causes an ATCV abend.

 Default action: terminate the task abnormally with abend code ATNI.

ISSUE ERASEAUP
Erase all unprotected fields of a 3270 buffer.

Description
ISSUE ERASEAUP erases unprotected fields by:
1. Clearing all unprotected fields to nulls (X'00')
2. Resetting modified data tags in each unprotected field to zero
3. Positioning the cursor to the first unprotected field
4. Restoring the keyboard.

You can use the ISSUE ERASEAUP command for the following types of 3270
logical units:
v 3270-display logical unit
v 3270-printer logical unit

If you issue this command for a 5250 device, results are unpredictable.

Exception Conditions
INVREQ

RESP2 values:

200 The command is issued in a DPL server program.

 Default action: terminate the task abnormally.

TERMERR
occurs if there is a terminal-related error.

 Default action: terminate the task abnormally with abend code ATNI.

ISSUE ERASEAUP

�� ISSUE ERASEAUP ��

Conditions: INVREQ, TERMERR

376 CICS for iSeries Application Programming Guide V5

ISSUE ERROR
Inform APPC mapped conversation partner of error.

Description
ISSUE ERROR allows an application program to inform a process in a connected
APPC system that some program-detected error has occurred. For example, a
remote CICS application is notified by having EIBERR set, with
EIBERRCD=X'0889'. The actions required to recover from the error are the
responsibility of logic contained in both application programs. The application
program can use this command to respond negatively when the CONFIRM option
has been specified on a SEND command executed by a process in a connected
APPC system.

Options
CONVID(name)

identifies the conversation to which the command relates. The 4-character
name identifies either the token returned by a previously executed ALLOCATE
command in EIBRSRCE in the EIB.

 If this option is omitted, the principal facility for the task is used by default.

STATE(cvda)
gets the state of the current conversation. For a complete list of the CVDA
values that can be returned on APPC commands and for information about
receiving and testing these values, see “CICS-value data areas (CVDAs)” on
page 309.

Exception Conditions
INVREQ

RESP2 values:

200 A distributed program link server application specified the
function-shipping session on the CONVID option.

 also occurs (RESP2 not set) in any of the following situations:
v The CONVID value was obtained by an ASSIGN FACILITY command.

However, the principal facility is not an APPC conversation.

Default action: terminate the task abnormally.

NOTALLOC
occurs if the specified CONVID value does not relate to a conversation owned
by the application.

 Default action: terminate the task abnormally.

SIGNAL
occurs when an inbound SIGNAL data-flow control command is received from
a partner transaction. EIBSIG is always set when an inbound signal is received.

�� ISSUE ERROR
CONVID

(

name

)

STATE

(

cvda

)

 ��

Conditions: INVREQ, NOTALLOC, SIGNAL, TERMERR

Chapter 32. Application programming commands - reference 377

Default action: ignore the condition.

TERMERR
occurs for a session-related error. Any action on that conversation other than a
FREE command causes an ATCV abend.

 Default action: terminate the task abnormally with abend code ATNI.

ISSUE PREPARE
Issue the first flow of a syncpoint request on an APPC mapped conversation.

Description
ISSUE PREPARE applies only to distributed transaction processing over APPC
links. It enables a syncpoint initiator to prepare a syncpoint slave for syncpointing
by sending only the first flow (prepare-to-commit) of the syncpoint exchange.
Depending on the reply from the syncpoint slave, the initiator can proceed with
the syncpoint by issuing a SYNCPOINT command, or initiate back-out by issuing a
SYNCPOINT ROLLBACK command.

Options
CONVID(name)

identifies the conversation to which the command relates. The 4-character
name identifies either the token returned by a previously executed ALLOCATE
command in EIBRSRCE in the EIB, or the token representing the principal
facility (returned by a previously executed ASSIGN command).

 If this option is omitted, the principal facility is assumed.

STATE(cvda)
gets the state of the current conversation. The cvda values returned by CICS
are:
 ALLOCATED

 CONFFREE
 CONFRECEIVE

 CONFSEND
 FREE

 PENDFREE
 PENDRECEIVE

 RECEIVE
 ROLLBACK

 SEND
 SYNCFREE

 SYNCRECEIVE
 SYNCSEND

�� ISSUE PREPARE
CONVID

(

name

)

STATE

(

cvda

)

 ��

Conditions: INVREQ, NOTALLOC, TERMERR

378 CICS for iSeries Application Programming Guide V5

Exception Conditions
INVREQ

RESP2 values:

200 A distributed program link server application specified the
function-shipping session (its principal facility) on the CONVID option.

 also occurs (RESP2 not set) in any of the following situations:
v The conversation is not an APPC mapped conversation.
v The conversation state is not valid for the request.
v The sync level of the conversation is not 2.

Default action: terminate the task abnormally.

NOTALLOC
occurs if the CONVID value in the command does not relate to a conversation
that is owned by the application.

 Default action: terminate the task abnormally.

TERMERR
occurs for a session-related error. Any action on that conversation other than a
FREE causes an ATCV abend.

 Default action: terminate the task abnormally with abend code ATNI.

ISSUE SIGNAL (APPC)
Request change of direction from sending transaction on an APPC mapped
conversation.

Description
ISSUE SIGNAL, in a transaction in receive mode, signals to the sending transaction
that a mode change is needed. It raises the SIGNAL condition on the next SEND,
RECEIVE, or CONVERSE command executed in the sending transaction, and a
previously executed HANDLE CONDITION command for this condition can be
used either to take some action, or to ignore the request.

See part 3 of CICS/400 Intercommunication for more information.

Options
CONVID(name)

identifies the conversation to which the command relates. The 4-character
name identifies the token returned by a previously executed ALLOCATE
command in EIBRSRCE in the EIB.

 If this option is omitted, the principal facility for the task is used by default.

STATE(cvda)
gets the state of the current conversation.

�� ISSUE SIGNAL
CONVID

(

name

)

STATE

(

cvda

)

 ��

Conditions: INVREQ, NOTALLOC, TERMERR

Chapter 32. Application programming commands - reference 379

For a complete list of the CVDA values that can be returned on APPC
commands and for information about receiving and testing these values, see
“CICS-value data areas (CVDAs)” on page 309.

Exception Conditions
INVREQ

RESP2 values:

200 A distributed program link server application specified the
function-shipping session (its principal facility) on the CONVID option.

 also occurs (RESP2 not set) in any of the following situations:
v The CONVID value was obtained by an ASSIGN FACILITY command.

However, the principal facility is not an APPC conversation.

Default action: terminate the task abnormally.

NOTALLOC
occurs if the specified CONVID value does not relate to a conversation that is
owned by the application.

 Default action: terminate the task abnormally.

TERMERR
occurs for a session-related error. Any action on that conversation other than a
FREE causes an ATCV abend.

 Default action: terminate the task abnormally with abend code ATNI.

LINK
Link to another program expecting return.

Description
LINK passes control from an application program at one logical level to an
application program at the next lower logical level.

If the linked-to program is not already in main storage, it is loaded. When the
RETURN command is executed in the linked-to program, control is returned to the
program issuing the LINK command at the next sequential executable instruction.

The linked-to program operates independently of the program that issues the
LINK command with regard to handling exception conditions and attention
identifiers. For example, the effects of HANDLE CONDITION commands in a

�� LINK PROGRAM (name) �

�
COMMAREA

(

data-area

)

LENGTH

(

data-value

)

DATALENGTH

(

data-value

)

 �

�
INPUTMSG

(

data-area

)

INPUTMSGLEN

(

data-value

)

SYSID

(

name

)

SYNCONRETURN

TRANSID

(

name

)

 ��

Conditions: INVREQ, LENGERR, NOTAUTH, PGMIDERR, ROLLEDBACK, SYSIDERR, TERMERR

380 CICS for iSeries Application Programming Guide V5

COBOL linking program are not inherited by the linked-to program, but the
original HANDLE CONDITION commands are restored on return to the linking
program. See Figure 39 on page 201 for an illustration of the concept of logical
levels.

You can use the HANDLE ABEND command in COBOL programs to deal with
abnormal terminations in other link levels. See Chapter 9, “Abnormal termination
recovery,” on page 109 for further details about the relationship between the LINK
and HANDLE ABEND commands.

See Chapter 20, “Program control,” on page 199 for more information about
Program Control.
If you specify a remote CICS system name on the SYSID option (with or without
the associated TRANSID and SYNCONRETURN options), the link is known as a
distributed program link (DPL). DPL is also used if the PPT entry specifies a
remote program. In response to a distributed program link, the local CICS/400
system (the client system) ships the link request to the remote system (the server
system). The server system executes the linked-to program (the server program) on
behalf of the program issuing the link request (the client program).

A server program running in the server system is restricted to a DPL subset of the
CICS API. These restrictions relate mainly to terminals and logical units. Briefly,
the server program cannot issue:
v Commands that address the TCTUA (that is, ADDRESS with the TCTUA

option).
v ASSIGN commands with terminal-related options. (See the ASSIGN command

on page 327 for details of the restricted options for CICS/400.)
v Authentication commands (that is, SIGNON and SIGNOFF). These are not

supported by CICS/400.
v Terminal control commands, and APPC commands referring to the principal

facility (see below for further details).
v Batch data interchange commands (not supported by CICS/400).
v BMS commands.
v Syncpoint commands (that is, SYNCPOINT with or without the ROLLBACK

option) unless SYNCONRETURN was specified on the LINK command.

For lists of the APPC, terminal control, and BMS commands supported by
CICS/400, see “Commands by function” on page 319.

APPC commands are restricted only when referring to the principal facility; that is,
when either the CONVID option is omitted on commands that include this option
(all except ALLOCATE) or the CONVID option states explicitly the conversation
identifier of the principal facility (EIBTRMID value). This allows a server program
to initiate a conversation with another system (possibly even back to the client
system, although this requires a separate session).

If a restricted command is issued in a DPL server program, the INVREQ condition
occurs and a RESP2 value of 200 is set. If this condition is not catered for by a
HANDLE CONDITION command, an IGNORE CONDITION command, or the
NOHANDLE option, the server program task terminates abnormally with abend
code ADPL.

For details of the restricted DPL subset of the API, see Figure 38 on page 185.

Chapter 32. Application programming commands - reference 381

Abends in the server program If a DPL server program abends, the abend code is
returned to the client program. If the client program is not written to handle the
abend returned by the server program, the client program abends with the same
abend code returned by the server program.

For more information about DPL, see the Chapter 15, “Intercommunication
considerations,” on page 175.

Options
COMMAREA(data-area)

specifies a communication area that is to be made available to the invoked
program. In this option, a pointer to the data area is passed. In a COBOL
invoked program, you must give this data area the name DFHCOMMAREA.
(See “Passing data to other programs” on page 201.) In a C receiving program,
this data area must be referenced by an EXEC CICS ADDRESS COMMAREA
command.

DATALENGTH(data-value)
specifies as a halfword binary value the length in bytes of a contiguous area of
storage, from the start of the COMMAREA, to be passed to the invoked
program. If the amount of data being passed in a COMMAREA is small but
the COMMAREA itself is large, in the interest of performance you should
specify DATALENGTH so that the linked-to program need receive only the
requested data.

INPUTMSG(data-area)
specifies data to be supplied to the invoked program when it first issues an
EXEC CICS RECEIVE command. This data remains available until the
execution of an EXEC CICS RECEIVE or EXEC CICS RETURN command.

 An invoked program can invoke a further program and so on, creating a chain
of linked programs.

 If a linked-to chain exists, CICS supplies the INPUTMSG data to the first EXEC
CICS RECEIVE command executed in the chain. If control returns to the
program that issued the EXEC CICS LINK command with the INPUTMSG
option before the INPUTMSG data has been accepted by an EXEC CICS
RECEIVE command, CICS assumes that an EXEC CICS RECEIVE command
has been issued. This means that the original INPUTMSG data is no longer
available.

 INPUTMSG cannot be used at the same time as DATALENGTH.

Note: You cannot specify the INPUTMSG option for a remote program. That
is, you cannot specify the INPUTMSG and the SYSID options on the
same EXEC CICS LINK command, and you cannot specify the
INPUTMSG option if the SYSID specified on the program resource
definition of the program to which you are linking, is anything other
than *NONE. In either case, the INVREQ condition is raised with a
RESP2 value of 19.

 See Chapter 20, “Program control,” on page 199 for more information about the
INPUTMSG option.

INPUTMSGLEN(data-value)
specifies as a halfword binary value the length of the INPUTMSG data. If the
value is negative, zero is assumed.

382 CICS for iSeries Application Programming Guide V5

LENGTH(data-value)
specifies as a halfword binary value the length in bytes of the communication
area. For a description of a safe upper limit, see “LENGTH options” on page
312..

PROGRAM(name)
specifies the identifier of the program to which control is to be passed
unconditionally, and from which return is expected. The name must be
alphanumeric, up to 8 characters long, and must have been defined as a
program to CICS.

 If the SYSID option specifies a remote system, the linked-to program is the
server program in the server system.

SYNCONRETURN
specifies that the server system named on the SYSID option is to take a
syncpoint on successful completion of the server program. This option is
independent of any syncpoint flows across the link.

 If you omit SYNCONRETURN, the default synchronization level is the same as
that of the link.

SYSID(name)
specifies the system name of a CICS server system to which the program link
request is to be routed. The name can be up to four characters. Although this
option is primarily for a distributed program link, you can specify the name of
the local CICS system, in which case CICS treats the LINK request as a normal
local link request.

 The SYSID specified on the LINK command takes priority over any remote
system specified on the program resource definition.

TRANSID(name)
specifies the name of the transaction that the remote system is to attach, and
under which it is to run the server program. If you omit the TRANSID option,
the server system attaches either the CSMI or the CVMI transaction by default.

 The transaction name you specify on the LINK command takes priority over
any transaction specified on the program resource definition.

Exception Conditions
INVREQ

RESP2 values:

v The INPUTMSG option is issued for a program that is not associated
with a terminal.

v The INPUTMSG option is not supplied with an address.

8 The INPUTMSG option is issued for a program that is associated with
an APPC logical unit.

14 The SYNCONRETURN option is specified, but the program issuing the
link request (the client program) is already in conversation with a
mirror task (that is, a logical unit of work (LUW) is in progress) in the
remote system specified on the SYSID option. In this case, the client
program is in an incorrect state to support the SYNCONRETURN
option.

15 The program issuing the link request is already in conversation with a
mirror task and the specified TRANSID value differs from the
transaction identifier of the active mirror.

Chapter 32. Application programming commands - reference 383

16 The specified TRANSID is all blanks.

19 The INPUTMSG option is issued for a program that is the subject of a
DPL request; that is, SYSID is also specified, or
REMOTESYSTEM(name) is specified on the PROGRAM resource
definition.

200 The INPUTMSG option is issued for a program that is executing as a
DPL server program.

 Default action: Terminate the task abnormally.

LENGERR
RESP2 values:

v The INPUTMSGLEN value is outside the range 1 through 32 767.

v The length specified on the LENGTH option is greater than the length
of the data area specified in the COMMAREA option, and while that
data was being copied a destructive overlap occurred because of the
incorrect length.

11 A negative LENGTH value is supplied.

12 A negative DATALENGTH value is supplied.

13 The length specified on the DATALENGTH option is greater than the
length specified on the LENGTH option.

 Default action: Terminate the task abnormally.

NOTAUTH
occurs if a resource security check has failed on PROGRAM(name).

 Default action: Terminate the task abnormally.

PGMIDERR
RESP2 values:

1 The program does not have an installed resource definition.

2 The program is disabled.

3 The program cannot be loaded.

 Default action: Terminate the task abnormally.

ROLLEDBACK
occurs if the SYNCONRETURN option is specified and the server program is
unable to take a syncpoint successfully. The server program has taken a
rollback, and all changes made to recoverable resources in the remote system,
within the current LUW, are backed out.

 Default action: Terminate the task abnormally.

SYSIDERR
RESP2 values:

18 The SYSID option specifies either a name that is not defined in the
terminal control system table (TCS), or a system to which the link is
closed.

Note: There is no local queuing in the event of a SYSIDERR.

 Default action: Terminate the task abnormally.

384 CICS for iSeries Application Programming Guide V5

TERMERR
RESP2 values:

17 There is an unrecoverable error during the conversation with the
mirror (for example, if the session fails, or if the server system fails).

 Default action: Terminate the task abnormally.

Examples
The following example shows how to request a link to an application program
called PROG1:

LOAD
Provide addressability to resources defined in the PPT.

Description
Provide addressability to resources defined in the PPT. When issued with the SET
option, the LOAD command provides pointer addressability to OS/400 *USRSPC
objects defined as tables or map sets.

On other CICS platforms, the LOAD command can be used to reduce system
overhead by fetching an application program, table, or map set from the library
where it resides and loading it into main storage. CICS/400 program management
is provided by OS/400 and, therefore, CICS/400 does not require the use of the
LOAD command for this purpose.

Each time a LOAD command is issued for the same resource, a use count is
incremented by 1.

Refer to Chapter 20, “Program control,” on page 199 for more information.

Options
HOLD

specifies, on other CICS platforms, that the loaded program, table, or map set
is not to be removed from main storage when the task issuing the LOAD
command terminates, but is to be removed only in response to a RELEASE
command issued by this task or another task. CICS/400 supports use of the
HOLD option and insists on correct usage of the HOLD option and the
RELEASE command.

PROGRAM(name)
specifies the identifier of the table or map set to be loaded. The name must be
alphanumeric and up to 8 characters long.

EXEC CICS LINK PROGRAM(’PROG1’) ...

�� LOAD PROGRAM (name)
SET

(

ptr-ref

)

HOLD

 ��

Conditions: NOTAUTH, PGMIDERR

Chapter 32. Application programming commands - reference 385

SET(ptr-ref)
specifies a pointer reference to be set to the address of the table or map set.

Exception Conditions
NOTAUTH

occurs if a resource security check has failed on PROGRAM(name).

 Default action: Terminate the task abnormally.

PGMIDERR
RESP2 values:

1 The resource specified in the PROGRAM option does not have an
installed resource definition.

2 The resource specified in the PROGRAM option is disabled.

3 The resource specified in the PROGRAM option refers to an OS/400
object that could not be located.

9 The resource specified in the PROGRAM option is defined as remote.

 Default action: Terminate the task abnormally.

POP HANDLE
Restore the stack.

Description
POP HANDLE is not supported for C programs.

POP HANDLE restores the effect of HANDLE ABEND, HANDLE AID, HANDLE
CONDITION, and IGNORE CONDITION commands to the state they were in
before a PUSH HANDLE command was executed at the current link level. This
can be useful, for example, during a branch to a subroutine embedded in a main
program.

Normally, when a CICS program calls a subroutine, the program or routine that
receives control inherits the current HANDLE commands. These commands may
not be appropriate within the called program. The called program can use PUSH
HANDLE to suspend existing HANDLE commands. Before returning control to the
caller, the called program can restore the original commands using the POP
HANDLE command.

You can nest PUSH HANDLE...POP HANDLE command sequences within a task.
Each POP HANDLE command restores a set of specifications that were previously
stacked by a PUSH HANDLE command at the same link level.

Refer to Chapter 6, “Dealing with exception conditions,” on page 87 for more
information.

�� POP HANDLE ��

Condition: INVREQ

386 CICS for iSeries Application Programming Guide V5

Exception Conditions
INVREQ

occurs if no matching PUSH HANDLE command has been executed at the
current link level.

 Default action: Terminate the task abnormally.

POST
Request notification when a specified time has expired.

Description
In response to this command, CICS makes a timer event control area available for
testing. This 4-byte control area is initialized to binary zeros, and the pointer
reference specified in the SET option is set to its address.

When the time you specify has expired, the timer event control area is posted; that
is, its first byte is set to X'40' and its third byte to X'80'. You can test posting in
either of the following ways:
v By checking the timer event control area at intervals. You must give CICS the

opportunity to post the area; that is, the task must relinquish control to CICS
before you test the area. Normally, this condition is satisfied as a result of other
commands being issued; if a task is performing a long internal function, you can
force control to be relinquished by issuing a SUSPEND command.

v By suspending task activity with a WAIT EVENT command until the timer event
control area is posted. This action is similar to issuing a DELAY command, the
difference being that with a POST and WAIT EVENT command sequence, you
can do some processing after issuing the POST command, whereas a DELAY
command suspends task activity at once. No other task should attempt to wait
on the event set up by a POST command.

The timer event control area can be released for a variety of reasons (see below). If
this happens, the result of any other task issuing a wait on the event set up by the
POST command is unpredictable.

However, other tasks can cancel the event if they have access to the REQID
associated with the POST command. (See the CANCEL command and the
description of the REQID option.) A timer event control area provided for a task is
not released or altered (except as described above) until one of the following
events occurs:
v The task issues a subsequent DELAY, POST, or START command.
v The task issues a CANCEL command to cancel the POST command.
v The task is terminated, normally or abnormally.
v Any other task issues a CANCEL command for the event set up by the POST

command.

��

POST
 INTERVAL (0)

INTERVAL

(

hhmmss

)

TIME

(

hhmmss

)

SET

(

ptr-ref

)

REQID

(

name

)

��

Conditions: EXPIRED, INVREQ

Chapter 32. Application programming commands - reference 387

A task can have only one POST command active at any given time. Any DELAY,
POST, or START command supersedes a POST command previously issued by the
task.

Refer to Chapter 18, “Interval control,” on page 193 for more details about Interval
Control.

Options
INTERVAL(hhmmss)

specifies the interval of time that is to elapse from the time at which the POST
command is issued until notification occurs, that is, until the timer event
control area is posted. The specified interval is added to the current clock time
by CICS to calculate the expiration time. See Chapter 18, “Interval control,” on
page 193 for an explanation of how expiration times are used within interval
control.

 The maximum permitted INTERVAL value is 995959.

REQID(name)
specifies a name that uniquely identifies the POST command. The name can be
up to 8 characters long. This name is used as a temporary storage identifier.

 This option can be used when another task is to be provided with the
capability of canceling an unexpired POST command.

 If this option is not specified, the POST command can only be canceled from
the same task, and CICS generates a unique request identifier in the EIBREQID
field of the EXEC interface block.

SET(ptr-ref)
specifies a pointer reference to be set to the address of the 4-byte timer event
control area generated by CICS. This area is initialized to binary zeros; on
expiration of the specified time, the first byte is set to X'40', and the third byte
to X'80'.

TIME(hhmmss)
specifies the time at which notification is to occur, that is, the time at which the
timer event control area is to be posted. See Chapter 18, “Interval control,” on
page 193 for an explanation of how expiration times are used within interval
control.

Exception Conditions
EXPIRED

occurs if the time specified has already expired when the command is issued.

 Default action: Ignore the condition.

INVREQ
RESP2 values:

v The POST command is not valid for processing by CICS.

4 Hours are out of range.

5 Minutes are out of range.

6 Seconds are out of range.

v The specified REQID is not unique within the system.

 Default action: Terminate the task abnormally.

388 CICS for iSeries Application Programming Guide V5

Examples
The following example shows how to request a timer event control area for a task,
to be posted after 30 seconds:

The following example shows how to provide a timer event control area for the
task, to be posted when the specified time of day is reached. Because no request
identifier is specified in the command, CICS automatically assigns one and returns
it to the application program in the EIBREQID field in the EIB.

PUSH HANDLE
Suspend the stack.

Description
PUSH HANDLE is not supported for ILE C programs.

PUSH HANDLE suspends the current effect of HANDLE ABEND, HANDLE AID,
HANDLE CONDITION, and IGNORE CONDITION commands. This can be
useful, for example, during a branch to a subroutine embedded in a main program.

Normally, when a CICS program calls a subroutine, the program or routine that
receives control inherits the current HANDLE commands. These commands may
not be appropriate within the called program. The called program can use PUSH
HANDLE to suspend existing HANDLE commands. Before returning control to the
caller, the called program can restore the original commands using the POP
HANDLE command.

You can nest PUSH HANDLE...POP HANDLE command sequences within a task.
Each PUSH HANDLE command stacks a set of specifications for restoration later
by POP HANDLE.

Refer to Chapter 6, “Dealing with exception conditions,” on page 87 for more
information.

EXEC CICS POST
 INTERVAL(30)
 REQID(’RBL3D’)
 SET(PREF) ...

EXEC CICS POST
 TIME(PACKTIME)
 SET(PREF) ...

�� PUSH HANDLE ��

Chapter 32. Application programming commands - reference 389

READ
Read a record from a file on a local or a remote system.

Description
For both UPDATE and nonupdate commands, you must identify the record to be
retrieved by the record identification field specified in the RIDFLD option.
Immediately on completion of a READ UPDATE command, the RIDFLD data area
is available for reuse by the application program.

You can specify only one update operation for each file within a transaction at any
given time. To avoid deadlock when accessing a file, your next command to the
file must be REWRITE, DELETE without RIDFLD, or UNLOCK.

Refer to Chapter 10, “File control,” on page 115 for more information.

Options
EQUAL

specifies that the search is satisfied only by a record having the same key
(complete or generic) as that specified in the RIDFLD option.

FILE(name)
specifies the name of the file to be accessed. The name must be alphanumeric,
up to 8 characters long, and must have been defined in the file control table
(FCT) unless the SYSID option specifies a remote system.

 If a nonlocal SYSID is specified, the underlying file is assumed to be on a
remote system irrespective of whether the name is defined in the local FCT.
Otherwise, the FCT entry is used to determine whether the underlying file is
on a local or a remote system.

GENERIC
specifies that the search key is a generic key whose length is specified in the
KEYLENGTH option. This option can be used only with a KSDS or a path
over a KSDS or ESDS. The search for a record is satisfied when a record is
found that has the same starting characters (generic key) as those specified.

��

READ
 (1)

FILE

(

name

)

UPDATE

INTO

(

data-area

)

SET

(

ptr-ref

)

LENGTH

(

data-area

)

�

� RIDFLD (data-area)
KEYLENGTH

(

data-value

)

GENERIC

RBA

RRN

SYSID

(

name

)

 �

�
 EQUAL

GTEQ

��

Notes:

1 DATASET is also accepted, but FILE is the preferred term (see “DATASET option” on page 311).

Conditions: DISABLED, DUPKEY, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ, LENGERR,
NOTAUTH, NOTFND, NOTOPEN, SYSIDERR

390 CICS for iSeries Application Programming Guide V5

GTEQ
specifies that, if the search for a record having the same key (complete or
generic) as that specified in the RIDFLD option is unsuccessful, the first record
having a greater key satisfies the search. Use this option only with a KSDS or a
path over a KSDS or ESDS.

INTO(data-area)
specifies the data area into which the record retrieved from the file is to be
written.

KEYLENGTH(data-value)
specifies as a halfword binary value the length of the key supplied in the
RIDFLD option. If a specified KEYLENGTH value differs from the length
defined for the underlying file and the operation is not generic, the INVREQ
condition occurs.

 INVREQ also occurs if you specify GENERIC, and the KEYLENGTH value is
not less than that defined for the file.

 If KEYLENGTH(0) is used with the object of reading the first record in the file,
the GTEQ option must also be specified. If EQUAL is specified either explicitly
or by default with KEYLENGTH(0), the results of the READ are unpredictable.

LENGTH(data-area)
specifies as a halfword binary value the length of the data area where the
retrieved record is to be placed. On completion of the READ command, the
LENGTH argument (which must be a data area) contains the actual length of
the record.

 This option must be specified with the INTO option on READ commands
involving variable-length records. It need not be specified for fixed-length
records, but its inclusion is recommended because:
v It causes a check to be made that the record being read is not too long for

the available data area.
v When reading fixed-length records into an area longer or shorter than the

record being accessed, the LENGERR condition occurs if the LENGTH
option is not specified.

When reading into a target data area longer than the record being read, the
contents of the target data area, from the end of the retrieved record to the end
of the target data area, are unpredictable.

 If you specify the INTO option, the LENGTH argument must specify the
largest record that the program accepts. If the retrieved record is longer than
the value specified in the LENGTH option, the record is truncated to the
specified value and the LENGERR condition occurs. In this case, the LENGTH
argument is set to the length of the record before truncation.

 If you specify the SET option, the LENGTH option need not be specified. if the
SET option is specified, the argument must be a data area.

RBA
specifies that the record identification field specified in the RIDFLD option
contains a relative byte address. This option can be used only when reading
records directly from an ESDS. The RIDFLD value can be from 0 upward.

RIDFLD(data-area)
specifies the record identification field. The contents can be a key, a relative

Chapter 32. Application programming commands - reference 391

byte address, or a relative record number. For a relative byte address or a
relative record number, the format of this field must be fullword binary.

 Make sure that the RIDFLD data area is not shorter than the KEYLENGTH
value specified in this command or, if KEYLENGTH is not specified, the key
length of the file you are reading; otherwise, the results are unpredictable.

RRN
specifies that the record identification field specified in the RIDFLD option
contains a relative record number. Use this option only when reading records
from an RRDS. The RIDFLD value can be from 1 upward.

SET(ptr-ref)
specifies a pointer reference to be set to the address of the retrieved record.

 The pointer reference is valid until the next READ command for the same file
or until completion of a corresponding REWRITE, DELETE, or UNLOCK
command, or a SYNCPOINT in the case of READ UPDATE SET. If you want
to retain the data within the field addressed by the pointer, you should move it
to your own area.

SYSID(name)
specifies the name of the system to which the request is directed. The name
can be up to 4 characters long.

 If you specify SYSID, and omit both RBA and RRN, you must also specify
LENGTH and KEYLENGTH; they cannot be found in the FCT.

UPDATE
specifies that the record is to be obtained for updating or deletion. If this
option is omitted, a read-only operation is assumed.

Exception Conditions

Note: RESP2 values are not set for files that are on remote systems.

DISABLED
RESP2 values:

50 A file is disabled.

 A file may be disabled because:
v It was initially defined as disabled and has not since been enabled.
v It has been disabled by an EXEC CICS SET FILE command.
v It has been disabled by the CEMT transaction.

 Default action: Terminate the task abnormally.

DUPKEY
RESP2 values:

140 occurs if a record is retrieved from a VSAM emulated file that allows
duplicate keys, and another record with the same key follows.

 Default action: Terminate the task abnormally.

FILENOTFOUND
RESP2 values:

1 The name specified in the FILE option cannot be found in the FCT.

 Default action: Terminate the task abnormally.

392 CICS for iSeries Application Programming Guide V5

ILLOGIC
RESP2 values:

110 There is an error that does not fall within one of the other CICS
response categories. (Further information is available in the EIBRCODE
field; refer to Appendix A, “EXEC interface block,” on page 529 for
details.)

 Default action: Terminate the task abnormally.

INVREQ
RESP2 values:

20 READ is not allowed according to the file entry specification in the
FCT.

20 A READ command with the UPDATE option is issued to a file where
update operations are not allowed according to the file entry
specification in the FCT.

25 The KEYLENGTH and GENERIC options are specified, and the length
specified in the KEYLENGTH option is greater than or equal to the
length of a full key.

26 The KEYLENGTH option is specified (but the GENERIC option is not
specified), and the specified length differs from the length defined for
the underlying file.

28 Following a READ UPDATE command for a file, another READ
UPDATE command is issued for the same file before exclusive control
is released by a REWRITE, UNLOCK, or DELETE command.

42 The KEYLENGTH and GENERIC options are specified, and the length
specified in the KEYLENGTH option is less than zero.

 Default action: Terminate the task abnormally.

IOERR
RESP2 values:

120 There is an I/O error during the READ. An I/O error is any unusual
event that is not covered by a CICS exception condition.

 (Further information is available in the EIBRCODE field; refer to
Appendix A, “EXEC interface block,” on page 529 for details.)

 Default action: Terminate the task abnormally.

ISCINVREQ
RESP2 values:

70 The remote system indicates a failure that does not correspond to a
known condition.

 Default action: Terminate the task abnormally.

LENGERR
RESP2 values:

10 Neither the LENGTH option nor the SET option is specified on a
READ command for a file with variable-length records.

11 The length of a record read with the INTO option specified exceeds the

Chapter 32. Application programming commands - reference 393

value specified in the LENGTH option; the record is truncated, and the
data area supplied in the LENGTH option is set to the actual length of
the record.

13 An incorrect length is specified for a file with fixed-length records.

 Default action: Terminate the task abnormally.

NOTAUTH
RESP2 values:

101 A resource security check has failed on FILE(name).

 Default action: Terminate the task abnormally.

NOTFND
RESP2 values:

80 An attempt to retrieve a record based on the search argument provided
is unsuccessful.

 Default action: Terminate the task abnormally.

NOTOPEN
does not arise in CICS/400 but is mentioned here for compatibility with other
versions of CICS. If the file is CLOSED and ENABLED it is opened as part of
the READ command. If the file is CLOSED and DISABLED, the DISABLED
condition is raised. In CICS/400 there is no file UNENABLED state as there is
in other versions of CICS.

SYSIDERR
RESP2 values:

130 The SYSID option specifies either a name that is not defined in the
terminal control system table (TCS), or a system to which the link is
closed.

 Default action: Terminate the task abnormally.

Examples
The following example shows how to read a record from a file named MASTER
into a specified data area:

The following example shows how to read a record for update from a file, using a
generic key and specifying a greater-than-or-equal key search:

EXEC CICS READ
 INTO(RECORD)
 FILE(’MASTER’)
 RIDFLD(ACCTNO)
 LENGTH(RLENGTH) ...

394 CICS for iSeries Application Programming Guide V5

READNEXT
Read the next record during a browse.

Description
READNEXT can be used repeatedly to read records in sequential order from a file
on a local or a remote system. Such a series of sequential read commands is known
as a browse of the file. A browse can also consist of a sequence of READNEXT and
READPREV commands in any order. A browse must be initiated with the
STARTBR command, to identify the starting point of the browse, and terminated
with the ENDBR command.

You must provide, in the RIDFLD option, a data area that is sufficiently large to
contain a complete identifier (full key, RBA, or RRN) of records in the file.

The first READNEXT command reads the record at the position specified in the
STARTBR command. On completion of the READNEXT command, CICS places the
complete identifier of the record just retrieved into the RIDFLD data area. When
the next READNEXT command is issued, CICS reads the record following the
position identified by the contents of the RIDFLD field and updates the RIDFLD
field with the identifier of the record just read.

EXEC CICS READ
 INTO(RECORD)
 LENGTH(RLENGTH)
 FILE(’MASTER’)
 RIDFLD(ACCTNO)
 KEYLENGTH(4)
 GENERIC
 GTEQ
 UPDATE ...

��

READNEXT
 (1)

FILE

(

name

)

INTO

(

data-area

)

SET

(

ptr-ref

)

LENGTH

(

data-area

)

�

� RIDFLD (data-area)
KEYLENGTH

(

data-value

)

RBA

RRN

(2)

REQID

(

data-value

)

 �

�
SYSID

(

name

)

 ��

Notes:

1 DATASET is also accepted, but FILE is the preferred term (see “DATASET option” on page 311).

2 Only supported when function shipping.

Conditions: DUPKEY, ENDFILE, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ, LENGERR,
NOTAUTH, NOTFND, SYSIDERR

Chapter 32. Application programming commands - reference 395

You may modify the RIDFLD data area contents before issuing subsequent
READNEXT commands. This has the effect of starting a new browse, which means
the record identified by the RIDFLD field is read on the next READNEXT
command, rather than the next record, in the same way as if a STARTBR command
had been issued. CICS updates the RIDFLD contents with the complete identifier
of the record just read, and the next READNEXT command causes the next record
to be read, as before.

If the browse was started with the GENERIC option, the modified RIDFLD must
be generic. If the browse was started with the GTEQ option, the next record
returned is the first record in the file with a key greater than or equal to the
modified RIDFLD.

A READNEXT command following a READPREV command has the same effect as
issuing a STARTBR command or repositioning the browse. The record identified by
the RIDFLD field is read; that is CICS reads the same record as that read by the
READPREV command, not the next record.

See Chapter 10, “File control,” on page 115 for further information.

Options
FILE(name)

specifies the name of the file to be browsed. The name must be alphanumeric,
up to 8 characters long, and must have been defined in the file control table
(FCT) unless the SYSID option specifies a remote system.

 If a nonlocal SYSID is specified, the underlying file is assumed to be on a
remote system irrespective of whether the name is defined in the local FCT.
Otherwise, the FCT entry is used to determine whether the underlying file is
on a local or a remote system.

INTO(data-area)
specifies the data area into which the record retrieved from the file is to be
written.

KEYLENGTH(data-value)
specifies as a halfword binary value the length of the key supplied in the
RIDFLD option.

 If the browse was started without the GENERIC option (that is, a full key
browse) and a specified KEYLENGTH value differs from the length defined for
the underlying file, the INVREQ condition occurs.

 In a generic browse, if KEYLENGTH is omitted or the KEYLENGTH value is
unchanged, the browse continues using the last specified key length.

 KEYLENGTH(0) may be used in a generic browse with the object of reading
the first record in the file, provided that GTEQ was specified on the STARTBR
or RESETBR command.

LENGTH(data-area)
specifies as a halfword binary value the length of the data area where the
retrieved record is to be placed. On completion of the retrieval operation, the
LENGTH argument (which must be a data area) contains the actual length of
the retrieved record.

 This option must be specified with SYSID. It must also be specified with the
INTO option on commands involving variable-length records. It need not be
specified for fixed-length records, but its inclusion is recommended because:

396 CICS for iSeries Application Programming Guide V5

v It causes a check to be made that the record being read is not too long for
the available data area.

v When browsing fixed-length records into an area longer than the record
being accessed, the LENGERR condition occurs if the LENGTH option is not
specified. If the length specified exceeds the file record length, CICS uses the
longer length for the move. If the target area in the application program is
not large enough, storage is overlaid beyond the target area.

When browsing into a target data area longer than the record being read, the
contents of the target data area, from the end of the retrieved record to the end
of the target data area, are unpredictable.

 If you specify the INTO option, the LENGTH argument must specify the
largest record that the program accepts. If the retrieved record is longer than
the value specified in the LENGTH option, the record is truncated to the
specified value and the LENGERR condition occurs. In this case, the LENGTH
argument is set to the length of the record before truncation.

 If you specify the SET option, the LENGTH option need not be specified but, if
it is, the argument must be a data area.

RBA
specifies that the record identification field specified in the RIDFLD option
contains a relative byte address. The RIDFLD value can be from 0 upward.

 This option must be specified when browsing an ESDS directly.

REQID(data-value)
specifies as a halfword binary value a unique request identifier for the browse;
it is used to control multiple browse operations on a file. If this option is not
specified, a default value of zero is assumed.

RIDFLD(data-area)
specifies the record identification field. The contents can be a key, a relative
byte address, or a relative record number. For a relative byte address or a
relative record number, the format of this field must be fullword binary.

 Even if the browse is generic, this field should always be large enough to
accommodate the complete record identifier. This is because, on completion of
the READNEXT command, the field is updated by CICS with the complete
identification of the record retrieved.

RRN
specifies that the record identification field specified in the RIDFLD option
contains a relative record number. Use this option only when browsing an
RRDS. The RIDFLD value can be from 1 upward.

SET(ptr-ref)
specifies a pointer reference to be set to the address of the retrieved record.

 The pointer reference is valid until the next READNEXT or READPREV
command specifying SET for the same file. The pointer is no longer valid after
an ENDBR or SYNCPOINT command. If you want to retain the data within
the field addressed by the pointer, you should move it to your own area.

SYSID(name)
specifies the name of the system to which the request is directed. The name
can be up to 4 characters long.

 If you specify SYSID, and omit both RBA and RRN, you must also specify
LENGTH and KEYLENGTH; they cannot be found in the FCT.

Chapter 32. Application programming commands - reference 397

Exception Conditions

Note: RESP2 values are not set for files that are on remote systems.

DUPKEY
RESP2 values:

140 A record is retrieved from a VSAM emulated file that allows duplicate
keys, and another record with the same key follows. It does not occur
as a result of a READNEXT command that reads the last of the records
having the nonunique key.

 Default action: Terminate the task abnormally.

ENDFILE
RESP2 values:

90 An end-of-file condition is detected during the browse.

 Default action: Terminate the task abnormally.

FILENOTFOUND
RESP2 values:

1 The name specified in the FILE option cannot be found in the FCT.

 Default action: Terminate the task abnormally.

ILLOGIC
RESP2 values:

110 There is an error that does not fall within one of the other CICS
response categories. (Further information is available in the EIBRCODE
field; refer to Appendix A, “EXEC interface block,” on page 529 for
details.)

 Default action: Terminate the task abnormally.

INVREQ
RESP2 values:

25 The KEYLENGTH option is specified for a generic browse (that is, one
where GENERIC was specified on the STARTBR command or the last
RESETBR command) and the value of KEYLENGTH was greater than
or equal to the full key length.

26 The KEYLENGTH option is specified for a non-generic browse, and
the specified length differs from the length defined for the underlying
file.

34 The READNEXT command is issued for a file that has had no previous
STARTBR command successfully issued.

37 The type of record identification (for example, key or relative byte
address) used to access a file during the browse is changed by the
READNEXT command.

42 The KEYLENGTH option is specified for a generic browse (that is, one
where GENERIC was specified on the STARTBR command or the last
RESETBR command) and the value of KEYLENGTH was less than
zero.

 Default action: Terminate the task abnormally.

398 CICS for iSeries Application Programming Guide V5

IOERR
RESP2 values:

120 There is an I/O error during the READNEXT. An I/O error is any
unusual event that is not covered by a CICS exception condition.

 (Further information is available in the EIBRCODE field; refer to
Appendix A, “EXEC interface block,” on page 529 for details.)

 Default action: Terminate the task abnormally.

ISCINVREQ
RESP2 values:

70 The remote system indicates a failure that does not correspond to a
known condition.

 Default action: Terminate the task abnormally.

LENGERR
RESP2 values:

10 Neither the LENGTH nor the SET option is specified for a file with
variable-length records.

11 The length of the record read with the INTO option specified exceeds
the value specified in the LENGTH option; the record is truncated, and
the data area supplied in the LENGTH option is set to the actual
length of the record.

13 An incorrect length is specified for a file with fixed-length records.

 Default action: Terminate the task abnormally.

NOTAUTH
RESP2 values:

101 A resource security check has failed on FILE(name).

 Default action: Terminate the task abnormally.

NOTFND
RESP2 values:

80 An attempt to retrieve a record based on the search argument provided
is unsuccessful. This may occur if the READNEXT command
immediately follows a STARTBR command that specified the key of
the last record in the file (a complete key of X'FF' bytes).

 Default action: Terminate the task abnormally.

SYSIDERR
RESP2 values:

130 The SYSID option specifies either a name that is not defined in the
terminal control system table (TCS), or a system to which the link is
closed.

 Default action: Terminate the task abnormally.

Chapter 32. Application programming commands - reference 399

READPREV
Read the previous record during a browse.

Description
READPREV can be used repeatedly to read records in reverse sequential order
from a file on a local or a remote system.

Such a series of sequential read commands is known as a browse of the file. A
browse can also consist of a sequence of READNEXT and READPREV commands
in any order. A browse must be initiated with the STARTBR command, to identify
the starting point of the browse, and terminated with the ENDBR command.

You must provide, in the RIDFLD option, a data area that is sufficiently large to
contain a complete identifier (full key, RBA, or RRN) of records in the file.

The first READPREV command reads the record at the position specified in the
STARTBR command. On completion of the READPREV command, CICS places the
complete identifier of the record just retrieved into the RIDFLD data area. When
the next READPREV command is issued, CICS reads the record following the
position identified by the contents of the RIDFLD field and updates the RIDFLD
field with the identifier of the record just read.

You may modify the RIDFLD data area contents before issuing subsequent
READPREV commands. This has the effect of starting a new browse, which means
the record identified by the RIDFLD field is read on the next READPREV
command, rather than the next record, in the same way as if a STARTBR command
had been issued. The modified record identifier must always be a full key, RBA, or
RRN. A generic key may not be specified, nor may a browse that was started with
the GENERIC option include a READPREV command.

��

READPREV
 (1)

FILE

(

name

)

INTO

(

data-area

)

SET

(

ptr-ref

)

LENGTH

(

data-area

)

�

� RIDFLD (data-area)
KEYLENGTH

(

data-value

)

RBA

RRN

(2)

REQID

(

data-value

)

 �

�
SYSID

(

name

)

 ��

Notes:

1 DATASET is also accepted, but FILE is the preferred term (see “DATASET option” on page 311).

2 Only supported when function shipping.

Conditions: DUPKEY, ENDFILE, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ, LENGERR,
NOTAUTH, NOTFND, SYSIDERR

400 CICS for iSeries Application Programming Guide V5

If you include a READPREV command immediately following a STARTBR
command, your STARTBR command must specify the key of a record that exists
on the file; otherwise, the NOTFND condition occurs for the READPREV
command.

A READPREV command following a READNEXT command has the same effect as
issuing a STARTBR command or repositioning the browse. The record identified by
the RIDFLD field is read; that is CICS reads the same record as that read by the
READNEXT command, not the previous record.

See Chapter 10, “File control,” on page 115 for further information.

Options
FILE(name)

specifies the name of the file being browsed. The name must be alphanumeric,
up to 8 characters long, and must have been defined in the file control table
(FCT) unless the SYSID option specifies a remote system.

 If a nonlocal SYSID is specified, the underlying file is assumed to be on a
remote system irrespective of whether the name is defined in the local FCT.
Otherwise, the FCT entry is used to determine whether the underlying file is
on a local or a remote system.

INTO(data-area)
specifies the data area into which the record retrieved from the file is to be
written.

KEYLENGTH(data-value)
specifies as a halfword binary value the length of the key supplied in the
RIDFLD option.

 If a specified KEYLENGTH value differs from the length defined for the
underlying file, the INVREQ condition occurs.

LENGTH(data-area)
specifies as a halfword binary value the length of the data area where the
retrieved record is to be placed. On completion of the retrieval operation, the
LENGTH argument (which must be a data area) contains the actual length of
the retrieved record.

 This option must be specified with SYSID. It must also be specified with the
INTO option on READPREV commands involving variable-length records. It
need not be specified for fixed-length records, but its inclusion is
recommended because:
v It causes a check to be made that the record being read is not too long for

the available data area.
v When browsing fixed-length records into an area longer than the record

being accessed, the LENGERR condition occurs if the LENGTH option is not
specified. If the length specified exceeds the file record length, CICS uses the
longer length for the move. If the target area in the application program is
not large enough, storage is overlaid beyond the target area.

When browsing into a target data area longer than the record being read, the
contents of the target data area, from the end of the retrieved record to the end
of the target data area, are unpredictable.

 If you specify the INTO option, the LENGTH argument must specify the
largest record that the program accepts. If the retrieved record is longer than

Chapter 32. Application programming commands - reference 401

the value specified in the LENGTH option, the record is truncated to the
specified value and the LENGERR condition occurs. In this case, the LENGTH
argument is set to the length of the record before truncation.

 If you specify the SET option, the LENGTH option need not be specified but, if
it is, the argument must be a data area.

RBA
specifies that the record identification field specified in the RIDFLD option
contains a relative byte address. The RIDFLD value can be from 0 upward. You
must specify this option when browsing an ESDS directly, but not at any other
time.

REQID(data-value)
specifies as a halfword binary value a unique request identifier for the browse;
it is used to control multiple browse operations on a file. If this option is not
specified, a default value of zero is assumed.

RIDFLD(data-area)
specifies the record identification field. The contents can be a key, a relative
byte address, or a relative record number. For a relative byte address or a
relative record number, the format of this field must be fullword binary.

 On completion of the READPREV command, this field is updated by CICS
with the complete identification of the record retrieved.

RRN
specifies that the record identification field specified in the RIDFLD option
contains a relative record number. Use this option only when browsing an
RRDS. The RIDFLD value can be from 1 upward.

SET(ptr-ref)
specifies a pointer reference to be set to the address of the retrieved record.

 The pointer reference is valid until the next READNEXT or READPREV
command specifying the SET option for the same file. The pointer is no longer
valid after an ENDBR or SYNCPOINT command. If you want to retain the
data within the field addressed by the pointer, you should move it to your
own area.

SYSID(name)
specifies the name of the system to which the request is directed. The name
can be up to 4 characters long.

 If you specify SYSID, and omit both RBA and RRN, you must also specify
LENGTH and KEYLENGTH; they cannot be found in the FCT.

Exception Conditions

Note: RESP2 values are not set for files that are on remote systems.

DUPKEY
RESP2 values:

140 A record is retrieved from a VSAM emulated file that allows duplicate
keys, and another record with the same key exists.

 Default action: Terminate the task abnormally.

ENDFILE
RESP2 values:

402 CICS for iSeries Application Programming Guide V5

90 An end-of-file condition is detected during a browse.

 Default action: Terminate the task abnormally.

FILENOTFOUND
RESP2 values:

1 The name specified in the FILE option cannot be found in the FCT.

 Default action: Terminate the task abnormally.

ILLOGIC
RESP2 values:

110 There is an error that does not fall within one of the other CICS
response categories. (Further information is available in the EIBRCODE
field; refer to Appendix A, “EXEC interface block,” on page 529 for
details.)

 Default action: Terminate the task abnormally.

INVREQ
RESP2 values:

24 A READPREV command is issued for a file for which the previous
STARTBR command has the GENERIC option.

26 The KEYLENGTH option is specified, and the specified length differs
from the length defined for the underlying file.

37 The type of record identification (for example, key or relative byte
address) used to access a file during the browse is changed by the
READPREV command.

41 A READPREV command is issued for a file for which no previous
STARTBR command has been successfully issued.

 Default action: Terminate the task abnormally.

IOERR
RESP2 values:

120 There is an I/O error during the browse. An I/O error is any unusual
event that is not covered by a CICS exception condition.

 (Further information is available in the EIBRCODE field; refer to
Appendix A, “EXEC interface block,” on page 529 for details.)

 Default action: Terminate the task abnormally.

ISCINVREQ
RESP2 values:

70 The remote system indicates a failure that does not correspond to a
known condition.

 Default action: Terminate the task abnormally.

LENGERR
RESP2 values:

10 Neither the LENGTH nor the SET option is specified for a file with
variable-length records.

Chapter 32. Application programming commands - reference 403

11 The length of the record read with the INTO option specified exceeds
the value specified in the LENGTH option; the record is truncated, and
the data area supplied in the LENGTH option is set to the actual
length of the record.

13 An incorrect length is specified for a file with fixed-length records.

 Default action: Terminate the task abnormally.

NOTAUTH
RESP2 values:

101 A resource security check has failed on FILE(name).

 Default action: Terminate the task abnormally.

NOTFND
RESP2 values:

80 An attempt to retrieve a record based on the search argument provided
is unsuccessful. This may occur if the READPREV command
immediately follows a STARTBR command that specifies the key of a
record that does not exist on the file.

 Default action: Terminate the task abnormally.

SYSIDERR
RESP2 values:

130 The SYSID option specifies either a name that is not defined in the
terminal control system table (TCS), or a system to which the link is
closed.

 Default action: Terminate the task abnormally.

READQ TD
Read transient data from a queue.

Description
The READQ TD command reads transient data from a queue, after which the data
is no longer available.

If you are using automatic transaction initiation (ATI) (see “Automatic transaction
initiation (ATI)” on page 216 for introductory information), the HANDLE
CONDITION QZERO command should be included in your application to ensure
that termination of an automatically initiated task occurs only when the queue is
empty.

See Chapter 23, “Transient data control,” on page 215 for more information.

�� READQ TD QUEUE (name) INTO (data-area)
SET

(

ptr-ref

)

LENGTH

(

data-area

)

 �

�
SYSID

(

name

)

NOSUSPEND

 ��

Conditions: DISABLED, INVREQ, IOERR, ISCINVREQ, LENGERR, NOTAUTH, NOTOPEN, QBUSY, QIDERR,
QZERO, SYSIDERR

404 CICS for iSeries Application Programming Guide V5

Options
INTO(data-area)

specifies the user data area into which the data read from the transient data
queue is to be placed.

LENGTH(data-area)
specifies as a halfword binary value the length of the data. The upper limit is
determined by the maximum record length of the underlying TS/TD physical
file. For a description of a safe upper limit, see “LENGTH options” on page
312..

 If you specify the INTO option, the LENGTH argument must specify the
maximum length of data that the program accepts. If the value specified is less
than zero, zero is assumed. If the length of data exceeds the value specified,
the data is truncated to that value and the LENGERR condition occurs. On
completion of the retrieval operation, the data area is set to the original length
of the data.

 If you specify the SET option, the LENGTH option need not be specified. On
completion of the retrieval operation, any specified LENGTH argument is set
to the length of the data.

NOSUSPEND
specifies that application program suspension for the QBUSY condition is to be
inhibited.

 This applies only to intrapartition queues.

QUEUE(name)
specifies the symbolic name of the queue to be read from. The name must be
alphanumeric, up to 4 characters long, and must have been defined in the
destination control table (DCT) unless the SYSID option specifies a remote
system.

 If a nonlocal SYSID is specified, the queue is assumed to be on a remote
system irrespective of whether the name is defined in the local DCT.
Otherwise, the DCT entry is used to determine whether the queue is on a local
or a remote system.

SET(ptr-ref)
specifies a pointer reference to be set to the address of the data read from the
queue. CICS acquires an area large enough to hold the record and sets the
pointer reference to the address of that area. The area is retained until another
transient data command is executed. The pointer reference, unless changed by
other commands or statements, is valid until the next READQ TD command or
the end of task.

SYSID(name)
specifies the name of the system to which the request is directed. The name
can be up to 4 characters long.

Exception Conditions
DISABLED

occurs if the queue has been disabled.

 Default action: Terminate the task abnormally.

INVREQ
occurs if READQ names an extrapartition queue that has been opened for
output.

Chapter 32. Application programming commands - reference 405

This condition cannot occur for intrapartition queues.

 Default action: Terminate the task abnormally.

IOERR
occurs if there is an I/O error during the transient data operation.

 This condition occurs only if the queue can be read; the QZERO condition
occurs if the queue cannot be read.

 Default action: Terminate the task abnormally.

ISCINVREQ
occurs if the remote system indicates a failure that does not correspond to a
known condition.

 Default action: Terminate the task abnormally.

LENGERR
occurs if READQ TD names an INTO area that cannot hold all the data to be
returned to the application.

 Default action: Terminate the task abnormally.

NOTAUTH
occurs if a resource security check has failed on QUEUE(name).

 Default action: Terminate the task abnormally.

NOTOPEN
occurs if the destination is closed.

 This condition applies to extrapartition queues only.

 Default action: Terminate the task abnormally.

QBUSY
occurs if a READQ TD command attempts to access a record in a recoverable
intrapartition queue that is being written to, or deleted by, another task; and
there are no more committed records.

 Default action: The task issuing the READQ TD command waits until the
queue is no longer being used for output. However, the NOSUSPEND option
(see above) overrides this default action.

QIDERR
occurs if the symbolic destination to be used with READQ TD cannot be
found.

 Default action: Terminate the task abnormally.

QZERO
occurs if the destination (queue) is empty or the end of the queue has been
reached.

 Default action: Terminate the task abnormally.

SYSIDERR
occurs if the SYSID option specifies either a name that is not defined in the
terminal control system table (TCS), or a system to which the link is closed.

 Default action: Terminate the task abnormally.

406 CICS for iSeries Application Programming Guide V5

Examples
The following example shows how to read a record from an intrapartition queue
into a data area specified in the request:

The following example shows how to read a record from an extrapartition queue
of fixed-length records into a data area provided by CICS; the pointer reference
specified by the SET option is set to the address of the storage area reserved for
the data record. It is assumed that the record length is known.

READQ TS
Retrieve data from a temporary storage queue.

Description
The queue may be in main or auxiliary storage.

See Chapter 24, “Temporary storage control,” on page 219 for more information.

Options
INTO(data-area)

specifies the data area into which the data is to be written. The data area may
be any variable, array, or structure.

ITEM(data-value)
specifies as a halfword binary value the item number of the logical record to
be retrieved from the queue. The specified value is to be taken as the relative
number of the logical record to be retrieved. This number may be the number
of any item that has been written to the temporary storage queue.

 An internal CICS pointer is set so that subsequent READQ TS NEXT
commands continue from this point.

EXEC CICS READQ TD
 QUEUE(’ABCD’)
 INTO(DATA)
 LENGTH(LDATA) ...

EXEC CICS READQ TD
 QUEUE(EX1)
 SET(PREF)
END-EXEC.

�� READQ TS QUEUE (name) INTO (data-area)
SET

(

ptr-ref

)

LENGTH

(

data-area

)

 �

�

NUMITEMS

(

data-area

)

 NEXT

ITEM

(

data-value

)

SYSID

(

name

)

��

Conditions: INVREQ, IOERR, ISCINVREQ, ITEMERR, LENGERR, NOTAUTH, QIDERR, SYSIDERR

Chapter 32. Application programming commands - reference 407

LENGTH(data-area)
specifies as a halfword binary value the length of the data. For a description of
a safe upper limit, see “LENGTH options” on page 312.

 If you specify the INTO option, the LENGTH argument must specify the
maximum length of data that the program accepts. If the value specified is less
than zero, zero is assumed. If the length of data exceeds the value specified,
the data is truncated to that value and the LENGERR condition occurs. On
completion of the retrieval operation, the data area is set to the original length
of the data.

 If you specify the SET option, the LENGTH option need not be specified. On
completion of the retrieval operation, any specified LENGTH argument is set
to the length of the data.

NEXT
specifies that the next sequential logical record following the last record to be
retrieved (by any task) is to be retrieved, or the first record, if no previous
record has been retrieved.

NUMITEMS(data-area)
specifies a halfword binary field to receive a number indicating how many
items there are in the queue.

QUEUE(name)
specifies the symbolic name (1–8 characters) of the queue to be read from. If
the queue name appears in the temporary storage table (TST), and the entry is
marked as remote, the request is shipped to a remote system.

 The name must be alphanumeric and unique within the CICS system. Do not
use X'FA' through X'FF' as the first character of the name; these characters are
reserved for CICS use. The name cannot consist solely of binary zeros.

SET(ptr-ref)
specifies a pointer reference to be set to the address of the retrieved data. CICS
acquires an area large enough to hold the record and sets the pointer reference
to the address of the record. The area is retained until another READQ TS
command, on any TS queue, is executed. The pointer reference, unless changed
by other commands or statements, is valid until the next READQ TS command
or the end of task.

SYSID(name)
specifies the name of the system to which the request is directed. The name
can be up to 4 characters long.

Exception Conditions
INVREQ

occurs if the queue was created by CICS internal code.

 Default action: Terminate the task abnormally.

IOERR
occurs if there is an unrecoverable input/output error.

 Default action: Terminate the task abnormally.

ISCINVREQ
occurs if the remote system indicates a failure that does not correspond to a
known condition.

 Default action: Terminate the task abnormally.

408 CICS for iSeries Application Programming Guide V5

ITEMERR
occurs in any of the following situations:
v The specified item number is not valid (that is, it is outside the range of item

numbers written to the queue).
v An attempt is made to read beyond the end of the queue using the (default)

NEXT option.

Default action: Terminate the task abnormally.

LENGERR
occurs if the length of the stored data is greater than the value specified by the
LENGTH option. This condition can only occur when the INTO option is
specified.

 Default action: Terminate the task abnormally.

NOTAUTH
occurs if a resource security check has failed on QUEUE(name).

 Default action: Terminate the task abnormally.

QIDERR
occurs if the queue specified cannot be found.

 Default action: Terminate the task abnormally.

SYSIDERR
occurs if the SYSID option specifies either a name that is not defined in the
terminal control system table (TCS), or a system to which the link is closed.

 Default action: Terminate the task abnormally.

Examples
The following example shows how to read the first (or only) record from a
temporary storage queue into a data area specified in the request:

The following example shows how to read the next record from a temporary
storage queue into a data area provided by CICS; the pointer reference specified by
the SET option is set to the address of the storage area reserved for the data
record:

EXEC CICS READQ TS
 QUEUE(UNIQNAME)
 INTO(DATA)
 LENGTH(LDATA)
 ITEM(1) ...

EXEC CICS READQ TS
 QUEUE(DESCRQ)
 SET(PREF)
 LENGTH(LENG)
 NEXT ...

Chapter 32. Application programming commands - reference 409

RECEIVE (APPC)
Receive data from the conversation partner on an APPC conversation.

Description
The RECEIVE (APPC) command receives data from the conversation partner on an
APPC conversation.

See part 3 of CICS/400 Intercommunication for more information.

Options
CONVID(name)

identifies the conversation to which the command relates. The 4-character
name identifies the token returned by a previously executed ALLOCATE
command in the EIBRSRCE field of the EIB.

 If this option is omitted, the principal facility for the task is used by default.

FLENGTH(data-area)
is a fullword alternative to LENGTH(data-area).

INTO(data-area)
specifies the application target data area into which data is to be received from
the application program connected to the other end of the current
conversation. The length of this area must be greater than or equal to the
maximum receive length specified in the LENGTH, FLENGTH, MAXLENGTH,
or MAXFLENGTH options.

LENGTH(data-area)
specifies as a halfword binary value the length of the data to be received.

 If you specify the INTO option, but omit the MAXLENGTH option, the
LENGTH argument must be a data area that specifies the maximum length
that the program accepts. If the value specified is less than zero, zero is
assumed.

 If you specify the SET option, the LENGTH argument must be a data area.
When the data has been received, the data area is set to the length of the data.

MAXFLENGTH(data-value)
is a fullword alternative to MAXLENGTH(data-value).

MAXLENGTH(data-value)
specifies as a halfword binary value the maximum amount of data that CICS is
to recover in response to a RECEIVE command. If INTO is specified,
MAXLENGTH overrides the use of LENGTH as an input to CICS. If SET is
specified, MAXLENGTH provides a way for the program to limit the amount
of data that it receives at one time.

�� RECEIVE
CONVID

(

name

)

 INTO (data-area)
SET

(

ptr-ref

)

 LENGTH (data-area)
FLENGTH

(

data-area

)

 �

�
MAXLENGTH

(

data-value

)

MAXFLENGTH

(

data-value

)

NOTRUNCATE

STATE

(

cvda

)

 ��

Conditions: EOC, INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

410 CICS for iSeries Application Programming Guide V5

If the length of data exceeds the value specified and the NOTRUNCATE
option is not present, the data is truncated to that value and the LENGERR
condition occurs. The data area specified in the LENGTH option is set to the
original length of data (before any truncation).

 If the length of data exceeds the value specified and the NOTRUNCATE
option is present, CICS retains the remaining data and uses it to satisfy
subsequent RECEIVE commands. The EIBCOMPL field indicates whether all
the data was used or not. The data area specified in the LENGTH option is set
to the length of data returned.

 If MAXLENGTH is omitted, CICS uses the value specified in the LENGTH
option as the maximum length that the program accepts.

NOTRUNCATE
specifies that, when the data available exceeds the length requested, the
remaining data is not to be discarded but is to be retained for retrieval by
subsequent RECEIVE commands.

SET(ptr-ref)
specifies a pointer reference to be set to the address of the data received from
the partner transaction.

STATE(cvda)
gets the state of the current conversation. For a complete list of the CVDA
values that can be returned on APPC commands and for information about
receiving and testing these values, see “CICS-value data areas (CVDAs)” on
page 309.

Exception Conditions
EOC

occurs when no other condition is raised. Field EIBEOC also indicates this
condition.

 Default action: Ignore the condition.

INVREQ
RESP2 values:

v The CONVID value was obtained by an ASSIGN FACILITY command.
However, the principal facility is not an APPC conversation.

200 The RECEIVE (APPC) command is issued in a DPL server program
and refers to the principal facility.

 Default action: Terminate the task abnormally.

LENGERR
RESP2 values:

v Received data is discarded by CICS because its length exceeds the
maximum that the program accepts (see the LENGTH and
MAXLENGTH options), and the NOTRUNCATE option is not
specified.

v An out-of-range value is supplied in the LENGTH, FLENGTH,
MAXLENGTH, or MAXFLENGTH option.

 Default action: Terminate the task abnormally.

Chapter 32. Application programming commands - reference 411

NOTALLOC
occurs if the specified CONVID value does not relate to a conversation owned
by the application.

 Default action: Terminate the task abnormally.

SIGNAL
occurs if an inbound SIGNAL data-flow control command is received from a
partner transaction. EIBSIG is always set when an inbound signal is received.

 Default action: Ignore the condition.

TERMERR
occurs if there is a session-related error. Any action on that conversation other
than a FREE command causes an ATCV abend.

 Default action: Terminate the task abnormally (with abend code ATNI).

RECEIVE (5250 or 3270 logical)
Receive data from a terminal display.

Description
The RECEIVE (5250 or 3270 logical) command receives data from a terminal
display.

If data is to be received, you must specify a length option and either the INTO or
the SET option. If a RECEIVE is issued purely to detect an attention identifier
(AID), you can omit the INTO and SET options. See “INTO and SET options” on
page 311.

For a transaction started by automatic transaction initiation, a SEND command
must precede the first RECEIVE command in the transaction.

Application programs should be written to handle data streams that contain both
v data that is preceded by a Set Buffer Address (SBA) order and buffer address,

and
v data this is not preceded by an SBA order and buffer address.

Data that begins after row 1, column 1 requires an SBA; data that begins in row 1,
column 1 does not require an SBA (since row 1, column 1 is implied). This note
does not apply to RECEIVE commands issued with the BUFFER option because
the data stream obtained in this instance does not contain SBA orders.

See Chapter 14, “Terminal control,” on page 169 for more information about the
RECEIVE command.

�� RECEIVE
INTO

(

data-area

)

SET

(

ptr-ref

)

 LENGTH (data-area)
FLENGTH

(

data-area

)

 �

�
MAXLENGTH

(

data-value

)

MAXFLENGTH

(

data-value

)

ASIS

BUFFER

NOTRUNCATE

 ��

Conditions: EOC, INVREQ, LENGERR, TERMERR

412 CICS for iSeries Application Programming Guide V5

Options
ASIS

specifies that lowercase characters in the 5250 or 3270 input data stream are
not translated to uppercase; this allows the current task to receive a message
containing both uppercase and lowercase data.

 This option has no effect on the first RECEIVE command of a transaction,
because terminal control performs a read initial and uses the terminal defaults
to translate the data. It also has no effect if the screen contains data before the
transaction is initiated. This data is read and translated in preparation for the
next task, and the first RECEIVE command in that task retrieves the translated
data.

BUFFER
specifies that the contents of the 5250 or 3270 logical unit buffer are to be read,
beginning at buffer location one and continuing until all contents of the buffer
have been read. All character and attribute sequences (including nulls) appear
in the input data stream in the order in which they appear in the 5250 or 3270
buffer.

Note: On 5250 devices the received data is presented to the application in
‘3270 Read Buffer Extended Field Mode’ format. In addition, if the
cursor has been moved by the user since the last SEND command or
RECEIVE command without the BUFFER option, EIBCPOSN will reflect
the cursor position at the time of the command rather than the position
that the user has now moved it to. On 3270 devices the data is passed to
the application without modification and the EIBCPOSN will be set to
the cursor position as returned by the Read Buffer command.

FLENGTH(data-area)
is a fullword alternative to LENGTH(data-area).

INTO(data-area)
specifies the receiving field for the data read from the logical unit.

LENGTH(data-area)
specifies as a halfword binary value the length of the data to be received.

 If you specify the INTO option, but omit the MAXLENGTH option, the
LENGTH argument must be a data area that specifies the maximum length
that the program accepts. If the value specified is less than zero, zero is
assumed. If the length of data exceeds the value specified and the
NOTRUNCATE option is not present, the data is truncated to that value and
the LENGERR condition occurs. When the data has been received, the data
area is set to the original length of data (before any truncation).

 If you specify the SET option, the argument must be a data area. When the
data has been received, the data area is set to the length of the data.

 For a description of a safe upper limit, see “LENGTH options” on page 312.

MAXFLENGTH(data-value)
is a fullword alternative to MAXLENGTH(data-value).

MAXLENGTH(data-value)
specifies as a halfword binary value the maximum amount of data that CICS is
to recover in response to a RECEIVE command. If INTO is specified,
MAXLENGTH overrides the use of LENGTH as an input to CICS. If SET is
specified, MAXLENGTH provides a way for the program to limit the amount
of data that it receives at one time.

Chapter 32. Application programming commands - reference 413

If the length of data exceeds the value specified and the NOTRUNCATE
option is not present, the data is truncated to that value and the LENGERR
condition occurs. The data area specified in the LENGTH option is set to the
original length of data (before any truncation).

 If the length of data exceeds the value specified and the NOTRUNCATE
option is present, CICS retains the remaining data and uses it to satisfy
subsequent RECEIVE commands. The data area specified in the LENGTH
option is set to the length of data returned.

 If MAXLENGTH is omitted, CICS uses the value specified in the LENGTH
option as the maximum length that the program accepts.

NOTRUNCATE
specifies that, when the data available exceeds the length requested, the
remaining data is not to be discarded, but is to be retained for retrieval by
subsequent RECEIVE commands.

SET(ptr-ref)
specifies a pointer reference to be set to the address of the data read from the
terminal or logical unit. The pointer reference, unless changed by other
commands or statements, is valid until the next terminal I/O command or the
end of task.

Exception Conditions
EOC

occurs when no other condition is raised. The EIBEOC field also contains this
indicator.

 Default action: Ignore the condition.

INVREQ
RESP2 values:

200 The command is issued in a DPL server program.

 Default action: Terminate the task abnormally.

LENGERR
occurs in any of the following situations:
v Received data is discarded by CICS because its length exceeds the maximum

that the program accepts (see the LENGTH and MAXLENGTH options), and
the NOTRUNCATE option is not specified.

v An out-of-range value is supplied in the LENGTH, FLENGTH,
MAXLENGTH, or MAXFLENGTH option.

Default action: Terminate the task abnormally.

TERMERR
occurs if there is a terminal-related error.

 Default action: Terminate the task abnormally (with abend code ATNI).

414 CICS for iSeries Application Programming Guide V5

RECEIVE MAP
Receive screen input data from a terminal.

Description
The RECEIVE MAP command receives (maps) screen input data from a terminal
into a data area in an application program. Data can also be received (mapped)
from a data area of a program into which it has previously been read by the
RECEIVE command.

Following a RECEIVE MAP command, the inbound cursor position is placed in
EIBCPOSN, and the terminal attention identifier (AID) is placed in EIBAID.

If the map name is coded as a literal, the INTO and SET options can be omitted
and RECEIVE MAP defaults to using INTO(‘mapnameI’), where ‘mapnameI’ is the
map name suffixed with an “I”, meaning Input.

For further information about RECEIVE MAP, see “Receiving data from a display”
on page 160. See Appendix D, “BMS macro summary,” on page 553 for the map
definition macros.

Options
ASIS

specifies that lowercase characters in the input data stream are not translated
to uppercase; this allows the current task to receive a message containing both
uppercase and lowercase data.

 This option has no effect on the first RECEIVE MAP command of a transaction.
It also has no effect if the screen contains data before a transaction is initiated.
For example, if a transaction is initiated by another transaction, and begins by
receiving data originally output by that transaction, it cannot suppress
uppercase translation on the data. This data is read and translated in
preparation for the next task and the first RECEIVE command in that task
retrieves the translated data.

FROM(data-area)
specifies the data area containing the data to be mapped by a RECEIVE MAP
command. This includes the 12-byte prefix generated by the TIOAPFX=YES
operand of the DFHMSD BMS map definition macro (see page 560).

INTO(data-area)
specifies the data area into which the mapped data is to be written. If the map

�� RECEIVE MAP (name)
MAPSET

(

name

)

INTO

(

data-area

)

SET

(

ptr-ref

)

 �

�

 TERMINAL
ASIS

FROM

(

data-area

)

LENGTH

(

data-value

)

��

Conditions: INVMPSZ, INVREQ, MAPFAIL, NOTAUTH

Chapter 32. Application programming commands - reference 415

name is coded as a literal, and INTO is not specified, the name of the data area
defaults to the name of the map suffixed with an “I”. The data mapped into
the specified area includes the 12-byte prefix generated by TIOAPFX.

LENGTH(data-value)
specifies as a halfword binary value the length of the data to be formatted. It
must not exceed the length of the FROM data area. This should include the
length of the 12-byte prefix generated by the TIOAPFX=YES operand of the
DFHMSD BMS map definition macro (see page 560).

 For a description of a safe upper limit, see “LENGTH options” on page 312.

MAP(name)
specifies the name of the map to be used. The name can be up to 7 characters
long.

MAPSET(name)
specifies either an unsuffixed or a suffixed name of the map set. An unsuffixed
map set name can be up to 7 characters long, and a suffixed map set name can
be from 2 through 8 characters long. The map set must reside in the library
defined in the PPT. If *LIBL is used for the library of the map set, the map set
must reside in the library list of the control region where the map is being
used. If the MAPSET option is not specified, the name given in the MAP
option is assumed to be that of the map set.

SET(ptr-ref)
specifies a pointer reference to be set to the address of the 12-byte prefix to the
mapped data.

TERMINAL
specifies that input data is to be read from the terminal that originated the
transaction.

Exception Conditions
Some of the following exception conditions may occur in combination with others.
If more than one occurs, only the first is passed to the application program.

EIBRCODE, however, is set to indicate all the conditions that occurred.

INVMPSZ
occurs if the specified map is too wide or too long for the terminal.

 Default action: Terminate the task abnormally.

INVREQ
RESP2 values:

v A RECEIVE MAP command is issued in a nonterminal task; these tasks
do not have a TIOA or a TCTTE.

200 The command is issued in a DPL server program.

 Default action: Terminate the task abnormally.

MAPFAIL
occurs if the data to be mapped has a length of zero or does not contain a
set-buffer-address (SBA) sequence. The receiving data area contains the
unmapped input data stream. The amount of unmapped data moved to the
user’s area is limited to the length specified in the LENGTH option of the
RECEIVE MAP command. The input map is not set to nulls.

416 CICS for iSeries Application Programming Guide V5

This condition occurs if a program issues a RECEIVE MAP command to which
the terminal operator responds by pressing a CLEAR or PA key, or by pressing
ENTER or a PF key without entering data.

 Default action: Terminate the task abnormally.

NOTAUTH
RESP2 values:

70 A resource security check has failed on MAPSET(name).

 Default action: Terminate the task abnormally.

RELEASE
Release a loaded OS/400 *USRSPC object defined to CICS as a program, table, or
mapset.

Description
RELEASE releases an object defined as *USRSPC, previously loaded by a LOAD
command, so long as the use count is zero. The object could be a table or a
mapset. RELEASE decrements the use count by 1.

If the HOLD option is specified in the LOAD command, the loaded resource is not
released at the end of the task. It can only be released by a RELEASE command.
This RELEASE command may be issued by the task that loaded the resource or by
any other task.

If the HOLD option is not specified in the LOAD command, the loaded resource is
released at the end of the task. It may, however, be released before this by the task
that loaded the resource issuing a RELEASE command.

Tasks may not issue a RELEASE request against objects loaded, without the HOLD
option, by other tasks.

Refer to Chapter 20, “Program control,” on page 199 for more information about
this command.

Options
PROGRAM(name)

specifies the identifier (1–8 characters) of a program, table, or mapset to be
released. The specified name must have been defined as a program to CICS.

See

Exception Conditions
INVREQ

RESP2 values:

�� RELEASE PROGRAM (name) ��

Conditions: INVREQ, NOTAUTH, PGMIDERR

Chapter 32. Application programming commands - reference 417

5 The command is issued for the program that contains the RELEASE
command.

6 The command is issued for a program that is not loaded.

7 The command is issued for a program that was loaded, without the
HOLD option, by another task.

 Default action: terminate the task abnormally.

NOTAUTH
occurs when a resource security check has failed on PROGRAM(name).

 Default action: terminate the task abnormally.

PGMIDERR
RESP2 values:

1 A program, table, or mapset does not have an installed resource
definition.

2 A program, table, or mapset is disabled.

3 A program, table, or mapset cannot be loaded.

9 The installed program definition is for a remote program.

 Default action: terminate the task abnormally.

Examples
The following example shows how to release an application program, called
PROG4, loaded in response to a LOAD command:

RESETBR
Specify where you want a browse to be repositioned.

EXEC CICS RELEASE PROGRAM(’PROG4’)

��

RESETBR
 (1)

FILE

(

name

)

RIDFLD

(

data-area

)

�

�
KEYLENGTH

(

data-value

)

GENERIC

RBA

RRN

REQID

(

data-value

)

SYSID

(

name

)

 �

�
 GTEQ

EQUAL

��

Notes:

1 DATASET is also accepted, but FILE is the preferred term (see “DATASET option” on page 311).

Conditions: FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ, NOTAUTH, NOTFND, SYSIDERR

418 CICS for iSeries Application Programming Guide V5

Description
The RESETBR command specifies, during a browse, the record in a file, where you
want the browse to be repositioned. The file may be on a local or a remote system.

When browsing a file, you can use this command not only to reposition the browse
(which can be achieved more simply by modifying the RIDFLD data area on a
READNEXT or READPREV command), but also to change its characteristics from
those specified on the previous STARTBR command, without ending the browse.
The characteristics that may be changed are those specified by the GENERIC and
GTEQ options. The RBA and RRN characteristics must not be changed by the
RESETBR command.

Options
EQUAL

specifies that the search is satisfied only by a record having the same key
(complete or generic) as that specified in the RIDFLD option.

FILE(name)
specifies the name of the file to be accessed. The name must be alphanumeric,
up to 8 characters long, and must have been defined in the file control table
(FCT) unless the SYSID option specifies a remote system.

 If a nonlocal SYSID is specified, the underlying file is assumed to be on a
remote system irrespective of whether the name is defined in the local FCT.
Otherwise, the FCT entry is used to determine whether the underlying file is
on a local or a remote system.

GENERIC
specifies that the search key is a generic key whose length is specified in the
KEYLENGTH option. Use this option only with a KSDS or a path over a KSDS
or ESDS. The search for a record is satisfied when a record is found that has
the same starting characters (generic key) as those specified.

GTEQ
specifies that if the search for a record having the same key (complete or
generic) as that specified in the RIDFLD option is unsuccessful, the first record
having a greater key satisfies the search. Use this option only with a KSDS or a
path over a KSDS or ESDS.

KEYLENGTH(data-value)
specifies as a halfword binary value the length of the key supplied in the
RIDFLD option. If a specified KEYLENGTH value differs from the length
defined for the underlying file and the operation is not generic, the INVREQ
condition occurs.

 The INVREQ condition also occurs if you specify GENERIC, and the
KEYLENGTH value is not less than that defined for the file.

 If KEYLENGTH(0) is used with the object of positioning to the first record in
the file, the GTEQ option must also be specified; otherwise, the NOTFND
condition may occur.

 Note that GTEQ is the default for RESETBR.

RBA
specifies that the record identification field specified in the RIDFLD option
contains a relative byte address. Use this option only when browsing an ESDS
directly. The RIDFLD value can be from 0 upward.

Chapter 32. Application programming commands - reference 419

REQID(data-value)
specifies as a halfword binary value a unique request identifier for the browse;
it is used to control multiple browse operations on a file. If this option is not
specified, a default value of zero is assumed.

RIDFLD(data-area)
specifies the record identification field. The contents can be a key, a relative
byte address, or a relative record number. For a relative byte address or a
relative record number, the format of this field must be fullword binary.

RRN
specifies that the record identification field specified in the RIDFLD option
contains a relative record number. Use this option only when browsing an
RRDS. The RIDFLD value can be from 1 upward.

SYSID(name)
specifies the name of the system to which the request is directed. The name
can be up to 4 characters long.

 If you specify SYSID, and omit both RBA and RRN, you must also specify
KEYLENGTH; it cannot be found in the FCT.

Exception Conditions

Note: RESP2 values are not set for files that are on remote systems.

FILENOTFOUND
RESP2 values:

1 The name specified in the FILE option cannot be found in the FCT.

 Default action: Terminate the task abnormally.

ILLOGIC
RESP2 values:

110 There is an error that does not fall within one of the other CICS
response categories. (Further information is available in the EIBRCODE
field; refer to Appendix A, “EXEC interface block,” on page 529 for
details.)

 Default action: Terminate the task abnormally.

INVREQ
RESP2 values:

25 The KEYLENGTH and GENERIC options are specified, and the length
specified in the KEYLENGTH option is greater than or equal to the
length of a full key.

26 The KEYLENGTH option is specified (but the GENERIC option is not
specified), and the specified length differs from the length defined for
the underlying file.

36 A RESETBR command is issued for a file for which no previous
STARTBR command has been successfully issued.

42 The KEYLENGTH and GENERIC options are specified, and the length
specified in the KEYLENGTH option is less than zero.

 Default action: Terminate the task abnormally.

420 CICS for iSeries Application Programming Guide V5

IOERR
RESP2 values:

120 There is an I/O error during the file control operation. An I/O error is
any unusual event that is not covered by a CICS exception condition.

 (Further information is available in the EIBRCODE field; refer to
Appendix A, “EXEC interface block,” on page 529 for details.)

 Default action: Terminate the task abnormally.

ISCINVREQ
RESP2 values:

70 The remote system indicates a failure that does not correspond to a
known condition.

 Default action: Terminate the task abnormally.

NOTAUTH
RESP2 values:

101 A resource security check has failed on FILE(name).

 Default action: Terminate the task abnormally.

NOTFND
RESP2 values:

80 An attempt to retrieve a record based on the search argument provided
is unsuccessful.

 NOTFND can also occur if a generic RESETBR with KEYLENGTH(0)
specifies the EQUAL option.

 Default action: Terminate the task abnormally.

SYSIDERR
RESP2 values:

130 The SYSID option specifies either a name that is not defined in the
terminal control system table (TCS), or a system to which the link is
closed.

 Default action: Terminate the task abnormally.

RETRIEVE
Retrieve data stored for a task.

�� RETRIEVE
INTO

(

data-area

)

SET

(

ptr-ref

)

LENGTH

(

data-area

)

RTRANSID

(

data-area

)

 �

�
RTERMID

(

data-area

)

QUEUE

(

data-area

)

WAIT

 ��

Conditions: ENDDATA, ENVDEFERR, INVREQ, IOERR, LENGERR, NOTFND

Chapter 32. Application programming commands - reference 421

Description
The RETRIEVE command retrieves data stored by expired START commands. It is
the only method available for accessing such data.

You can use the RTRANSID, RTERMID, and QUEUE options to retrieve further
data stored by expired START commands. These options can contain arbitrary data
values whose meanings depend on what you have specified in the starting and
started tasks. For further information, see the START command on page 445.

A task that is not associated with a terminal can access only the single data record
associated with the original START command; it does so by issuing a RETRIEVE
command. The storage occupied by the data associated with the task is released on
execution of the RETRIEVE command, or on termination of the task if no
RETRIEVE command is executed prior to termination.

A task that is associated with a terminal can access all data records associated with
all expired START commands having the same transaction identifier and terminal
identifier as this task, that is the task issuing the RETRIEVE command; it does so
by issuing consecutive RETRIEVE commands. Expired data records are presented
to the task on request in expiration-time sequence, starting with any data stored by
the command that started the task, and including data from any commands that
have expired since the task started. Each data record is retrieved from temporary
storage using the REQID of the original START command as the identification of
the record in temporary storage.

When all expired data records have been retrieved, the ENDDATA condition
occurs. The storage occupied by the single data record associated with a START
command is released after the data has been retrieved by a RETRIEVE command;
any storage occupied by data that has not been retrieved is released when the
CICS system is terminated.

Options
INTO(data-area)

specifies the user data area into which retrieved data is to be written.

LENGTH(data-area)
specifies a halfword binary value to define the length of the data area the
retrieved data is written into.

 If you specify the INTO option, the argument must be a data area that specifies
the maximum length of data that the program is prepared to handle. If the
value specified is less than zero, zero is assumed. If the length of the data
exceeds the value specified, the data is truncated to that value and the
LENGERR condition occurs. On completion of the retrieval operation, the data
area is set to the original length of the data.

 If you specify the SET option, the argument must be a data area. On
completion of the retrieval operation, the data area is set to the length of the
data.

 For a description of a safe upper limit, see “LENGTH options” on page 312.

QUEUE(data-area)
specifies the 8-character area for the temporary storage queue name that may
be accessed by the transaction issuing the RETRIEVE command.

422 CICS for iSeries Application Programming Guide V5

RTERMID(data-area)
specifies a 4-character area that can be used in the TERMID option of a START
command that may be executed subsequently.

RTRANSID(data-area)
specifies a 4-character area that can be used in the TRANSID option of a
START command that may be executed subsequently.

SET(ptr-ref)
specifies the pointer reference to be set to the address of the retrieved data.

WAIT
specifies that, if all expired data records have already been retrieved, the task
is to be put into a wait state until further expired data records become
available. Although this means that the ENDDATA condition is not raised at
the time the RETRIEVE command is issued, it is raised later if CICS enters
shutdown or if the task is subject to deadlock time-out and it waits for longer
than the deadlock time-out interval. (See the DTIMOUT option of RDO
DEFINE TRANSACTION.)

 An attempt to issue RETRIEVE WAIT during shutdown leads to an AICB
abend if there is no data record already available to satisfy the request.

Exception Conditions
ENDDATA

occurs in any of the following situations:
v No more data is stored for the task issuing a RETRIEVE command. It can be

considered a normal end-of-file response when retrieving data records
sequentially.

v The RETRIEVE command is issued by a task that is started by a START
command that did not specify any of the data options FROM, RTRANSID,
RTERMID, or QUEUE.

v The RETRIEVE command is issued by a nonterminal task that was not
created as a result of a START command.

v WAIT was specified and the task was waiting for a data record but none
became available before the deadlock time-out (see the WAITTIME option of
the transaction definition).

v WAIT was specified and the task was waiting when CICS entered shutdown.
An attempt to issue RETRIEVE WAIT during shutdown leads to an AICB
abend if there is no data record already available to satisfy the request.

Default action: terminate the task abnormally.

ENVDEFERR
occurs when a RETRIEVE command specifies an option not specified by the
corresponding START command.

 Default action: terminate the task abnormally.

INVREQ
occurs if the RETRIEVE command is not valid for processing by CICS.

 Default action: terminate the task abnormally.

IOERR
occurs if an input/output error occurs during a RETRIEVE operation. The
operation can be retried by reissuing the RETRIEVE command.

 Default action: terminate the task abnormally.

Chapter 32. Application programming commands - reference 423

LENGERR
occurs if the length specified is less than the actual length of the stored data.

 Default action: terminate the task abnormally.

NOTFND
occurs in any of the following situations:
v A RETRIEVE command is issued, but some prior task retrieved the data

stored under the request identifier directly through temporary storage
requests and then released the data.

v The request identifier associated with the START command is not unique, so
when a RETRIEVE command is issued, CICS cannot find the data.

Default action: terminate the task abnormally.

Examples
The following example shows how to retrieve data stored by a START command
for the task, and store it in the user-supplied data area called DATAFLD.

The following example shows how to request retrieval of a data record stored for a
task into a data area provided by CICS; the pointer reference (PREF) specified by
the SET option is set to the address of the storage area reserved for the data
record.

RETURN
Return control from an application program either to an application program at the
next higher logical level or to CICS.

Description
The RETURN command returns control from an application program either to an
application program at the next higher logical level or to CICS.

EXEC CICS RETRIEVE
 INTO(DATAFLD)
 LENGTH(LENG)

EXEC CICS RETRIEVE
 SET(PREF)
 LENGTH(LENG)

�� RETURN �

�
TRANSID

(

name

)

COMMAREA

(

data-area

)

IMMEDIATE

LENGTH

(

data-value

)

 �

�
INPUTMSG

(

data-area

)

INPUTMSGLEN

(

data-value

)

 ��

Conditions: INVREQ, LENGERR

424 CICS for iSeries Application Programming Guide V5

The LENGTH option specifies the length of the data to be passed. The LENGTH
value being passed must not be greater than the length of the data area specified
in the COMMAREA option; otherwise the results are unpredictable. This may
result in a LENGERR condition, as described in “Passing data to other programs”
on page 201.

The valid range for the COMMAREA length is 0 through 32 763 bytes. If the length
provided is outside this range, the LENGERR condition occurs. The COMMAREA
and IMMEDIATE options can be used only when the EXEC CICS RETURN
command is returning control to CICS; otherwise, the INVREQ condition occurs.

No resource security checking occurs on the RETURN TRANSID command.
However, transaction security checking is still available when CICS attaches the
returned transaction.

See Chapter 20, “Program control,” on page 199 for more information about
program control.

Options
COMMAREA(data-area)

specifies a communication area that is to be made available to the next
program that receives control. In a COBOL receiving program, you must give
this data area the name DFHCOMMAREA. Because the data area is freed
before the next program starts, a copy of the data area is created and a pointer
to the copy is passed. In a C receiving program, this data area must be
referenced by an EXEC CICS ADDRESS COMMAREA command.

 The specified communication area is passed to the initial program of the next
transaction that runs at the terminal. To ensure that the communication area is
passed to the correct program, include the IMMEDIATE option.

 This option is valid only on an EXEC CICS RETURN command issued by a
program at the highest logical level, that is, a program returning control to
CICS.

 If you have defined the terminal with ATISTS(*YES) in the ADDCICSTCT CL
command, the next program is not guaranteed to be part of the transaction
specified by TRANSID. It could be part of a transaction started by a previously
specified automatic transaction initiation (ATI) that has already been passed to
that program. To make sure that the communication area is passed to the
correct program, either define the terminal with ATISTS(*NO) (indicating no
ATI) in the ADDCICSTCT CL command, or use the IMMEDIATE option.

IMMEDIATE
ensures that the transaction specified in the TRANSID option is attached as the
next transaction regardless of any other transactions enqueued by ATI for this
terminal. The next transaction starts immediately and appears to the operator
as having been started by terminal data. If the terminal is using bracket
protocol, the terminal is also held in bracket. This option is valid only on an
EXEC CICS RETURN command issued by a program at the highest logical
level, that is a program returning control to CICS.

INPUTMSG(data-area)
specifies data to be passed either to another transaction, identified by the
TRANSID option, or to a calling program in a multiprogram transaction.

 The data in the INPUTMSG data area is passed to the first program to issue an
EXEC CICS RECEIVE command following the RETURN.

Chapter 32. Application programming commands - reference 425

See Chapter 20, “Program control,” on page 199 for more information and
illustrations about the use of INPUTMSG.

INPUTMSGLEN(data-value)
specifies as a halfword binary value the length of the INPUTMSG data. If the
value is negative, zero is assumed.

LENGTH(data-value)
specifies as a halfword binary value the length in bytes of the communication
area. If a negative value is supplied, zero is assumed. For a description of a
safe upper limit, see “LENGTH options” on page 312.

TRANSID(name)
specifies the transaction identifier to be used with the next input message
entered from the terminal with which the task that issued the RETURN
command has been associated. The specified name can be up to 4 characters
long and must have been defined as a transaction to CICS.

 If the terminal is defined with ATISTS(*YES) in the ADDCICSTCT CL
command, and the IMMEDIATE option is not specified, a transaction started
by ATI may be run before the next transaction started by terminal input. If this
happens, and the transaction identifier of the transaction started by ATI is the
same as that specified in the TRANSID option, CICS assumes that the
transaction started by ATI performs the same function and erases the “name”
specified in the TRANSID option.

 This option is not valid if the transaction issuing the RETURN command is not
associated with a terminal, or is associated with an APPC logical unit.

Exception Conditions
INVREQ

RESP2 values:

1 A RETURN command with the TRANSID option is issued in a
program that is not associated with a terminal.

2 A RETURN command with the COMMAREA or IMMEDIATE option is
issued in a program that is not at the highest logical level.

3 A RETURN command is issued with a null address in the
COMMAREA option.

4 A RETURN command with the TRANSID option is issued in a
program that is associated with an APPC logical unit.

8 A RETURN command is issued in a program that is not associated
with a terminal.

200 A RETURN command is issued with an INPUTMSG option in a
program invoked by DPL.

 Default action: terminate the task abnormally.

LENGERR

v The length specified on the LENGTH option is greater than the length
of the data area specified in the COMMAREA option, and while that
data was being copied a destructive overlap occurred because of the
incorrect length.

v The LENGTH value is outside the range 1 through 32 763.

v The INPUTMSGLEN value is outside the range 1 through 32 767.

426 CICS for iSeries Application Programming Guide V5

v INPUTMSG is supplied with a null address.

 Default action: Terminate the task abnormally.

REWRITE
Update a record in a file.

Description
The REWRITE command updates a record in a file on a local or a remote system.
You must always precede this command with a READ UPDATE to read the record
to be updated.

Any key embedded in the record of the physical file should not be changed.

Refer to Chapter 10, “File control,” on page 115 for more information about this
command.

Options
FILE(name)

specifies the name of the file to be accessed. The name must be alphanumeric,
up to 8 characters long, and must have been defined in the file control table
(FCT) unless the SYSID option specifies a remote system.

 If a nonlocal SYSID is specified, the underlying file is assumed to be on a
remote system irrespective of whether the name is defined in the local FCT.
Otherwise, the FCT entry is used to determine whether the underlying file is
on a local or a remote system.

FROM(data-area)
specifies the record to be written to the file.

LENGTH(data-value)
specifies as a halfword binary value the length of the record to be written.

 If SYSID is specified, LENGTH must be coded. You must also specify this
option for a file defined as containing variable-length records. It need not be
specified if the file contains fixed-length records, but its inclusion is
recommended because it causes a check to be made to ensure that the length
of data being written is equal to that defined for the file. If the lengths are not
equal, the LENGERR condition occurs.

��

REWRITE
 (1)

FILE

(

name

)

FROM

(

data-area

)

LENGTH

(

data-value

)

�

�
SYSID

(

name

)

 ��

Notes:

1 DATASET is also accepted, but FILE is the preferred term (see “DATASET option” on page 311).

Conditions: DUPREC, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ, LENGERR, NOSPACE,
NOTAUTH, SYSIDERR

Chapter 32. Application programming commands - reference 427

SYSID(name)
specifies the name of the system to which the request is directed. The name
can be up to 4 characters long.

 If you specify SYSID, you must also specify LENGTH; it cannot be found in
the FCT.

Exception Conditions

Note: RESP2 values are not set for files that are on remote systems.

DUPREC
RESP2 values:

150 The record to be written contains a key that is the same as the key of a
record already in the file, and the file accepts only unique keys. The
key may be a primary key of a KSDS or an alternate key of a logical
view of a file.

 Default action: Terminate the task abnormally.

FILENOTFOUND
RESP2 values:

1 The name specified in the FILE option cannot be found in the FCT.

 Default action: Terminate the task abnormally.

ILLOGIC
RESP2 values:

110 There is an error that does not fall within one of the other CICS
response categories. (Further information is available in the EIBRCODE
field; refer to Appendix A, “EXEC interface block,” on page 529 for
details.)

 Default action: Terminate the task abnormally.

INVREQ
RESP2 values:

30 A REWRITE command is issued for a file that has not had a previous
READ UPDATE successfully issued.

 Default action: Terminate the task abnormally.

IOERR
RESP2 values:

120 There is an I/O error during the file control operation. An I/O error is
any unusual event that is not covered by a CICS exception condition.

 (Further information is available in the EIBRCODE field; refer to
Appendix A, “EXEC interface block,” on page 529 for details.)

 Default action: Terminate the task abnormally.

ISCINVREQ
RESP2 values:

70 The remote system indicates a failure that does not correspond to a
known condition.

428 CICS for iSeries Application Programming Guide V5

Default action: Terminate the task abnormally.

LENGERR
RESP2 values:

10 The LENGTH option is not specified for a file with variable-length
records.

12 The length specified exceeds the maximum record size; the record is
truncated.

14 An incorrect length is specified for a file with fixed-length records.

 Default action: Terminate the task abnormally.

NOSPACE
RESP2 values:

100 No space is available on the disk for adding the updated record to the
file

 Default action: Terminate the task abnormally.

NOTAUTH
RESP2 values:

101 A resource security check has failed on FILE(name).

 Default action: Terminate the task abnormally.

SYSIDERR
RESP2 values:

130 The SYSID option specifies either a name that is not defined in the
terminal control system table (TCS), or a system to which the link is
closed.

 Default action: Terminate the task abnormally.

Examples
For example:

EXEC CICS REWRITE
 FROM(RECORD)
 FILE(’MASTER’)
 LENGTH(RLENGTH) ...

Chapter 32. Application programming commands - reference 429

SEND (APPC)
Send data and control information to a conversation partner in an APPC
conversation.

Description
The SEND command sends data and control information to a conversation partner
in an APPC conversation.

See part 3 of CICS/400 Intercommunication for more information.

Options
CONFIRM

indicates that an application using a sync level 1 or 2 conversation requires a
response from the remote application. A remote CICS application can respond
positively by executing an ISSUE CONFIRMATION command; or negatively
by executing an ISSUE ERROR command, in which case the sending
application has EIBERR and EIBERRCD set. CICS does not return control to
the sending application until the response is received.

CONVID(name)
identifies the conversation to which the command relates. The 4-character
name identifies the token returned by a previously executed ALLOCATE
command in the EIBRSRCE field of the EIB. If this option is omitted, the
principal facility for the task is used by default.

FLENGTH(data-value)
is a fullword alternative to LENGTH(data-value).

FROM(data-area)
specifies the data to be sent to a partner transaction. This option may be
omitted if INVITE, LAST, CONFIRM, or WAIT is specified.

INVITE
sets change direction (CD) on the next flow.

LAST
specifies that this is the last SEND command for a transaction.

LENGTH(data-value)
specifies as a halfword binary value the length of the data to be sent.

STATE(cvda)
gets the state of the current conversation. For a complete list of the CVDA
values that can be returned on APPC commands and for information about
receiving and testing these values, see “CICS-value data areas (CVDAs)” on
page 309.

�� SEND
CONVID

(

name

)

FROM

(

data-area

)

LENGTH

(

data-value

)

FLENGTH

(

data-value

)

 �

�
INVITE

LAST

CONFIRM

WAIT

STATE

(

cvda

)

 ��

Conditions: INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

430 CICS for iSeries Application Programming Guide V5

WAIT
specifies that processing of the command must be completed before any
subsequent processing is attempted.

 If the WAIT option is not specified, control is returned to the application
program when processing of the command has started. A subsequent input or
output request (terminal control or BMS) to the terminal associated with the
task causes the application program to wait until the previous request has been
completed.

Exception Conditions
INVREQ

RESP2 values:

v The CONFIRM option has been specified, but the APPC conversation
is not sync level 1.

 The CONVID value was obtained by an ASSIGN FACILITY command.
However, the principal facility is not an APPC conversation.

200 The SEND (APPC) command is issued in a DPL server program and
refers to the principal facility.

 Default action: Terminate the task abnormally.

LENGERR
occurs if an out-of-range value is specified for the LENGTH or FLENGTH
option.

 Default action: Terminate the task abnormally.

NOTALLOC
occurs if the specified CONVID value does not relate to a conversation owned
by the application.

 Default action: Terminate the task abnormally.

SIGNAL
occurs if an inbound SIGNAL data-flow control command has been received
from a logical unit or session.

 Default action: Ignore the condition.

TERMERR
occurs if there is a session-related error. Any action on that conversation other
than a FREE command causes an ATCV abend.

 Default action: Terminate the task abnormally (with abend code ATNI).

Chapter 32. Application programming commands - reference 431

SEND (SCS)
Write data to a 3270 SCS printer logical unit.

Description
The SCS printer logical unit accepts a character string as defined by the Systems
Network Architecture (SNA).

See Chapter 14, “Terminal control,” on page 169 for more information about this
command.

Options
CNOTCOMPL (ignored by CICS/400)

indicates that the request/response unit (RU) sent as a result of this SEND
command does not complete the chain. If this option is omitted and chain
assembly has been specified, the RU terminates the chain.

DEFRESP (ignored by CICS/400)
indicates that a definite response is required when the output operation has
been completed.

FLENGTH(data-value)
is a fullword alternative to LENGTH(data-value).

FROM(data-area)
specifies the data to be written to the logical unit.

INVITE
specifies that the next terminal control command to be executed for this facility
is a RECEIVE. This allows optimal flows to occur.

LAST (ignored by CICS/400)
specifies that this is the last output operation for a transaction and therefore
the end of a bracket.

LENGTH(data-value)
specifies as a halfword binary value the length of the data to be written.

 For a description of a safe upper limit, see “LENGTH options” on page 312.

STRFIELD
specifies that the data area specified in the FROM option contains structured
fields. This option applies to 3270 devices only. When this option is specified,
the contents of all structured fields must be handled by the application
program. (Structured fields are described in the IBM 3270 Information Display
System Data Stream Programmer’s Reference manual.)

WAIT
specifies that processing of the command must be completed before any
subsequent processing is attempted.

�� SEND FROM (data-area) LENGTH (data-value)
FLENGTH

(

data-value

)

WAIT

INVITE

LAST

CNOTCOMPL

DEFRESP

 �

�
STRFIELD

 ��

Conditions: INVREQ, LENGERR, TERMERR

432 CICS for iSeries Application Programming Guide V5

If the WAIT option is not specified, control is returned to the application
program when processing of the command has started. A subsequent input or
output request (terminal control or BMS) to the terminal associated with the
task causes the application program to wait until the previous request has been
completed.

Exception Conditions
INVREQ

RESP2 values:

200 The command is issued in a DPL server program.

 Default action: Terminate the task abnormally.

LENGERR
occurs if an out-of-range value is supplied in the LENGTH or FLENGTH
option.

 Default action: Terminate the task abnormally.

TERMERR
occurs if there is a terminal-related error.

 Default action: Terminate the task abnormally (with abend code ATNI).

SEND (5250 or 3270 logical)
Write (or send) data to a 3270 or 5250 display.

Description
The SEND (5250 or 3270 logical) command writes (or sends) data to a 3270 or 5250
display.

See Chapter 14, “Terminal control,” on page 169 for more information about this
command.

Options
CTLCHAR(data-value)

specifies a 1-byte write control character (WCC) that controls a SEND
command for a terminal. A COBOL user must specify a data area containing
this character. If the option is omitted, all modified data tags are reset to zero
and the keyboard is restored.

�� SEND FROM (data-area) LENGTH (data-value)
FLENGTH

(

data-value

)

WAIT

INVITE

LAST

 �

�
ERASE

CTLCHAR

(

data-value

)

STRFIELD

DEFRESP

 ��

Conditions: INVREQ, LENGERR, TERMERR

Chapter 32. Application programming commands - reference 433

DEFRESP (ignored by CICS/400)
indicates that a definite response is required when the output operation has
been completed.

ERASE
specifies that the screen is to be erased and the cursor returned to the upper
left corner of the screen before writing occurs.

 Normally, ERASE should be specified in the first output command of a
transaction. This clears the screen ready for the new output data.

 However, when switching from one screen size to another on a transaction
basis, if ERASE is not specified in the first output command of the transaction,
the screen size is unchanged from its previous setting (that is, the previous
transaction setting, or the default screen size if the CLEAR key has been
pressed).

FLENGTH(data-value)
is a fullword alternative to LENGTH(data-value).

FROM(data-area)
specifies the data to be written to the logical unit.

INVITE
specifies that the next terminal control command to be executed for this facility
is a RECEIVE. This allows optimal flows to occur.

LAST (ignored by CICS/400)
specifies that this is the last output operation for a transaction and therefore
the end of a bracket.

LENGTH(data-value)
specifies as a halfword binary value the length of the data to be written.

 For a description of a safe upper limit, see “LENGTH options” on page 312.

STRFIELD
specifies that the data area specified in the FROM option contains structured
fields. This option is valid for 3270 devices only. When this option is specified,
the contents of all structured fields must be handled by the application
program. (Structured fields are described in the IBM 3270 Information Display
System Data Stream Programmer’s Reference manual.) CTLCHAR and ERASE are
mutually exclusive with STRFIELD, and their use with STRFIELD generates an
error message.

WAIT
specifies that processing of the command must be completed before any
subsequent processing is attempted.

 If the WAIT option is not specified, control is returned to the application
program when processing of the command has started. A subsequent input or
output request (terminal control or BMS) to the terminal associated with the
task causes the application program to wait until the previous request has been
completed.

Exception Conditions
INVREQ

RESP2 values:

200 The command is issued in a DPL server program.

 Default action: Terminate the task abnormally.

434 CICS for iSeries Application Programming Guide V5

LENGERR
occurs if an out-of-range value is supplied in the LENGTH or FLENGTH
option.

 Default action: Terminate the task abnormally.

TERMERR
occurs if there is a terminal-related error.

 Default action: Terminate the task abnormally (with abend code ATNI).

SEND CONTROL
Send device controls to a terminal without map or text data.

Description
The SEND CONTROL command sends device controls to a terminal without map
or text data.

For further information about SEND CONTROL, see “Sending data to a display
device” on page 155.

Options
ALARM

specifies that the audible alarm feature is to be activated.

CURSOR(data-value)
specifies as a halfword binary value the position to which the cursor is to be
returned on completion of a SEND CONTROL command.

 The supplied value gives the cursor position relative to zero; the range of
possible values depends on the size of the screen being used.

 The value specified in the CURSOR option must be positive. A negative value
leads to unpredictable results.

 If this option is omitted, the cursor is positioned at position zero of the screen.

ERASE
specifies that the screen printer buffer is to be erased and the cursor returned
to the upper left corner of the screen. The first output operation in any
transaction, or in a series of pseudoconversational transactions, should always
specify ERASE. For transactions attached to 3270 or 5250 screens or printers,
this also ensures that the correct screen size is selected, as defined for the
transaction using the ADDCICSPCT CL command. This command is described
in the CICS/400 Administration and Operations Guide.

ERASEAUP
specifies that all unprotected character locations on the entire screen are to be
erased.

�� SEND CONTROL
CURSOR

(

data-value

)

FORMFEED

ERASE

ERASEAUP

PRINT

 �

�
FREEKB

ALARM

FRSET

 ��

Conditions: INVREQ

Chapter 32. Application programming commands - reference 435

FORMFEED
specifies that a new page is required. The FORMFEED character is positioned
at the start of the display or printer buffer. The application program must
ensure that this buffer position is not overwritten by map or text data.

FREEKB
specifies that the 3270 keyboard is to be unlocked. If FREEKB is omitted, the
keyboard remains locked. This option has no effect on 5250 keyboards.

FRSET
specifies that the modified data tags (MDTs) of all fields currently in the screen
buffer are to be reset to the not-modified condition (that is, field reset).

 This allows the ATTRB operand of the DFHMDF macro for the next requested
map to control the final status of fields written or rewritten in response to a
BMS command, if no other attribute information has been written in the
symbolic map.

PRINT
specifies that a print operation is to be started at a 3270 or SCS printer, or that
data on a 3270 display is to be printed on a printer allocated by the controller.

Exception Conditions
INVREQ

RESP2 values:

200 The command is issued in a DPL server program.

 Default action: Terminate the task abnormally.

SEND MAP
SEND MAP sends output data to a terminal.

Description
SEND MAP sends output data to a terminal.

When using the SEND MAP command with any of the ALARM, FREEKB, FRSET,
or PRINT options, refer to the CTRL operand of the DFHMDI macro on page 563
for a description of the option priority.

�� SEND MAP (name)
MAPSET

(

name

)

 �

�
FROM

(

data-area

)

LENGTH

(

data-value

)

DATAONLY

MAPONLY

 �

�
CURSOR

(

data-value

)

FORMFEED

ERASE

ERASEAUP

PRINT

FREEKB

ALARM

 �

�
FRSET

WAIT

 ��

Conditions: INVMPSZ, INVREQ, NOTAUTH

436 CICS for iSeries Application Programming Guide V5

For further information about SEND MAP, see “Sending data to a display device”
on page 155.

See Appendix D, “BMS macro summary,” on page 553 for the map definition
macros.

Options
ALARM

specifies that the audible alarm feature is to be activated.

 When using the ALARM option, refer to the CTRL operand on page 563 for a
description of the option priority.

CURSOR(data-value)
specifies as a halfword binary value the position to which the cursor is to be
returned on completion of a SEND MAP command.

 The supplied value gives the cursor position relative to zero; the range of
possible values depends on the size of the screen being used. If no data value
is specified, symbolic cursor positioning is assumed. See “Cursor positioning”
on page 159 for more information about symbolic cursor positioning.

 This option overrides any IC option of the ATTRB operand of the DFHMDF
macro.

 The value specified in the CURSOR option must be positive. A negative value
leads to unpredictable results.

DATAONLY
specifies that only application program data is to be written. The attribute
characters must be specified for each field in the supplied data. If the attribute
byte in the user-supplied data is set to X'00', the attribute byte on the screen is
unchanged. Any default data or attributes from the map are ignored.

ERASE
specifies that the screen or printer buffer is to be erased and the cursor
returned to the upper left corner of the screen before the map is displayed. The
first output operation in any transaction, or in a series of pseudoconversational
transactions, should always specify ERASE. For transactions attached to 3270
or 5250 screens or printers, this also ensures that the correct screen size is
selected, as defined for the transaction using the ADDCICSPCT CL command.
This command is described in the CICS/400 Administration and Operations Guide.

ERASEAUP
specifies that, before this map is displayed, all unprotected character locations
on the entire screen are to be erased.

FORMFEED
specifies that a new page is required. The FORMFEED character is positioned
at the start of the display or printer buffer. The application program must thus
ensure that this buffer position is not overwritten by map or text data.

FREEKB
specifies that the 3270 keyboard is to be unlocked. If FREEKB is omitted, the
keyboard remains locked. This option has no effect on 5250 keyboards.

 When using the FREEKB option, refer to the CTRL operand on page 563 for a
description of the option priority.

FROM(data-area)
specifies the data area containing the data to be processed. If the FROM and

Chapter 32. Application programming commands - reference 437

MAPONLY options are both omitted, the name of the data area defaults to the
name of the map set suffixed with an O. This includes the 12-byte prefix
generated by the TIOAPFX=YES operand of the DFHMSD BMS map set
definition macro (see page 560).

FRSET
specifies that the modified data tags (MDTs) of all fields currently in the
terminal buffer are to be reset to the not-modified condition (that is, field reset)
before any map data is written to the buffer.

 This allows the ATTRB operand of the DFHMDF macro for the requested map
to control the final status of fields written or rewritten in response to a BMS
command, if no other attribute information has been written in the symbolic
map.

 When using the FRSET option, refer to the CTRL operand on page 563 for a
description of the option priority.

LENGTH(data-value)
specifies as a halfword binary value the length of the data to be formatted.

 If the data area sending the map is longer than the data to be mapped,
LENGTH should be specified. This must include the length of the 12-byte
prefix generated by the TIOAPFX=YES operand of the DFHMSD BMS map
definition macro (see page 560).

 For a description of a safe upper limit, see “LENGTH options” on page 312.

MAP(name)
specifies the name of the map to be used. The name can be up to 7 characters
long.

MAPONLY
specifies that only default data from the map is to be written.

MAPSET(name)
specifies either an unsuffixed or a suffixed name of the map set. An unsuffixed
map set name can be up to 7 characters long, and a suffixed map set name can
be from 2 through 8 characters long. The map set must reside in the user’s
OS/400 library list, and it must be defined using the appropriate program
definition. If the MAPSET option is not specified, the name given in the MAP
option is assumed to be that of the map set.

PRINT
specifies that a print operation is to be started at a 3270 or SCS printer, or that
data on a 3270 display is to be printed on a printer allocated by the controller.
If this option is omitted, the data is sent to the printer buffer but is not printed.

 When using the PRINT option, refer to the CTRL operand on page 563 for a
description of the option priority.

WAIT
specifies that control should not be returned to the application program until
the output operation has been completed.

 If WAIT is not specified, control returns to the application program when the
output operation has started. A subsequent input or output request (terminal
control or BMS) causes the application program to wait until the previous
request has been completed.

438 CICS for iSeries Application Programming Guide V5

Exception Conditions
INVMPSZ

occurs if the specified map is too wide or too long for the terminal.

 Default action: Terminate the task abnormally.

INVREQ
RESP2 values:

v A SEND MAP command is issued for a map without field
specifications by specifying the FROM option without the DATAONLY
option.

200 The command is issued in a DPL server program.

 Default action: Terminate the task abnormally.

NOTAUTH
RESP2 values:

70 A resource security check has failed on MAPSET(name).

 Default action: Terminate the task abnormally.

SEND TEXT
Send text data without mapping.

Description
The SEND TEXT command sends text data without mapping.

The text is split into lines of the same width as the terminal, such that words are
not broken across line boundaries. If the text exceeds a page, it is split into pages
that fit on the terminal with application-defined headers and trailers.

For further information about SEND TEXT, see “Text processing” on page 164.

Options
ALARM

specifies that the audible alarm feature is to be activated.

CURSOR(data-value)
specifies as a halfword binary value the position to which the cursor is to be
returned on completion of a SEND TEXT command.

 The supplied value gives the cursor position relative to zero; the range of
possible values depends on the size of the screen being used.

 The value specified in the CURSOR option must be positive. A negative value
leads to unpredictable results.

�� SEND TEXT FROM (data-area)
LENGTH

(

data-value

)

CURSOR

(

data-value

)

 �

�
FORMFEED

ERASE

PRINT

FREEKB

ALARM

NLEOM

WAIT

 ��

Conditions: INVREQ

Chapter 32. Application programming commands - reference 439

ERASE
specifies that the screen printer buffer is to be erased and the cursor returned
to the upper left corner of the screen before this page of output is displayed.
The first output operation in any transaction, or in a series of
pseudoconversational transactions, should always specify ERASE. For
transactions attached to 3270 or 5250 screens or printers, this also ensures that
the correct screen size is selected, as defined for the transaction using the
ADDCICSPCT CL command. This command is described in the CICS/400
Administration and Operations Guide.

 5250 screens are automatically erased to avoid possible device errors.

FORMFEED
specifies that a new page is required. The FORMFEED character is positioned
at the start of the display or printer buffer. The application program must thus
ensure that this buffer position is not overwritten by the map or text data.

FREEKB
specifies that the 3270 keyboard is to be unlocked. If FREEKB is omitted, the
keyboard remains locked. This option has no effect on 5250 keyboards.

FROM(data-area)
specifies the data area containing the data to be sent.

LENGTH(data-value)
specifies as a halfword binary value the length of the data to be sent. For a
description of a safe upper limit, see “LENGTH options” on page 312.

NLEOM
specifies that data for a 3270 or SCS printer is to be built with blanks and
new-line (NL) characters, and that an end-of-message (EM) character is to be
placed at the end of the data. As the data is printed, each NL character causes
printing to continue on the next line, and the EM character terminates printing.

 This option must be specified in the first SEND TEXT command used to build
a logical message. The option is ignored if the device receiving the message is
not a 3270 or SCS printer.

 The NLEOM option overrides the ALARM option if the latter is present.

PRINT
specifies that a print operation is to be started at a 3270 or SCS printer, or that
data on a 3270 display is to be printed on a printer allocated by the controller.
If this option is omitted, the data is sent to the printer buffer but is not printed.

WAIT
specifies that control should not be returned to the application program until
the output operation has been completed.

 If WAIT is not specified, control returns to the application program when the
output operation has started. A subsequent input or output request (terminal
control or BMS) causes the application program to wait until the previous
request has been completed.

Exception Conditions
INVREQ

RESP2 values:

200 The command is issued in a DPL server program.

 Default action: Terminate the task abnormally.

440 CICS for iSeries Application Programming Guide V5

SPOOLCLOSE
Close a CICS spool report and optionally change its retention characteristics in the
CICS control region.

Description
SPOOLCLOSE closes a CICS spool report and optionally changes its retention
characteristics in the CICS control region.

You must specify either the NOHANDLE option or the RESP and RESP2 options
when you use any of the printer spooling commands. Failure to do so causes your
program to abend with abend code APST.

Refer to Chapter 25, “Printer spooling,” on page 223 for more information about
spooling.

Options
DELETE

specifies that the CICS spool report is to be deleted (that is, purged).

KEEP
specifies that the CICS spool report is to be kept (that is, it remains on the
OS/400 system).

 A default disposition of KEEP is taken if both KEEP and DELETE are omitted
from the SPOOLCLOSE command, or if the report is closed implicitly by an
EXEC CICS SYNCPOINT or EXEC CICS RETURN command.

TOKEN(data-area)
specifies the 8-character token allocated by CICS to identify a spool report.

Exception Conditions
INVREQ

occurs if the specified TOKEN is not a valid token.

 Default action: Terminate the task abnormally.

NOTFND
occurs if the spool file indicated by the TOKEN option is open when the
SPOOLCLOSE command is issued but an external CICS error has occurred
preventing CICS from successfully closing the spool file.

 Default action: Terminate the task abnormally.

NOTOPEN
RESP2 values:

8 The spool file indicated by the TOKEN option is no longer open.

��

SPOOLCLOSE

TOKEN

(

data-area

)

KEEP

DELETE

�

NOHANDLE

RESP

RESP2

��

Conditions: INVREQ, NOTFND, NOTOPEN

Chapter 32. Application programming commands - reference 441

Default action: Terminate the task abnormally.

SPOOLOPEN OUTPUT
Open a CICS spool report.

Description
SPOOLOPEN OUTPUT opens a CICS spool report from the CICS control region to
the OS/400 spooler and defines its characteristics.

It results in a dynamic allocation of the local spool file using the USERID value to
specify the user data. SPOOLOPEN OUTPUT enables users to acquire the token
for a CICS spool report that it expects to create (write). This token is used to
identify the report in later SPOOLWRITE and SPOOLCLOSE commands.

Use the NOCC or ASA options to control output formatting. If a format is not
specified, the default value associated with the local spool files is used.

If a SPOOLCLOSE command is not issued before the end of the CICS transaction,
CICS performs an implicit SPOOLCLOSE KEEP.

When you create the print file on the AS/400, if the data area to be written, using
the EXEC CICS SPOOLWRITE command, will exceed the page width defined by
the print file, you must ensure that you specify option SPOOL(*YES) on the
CRTPRTF command. If you do not, and output is written directly to a printer,
CICS/400 cannot accurately determine whether to fold a data stream over multiple
lines.

You must specify either the NOHANDLE option or the RESP and RESP2 options
when you use any of the printer spooling commands. Failure to do so causes your
program to abend with abend code APST.

See Chapter 25, “Printer spooling,” on page 223 for more information about
spooling.

Options
ASA

specifies that the CICS spool report to be created has each record prefixed with
an ASA carriage-control character, and that this character must be used by the
operating system to control formatting when the report is printed.

�� SPOOLOPEN OUTPUT TOKEN (data-area) USERID (data-value)
CLASS

(

data-value

)

 �

�

NOCC

ASA

PRINT

PUNCH

�

NOHANDLE

RESP

RESP2

��

Conditions: NOTFND, NOTOPEN, OPENERR, SPOLBUSY

442 CICS for iSeries Application Programming Guide V5

CLASS(data-value)
specifies a 1-character CICS class designation. If this option is omitted, class A
is assumed.

NOCC
specifies that the CICS spool report to be created has no internal formatting
controls. When the report is printed, the operating system prefixes each record
with a carriage-control character that causes page skipping according to the
default operating system lines-per-page value.

PRINT
specifies that the CICS spool report is to be produced as a listing. This is the
default setting.

PUNCH
specifies that the CICS spool report is to be produced in card-image format.

TOKEN(data-area)
specifies an 8-character field to receive the token allocated by CICS to identify
the spool report.

USERID(data-value)
specifies a 10-character field that may be used to identify the writer program
or user id that will be used to process the CICS spool report for spooled
records intended for a printer. The report carries this identifier in the user data
area that is used to select the report.

Exception Conditions
NOTFND

RESP2 values:

4 A printer file for the control region and CLASS cannot be found or if
the printer file name contains invalid characters. (The CLASS
designation becomes part of the name of the printer file used.)

 Default action: Terminate the task abnormally.

NOTOPEN
RESP2 values:

8 The spool file indicated by the CLASS option cannot be opened.

 Default action: Terminate the task abnormally.

OPENERR
occurs in any of the following situations:
v The spool file indicated by the CLASS option indicates that output is not to

be spooled, but the printer device to which the output is to be directed is
unavailable at the time the command is issued.

v The number of SPOOLOPEN OUTPUT commands within a single job
exceeds 9 999.

v You do not have the necessary authority to open the printer file

Default action: Terminate the task abnormally.

SPOLBUSY
occurs if there is an error while trying to open the file indicated by the CLASS
and ASA/NOCC options on the command.

 Default action: Terminate the task abnormally.

Chapter 32. Application programming commands - reference 443

SPOOLWRITE
Write data to a CICS spool report.

Description
SPOOLWRITE writes data to a CICS spool report.

You must specify either the NOHANDLE option or the RESP and RESP2 options
when you use any of the printer spooling commands. Failure to do so causes your
program to abend with abend code APST.

See Chapter 25, “Printer spooling,” on page 223 for more information about
spooling.

Options
FLENGTH(data-value)

specifies as a fullword binary value the length of data to be transferred to the
CICS spool report. If this option is omitted, CICS uses the length of the data
area.

FROM(data-area)
specifies the data area from which variable-length data is transferred. The data
itself is not altered in any way by CICS. If the data area exceeds the page
width defined in the AS/400 print file, CICS will fold the data stream over
multiple lines if FOLD(*YES) is specified in the print file definition. CICS can
ascertain this value accurately only if the print file is defined with the option
SPOOL(*YES).

TOKEN(data-area)
specifies the 8-character token allocated by CICS to identify a spool report.

Exception Conditions
LENGERR

occurs in either of these situations:
v The value specified in the FLENGTH option is less than one or greater than

the allowed maximum of 32760. The RESP2 field returns a zero value.
v The value specified in the FLENGTH option is greater than the line length

specified for the OS/400 printer file, and the FOLD option for this file is set
to *NO. CICS truncates the data to the length of the line and returns the
number of characters lost through truncation in RESP2.

�� SPOOLWRITE TOKEN (data-area) FROM (data-area)
FLENGTH

(

data-value

)

 �

�

�

NOHANDLE

RESP

RESP2

��

Conditions: LENGERR, NOTOPEN, SPOLERR

444 CICS for iSeries Application Programming Guide V5

Default action: Terminate the task abnormally.

NOTOPEN
RESP2 values:

8 The spool file indicated by the TOKEN option is not open when the
SPOOLWRITE is issued.

 Default action: Terminate the task abnormally.

SPOLERR
occurs if an I/O error has been detected by the OS/400 data management
modules, preventing successful completion of the request.

 Default action: Terminate the task abnormally.

START
Start task at a specified time.

Description
START starts a task, on a local or remote system, at a specified time. The time is
specified by INTERVAL, AFTER, AT or TIME.

The starting task may pass data to the started task. This data must not contain any
pointers. The starting task may also specify a terminal to be used by the started
task as its principal facility.

The default is INTERVAL(0), but for ILE C the default is AFTER HOURS(0)
MINUTES(0) SECONDS(0).

��

START

TRANSID

(

name

)

�

�

 INTERVAL (0)

INTERVAL

(

hhmmss

)

TIME

(

hhmmss

)

AFTER

HOURS

(

data-value

)

MINUTES

(

data-value

)

SECONDS

(

data-value

)

AT

HOURS

(

data-value

)

MINUTES

(

data-value

)

SECONDS

(

data-value

)

REQID

(

name

)

�

�
FROM

(

data-area

)

LENGTH

(

data-value

)

TERMID

(

name

)

 �

�
SYSID

(

systemname

)

RTRANSID

(

name

)

RTERMID

(

name

)

 �

�
QUEUE

(

name

)

NOCHECK

PROTECT

 ��

Conditions: INVREQ, IOERR, ISCINVREQ, LENGERR, NOTAUTH, SYSIDERR, TERMIDERR, TRANSIDERR

Chapter 32. Application programming commands - reference 445

Note that CEDF is an exception to the START command and is not valid as a
TRANSID name. You should therefore not attempt to start CEDF in this way.

You can use the RTRANSID, RTERMID, and QUEUE options to pass further data
to the started task. These options can contain arbitrary data values whose
meanings depend on what you have specified in the started and starting tasks.
One possible way of using them is in the following situation. One task can start a
second task, passing it a transaction name and a terminal name to be used when
the second task starts a third task. The first task may also pass the name of a
queue to be accessed by the second task. If you choose to use QUEUE to pass the
name of a temporary storage queue on which to store data to a started transaction,
it must not be the same as the name you specified in REQID, if used.

One or more constraints have to be satisfied before the transaction to be executed
can be started, as follows:
v The specified interval must have elapsed or the specified expiration time must

have been reached. (For more information, see Chapter 18, “Interval control,” on
page 193.) The INTERVAL or AFTER options should be specified when a
transaction is to be executed on a remote system; this avoids complications
arising when the local and remote systems are in different time zones.

v If the TERMID option is specified, the named terminal must exist and be
available. If the named terminal does not exist when the time interval expires,
the START is discarded.

v If the PROTECT option is specified, the starting task must have taken a
successful syncpoint. This option, coupled to extensions to system tables,
reduces the exposure to lost or duplicated data caused by failure of a starting
task.

v If the transaction to be executed is on a remote system, the format of the data
must be declared to be the same as that at the local system. the RDO options
DATASTREAM and RECORDFORMAT, or DATASTR and RECFM on the
terminal control table TYPE=SYSTEM.

Execution of a START command naming a transaction in the local system cancels
any outstanding POST commands executed by the starting task.

START commands are queued by means of the transaction definition created using
the ADDCICSPCT CL command, as described in the CICS for iSeries Administration
and Operations Guide.

If data is to be passed by interval control (using the FROM option), it is queued on
a temporary storage queue. The REQID option allows you to specify the name of
the temporary storage queue to be used. This identifier may be recoverable (in
temporary storage terms) or nonrecoverable.

If you also specify the PROTECT option, the temporary storage queue identified
by the REQID option should be defined as recoverable. If you do not specify the
PROTECT option, the temporary storage queue should not be defined as
recoverable. Unpredictable results can occur if these rules are not followed.

The NOCHECK option specifies that no response (to execution of the START
command) is expected by the starting transaction. For START commands naming
tasks to be started on a local system, error conditions are returned; error conditions
are not returned for tasks to be started on a remote system. The NOCHECK option
allows CICS to improve performance when the START command has to be

446 CICS for iSeries Application Programming Guide V5

shipped to a remote system; it is also a prerequisite if the shipping of the START
command is queued pending the establishing of links to the remote system.

When a START command is issued against an existing but idle CICS/400 shell, if
the terminal is a 5250 the keyboard locks until the transaction is complete.
However, if the terminal is a 3270, the keyboard does not lock. You should not
enter anything until the transaction has finished running.

Examples

Starting tasks without terminals
If the task to be started is not associated with a terminal, each START command
results in a separate task being started. This happens regardless of whether or not
data is passed to the started task. The following examples show how to start a
specified task, not associated with a terminal, in one hour:

Starting tasks with terminals but without data
Only one task is started if several START commands, each specifying the same
transaction and terminal, expire at the same time or before the terminal is
available. When this happens the error message AEG0815 will appear on the job
log.

The following examples show how to request initiation of a task associated with a
terminal. Because no request identifier is specified in these examples, CICS assigns
one and returns it to the application program in the EIBREQID field of the EXEC
interface block.

Starting tasks with terminals and data
Data is passed to a started task if one or more of the FROM, RTRANSID,
RTERMID, and QUEUE options is specified. Such data is accessed by the started
task by using a RETRIEVE command.

EXEC CICS START
 TRANSID(’TRNL’)
 INTERVAL(10000)
 REQID(’NONGL’) ...
EXEC CICS START
 TRANSID(’TRNL’)
 AFTER HOURS(1)
 REQID(’NONGL’) ...

EXEC CICS START
 TRANSID(’TRN1’)
 TIME(185000)
 TERMID(’STA5’) ...
EXEC CICS START
 TRANSID(’TRN1’)
 AT HOURS(18) MINUTES(50)
 TERMID(’STA5’) ...

Chapter 32. Application programming commands - reference 447

It is possible to pass many data records to a new task by issuing several START
commands, each specifying the same transaction and terminal.

Execution of the first START command ultimately causes the new task to be started
and allows it to retrieve the data specified on the command. The new task is also
able to retrieve data specified on subsequently executed START commands that
expire before the new task is terminated. If such data has not been retrieved before
the new task is terminated, another new task is started and is able to retrieve the
outstanding data. If this second new task fails to retrieve the outstanding data, a
third task is started, and so on, up to a maximum of 5 times, after which the data
is lost.

The following examples show how to start a task associated with a terminal and
pass data to it:

ILE C supports the packed-decimal argument type and, consequently, the use if the
INTERVAL and TIME options. It is recommended, however, that you use the
AFTER and AT options for portability of applications between CICS platforms.

START failures with out exception conditions
There are some circumstances in which a START command is executed without
error, but the started task never takes place:
v When the transaction or its initial program is disabled at the time CICS attempts

to create the task.
v When the START specifies a terminal and an expiration time, and the terminal is

not defined at expiration time.
v When the START specifies a terminal that is not defined at the time CICS

attempts to create the task.

These exposures result from the delay between the execution of the START and the
time of task creation. Even when the START is immediate, CICS may delay
creating the task, either because the required terminal is not free or because of
other system constraints.

You can use INQUIRE commands to ensure that the transaction and program are
enabled at the time of the START command, but either may become disabled
before task creation.

EXEC CICS START
 TRANSID(’TRN2’)
 TIME(173000)
 TERMID(’STA3’)
 REQID(DATAREC)
 FROM(DATAFLD)
 LENGTH(100) ...
EXEC CICS START
 TRANSID(’TRN2’)
 AT HOURS(17) MINUTES(30)
 TERMID(’STA3’)
 REQID(DATAREC)
 FROM(DATAFLD)
 LENGTH(100) ...

448 CICS for iSeries Application Programming Guide V5

You get a TERMIDERR condition if the requested terminal does not exist at the
time of the START, but if it is deleted subsequently, as occurs if the user logs off,
your START request is discarded with the terminal definition.

Refer to Chapter 18, “Interval control,” on page 193 for further information about
Interval Control.

Options
AFTER

specifies the interval of time that is to elapse before the new task is started.

 There are two ways to enter the time under AFTER and AT.
1. A combination of at least two of HOURS(0–99), MINUTES(0–59), and

SECONDS(0–59). HOURS(1) SECONDS(3) would mean one hour and three
seconds (the minutes default to zero).

2. As one of HOURS(0–99), MINUTES(0–5999), or SECONDS(0–359 999).
HOURS(1) means one hour. MINUTES(62) means one hour and two
minutes. SECONDS(3723) means one hour, two minutes, and three seconds.

AT
specifies the time at which the new task is to be started. For the ways to enter
the time, see the AFTER option.

FROM(data-area)
specifies the data to be stored for a task that is to be started at some future
time.

HOURS(data-value)
specifies a fullword binary value in the range 0–99. This is a suboption of the
AFTER and AT options. For its use and meaning, see the AFTER option.

INTERVAL(hhmmss)
specifies the expiration time as an interval of time that is to elapse from the
time at which the START command is issued. The specified interval is added
to the current clock time by CICS to calculate the expiration time. See
Chapter 18, “Interval control,” on page 193 for an explanation of how
expiration times are used within interval control.

 INTERVAL(0) is the default. The maximum permitted INTERVAL value is
995959.

 For compatibility between CICS platforms, it is recommended that the
INTERVAL option is not used in ILE C programs. You should use the AFTER
option instead.

LENGTH(data-value)
specifies a halfword binary data value that is the length of the data to be
stored for the new task.

MINUTES(data-value)
specifies as a fullword binary value the number of minutes for use in
conjunction with AFTER or AT. The value must be in the range 0 through 59 if
HOURS or SECONDS is also specified, or in the range 0 through 5999
otherwise. This is a suboption of the AFTER and AT options. For its use and
meaning, see the AFTER option.

NOCHECK
specifies that, for a remote system, CICS should improve performance of the
START command by providing less error checking and slightly less function.

Chapter 32. Application programming commands - reference 449

For more information, see the section about improving the performance of
intersystem START requests in the CICS for iSeries Intercommunication book.

PROTECT
specifies that the new task is not started until the starting task has taken a
syncpoint. If the starting task abends before the syncpoint is taken, the request
to start the new task is canceled. The PROTECT option also causes the start
request entry to be held on the TS/TD recoverable file. If the REQID option is
also specified, the request identifier should be a name defined as recoverable to
temporary storage. If the started transaction is remote, PROTECT specifies that
it must not be scheduled until the local transaction has successfully completed
a syncpoint. For more information about the PROTECT option with remote
transactions, see the CICS for iSeries Intercommunication book name defined as
recoverable to temporary storage.

QUEUE(name)
specifies the name (1–8 characters) of a temporary storage queue that may be
used by the started transaction.

 If you are also specifying REQID, make sure that the name of the REQID and
the name of the QUEUE are not the same.

REQID(name)
specifies a name (1–8 characters), which must be unique, to identify a
command. This option can be used when another task is to be provided with
the capability of canceling an unexpired command.

 If this option is omitted, CICS generates a unique request identifier in the
EIBREQID field of the EXEC interface block, unless the NOCHECK option is
specified, in which case field EIBREQID is set to nulls and cannot be used
subsequently to cancel the START command.

 If you include any of the data options (FROM, RTERMID, RTRANSID or
QUEUE), the data is stored in a TS queue using the REQID name specified (or
CICS generated) as the identifier. The temporary storage queue must be a local
queue on the CICS system where the command is processed, and if the start is
protected (using the PROTECT option), it should be defined as recoverable in
the TST on that system. The START command is processed on the system
identified by the SYSID option or, if the SYSID option is omitted, on the
system associated with the TRANSID option. If the same REQID name is
specified on multiple START commands (that is, it is not unique) there may be
unexpected consequences such as:
v Multiple commands are established which can only be canceled in ‘time

expiry’ order, each requiring a separate CANCEL command.
v The data (if any) from each START command is added to the same

temporary storage queue in the order that the START commands are issued
rather than in ‘time expiry’ order, possibly resulting in a mismatch between
the START command and its data.

RTERMID(name)
specifies a value (1–4 characters), for example a terminal name, that may be
retrieved when the transaction, specified in the TRANSID option in the START
command, is started.

 When retrieved, the value may be used in the TERMID option of a subsequent
START command.

450 CICS for iSeries Application Programming Guide V5

RTRANSID(name)
specifies a value (1–4 characters), for example a transaction name, that may be
retrieved when the transaction, specified in the TRANSID option in the START
command, is started.

 When retrieved, the value may be used in the TRANSID option of a
subsequent START command.

SECONDS(data-value)
specifies a fullword binary value in the range 0–59, when HOURS or
MINUTES are also specified, or 0–359 999 when SECONDS is the only option
specified. This is a suboption of the AFTER and AT options. For its use and
meaning, see the AFTER option.

SYSID(systemname)
specifies the name of the system to which the request is directed.

TERMID(name)
specifies the symbolic identifier (1–4 alphanumeric characters) of the principal
facility associated with a transaction to be started as a result of a START
command. This principal facility can be either a terminal (the usual case) or an
APPC session. Where an APPC session is specified, the connection (or
modeset) name is used instead of a terminal identifier. This option is required
when the transaction to be started must communicate with a terminal; it
should be omitted otherwise.

 The terminal identifier must be defined as either a local or a remote terminal
on the system in which the START command is executed, when the start of the
transaction takes effect.

TIME(hhmmss)
specifies the time when a new task should be started.

 For compatibility between CICS platforms, it is recommended that the
INTERVAL option is not used in ILE C programs. You should use the AFTER
option instead.

TRANSID(name)
specifies the symbolic identifier of the transaction to be executed by a task
started as the result of a START command. The name can be up to 4 characters
long and must have been defined in the program control table (PCT) unless the
SYSID option specifies a remote system.

 If a nonlocal SYSID is specified, the transaction is assumed to be on a remote
system irrespective of whether the name is defined in the local PCT. Otherwise,
the PCT entry is used to determine whether the transaction is on a local or a
remote system.

Exception Conditions
INVREQ

RESP2 values:

4 Hours out of range.

5 Minutes out of range.

6 Seconds out of range.

 also occurs (RESP2 not set) in any of the following situations:
v The START command is not valid for processing by CICS.

Chapter 32. Application programming commands - reference 451

Default action: terminate the task abnormally.

IOERR
occurs in any of the following situations:
v An input/output error occurred during a START operation.
v A START operation attempts to write to a queue when the queue is full.

Default action: terminate the task abnormally.

ISCINVREQ
occurs when the remote system indicates a failure that does not correspond to
a known condition.

 Default action: terminate the task abnormally.

LENGERR
occurs if LENGTH is not greater than zero.

 Default action: terminate the task abnormally.

NOTAUTH
occurs in any of the following situations:
v The user is not authorized to use the temporary storage auxiliary file.

Default action: terminate the task abnormally.

SYSIDERR
occurs if the SYSID option specifies either a name that is not defined in the
terminal control system table (TCS), or a system to which the link is closed.

 Default action: terminate the task abnormally.

TERMIDERR
occurs if the terminal identifier in a START command cannot be found in the
terminal control table.

 Default action: terminate the task abnormally.

TRANSIDERR
occurs if the transaction identifier specified in a START command cannot be
found in the program control table.

 Default action: terminate the task abnormally.

STARTBR
Specify where in a file you want a browse to start.

452 CICS for iSeries Application Programming Guide V5

Description
The STARTBR command specifies the record in a file on a local or a remote
system, where you want a browse to start. No records are read until a READNEXT
command or a READPREV command is executed.

A browse operation may be:
v A direct browse of a KSDS by record key.
v A direct browse of an ESDS by relative byte address (RBA).
v A direct browse of an RRDS by relative record number (RRN).
v A browse of a KSDS using an alternate index path.
v A browse of an ESDS using an alternate index path. In this case, an ESDS is

browsed by key in the same way as a KSDS. Some of the options that are not
valid for a direct ESDS browse are valid for an alternate index browse.

The options specified on the STARTBR command define the characteristics that
apply throughout the subsequent browse operation. Specifically, if GENERIC or
GTEQ are specified, they are used not only when determining the starting point of
the browse, but also whenever the value of RIDFLD is changed before issuing a
READNEXT or READPREV command. Neither of these options may be changed
during a browse, except by means of the RESETBR command.

If you specify the RBA option, it applies to every READNEXT or READPREV
command in the browse, and causes CICS to return the relative byte address of
each retrieved record. The RBA and RRN options cannot be changed during a
browse.

Refer to Chapter 10, “File control,” on page 115 for more information.

��

STARTBR
 (1)

FILE

(

name

)

RIDFLD

(

data-area

)

�

�
KEYLENGTH

(

data-value

)

GENERIC

RBA

RRN

REQID

(

data-value

)

SYSID

(

name

)

 �

�
GTEQ

EQUAL

 ��

Notes:

1 DATASET is also accepted, but FILE is the preferred term (see “DATASET option” on page 311).

Conditions: DISABLED, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ, NOTAUTH, NOTFND,
NOTOPEN, SYSIDERR

Chapter 32. Application programming commands - reference 453

Options
EQUAL

specifies that the search is satisfied only by a record having the same key
(complete or generic) as that specified in the RIDFLD option. EQUAL is the
default for an ESDS browse.

FILE(name)
specifies the name of the file to be accessed. The name must be alphanumeric,
up to 8 characters long, and must have been defined in the file control table
(FCT) unless the SYSID option specifies a remote system.

 If a nonlocal SYSID is specified, the underlying file is assumed to be on a
remote system irrespective of whether the name is defined in the local FCT.
Otherwise, the FCT entry is used to determine whether the underlying file is
on a local or a remote system.

GENERIC
specifies that the search key is a generic key whose length is specified in the
KEYLENGTH option. Use this option only with a KSDS or a path over a KSDS
or ESDS. The search for a record is satisfied when a record is found that has
the same starting characters (generic key) as those specified.

GTEQ
specifies that if the search for a record having the same key (complete or
generic) as that specified in the RIDFLD option is unsuccessful, the first record
having a greater key satisfies the search. Use this option only with a KSDS or a
path over a KSDS or ESDS. GTEQ is the default for a KSDS browse.

KEYLENGTH(data-value)
specifies as a halfword binary value the length of the key supplied in the
RIDFLD option. If a specified KEYLENGTH value differs from the length
defined for the underlying file and the operation is not generic, the INVREQ
condition occurs.

 INVREQ also occurs if you specify GENERIC, and the KEYLENGTH value is
not less than that defined for the file.

 If KEYLENGTH(0) is used with the object of positioning on the first record in
the file, the GTEQ option must also be specified; otherwise, the NOTFND
condition may occur.

RBA
specifies that the record identification field specified in the RIDFLD option
contains a relative byte address. Use this option only when browsing an ESDS
directly. The RIDFLD value can be from 0 upward.

REQID(data-value)
specifies as a halfword binary value a unique request identifier for the browse;
it is used to control multiple browse operations on a file. If this option is not
specified, a default value of zero is assumed.

RIDFLD(data-area)
specifies the record identification field. The contents can be a key, a relative
byte address, or a relative record number. For a relative byte address or a
relative record number, the format of this field must be fullword binary.

RRN
specifies that the record identification field specified in the RIDFLD option
contains a relative record number. Use this option only when browsing an
RRDS. The RIDFLD value can be from 1 upward.

454 CICS for iSeries Application Programming Guide V5

SYSID(name)
specifies the name of the system to which the request is directed. The name
can be up to 4 characters long.

 If you specify SYSID, and omit both RBA and RRN, you must also specify
KEYLENGTH; it cannot be found in the FCT.

Exception Conditions

Note: RESP2 values are not set for files that are on remote systems.

DISABLED
RESP2 values:

50 A file is disabled. A file may be disabled because:
v It was initially defined as disabled and has not since been enabled.
v It has been disabled by an EXEC CICS SET FILE command.
v It has been disabled by the CEMT transaction.

 Default action: Terminate the task abnormally.

FILENOTFOUND
RESP2 values:

1 The name specified in the FILE option cannot be found in the FCT.

 Default action: Terminate the task abnormally.

ILLOGIC
RESP2 values:

110 There is an error that does not fall within one of the other CICS
response categories.

 (Further information is available in the EIBRCODE field; refer to
Appendix A, “EXEC interface block,” on page 529 for details.)

 Default action: Terminate the task abnormally.

INVREQ
RESP2 values:

20 Browse operations are not allowed according to the file entry
specification in the FCT.

25 The KEYLENGTH and GENERIC options are specified, and the length
specified in the KEYLENGTH option is greater than or equal to the
length of a full key.

26 The KEYLENGTH option is specified (but the GENERIC option is not
specified), and the specified length differs from the length defined for
the underlying file.

33 An attempt is made to start a browse with a REQID already in use for
another browse.

42 The KEYLENGTH and GENERIC options are specified, and the length
specified in the KEYLENGTH option is less than zero.

 Default action: Terminate the task abnormally.

Chapter 32. Application programming commands - reference 455

IOERR
RESP2 values:

120 There is an I/O error during the file control operation. An I/O error is
any unusual event that is not covered by a CICS exception condition.

 (Further information is available in the EIBRCODE field; refer to
Appendix A, “EXEC interface block,” on page 529 for details.)

 Default action: Terminate the task abnormally.

ISCINVREQ
RESP2 values:

70 The remote system indicates a failure that does not correspond to a
known condition.

 Default action: Terminate the task abnormally.

NOTAUTH
RESP2 values:

101 A resource security check has failed on FILE(name).

 Default action: Terminate the task abnormally.

NOTFND
RESP2 values:

80 An attempt to position on a record based on the search argument
provided is unsuccessful.

 NOTFND can also occur if a generic STARTBR with KEYLENGTH(0)
specifies the EQUAL option.

 Default action: Terminate the task abnormally.

NOTOPEN
RESP2 values:

60 One of the following has occurred:
v The requested file is CLOSED and UNENABLED. The CLOSED,

UNENABLED state is reached after a CLOSE request has been
received against an OPEN ENABLED file and the file is no longer in
use.

v The requested file is OPEN and ENABLED and in use by other
transactions, but a CLOSE request against the file has been received.

 This condition does not occur if the request is made to either a CLOSED,
ENABLED file or a CLOSED, DISABLED file. In the first case, the file is
opened as part of executing the request. In the second case, the DISABLED
condition occurs.

 Default action: Terminate the task abnormally.

SYSIDERR
RESP2 values:

130 The SYSID option specifies either a name that is not defined in the
terminal control system table (TCS), or a system to which the link is
closed.

456 CICS for iSeries Application Programming Guide V5

Default action: Terminate the task abnormally.

SUSPEND
Suspend a task.

Description
On other CICS platforms, SUSPEND relinquishes control to a task of higher or
equal dispatching priority. Control is returned to the task issuing the command as
soon as no other task of a higher or equal priority is ready to be processed.

Note: In CICS/400 this is a no-operation. It is retained for portability with other
CICS platforms.

SYNCPOINT
Establish a syncpoint.

Description
SYNCPOINT divides a task (usually a long-running one) into smaller logical units
of work. It specifies that all changes to recoverable resources made by the task
since its last syncpoint are to be committed.

See Chapter 8, “Recovery considerations,” on page 105 for further information.

Exception Conditions
INVREQ

RESP2 values:

200 The SYNCPOINT command is issued in a DPL server program and
SYNCONRETURN was not specified on the corresponding LINK
command, or the SYNCPOINT command is issued from a program
defined with APISET(DPLSUBSET) in the PPT.

 Default action: terminate the task abnormally.

ROLLEDBACK
occurs when a SYNCPOINT command is driven into rollback by a remote
system that is unable to commit the syncpoint. All changes made to
recoverable resources in the current logical unit of work are backed out.

 Default action: terminate the task abnormally.

��
 (1)

SUSPEND

��

Notes:

1 Command is accepted but ignored by CICS/400.

�� SYNCPOINT ��

Conditions: INVREQ, ROLLEDBACK

Chapter 32. Application programming commands - reference 457

SYNCPOINT ROLLBACK
Back out to last syncpoint.

Description
All changes to recoverable resources made by the task since its last syncpoint are
backed out.

This command can be used, for example, to tidy up in a HANDLE ABEND
routine, or to revoke database changes after the application program finds
irrecoverable errors in its input data.

If the LUW updates remote recoverable resources using an APPC session, the
rollback is propagated to the back-end transaction.

When a distributed transaction processing conversation is in use, the remote
application program has the EIB fields EIBSYNRB, EIBERR, and EIBERRCD set.
For the conversation to continue, the remote application program must execute a
SYNCPOINT ROLLBACK command.

When the mirror transaction is involved in the LUW using an APPC session, the
mirror honors the rollback request, revokes changes, and then terminates normally.

See Chapter 8, “Recovery considerations,” on page 105 for further information.

Exception Conditions
INVREQ

RESP2 value:

200 The SYNCPOINT command is issued in a DPL server program and
SYNCONRETURN was not specified on the corresponding LINK
command, or the SYNCPOINT command is issued from a program
defined with APISET(DPLSUBSET) in the PPT.

 Default action: terminate the task abnormally.

UNLOCK
Release exclusive control.

�� SYNCPOINT ROLLBACK ��

Condition: INVREQ

��

UNLOCK
 (1)

FILE

(

name

)

SYSID

(

name

)

��

Notes:

1 DATASET is also accepted, but FILE is the preferred term (see “DATASET option” on page 311).

Conditions: DISABLED, FILENOTFOUND, ILLOGIC, IOERR, ISCINVREQ, NOTAUTH, NOTOPEN, SYSIDERR

458 CICS for iSeries Application Programming Guide V5

Description
UNLOCK releases the exclusive control established in response to a READ
command with the UPDATE option. You use it if you retrieve a record for update,
and decide that you do not want to update the record after all. For a recoverable
file, however, the resource remains locked until either a SYNCPOINT command is
executed or the task is terminated. The file may be on a local or a remote system.

You can also use this command to terminate a WRITE MASSINSERT (emulated
VSAM) operation that has been function shipped to a non-CICS/400 system.

Options
FILE(name)

specifies the name of the file to be released. The name must be alphanumeric,
up to 8 characters long, and must have been defined in the file control table
(FCT) unless the SYSID option specifies a remote system.

 If a nonlocal SYSID is specified, the underlying file is assumed to be on a
remote system irrespective of whether the name is defined in the local FCT.
Otherwise, the FCT entry is used to determine whether the underlying file is
on a local or a remote system.

SYSID(name)
specifies the name of the system to which the request is directed. The name
can be up to 4 characters long.

Exception Conditions

Note: RESP2 values are not set for files that are on remote systems.

DISABLED
RESP2 values:

50 A file is disabled. A file may be disabled because:
v It was initially defined as disabled and has not since been enabled.
v It has been disabled by an EXEC CICS SET FILE command.
v It has been disabled by the CEMT transaction.

 This condition cannot occur when the UNLOCK follows a successful READ
UPDATE command or a WRITE MASSINSERT (emulated VSAM) operation.

 Default action: Terminate the task abnormally.

FILENOTFOUND
RESP2 values:

1 The name specified in the FILE option cannot be found in the FCT.

 Default action: Terminate the task abnormally.

ILLOGIC
RESP2 values:

110 There is an error that does not fall within one of the other CICS
response categories.

 (Further information is available in the EIBRCODE field; refer to
Appendix A, “EXEC interface block,” on page 529 for details.)

Chapter 32. Application programming commands - reference 459

Default action: Terminate the task abnormally.

IOERR
RESP2 values:

120 There is an I/O error during the file control operation. An I/O error is
any unusual event that is not covered by a CICS exception condition.

 (Further information is available in the EIBRCODE field; refer to
Appendix A, “EXEC interface block,” on page 529 for details.)

 Default action: Terminate the task abnormally.

ISCINVREQ
RESP2 values:

70 The remote system indicates a failure that does not correspond to a
known condition.

 Default action: Terminate the task abnormally.

NOTAUTH
RESP2 values:

101 A resource security check has failed on FILE(name).

 Default action: Terminate the task abnormally.

NOTOPEN
RESP2 values:

60 One of the following has occurred:
v The requested file is CLOSED and UNENABLED. The CLOSED,

UNENABLED state is reached after a CLOSE request has been
received against an OPEN ENABLED file and the file is no longer in
use.

v The requested file is OPEN and UNENABLED and in use by other
transactions, but a CLOSE request against the file has been received.

 This condition does not occur if the request is made to either a CLOSED,
ENABLED file or a CLOSED, DISABLED file. In the first case, the file is
opened as part of executing the request. In the second case, the DISABLED
condition occurs.

 It also cannot occur when the UNLOCK follows a successful READ UPDATE
command or a WRITE MASSINSERT (emulated VSAM) operation.

 Default action: Terminate the task abnormally.

SYSIDERR
RESP2 values:

130 The SYSID option specifies either a name that is not defined in the
terminal control system table (TCS), or a system to which the link is
closed.

 Default action: Terminate the task abnormally.

460 CICS for iSeries Application Programming Guide V5

WAIT CONVID
Ensure accumulated data is transmitted on an APPC conversation.

Description
WAIT CONVID allows an application program to ensure that any accumulated
application data and control indicators from a SEND command or the results of a
CONNECT PROCESS command are transmitted to the partner transaction.

See part 3 of CICS/400 Intercommunication for more information.

Options
CONVID(name)

identifies the conversation to which the command relates. The 4-character
name identifies the token returned by a previously executed ALLOCATE
command in the EIBRSRCE field of the EIB.

STATE(cvda)
gets the state of the current conversation. For a complete list of the CVDA
values that can be returned on APPC commands and for information about
receiving and testing these values, see “CICS-value data areas (CVDAs)” on
page 309.

Exception Conditions
INVREQ

RESP2 values:

v The CONVID value was obtained by an ASSIGN FACILITY command.
However, the principal facility is not an APPC conversation.

200 The command is issued in a DPL server program and refers to the
principal facility.

 Default action: Terminate the task abnormally.

NOTALLOC
occurs if the specified CONVID value does not relate to a conversation owned
by the application.

 Default action: Terminate the task abnormally.

WAIT EVENT
Wait for an event to occur.

�� WAIT CONVID (name)
STATE

(

cvda

)

 ��

Conditions: INVREQ, NOTALLOC

�� WAIT EVENT ECADDR (ptr-value) ��

Condition: INVREQ

Chapter 32. Application programming commands - reference 461

Description
WAIT EVENT synchronizes a task with the completion of an event initiated by the
same task or by another task. The event would normally be the posting, at the
expiration time, of a timer-event control area provided in response to a POST
command, as described in “POST” on page 387. The WAIT EVENT command
provides a method of directly relinquishing control to some other task until the
event being waited on is completed.

See Chapter 18, “Interval control,” on page 193 for more information.

Options
ECADDR(ptr-value)

specifies the address of the timer-event control area that must be posted before
task activity can be resumed.

Exception Conditions
INVREQ

RESP2 values:

0 A task is already waiting for this event.

2 The address specified for the timer event control area is zero or null.

 Default action: terminate the task abnormally.

Examples
The following example shows you how to suspend the processing of a task until
the specified event control area is posted:

WAIT JOURNALNUM
Synchronize with journal output.

Description
On other CICS platforms, WAIT JOURNALNUM synchronizes the task with the
output of one or more journal records that have been created but whose output
has been deferred; that is, with asynchronous journal output requests.

Notes:

1. This is a no-operation for CICS/400. It is retained for portability with other
CICS platforms.

2. The WAIT JOURNAL command, with the JFILEID option in place of
JOURNALNUM but with all other options the same as on the WAIT
JOURNALNUM command, is supported for compatibility purposes.

EXEC CICS WAIT EVENT ECADDR(PVALUE)

�� WAIT JOURNALNUM (data-value)
WAIT JOURNAL JFILEID

(

data-value

)

REQID

(

data-value

)

STARTIO

 ��

462 CICS for iSeries Application Programming Guide V5

Options
JOURNALNUM(data-value)

specifies as a halfword binary value in the range 1 through 99 the number to
be taken as the journal identifier.

REQID(data-value)
specifies as a fullword binary value a number that identifies the journal record
that has been created but possibly not yet written out. If REQID is not
specified, the task is synchronized with the output of the last record created for
the journal specified by JOURNALNUM.

STARTIO
specifies that output of the journal record is to be initiated immediately.

WRITE
Write a record.

Description
The WRITE command writes a new record to a file on a local or a remote system.
For an emulated VSAM ESDS, the record is always added at the end of the file.
CICS/400 does not use the identification field specified in RIDFLD when
calculating the RBA of the new record, but the new RBA is returned to the
application in the record identification field specified in the RIDFLD option; that is,
when RBA is specified, RIDFLD is an output field only.

For an emulated VSAM KSDS, the record is added in the logical location specified
by the associated key; this location may be anywhere in the file.

Records for an ESDS or a KSDS can be either fixed-length or variable-length; those
for an RRDS must be fixed-length. MASSINSERT operations must proceed with
ascending keys, and (when function shipped to a non-CICS/400 system) must be
terminated by an UNLOCK before any other request to the same file.

See Chapter 10, “File control,” on page 115 for more information.

Options
FILE(name)

specifies the name of the file to be accessed. The name must be alphanumeric,

��

WRITE
 (1)

FILE

(

name

)

FROM

(

data-area

)

LENGTH

(

data-value

)

�

� RIDFLD (data-area)
KEYLENGTH

(

data-value

)

RBA

RRN

SYSID

(

name

)

MASSINSERT

 ��

Notes:

1 DATASET is also accepted, but FILE is the preferred term (see “DATASET option” on page 311).

Conditions: DISABLED, DUPREC, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ, LENGERR,
NOSPACE, NOTAUTH, NOTOPEN, SYSIDERR

Chapter 32. Application programming commands - reference 463

up to 8 characters long, and must have been defined in the file control table
(FCT) unless the SYSID option specifies a remote system.

 If a nonlocal SYSID is specified, the underlying file is assumed to be on a
remote system irrespective of whether the name is defined in the local FCT.
Otherwise, the FCT entry is used to determine whether the underlying file is
on a local or a remote system.

FROM(data-area)
specifies the record to be written to the file.

KEYLENGTH(data-value)
specifies as a halfword binary value the length of the key supplied in the
RIDFLD option. You must code KEYLENGTH if you are also using SYSID,
unless you are using RBA or RRN.

 If a specified KEYLENGTH value differs from the length defined for the
underlying file, the INVREQ condition occurs.

LENGTH(data-value)
specifies as a halfword binary value the length of the record to be written.

 If SYSID is specified, LENGTH must be coded. You must also specify this
option for a file defined as containing variable-length records. It need not be
specified if the file contains fixed-length records, but its inclusion is
recommended because it causes a check to be made to ensure that the length
of data being written is equal to that defined for the file. If the lengths are not
equal, the LENGERR condition occurs.

MASSINSERT
specifies that the WRITE command is part of a mass-insert operation, that is, a
series of WRITE commands each specifying MASSINSERT. This option is
passed to remote systems, but is a no-operation within CICS/400.

 Use of the MASSINSERT option also prevents a nonrecoverable file from being
closed in response to a SET FILE CLOSED command, until either an UNLOCK
command is issued or a syncpoint is taken.

RBA
specifies that the record identification field specified in the RIDFLD option
contains a relative byte address. Use this option only when writing directly to
an ESDS. On completion of the WRITE command, the RIDFLD data area
contains the relative byte address of the record that was written.

RIDFLD(data-area)
specifies the record identification field. The contents can be a key, a relative
byte address, or a relative record number. For a relative byte address or a
relative record number, the format of this field must be fullword binary.

 OS/400 keyed files work with keys embedded in the data record, and
CICS/400 makes no use of RIDFLD when writing to keyed files. However, if
compatibility with VSAM KSDS files is important, RIDFLD must reference a
duplicate of the key that is expressed in the data record.

RRN
specifies that the record identification field specified in the RIDFLD option
contains a relative record number. Use this option only when writing to an
RRDS. The RIDFLD value can be from 1 upward.

SYSID(name)
specifies the name of the system to which the request is directed. The name
can be up to 4 characters long.

464 CICS for iSeries Application Programming Guide V5

If you specify SYSID, and omit both RBA and RRN, you must also specify
LENGTH and KEYLENGTH; they cannot be found in the FCT.

Exception Conditions

Note: RESP2 values are not set for files that are on remote systems.

DISABLED
RESP2 values:

50 A file is disabled. A file may be disabled because:
v It was initially defined as disabled and has not since been enabled.
v It has been disabled by an EXEC CICS SET FILE command.
v It has been disabled by the CEMT transaction.

 Default action: Terminate the task abnormally.

DUPREC
RESP2 values:

150 The record to be written contains a key that is the same as the key of a
record already in the file, and the file accepts only unique keys. The
key may be a primary key of a KSDS or an alternate key of a logical
view of a file.

 Default action: Terminate the task abnormally.

FILENOTFOUND
RESP2 values:

1 The name specified in the FILE option cannot be found in the FCT.

 Default action: Terminate the task abnormally.

ILLOGIC
RESP2 values:

110 There is an error that does not fall within one of the other CICS
response categories.

 (Further information is available in the EIBRCODE field; refer to
Appendix A, “EXEC interface block,” on page 529 for details.)

 Default action: Terminate the task abnormally.

INVREQ
RESP2 values:

20 Add operations are not allowed according to the file entry specification
in the FCT.

26 The KEYLENGTH option is specified, and the specified length differs
from the length defined for the underlying file.

29 Following a READ UPDATE command for a file, a WRITE command is
issued for a file referring to the same underlying file before exclusive
control is released by a REWRITE, UNLOCK, or DELETE command.

 Default action: Terminate the task abnormally.

IOERR
RESP2 values:

Chapter 32. Application programming commands - reference 465

120 There is an I/O error during the file control operation. An I/O error is
any unusual event that is not covered by a CICS exception condition.

 (Further information is available in the EIBRCODE field; refer to
Appendix A, “EXEC interface block,” on page 529 for details.)

 Default action: Terminate the task abnormally.

ISCINVREQ
RESP2 values:

70 The remote system indicates a failure that does not correspond to a
known condition.

 Default action: Terminate the task abnormally.

LENGERR
RESP2 values:

12 The length specified for the write operation exceeds the maximum
record size; the record is truncated.

14 An incorrect length is specified for a write operation involving
fixed-length records.

 Default action: Terminate the task abnormally.

NOSPACE
RESP2 values:

100 No space is available on the direct access device for adding records to
a file.

 Default action: Terminate the task abnormally.

NOTAUTH
RESP2 values:

101 A resource security check has failed on FILE(name).

 Default action: Terminate the task abnormally.

NOTOPEN
RESP2 values:

60 One of the following has occurred:
v The requested file is CLOSED and UNENABLED. The CLOSED,

UNENABLED state is reached after a close request has been received
against an OPEN ENABLED file and the file is no longer in use.

v The requested file is OPEN and UNENABLED and in use by other
transactions, but a close request against the file has been received.

This condition does not occur if the request is made to either a
CLOSED, ENABLED file or a CLOSED, DISABLED file. In the first
case, the file is opened as part of executing the request. In the second
case, the DISABLED condition occurs.

 Default action: Terminate the task abnormally.

SYSIDERR
RESP2 values:

466 CICS for iSeries Application Programming Guide V5

130 The SYSID option specifies either a name that is not defined in the
terminal control system table (TCS), or a system to which the link is
closed.

 Default action: Terminate the task abnormally.

Examples
For example:

WRITE JOURNALNUM
Create a journal record.

Description
WRITE JOURNALNUM creates a journal record.

Note: The JOURNAL command, with the JFILEID option in place of
JOURNALNUM but with all other options the same as on the WRITE
JOURNALNUM command, is supported for compatibility purposes.

Within CICS/400, the request is a synchronous output request. The WAIT,
STARTIO, and NOSUSPEND options are accepted by the API translator, but are
ignored at execution time.

See Chapter 8, “Recovery considerations,” on page 105 for more information about
journaling.

EXEC CICS WRITE
 FROM(RECORD)
 LENGTH(DATLEN)
 FILE(’MASTER’)
 RIDFLD(KEYFLD) ...

�� WRITE JOURNALNUM (data-value)
JOURNAL JFILEID

(

data-value

)

 JTYPEID (data-value) FROM (data-area) �

�
LENGTH

(

data-value

)

REQID

(

data-area

)

 �

�
PREFIX

(

data-value

)

PFXLENG

(

data-value

)

(1)

STARTIO

(1)

WAIT

 �

�
(1)

NOSUSPEND

 ��

Notes:

1 Ignored by CICS/400.

Conditions: IOERR, JIDERR, LENGERR, NOJBUFSP, NOTAUTH, NOTOPEN

Chapter 32. Application programming commands - reference 467

Options
FROM(data-area)

specifies the user data to be built into the journal record.

JOURNALNUM(data-value)
specifies as a halfword binary value in the range 1 through 99 the number to
be taken as the journal identifier (as used in the JCT.)

JTYPEID(data-value)
specifies a 2-character identifier to be placed in the journal record to identify
its origin.

LENGTH(data-value)
specifies as a halfword binary value the length in bytes of the user data to be
built into the journal record. The minimum value is 0, and the maximum value
is (buffer size−72) minus PFXLENG.

NOSUSPEND
This option is accepted but is ignored by CICS/400.

PFXLENG(data-value)
specifies as a halfword binary value the length in bytes of the user prefix data
to be included in the journal record. The minimum value is 0 and the
maximum value is (buffer size−72) minus LENGTH.

PREFIX(data-value)
specifies the user prefix data to be included in the journal record.

REQID(data-area)
specifies a fullword binary field to receive a number that identifies the journal
record being created by its position in the journal.

STARTIO
This option is accepted but is ignored by CICS/400.

WAIT
This option is accepted but is ignored by CICS/400.

Exception Conditions
IOERR

occurs if the physical output of a journal record was not accomplished because
of an irrecoverable I/O error.

 Default action: Terminate the task abnormally.

JIDERR
occurs if the specified journal identifier does not exist in the journal control
table (JCT).

 Default action: Terminate the task abnormally.

LENGERR
occurs if the computed length for the journal record exceeds the total buffer
space allocated for the journal, as specified in the JCT entry for the journal, or
if the length specified for the prefix or for the data is negative.

 Default action: Terminate the task abnormally.

NOJBUFSP
occurs if the journal file is full and the journal is defined as nonswitchable.

468 CICS for iSeries Application Programming Guide V5

Default action: Suspend task activity until the journal request can be satisfied.
CICS ensures that both buffers are written out to auxiliary storage, thus freeing
them for new records.

NOTAUTH
occurs if a resource security check has failed on JOURNALNUM(data-value).

 Default action: Terminate the task abnormally.

NOTOPEN
occurs if the journal command cannot be satisfied because the specified journal
is not open.

 Default action: Terminate the task abnormally.

Examples
The following example shows how to request journal output:

WRITEQ TD
Write data to a transient data queue.

Description
The WRITEQ TD command writes data to a transient data queue (predefined
symbolic destination).

The data must not contain any pointers.

See Chapter 23, “Transient data control,” on page 215 for more information.

Options
FROM(data-area)

specifies the data to be written to the transient data queue.

LENGTH(data-value)
specifies as a halfword binary value the length of the data to be written. For a
description of a safe upper limit, see “LENGTH options” on page 312.

EXEC CICS WRITE
 JOURNALNUM(2)
 JTYPEID(’XX’)
 FROM(KEYDATA)
 LENGTH(8)
 PREFIX(PROGNAME)
 PFXLENG(6) ...

�� WRITEQ TD QUEUE (name) FROM (data-area)
LENGTH

(

data-value

)

 �

�
SYSID

(

name

)

 ��

Conditions: DISABLED, INVREQ, IOERR, ISCINVREQ, LENGERR, NOSPACE, NOTAUTH, NOTOPEN, QIDERR,
SYSIDERR

Chapter 32. Application programming commands - reference 469

QUEUE(name)
specifies the symbolic name of the queue to be written to. The name must be
alphanumeric, up to 4 characters long, and must have been defined in the
destination control table (DCT) unless the SYSID option specifies a remote
system.

 If a nonlocal SYSID is specified, the queue is assumed to be on a remote
system irrespective of whether the name is defined in the local DCT.
Otherwise, the DCT entry is used to determine whether the queue is on a local
or a remote system.

SYSID(name)
specifies the name of the system to which the request is directed. The name
can be up to 4 characters long.

Exception Conditions
DISABLED

occurs if the queue has been disabled.

 Default action: Terminate the task abnormally.

INVREQ
occurs if WRITEQ TD names an extrapartition queue that has been opened for
input.

 Default action: Terminate the task abnormally.

IOERR
occurs if there is an I/O error during the transient data operation.

 Default action: Terminate the task abnormally.

ISCINVREQ
occurs if the remote system indicates a failure that does not correspond to a
known condition.

 Default action: Terminate the task abnormally.

LENGERR
occurs in any of the following situations:
v WRITEQ TD names an extrapartition queue and does not specify a length

consistent with the defined file.
v WRITEQ TD names an intrapartition queue and does not specify a length

consistent with that defined for the intrapartition physical file.

Default action: Terminate the task abnormally.

NOSPACE
occurs if no more space exists on the queue. When this happens, no more data
should be written to the queue because it may be lost.

 Default action: Terminate the task abnormally.

NOTAUTH
occurs if a resource security check has failed on QUEUE(name).

 Default action: Terminate the task abnormally.

NOTOPEN
occurs if the destination is closed. This condition applies to extrapartition
queues only.

 Default action: Terminate the task abnormally.

470 CICS for iSeries Application Programming Guide V5

QIDERR
occurs if the symbolic destination to be used with a transient data control
command cannot be found.

 Default action: Terminate the task abnormally.

SYSIDERR
occurs if the SYSID option specifies either a name that is not defined in the
terminal control system table (TCS), or a system to which the link is closed.

 Default action: Terminate the task abnormally.

Examples
The following example shows how to write data to a predefined symbolic
destination:

WRITEQ TS
Store temporary data in a temporary storage queue.

Description
The WRITEQ TS command stores temporary data (records) in a temporary storage
queue in main or auxiliary storage.

If a queue has been defined as recoverable, the program must not issue a WRITEQ
TS if a DELETEQ TS has previously been issued within the same logical unit of
work. Thus, following a DELETEQ TS, no WRITEQ TS can be issued until after a
syncpoint has occurred.

Data written to an auxiliary temporary storage queue must not contain pointers.

Note: There is a maximum number of uniquely named auxiliary temporary
storage queues available for any CICS system. This is determined by the size
of the auxiliary temporary storage queue physical file as defined by your
system administrator.

See Chapter 24, “Temporary storage control,” on page 219 for more information.

EXEC CICS WRITEQ TD
 QUEUE(’ABCD’)
 FROM(MESSAGE)
 LENGTH(LENG) ...

�� WRITEQ TS QUEUE (name) FROM (data-area)
LENGTH

(

data-value

)

 �

�

NUMITEMS

(

data-area

)

ITEM

(

data-area

)

REWRITE

SYSID

(

name

)

 AUXILIARY

MAIN

NOSUSPEND

��

Conditions: INVREQ, IOERR, ISCINVREQ, ITEMERR, LENGERR, NOSPACE, NOTAUTH, QIDERR, SYSIDERR

Chapter 32. Application programming commands - reference 471

Options
AUXILIARY

specifies that the temporary storage queue is on a direct-access storage device
in auxiliary storage.

 This is the default for the first write and is ignored for an existing queue.

FROM(data-area)
specifies the data to be written to temporary storage.

ITEM(data-area)
specifies a halfword binary field containing the number of the item to be
replaced in the queue (REWRITE option also specified).

Note: In earlier versions of CICS on other platforms, ITEM on a WRITEQ TS
without REWRITE would perform a similar function to NUMITEMS.
This function is retained for compatibility.

LENGTH(data-value)
specifies as a halfword binary value the length of the data to be written. For a
description of a safe upper limit, see “LENGTH options” on page 312.

 For AUXILIARY, upper bound is determined by the length of the underlying
TS/TD physical file.

MAIN
specifies that the temporary storage queue is in main storage.

 If you use the MAIN option to write data to a temporary storage queue on a
remote system, the data is stored in main storage. If this condition is not met,
the data is stored in auxiliary storage.

 This option is ignored for an existing queue.

NOSUSPEND
specifies that application program suspension for the NOSPACE condition is to
be inhibited.

 This does not apply to a temporary storage queue in main storage.

NUMITEMS(data-area)
specifies a halfword binary field to receive a number indicating how many
items there are in the queue after the WRITEQ TS command is executed.

 If the record starts a new queue, the item number assigned is 1; subsequent
item numbers follow on sequentially. NUMITEMS is not valid if REWRITE is
specified.

QUEUE(name)
specifies the symbolic name of the queue to be written to. If the queue name
appears in the TST, and the entry is marked as remote, the request is shipped
to a remote system. The name must be alphanumeric, 1–8 characters long, and
unique within the CICS system. Do not use X'FA' through X'FF' as the first
character of the name; these characters are reserved for CICS use. The name
cannot consist solely of binary zeros.

REWRITE
specifies that the existing record in the queue is to be overwritten with the
data provided. If the REWRITE option is specified, the ITEM option must also
be specified. If the specified queue does not exist, the QIDERR condition
occurs. If the correct item within an existing queue cannot be found, the
ITEMERR condition occurs and the data is not stored.

472 CICS for iSeries Application Programming Guide V5

SYSID(name)
specifies the name of the system to which the request is directed. The name
can be up to 4 characters long.

Exception Conditions
INVREQ

occurs in any of the following situations:
v A WRITEQ TS command specifies a queue name that consists solely of

binary zeros.
v A WRITEQ TS command specifies a queue that is locked and awaiting ISC

session recovery.
v The queue was created by CICS internal code.

Default action: Terminate the task abnormally.

IOERR
occurs if there is an irrecoverable input/output error.

 Default action: Terminate the task abnormally.

ISCINVREQ
occurs if the remote system indicates a failure that does not correspond to a
known condition.

 Default action: Terminate the task abnormally.

ITEMERR
occurs in any of the following situations:
v The item number specified or implied by a WRITEQ TS command with the

REWRITE option is not valid (that is, it is outside the range of entry
numbers assigned for the queue).

v The maximum number of items (32 767) is exceeded.

Default action: Terminate the task abnormally.

LENGERR
occurs in any of the following situations:
v The length of the stored data is zero or negative.
v For AUXILIARY, the length is greater than that of the underlying TS/TD

physical file.

Default action: Terminate the task abnormally.

NOSPACE
occurs if insufficient space is available in the temporary storage file to contain
the data.

 Default action: Suspend the task until space becomes available as it is released
by other tasks; then return normally.

NOTAUTH
occurs if a resource security check has failed on QUEUE(name).

 Default action: Terminate the task abnormally.

QIDERR
occurs if the queue specified by a WRITEQ TS command with the REWRITE
option cannot be found.

Chapter 32. Application programming commands - reference 473

Default action: Terminate the task abnormally.

SYSIDERR
occurs if the SYSID option specifies either a name that is not defined in the
terminal control system table (TCS), or a system to which the link is closed.

 Default action: Terminate the task abnormally.

Examples
The following example shows how to write a record to a temporary storage queue
in auxiliary storage:

The following example shows how to update a record in a temporary storage
queue in main storage:

XCTL
Transfer control from one application program to another.

Description
XCTL transfers control from one application program to another at the same logical
level.

See Chapter 20, “Program control,” on page 199 for more information.

Options
COMMAREA(data-area)

specifies a communication area that is to be made available to the invoked

EXEC CICS WRITEQ TS
 QUEUE(UNIQNAME)
 FROM(MESSAGE)
 LENGTH(LENGTH)
 NUMITEMS(DREF) ...

EXEC CICS WRITEQ TS
 QUEUE(’TEMPQ1’)
 FROM(DATAFLD)
 LENGTH(40)
 ITEM(ITEMFLD)
 REWRITE
 MAIN ...

�� XCTL PROGRAM (name)
COMMAREA

(

data-area

)

LENGTH

(

data-value

)

 �

�
INPUTMSG

(

data-area

)

INPUTMSGLEN

(

data-value

)

 ��

Conditions: INVREQ, LENGERR, NOTAUTH, PGMIDERR

474 CICS for iSeries Application Programming Guide V5

program. In this option, a pointer to the data area is passed. In an invoked
COBOL program, you must give this data area the name DFHCOMMAREA.
(See “COMMAREA in EXEC CICS LINK and EXEC CICS XCTL commands”
on page 70 and “Passing data to other programs” on page 201.) In a C
receiving program, this data area must be referenced by an EXEC CICS
ADDRESS COMMAREA command.

INPUTMSG(data-area)
specifies data to be passed to the invoked program when it first issues an
EXEC CICS RECEIVE command.

 This data remains available until the execution of an EXEC CICS RECEIVE or
EXEC CICS RETURN command. An invoked program can invoke a further
program and so on, creating a chain of linked programs. If a linked-to chain
exists, CICS supplies the INPUTMSG data to the first EXEC CICS RECEIVE
command executed in the chain.

 See Chapter 20, “Program control,” on page 199 for more information about
using the INPUTMSG option.

INPUTMSGLEN(data-value)
specifies as a halfword binary value the length of the INPUTMSG data. If the
value is negative, zero is assumed.

LENGTH(data-value)
specifies as a halfword binary value the length in bytes of the communication
area. If a negative value is supplied, zero is assumed. For a description of a
safe upper limit, see “LENGTH options” on page 312.

PROGRAM(name)
specifies the identifier of the program to which control is to be passed
unconditionally. The name must be alphanumeric, up to 8 characters long, and
must have been defined in the processing program table (PPT) as a local
program.

Exception Conditions
INVREQ

RESP2 values:

8 The INPUTMSG option is supplied for a program that is not associated
with a terminal, or that is associated with an APPC logical unit.

200 The INPUTMSG option is supplied in a program invoked by DPL.

v The INPUTMSG option is supplied with a null address.

 Default action: Terminate the task abnormally.

LENGERR
RESP2 values:

v The length specified in the LENGTH option is greater than the length
of the data area specified in the COMMAREA option, and while that
data was being copied a destructive overlap occurred because of the
incorrect length.

v The INPUTMSGLEN value is outside the range 1 through 32 767.

11 A negative LENGTH value is supplied.

 Default action: Terminate the task abnormally.

Chapter 32. Application programming commands - reference 475

NOTAUTH
occurs if a resource security check has failed on PROGRAM(name).

 Default action: Terminate the task abnormally.

PGMIDERR
RESP2 values:

1 A program does not have an installed resource definition.

2 The program is disabled.

3 The program cannot be loaded.

9 The program is defined as remote.

 Default action: Terminate the task abnormally.

Examples
The following example shows how to request a transfer of control to an application
program called PROG2:

EXEC CICS XCTL PROGRAM(’PROG2’) ...

476 CICS for iSeries Application Programming Guide V5

Chapter 33. System programming reference

This chapter contains details of the following EXEC CICS commands:
v “DISCARD commands”
v “INQUIRE commands” on page 480
v “PERFORM SHUTDOWN command” on page “PERFORM SHUTDOWN

command” on page 509
v “SET commands” on page “SET commands” on page 509

See “System programming commands” on page 314 for information on specifying
these commands.

DISCARD commands
The EXEC CICS DISCARD commands allow you to remove resources from the
control region. The resources are not deleted, and will be reinstalled when the
control region is restarted.

DISCARD AUTINSTMODEL

The EXEC CICS DISCARD AUTINSTMODEL command removes the named CICS
autoinstall terminal model definition from the CICS control region.

Options
AUTINSTMODEL(name)

is the name of the CICS autoinstalled terminal model as specified in the
CICSDEV parameter within the OS/400 ADDCICSTCT CL command. The
name may be up to 4 characters long.

Exception Conditions
INVREQ

occurs if:
v The name of the autoinstall model begins with “C” and cannot be discarded

(RESP2=3).
v The named autoinstall model could not be discarded (RESP2=4).

Default action: Terminate the task abnormally.

MODELIDERR
occurs if the named autoinstall model cannot be found (RESP2=1).

 Default action: Terminate the task abnormally.

�� DISCARD AUTINSTMODEL (name) ��

Conditions: INVREQ, MODELIDERR

© Copyright IBM Corp. 1998, 2004 477

DISCARD FILE

The EXEC CICS DISCARD FILE command removes the named CICS file definition
from the CICS control region.

Options
FILE(name)

is the name of the CICS file as specified in the FILEID parameter within the
OS/400 ADDCICSFCT CL command. The name may be up to 8 characters
long.

Exception Conditions
FILENOTFOUND

occurs if the named file cannot be found (RESP2=18).

 Default action: Terminate the task abnormally.

INVREQ
occurs if:
v The named file is defined as remote (RESP2=1)
v The named file is not closed (RESP2=2)
v The named file is not disabled (RESP2=3)
v The named file is currently in use (RESP2=25)
v The name of the file begins with AEG and cannot be discarded (RESP2=26)
v The file could not be discarded (RESP2=27)

Default action: Terminate the task abnormally.

DISCARD PROGRAM

The EXEC CICS DISCARD PROGRAM command removes the named CICS
program definition from the CICS control region.

Options
PROGRAM(name)

is the name of the CICS program or map set as specified in the PGMID
parameter within the OS/400 ADDCICSPPT CL command. The name may be
up to 8 characters long.

�� DISCARD FILE (name) ��

Conditions: FILENOTFOUND, INVREQ

�� DISCARD PROGRAM (name) ��

Conditions: INVREQ, PGMIDERR

478 CICS for iSeries Application Programming Guide V5

Exception Conditions
INVREQ

occurs if:
v The name of the program begins with AEG and cannot be discarded

(RESP2=1)
v The program is not disabled. The program needs to be disabled for the

discard process to work (RESP2=10)
v The program is currently in use (RESP2=11)
v The program is named in the program control table (PCT) (RESP2=12)
v The named program could not be discarded (RESP2=16)

Default action: Terminate the task abnormally.

PGMIDERR
occurs if the named program cannot be found (RESP2=7).

 Default action: Terminate the task abnormally.

DISCARD TRANSACTION

The EXEC CICS DISCARD TRANSACTION command removes the named CICS
transaction definition from the CICS control region.

Options
TRANSACTION(name)

is the name of the CICS transaction as specified in the TRANSID parameter
within the OS/400 ADDCICSPCT CL command. The name may be up to 4
characters long.

Exception Conditions
INVREQ

occurs if:
v The name of the transaction begins with either C or AEG and cannot be

discarded (RESP2=4)
v The PCT profile is not available (RESP2=10)
v The transaction is not disabled. The transaction needs to be disabled for the

discard request to work (RESP2=11)
v The named transaction is currently in use (RESP2=12)
v The transaction is in use by an automatic initiate descriptor (RESP2=15)
v The named transaction could not be discarded (RESP2=16)

Default action: Terminate the task abnormally.

TRANSIDERR
occurs if the named transaction cannot be found (RESP2=1).

 Default action: Terminate the task abnormally.

�� DISCARD TRANSACTION (name) ��

Conditions: INVREQ, TRANSIDERR

Chapter 33. System programming reference 479

INQUIRE commands
This section describes the EXEC CICS INQUIRE commands in alphabetic order.

INQUIRE AUTINSTMODEL

The EXEC CICS INQUIRE AUTINSTMODEL command retrieves information about
the named CICS autoinstall terminal model definition in the CICS control region.

Options
AUTINSTMODEL(name)

is the name of the CICS autoinstall terminal model as specified in the
CICSDEV parameter within the OS/400 ADDCICSTCT CL command. The
name may be up to 4 characters long.

Exception Conditions
MODELIDERR

occurs if the named autoinstall model cannot be found (RESP2=1).

 Default action: Terminate the task abnormally.

INQUIRE AUTINSTMODEL (browse)

Browse information about the named CICS autoinstall terminal model definition in
the CICS/400 control region.

These commands allow you to browse through the autoinstall terminal model
entries in the TCT. The order of browsing is strictly undefined, but continued
browsing does guarantee to return all definitions. Only one browse of the TCT is
allowed at any one time in a given task. See “Browsing resource definitions” on
page 315 for more information.

�� INQUIRE AUTINSTMODEL (name) ��

Condition: MODELIDERR

�� INQUIRE AUTINSTMODEL START ��

Condition: ILLOGIC

�� INQUIRE AUTINSTMODEL (name) NEXT ��

Conditions: END, ILLOGIC

�� INQUIRE AUTINSTMODEL END ��

Condition: ILLOGIC

480 CICS for iSeries Application Programming Guide V5

Options
AUTINSTMODEL(name)

returns a 4-character string representing the name of the terminal model
definition which is retrieved on an INQUIRE AUTINSTMODEL NEXT
command.

END
terminates the browse and frees any held resources.

NEXT
retrieves the name and any requested attributes of the next (that is, first or
subsequent) TCT entry to be accessed.

START
initializes the scan of the TCT in preparation for a series of INQUIRE
AUTINSTMODEL NEXT commands. Note that no information about
autoinstall terminals is retrieved until an INQUIRE AUTINSTMODEL NEXT
command is executed.

Exception Conditions
END

occurs on an INQUIRE AUTINSTMODEL NEXT command if all TCT entries
have been accessed (RESP2=2).

 Default action: Terminate the task abnormally.

ILLOGIC
occurs in any of the following situations (RESP2=1):
v An INQUIRE AUTINSTMODEL START command is issued when a browse

of the TCT is already in progress.
v An INQUIRE AUTINSTMODEL NEXT or INQUIRE AUTINSTMODEL END

command is issued, but an INQUIRE AUTINSTMODEL START command
has not been successfully issued.

Default action: Terminate the task abnormally.

INQUIRE CONNECTION

The EXEC CICS INQUIRE CONNECTION command retrieves information from
the terminal control system table (TCS) about the named CICS connection
(sometimes known as a “system entry”) in the CICS control region.

Options
ACCESSMETHOD(cvda)

returns a CVDA value indicating which access method is in use for the CICS
connection. CVDA values are:

�� INQUIRE CONNECTION (name)
ACQSTATUS

(

cvda

)

CONNSTATUS

(

cvda

)

 �

�
NETNAME

(

data-area

)

SERVSTATUS

(

cvda

)

ACCESSMETHOD

(

cvda

)

 ��

Condition: SYSIDERR

Chapter 33. System programming reference 481

VTAM®* The CICS connection is treated as a VTAM connection.

INDIRECT The intercommunication with the CICS connection uses the
CICS connection specified in the INDSYS parameter within the
OS/400 ADDCICSTCS CL command.

ACQSTATUS(cvda)
is retained only for compatibility purposes. CONNSTATUS should be used
instead in new CICS application programs.

CONNECTION(name)
is the name of the remote system or another CICS control region as specified in
the SYSID parameter within the OS/400 ADDCICSTCS CL command. The
name may be up to 4 characters long.

CONNSTATUS(cvda)
returns a CVDA value indicating the state of the CICS connection between the
CICS control region and the logical unit represented by the CONNECTION
name. CVDA values are:

RELEASED The CICS connection is released.

ACQUIRED The CICS connection is acquired. The criteria for ACQUIRED
are:
v The partner LU has been contacted
v Initial CNOS exchange has been done

NETNAME(data-area)
returns an 8-character string representing the name by which the remote
system is known to the network.

SERVSTATUS(cvda)
returns a CVDA value indicating whether the CICS connection can receive and
send data. CVDA values are:

INSERVICE Data can be received and sent.

OUTSERVICE Data cannot be received or sent.

GOINGOUT OUTSERVICE has been requested on a SET CONNECTION
command, but the request cannot be acted upon until some
current work has been completed.

Exception Conditions
SYSIDERR

occurs if the named connection cannot be found (RESP2=1).

 Default action: Terminate the task abnormally.

482 CICS for iSeries Application Programming Guide V5

INQUIRE CONNECTION (browse)

Browse information about the system connections defined to CICS/400.

These commands allow you to browse through the terminal control system table
(TCS) entries. The order of browsing is strictly undefined, but continued browsing
does guarantee to return all the remote system definitions. Only one browse of the
TCS is allowed at any one time in a given task. See “Browsing resource
definitions” on page 315 for more information.

Options
CONNECTION(data-area)

returns a 4-character string representing the name of the remote system or
CICS control region for which information is retrieved on an INQUIRE
CONNECTION NEXT command.

END
terminates the browse and frees any held resources.

NEXT
retrieves the name and any requested attributes of the next (that is, first or
subsequent) TCS entry to be accessed.

START
initializes the scan of the TCS in preparation for a series of INQUIRE
CONNECTION NEXT commands. Note that no information about remote
systems is retrieved until an INQUIRE CONNECTION NEXT command is
executed.

Exception Conditions
END

occurs on an INQUIRE CONNECTION NEXT command if all TCS entries have
been accessed (RESP2=2).

 Default action: Terminate the task abnormally.

ILLOGIC
occurs in any of the following situations (RESP2=1):
v An INQUIRE CONNECTION START command is issued when a browse of

the TCS is already in progress.

�� INQUIRE CONNECTION START ��

Condition: ILLOGIC

�� INQUIRE CONNECTION (data-area) NEXT Other options as for INQUIRE CONNECTION ��

Conditions: END, ILLOGIC

�� INQUIRE CONNECTION END ��

Condition: ILLOGIC

Chapter 33. System programming reference 483

v An INQUIRE CONNECTION NEXT or INQUIRE CONNECTION END
command is issued, but an INQUIRE CONNECTION START command has
not been successfully issued.

Default action: Terminate the task abnormally.

NQUIRE FILE

Note: This command replaces the EXEC CICS INQUIRE DATASET command. The
parameter DATASET is supported by the translator as a synonym for FILE,
but FILE should be used for all new CICS application programs.

The EXEC CICS INQUIRE FILE command retrieves information about the named
CICS file definition in the CICS control region.

Note: The values that are returned can vary according to when the command is
issued. For example, if the CICS file is closed when the command is issued,
much of the information received describes the state of the CICS file when it
is next opened. If the CICS file has never been opened, default or null
values will be received for some of the options that could change when the
file is opened.

Options
ACCESSMETHOD(cvda)

returns a CVDA value indicating the access method for this CICS file. CVDA
values are:

VSAM
The CICS file is to be treated like a VSAM file.

REMOTE
The CICS file resides on another CICS system.

�� INQUIRE FILE (name)
ACCESSMETHOD

(

cvda

)

ADD

(

cvda

)

 �

�
BROWSE

(

cvda

)

DELETE

(

cvda

)

DSNAME

(

data-area

)

 �

�
EMPTYSTATUS

(

cvda

)

ENABLESTATUS

(

cvda

)

JOURNALNUM

(

data-area

)

 �

�
KEYLENGTH

(

data-area

)

OPENSTATUS

(

cvda

)

READ

(

cvda

)

 �

�
RECORDFORMAT

(

cvda

)

RECORDSIZE

(

data-area

)

RECOVSTATUS

(

cvda

)

 �

�
REMOTENAME

(

data-area

)

REMOTESYSTEM

(

data-area

)

TYPE

(

cvda

)

 �

�
UPDATE

(

cvda

)

 ��

Condition: FILENOTFOUND

484 CICS for iSeries Application Programming Guide V5

ADD(cvda)
returns a CVDA value indicating whether new records can be added to the
CICS file. CVDA values are:

ADDABLE New records can be added to the CICS file.

NOTADDABLE
New records cannot be added to the CICS file.

BROWSE(cvda)
returns a CVDA value indicating whether browsing the CICS file is allowed.
CVDA values are:

BROWSABLE The CICS file can be browsed.

NOTBROWSABLE
The CICS file cannot be browsed.

DELETE(cvda)
returns a CVDA value indicating whether records can be deleted from the
CICS file. CVDA values are:

DELETABLE Records can be deleted from the CICS file.

NOTDELETABLE
Records cannot be deleted from the CICS file.

DSNAME(data-area)
returns a 33-character string representing the name of the OS/400 file object
with which this CICS file is associated.

EMPTYSTATUS(cvda)
returns a CVDA value indicating whether the OS/400 file object is to be made
empty when a CICS file that refers to it is next opened, and is valid only for
OS/400 file objects that have been defined as reusable. CVDA values are:

EMPTYREQ The OS/400 file object has been defined as reusable, and is to
be made empty when a CICS file that refers to it is next
opened.

NOEMPTYREQ
The OS/400 file object has been defined as reusable, but is not
to be made empty when a CICS file that refers to it is next
opened.

ENABLESTATUS(cvda)
returns a CVDA value indicating whether application programs can use the
file. CVDA values are:

ENABLED The file is available for use by application programs.

DISABLED The file is unavailable for use by application programs.

DISABLING The CICS file is in the process of being disabled.

FILE(name)
is the name of the file as specified in the FILEID parameter within the OS/400
ADDCICSFCT CL command. The name may be up to 8 characters long.

JOURNALNUM(data-area)
returns a fullword binary field indicating the CICS journal number with which
this CICS file is associated, in the range 1-99.

Chapter 33. System programming reference 485

KEYLENGTH(data-area)
returns a fullword binary field indicating the length of the key, if the CICS file
is to be treated as a VSAM KSDS.

OPENSTATUS(cvda)
returns a CVDA value indicating whether the file is open, closed, or in a
transitional state. Possible CVDA values are:

OPEN The file can be accessed by an application program.

CLOSED The file cannot be accessed by an application program.

CLOSING The file is in the process of being closed.

READ(cvda)
returns a CVDA value indicating whether records can be read from the CICS
file. CVDA values are:

READABLE
Records can be read from the file.

NOTREADABLE
Records cannot be read from the file.

RECORDFORMAT(cvda)
indicates whether the CICS file has fixed- or variable-length records. CVDA
values are:

FIXED Records in the CICS file all have the same length.

VARIABLE Records in the file do not necessarily have the same length.

RECORDSIZE(data-area)
returns a fullword binary field indicating the maximum record length in bytes
for CICS files defined as VARIABLE, and the actual record length for CICS
files defined as FIXED.

RECOVSTATUS(cvda)
returns a CVDA value indicating whether the CICS file is recoverable or not.
CVDA values are:

RECOVERABLE
The CICS file is recoverable.

NOTRECOVERABLE
The CICS file is not recoverable.

REMOTENAME(data-area)
returns an 8-character string representing the name that this CICS file has in
the remote system.

REMOTESYSTEM(data-area)
returns a 4-character string representing the name of the remote system, if the
CICS file is remote.

TYPE(cvda)
returns a CVDA value indicating how the records are organized on the CICS
file. CVDA values are:

ESDS The records are organized by their original entry sequence.

KSDS The records are organized by key.

RRDS The records are organized by relative record number.

486 CICS for iSeries Application Programming Guide V5

UPDATE(cvda)
returns a CVDA value indicating whether records can be updated in the CICS
file.

UPDATABLE Records can be updated in the CICS file. Records can be read
from the file, and either changed or deleted.

NOTUPDATABLE
Records cannot be updated in the CICS file.

Exception Conditions
FILENOTFOUND

occurs if the named file cannot be found (RESP2=1).

 Default action: Terminate the task abnormally.

INQUIRE FILE (browse)

Browse information about the files defined to CICS/400.

These commands allow you to browse through the file control table (FCT) entries.
The order of browsing is strictly undefined, but continued browsing does
guarantee to return all the definitions. Only one browse of the FCT is allowed at
any one time in a given task. See “Browsing resource definitions” on page 315 for
more information.

Options
END

terminates the browsing operation and frees any held resources.

FILE(data-area)
returns an 8-character string representing the name of the file for which
information is retrieved on an INQUIRE FILE NEXT command.

NEXT
retrieves the name and any requested attributes of the next (that is, first or
subsequent) FCT entry to be accessed.

START
initializes the scan of the FCT in preparation for a series of INQUIRE FILE
NEXT commands. Note that no information about files is retrieved until an
INQUIRE FILE NEXT command is executed.

�� INQUIRE FILE START ��

Condition: ILLOGIC

�� INQUIRE FILE (data-area) NEXT Other options as for INQUIRE FILE ��

Conditions: END, ILLOGIC

�� INQUIRE FILE END ��

Condition: ILLOGIC

Chapter 33. System programming reference 487

Exception Conditions
END

occurs on an INQUIRE FILE NEXT command if all FCT entries have been
accessed (RESP2=2).

 Default action: Terminate the task abnormally.

ILLOGIC
occurs in any of the following situations (RESP2=1):
v An INQUIRE FILE START command is issued when a browse of the FCT is

already in progress.
v An INQUIRE FILE NEXT or INQUIRE FILE END command is issued, but

an INQUIRE FILE START command has not been successfully issued.

Default action: Terminate the task abnormally.

INQUIRE JOURNALNUM

The EXEC CICS INQUIRE JOURNALNUM command retrieves information about
the named CICS journal definition in the CICS control region.

Options
JOURNALNUM(data-value)

specifies as a halfword binary value the number, in the range 1 through 99, of
the CICS journal, as specified in the JFILE parameter within the OS/400
ADDCICSJCT CL command.

JTYPE(cvda)
returns a CVDA value indicating the type of CICS journal. CVDA values are:

DISK1 The CICS journal is to be written to a single, reusable OS/400
file object on disk.

DISK2 The CICS journal is to be written to multiple OS/400 file
objects on disk. When the first OS/400 file object is full, then
another OS/400 file object is automatically created on disk.

OPENSTATUS(cvda)
returns a CVDA value indicating whether the CICS journal is open for output
or closed. CVDA values are:

OPENOUTPUT
The CICS journal is open to have records written to it.

CLOSED The CICS journal is closed.

Exception Conditions
JIDERR

occurs if the named journal cannot be found (RESP2=1).

 Default action: Terminate the task abnormally.

�� INQUIRE JOURNALNUM (data-value)
JTYPE

(

cvda

)

OPENSTATUS

(

cvda

)

 ��

Condition: JIDERR

488 CICS for iSeries Application Programming Guide V5

INQUIRE JOURNALNUM (browse)

Browse through the CICS journal definitions in the JCT within the control region.

These commands allow you to browse through the journal control table (JCT)
entries. The order of browsing is strictly undefined, but continued browsing does
guarantee to return all the definitions. Only one browse of the JCT is allowed at
any one time in a given task. See “Browsing resource definitions” on page 315 for
more information.

Options
END

terminates the browsing operation and frees any held resources.

JOURNALNUM(data-area)
returns a halfword binary field indicating the number, in the range 1 through
99, of the CICS journal for which information is retrieved on an INQUIRE
JOURNALNUM NEXT command.

NEXT
retrieves the number and any requested attributes of the next (that is, first or
subsequent) JCT entry to be accessed.

START
initializes the scan of the JCT in preparation for a series of INQUIRE
JOURNALNUM NEXT commands. Note that no information about journals is
retrieved until an INQUIRE JOURNALNUM NEXT command is executed.

Options
END

occurs on an INQUIRE JOURNALNUM NEXT command if all JCT entries
have been accessed (RESP2=2).

 Default action: Terminate the task abnormally.

ILLOGIC
occurs in any of the following situations (RESP2=1):
v An INQUIRE JOURNALNUM START command is issued when a browse of

the JCT is already in progress.

�� INQUIRE JOURNALNUM START ��

Condition: ILLOGIC

�� INQUIRE JOURNALNUM (data-area) NEXT Other options as for INQUIRE JOURNALNUM ��

Conditions: END, ILLOGIC

�� INQUIRE JOURNALNUM END ��

Condition: ILLOGIC

Chapter 33. System programming reference 489

v An INQUIRE JOURNALNUM NEXT or INQUIRE JOURNALNUM END
command is issued, but an INQUIRE JOURNALNUM START command has
not been successfully issued.

Default action: Terminate the task abnormally.

INQUIRE PROGRAM

The EXEC CICS INQUIRE PROGRAM command retrieves information about a
named CICS/400 program or map set definition in the CICS control region.

Options
CEDFSTATUS(cvda)

returns a CVDA value indicating the action of CEDF with this CICS/400
program. CVDA values are:

CEDF CEDF works normally when this CICS program is being
processed.

NOCEDF CEDF actions, including program initiation and termination,
are inhibited when this CICS program is being processed.

COBOLTYPE(cvda)
returns a CVDA value indicating the type of COBOL being used with this
CICS program. CVDA values are:

COBOL The CICS program was written in AD/Cycle COBOL/400.

NOTINIT The CICS program is not currently loaded.

NOTAPPLIC The CICS program was not written in COBOL.

EXECUTIONSET(cvda)
returns a CVDA value indicating whether CICS is to run the CICS program as
if it is a linked-to CICS program running in a remote system, and subject to the
CICS API restrictions of a distributed program link (DPL) program. CVDA
values are:

DPLSUBSET The CICS program is restricted, when it runs in the local CICS
control region, to the same subset of the CICS API that applies
when the CICS program is linked to by a DPL request.

�� INQUIRE PROGRAM (name)
CEDFSTATUS

(

cvda

)

COBOLTYPE

(

cvda

)

 �

�
EXECUTIONSET

(

cvda

)

HOLDSTATUS

(

cvda

)

LANGUAGE

(

cvda

)

 �

�
LENGTH

(

data-area

)

PROGTYPE

(

cvda

)

REMOTENAME

(

data-area

)

 �

�
REMOTESYSTEM

(

data-area

)

RESCOUNT

(

data-area

)

STATUS

(

cvda

)

 �

�
TRANSID

(

data-area

)

USECOUNT

(

data-area

)

 ��

Condition: PGMIDERR

490 CICS for iSeries Application Programming Guide V5

FULLAPI The CICS program is not restricted to the DPL subset of the
CICS API when it runs in the local CICS control region, and
can use the full CICS API.

NOTAPPLIC The PPT entry defines either a remote program or a BMS map
set.

 A CICS program is always restricted to the DPL subset when it is invoked in a
remote system by a DPL request, regardless of the EXECUTIONSET option.

HOLDSTATUS(cvda)
returns a CVDA value indicating whether a copy of the CICS program is
currently loaded with the HOLD option. CVDA values are:

HOLD The CICS program copy is currently loaded with the HOLD
option.

NOHOLD The CICS program copy is not currently loaded with the
HOLD option.

NOTAPPLIC The CICS program is not currently loaded.

LANGUAGE(cvda)
returns a CVDA value returns a CVDA value indicating the calling convention
specified in the PPT. CVDA values are:

COBOL The COBOL/400 calling convention was specified.

C The ILE C calling convention was specified.

LENGTH(data-area)
returns a fullword binary field indicating the length of the CICS program in
bytes. A value of 0 is returned if the CICS program is not currently loaded.

PROGRAM(name)
specifies the name of the CICS program or map set as specified in the PGMID
parameter within the OS/400 ADDCICSPPT CL command. The name may be
up to 8 characters long.

PROGTYPE(cvda)
returns a CVDA value indicating the type of CICS program. CVDA values are:

PROGRAM The CICS program is a CICS application program.

MAP The CICS program is a CICS BMS map set.

REMOTENAME(data-area)
returns a 4-character string representing the name that this CICS program has
in the remote system.

REMOTESYSTEM(data-area)
returns an 8-character string indicating the name of the remote system, if the
CICS program is remote.

RESCOUNT(data-area)
returns a fullword binary field indicating the number of separate invocations
of this CICS program that are taking place at the time of this inquiry.

STATUS(cvda)
returns a CVDA value indicating whether CICS/400 can use the program.
CVDA values are:

ENABLED The program is available for use.

DISABLED The program is unavailable for use.

Chapter 33. System programming reference 491

TRANSID(data-area)
returns a 4-character string representing the name of the server transaction that
the remote system attaches to run the CICS program, when the CICS program
is defined as remote. If *NONE is specified in the TRANSID parameter within
the ADDCICSPPT CL command, CICS returns blanks (X‘40404040’).

USECOUNT(data-area)
returns a fullword binary field indicating the total number of times the CICS
program has been executed since the CICS program was loaded.

Exception Conditions
PGMIDERR

occurs if the named program cannot be found (RESP2=1).

 Default action: Terminate the task abnormally.

INQUIRE PROGRAM (browse)

Browse information about the programs, map sets, and tables defined to CICS/400.

These commands allow you to browse through the processing program table (PPT)
entries. The order of browsing is strictly undefined, but continued browsing does
guarantee to return all the definitions. Only one browse of the PPT is allowed at
any one time in a given task. See “Browsing resource definitions” on page 315 for
more information.

Options
END

terminates the browsing operation and frees any held resources.

NEXT
retrieves the name and any requested attributes of the next (that is, first or
subsequent) PPT entry to be accessed.

PROGRAM(data-area)
returns an 8-character string representing the name of the program for which
information is retrieved on an INQUIRE PROGRAM NEXT command.

START
initializes the scan of the PPT in preparation for a series of INQUIRE

�� INQUIRE PROGRAM START ��

Condition: ILLOGIC

�� INQUIRE PROGRAM (data-area) NEXT Other options as for INQUIRE PROGRAM ��

Conditions: END, ILLOGIC

�� INQUIRE PROGRAM END ��

Condition: ILLOGIC

492 CICS for iSeries Application Programming Guide V5

PROGRAM NEXT commands. Note that no information about programs is
retrieved until an INQUIRE PROGRAM NEXT command is executed.

Exception Conditions
END

occurs on an INQUIRE PROGRAM NEXT command if all PPT entries have
been accessed (RESP2=2).

 Default action: Terminate the task abnormally.

ILLOGIC
occurs in any of the following situations (RESP2=1):
v An INQUIRE PROGRAM START command is issued when a browse of the

PPT is already in progress.
v An INQUIRE PROGRAM NEXT or INQUIRE PROGRAM END command is

issued, but an INQUIRE PROGRAM START command has not been
successfully issued.

Default action: Terminate the task abnormally.

INQUIRE SYSTEM

The EXEC CICS INQUIRE SYSTEM command retrieves information about the
CICS/400 control region.

Options
CICSSTATUS(cvda)

returns a CVDA value indicating the current status of the CICS control region.
CVDA values are:

ACTIVE The control region is fully active.

FIRSTQUIESCE
The control region is in the first quiesce stage of shutdown.

DUMPING(cvda)
returns a CVDA value indicating whether the taking of a CICS control region
dump is to be globally suppressed. CVDA values are:

SYSDUMP CICS control region dumps are not globally suppressed.

NOSYSDUMP
CICS control region dumps are globally suppressed.

OPREL(data-area)
returns a halfword binary field indicating the release number of the operating
system currently running. It is a halfword binary integer equal to 10 times the
formal release number. For example, a returned value of “30” represents
OS/400 Version 5 Release 2.

�� INQUIRE SYSTEM
CICSSTATUS

(

cvda

)

DUMPING

(

cvda

)

OPREL

(

data-area

)

 �

�
OPSYS

(

data-area

)

RELEASE

(

data-area

)

STARTUP

(

cvda

)

 ��

Chapter 33. System programming reference 493

OPSYS(data-area)
returns a 1-character string representing the type of operating system currently
running. A value of “4” represents OS/400.

RELEASE(data-area)
returns a 4-character string representing the CICS version and release numbers.
For example, a returned value of “0310” represents CICS/400 V5R2M0.

STARTUP(cvda)
returns a CVDA value indicating the startup state that was used to start the
CICS control region. CVDA values are:

COLDSTART The control region did not recover any resources when it was
started. *COLD was supplied in the STRTYPE parameter of the
STRCICS command.

WARMSTART
The control region recovered TD and TS queues when it was
started. *WARM was supplied in the STRTYPE parameter of
the STRCICS command.

EMERGENCY The control region recovered TD and TS queues when it was
started. *EMER was supplied in the STRTYPE parameter of the
STRCICS command.

INQUIRE TASK

The EXEC CICS INQUIRE TASK command retrieves information about the named
user task. User tasks are tasks that are associated either with user-defined
transactions or with CICS-supplied transactions that are normally invoked by an
operator.

Options
FACILITY(data-area)

returns a 4-character string representing the name of the facility associated
with this task. If the task was initiated from a terminal (that is, FACILITYTYPE
value is TERM), FACILITY returns the name of the terminal. If the task was
initiated by a destination trigger level as defined in the DCT (that is,
FACILITYTYPE value is DEST), FACILITY returns the name of the transient
data queue associated with this task. If FACILITYTYPE is neither TERM nor
DEST, FACILITY returns a null value (blanks).

FACILITYTYPE(cvda)
returns a CVDA value indicating the type of facility that initiated this task.
CVDA values are:

TASK The task was initiated by another task.

TERM The task was initiated from a terminal.

�� INQUIRE TASK (data-value)
FACILITY

(

data-area

)

FACILITYTYPE

(

cvda

)

 �

�
STARTCODE

(

data-area

)

TRANSACTION

(

data-area

)

USERID

(

data-area

)

 ��

Condition: TASKIDERR

494 CICS for iSeries Application Programming Guide V5

DEST The task was initiated by a destination trigger level as defined in the
destination control table (DCT).

STARTCODE(data-area)
returns a 2-character string representing a value that indicates how this CICS
task was started. Possible values are:

D Distributed program link (DPL).

DS DPL plus sync-on-return.

QD A CICS transient data trigger level was reached.

S START command (no data).

SD START command (with data).

TO Operator entered a CICS transaction code at the terminal.

TP Transaction was started by presetting the transaction ID for the CICS
terminal, either by using RETURN TRANSID, or by having a CICS
transaction permanently assigned to the CICS terminal.

U CICS user-attached task.

TASK(data-value)
specifies as a 4-byte packed decimal value the sequence number that identifies
the task.

TRANSACTION(data-area)
returns a 4-character string representing the transaction name (if any)
associated with the task.

USERID(data-area)
returns a 10-character string representing the identifier of the CICS user
currently associated with the CICS task.

Exception Conditions
TASKIDERR

occurs if the named task cannot be found (RESP2=1).

 Default action: Terminate the task abnormally.

Chapter 33. System programming reference 495

INQUIRE TDQUEUE

The EXEC CICS INQUIRE TDQUEUE command retrieves information about the
named transient data queue definition in the CICS/400 control region.

Note: For a closed extrapartition queue, the values that are returned can vary
according to when the command is issued. For example, if the CICS
transient data queue is closed when the command is issued, much of the
information received describes the state of the CICS transient data queue
when it is next opened. If the CICS transient data queue has never been
opened, default or null values will be received for some of the options, that
could change when the CICS transient data queue is opened.

Options
ATIFACILITY(cvda) (intrapartition queues only)

returns a CVDA value indicating whether or not the CICS task that is to be
started when the TRIGGERLEVEL value is reached, is associated with a CICS
terminal (or session). CVDA values are:

TERMINAL A CICS terminal (or session) is associated with the CICS task
that is to be started when the TRIGGERLEVEL value is
reached.

NOTERMINAL
A CICS terminal (or session) is not associated with the CICS
task that is to be started when the TRIGGERLEVEL value is
reached.

ATITERMID(data-area) (intrapartition queues only)
returns a 4-character string representing the name of the terminal or session to
be associated with the queue when automatic transaction initiation occurs. A
null value is returned if the transaction does not need a terminal or session.

ATITRANID(data-area) (intrapartition queues only)
returns a 4-character string representing the name of the CICS transaction to be
started when the TRIGGERLEVEL value is reached.

�� INQUIRE TDQUEUE (name)
ATIFACILITY

(

cvda

)

ATITERMID

(

data-area

)

 �

�
ATITRANID

(

data-area

)

EMPTYSTATUS

(

cvda

)

ENABLESTATUS

(

cvda

)

 �

�
INDIRECTNAME

(

data-area

)

IOTYPE

(

cvda

)

NUMITEMS

(

data-area

)

 �

�
OPENSTATUS

(

cvda

)

RECORDFORMAT

(

cvda

)

RECORDLENGTH

(

data-area

)

 �

�
RECOVSTATUS

(

cvda

)

REMOTENAME

(

data-area

)

REMOTESYSTEM

(

data-area

)

 �

�
TRIGGERLEVEL

(

data-area

)

TYPE

(

cvda

)

 ��

Condition: QIDERR

496 CICS for iSeries Application Programming Guide V5

EMPTYSTATUS(cvda) (intrapartition queues only)
returns a CVDA value indicating whether the queue is full, empty, or neither.
CVDA values are:

FULL The TRIGGERLEVEL value has been reached.

EMPTY The queue does not have data.

NOTEMPTY The queue has data, but the TRIGGERLEVEL value has not
been reached.

NOTAPPLIC The queue is not enabled.

ENABLESTATUS(cvda) (all except indirect queues)
returns a CVDA value indicating whether CICS application programs can use
the queue. CVDA values are:

ENABLED The queue is available for use by CICS application programs.

DISABLED The queue is unavailable for use by CICS application
programs, although it may still be open.

INDIRECTNAME(data-area) (indirect queues only)
returns a 4-character string representing the name of the queue that this
indirect queue points to, as specified in the PHYDEST parameter within the
OS/400 ADDCICSDCT CL command.

IOTYPE(cvda) (extrapartition queues only)
returns a CVDA value indicating whether records can be read or written to the
queue. CVDA values are:

INPUT Records can only be read from the queue, and only in a
forward capacity.

OUTPUT Records can only be written to the queue.

READBACK Records can only be read from the queue, and only in a
backward capacity.

NUMITEMS(data-area) (intrapartition queues only)
returns a fullword binary field representing the logical number of records in
the queue.

OPENSTATUS(cvda) (extrapartition queues only)
returns a CVDA value indicating whether the queue is open, closed, or in a
transitional state. CVDA values are:

OPEN The queue is open to have records read or written to it.

CLOSED The queue is closed.

OPENING The queue is in the process of being opened.

CLOSING The queue is in the process of being closed.

RECORDFORMAT(cvda)(extrapartition queues only)
returns a CVDA value indicating whether the queue has fixed- or
variable-length records. CVDA values are:

FIXED Records in the queue all have the same length.

VARIABLE Records in the queue do not necessarily have the same length.

NOTAPPLIC The specified queue is not enabled.

RECORDLENGTH(data-area) (extrapartition queues only)
returns a fullword binary field indicating the maximum record length for

Chapter 33. System programming reference 497

queues defined as VARIABLE, and the actual record length for queues defined
as FIXED. The value returned is the number of bytes.

RECOVSTATUS(cvda) (intrapartition queues only)
returns a CVDA value indicating whether the queue is recoverable or not.
CVDA values are:

LOGICAL The queue is recoverable.

NOTRECOVERABLE
The queue is not recoverable.

REMOTENAME(data-area) (remote queues only)
returns a 4-character string representing the name that this queue has in the
remote system.

REMOTESYSTEM(data-area) (remote queues only)
returns a 4-character string representing the name of the remote system, if the
queue is remote.

TDQUEUE(name)
is the name of the transient data queue (the destination) as specified in the
DEST parameter within the OS/400 ADDCICSDCT CL command. The name
may be up to 4 characters long.

TRIGGERLEVEL(data-area) (intrapartition queues only)
returns a fullword binary field indicating the number of requests for output to
the queue that there must be before automatic transaction initiation (ATI) can
occur.

TYPE(cvda)
returns a CVDA value indicating the type of queue. CVDA values are:

EXTRA The queue is an extrapartition transient data queue.

INDIRECT The queue is an indirect transient data queue.

INTRA The queue is an intrapartition transient data queue.

REMOTE The queue is a remote transient data queue.

Exception Conditions
QIDERR

occurs if the named queue cannot be found (RESP2=1).

 Default action: Terminate the task abnormally.

498 CICS for iSeries Application Programming Guide V5

INQUIRE TDQUEUE (browse)

Browse information about the transient data queues defined to CICS/400.

These commands allow you to browse through the destination control table (DCT)
entries. The order of browsing is strictly undefined, but continued browsing does
guarantee to return all the definitions. Only one browse of the DCT is allowed at
any one time in a given task. See “Browsing resource definitions” on page 315 for
more information.

Options
END

terminates the browsing operation and frees any held resources.

NEXT
retrieves the name and any requested attributes of the next (that is, first or
subsequent) DCT entry to be accessed.

START
initializes the scan of the DCT in preparation for a series of INQUIRE
TDQUEUE NEXT commands. Note that no information about transient data
queues is retrieved until an INQUIRE TDQUEUE NEXT command is executed.

TDQUEUE(data-value)
returns a 4-character string representing the name of the transient data queue
for which information is retrieved on an INQUIRE TDQUEUE NEXT
command.

Exception Conditions
END

occurs on an INQUIRE TDQUEUE NEXT command if all DCT entries have
been accessed (RESP2=2).

 Default action: Terminate the task abnormally.

ILLOGIC
occurs in any of the following situations (RESP2=1):
v An INQUIRE TDQUEUE START command is issued when a browse of the

DCT is already in progress.

�� INQUIRE TDQUEUE START ��

Condition: ILLOGIC

�� INQUIRE TDQUEUE (data-area) NEXT Other options as for INQUIRE TDQUEUE ��

Conditions: END, ILLOGIC

�� INQUIRE TDQUEUE END ��

Condition: ILLOGIC

Chapter 33. System programming reference 499

v An INQUIRE TDQUEUE NEXT or INQUIRE TDQUEUE END command is
issued, but an INQUIRE TDQUEUE START command has not been
successfully issued.

Default action: Terminate the task abnormally.

INQUIRE TERMINAL or NETNAME

Forms of command
This command has two forms: EXEC CICS INQUIRE TERMINAL and EXEC
CICS INQUIRE NETNAME.

�� INQUIRE TERMINAL (name)
NETNAME

(

data-area

)

 Other options ��

or

�� INQUIRE NETNAME (name)
TERMINAL

(

data-area

)

 Other options ��

Other options:

ACQSTATUS

(

cvda

)

ATISTATUS

(

cvda

)

DEVICE

(

cvda

)

 �

�
GCHARS

(

data-area

)

GCODES

(

data-area

)

MODENAME

(

data-area

)

 �

�
NEXTTRANSID

(

data-area

)

REMOTENAME

(

data-area

)

 �

�
REMOTESYSTEM

(

data-area

)

SCREENHEIGHT

(

data-area

)

SCRNHT

(

data-area

)

 �

�
SCREENWIDTH

(

data-area

)

SCRNWD

(

data-area

)

SERVSTATUS

(

cvda

)

SESSIONTYPE

(

cvda

)

 �

�
SIGNONSTATUS

(

cvda

)

TASKID

(

data-area

)

TERMMODEL

(

data-area

)

 �

�
TRANSACTION

(

data-area

)

TTISTATUS

(

cvda

)

USERAREA

(

pointer

)

 �

�
USERAREALEN

(

data-area

)

USERID

(

data-area

)

USERNAME

(

data-area

)

Note: All options apply to either form of the command.

Condition: TERMIDERR

500 CICS for iSeries Application Programming Guide V5

The EXEC CICS INQUIRE TERMINAL and EXEC CICS INQUIRE NETNAME
commands retrieve information about the named terminal definition.

Options
ACQSTATUS(cvda)

returns a CVDA value indicating whether CICS/400 is in session with the
logical unit represented by the named terminal. CVDA values are:

ACQUIRED CICS/400 is in session with the terminal.

RELEASED CICS/400 is not in session with the terminal.

ATISTATUS(cvda)
returns a CVDA value indicating whether the terminal is available for use by
transactions that are automatically initiated by the CICS/400 control region or,
if the terminal is an ISC session, by transactions that are using this session as
an alternate facility to communicate with another system. CVDA values are:

ATI The terminal is available for use by transactions that are automatically
initiated. If the terminal is an ISC session, the terminal can be used by
transactions that are using this session as an alternate facility to
communicate with another system.

NOATI
The terminal is not available for use by transactions that are
automatically initiated.

DEVICE(cvda)
returns a CVDA value indicating the CICS terminal or session type. CVDA
values are returned as follows:

Terminal type CVDA

5250 T3277R

3270 T3277R

3270P T3284L

SCS T3790SCSP

3270J T3277R

3270JP T3284L

ASCII T3277R

GCHARS(data-area)
returns a halfword binary field indicating the graphic character set global
identifier (GCSGID). This is a registered number in the range 1 through 65 535
that indicates the set of graphic characters that can be input or output at this
CICS terminal.

 The term “coded graphic character set identifier” is commonly used when
referring to GCHARS and GCODES together.

GCODES(data-area)
returns a halfword binary field indicating the code page global identifier
(CPGID). This is a registered number in the range 1 through 65 535 that
indicates the EBCDIC code page that defines the code points for the characters
that can be input or output at the CICS terminal.

 The term “coded graphic character set identifier” is commonly used when
referring to GCHARS and GCODES together.

Chapter 33. System programming reference 501

MODENAME(data-area) (APPC only)
returns an 8-character string representing the name of a group of parallel
sessions (to which the named CICS terminal belongs), that have similar
characteristics. The name is passed to the network as the LOGMODE name.

NETNAME(data-area)
returns an 8-character string representing the name of the logical unit in the
network that is associated with the terminal named on an INQUIRE
TERMINAL command.

NETNAME(name)
specifies, on an INQUIRE NETNAME command, the netname for which
information is being requested. The name may be up to 8 characters long.

 The first option used as an input field must be either TERMINAL or
NETNAME. The value that is supplied is used as the search argument.
Whichever is specified first, the other can be specified if required as the second
option, which is always an output field.

 For parallel sessions the NETNAME is not unique, so CICS/400 returns the
name of the first session that it finds into the TERMINAL field.

NEXTTRANSID(data-area)
returns a 4-character string representing the name of the next transaction to be
run after an EXEC CICS RETURN command. If there is no next transaction,
blanks (X'40404040') are returned.

REMOTENAME(data-area)
returns a 4-character string representing the name that this terminal has in the
remote system.

REMOTESYSTEM(data-area)
returns a 4-character string representing the name of the remote system, if the
CICS terminal is a session or remote CICS terminal.

SCRNHT or SCREENHEIGHT(data-area)
returns a halfword binary field indicating the height of the current screen. This
value depends on the mode of the terminal (default or alternate) at the time of
the inquiry.

SCRNWD or SCREENWIDTH(data-area)
returns a halfword binary field indicating the width of the current screen. This
value depends on the mode of the CICS terminal (default or alternate) at the
time of the inquiry.

SERVSTATUS(cvda)
returns a CVDA value indicating whether the CICS terminal is available for
use. CVDA values are:

INSERVICE The terminal is available for use.

OUTSERVICE The terminal is not available for use.

SESSIONTYPE(cvda)
returns a CVDA value indicating the type of session when the “terminal” is a
session with another CICS system. CVDA values are:

APPCPARALLEL
The CICS terminal is a session to another system.

NOTAPPLIC The CICS terminal is not a session.

502 CICS for iSeries Application Programming Guide V5

SIGNONSTATUS(cvda)
returns a CVDA value indicating whether the CICS terminal currently has a
CICS user signed on. CVDA values are:

SIGNEDON The CICS terminal currently has an associated CICS user.

SIGNEDOFF The CICS terminal currently does not have an associated CICS
user.

TASKID(data-area)
returns a fullword binary field indicating the identifier for the CICS task
currently being executed at the CICS terminal.

TERMINAL(data-area)
returns a 4-character string representing the name of the terminal associated
with the netname specified on an INQUIRE NETNAME command.

TERMINAL(name)
is the name of the CICS terminal as defined in the CICSDEV parameter within
the OS/400 ADDCICSTCT CL command. The name may be up to 4 characters
long. Also see the NETNAME(name) option.

TERMMODEL(data-area)
returns a halfword binary field indicating the model number.

TRANSACTION(data-area)
returns a 4-character string representing the name of the transaction currently
being executed at the terminal.

TTISTATUS(cvda)
returns a CVDA value indicating whether transactions can be started at the
terminal. If not, you can start transactions using either ATI or the EXEC CICS
START command. CVDA values are:

TTI Transactions can be started at the terminal.

NOTTI
Transactions cannot be started at the terminal.

USERAREA(pointer)
returns the address of the TCTUA containing the process control information
(PCI) for the terminal.

USERAREALEN(data-area)
returns a halfword binary field indicating the length of the user area.

USERID(data-area)
returns a 10-character string representing the identifier of the user that is
signed on at this terminal or session.

USERNAME(data-area)
returns a 50-character string representing the name, as specified in the text
within the OS/400 user profile, of the user signed on at this terminal or
session.

Exception Conditions
TERMIDERR

occurs if the named terminal cannot be found (RESP2=1).

 Default action: Terminate the task abnormally.

Chapter 33. System programming reference 503

INQUIRE TERMINAL (browse)

Browse information about the terminals defined to CICS/400.

These commands allow you to browse through the terminal control table (TCT)
entries. The order of browsing is strictly undefined, but continued browsing does
guarantee to return all the terminal definitions. Only one browse of the TCT is
allowed at any one time in a given task. See “Browsing resource definitions” on
page 315 for more information.

Note: There is no INQUIRE NETNAME browse function.

Options
END

terminates the browsing operation and frees any held resources.

NEXT
retrieves the name and any requested attributes of the next (that is, first or
subsequent) TCT entry to be accessed.

START
initializes the scan of the TCT in preparation for a series of INQUIRE
TERMINAL NEXT commands. Note that no information about terminals is
retrieved until an INQUIRE TERMINAL NEXT command is executed.

TERMINAL(data-area)
returns a 4-character string representing the name of the terminal for which
information is retrieved on an INQUIRE TERMINAL NEXT command.

Exception Conditions
END

occurs on an INQUIRE TERMINAL NEXT command if all TCT entries have
been accessed (RESP2=2).

 Default action: Terminate the task abnormally.

ILLOGIC
occurs in any of the following situations (RESP2=1):
v An INQUIRE TERMINAL START command is issued when a browse of the

TCT is already in progress.

�� INQUIRE TERMINAL START ��

Condition: ILLOGIC

�� INQUIRE TERMINAL (data-area) NEXT Other options as for INQUIRE TERMINAL ��

Conditions: END, ILLOGIC

�� INQUIRE TERMINAL END ��

Condition: ILLOGIC

504 CICS for iSeries Application Programming Guide V5

v An INQUIRE TERMINAL NEXT or INQUIRE TERMINAL END command is
issued, but an INQUIRE TERMINAL START command has not been
successfully issued.

Default action: Terminate the task abnormally.

INQUIRE TRACEDEST

The EXEC CICS INQUIRE TRACEDEST command retrieves information about the
recording of trace entries in the CICS/400 control region.

Options
AUXSTATUS(cvda)

returns a CVDA value indicating the status of auxiliary tracing. CVDA values
are:

NOTAPPLIC The CICS/400 control region was initialized without the
auxiliary trace ability.

AUXSTART Auxiliary tracing is in progress.

AUXSTOP Auxiliary tracing has stopped, or has not been started.

CURAUXDS(data-area)
returns a 1-character string representing the identifier of the current CICS
auxiliary trace user space, which can be ‘A’ or ‘B’. This value is blank if CICS
control region was initialized without CICS auxiliary trace ability.

INTSTATUS(cvda)
returns a CVDA value indicating the status of the CICS internal tracing in the
CICS control region. The CVDA values are:

INTSTART
CICS internal tracing is on.

INTSTOP
CICS internal tracing is off.

SWITCHSTATUS(cvda)
returns a CVDA value indicating whether automatic user space switching
occurs when the current CICS auxiliary trace user space becomes full. CVDA
values are:

NOTAPPLIC CICS control region was initialized without CICS auxiliary
trace ability.

NOSWITCH Switching does not occur without operator intervention.

�� INQUIRE TRACEDEST
AUXSTATUS

(

cvda

)

CURAUXDS

(

data-area

)

 �

�
INTSTATUS

(

cvda

)

SWITCHSTATUS

(

cvda

)

TABLESIZE

(

data-area

)

 �

�
USERSTATUS

(

cvda

)

 ��

Chapter 33. System programming reference 505

SWITCHALL Automatic switching occurs as necessary until the end of the
CICS control region, without the need for operator
intervention.

TABLESIZE(data-area)
returns a fullword binary field indicating the number of trace entries that will
be kept by CICS internal tracing.

USERSTATUS(cvda)
returns a CVDA value indicating whether the CICS user tracing is to be active
or not in the CICS control region. The input CVDA values are:

USERON The CICS user tracing is on.

USEROFF The CICS user tracing is off.

INQUIRE TRANSACTION

The INQUIRE TRANSACTION command retrieves information about the named
transaction definition from the program control table (PCT).

Options
DTIMEOUT(data-area)

returns a fullword binary field indicating the deadlock time-out value (in
seconds) for suspended tasks associated with the transaction.

DUMPING(cvda)
returns a CVDA value indicating whether transaction dumps are taken when
the transaction terminates abnormally. CVDA values are:

TRANDUMP A transaction dump will be taken when the transaction
terminates abnormally.

NOTRANDUMP
A transaction dump will not be taken when the transaction
terminates abnormally.

 The setting of this option is ignored when an explicit DUMP TRANSACTION
command is issued.

PROGRAM(data-area)
returns an 8-character string representing the name of the program to be
executed when the transaction is started. The name of the program is specified
in the PGMID parameter within the OS/400 ADDCICSPCT CL command.

�� INQUIRE TRANSACTION (name)
DTIMEOUT

(

data-area

)

DUMPING

(

cvda

)

 �

�
PROGRAM

(

data-area

)

PURGEABILITY

(

cvda

)

REMOTENAME

(

data-area

)

 �

�
REMOTESYSTEM

(

data-area

)

RTIMEOUT

(

data-area

)

SCRNSIZE

(

cvda

)

 �

�
STATUS

(

cvda

)

TWASIZE

(

data-area

)

 ��

Condition: TRANSIDERR

506 CICS for iSeries Application Programming Guide V5

PURGEABILITY(cvda)
returns a CVDA value indicating whether the transaction may be purged.
CVDA values are:

PURGEABLE The transaction may be purged.

NOTPURGEABLE
The transaction may not be purged.

REMOTENAME(data-area)
returns a 4-character string representing the name that this transaction has in
the remote system.

REMOTESYSTEM(data-area)
returns a 4-character data string representing the name of the remote system, if
the transaction is remote.

RTIMEOUT(data-area)
returns a fullword binary field indicating the read time-out value, which is the
number of seconds after which a task associated with this transaction is
terminated if no input is received.

SCRNSIZE(cvda)
returns a CVDA value indicating whether the alternate or the default screen
size is to be used when this transaction is executed. CVDA values are:

ALTERNATE The alternate screen size is to be used when executing this
transaction.

DEFAULT The default screen size is to be used when executing this
transaction.

STATUS(cvda)
returns a CVDA value indicating whether the transaction is available for use.
CVDA values are:

ENABLED The transaction is available for use.

DISABLED The transaction is not available for use.

TRANSACTION(name)
is the name of the transaction as specified in the TRANSID parameter within
the OS/400 ADDCICSPCT CL command. The name may be up to 4 characters
long.

TWASIZE(data-area)
returns a fullword binary field indicating the size of the transaction work area
(TWA) in bytes for this transaction.

Exception Conditions
TRANSIDERR

occurs if the named transaction cannot be found (RESP2=1).

 Default action: Terminate the task abnormally.

Chapter 33. System programming reference 507

INQUIRE TRANSACTION (browse)

Browse information about the transactions defined to CICS/400.

These commands allow you to browse through the program control table (PCT)
entries. The order of browsing is strictly undefined, but continued browsing does
guarantee to return all the definitions. Only one browse of the PCT is allowed at
any one time in a given task. See “Browsing resource definitions” on page 315 for
more information.

Options
END

terminates the browsing operation and frees any held resources.

NEXT
retrieves the name and any requested attributes of the next (that is, first or
subsequent) PCT entry to be accessed.

START
initializes the scan of the PCT in preparation for a series of INQUIRE
TRANSACTION NEXT commands. Note that no information about
transactions is retrieved until an INQUIRE TRANSACTION NEXT command is
executed.

TRANSACTION(data-area)
returns a 4-character string representing the name of the transaction for which
information is retrieved on an INQUIRE TRANSACTION NEXT command.

Exception Conditions
END

occurs on an INQUIRE TRANSACTION NEXT command if all PCT entries
have been accessed (RESP2=2).

 Default action: Terminate the task abnormally.

ILLOGIC
occurs in any of the following situations (RESP2=1):
v An INQUIRE TRANSACTION START command is issued when a browse of

the PCT is already in progress.

�� INQUIRE TRANSACTION START ��

Condition: ILLOGIC

�� INQUIRE TRANSACTION (data-area) NEXT Other options as for INQUIRE TRANSACTION ��

Conditions: END, ILLOGIC

�� INQUIRE TRANSACTION END ��

Condition: ILLOGIC

508 CICS for iSeries Application Programming Guide V5

v An INQUIRE TRANSACTION NEXT or INQUIRE TRANSACTION END is
issued, but an INQUIRE TRANSACTION START command has not been
successfully issued.

Default action: Terminate the task abnormally.

PERFORM SHUTDOWN command

The EXEC CICS PERFORM SHUTDOWN command shuts down the local CICS
system. The shutdown can be either controlled or immediate.

If this command starts successfully, control cannot be returned to the issuing task.

Options
DUMP

indicates whether a CICS dump is to be taken as part of the shutdown process.
If it is not specified, no dump is taken.

IMMEDIATE
indicates whether the CICS system is to shut down immediately, terminating
all active CICS tasks and communication sessions. If IMMEDIATE is not
specified, all CICS tasks are allowed to finish, and SNA sessions are allowed to
terminate normally.

Exception Conditions
INVREQ

occurs if a normal shutdown has been requested but one is already in progress
(RESP2=1).

 Default action: Terminate the task abnormally.

SET commands
This section describes the EXEC CICS SET commands in alphabetic order.

SET CONNECTION

The EXEC CICS SET CONNECTION command changes some of the information of
a named CICS connection definition (sometimes known as a system entry) in the
CICS control region.

�� EXEC CICS PERFORM SHUTDOWN
DUMP

IMMEDIATE

 ��

Condition: INVREQ

�� SET CONNECTION (name)
PURGETYPE

(

cvda

)

PURGE

SERVSTATUS

(

cvda

)

INSERVICE

OUTSERVICE

 ��

Conditions: INVREQ, SYSIDERR

Chapter 33. System programming reference 509

Options
CONNECTION(name)

is the name of the connection (that is, the remote system, or another CICS
control region) as specified in the SYSID parameter within the OS/400
ADDCICSTCS CL command.

PURGETYPE(cvda)
causes the specified CICS connection to purge associated CICS tasks. The input
CVDA value is:

PURGE Transactions can be terminated only if system and data
integrity can be maintained.

 A task is not purged if its associated transaction definition
specified *NO in the PURGE parameter in the OS/400
ADDCICSPCT CL command.

SERVSTATUS(cvda)
causes the specified CICS connection to start or stop the ability to receive and
send data. The input CVDA values are:

INSERVICE Data is allowed to be sent and received.

OUTSERVICE Data is not allowed to be sent or received.

Exception Conditions
INVREQ

occurs if:
v SERVSTATUS has an incorrect CVDA value (RESP2=4).
v PURGETYPE has an incorrect CVDA value (RESP2=7).
v The EXEC CICS SET command is named on an indirect connection

(RESP2=16).

Default action: Terminate the task abnormally.

SYSIDERR
occurs if the named connection cannot be found (RESP2=9).

 Default action: Terminate the task abnormally.

510 CICS for iSeries Application Programming Guide V5

SET FILE

Note: This command replaces the EXEC CICS SET DATASET command. The
parameter DATASET is supported by the translator as a synonym for FILE,
but FILE should be used for all new CICS application programs.

Notes
All changes, other than to close and disable the file, require that the file be in
a closed or disabled state, and they do not take effect until the file is next
opened.

The requested changes are applied in the following order: CLOSED, DISABLED,
ENABLED, OPEN, miscellaneous.

The EXEC CICS SET FILE command changes some of the information of a named
CICS file definition. The file must not be remote.

Any combination of the options shown in the syntax can be specified on one
command.

Options
ADD(cvda)

causes the specified CICS file to allow or not allow new records to be added to
the CICS file. The input CVDA values are:

ADDABLE New records can be added to the CICS file.

NOTADDABLE
New records cannot be added to the CICS file.

BROWSE(cvda)
causes the specified CICS file to allow or not allow browsing of the CICS file.
The input CVDA values are:

BROWSABLE The CICS file can be browsed.

NOTBROWSABLE
The CICS file cannot be browsed.

�� SET FILE (name)
ADD

(

cvda

)

ADDABLE

NOTADDABLE

BROWSE

(

cvda

)

BROWSABLE

NOTBROWSABLE

BUSY

(

cvda

)

WAIT

NOWAIT

 �

�
DELETE

(

cvda

)

DELETABLE

NOTDELETABLE

EMPTYSTATUS

(

cvda

)

EMPTYREQ

NOEMPTYREQ

ENABLESTATUS

(

cvda

)

ENABLED

DISABLED

 �

�
OPENSTATUS

(

cvda

)

OPEN

CLOSED

READ

(

cvda

)

READABLE

NOTREADABLE

UPDATE

(

cvda

)

UPDATABLE

NOTUPDATABLE

 ��

Conditions: FILENOTFOUND, INVREQ, IOERR

Chapter 33. System programming reference 511

BUSY(cvda)
causes the specified file to wait or not wait, when the file is in use at the time
that the EXEC CICS SET command is issued. The BUSY option is valid only for
requests to set the file DISABLED or CLOSED, and is ignored for all other
requests.

Note: There is no default. This differs from CICS for MVS/ESA, where WAIT
is the default. The input CVDA values are:

WAIT The system waits until all activity on the file has
quiesced before setting the file DISABLED or CLOSED;
then returns control to the application program that is
issuing this command.

NOWAIT The system does not wait until all activity on the file has
quiesced; instead it returns control to the application
program without waiting for the file to be DISABLED or
CLOSED.

DELETE(delete)
causes the specified file to allow or not allow deletion of records from the file.
The input CVDA values are:

DELETABLE Records can be deleted from the file.

NOTDELETABLE
Records cannot be deleted from the file.

EMPTYSTATUS(cvda)
specifies whether the file is to be emptied when it is next opened. This is valid
only for files that have been defined as reusable. The input CVDA values are:

EMPTYREQ The file is made empty when it is next opened.

NOEMPTYREQ
The file is not made empty it is next opened.

ENABLESTATUS(cvda)
causes the specified file to allow or not allow use by an application program.
The input CVDA values are:

ENABLED The file is available for use by an application program.

DISABLED The file is unavailable for use by an application program.

FILE(name)
is the name of the file as specified in the FILEID parameter of the OS/400
ADDCICSFCT CL command.

OPENSTATUS(cvda)
causes the specified file to be opened or closed. The input CVDA values are:

OPEN The file is to be opened, when used by an application program.

CLOSED The file is to be closed on all CICS processes.

READ(cvda)
causes the specified file to allow or not allow records to be read from the CICS
file. The input CVDA values are:

READABLE The records can be read from the file.

NOTREADABLE
The records cannot be read from the file.

512 CICS for iSeries Application Programming Guide V5

UPDATE(cvda)
causes the specified file to allow or not allow records to be updated. The input
CVDA values are:

UPDATABLE The records can be read, and either changed or deleted from
the file.

NOTUPDATABLE
The records cannot be changed in the file.

Exception Conditions
FILENOTFOUND

occurs if the named file cannot be found (RESP2=18).

 Default action: Terminate the task abnormally.

INVREQ
occurs if:
v The named file is remote (RESP2=1)
v The named file is not closed (RESP2=2)
v The named file is not disabled (RESP2=3)
v ADD has an incorrect CVDA value (RESP2=4)
v BROWSE has an incorrect CVDA value (RESP2=5)
v BUSY has an incorrect CVDA value (RESP2=6)
v DELETE has an incorrect CVDA value (RESP2=7)
v EMPTYSTATUS has an incorrect CVDA value (RESP2=9)
v READ has an incorrect CVDA value (RESP2=12)
v UPDATE has an incorrect CVDA value (RESP2=14)
v OPENSTATUS has an incorrect CVDA value (RESP2=16)
v ENABLESTATUS has an incorrect CVDA value (RESP2=17)
v CLOSED or DISABLED has been specified, but the file is currently in use

(RESP2=21)
v ENABLED was specified for a file that is currently disabling or closing

(RESP2=22)
v The file name begins with AEG

Default action: Terminate the task abnormally.

IOERR
occurs if the open request has failed (RESP2=1).

 Default action: Terminate the task abnormally.

 Example
EXEC CICS SET FILE (’FILE12’)
 WAIT
 CLOSED
 DISABLED
 DELETABLE
EXEC CICS SET FILE (’FILE12’)
 ENABLED

On the first command, the WAIT option tells CICS to allow all activity on FILE12
to quiesce before closing the CICS file, and to return control to the issuing CICS

Chapter 33. System programming reference 513

application program only when this request has been completed. When the CICS
file has been closed, it is to be disabled. The records on FILE12 can then be
deleted.

The second of the two commands makes the CICS file available. Setting a CICS file
CLOSED, DISABLED makes the CICS file eligible for deletion (DISCARD) or
reinstallation by another CICS task. Thus it is possible for another CICS task to
delete the CICS file after the first EXEC CICS SET command, but before the second
EXEC CICS SET command.

SET JOURNALNUM

The EXEC CICS SET JOURNALNUM command changes the OPENSTATUS of a
named CICS journal definition in the CICS control region.

Options
JOURNALNUM(data-value)

is the number, in the range 1 through 99, of the journal as specified in the
JFILE parameter within the OS/400 ADDCICSJCT CL command.

OPENSTATUS(cvda)
causes the specified CICS journal to be opened or closed. The input CVDA
values are:

CLOSED The CICS journal is to be closed.

OPENOUTPUT
The CICS journal is to be opened for output.

Exception Conditions
INVREQ

occurs if OPENSTATUS has an incorrect CVDA value (RESP2=2).

 Default action: Terminate the task abnormally.

IOERR
occurs if an error arose while opening the journal (RESP2=5).

 Default action: Terminate the task abnormally.

JIDERR
occurs if the named journal cannot be found (RESP2=1).

 Default action: Terminate the task abnormally.

�� SET JOURNALNUM (data-value)
OPENSTATUS

(

cvda

)

OPENOUTPUT

CLOSED

 ��

Conditions: INVREQ, IOERR, JIDERR

514 CICS for iSeries Application Programming Guide V5

SET PROGRAM

The EXEC CICS SET PROGRAM command changes some of the information of a
named program definition.

Options
CEDFSTATUS(cvda)

causes the specified CICS program to allow or not allow the action of CEDF
with this CICS program. The input CVDA value are:

CEDF CEDF works normally when this CICS program is being
processed.

NOCEDF CEDF actions, including program initiation and termination,
are suppressed when this CICS program is being processed.

 CEDFSTATUS cannot be specified for a remote program.

COPY(cvda)
specifies when to load a new copy of the program. The input CVDA values
are:

NEWCOPY CICS/400 will use a new copy of the program when it is
subsequently referenced by, for example, a LOAD, LINK, or
XCTL command. The request does not take effect unless the
RESCOUNT value is zero. If you specify NEWCOPY when the
RESCOUNT value is not zero, the INVREQ condition is raised.
CICS loads a new version, resolving the object as defined in
the PGMOBJ parameter of the PPT entry.

PHASEIN CICS/400 will use a new copy of the program now. The
existing version remains in storage until its RESCOUNT value
reaches zero. All new LOAD, LINK, and XCTL requests are
directed to the newly-loaded version. CICS/400 loads the new
version, resolving the object as defined in the PGMOBJ
parameter of the PPT entry.

 COPY is an incorrect option for any program currently loaded with the HOLD
option, or for any program defined as remote.

EXECUTIONSET(cvda)
indicates whether CICS is to run the CICS program as if it is a linked-to CICS
program running in a remote system, and subject to the CICS API restrictions
of a distributed program link (DPL) program. CVDA values are:

DPLSUBSET The CICS program is restricted, when it runs in the local CICS

�� SET PROGRAM (name)
CEDFSTATUS

(

cvda

)

CEDF

NOCEDF

EXECUTIONSET

(

cvda

)

FULLAPI

DPLSUBSET

 �

�
STATUS

(

cvda

)

ENABLED

DISABLED

COPY

(

cvda

)

NEWCOPY

PHASEIN

 ��

Conditions: INVREQ, IOERR, NOTAUTH, PGMIDERR

Chapter 33. System programming reference 515

control region, to the same subset of the CICS API that applies
when the CICS program is linked to by a DPL request.

FULLAPI The CICS program is not restricted to the DPL subset of the
CICS API when it runs in the local CICS control region, and
can use the full CICS API.

 EXECUTIONSET cannot be specified for a remote program or map set.

PROGRAM(name)
is the name of the CICS program as specified in the PGMID parameter of the
OS/400 ADDCICSPPT CL command. The name may be up to 8 characters
long.

STATUS(cvda)
causes the specified CICS program to be available or unavailable for use by
CICS. CICS programs beginning with “AEG” cannot be disabled. The input
CVDA values are:

ENABLED The program is available for use.

DISABLED The program is unavailable for use.

Exception Conditions
INVREQ

occurs if:
v DISABLED was specified for a program with a name beginning with AEG or

a program that used EXECUTIONSET(*DPLSUBSET) (RESP2=1)
v STATUS has an incorrect CVDA value (RESP2=2)
v NEWCOPY was specified and RESCOUNT is not equal to zero (RESP2=3)
v COPY has an incorrect CVDA value (RESP2=5)
v Copy was specified for a program currently loaded with the HOLD option

(RESP2=6)
v CEDFSTATUS has an incorrect CVDA value (RESP2=9)
v The named program is remote (RESP2=17)
v EXECUTIONSET was specified for a BMS map set (RESP2=18)
v EXECUTIONSET has an incorrect CVDA value (RESP2=20)

Default action: Terminate the task abnormally.

IOERR
occurs if COPY was specified and the load process failed (RESP2=8).

 Default action: Terminate the task abnormally.

NOTAUTH
occurs if the control region is not authorized for the program object
(RESP2=101).

 Default action: Terminate the task abnormally.

PGMIDERR
occurs if the named program cannot be found (RESP2=7).

 Default action: Terminate the task abnormally.

516 CICS for iSeries Application Programming Guide V5

SET SYSTEM

The EXEC CICS SET SYSTEM command changes some of the information
associated with the CICS control region.

Options
DUMPING(cvda)

causes the taking of CICS control region dumps to be globally suppressed or
not. The input CVDA values are:

SYSDUMP CICS control region dumps are not globally suppressed

NOSYSDUMP
CICS control region dumps are globally suppressed.

Exception Conditions
INVREQ

occurs if DUMPING has an incorrect CVDA value (RESP2=9).

 Default action: Terminate the task abnormally.

SET TASK

The EXEC CICS SET TASK command allows a named task to be purged.

Options
PURGETYPE(cvda)

causes the specified task to be purged. The input CVDA value is:

PURGE
The task is terminated when system and data integrity can be
maintained.

 A task is not purged if its associated transaction definition had
specified *NO in the PURGE parameter within the OS/400
ADDCICSPCT CL command.

TASK(data-value)
is the 4-byte packed decimal sequence number that identifies the task.

�� SET SYSTEM
DUMPING

(

cvda

)

SYSDUMP

NOSYSDUMP

 ��

Condition: INVREQ

�� SET TASK (data-value)
PURGETYPE

(

cvda

)

PURGE

 ��

Conditions: INVREQ, TASKIDERR

Chapter 33. System programming reference 517

Exception Conditions
INVREQ

occurs if:
v PURGETYPE has an incorrect CVDA value (RESP2=3)
v The named task is not in a valid state for purging (RESP2=5)

Default action: Terminate the task abnormally.

TASKIDERR
occurs if:
v The named task cannot be found (RESP2=1)
v The named task is protected by CICS; that is, it is a CICS-supplied

transaction that is normally invoked from within CICS and not by an
operator

Default action: Terminate the task abnormally.

SET TDQUEUE

The EXEC CICS SET TDQUEUE command changes some of the information of a
named transient data queue definition in the control region. The queue definition
must not be remote or indirect.

Options
ATIFACILITY(cvda) (intrapartition queues only)

causes the specified queue to associate, or not, a terminal (or session) with the
task to be started when the TRIGGERLEVEL value is reached. The input
CVDA values are:

TERMINAL A terminal (or session) is associated with the task.

NOTERMINAL
A terminal (or session) is not associated with the task.

ATITERMID(data-value) (intrapartition queues only)
causes the specified queue to use the value as the terminal (or session) that is
associated with the task to be started when the TRIGGERLEVEL value is
reached.

�� SET TDQUEUE (name)
ATIFACILITY

(

cvda

)

TERMINAL

NOTERMINAL

ATITERMID

(

data-value

)

 �

�
ATITRANID

(

data-value

)

ENABLESTATUS

(

cvda

)

ENABLED

DISABLED

OPENSTATUS

(

cvda

)

OPEN

CLOSED

 �

�
TRIGGERLEVEL

(

data-value

)

 ��

Conditions: INVREQ, IOERR, QIDERR

518 CICS for iSeries Application Programming Guide V5

ATITRANID(data-value) (intrapartition queues only)
causes the specified queue to use the value as the transaction that is associated
with the task to be started when the TRIGGERLEVEL value is reached.

ENABLESTATUS(cvda)
causes the specified queue to allow or not allow use by application programs.
The input CVDA values are:

ENABLED The queue is available for use by application programs.

DISABLED The queue is unavailable for use by application programs,
though it may still be OPEN. Any queue whose name begins
with the letter “C” cannot be disabled, because this identifies
CICS’s own queues.

OPENSTATUS(cvda) (extrapartition queues only)
causes the specified queue to be opened or closed. The input CVDA values are:

OPEN The queue is to be opened.

CLOSED The queue is to be closed.

Note: A queue that is disabled cannot be opened or closed.

TDQUEUE(name)
is the name of the queue as specified in the DEST parameter within the
OS/400 ADDCICSDCT CL command. The name may be up to 4 characters
long.

TRIGGERLEVEL(data-value) (intrapartition queues only)
specifies as a fullword binary value the number of records that can be written
to the queue before automatic transaction initiation (ATI) occurs. The number
must be in the range 0 through 32 767.

Exception Conditions
INVREQ

occurs if:
v TRIGGERLEVEL was specified for an extrapartition queue (RESP2=2)
v TRIGGERLEVEL value is not in the range 0–32767 (RESP2=3)
v ATITERMID was specified for an extrapartition queue (RESP2=4)
v ATITRANID was specified for an extrapartition queue (RESP2=5)
v ATIFACILITY was specified for an extrapartition queue (RESP2=6)
v ATIFACILITY was specified with an invalid CVDA value (RESP2=7)
v OPENSTATUS was specified with an invalid CVDA value (RESP2=8)
v OPENSTATUS was specified for an intrapartition queue (RESP2=9)
v ENABLESTATUS was specified with an invalid CVDA value (RESP2=10)
v DISABLED was specified for a queue whose name begins with “C”

(RESP2=11)
v The named queue is remote (RESP2=12)
v The named queue is indirect (RESP2=13)
v OPEN or CLOSED was specified for a DISABLED queue (RESP2=15)
v TRIGGERLEVEL is specified but the ATI transaction does not exist

(RESP2=17)

Default action: Terminate the task abnormally.

Chapter 33. System programming reference 519

IOERR
occurs if an error arises while opening or closing the queue (RESP2=14).

 Default action: Terminate the task abnormally.

QIDERR
occurs if the named queue cannot be found (RESP2=1).

 Default action: Terminate the task abnormally.

SET TERMINAL

The EXEC CICS SET TERMINAL command changes some of the information of a
named terminal definition.

Options
ACQSTATUS(cvda)

causes the specified terminal to be associated or not associated with the logical
unit represented by the named terminal. ACQSTATUS cannot be specified for
APPC sessions or TCS entries. The input CVDA values are:

ACQUIRED The terminal is associated with the logical unit represented by
the named terminal.

RELEASED The terminal is not associated with the logical unit represented
by the named terminal.

 This happens immediately if the PURGE option is also
specified. If PURGE is not specified, this happens when the
current active task has finished.

ATISTATUS(cvda)
causes the specified terminal to be used or not used by transactions that are
automatically initiated from within CICS. The input CVDA values are:

ATI The terminal can be used by transactions that are automatically
initiated from within CICS.

NOATI
The terminal cannot be used by transactions that are automatically
initiated from within CICS.

�� SET TERMINAL (name)
ACQSTATUS

(

cvda

)

ACQUIRED

RELEASED

ATISTATUS

(

cvda

)

ATI

NOATI

 �

�
NEXTTRANSID

(

data-area

)

PURGETYPE

(

cvda

)

PURGE

SERVSTATUS

(

cvda

)

INSERVICE

OUTSERVICE

 �

�
TTISTATUS

(

cvda

)

TTI

NOTTI

 ��

Conditions: INVREQ, TERMIDERR

520 CICS for iSeries Application Programming Guide V5

Note: A terminal cannot have both NOATI and NOTTI specified.

NEXTTRANSID(data-area)
causes the specified terminal to use this value as the next CICS transaction to
be started. If this is set to blanks (X'40404040'), the next transaction about to
start is nulled.

PURGETYPE(cvda)
causes the specified terminal to purge the associated task. The input CVDA
value is:

PURGE The task is terminated when the CICS system and data
integrity can be maintained.

 A task is not purged if its associated transaction definition had
specified *NO in the PURGE parameter within the OS/400
ADDCICSPCT CL command.

SERVSTATUS(cvda)
specifies whether the terminal is to be available for use. Valid CVDA values
are:

INSERVICE The terminal is to be available for use.

OUTSERVICE The terminal is not to be available for use.

 Unless PURGE is also specified, the current transaction is
allowed to terminate normally, but no further transactions are
allowed to use the terminal.

 The terminal is RELEASED and the user is signed off, either
immediately or when the current transaction has terminated.
You cannot therefore set the terminal associated with the
executing transaction to OUTSERVICE, unless it is a printer.

TERMINAL(name)
is the name of the terminal as specified in the CICSDEV parameter within the
OS/400 ADDCICSTCT CL command. The name can be up to 4 characters long.

TTISTATUS(cvda)
specifies whether transactions may be started from this terminal. The input
CVDA values are:

TTI Transactions may be started from the terminal.

NOTTI
Transactions may not be started from the terminal. Transactions may be
started using either ATI or an EXEC CICS START command.

Note: A terminal cannot have both NOATI and NOTTI in its status.

Exception Conditions
INVREQ

occurs if:
v ACQSTATUS has an incorrect CVDA value (RESP2=2)
v ATISTATUS has an incorrect CVDA value (RESP2=4)
v ATISTATUS change would result in NOATI and NOTTI (RESP2=5)
v An attempt has been made to put the terminal associated with the executing

transaction OUTSERVICE, and it is not a printer (RESP2=11)
v SERVSTATUS has an incorrect CVDA value (RESP2=13)

Chapter 33. System programming reference 521

v TTISTATUS change would result in NOATI and NOTTI (RESP2=17)
v TTISTATUS has an incorrect CVDA value (RESP2=18)
v PURGETYPE has been specified for the transaction on this terminal

(RESP2=20)
v PURGETYPE has an incorrect CVDA value (RESP2=21)
v The named terminal is a remote terminal (RESP2=24)
v ACQUIRED has been specified but the terminal is not in service (RESP2=25)
v PURGE has been specified but the target task has PURGE=NO in its

associated transaction definition (RESP2=26)
v A permanent transaction has been defined for this terminal (using the

TRANSID parameter in the TCT definition) (RESP2=34). See CICS for iSeries
Administration and Operations Guide for details.

v RELEASED has been specified but the terminal is in the process of being
acquired (RESP2=37)

v ACQUIRED has been specified but the terminal is in the process of being
released (RESP2=38)

Default action: Terminate the task abnormally.

TERMIDERR
occurs if the named terminal cannot be found (RESP2=23).

 Default action: Terminate the task abnormally.

SET TRACEDEST

The EXEC CICS SET TRACEDEST command allows you to change some of the
information about the recording of trace entries in the control region.

Options
AUXSTATUS(cvda)

specifies the auxiliary tracing status required in the CICS system. CICS/400
auxiliary trace entries are made to a pair of CICS/400 controlled user spaces.
Valid CVDA values are:

AUXSTART Auxiliary tracing is to be started.

�� SET TRACEDEST
AUXSTATUS

(

cvda

)

AUXSTART

AUXSTOP

INTSTATUS

(

cvda

)

INTSTART

INTSTOP

 �

�
SWITCHACTION

(

cvda

)

SWITCH

SWITCHSTATUS

(

cvda

)

NOSWITCH

SWITCHALL

TABLESIZE

(

data-value

)

 �

�
USERSTATUS

(

cvda

)

USERON

USEROFF

 ��

Conditions: INVREQ, IOERR, NOSPACE

522 CICS for iSeries Application Programming Guide V5

AUXSTOP Auxiliary tracing is to be stopped. A subsequent AUXSTART
request causes the new trace entries to be written at the start of
the user space, thereby overwriting the trace entries that were
written before the AUXSTOP request.

INTSTATUS(cvda)
causes the CICS/400 internal tracing to be active or not in the CICS/400
control region. The input CVDA values are:

INTSTART The CICS/400 internal tracing is to be started.

INTSTOP The CICS/400 internal tracing is to be stopped.

SWITCHACTION(cvda)
causes the CICS/400 auxiliary trace user space to be switched. The input
CVDA value is SWITCH.

SWITCH Switches immediately from the current CICS/400 auxiliary
trace user space to the alternate CICS/400 auxiliary trace user
space.

SWITCHSTATUS(cvda)
causes the CICS/400 auxiliary trace to allow or not allow automatic user space
switching when the current CICS/400 auxiliary trace user space becomes full
in the CICS/400 control region.

 The input CVDA values are:

NOSWITCH
Switching is not allowed without operator intervention.

SWITCHALL
Automatic switching is allowed as necessary until the end of the
CICS/400 control region, without the need for operator intervention.

TABLESIZE(data-value)
causes the CICS/400 internal trace table to allow this value as the maximum
number of entries that can be kept in the table.

 If you specify a value that is different from the current trace table size,
CICS/400 internal tracing stops while the change is made; a new table of the
requested size is obtained, and the old one is freed. Data that was in the old
table is lost.

USERSTATUS(cvda)
causes the CICS/400 user tracing to be active or not in the CICS/400 control
region. Valid CVDA values are:

USERON The CICS/400 user tracing is on.

USEROFF The CICS/400 user tracing is off.

Exception Conditions
INVREQ

occurs if:
v INTSTATUS has an incorrect CVDA value (RESP2=1)
v A TABLESIZE value outside the range 125-10 000 has been specified

(RESP2=2)
v AUXSTATUS has an incorrect CVDA value (RESP2=3)
v SWITCHSTATUS has an incorrect CVDA value (RESP2=4)
v SWITCHACTION has an incorrect CVDA value (RESP2=11)

Chapter 33. System programming reference 523

v USERSTATUS has an incorrect CVDA value (RESP2=12)

Default action: Terminate the task abnormally.

IOERR
occurs if:
v A SWITCH request or an EXEC CICS SET TRACEDEST AUXSTART request

resulted in an OPEN error for the trace user space (RESP2=10)
v An INTSTART request resulted in an OPEN error for the trace user space

(RESP2=13)

Default action: Terminate the task abnormally.

NOSPACE
occurs if there is insufficient space for the new trace table (RESP2=7).

 Default action: Terminate the task abnormally.

 Example
EXEC CICS SET TRACEDEST
 SWITCH
 NOSWITCH
 END-EXEC.

The SWITCH option tells the CICS control region to switch now from the current
CICS auxiliary trace user space (which is not necessarily full) to the alternate CICS
auxiliary trace user space. The NOSWITCH option states that there is to be no
automatic switching of CICS auxiliary trace user space when it fills up.

SET TRANSACTION

The EXEC CICS SET TRANSACTION command allows you to change some of the
information of a named transaction definition.

Options
DUMPING(cvda)

causes the specified transaction to allow or not allow a CICS/400 transaction
dump when the transaction terminates abnormally. The setting of this option is
ignored when an explicit DUMP TRANSACTION command is issued. The
input CVDA values are:

TRANDUMP A CICS/400 transaction dump occurs when the transaction
terminates abnormally.

�� SET TRANSACTION (name)
DUMPING

(

cvda

)

TRANDUMP

NOTRANDUMP

PURGEABILITY

(

cvda

)

PURGEABLE

NOTPURGEABLE

 �

�
STATUS

(

cvda

)

ENABLED

DISABLED

 ��

Conditions: INVREQ, TRANSIDERR

524 CICS for iSeries Application Programming Guide V5

NOTRANDUMP
A CICS transaction dump does not occur when the transaction
terminates abnormally.

PURGEABILITY(cvda)
specifies whether the transaction is to be treated as purgeable or nonpurgeable
in system stall conditions. Valid CVDA values are:

PURGEABLE The transaction can be purged.

NOTPURGEABLE
The transaction cannot be purged.

STATUS(cvda)
specifies whether the transaction is to be available for use. Valid CVDA values
are:

ENABLED The transaction is available for use.

DISABLED The transaction is not available for use. CICS transactions
beginning with the letter “C” are supplied by CICS and cannot
be disabled.

TRANSACTION(name)
is the name of the transaction specified in the TRANSID parameter of the
OS/400 ADDCICSPCT CL command. The name may be up to 4 characters
long.

Exception Conditions
INVREQ

occurs if:
v PURGEABILITY has an incorrect CVDA value (RESP2=2)
v STATUS has an incorrect CVDA value (RESP2=3)
v An attempt has been made to disable a CICS-supplied transaction (RESP2=4)
v DUMPING has an incorrect CVDA value (RESP2=8)
v The PCT profile is not available (RESP2=10)

Default action: Terminate the task abnormally.

TRANSIDERR
occurs if the named transaction cannot be found (RESP2=1).

 Default action: Terminate the task abnormally.

Chapter 33. System programming reference 525

526 CICS for iSeries Application Programming Guide V5

Part 8. Appendixes

© Copyright IBM Corp. 1998, 2004 527

528 CICS for iSeries Application Programming Guide V5

Appendix A. EXEC interface block

This appendix describes the fields of the EXEC interface block (EIB). An
application program can read all the fields in the EIB of the associated task by
name, but must not change the contents of any of them.

For each field, the contents and format, for each of the supported application
programming languages, are given. All fields contain zeros (X'00') in the absence of
meaningful information. Fields are listed in alphabetic order.

EIB fields
EIBAID

contains the attention identifier (AID) associated with the last terminal control
or basic mapping support (BMS) input operation from a display device such as
a terminal. See “Attention identifier constants, DFHAID” on page 548.
COBOL: PIC X(1).
C: char eibaid;

EIBATT
indicates that the request/response unit (RU) contains attach header data
(X'FF').
COBOL: PIC X(1).
C: char eibatt;

EIBCALEN
contains the length of the communication area that has been passed to the
application program from the last program, using the COMMAREA and
LENGTH options. If no communication area is passed, this field contains zeros.
COBOL: PIC S9(4) BINARY.
C: short int eibcalen;

EIBCOMPL
indicates, on a terminal control RECEIVE command, that the data is complete
(X'FF'). If the NOTRUNCATE option has been used on the RECEIVE
command, CICS retains data in excess of the amount requested via the
LENGTH or MAXLENGTH option. EIBRECV is set indicating that further
RECEIVE commands are required. EIBCOMPL is not set until the last of the
data has been retrieved.

 EIBCOMPL is always set when a RECEIVE command without the
NOTRUNCATE option is executed.
COBOL: PIC X(1).
C: char eibcompl;

EIBCONF
indicates that a CONFIRM request has been received on an APPC conversation
(X'FF').
COBOL: PIC X(1).
C: char eibconf;

EIBCPOSN
contains the cursor address (position) associated with the last terminal control
or basic mapping support (BMS) input operation from a display device such as
a terminal.

© Copyright IBM Corp. 1998, 2004 529

COBOL: PIC S9(4) BINARY.
C: short int eibcposn;

EIBDATE
contains the date the task is started; this field is updated by the ASKTIME
command. The date is in packed decimal form (0CYYDDD+) where C shows
the century with values 0 for the 1900s and 1 for the 2000s.
COBOL: PIC S9(7) PACKED-DECIMAL.
C: char eibdate[4];

EIBDS
contains the symbolic identifier of the last file referred to in a file control
request.
COBOL: PIC X(8).
C: char eibds[8];

EIBEOC
is always set to X'FF' after a RECEIVE command, (to indicate an end-of-chain)
for compatibility with existing CICS programs.
COBOL: PIC X(1).
C: char eibeoc;

EIBERR
indicates that an error has been received on an APPC conversation (X'FF'). The
error code is in EIBERRCD.
COBOL: PIC X(1).
C: char eiberr;

EIBERRCD
when EIBERR is set, contains the error code that has been received.

 The values that can be returned in the first two bytes of EIBERRCD are given
in CICS for iSeries Intercommunication.

 See SNA Format Protocol Reference Architecture Logic for LU Type 6.2, SC30-3269,
for information about other EIBERRCD values that can occur.
COBOL: PIC X(4).
C: char eiberrcd[4];

EIBFMH
indicates that the user data just received or retrieved contains an FMH (X'FF').
COBOL: PIC X(1).
C: char eibfmh;

EIBFN
contains a code that identifies the last CICS command to be issued by the task;
this field is updated when the requested function has been completed.
COBOL: PIC X(2).
C: char eibfn[2];

EIBFN code sequence
This list presents EIBFN codes in numeric sequence by hexadecimal
value; it is followed by a list in alphabetic sequence by command name.

 Hex code Command

0202 ADDRESS
0204 HANDLE CONDITION
0206 HANDLE AID

EIB fields

530 CICS for iSeries Application Programming Guide V5

Hex code Command

0208 ASSIGN
020A IGNORE CONDITION
020C PUSH HANDLE
020E POP HANDLE
0402 RECEIVE
0404 SEND
0406 CONVERSE
0418 ISSUE ERASEAUP
041E ISSUE SIGNAL
0420 ALLOCATE
0422 FREE
042C WAIT CONVID
042E EXTRACT PROCESS
0430 ISSUE ABEND
0432 CONNECT PROCESS
0434 ISSUE CONFIRMATION
0436 ISSUE ERROR
043E EXTRACT ATTRIBUTES
0602 READ
0604 WRITE
0606 REWRITE
0608 DELETE
060A UNLOCK
060C STARTBR
060E READNEXT
0610 READPREV
0612 ENDBR
0614 RESETBR
0802 WRITEQ TD
0804 READQ TD
0806 DELETEQ TD
0A02 WRITEQ TS
0A04 READQ TS
0A06 DELETEQ TS
0C02 GETMAIN
0C04 FREEMAIN
0E02 LINK
0E04 XCTL
0E06 LOAD
0E08 RETURN
0E0A RELEASE
0E0C ABEND
0E0E HANDLE ABEND
1002 ASKTIME
1004 DELAY
1006 POST
1008 START
100A RETRIEVE
100C CANCEL
1202 WAIT EVENT
1204 ENQ
1206 DEQ
1208 SUSPEND
1402 WRITE JOURNALNUM

EIB fields

Appendix A. EXEC interface block 531

Hex code Command

1404 WAIT JOURNALNUM
1602 SYNCPOINT
1802 RECEIVE MAP
1804 SEND MAP
1806 SEND TEXT
1812 SEND CONTROL
2002 BIF DEEDIT
4204 INQUIRE AUTINSTMODEL
4210 DISCARD AUTINSTMODEL
4802 ENTER TRACENUM
4A02 ASKTIME ABSTIME
4A04 FORMATTIME
4C02 INQUIRE FILE
4C04 SET FILE
4C10 DISCARD FILE
4E02 INQUIRE PROGRAM
4E04 SET PROGRAM
4E10 DISCARD PROGRAM
5002 INQUIRE TRANSACTION
5004 SET TRANSACTION
5010 DISCARD TRANSACTION
5202 INQUIRE TERMINAL
5204 SET TERMINAL
5402 INQUIRE SYSTEM
5404 SET SYSTEM
5602 SPOOLOPEN OUTPUT
5606 SPOOLWRITE
5610 SPOOLCLOSE
5802 INQUIRE CONNECTION
5804 SET CONNECTION
5C02 INQUIRE TDQUEUE
5C04 SET TDQUEUE
5E02 INQUIRE TASK
5E04 SET TASK
6002 INQUIRE JOURNALNUM
6004 SET JOURNALNUM
7602 PERFORM SHUTDOWN
7802 INQUIRE TRACEDEST
7804 SET TRACEDEST
7E02 DUMP TRANSACTION

Command name sequence
This list presents EIBFN codes in alphabetic sequence by command name.

 Hex code

0E0C ABEND
0202 ADDRESS
0420 ALLOCATE
1002 ASKTIME
4A02 ASKTIME ABSTIME
0208 ASSIGN

EIB fields

532 CICS for iSeries Application Programming Guide V5

Hex code

100C CANCEL
0432 CONNECT PROCESS
0406 CONVERSE
1004 DELAY
0608 DELETE
0806 DELETEQ TD
0A06 DELETEQ TS
1206 DEQ
4210 DISCARD AUTINSTMODEL
4C10 DISCARD FILE
4E10 DISCARD PROGRAM
5010 DISCARD TRANSACTION
7E02 DUMP TRANSACTION
0612 ENDBR
1204 ENQ
4802 ENTER TRACENUM
043E EXTRACT ATTRIBUTES
042E EXTRACT PROCESS
4A04 FORMATTIME
0422 FREE
0C04 FREEMAIN
0C02 GETMAIN
0E0E HANDLE ABEND
0206 HANDLE AID
0204 HANDLE CONDITION
020A IGNORE CONDITION
4202 INQUIRE AUTINSTMODEL
5802 INQUIRE CONNECTION
4CO2 INQUIRE FILE
6002 INQUIRE JOURNALNUM
4E02 INQUIRE PROGRAM
5402 INQUIRE SYSTEM
5E02 INQUIRE TASK
5C02 INQUIRE TDQUEUE
5202 INQUIRE TERMINAL
7802 INQUIRE TRACEDEST
5002 INQUIRE TRANSACTION
0430 ISSUE ABEND
0434 ISSUE CONFIRMATION
0418 ISSUE ERASEAUP
0436 ISSUE ERROR
0438 ISSUE PREPARE
041E ISSUE SIGNAL
0E02 LINK
0E06 LOAD
7602 PERFORM SHUTDOWN
020E POP HANDLE
1006 POST
020C PUSH HANDLE
0602 READ
060E READNEXT
0610 READPREV
0804 READQ TD
0A04 READQ TS

EIB fields

Appendix A. EXEC interface block 533

Hex code

0402 RECEIVE
1802 RECEIVE MAP
0E0A RELEASE
0614 RESETBR
100A RETRIEVE
0E08 RETURN
0606 REWRITE
0404 SEND
1812 SEND CONTROL
1804 SEND MAP
1806 SEND TEXT
5804 SET CONNECTION
4C04 SET FILE
6004 SET JOURNALNUM
4E04 SET PROGRAM
5404 SET SYSTEM
5E04 SET TASK
5C04 SET TDQUEUE
5204 SET TERMINAL
7804 SET TRACEDEST
5004 SET TRANSACTION
5610 SPOOLCLOSE
5602 SPOOLOPEN OUTPUT
5606 SPOOLWRITE
1008 START
060C STARTBR
1208 SUSPEND
1602 SYNCPOINT
060A UNLOCK
042C WAIT CONVID
1202 WAIT EVENT
1404 WAIT JOURNALNUM
0604 WRITE
1402 WRITE JOURNALNUM
0802 WRITEQ TD
0A02 WRITEQ TS
0E04 XCTL

EIBFREE
indicates that the application program cannot continue using the facility
(X'FF'). The application program should either free the facility explicitly or
terminate, so that the facility is freed by CICS.
COBOL: PIC X(1).
C: char eibfree;

EIBNODAT
indicates that no data has been sent by the remote application (X'FF'). A
message has been received from the remote system that conveyed only control
information. For example, if the remote application executed a SEND
command with the WAIT option, or a WAIT CONVID command, any data
would be sent across the link. If the remote application then executed a SEND
INVITE command without using the FROM option to transmit data at the
same time, it would be necessary to send the INVITE instruction across the

EIB fields

534 CICS for iSeries Application Programming Guide V5

link by itself. In this case, the receiving application finds EIBNODAT set. The
use of this field is restricted to application programs holding conversations
across APPC links only.
COBOL: PIC X(1).
C: char eibnodat;

EIBRCODE
contains the CICS response code returned after the function requested by the
last CICS command to be issued by the task has been completed.

Note: Each possible value of EIBRESP relates directly to a specific exception
condition, no matter which command caused the condition to be raised.
This is not true for EIBRCODE values; in general, both the value and the
byte of EIBRCODE in which it is set depend on which command was
issued.

 For a normal response, this field contains hexadecimal zeros (6X'00').
COBOL: PIC X(6).
C: char eibrcode[6];
 The following list shows the EIBRCODE values corresponding to the exception
conditions that can occur for each group of commands (as indicated by byte 0
of EIBFN), together with the names of the associated conditions.
 For some conditions, further information is provided in EIBRCODE and this is
indicated by a note following the list of values.

Note: For some commands (for example, DISCARD, INQUIRE and SET), byte
3 of EIBRCODE contains the hexadecimal equivalent of the value in
EIBRESP; the remaining bytes are set to X'00'. Any further information
relating to conditions occurring on these commands can be found in
EIBRESP2 rather than EIBRCODE. The RESP2 values are given in the
descriptions of the individual commands.

 EIBFN EIBRCODE Condition

02 .. E0 INVREQ
04 .. D0 SYSIDERR¹
04 .. D3 SYSBUSY²
04 .. D5 NOTALLOC
04 .. E0 INVREQ³
04 .. E1 LENGERR⁴
04 .. E5 SIGNAL
04 .. F1 TERMERR
04 20 EOC
06 .. 01 FILENOTFOUND
06 .. 02 ILLOGIC5

06 .. 08 INVREQ
06 .. 0C NOTOPEN
06 .. 0D DISABLED
06 .. 0F ENDFILE
06 .. 02 IOERR⁵
06 .. 81 NOTFND
06 .. 82 DUPREC
06 .. 83 NOSPACE
06 .. 84 DUPKEY
06 .. D0 SYSIDERR¹
06 .. D1 ISCINVREQ
06 .. D6 NOTAUTH

EIB fields

Appendix A. EXEC interface block 535

EIBFN EIBRCODE Condition

06 .. E1 LENGERR
08 .. 01 QZERO
08 .. 02 QIDERR
08 .. 04 IOERR
08 .. 08 NOTOPEN
08 .. 10 NOSPACE
08 .. C0 QBUSY
08 .. D0 SYSIDERR¹
08 .. D1 ISCINVREQ
08 .. D6 NOTAUTH
08 .. D7 DISABLED
08 .. E0 INVREQ
08 .. E1 LENGERR
0A .. 01 ITEMERR
0A .. 02 QIDERR
0A .. 04 IOERR
0A .. 08 NOSPACE
0A .. 20 INVREQ
0A .. D0 SYSIDERR¹
0A .. D1 ISCINVREQ
0A .. D6 NOTAUTH
0A .. E1 LENGERR
0C .. E1 LENGERR
0C .. E2 NOSTG
0E .. 01 PGMIDERR
0E .. D6 NOTAUTH
0E .. E0 INVREQ
10 .. 01 ENDDATA
10 .. 04 IOERR
10 .. 11 TRANSIDERR
10 .. 12 TERMIDERR
10 .. 20 EXPIRED
10 .. 81 NOTFND
10 .. D0 SYSIDERR¹
10 .. D1 ISCINVREQ
10 .. D6 NOTAUTH
10 .. E1 LENGERR
10 .. E9 ENVDEFERR
10 .. FF INVREQ
12 .. 32 ENQBUSY
12 .. E0 INVREQ
12 .. E1 LENGERR
14 .. 01 JIDERR
14 .. 05 NOTOPEN
14 .. 06 LENGERR
14 .. 07 IOERR
14 .. 09 NOJBUFSP
14 .. D6 NOTAUTH
16 .. 01 ROLLEDBACK
18 .. 01 INVREQ
18 .. 04 MAPFAIL
18 .. 08 INVMPSZ⁶
42 10 INVREQ
42 15 ILLOGIC

EIB fields

536 CICS for iSeries Application Programming Guide V5

EIBFN EIBRCODE Condition

42 53 END
42 5F MODELIDERR
48 INVREQ
48 LENGERR
4A 10 INVREQ
4C 0C FILENOTFOUND
4C 10 INVREQ
4C 11 IOERR
4C 15 ILLOGIC
4C 53 END
4E 10 INVREQ
4E 11 IOERR
4E 15 ILLOGIC
4E 1B PGMIDERR
4E 46 NOTAUTH
4E 53 END
50 10 INVREQ
50 15 ILLOGIC
50 1C TRANSIDERR
50 53 END
52 0B TERMIDERR
52 10 INVREQ
52 15 ILLOGIC
52 53 END
54 10 INVREQ
56 0D NOTFND
56 10 INVREQ
56 13 NOTOPEN
56 16 LENGERR
56 57 OPENERR
56 58 SPOLBUSY
56 59 SPOLERR
58 10 INVREQ
58 15 ILLOGIC
58 35 SYSIDERR
58 53 END
5C 10 INVREQ
5C 11 IOERR
5C 15 ILLOGIC
5C 2C QIDERR
5C 53 END
5E 10 INVREQ
5E 5B TASKIDERR
60 10 INVREQ
60 11 IOERR
60 15 ILLOGIC
60 2B JIDERR
60 53 END
76 10 INVREQ
78 10 INVREQ
78 12 IOERR
78 12 NOSPACE
7E INVREQ

EIB fields

Appendix A. EXEC interface block 537

Notes:

1. When SYSIDERR occurs, further information is provided in bytes 1 and 2
of EIBRCODE as follows:
 .. 04 00 requested function not valid
 .. 04 04 no session available and
 NOQUEUE was specified
 .. 04 08 mode name not founda

 .. 04 0C mode name not valida

 .. 04 10 task canceled or timed out
 during allocationa

 .. 04 14 mode group out of servicea

 .. 04 18 close - DRAIN=ALLa

 .. 08 sysid out of service
 .. 0C xx sysid definition error
 .. 0C 00 name not that of TCTSE
 .. 0C 04 name not that of remote
 TCTSE
 .. 0C 08 mode name not found
 .. 0C 0C profile not found
 a Applies to APPC only.

2. If SYSBUSY occurs on an ALLOCATE command that attempts to acquire a
session to an APPC terminal or system, byte 3 of EIBRCODE indicates
where the error condition was detected:
 00 the request was for a
 session to a connected
 terminal or system
 01 the request was for a
 session to a remotely
 connected terminal or
 system, and the error
 occurred in the terminal-
 owning region (TOR) or
 an intermediate system
 02 the request was for a
 session to a remotely
 connected terminal or
 system, and the error
 occurred in the
 application-owning
 region (AOR)

3. When INVREQ occurs during APPC conversations, further information is
provided in byte 3 of EIBRCODE as follows:
 04 ALLOCATE command -
 conversation
 already allocated
 08 FREE command -
 conversation in
 wrong state
 0C CONNECT PROCESS
 command - sync-
 level 2 has been
 requested, but
 cannot be supported
 on the conversation
 in use
 14 SEND command -
 CONFIRM option has
 been specified,
 but conversation
 is not sync-level
 1 or 2
 1C an incorrect
 command has been

EIB fields

538 CICS for iSeries Application Programming Guide V5

issued for the
 terminal or logical
 unit in use
 20 an incorrect
 command has been
 issued for the APPC
 conversation type
 in use

4. When LENGERR occurs during terminal control operations, further
information is provided in byte 1 of EIBRCODE as follows:
 .. 00 input data is
 overlong and has
 been truncated
 .. 04 on output commands,
 an incorrect
 (FROM)LENGTH has
 been specified,
 either less than
 zero or greater
 than 32767
 .. 08 on input commands,
 an incorrect
 (TO)LENGTH has
 been specified,
 greater than 32767

5. When ILLOGIC or IOERR occurs during file control operations, the OS/400
data management routines provide CICS with the OS/400 message number
if there is one.
 CICS converts the message number into a format acceptable in EIBRCODE.
The conversion is as follows:
v Byte 0 contains the EIBRCODE; 02 - ILLOGIC or 80 - IOERR.
v Bytes 1 and 2 contain the message number, if any, in hexadecimal.
v Bytes 3 and 4 both contain:

– X'00' for CPF
– X'01' for MCH
– X'02' for other

v Byte 5 is not used.

For example, if an I/O error is trapped and the system sends out the
message CPF5006, this would appear in EIBRCODE as follows:
 xx 50 06 00 00 ..

where byte 0 contains the EIBRCODE for the abend, bytes 1 and 2 contain
the message number X'5006', bytes 3 and 4 both contain X'00', designating
CPF, and byte 5 is not used.

 ILLOGIC can occur when you attempt to access an *ESDS file by RRN or
an *REL file by RBA.

6. When INVMPSZ occurs during BMS operations, byte 3 of EIBRCODE
contains the terminal code:
 xx terminal code
 These are the same as the map set suffixes shown in Table 16 on page 560.

EIBRECV
indicates that the application program is to continue receiving data from the
facility by executing RECEIVE commands (X'FF').

EIB fields

Appendix A. EXEC interface block 539

COBOL: PIC X(1).
C: char eibrecv;

EIBREQID
contains the request identifier assigned to an interval control command by
CICS; this field is not used when a request identifier is specified in the
application program.
COBOL: PIC X(8).
C: char eibreqid[8];

EIBRESP
contains a fullword binary number corresponding to the condition that has
occurred. These numbers are listed below (in decimal) for the conditions that
can occur on local requests during execution of EXEC CICS commands. The
abend code (if any) associated with each condition is also presented.
COBOL: PIC S9(8) BINARY.
C: long int eibresp;

EIBRESP code sequence
This list presents conditions and their associated abend codes (if any) in
EIBRESP code sequence; it is followed by a list in abend code sequence.

 No. Condition Abend

00 NORMAL
01 ERROR AEIA
06 EOC
11 TERMIDERR AEIK
12 FILENOTFOUND AEIL
13 NOTFND AEIM
14 DUPREC AEIN
15 DUPKEY AEIO
16 INVREQ AEIP
17 IOERR AEIQ
18 NOSPACE AEIR
19 NOTOPEN AEIS
20 ENDFILE AEIT
21 ILLOGIC AEIU
22 LENGERR AEIV
23 QZERO AEIW
24 SIGNAL
25 QBUSY
26 ITEMERR AEIZ
27 PGMIDERR AEI0
28 TRANSIDERR AEI1
29 ENDDATA AEI2
31 EXPIRED
36 MAPFAIL AEI9
38 INVMPSZ AEYB
42 NOSTG ASCP
43 JIDERR AEYG
44 QIDERR AEYH
45 NOJBUFSP A17G
53 SYSIDERR AEYQ
54 ISCINVREQ AEYR
55 ENQBUSY

EIB fields

540 CICS for iSeries Application Programming Guide V5

No. Condition Abend

56 ENVDEFERR AEYT
59 SYSBUSY
61 NOTALLOC AEYY
70 NOTAUTH AEY7
81 TERMERR ATNI
82 ROLLEDBACK AEXJ
83 END AEXK
84 DISABLED AEXL
87 OPENERR
88 SPOLBUSY
89 SPOLERR
91 TASKIDERR AEXX
95 MODELIDERR AEX3

Abend code sequence
This list presents conditions and their associated abend codes in abend
code sequence.

 Conditions without corresponding abend codes are not shown.

 No. Condition Abend

01 ERROR AEIA
11 TERMIDERR AEIK
12 FILENOTFOUND AEIL
13 NOTFND AEIM
14 DUPREC AEIN
15 DUPKEY AEIO
16 INVREQ AEIP
17 IOERR AEIQ
18 NOSPACE AEIR
19 NOTOPEN AEIS
20 ENDFILE AEIT
21 ILLOGIC AEIU
22 LENGERR AEIV
23 QZERO AEIW
26 ITEMERR AEIZ
27 PGMIDERR AEI0
28 TRANSIDERR AEI1
29 ENDDATA AEI2
36 MAPFAIL AEI9
82 ROLLEDBACK AEXJ
83 END AEXK
84 DISABLED AEXL
91 TASKIDERR AEXX
95 MODELIDERR AEX3
38 INVMPSZ AEYB
43 JIDERR AEYG
44 QIDERR AEYH
53 SYSIDERR AEYQ
54 ISCINVREQ AEYR
56 ENVDEFERR AEYT

EIB fields

Appendix A. EXEC interface block 541

No. Condition Abend

61 NOTALLOC AEYY
70 NOTAUTH AEY7
42 NOSTG ASCP
81 TERMERR ATNI
45 NOJBUFSP A17G

EIBRESP2
contains more detailed information that may help explain why the condition
indicated by EIBRESP has occurred. The relevant values are documented with
each command as applicable. For requests to remote files, EIBRESP2 contains
zeros.
COBOL: PIC S9(8) BINARY.
C: long int eibresp2;

EIBRLDBK
indicates that the remote transaction has sent SYNCPOINT ROLLBACK in
response to a SYNCPOINT request (X'FF').
COBOL: PIC X(1).
C: char eibrldbk;

EIBRSRCE
contains the symbolic identifier of the resource being accessed by the last CICS
command to be issued by the task:
Type of No of
command Resource chars

BMS Map name 7
File control File name 8
Interval control Transaction name 4
Journal control Journal number H
Program control Program name 8
Temporary storage TS queue name 8
 control
Terminal control Terminal identifier 4
 or
 APPC conversation 4
 identifier
Transient data TD queue name 4
 control
 Identifiers less than eight characters long are padded on the right with blanks.
COBOL: PIC X(8).
C: char eibrsrce[8];

EIBSIG
indicates that the conversation partner has issued an ISSUE SIGNAL command
(X'FF').
COBOL: PIC X(1).
C: char eibsig;

EIBSYNC
indicates that the application program must either issue a SYNCPOINT
command or terminate (X'FF'). Before either is done, the application program
must ensure that any other facilities it owns are put into the send state or are
freed.
COBOL: PIC X(1).
C: char eibsync;
 EIBSYNC is set when an EXEC CICS RECEIVE command detects that the
partner has issued a SYNCPOINT request.

EIB fields

542 CICS for iSeries Application Programming Guide V5

EIBSYNRB
indicates that the application program must issue a SYNCPOINT ROLLBACK
command (X'FF'). This field is set only in application programs holding a
conversation across an APPC link.
COBOL: PIC X(1).
C: char eibsynrb;
 EIBSYNRB is set when an EXEC CICS RECEIVE command detects that the
partner has issued a SYNCPOINT ROLLBACK request.

EIBTASKN
contains the task number assigned to the task by CICS. This number appears
in trace entries generated while the task is in control. The format of the field is
packed decimal.
COBOL: PIC S9(7) PACKED-DECIMAL.
C: char eibtaskn[4];

EIBTIME
contains the time at which the task is started; this field is updated by the
ASKTIME command. The time is in packed decimal form (0HHMMSS+).
COBOL: PIC S9(7) PACKED-DECIMAL.
C: char eibtime[4];

EIBTRMID
contains the symbolic terminal identifier of the principal facility (terminal or
logical unit) associated with the task.
COBOL: PIC X(4).
C: char eibtrmid[4];

EIBTRNID
contains the symbolic transaction identifier of the task.
COBOL: PIC X(4).
C: char eibtrnid[4];

EIB fields

Appendix A. EXEC interface block 543

EIB fields

544 CICS for iSeries Application Programming Guide V5

Appendix B. BMS-related constants

This appendix lists the BMS-related standard field attributes and printer control
characters, and includes a bit map of attributes to help you generate combinations
other than those listed. It also lists the attention identifier (AID) constants, which
are applicable to BMS and terminal control input operations.

Field attribute and printer control characters
The standard list, DFHBMSCA, simplifies the provision of field attributes and
printer control characters. Table 13 lists the symbolic names for the various
combinations of attributes and control characters. If you need combinations other
than those listed, you must generate them separately. Table 14 on page 547 shows a
bit map of attributes to help you do this. Attributes and orders can be set only by
their constant names or by their associated graphic values (for example, “A” for
unprotected and modified data tag set).

The value of an attribute constant can be determined by referring to the 3274
Control Unit Reference Summary.

You can get the standard attribute and printer character control list by including
the DFHBMSCA copybook or ILE C header file in your application program as
appropriate.
v For COBOL users, it consists of a set of PICTURE statements that must be

copied into the working-storage section as follows:
COPY DFHBMSCA.CBL

v For ILE C users, it consists of a series of defined constants that are included in
the application program as follows:
#include <dfhbmsca.h>

Note: IBM 5250 screen attributes are converted from 3270 attributes. For an
explanation, see “IBM 5250 Information Display System” on page 141.

You must use the symbolic name DFHDFT in the application structure to override
a map attribute with the default. On the other hand, to specify default values in a
set attribute (SA) sequence in text build, you should use the symbolic names
DFHDFCOL or DFHDFHI.

 Table 13. Standard attribute and printer control character list, DFHBMSCA

Constant Meaning

DFHBMPEM Printer end-of-message
DFHBMPNL Printer new-line
DFHBMASK Autoskip
DFHBMUNP Unprotected
DFHBMUNN Unprotected and numeric
DFHBMPRO Protected
DFHBMBRY Bright
DFHBMDAR Dark
DFHBMFSE MDT set
DFHBMPRF Protected and MDT set
DFHBMASF Autoskip and MDT set

© Copyright IBM Corp. 1998, 2004 545

Table 13. Standard attribute and printer control character list, DFHBMSCA (continued)

Constant Meaning

DFHBMASB Autoskip and bright
DFHBMPSO shift-out value X'0E'
DFHBMPSI shift-in value X'0F'
DFHBMEOF Field erased
DFHBMFLG Flags (COBOL only)
DFHSA1 Set attribute (SA) order
DFHERROR Error code
DFHCOLOR1 Color
DFHHLT1 Highlight
DFH32701 Base 3270 field attribute
DFHVAL Validation
DFHOUTLN Field outlining attribute code
DFHALL1 Reset all to defaults
DFHDFT Default
DFHDFCOL1 Default color
DFHBLUE Blue
DFHRED Red
DFHPINK Pink
DFHGREEN Green
DFHTURQ Turquoise
DFHYELLO Yellow
DFHNEUTR Neutral
DFHDFHI1 Normal
DFHBLINK Blink
DFHREVRS Reverse video
DFHUNDLN Underscore
DFHMFIL2 Mandatory fill
DFHMENT2 Mandatory enter
DFHMFE Mandatory fill and mandatory enter
DFHUNNOD Unprotected, nondisplay, nonprint, MDT
DFHUNIMD Unprotected, intensify, MDT
DFHUNNUM Unprotected, numeric, MDT
DFHUNINT Unprotected, numeric, intensify, MDT
DFHUNNON Unprotected, numeric, nondisplay, nonprint, MDT
DFHPROTI Protected, intensify
DFHPROTN Protected, nondisplay, nonprint
DFHDFFR Default outline
DFHUNDER Underline
DFHRIGHT Right vertical line
DFHOVER Overline
DFHLEFT Left vertical line
DFHBOX Underline and right vertical and overline and left vertical
DFHSOSI SOSI=yes
Note:
1 For text processing only. Use for constructing embedded set attribute orders in

user text.
2 Cannot be used in set attribute orders.

BMS-related constants

546 CICS for iSeries Application Programming Guide V5

Table 14. Bit map for attributes

prot a/n hi spd1 ndp mdt EBCDIC ASCII char

U 40 20 b (blank)

U Y C1 41 A

U Y C4 44 D

U Y Y C5 45 E

U H Y C8 48 H

U H Y Y C9 49 I

U Y 4C 3C <

U Y Y 4D 28 (

U N 50 26 &

U N Y D1 4A J

U N Y D4 4D M

U N Y Y D5 4E N

U N H Y D8 51 Q

U N H Y Y D9 52 R

U N Y 5C 2A * (asterisk)

U N Y Y 5D 29)

P 60 2D - (hyphen)

P Y 61 2F /

P Y E4 55 U

P Y Y E5 56 V

P H Y E8 59 Y

P H Y Y E9 5A Z

P Y 6C 25 %

P Y Y 6D 5F _ (underscore)

P S F0 30 0

P S Y F1 31 1

P S Y F4 34 4

P S Y Y F5 35 5

P S H Y F8 38 8

P S H Y Y F9 39 9

P S Y 7C 40 @

P S Y Y 7D 27 ’ (close single
quotation mark)

The attributes in the headings are:

prot = protection
a/n = autoskip or numeric
hi = high intensity

spd = selector pen detectable
ndp = nondisplay print
mdt = modified data tag

The hexadecimal (and other) codes in the headings are:
EBCDIC = extended binary-coded decimal interchange code
ASCII = American National Standard Code for Information Interchange
char = graphic character equivalent to hexadecimal code

The characters in the body of the above table mean the following:

BMS-related constants

Appendix B. BMS-related constants 547

Table 14. Bit map for attributes (continued)

prot a/n hi spd1 ndp mdt EBCDIC ASCII char

U = Unprotected
P = Protected

N = Numeric
S = Autoskip

H = High
Y = Yes

Note:
1 spd is not supported by CICS/400.

Attention identifier constants, DFHAID
The standard attention identifier list, DFHAID, simplifies testing the contents of
the EIBAID field after a BMS or terminal control input operation associated with a
display device. Table 15 shows the symbolic name for each attention identifier
(AID) and the corresponding 3270 function.

You can get the standard attention identifier list by including the DFHAID COBOL
copybook or ILE C header file in your application program as appropriate.
v For COBOL users, it consists of a set of PICTURE statements that must be

copied into the working-storage section.
v For ILE C users, it consists of a series of defined constants that are included in

the application program as follows:
#include <dfhaid.h>

Note: IBM 5250 screen attributes are converted from 3270 attributes. For an
explanation, see “IBM 5250 Information Display System” on page 141.

 Table 15. Standard attention identifier constants list, DFHAID

Constant Meaning

DFHENTER ENTER key
DFHCLEAR CLEAR key
DFHPA1–DFHPA3 PA1–PA3 keys
DFHPF1–DFHPF24 PF1–PF24 keys

BMS-related constants

548 CICS for iSeries Application Programming Guide V5

Appendix C. Terminal control

This appendix gives general information that applies to all terminals and logical
units. For more detail, see the command descriptions.

Commands and options for terminals and logical units

Fullword lengths
For all terminal control commands, fullword length options can be used instead of
halfword length options. In particular, where the following options are used in an
EXEC CICS CONVERSE, RECEIVE, or SEND command, the corresponding
alternative can be specified instead.
Option Alternative

LENGTH FLENGTH
TOLENGTH TOFLENGTH
FROMLENGTH FROMFLENGTH
MAXLENGTH MAXFLENGTH

Application programs must be consistent in their use of fullword and halfword
options on terminal control commands. The maximum value that can be specified
as the argument on any length option is 32767; but see “LENGTH options” on
page 312 for some general advice.

Read from terminal or logical unit (EXEC CICS RECEIVE)
The EXEC CICS RECEIVE command is used to read data from a terminal or logical
unit. The INTO option is used to specify the area into which the data is to be
placed. Alternatively, a pointer reference can be specified in the SET option. CICS
acquires an area large enough to hold the data and sets the pointer reference to the
address of that data.

The contents of this area are available to the task until the next terminal I/O
command. However, the area does not belong to the task and is released by CICS
while processing the next request. Therefore, this area cannot be passed back to
CICS for further processing.

The application can use the MAXLENGTH option to specify the maximum length
of data that the program accepts. If the MAXLENGTH option is omitted on an
EXEC CICS RECEIVE command for which the INTO option is specified, the
maximum length of data that the program accepts can be specified in the LENGTH
option. If the MAXLENGTH option is omitted on an EXEC CICS RECEIVE
command for which the SET option is specified, CICS acquires enough storage to
hold all the available data.

If the data exceeds the specified maximum length and the NOTRUNCATE option
is specified, the remaining data is made available to satisfy subsequent EXEC CICS
RECEIVE commands. If NOTRUNCATE is not specified, the data is truncated and
the LENGERR condition occurs. In this event, if the LENGTH option is specified,
the named data area is set to the actual data length (before truncation occurs)
when data has been received.

© Copyright IBM Corp. 1998, 2004 549

The first EXEC CICS RECEIVE command in a task started by a terminal does not
issue a terminal control read but simply copies the input buffer, even if the data
length is zero. A second EXEC CICS RECEIVE command must be issued to cause a
terminal control read.

Write to terminal or logical unit (EXEC CICS SEND)
The EXEC CICS SEND command is used to write data to a terminal or logical unit.
The FROM and LENGTH options specify respectively the data area from which the
data is to be taken and the length (in bytes) of the data. For a transaction started
by automatic transaction initiation (ATI), an EXEC CICS SEND command must
always precede the first EXEC CICS RECEIVE in a transaction.

WAIT option of the EXEC CICS SEND command
Unless the WAIT option is specified also, the transmission of the data associated
with the EXEC CICS SEND command is deferred until a later event, such as a
syncpoint, occurs. This deferred transmission reduces the flows of data by allowing
data-flow controls to be transmitted with the data.

A wait is always carried out for an EXEC CICS RECEIVE command. A wait may
cause execution of a task to be suspended. Execution of the task is resumed when
the operation is completed.

Even if the WAIT option is not specified in a SEND command, CICS ensures that
the operation is completed before executing a subsequent EXEC CICS RECEIVE or
SEND command.

Converse with terminal or logical unit (EXEC CICS
CONVERSE)

For most terminals or logical unit types, a conversational mode of communication
can be used. The EXEC CICS CONVERSE command is used for this purpose. In
general, the EXEC CICS CONVERSE command can be considered as a combination
of a SEND command with the WAIT option followed immediately by an EXEC
CICS RECEIVE command. However, not all options of the EXEC CICS SEND and
RECEIVE commands are valid for the EXEC CICS CONVERSE command. The
TOLENGTH option of the CONVERSE command is equivalent to the LENGTH
option of the EXEC CICS RECEIVE command, and the FROMLENGTH option is
equivalent to the LENGTH option of the EXEC CICS SEND command.

Display device operations
In addition to the standard terminal control commands for sending and receiving
data, several commands and lists are provided for use with display devices.

The commands are:
v Erase all unprotected fields (EXEC CICS ISSUE ERASEAUP). See below.
v Receive input without data (EXEC CICS RECEIVE with no options). See below.
v Handle attention identifiers (EXEC CICS HANDLE AID). See Chapter 14,

“Terminal control,” on page 169.

The lists are:
v Standard attention identifier list (DFHAID). See “Attention identifier

constants, DFHAID” on page 548.
v Standard attribute and printer control character list (DFHBMSCA). See “Field

attribute and printer control characters” on page 545.

Terminal control

550 CICS for iSeries Application Programming Guide V5

For devices with switchable screen sizes, the size of the screen that can be used,
and the size to be used for a given transaction, are defined in CICS tables. These
values can be obtained by means of the ASSIGN command, described on page
327.

The ERASE option should always be included in the first EXEC CICS SEND
command, to clear the screen. This first EXEC CICS SEND command also
formats the screen according to the transmitted data, and selects the screen size
to be used, as specified in the PCT and TCT. If ERASE is omitted, the screen size
is the same as its previous setting, which may be incorrect.

Use of the CLEAR key outside a transaction sets the screen to its default size.

Erase all unprotected fields (EXEC CICS ISSUE ERASEAUP)
The EXEC CICS ISSUE ERASEAUP command is used to erase all unprotected
fields of a 3270 buffer, by the following actions:
1. Clearing all unprotected fields to nulls (X'00')
2. Resetting the modified data tags (MDTs) in each unprotected field to zero
3. Positioning the cursor to the first unprotected field
4. Restoring the keyboard

Input operation without data (EXEC CICS RECEIVE)
The EXEC CICS RECEIVE command with no options causes input to take place
and the EXEC interface block (EIB) to be updated. However, data received by CICS
is not passed on to the application program and is lost. A wait is implied. Two of
the fields in the EIB that are updated are described below:

Cursor position (EIBCPOSN)
For every terminal control (or BMS) input operation associated with a display
device, the screen cursor address (position) is placed in the EIBCPOSN field of the
EIB. The cursor address is in the form of a halfword binary value and remains
unaltered until updated by a new input operation.

EIBCPOSN is also updated at task initiation for non-ATI tasks.

Attention identifier (EIBAID)
For every terminal control (or BMS) input operation associated with a display
device, an attention identifier (AID) is placed in the EIBAID field of the EIB. The
AID indicates the method that the terminal operator has used to initiate the
transfer of information from the device to CICS; for example, the ENTER key, a
program function key, and so on. The field contents remain unaltered until
updated by a new input operation.

EIBAID can be tested after each terminal control (or BMS) input operation to
determine further processing, and a standard attention identifier list (DFHAID) is
provided for this purpose. Alternatively, for COBOL programs only, the HANDLE
AID command can be used to pass control to specified labels when the AIDs are
received.

EIBAID is also updated at task initiation for non-ATI tasks.

Terminal control

Appendix C. Terminal control 551

552 CICS for iSeries Application Programming Guide V5

Appendix D. BMS macro summary

This appendix contains the syntax of the BMS definition macros as supported by
CICS/400. The purpose and format of each macro and its operands are described.

For more information about BMS, see Chapter 13, “CICS/400 basic mapping
support (BMS),” on page 141.

Defining map sets, maps, and fields
You must ensure that the names of maps and the names of fields within a map set
(or within multiple map sets that are copied into one application program) are
unique. Maps and map sets must not have the same name.

Before CICS can load a physical map, you must define the maps by using the
ADDCICSPPT CL command with the CICSMAP parameter set to *YES. See the
CICS for iSeries Administration and Operations Guide for details of this command.

You use the Create CICS MAP (CRTCICSMAP) CL command to generate the
physical map and symbolic description map (see “CRTCICSMAP” on page 301 for
details).

Map set definition macro (DFHMSD)
The DFHMSD macro defines a map set. A map set contains one or more maps.

Map definition macro (DFHMDI)
The DFHMDI macro defines a map within the map set defined by the previous
DFHMSD macro. A map contains zero or more fields.

Field definition macro (DFHMDF)
The DFHMDF macro defines a field within a map defined by the previous
DFHMDI macro.

Ending a map set definition
A map set definition ends with a macro of the form:
 “mapset” is optional, but if used it must be the same as that on the DFHMSD

macro that began the map set definition.

Defining field groups
Often an output data display field has to contain several subfields, all sharing the
same display attributes. Each of these subfields might have to be modified
separately. At output, subfields that have not been modified by the program can
adopt default data values from the output map. For example, a display can include
a date field with a “day” subfield, “month” subfield, and “year” subfield. The
contents of the year subfield remain constant over a relatively long period; its

��
mapset

 DFHMSD TYPE=FINAL ��

© Copyright IBM Corp. 1998, 2004 553

value can safely be taken from a map. However, the day value and month value
must be updated more frequently. Similarly, on input, the terminal operator can
enter data in each subfield separately.

You use the GRPNAME operand to define a group of subfields that combine to
produce a field. The start of the group is indicated by a DFHMDF macro with the
GRPNAME operand. This operand defines the first subfield, and specifies the
attributes and name of the group. It is followed by other DFHMDF macros, one for
each of the other subfields. Each of these must specify the group name, but cannot
specify attribute values. The definition of the group is terminated by a DFHMDF
macro that specifies a different group name, by one that specifies no group name,
or by a DFHMDI or DFHMSD macro.

Briefly, a group of fields in a map would appear as follows in the map definition:

The POS operand specifies the position of the attribute byte of the field even
though subfields of a group (other than the first) do not have attributes. If the
subfields are positioned contiguously with no intervening blanks, the POS of the
second and succeeding subfields must specify the last character of the previous
subfield in each case.

MAPSET DFHMSD....
 .
 .
MAP DFHMDI....
 .
 .
DD DFHMDF GRPNAME=DATE,POS=40,
 LENGTH=2,ATTRB=...
MM DFHMDF GRPNAME=DATE,POS=46,
 LENGTH=2
YY DFHMDF GRPNAME=DATE,POS=52,
 LENGTH=2
FIELD DFHMDF LENGTH=5,COLOR=GREEN,...
 DFHMSD TYPE=FINAL

BMS macros

554 CICS for iSeries Application Programming Guide V5

DFHMSD

A DFHMSD macro defines a map set; it begins:
mapset DFHMSD TYPE=MAP (or TYPE=DSECT)

BMS—map set definition

��

mapset

DFHMSD
 DSECT

TYPE=

MAP

�

�

�

�

�

�

�

 , ,

OUT

OFF

MODE=

HILIGHT=

IN

BLINK

INOUT

REVERSE

LOWER

UNDERLINE

FOLD=

BASE

UPPER

PS=

NO

psid

TRIGRAF=

,

YES

COBOL

VALIDN=

(

)

LANG=

MUSTFILL

C

MUSTENTER

STORAGE=AUTO

TRIGGER

BASE=

name

,

TERM=

type

SUFFIX=

n

CTRL=

(

)

NO

PRINT

TIOAPFX=

length

YES

FREEKB

MAPATTS=

(

attr1,attr2,...

)

ALARM

DSATTS=

(

attr1,attr2,...

)

FRSET

OUTLINE=

BOX

EXTATT=

,

NO

MAPONLY

(

)

YES

LEFT

KEXTATT=

RIGHT

NO

OVER

MAPONLY

UNDER

YES

NO

DEFAULT

SOSI=

COLOR=

YES

color

YES

TRANSP=

NO

��

or

��
mapset

 DFHMSD TYPE=FINAL ��

BMS macros

Appendix D. BMS macro summary 555

and ends:
[mapset] DFHMSD TYPE=FINAL

“mapset” is the name (1 through 7 characters) of the map set. For TYPE=FINAL,
“mapset” is optional; but if used it must be the same as that on the DFHMSD
macro that began the map set definition.

A DFHMSD macro contains one or more map definition macros, each of which
contains zero or more field definition macros.

Options
BASE=name

specifies that the same storage base is used for the symbolic description maps
from more than one map set. The same name is specified for each map set that
is to share the same storage base. Because all map sets with the same base
describe the same storage, data related to a previously used map set may be
overwritten when a new map set is used. Furthermore, different maps within
the same map set also overlay one another.

 For example, assume that the following macros are used to generate symbolic
description maps for two map sets:
MAPSET1 DFHMSD TYPE=DSECT,
 LANG=COBOL,
 BASE=DATAREA1,MODE=IN

MAPSET2 DFHMSD TYPE=DSECT,
 LANG=COBOL,
 BASE=DATAREA1,MODE=OUT
 The symbolic description maps of this example might be referred to in a
COBOL application program as follows:
WORKING-STORAGE SECTION.
01 DATAREA1 PIC X(1920).
01 name COPY MAPSET1.
01 name COPY MAPSET2.
 .
 .
 MAPSET1 and MAPSET2 both redefine DATAREA1; only one 02 statement is
needed to establish addressability. However, the program can only use the
fields in one of the symbolic description maps at a time.
 If BASE=DATAREA1 is deleted from this example, an additional 02 statement
is needed to establish addressability for MAPSET2; the 01 DATAREA1
statement is not needed. The program could then refer to fields concurrently in
both symbolic description maps.

COLOR
specifies the color to be used for all maps in the map set. This color can be
overridden for individual maps by the COLOR operand of the DFHMDI
macro, which is in turn overridden for individual fields by the COLOR
operand of the DFHMDF macro. If this operand is omitted, the default color
for the output device is used.

 If COLOR is specified when EXTATT=NO, a warning is issued and the
operand ignored.

 The COLOR operand is ignored if the terminal does not support color.

color specifies the basic color to be used for all maps in the map set.
The valid colors are BLUE, RED, PINK, GREEN, TURQUOISE,
YELLOW, and NEUTRAL.

BMS macros

556 CICS for iSeries Application Programming Guide V5

DEFAULT specifies that the default color for the output device is to be
used as the basic color for all maps in the map set.

CTRL
defines characteristics of IBM 5250 and 3270 terminals. Use of any of the
control options in the SEND MAP command overrides all control actions
specified in the DFHMDI macro, which in turn override all control actions
specified in the DFHMSD macro.

PRINT must be specified if the printer is to be started; if omitted, the
data is sent to the printer buffer but is not printed.

length indicates the line length on the printer; length can be specified
as L40, L64, L80, or HONEOM. L40, L64, and L80 force a new
line after 40, 64, or 80 characters, respectively. HONEOM
causes the default printer line length to be used. If the length
value is omitted, BMS sets the line length from the TCT.

FREEKB causes the keyboard to be unlocked after the map is written. If
FREEKB is not specified, the keyboard remains locked; data
entry from the keyboard is inhibited until this status is
changed.

ALARM activates the audible alarm on a display device.

FRSET specifies that the modified data tags (MDTs) of all fields
currently in the 3270 buffer are to be reset to a not-modified
condition (that is, field reset) before map data is written to the
buffer. This allows the DFHMDF macro with the ATTRB
operand to control the final status of any fields written or
rewritten in response to a BMS command.

DSATTS
specifies the attribute types to be included in the symbolic description map.
These types can be one or more of the following: COLOR, HILIGHT,
OUTLINE, PS, SOSI, TRANSP, and VALIDN. Any type included in DSATTS
must also be included in MAPATTS.

 Specifying an attribute has no effect if the device receiving the map does not
support the attribute.

EXTATT
This operand is supported for compatibility with early releases of mainframe
CICS. Each of the extended attributes can be defined individually. For new
maps, use the operands DSATTS and MAPATTS instead.

NO is equivalent to neither of the operands DSATTS and
MAPATTS being specified.

YES is equivalent to:
MAPATTS=(COLOR,HILIGHT,PS,VALIDN)
DSATTS=(COLOR,HILIGHT,PS,VALIDN)

MAPONLY is equivalent to:
MAPATTS=(COLOR,HILIGHT,PS,VALIDN)

FOLD
specifies the case of characters in variable names in ILE C programs. This
option is available only for programs written in ILE C.

LOWER Lowercase characters are generated.

UPPER Uppercase characters are generated.

BMS macros

Appendix D. BMS macro summary 557

HILIGHT
specifies the default highlighting attribute for all fields in all maps in a map
set. This can be overridden for individual maps by the HILIGHT operand of
the DFHMDI macro, which is in turn overridden for individual fields by the
HILIGHT operand of the DFHMDF macro.

OFF is the default and indicates that no highlighting is used.

BLINK
specifies that the field must blink. For 5250 devices, this attribute
works only if the field color is red.

REVERSE
specifies that the character or field is displayed in reverse video.

UNDERLINE
specifies that the field is underlined.

 If HILIGHT is specified when EXTATT=NO, a warning is issued and the
operand ignored.

 The HILIGHT operand is ignored if the terminal does not support
highlighting.

KEXTATT
This operand is supported for compatibility with early releases of mainframe
CICS. It enables you to define the SOSI and OUTLINE attributes. For new
maps, use the operands DSATTS and MAPATTS instead.

NO is equivalent to neither of the operands DSATTS and
MAPATTS being specified.

YES is equivalent to:
MAPATTS=(SOSI,OUTLINE)
DSATTS=(SOSI,OUTLINE)

MAPONLY is equivalent to:
MAPATTS=(SOSI,OUTLINE)

LANG
specifies the source language of the application programs into which the
symbolic description maps in the map set are copied. This operand need only
be coded for DFHMSD TYPE=DSECT. If this operand is omitted, COBOL is
assumed. For application portability, however, you should always code the
LANG operand. If a map set is to be used by more than one program, and the
programs are not all written in the same source language, a separate version of
the map set must be defined for each programming language.

MAPATTS
specifies the attribute types to be included in the physical map. These types
can be one or more of the following: COLOR, HILIGHT, PS, OUTLINE,
TRANSP, SOSI, and VALIDN. This list must include all the attribute types to
be specified for individual fields in the map (DFHMDF macro).

 Where possible, the attribute types are deduced from operands already
specified in the DFHMSD macro. For example, if COLOR=BLUE is specified,
MAPATTS is assumed to include COLOR.

 When the MAPATTS operand is specified, the EXTATT and KEXTATT
operands are ignored.

BMS macros

558 CICS for iSeries Application Programming Guide V5

MODE
specifies whether the map is to be used for input, output, or both.

OUTLINE
allows lines to be included above, below, to the left, or to the right of a field.
You can use these lines in any combination to construct boxes around fields or
groups of fields.

 The OUTLINE operand is ignored if the terminal or printer does not support
outlining. For example, 5250 terminal types do not support outlining.

PS specifies that programmed symbols are to be used. This can be overridden for
individual maps by the PS operand of the DFHMDI macro, which is in turn
overridden for individual fields by the PS operand of the DFHMDF macro.

BASE specifies that the base symbol set is to be used.

psid specifies a single character, or an EBCDIC hexadecimal code of the
form X'nn', that identifies the set of programmed symbols to be used.

Note: Only a psid value of 8 is supported.

 If PS is specified when EXTATT=NO, a warning is issued and the operand
ignored.

 The PS operand is ignored if the terminal does not support programmed
symbols.

SOSI
specifies that the field may contain a mixture of EBCDIC and DBCS data. The
DBCS subfields within an EBCDIC field are delimited by SO (shift-out) and SI
(shift-in) characters. SO and SI both occupy a single screen position (normally
displayed as a blank). They can be included in any non-DBCS field on output
if they are correctly paired. The terminal user can transmit them inbound if
they are already present in the field, but can add them to an EBCDIC field
only if the field has the SOSI attribute.

STORAGE=AUTO
The meaning of this operand depends on the language in which application
programs are written, as follows:
v For COBOL programs, STORAGE=AUTO specifies that the symbolic

description maps in the map set are to occupy separate (that is, not
redefined) areas of storage. This operand is used when the symbolic
description maps are copied into the working-storage section and the storage
for the separate maps in the map set is to be used concurrently.

v For ILE C programs, STORAGE=AUTO specifies that the symbolic
description maps are to be defined as having the automatic storage class. If
STORAGE=AUTO is not specified, they are declared as pointers. If
STORAGE=AUTO is specified and TIOAPFX is not, TIOAPFX=YES is
assumed.

You cannot specify both BASE=name and STORAGE=AUTO for the same map
set.

SUFFIX
specifies a 1-character, user-defined, device-dependent suffix for this map set,
as an alternative to the suffix generated by the TERM operand. The suffix
specified by this operand must match the value of the ALTSUFFIX parameter

BMS macros

Appendix D. BMS macro summary 559

specified on the definition for the terminal. Use a numeric value to avoid
conflict with unsuffixed map set names.

TERM
specifies the type of terminal or logical unit (LU) associated with the mapset. If
no terminal type or LU is specified, 3270 is assumed. The terminal types and
LUs you can specify, together with their generated suffixes, are shown in
Table 16.

 Table 16. BMS terminal types

TYPE Suffix

3270-2 M
3270 blank
5250 Z
ALL (all the above) blank

 3270 is the default. Specifying 3270 has the same effect as specifying ALL and
should be used when there is no need to distinguish between models.

 For 3270 model 5’s, specify the terminal type as 3270 and set the alternate
screen size to 27x132 in the TCT entry.

 If ALL is specified, ensure that device-dependent characters are not included in
the map set and that format characteristics such as page size are suitable for all
input/output operations (and all terminals) in which the map set is applied.

 BMS support for device-dependent map sets can be bypassed by specifying the
NODDS parameter in the ADDCICSSIT command. For more information, see
the CICS for iSeries Administration and Operations Guide.

TIOAPFX
is a 12-byte filler that command-level CICS for MVS/ESA uses for internal
processing. CICS/400 maintains the 12-byte filler for migration purposes only
but does not use it.

TRANSP
determines whether the background of an alphanumeric field is transparent or
opaque, that is, whether an underlying (graphic) presentation space is visible
between the characters.

TRIGRAF (ILE C only)
specifies that, for those characters in the ILE C character set that are not
available on the keyboard, a sequence of three characters, known as a trigraph,
may be used instead.

NO The symbolic description maps do not contain trigraph sequences.

YES The symbolic description maps do contain trigraph sequences.

 Characters and the corresponding trigraph sequences are:

 Character Trigraph

{ ??<

} ??>

[??(

] ??)

BMS macros

560 CICS for iSeries Application Programming Guide V5

TYPE
when either DSECT or MAP is specified, generates respectively a symbolic
description map or a physical map. It is not necessary to code either of these
options. The default action is to generate both types of map. Symbolic
description maps must be copied into the source program before it is
translated and compiled. Physical maps must be cataloged in the CICS
program library before an application program can use them.

VALIDN
specifies that validation is to be used on a 5250 terminal. This can be
overridden for individual maps by the VALIDN operand of the DFHMDI
macro, which is in turn overridden for individual fields by the VALIDN
operand of the DFHMDF macro.

MUSTFILL specifies that the field must be filled completely with data. An
attempt to move the cursor from the field before it has been
filled, or to transmit data from an incomplete field, raises the
“inhibit input” condition.

MUSTENTER specifies that data must be entered into the field, but need not
fill it. An attempt to move the cursor from an empty field
raises the “inhibit input” condition.

TRIGGER specifies, on other CICS platforms, that this field is a trigger
field. In CICS/400 this option has no effect and is supported
only for compatibility.

 The VALIDN operand is ignored if the terminal does not support validation.

 If VALIDN is specified when EXTATT=NO, a warning is issued and the
operand it ignored.

BMS macros

Appendix D. BMS macro summary 561

DFHMDI

The DFHMDI macro defines a map within the map set defined by the previous
DFHMSD macro. A map set contains one or more maps.

“map” is the name (1 through 7 characters) of the map.

Note for COBOL users: If the maps are for use in a COBOL program, and
STORAGE=AUTO has not been specified in the DFHMSD
macro, they must be specified in descending size
sequence. (Size refers to the generated 01-level data areas
and not to the size of the map on the screen.)

Options
COLOR

specifies the color to be used for the named map. This overrides the COLOR
operand of the DFHMSD macro, and is in turn overridden for individual fields
by the COLOR operand of the DFHMDF macro.

 If COLOR is specified when EXTATT=NO, a warning is issued and the
operand ignored.

 The COLOR operand is ignored if the terminal does not support color.

BMS—map definition

��

map

DFHMDI

�

�

�

�

�

 , ,

SIZE=

(

line,column

)

,

,

VALIDN=

(

)

CTRL=

(

)

MUSTFILL

PRINT

MUSTENTER

length

TRIGGER

FREEKB

COLUMN=

number

ALARM

LINE=

number

FRSET

FIELDS=NO

NO

MAPATTS=

(

attr1,attr2,...

)

EXTATT=

DSATTS=

(

attr1,attr2,...

)

MAPONLY

OUTLINE=

BOX

YES

,

NO

KEXTATT=

(

)

MAPONLY

LEFT

YES

RIGHT

DEFAULT

OVER

COLOR=

UNDER

color

NO

OFF

SOSI=

HILIGHT=

YES

BLINK

YES

REVERSE

TRANSP=

UNDERLINE

NO

BASE

JUSTIFY=BOTTOM

PS=

psid

��

BMS macros

562 CICS for iSeries Application Programming Guide V5

color specifies the basic color to be used for this map. The valid
colors are BLUE, RED, PINK, GREEN, TURQUOISE, YELLOW,
and NEUTRAL.

DEFAULT specifies that the default color for the output device is to be
used as the basic color for this map.

COLUMN
specifies the column in a line at which the map is to be placed; that is, it
establishes the left map margin. The columns between the specified map
margin and the page margin are not available for subsequent use on the page
for any lines included in the map.

number
is the column from the left page margin where the left map margin is
to be established.

CTRL
defines characteristics of IBM 5250 and 3270 terminals. Use of any of the
control options in the SEND MAP command overrides all control actions
specified in the DFHMDI macro, which in turn override all control actions
specified in the DFHMSD macro.

PRINT
must be specified if the printer is to be started; if omitted, the data is
sent to the printer buffer but is not printed.

length indicates the line length on the printer; length can be specified as L40,
L64, L80, or HONEOM. L40, L64, and L80 force a new line after 40, 64,
or 80 characters, respectively. HONEOM causes the default printer line
length to be used. If the length value is omitted, BMS sets the line
length from the TCT.

FREEKB
causes the keyboard to be unlocked after the map is written. If
FREEKB is not specified, the keyboard remains locked; data entry from
the keyboard is inhibited until this status is changed.

ALARM
activates the audible alarm on the terminal device.

FRSET
specifies that the modified data tags (MDTs) of all fields currently in
the 3270 buffer are to be reset to a not-modified condition (that is, field
reset) before map data is written to the buffer. This allows the
DFHMDF macro with the ATTRB operand to control the final status of
any fields written or rewritten in response to a BMS command.

DSATTS
specifies the attribute types to be included in the symbolic description map.
These types can be one or more of the following: COLOR, HILIGHT,
OUTLINE, PS, SOSI, TRANSP, and VALIDN. Any type included in DSATTS
must also be included in MAPATTS.

 Specifying an attribute has no effect if the device receiving the map does not
support the attribute.

EXTATT
This operand is supported for compatibility with early releases of mainframe
CICS. Each of the extended attributes can be defined individually. For new
maps, use the operands DSATTS and MAPATTS instead.

BMS macros

Appendix D. BMS macro summary 563

NO is equivalent to neither of the operands DSATTS and MAPATTS being
specified.

YES is equivalent to:
MAPATTS=(COLOR,HILIGHT,PS,VALIDN)
DSATTS=(COLOR,HILIGHT,PS,VALIDN)

MAPONLY
is equivalent to:
MAPATTS=(COLOR,HILIGHT,PS,VALIDN)

FIELDS=NO
specifies that the map contains no fields. If you specify FIELDS=NO, you
create a null map that defines a “hole” in BMS’s view of the screen. BMS
cannot change the contents of such a hole after it has created it by sending a
null map.

HILIGHT
specifies the default highlighting attribute for all fields in the named map. This
overrides the HILIGHT operand of the DFHMSD macro, and is in turn
overridden for individual fields by the HILIGHT operand of the DFHMDF
macro.

OFF is the default and indicates that no highlighting is used.

BLINK specifies that the field must blink. For 5250 devices, this
attribute works only if the field color is red.

REVERSE specifies that the character or field is displayed in reverse
video. For example, on a 3278, black characters are displayed
on a green background.

UNDERLINE specifies that the field is underlined.

 If HILIGHT is specified when EXTATT=NO, a warning is issued and the
operand ignored.

 The HILIGHT operand is ignored if the terminal does not support
highlighting.

JUSTIFY=BOTTOM
specifies that the map is to be positioned at the bottom of the screen. This
operand applies to SEND MAP and RECEIVE MAP commands, provided that
the number of lines in the map is specified in the SIZE operand; otherwise, it
is ignored.

 JUSTIFY=BOTTOM is equivalent to specifying
LINE=(screendepth - mapdepth + 1)

on the map definition, but it allows the same map to be used for different
screen sizes. If JUSTIFY=BOTTOM and the LINE operand are both specified,
the value specified in LINE is ignored.

Note: If a field is initialized by an output map or contains data from any other
source, data that is entered as input overwrites only the equivalent
length of existing data; any surplus existing data remains in the field
and could cause unexpected interpretation of the new data.

KEXTATT
This operand is supported for compatibility with early releases of mainframe

BMS macros

564 CICS for iSeries Application Programming Guide V5

CICS. It allows you to specify the SOSI and OUTLINE attributes. For new
maps, use the operands DSATTS and MAPATTS instead.

NO is equivalent to neither the DSATTS operand nor the MAPATTS
operand being specified.

YES is equivalent to:
MAPATTS=(SOSI,OUTLINE)
DSATTS=(SOSI,OUTLINE)

MAPONLY
is equivalent to:
MAPATTS=(SOSI,OUTLINE)

LINE
specifies the starting line on a page in which data for a map is to be formatted.

number
is a value in the range 1 through 27, specifying a starting line number.

MAPATTS
specifies the attribute types to be included in the physical map. These types
can be one or more of the following: COLOR, HILIGHT, OUTLINE, PS, SOSI,
TRANSP, and VALIDN. This list must include all the attribute types to be
specified for individual fields in the map (DFHMDF macro).

 Where possible, the attribute types are deduced from operands already
specified in the DFHMSD and DFHMDI macros. For example, if
COLOR=BLUE is specified, MAPATTS is assumed to include COLOR.

 When the MAPATTS operand is specified, the EXTATT and KEXTATT
operands are ignored.

OUTLINE
allows lines to be included above, below, to the left, or to the right of a field.
You can use these lines in any combination to construct boxes around fields or
groups of fields.

 The OUTLINE operand is ignored if the terminal or printer does not support
outlining. For example, 5250 terminal types do not support outlining.

PS specifies that programmed symbols are to be used. This overrides the PS
operand of the DFHMSD macro, and is in turn overridden for individual fields
by the PS operand of the DFHMDF macro.

BASE specifies that the base symbol set is to be used.

psid specifies a single character, or an EBCDIC hexadecimal code of the
form X'nn', that identifies the set of programmed symbols to be used.

Note: Only a psid value of 8 is supported.

 If PS is specified when EXTATT=NO, a warning is issued and the operand
ignored.

 The PS operand is ignored if the terminal does not support programmed
symbols.

SIZE
specifies the size of a map.

line is a value in the range 1 through 240, specifying the depth of a map as
a number of lines.

BMS macros

Appendix D. BMS macro summary 565

column
is a value in the range 1 through 240, specifying the width of a map as
a number of columns.

 This operand is required in the following cases:
v An associated DFHMDF macro with the POS operand is used.
v The map is to be used when referring to input data from other than

a 3270 terminal in a RECEIVE MAP command.

 The map dimensions specified in the SIZE operand of the DFHMDI macro
defining a map may be smaller than the actual page size or screen size as
defined for the terminal.

TRANSP
determines whether the background of an alphanumeric field is transparent or
opaque, that is, whether an underlying (graphic) presentation space is visible
between the characters.

VALIDN
specifies that validation is to be used on a 5250 terminal. This overrides the
VALIDN operand of the DFHMSD macro, and is in turn overridden for
individual fields by the VALIDN operand of the DFHMDF macro.

MUSTFILL specifies that the field must be filled completely with data. An
attempt to move the cursor from the field before it has been
filled, or to transmit data from an incomplete field, raises the
“inhibit input” condition.

MUSTENTER specifies that data must be entered into the field, but need not
fill it. An attempt to move the cursor from an empty field
raises the “inhibit input” condition.

TRIGGER specifies, on other CICS platforms, that this field is a trigger
field. In CICS/400 this option has no effect and is supported
only for compatibility.

 The VALIDN operand is ignored if the terminal does not support validation.

 If VALIDN is specified when EXTATT=NO, a warning is issued and the
operand it ignored.

DFHMDF
BMS—field definition

BMS macros

566 CICS for iSeries Application Programming Guide V5

��

fld

DFHMDF

�

�

�

�

 ,

POS=

number

LENGTH=

number

(

line,column

)

JUSTIFY=

(

)

LEFT

,

BLANK

RIGHT

ZERO

INITIAL=

’char data’

XINIT=

hex data

(1)

GINIT=

’DBCS characters’

ATTRB=

(

)

ASKIP

,

PROT

NORM

UNPROT

,

BRT

DRK

IC

,NUM

FSET

DEFAULT

BASE

COLOR=

PS=

color

psid

OFF

HILIGHT=

BLINK

REVERSE

UNDERLINE

,

VALIDN=

(

)

MUSTFILL

MUSTENTER

TRIGGER

GRPNAME=

group-name

OCCURS=

number

PICIN=

’value’

PICOUT=

’value’

OUTLINE=

BOX

,

(

)

LEFT

RIGHT

OVER

UNDER

NO

SOSI=

YES

YES

TRANSP=

NO

CASE=MIXED

��

Notes:

1 DBCS character strings start with a Shift-out character X'0E' and end with a Shift-in character X'0F'
The DFHMDF macro defines a field within a map defined by the previous
DFHMDI macro. A map contains zero or more fields.

BMS macros

Appendix D. BMS macro summary 567

“fld” is the name (1 through 29 characters) of the field.

If “fld” is omitted, application programs cannot access the field to change its
attributes or alter its contents. For an output map, omitting the field name may be
appropriate when the INITIAL operand is used to specify the contents of a field. If
a field name is specified and the map that includes the field is used in a mapping
operation, nonnull data supplied by the user overlays data supplied by
initialization (unless default data only is being written).

The performance of mapping operations is optimized if DFHMDF macros are
arranged in numeric order of the POS operand.

You cannot define more than 256 fields in a map for 5250 devices. You cannot
define more than 1023 named fields for a COBOL input/output map.

Options
ATTRB

specifies how a field is displayed on a device. It can also cause the field to be
returned to the application, or even protect the field from user input.

 If ATTRB is specified within a group of fields, it must be specified in the first
field entry. (A group of fields appears as one field to the 3270.) The ATTRB
specification refers to all of the fields in a group as one field rather than as
individual fields.

 It specifies device-dependent characteristics and attributes, such as the
capability of a field to receive data, or the intensity to be used when the field
is output. It could, however, be used for making an input field nondisplay for
secure entry of a password from a screen. For input map fields, DET is the
only valid attribute; all others are ignored.

 When defining a field to be displayed on a 3270, either of two sets of defaults
may apply if not all attributes are specified. If no ATTRB values are specified,
ASKIP and NORM are assumed. If any value is specified, UNPROT and
NORM are assumed for that field unless overridden by a specified value.

ASKIP
specifies that data cannot be keyed into the field and causes the cursor
(current location pointer) to skip over the field.

PROT specifies that data cannot be keyed into the field.

 If data is to be copied from one device to another attached to the same
3270 control unit, the first position (address 0) in the buffer of the
device to be copied from must not contain an attribute byte for a
protected field. Therefore, when preparing maps for 3270s, ensure that
the first map of any page does not contain a protected field starting at
position 0.

UNPROT
specifies that data can be keyed into the field.

NUM ensures that the data entry keyboard is set to numeric shift for this
field unless the operator presses the alpha shift key. It also prevents
entry of nonnumeric data if the Keyboard Numeric Lock feature is
installed.

BRT specifies that a high-intensity display of the field is required.

BMS macros

568 CICS for iSeries Application Programming Guide V5

NORM
is the default and specifies that the field intensity is to be normal.

DRK specifies that the field is both nonprint and nondisplay.

IC specifies that the cursor is to be placed in the first position (after the
attribute byte) of the field. The IC attribute for the last field for which
it is specified in a map is the one that takes effect. If not specified for
any fields in a map, the default location is zero. Specifying IC with
ASKIP or PROT causes the cursor to be placed in an unkeyable field.

 ATTRB=IC can be overridden by the CURSOR option of the SEND
MAP command that causes the write operation.

FSET specifies that the modified data tag (MDT) for this field is to be set
when the field is sent to a terminal.

 Specification of FSET causes the 3270 to treat the field as though it has
been modified. On a subsequent read from the terminal, this field is
read, whether or not it has been modified. The MDT remains set until
the field is rewritten without ATTRB=FSET or until an output mapping
request causes the MDT to be reset.

CASE=MIXED
specifies that the field contains both uppercase and lowercase data that is to be
converted to uppercase if FEATURE=KATAKANA has been included in the
terminal definition. Do not specify this option if the field may contain valid
Katakana characters.

COLOR
specifies the color to be used for the named field. This overrides the COLOR
operands of the DFHMSD and DFHMDI macros.

 The COLOR operand is ignored if the terminal does not support color.

color specifies the color to be used for this field. The valid colors are BLUE,
RED, PINK, GREEN, TURQUOISE, YELLOW, and NEUTRAL.

DEFAULT
specifies that the default color for the output device is to be used as
the color for this field.

GINIT
specifies constant or default data for an output field, in DBCS character strings.
This parameter is for use with pure DBCS strings.

 Data defined with this operand is checked as follows:
v The complete constant must be enclosed by a SO/SI pair.
v Each DBCS character must be either a DBCS blank (X'4040'), or each byte

must have a value in the range X'41' through X'FE'.

GINIT1 DFHMDF POS=(02,10),LENGTH=10,PS=8, *
 GINIT=’<D1D2D3D4D5>’

GINIT2 DFHMDF POS=(03,10),LENGTH=12,PS=8, *
 GINIT=’<D1D2D3D4D5D6D7D8>’

GINIT3 DFHMDF POS=(04,10),LENGTH=40,PS=8,GINIT=’<D1D2D3D4D5D6D7D8>****
 <D9D0D1D2D3D4D5D6D7D8D9D0>’

BMS macros

Appendix D. BMS macro summary 569

v No SBCS meaning is taken from a DBCS character.
v The length value must be a multiple of 2 in the range 2 through 256, which

allows from 1 to 128 DBCS characters. The SO and SI are not included in the
length calculation.

v When necessary, data is truncated starting from the rightmost character
position.

v When necessary, data is padded from the right with DBCS blank characters.

In the first example above, a ’DBCS only’ field is defined containing five DBCS
characters which occupy 10 positions in the device buffer. The length is coded
as 10 to reflect this. The shift in and shift out characters are not included in the
length value.

 In the second example, a ’DBCS only’ field is defined containing eight DBCS
characters which would require sixteen positions in the device buffer.
However, the LENGTH value is coded as 12, and this overrides the implicit
length of the data supplied with the GINIT keyword. This results in truncation
of the data and the rightmost two DBCS characters are not stored in the
physical map.

 In the third example, a ’DBCS only’ field is defined containing twenty DBCS
characters which require forty positions in the device buffer. Accordingly, the
LENGTH value is coded as 40. However, the GINIT keyword and data are too
long to fit on one line. To overcome this, you can split the data by placing a
shift in character after the data characters coded on the first line, and a shift
out character in the continuation column (column 16) of the next line.

 These extra SI and SO characters, although required by the BMS translator, are
considered to be redundant because they are removed from the data string
before it is stored in the physical map.

 This example also demonstrates the use of extended continuation characters. The
continuation character (an asterisk) coded in column 72 is propagated back
toward the data string. Scanning backward from column 72, the BMS translator
takes the first character having a different value to the continuation character
as the last data character on this line.

GRPNAME
specifies a name (1 through 7 characters) used to generate symbolic storage
definitions and to combine specific fields under one group name. The same
group name must be specified for each field that is to belong to the group.

 If this operand is specified, the OCCURS operand cannot be specified.

 The fields in a group must follow on; there can be gaps between them, but not
other fields from outside the group. A field name must be specified for every
field that belongs to the group, and the POS operand must also be specified to
ensure that the fields follow each other. All the DFHMDF macros defining the
fields of a group must be placed together, and in the correct order (ascending
numeric order of the POS value).

 For example, the first 20 columns of the first six lines of a map can be defined
as a group of six fields, so long as the remaining columns on the first five lines
are not defined as fields.

 The ATTRB operand specified on the first field of the group applies to all of
the fields within the group.

BMS macros

570 CICS for iSeries Application Programming Guide V5

A display field cannot extend beyond the right-hand edge of a map. The length
of the display field built by a group of subfields is thus limited to the width of
the map.

 For more information about field groups, see “Defining field groups” on page
553..

HILIGHT
specifies the highlighting attribute for the named field. This overrides the
HILIGHT operands of the DFHMSD and DFHMDI macros.

OFF is the default and indicates that no highlighting is used.

BLINK specifies that the field must blink. For 5250 devices, this
attribute works only if the field color is red.

REVERSE specifies that the character or field is displayed in reverse
video. For example on a 3278, black characters are displayed
on a green background.

UNDERLINE specifies that the field is underlined.

 The HILIGHT operand is ignored if the terminal does not support
highlighting.

INITIAL
specifies, in character form, constant or default data for an output field. Only
one of INITIAL, XINIT, and GINIT may be specified.

 The number of characters that you can specify in the INITIAL operand is
restricted to the continuation limitation of the assembler to be used or to the
value specified in the LENGTH operand (whichever is the smaller). With
Assembler H, you can change the continuation column by using the Input
Format Control (ICTL) instruction.

 Data defined with this operand is checked as follows:
v The data string may contain one or more DBCS subfields, but on each line

SO and SI characters must be matched.
v Each DBCS character must be either a DBCS blank (X'4040'), or each byte

must have a value in the range X'41' through X'FE'.
v No SBCS meaning is taken from a DBCS character.
v The length value must be in the range 1 through 256. SO and SI characters

are included in the length calculation.
v When the LENGTH value is less than the length of the INITIAL data, only

SBCS data can be truncated.
v When necessary, data is padded from the right with SBCS blank characters.

In the first example above, a DBCS subfield is embedded in SBCS data
characters. SOSI=YES is defined to indicate that this field is a mixed data field.
Each SBCS character has a length of 1, each of the five DBCS characters has a
length value of 2, and the SO and SI each have a length value of 1. Hence the
total length is 23. The BMS translator retains the SO and SI characters

INIT1 DFHMDF POS=(02,23),LENGTH=23,SOSI=YES, *
 INITIAL=’Single<.A.B.C.D.E>bytes’

INIT2 DFHMDF POS=(03,23),LENGTH=23,SOSI=YES,INITIAL=’Single<.A.B>****
 <.C.D.E>bytes’

BMS macros

Appendix D. BMS macro summary 571

embedded in the data, and stores them in the physical map, because these
characters must be transmitted to the device.

 The second example is the same as the first, in that it has the same effect on
the terminal display. However, here the redundant SO/SI and extended
continuation character techniques are used to continue an INITIAL operand
specification across lines.

 If this definition were defined with LENGTH=20, this would be acceptable and
the last three characters (tes) would be removed from the data string. However,
if LENGTH=17 (or a lesser value) were defined, this would be an error because
truncation into DBCS data is being requested. A length greater than 23 would
result in SBCS blank characters being appended to the end of the data string.

JUSTIFY
specifies the field justifications for input operations.

LEFT specifies that data in the input field is left-justified.

RIGHT
specifies that data in the input field is right-justified.

BLANK
specifies that blanks are to be inserted in any unfilled positions in an
input field.

ZERO specifies that zeros are to be inserted in any unfilled positions in an
input field.

 LEFT and RIGHT are mutually exclusive, as are BLANK and ZERO. If certain
values are specified for JUSTIFY but others are not, assumptions are made as
follows:
Specified Assumed

LEFT BLANK
RIGHT ZERO
BLANK LEFT
ZERO RIGHT
 If JUSTIFY is omitted, but the NUM attribute is specified, RIGHT and ZERO
are assumed. If JUSTIFY is omitted, but attributes other than NUM are
specified, LEFT and BLANK are assumed.

Note: If a field is initialized by an output map or contains data from any other
source, data that is entered as input overwrites only the equivalent
length of existing data; any surplus existing data remains in the field
and could cause unexpected interpretation of the new data.

LENGTH
specifies the length (in the range 1 through 256 bytes) of the field. This length
should be the maximum length required for application program data to be
entered into the field; it should not include the 1-byte attribute indicator
appended to the field by CICS for use in subsequent processing. The sum of
the lengths of the fields within a group must not exceed 256 bytes. LENGTH
can be omitted if PICIN or PICOUT is specified, but is required otherwise. You
can specify a length of zero only if you omit the label (field name) from the
DFHMDF macro. That is, the field is not part of the application data structure
and the application program cannot modify the attributes of the field. You can
use a field with zero length to delimit an input field on a map.

BMS macros

572 CICS for iSeries Application Programming Guide V5

If the LENGTH specification in a DFHMDF macro causes the map-defined
boundary on the same line to be exceeded, the field on the output screen is
continued by wrapping.

OCCURS
specifies that the indicated number of entries for the field are to be generated
in a map, and that the map definition is to be generated in such a way that the
fields are addressable as entries in a matrix or an array. This permits several
data fields to be addressed by the same name (subscripted) without generating
a unique name for each field. OCCURS and GRPNAME are mutually
exclusive; that is, OCCURS cannot be used when fields have been defined
under a group name.

OUTLINE
allows lines to be included above, below, to the left, or to the right of a field.
You can use these lines in any combination to construct boxes around fields or
groups of fields.

 The OUTLINE operand is ignored if the terminal or printer does not support
outlining.

PICIN (COBOL only)
specifies a picture to be applied to an input field in an IN or INOUT map; this
picture serves as an editing specification that is passed to the application
program, thus permitting the user to exploit the editing capabilities of COBOL.
BMS checks that the specified characters are valid picture specifications for the
language of the map.

 However, the validity of the input data is not checked by BMS or the
high-level language when the map is used, so any desired checking must be
performed by the application program. The length of the data associated with
“value” should be the same as that specified in the LENGTH operand if
LENGTH is specified. If both PICIN and PICOUT (see below) are used, an
error message is produced if their calculated lengths do not agree; the shorter
of the two lengths is used. If neither PICIN nor PICOUT is coded for the field
definition, a character definition of the field is automatically generated
regardless of other operands that are coded, such as ATTRB=NUM.

 As an example, assume that the following map definition is created for
reference by a COBOL application program:
MAPX DFHMSD TYPE=DSECT,
 LANG=COBOL,
 MODE=INOUT
MAP DFHMDI LINE=1,COLUMN=1,
 SIZE=(1,80)
F1 DFHMDF POS=0,LENGTH=30
F2 DFHMDF POS=40,LENGTH=10,
 PICOUT=’$$$,$$0.00’
F3 DFHMDF POS=60,LENGTH=6,
 PICIN=’9999V99’,
 PICOUT=’ZZ9.99’
 DFHMSD TYPE=FINAL
 This generates the following DSECT:
01 MAPI.
 02 F1L PIC S9(4) BINARY.
 02 F1F PIC X.
 02 FILLER REDEFINES F1F.
 03 F1A PIC X.
 02 F1I PIC X(30).
 02 F2L PIC S9(4) BINARY.
 02 F2F PIC X.
 02 FILLER REDEFINES F2F.

BMS macros

Appendix D. BMS macro summary 573

03 F2A PIC X.
 02 F2I PIC X(10).
 02 F3L PIC S9(4) BINARY.
 02 F3F PIC X.
 02 FILLER REDEFINES F3F.
 03 F3A PIC X.
 02 F3I PIC 9999V99.

01 MAPO REDEFINES MAPI.
 02 FILLER PIC X(3).
 02 F1O PIC X(00030).
 02 FILLER PIC X(3).
 02 F2O PIC $$$,$$0.00.
 02 FILLER PIC X(3).
 02 F3O PIC ZZ9.99.

Note: The valid picture values for COBOL input maps are:
A P S V X 9 / (and)

PICOUT (COBOL only)
is similar to PICIN, except that a picture to be applied to an output field in the
OUT or INOUT map is generated.

Note: The valid picture values for COBOL output maps are:
A B P S V X Z 0 9 , . + - $
CR DB / (and)

POS
specifies the location of a field. This operand specifies the individually
addressable character location in a map at which the attribute byte that
precedes the field is positioned.

number specifies the displacement (relative to zero) from the beginning
of the map being defined.

(line,column) specify lines and columns (relative to one) within the map
being defined.

 The location of data on the output medium is also dependent on DFHMDI
operands.

 The first position of a field is reserved for an attribute byte. When supplying
data for input mapping from non-3270 devices, the input data must allow
space for this attribute byte. Input data must not start in column 1, but may
start in column 2.

 The POS operand always contains the location of the first position in a field,
which is normally the attribute byte when communicating with a 3270 device.
For the second and subsequent fields of a group, the POS operand points to an
assumed attribute byte position, ahead of the start of the data, even though no
actual attribute byte is necessary. If the fields follow on immediately from one
another, the POS operand must point to the last character position of the
previous field in the group. See “Defining field groups” on page 553.

 When a position number is specified that represents the last character position
in the 3270 device, two special rules apply:
v ATTRB=IC must not be coded. The cursor can be set to location zero by

using the CURSOR option of the SEND MAP, SEND CONTROL, or SEND
TEXT command.

BMS macros

574 CICS for iSeries Application Programming Guide V5

v If the field is to be used in an output mapping operation with the
DATAONLY option on the SEND MAP command, an attribute byte for that
field must be supplied in the symbolic map data structure by the application
program.

PS specifies that programmed symbols are to be used. This overrides the PS
operands of the DFHMSD and DFHMDI macros.

BASE is the default and specifies that the base symbol set is to be used.

psid specifies a single character, or an EBCDIC hexadecimal code of the
form X'nn', that identifies the set of programmed symbols to be used.

Note: Only a psid value of 8 is supported.

 The PS operand is ignored if the terminal does not support programmed
symbols.

SOSI
specifies that the field may contain a mixture of EBCDIC and DBCS data. The
DBCS subfields within an EBCDIC field are delimited by SO (shift-out) and SI
(shift-in) characters. SO and SI both occupy a single screen position (normally
displayed as a blank). They can be included in any non-DBCS field on output
if they are correctly paired. The terminal user can transmit them inbound if
they are already present in the field, but can add them to an EBCDIC field
only if the field has the SOSI attribute.

TRANSP
determines whether the background of an alphanumeric field is transparent or
opaque, that is, whether an underlying (graphic) presentation space is visible
between the characters.

VALIDN
specifies that validation is to be used on a 5250 terminal. This overrides the
VALIDN operands of the DFHMSD and DFHMDI macros.

MUSTFILL specifies that the field must be filled completely with data. An
attempt to move the cursor from the field before it has been
filled, or to transmit data from an incomplete field, raises the
“inhibit input” condition.

MUSTENTER specifies that data must be entered into the field, but need not
fill it. An attempt to move the cursor from an empty field
raises the “inhibit input” condition.

TRIGGER specifies that this field is a trigger field.

 The VALIDN operand is ignored if the terminal does not support validation.

XINIT
specifies, in hexadecimal form, constant or default data for an output field.
Only one of XINIT, GINIT, and INITIAL may be specified.

 Hexadecimal data is written as an even number of hexadecimal digits, for
example, XINIT=C1C2. If the number of valid characters is smaller than the
field length, the data is padded to the right with blanks. For example, if
LENGTH=3, XINIT=C1C2 results in an initial field of "AB".

XINIT1 DFHMDF POS=(02,23),LENGTH=23,SOSI=YES, *
 XINIT=’E289958793850E42C142C242C342C442C50F82A8A3A5A2’

BMS macros

Appendix D. BMS macro summary 575

If hexadecimal data is specified that corresponds with line or format control
characters, the results are unpredictable. The XINIT operand should therefore
be used with care. In older versions of CICS, using XINIT was the only
method of defining DBCS data in BMS maps, and consequently there are many
existing maps in the mainframe environment which use the XINIT keyword for
DBCS data. However, if you are coding a new map, (rather than porting an
existing map from another CICS platform), you are strongly recommended to
avoid the use of the XINIT keyword for DBCS data, and to use either the
GINIT or the INITIAL keywords.

 When the BMS translator is executing in DBCS mode, the XINIT data is
processed as follows:
v If SOSI=YES is defined for the field, the data must conform to the rules for

INITIAL data. If the LENGTH value exceeds the data length, the data will
be padded out with SBCS blanks, not nulls.

v If PS=8 is defined for the field, the data must conform to the rules for GINIT
data, except that SO and SI characters must not occur in the data. (This is to
maintain compatibility with CICS for MVS/ESA maps).

v If neither SOSI=YES nor PS=8 is defined, the XINIT data is processed in the
usual (non-DBCS) way.

The redundant SO/SI and extended character continuation techniques do not apply
to the XINIT operand.

 In the XINIT example, a DBCS subfield is embedded in SBCS data characters,
that is, between the SO (X'0E') and SI (X'0F') characters. SOSI=YES is defined to
indicate that this field is a mixed data field. Each SBCS character has a length
of 1, each of the five DBCS characters has a length value of 2, and the SO and
SI each has a length value of 1. Hence the total length is 23. The BMS
translator retains the SO and SI characters embedded in the data and stores
them in the physical map, because these characters must be transmitted to the
device.

 This example defines the same data string as the examples given for the
INITIAL operand.

Sample map with DBCS data definitions
Figure 62 on page 577 shows a complete map definition for a map using DBCS
characters.

BMS macros

576 CICS for iSeries Application Programming Guide V5

CONTMAP DFHMSD *
 TYPE=MAP, *
 LANG=COBOL, *
 MODE=INOUT, *
 MAPATTS=(PS,SOSI), *
 DSATTS=(PS,SOSI), *
 TERM=3270-2, *
 TIOAPFX=YES, *
*
MAP1 DFHMDI *
 SIZE=(24,80), *
 LINE=1, *
 COLUMN=1, *
INIT1 DFHMDF *
 POS=(03,01), *
 LENGTH=78, *
 INITIAL=’abc<.F.R.E.D>defghijklmnopqrstuvwxyz0123456789A*
 BCD<.B.I.L.L>EFG’
INIT2 DFHMDF *
 POS=(05,01), *
 LENGTH=78, *
 INITIAL=’abc<.A.B.C.D>defghijklmnopqrstuvwxyz012<.M.A.N>*
 <.F.R.E.D>EFG’
INIT3 DFHMDF POS=(07,01),LENGTH=78,INITIAL=’abcdefghijklmnop*********
 <.F.R.E.D>EFG’
INIT4 DFHMDF POS=(09,01),LENGTH=78,INITIAL=’abcdefghijklmno<.M.A.N>**
 <.F.R.E.D>EFG’
GINIT1 DFHMDF POS=(11,01),LENGTH=78,GINIT=’<.H.U.R.S.L.E.Y .R.U.L>***
 <.E.S .O.K>’,PS=8
 DFHMSD *
 TYPE=FINAL
 END

Figure 62. Sample map with DBCS data definitions

Appendix D. BMS macro summary 577

578 CICS for iSeries Application Programming Guide V5

Appendix E. CICS-value data areas supported by CICS/400

This appendix lists the CICS-value data area (CVDA) symbolic names that are
supported by CICS/400, together with their numeric values.

If a CVDA symbolic name that CICS/400 recognizes but does not support is
passed as an argument to the DFHVALUE built-in function, the translator
substitutes the correct numeric value regardless.

If an argument passed to DFHVALUE is not recognized by CICS/400, the
translator generates an error message.

The CVDA tables are:
v A list of the supported CVDAs in alphanumeric sequence by symbolic name
v A list in ascending order by associated numeric values
v Values returned by the INQUIRE TERMINAL|NETNAME DEVICE command

For more information about CVDAs, see “CICS-value data areas (CVDAs)” on
page 309.

CVDAs by symbolic name
 Symbolic name Value

ACQUIRED 69
ACTIVE 181
ADDABLE 41
ALLOCATED 81
ALTERNATE 197
APPCPARALLEL 374
ATI 75
AUXSTART 312
AUXSTOP 314
BROWSABLE 39
CEDF 370
CLOSED 19
CLOSING 21
COBOL 151
COLDSTART 266
CONFFREE 82
CONFRECEIVE 83
CONFSEND 84
DEFAULT 198
DELETABLE 43
DEST 235
DISABLED 24
DISABLING 25
DISK1 252
DISK2 253
DPLSUBSET 383
EMERGENCY 268
EMPTY 210

© Copyright IBM Corp. 1998, 2004 579

Symbolic name Value

EMPTYREQ 31
ENABLED 23
ESDS 5
EXTRA 221
FIRSTQUIESCE 182
FIXED 12
FREE 85
FULL 212
FULLAPI 384
GOINGOUT 172
HOLD 163
C 149
INDIRECT 122
INPUT 226
INSERVICE 73
INTRA 222
INTSTART 310
INTSTOP 311
KSDS 6
LOGICAL 216
LUW 246
MAP 155
NEWCOPY 167
NOATI 76
NOCEDF 371
NOEMPTYREQ 32
NOHOLD 164
NOSWITCH 285
NOSYSDUMP 185
NOTADDABLE 42
NOTAPPLIC 1
NOTBROWSABLE 40
NOTDELETABLE 44
NOTEMPTY 211
NOTERMINAL 214
NOTINIT 376
NOTPURGEABLE 161
NOTRANDUMP 187
NOTREADABLE 36
NOTRECOVERABLE 30
NOTTI 78
NOTUPDATABLE 38
NOWAIT 341
OPEN 18
OPENING 20
OPENOUTPUT 257
OUTPUT 227
OUTSERVICE 74
PENDFREE 86
PENDRECEIVE 87
PHASEIN 168
PROGRAM 154
PURGE 236
PURGEABLE 160

CVDAs

580 CICS for iSeries Application Programming Guide V5

Symbolic name Value

READABLE 35
RECEIVE 88
READBACK 209
RECOVERABLE 29
RELEASED 70
REMOTE 4
RRDS 7
SEND 90
SIGNEDOFF 245
SIGNEDON 244
SWITCHALL 287
SYSDUMP 184
TASK 233
TERM 234
TERMINAL 213
TRANDUMP 186
TTI 77
T3277R 145
T3284L 155
T3790SCSP 182
UPDATABLE 37
USEROFF 322
USERON 321
VARIABLE 13
VSAM 3
VTAM 60
WAIT 340
WARMSTART 267

CVDAs by numeric value
 Value Symbolic name

1 NOTAPPLIC
3 VSAM
4 REMOTE
5 ESDS
6 KSDS
7 RRDS
12 FIXED
13 VARIABLE
18 OPEN
19 CLOSED
20 OPENING
21 CLOSING
23 ENABLED
24 DISABLED
25 DISABLING
29 RECOVERABLE
30 NOTRECOVERABLE
31 EMPTYREQ
32 NOEMPTYREQ
35 READABLE

CVDAs

Appendix E. CICS-value data areas supported by CICS/400 581

Value Symbolic name

36 NOTREADABLE
37 UPDATABLE
38 NOTUPDATABLE
39 BROWSABLE
40 NOTBROWSABLE
41 ADDABLE
42 NOTADDABLE
43 DELETABLE
44 NOTDELETABLE
60 VTAM
69 ACQUIRED
70 RELEASED
73 INSERVICE
74 OUTSERVICE
75 ATI
76 NOATI
77 TTI
78 NOTTI
81 ALLOCATED
82 CONFFREE
83 CONFRECEIVE
84 CONFSEND
85 FREE
86 PENDFREE
87 PENDRECEIVE
88 RECEIVE
90 SEND
122 INDIRECT
145 T3277R
149 C
151 COBOL
154 PROGRAM
155 MAP
155 T3284L
160 PURGEABLE
161 NOTPURGEABLE
163 HOLD
164 NOHOLD
167 NEWCOPY
168 PHASEIN
172 GOINGOUT
181 ACTIVE
182 FIRSTQUIESCE
182 T3790SCSP
184 SYSDUMP
185 NOSYSDUMP
186 TRANDUMP
187 NOTRANDUMP
197 ALTERNATE
198 DEFAULT
209 READBACK
210 EMPTY
211 NOTEMPTY
212 FULL

CVDAs

582 CICS for iSeries Application Programming Guide V5

Value Symbolic name

213 TERMINAL
214 NOTERMINAL
216 LOGICAL
221 EXTRA
222 INTRA
226 INPUT
227 OUTPUT
233 TASK
234 TERM
235 DEST
236 PURGE
244 SIGNEDON
245 SIGNEDOFF
246 LUW
252 DISK1
253 DISK2
257 OPENOUTPUT
266 COLDSTART
267 WARMSTART
268 EMERGENCY
285 NOSWITCH
287 SWITCHALL
310 INTSTART
311 INTSTOP
312 AUXSTART
314 AUXSTOP
321 USERON
322 USEROFF
340 WAIT
341 NOWAIT
370 CEDF
371 NOCEDF
374 APPCPARALLEL
376 NOTINIT
383 DPLSUBSET
384 FULLAPI

CVDAs returned by the INQUIRE TERMINAL|NETNAME DEVICE
command
 CVDA sequence CVDA Value

T3277R 145
T3284L 155
T3790SCSP 182

CVDAs

Appendix E. CICS-value data areas supported by CICS/400 583

CVDAs

584 CICS for iSeries Application Programming Guide V5

Appendix F. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or region or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country or region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1998, 2004 585

|
|
|
|
|

|
|
|
|

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming Interface Information
This CICS for iSeries Application Programming Guide documents intended
Programming Interfaces that allow the customer to write programs to obtain the
services of CICS/400.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

586 CICS for iSeries Application Programming Guide V5

|
|

|
|
|
|
|

|
|
|

AD/Cycle
AS/400
CICS
CICS/400
CICS/ESA
COBOL/400
CUA
Distributed Relational Database Architecture
DRDA
e (logo)
IBM
iSeries
MVS
Operating System/400
OS/390
OS/400
S/370
SAA
System/36
System/370
System/38
System/390
Systems Application Architecture
VSE/ESA
VTAM
Websphere
zSeries
z/OS

Other company, product, and service names may be trademarks or service marks
of others.

Appendix F. Notices 587

588 CICS for iSeries Application Programming Guide V5

Glossary

This glossary defines special CICS terms used in
this book; and words used differently from their
everyday meaning.

If you can’t find the term you are looking for, try
the glossary in one of the books mentioned in the
bibliography, or the IBM Dictionary of Computing,
New York: McGraw-Hill, 1994.

A
Advanced Program-to-Program Communication
(APPC). The general term for LUTYPE6.2 protocol
under Systems Network Architecture (SNA).

AID. See automatic initiate descriptor.

alternate index. An index based on an alternate key. It
allows the file to be processed in a secondary key
order.

API. See application programming interface.

API commands. CICS commands supported for EXEC
CICS statements. CICS/400 includes a subset of
commands supported by CICS on larger systems.

API translator. See translator.

APPC. See Advanced Program-to-Program
Communication.

application programming interface (API). The facility
that allows application programmers to access CICS
facilities by including EXEC CICS commands in their
programs.

asynchronous processing. Processing in which a local
transaction is allowed to continue while having a
remote request processed; for example, a remote
transaction can be started and data stored for it by the
local transaction.

ATI. See automatic transaction initiation.

attention identifier (AID) keys. The ENTER key, the
CLEAR key, the PF keys, and the PA keys are all
known as attention identifier (AID) keys. The ENTER
key and the PF keys transmit data from the terminal’s
buffer to the system; the others just give an indication
of which key was pressed.

attribute. Attributes control the field’s appearance and
operation. Color or highlighting can be chosen for some
terminals. Fields can be either unprotected (used for
data entry) or protected (used for display only).

attribute byte. For standard attributes in BMS, a single
byte that occupies the character location on the screen
that is immediately before the field to which it applies.

automatic initiate descriptor (AID). When an ICE
expires for a timer-related task, it then becomes an AID.
If all its required resources are available it becomes an
enabled AID; if it is waiting for a resource to become
free, it is a suspended AID. See also interval control
element.

automatic transaction initiation (ATI). When data is
sent to an intrapartition destination and the number of
entries reaches a predefined trigger level, it can be
specified that a transaction be started automatically to
process the data in the intrapartition destination queue.
A transaction can also start automatically another
transaction at a specified terminal. See control interval.

auxiliary storage TS queue. A temporary storage
queue that is in a physical file managed by CICS.
Auxiliary storage should be used to store large
amounts of data, or data needed for a long period of
time. Contrast with main storage TS queue.

auxiliary trace. An option whereby trace entries are
written to an external file. Any or all of these trace
entries can then be printed to help you search for a
problem. Contrast with internal trace.

B
base key. A partial key definition beginning with a
known base (for example, SAMPLE–SAMPLE1,
SAMPLE2, SAMPLE3 would be found on sequential
reads). Used in VSAM.

basic mapping support (BMS). A facility that handles
data stream input and output from a terminal. Its use
provides device and format independence for
application programs.

batch shell. A shell started to handle interval control
timer requests. The batch shell is transparent to the
user; each user’s program runs under its own user
shell. Contrast with user shell.

BMS. See basic mapping support.

BMS, support provided. Support is provided for 3270
displays and printers only. In CICS/400, BMS supports
extended attributes and large screens. It does not
support cumulative mapping, terminal operator paging,
routing, or message switching.

© Copyright IBM Corp. 1998, 2004 589

bottleneck. A symptom that characterizes a
performance problem. It can be due to a task failing to
start, failing to continue after starting, or taking a long
time to complete.

bracket protocol. Use of this protocol prevents the
interruption of a transaction between CICS and a
logical unit. Bracket protocol is used when CICS
communicates with specific logical units.

browse. Sequential reading of a file or temporary
storage queue, beginning with a specified record.

C
CCSID. A coded character set identifier used to
convert one character or graphic value to another.

CEBR. A supplied transaction that allows the user to
browse temporary storage (TS) queues from a CICS
user shell environment.

CECI. The command-level interpreter transaction. This
transaction allows application programmers to check
syntax interactively, and test their API commands
before incorporating them into CICS application
programs.

CECS. A transaction that allows syntax checking of
API commands.

CEDA. The resource definition transaction. A supplied
transaction used to handle the manipulation of the
CICS table definitions.

CEDF. The transaction used to start the execution
diagnostic facility (EDF). See execution diagnostic facility
for a more detailed description.

CEMT. The master terminal transaction. This
transaction allows the system administrator to inquire
about or change the status of resources (including
programs, transactions, files, queues, and terminals).

centralized processing. Processing in which the
application is processed on a central processor, which
users access using nonintelligent terminals. Contrast
with distributed processing.

CESF. Supplied transaction to sign off from CICS. This
transaction signs the user off from the user shell.

CICS-value data area (CVDA). A CICS-supplied value
for certain data options on EXEC CICS commands.

CL. See control language.

client/server. The model of interaction in distributed
data processing in which a program at one site sends a
request to a program at another site and awaits a
response. The requesting program is called a client; the
answering program is called a server.

COBOL/400. The AD/Cycle COBOL compiler
available for OS/400. This is one of the two supported
languages for CICS/400 application development.

cold start. One of the ways in which temporary
storage and transient data queues are recovered when a
CICS control region is started. A cold start indicates
that these resources are cleared. Contrast with warm
start and emergency start.

command. In an OS/400 environment usually refers to
a CL command. Each CL command corresponds to a
specific operation. Use of a CL command is usually
quicker than the corresponding menu selections. In
CICS, an instruction similar in format to a high-level
language instruction; the command statement begins
with EXEC CICS.

COMMAREA. A communication area used for
passing data between programs within a transaction or
between transactions from the same terminal.

commit. Changes made to resources are written or
committed at a syncpoint.

common work area (CWA). A work area that can be
accessed by any transaction in the CICS system.

control block. A specialized storage area in shared
system storage that is used by CICS to pass parameters
between service modules.

control language (CL). The primary interface to the
OS/400 operating system. Each command name refers
to a command processing program in the system that
performs the actions indicated by the command.

control region (CR). The control region provides the
control, scheduling, and work management
mechanisms necessary to coordinate all the shared
resources in CICS/400. A control region is started using
the STRCICS CL command and ended using the
ENDCICS CL command.

conversation. A sequence of exchanges over a session,
delimited by SNA brackets.

CR. See control region.

CRTE. A supplied transaction used for routing
transactions to another CICS system.

cursor position, normal. You can specify a 2-byte
cursor position on the BMS SEND commands. This
enables you to specify the absolute value of the cursor
position on the screen. Contrast with cursor position,
symbolic.

cursor position, symbolic. If the length of a field is set
to −1, CICS places the cursor at the first of these fields.
Often used by the programmer when data entry fields
are in error. Contrast with cursor position, normal.

CVDA. See CICS-value data area.

590 CICS for iSeries Application Programming Guide V5

CWA. See common work area.

D
data description specification (DDS). Traditionally
data attributes were described in the programs
themselves. With OS/400 it is possible to describe data
external to the application program that processes the
files. Data descriptions specifications can be used to
describe either physical or logical files.

data link protocol. A set of rules for data
communication over a data link, in terms of a
transmission code, a transmission mode, and control
and recovery procedures.

data path. A path is an alternate way of extracting
data from a file. Usually in key order, but not the major
key. Used for an alternate view of a file.

database administrator. The person responsible for the
design, development, integrity, and maintenance of
databases.

DBCS. See double byte character set.

DCT. See destination control table.

DDS. See data description specification.

deadlock. A contention for resources, where two
programs are attempting to use the same resource (for
example, update the same record) at the same time.

deferred work element (DWE). The deferred work
element is the catalyst used to invoke “event driven”
services controlled within CICS/400. DWE’s cause a
unit of work to be scheduled later, normally either at
task termination or before or after syncpoint.

dequeue. CICS/400 release a resource held for
exclusive use.

destination control table (DCT). A table describing
each of the transient data destinations used in CICS.
This table contains an entry for each extrapartition,
intrapartition, and indirect destination.

DFHAID. A COBOL copybook containing the
symbolic names for all the AID keys.

DFHBMSCA. Attribute and control character list, for
use with COBOL programs. A copybook containing the
symbolic names for the various combinations of
attributes and control characters.

DFHCOMMAREA. The communication area in the
linkage section of an OS/400 COBOL program. See also
COMMAREA.

DFHMDF. The BMS macro that defines a field within
a map.

DFHMDI. The BMS macro that defines a map within
a map set.

DFHMSD. The BMS macro that defines a map set.

distributed processing. Processing in which
application transaction programs, distributed among
interconnected processors, cooperate to perform
applications for end users of a network. Contrast with
centralized processing.

distributed program link (DPL). This enables an
application program running on one CICS system to
link to another application program running in another
CICS system.

distributed transaction processing (DTP). Processing
in which a CICS transaction communicates with a
transaction running in another system.

double byte character set (DBCS). The graphic
character set used in Asian countries or regions such as
Japan, China, Taiwan, and Korea.

DPL. See distributed program link.

DTP. See distributed transaction processing.

dump control. This facility handles program
controlled dumping of the application program. In
CICS/400, also referred to as serviceability and dump.

DWE. See deferred work element.

E
EDF. See execution diagnostic facility.

EIB. See EXEC interface block.

emergency start. One of the ways in which temporary
storage and transient data queues are recovered when a
CICS control region is started following an abnormal
shutdown of the region. An emergency start affects
these resources as defined in the system initialization
table. This may result in one or more queues being
cleared or recovered, that is, returned to their state
prior to shutdown. Contrast with cold start and warm
start.

emulation. An imitation of one computer or product
by another so that both accept the same data, and
achieve similar results.

enqueue. Hold a user-defined resource for exclusive
use.

entry-sequenced data set (ESDS). One of the file
organizations supported to emulate VSAM. Each record
is identified by its relative byte address (RBA). Records
are held in the order they were first entered, with new
records added at the end.

Glossary 591

error message. Under OS/400, error messages
(abends) from failed routines are displayed at the
terminal, and additional help is available by using the
PF1 key.

ESDS. See entry-sequenced data set.

EXEC (EXECUTE) statement. An instruction similar in
format to a high-level language instruction. Begins with
EXEC CICS, lists the command and options, and ends
with END-EXEC.

EXEC interface block (EIB). A control block
associated with a CICS task, used for direct
communication between CICS and command-level
application programs. Several fields in the EIB, such as
the RESP and RESP2 fields, are often checked by the
programmer to determine whether a CICS command
was executed as expected.

execution diagnostic facility (EDF). A facility that
helps the application programmer to debug an
application by stepping through its CICS commands.
The programmer can change values in the application
while it is running. To start EDF, you need to use the
CEDF transaction.

extrapartition destination. A type of transient data
queue. Extrapartition destinations can be accessed
either within the CICS environment or outside
CICS/400; they can be defined as either input or
output.

F
FCT. See file control table.

file control. The facility for managing basic operations
against a file (ADD, READ, DELETE, REWRITE, and
BROWSE).

file control table (FCT). A table containing the
characteristics of files accessed by file control.

function shipping. The process in which CICS
accesses resources when those resources are actually
held on another CICS system.

G
GETMAIN area. A requested area of transaction
storage that is outside the working-storage section of
your program.

I
ICE. See interval control element.

ILE. See integrated language environment.

ILE C. An IBM licensed program that is a Systems
Application Architecture platform C programming
language. The ILE C program uses the ILE model on
the iSeries system.

indirect destination. A type of transient data
destination that points to another destination within the
DCT. See destination control table.

initialization. The preparation of a system, device, or
program for operation. An operating system is
initialized on startup or after a system failure.

initialization stall. A wait that occurs during
initialization when a CICS system appears to be
running normally but is not actually progressing
through the various stages of initialization.

installation verification procedure (IVP). This
provides a sample online and maintenance application
to verify a successful installation of CICS/400.

integrated language environment (ILE). A set of
constructs and interfaces that provides a common
run-time environment and run-time bindable
application program interfaces for all ILE-conforming
high-level languages.

interception point. In the execution diagnostic facility
(EDF), a point at which execution is interrupted to
allow the display of program information (see execution
diagnostic facility).

internal trace. An option whereby trace entries are
written to an internal control region table. The table,
which can be specified to wrap when full, is most
appropriate if you do not need to capture a large
number of trace entries. Contrast with auxiliary trace.

intersystem communication (ISC). This facility
provides inbound and outbound support for
communication from other computer systems.

interval control. The primary task of this facility is the
handling, synchronization, and initiation of tasks
requested by user application programs and CICS
internal service routines. Other functions include
obtaining the formatted time for the user.

interval control element (ICE). An entry under
interval control that is waiting in an unexpired state. Its
defined date and time (to become current) is still in the
future. When an ICE expires it becomes an AID. See
also automatic initiate descriptor.

intrapartition destination. A type of transient data
queue used subsequently as input data to another task
within CICS.

ISC. See intersystem communication.

IVP. See installation verification procedure.

592 CICS for iSeries Application Programming Guide V5

J
JCT. See journal control table.

journal control. Provides the CICS user with the
ability to write CICS journal records when required by
the application for auditing purposes.

journal control table (JCT). Describes the CICS user
journals along with their access characteristics.

K
key-sequenced data set (KSDS). One of the file
organizations supported to emulate VSAM. Each record
in the file is identified by a key within a predefined
position of the record. Each key must be unique.

KSDS. See key-sequenced data set.

L
limited capability. The use of certain OS/400
commands can be restricted by setting a user’s profile
to limited capability.

linkage section. The section of a COBOL program that
allows the programmer to access areas outside of
working-storage.

local. Pertaining to the system, program, or device
being described, as opposed to other systems,
programs, or devices which are on other computer
systems. Contrast with remote.

logical unit (LU). A port through which a user gains
access to the services of networks.

logical unit of work (LUW). The work processed
between syncpoints. In CICS/400, an implicit syncpoint
occurs at normal task completion.

LU. See logical unit.

LUW. See logical unit of work.

M
macro. An assembler-language instruction. Except for
the macros that BMS uses, CICS/400 supports
command-level instructions only.

main storage TS queue. A dynamic storage area
managed by CICS under the temporary storage facility.
Data in main storage does not survive from one CICS
run to the next. Contrast with auxiliary storage TS queue.

map. Screen data defined as fields using BMS macros
that are generated into two forms: a physical map for
display on part or all of a device, and a symbolic map
referring to just the named input and output fields that

are needed by the program processing the screen data.
Maps are grouped together in a map set.

map set. Defines the related screens used for one
transaction. Each map set is a set of assembler-language
macros that are used to create a physical map set, and
a symbolic map set. See both physical map set and
symbolic map set.

MAPFAIL. When using BMS, a MAPFAIL condition
occurs (on input only) if the data to be mapped has a
length equal to zero. This happens if a PA key or the
CLEAR key is pressed and the modified data tag is
turned off.

MDT. See modified data tag.

message file. The file holding the text of all CICS
messages.

modified data tag (MDT). The modified data tag is
turned on whenever fields are modified by the terminal
operator. This tag may also be turned on by the
programmer to assure that the field is returned with
the next inbound transmission.

multithread test. This type of test involves several
concurrently active transactions. Whether the new
function can coexist with other related functions is
tested. Contrast with single-thread test.

N
national language support (NLS). A feature that
allows the user to communicate with the system in the
national language chosen by the user.

network. The hardware equipment (for example,
terminals and lines) that supplies the connections
between terminals and hosts or other systems.

NLS. See national language support.

nonrecoverable (requests). Requests on a queue or in
a file that are lost in the event of a transaction or
system failure. Contrast with recoverable.

nonshared storage. Storage areas created for and used
exclusively by individual user shells.

O
object oriented system. Under OS/400, everything is
treated as an object; that is, files, programs, user spaces,
and data queues are all treated as objects.

P
panel. The screen layout of such items as the initial
cursor position, entry fields, selection fields, and list
fields.

Glossary 593

PCT. See program control table.

PF keys. Program function keys used within CICS and
OS/400 to perform certain preprogrammed functions.
For example, PF3 is normally set up to take you back
to a previous screen.

physical map set. The facility that BMS uses to map
data between the program and the terminal.

PPT. See processing program table.

precompiler. A program that manages preparation of
source code for compilation. See also translator. Often
used as synonyms.

printer spooling. This CICS/400 facility provides
support for writing data to OS/400 print spools. Only
printed output is supported by CICS/400.

processing program table (PPT). A table defining the
application programs and BMS maps that can be run
under CICS.

program check. This indicates that an error in a
program has caused the CICS transaction to terminate
abnormally under the control of CICS, which issues
appropriate messages.

program control. This facility handles the flow of
control among application programs.

program control table (PCT). A table defining the
transactions that can be processed by the system. Each
transaction identifier is paired with the name of the
program CICS executes when the transaction is
invoked.

protected attribute. If this attribute is chosen, the
terminal operator cannot key data into this field; the
field is display only.

protocol, data link. A set of rules for data
communication over a data link, in terms of a
transmission code, a transmission mode, and control
and recovery procedures.

pseudoconversational programming. A programming
technique in which every SEND or SEND MAP must
be followed by a RETURN TRANSID command. The
program exits after sending data to the terminal, rather
than waiting for an operator response.

Q
queue. A line or list formed by items in a system
waiting for service; for example, tasks to be performed,
or messages to be transmitted.

R
RDO. See resource definition online.

recoverable (requests). Requests on a queue or in a
file that can be restored to their previous state at the
exit of the last task or syncpoint after a transaction or
system failure.

reentrant code. When a program is reentrant it is
serially reusable. Each time you enter the program a
fresh copy of working-storage is provided. If any
values need to be saved, you must save them in other
storage areas or files.

regression test. A complete test of the existing system
along with any changes.

relative record data set (RRDS). One of the file
organizations supported to emulate VSAM. Records are
of fixed length and identified by a relative record
number (RRN). When you add a new record, you can
either specify the RRN or let VSAM assign the next
sequential number.

remote. Pertaining to a system, program, or device
that is accessed through a telecommunication line.
Contrast with local.

request unit (RU). The unit of data from a logical
unit. One or more of these RUs can be grouped
together and handled as a chain. This is often done to
transmit data over a line.

resource definition online (RDO). This facility lets
you define certain CICS resources interactively while
CICS is running. Specifically RDO lets you define
terminals, programs, and transactions interactively. Its
use is normally restricted to the system administrator.

resource management. The facility that keeps track of
what system resources are being used by mapping the
CICS identification name to the underlying system
resources.

rollback. The process of canceling changes made by a
transaction to recoverable resources, following the
failure of that transaction.

routing transaction. A supplied transaction (CRTE)
that allows an operation at a terminal owned by one
CICS system to sign on to another CICS system
connected by an APPC link.

RRDS. See relative record data set.

RU. See request unit.

runaway task. A transaction that features instructions
that are executed repeatedly without executing a
condition to terminate the loop.

S
SBA. See set buffer address.

594 CICS for iSeries Application Programming Guide V5

screen design aid (SDA). A utility that generates data
description specifications for screens. It allows you to
see the display you are creating or modifying.

SDA. See screen design aid.

security. A mechanism to ensure that resources are
protected from unauthorized access.

server program. A program executing in a remote
system that is linked to by a program in the client
system using a remote link request. See also distributed
program link.

server system. The CICS system to which a client
system ships a link request.

serviceability and dump. See dump control.

set buffer address (SBA). A data stream control field
used in both inbound and outbound data streams.
Indicated by X'11'. Outbound data streams contain
SBAs to describe the position in which user data is
placed. SBAs in the inbound data stream describe to
BMS what fields were entered by the user.

shared storage. Storage shared between a control
region and other processes.

shell. The CICS facility that provides the work
management mechanism to build and refresh the
application programming environment needed to run
CICS transactions. A shell is started using the
STRCICSUSR CL command and ended using the
ENDCICSUSR CL command. See also user shell.

shutdown. The process of terminating a CICS control
region in a controlled way by using the CEMT
transaction or as a result of a system failure.

single-thread test. Test of a single application or
transaction running by itself. Contrast with multi-thread
tests.

SIT. See system initialization table.

SNA. See Systems Network Architecture.

space objects. System objects that manage storage
requests for internal CICS and user application
requirements, that is, local space, system space, and
user space.

SQL. See structured query language.

stop condition. A specified condition for stopping the
execution of a transaction which is being debugged by
the execution diagnostic facility (EDF).

storage control. This facility controls requests for main
storage to provide intermediate work areas not
automatically provided by CICS. The use of these areas
is requested with a GETMAIN command.

structured query language (SQL). A language that is
used to access data in a relational database by using
simple conversation type statements.

supplied transactions. General purpose transactions
supplied by CICS/400 to perform general CICS
functions required by many users, such as debugging
(CEDF).

switchable file. In the CICS/400 journal control
facility, a new CICS journal file is created and opened
when an out-of-space condition occurs during a CICS
journal write operation.

symbolic map set. A logical representation of a set of
BMS map definitions in either COBOL copybook or C
header file format. The symbolic maps define the
format of the screen’s data, and provide reference
names for each field and its attributes.

syncpoint. The commitment or backout point of
OS/400 recoverable resources within a task’s logical
unit of work. A syncpoint may be either explicitly
requested, or implicitly initiated at task termination.

system administrator. Any person authorized to use
or modify resources or use the CEMT transaction.

system initialization table (SIT). A table containing
parameters used to start the control region’s system
initialization process.

system storage. These storage areas are used
specifically for internal CICS requirements. Contrast
with user storage space.

systems information access. This facility provides the
OS/400 system administrator and application
developers with the ability to inquire and modify
certain CICS runtime resource definitions.

Systems Network Architecture (SNA). The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
units through, and controlling the configuration and
operation of, networks.

T
tables. Resources used in the CICS/400 system are
stored in resource tables and used to control the
interaction between the different components in the
system, for example, programs and terminals.

task. The execution of an application program (or
perhaps several application programs) for a specific
user. Several users may invoke the same transaction,
but each execution of that transaction is treated as a
separate task.

task control. This facility controls resources at task
syncpoint, and at normal or abnormal termination.

Glossary 595

TCS. See terminal control system table.

TCT. See terminal control table.

TCTUA. See terminal control table user area.

TD. See transient data.

temporary storage (TS). The facility that allows
application programs to store data in a temporary
storage queue for later retrieval.

temporary storage table (TST). A table describing
temporary storage queues. For temporary storage data
to be recoverable by CICS, if the system terminates
abnormally, data identifiers for the temporary storage
queue must be specified in the TST.

terminal. In CICS, a device equipped with a keyboard
and a display, and capable of sending and receiving
information over a communication channel.

terminal control. This facility handles addressing, and
transmission error detection and correction for
terminals (both displays and printers) associated with
the local CICS system. It also handles the
intercommunication data queue used by CICS.

terminal control system table (TCS). This table
defines the connections between CICS systems.

terminal control table (TCT). A table describing the
terminals and logical units within a CICS network.

terminal control table user area (TCTUA). An area
used to pass information between application
programs, but only if the same terminal is associated
with the application programs involved.

timer-related event. An interval control function that
is used to support events that are delayed, suspended,
or restarted after a time interval.

trace. A debugging aid for system and applications
programmers. This facility produces trace entries at set
system points or in response to trace commands.

transaction. A transaction is identified to CICS by a
4-character code called a transid. It is often invoked
when an operator enters a transid in column 1 on line 1
of a terminal.

transaction routing. The facility that provides support
for inbound and outbound terminal requests from
another CICS system connected by an APPC link.

transaction work area (TWA). A work area which
exists only for the duration of a transaction.
Consequently, you can use it to pass data among
programs executed in the same transaction, but not
between transactions.

transient data (TD). This facility provides the user
with the ability to read and write data in sequential
queues.

translator. A program that converts (translates) EXEC
CICS commands found in source code into host
language statements, including variable assignments
and a call to the CICS EXEC interface program. See
also precompiler.

trigger level. The number of requests for output to a
CICS transient data queue that must be reached before
automatic transaction initiation occurs.

TS. See temporary storage.

TST. See temporary storage table.

TWA. See transaction work area.

two-phase commit. The protocol that permits updates
to protected resources to be committed or rolled back
as a unit. During the first phase, partners in a
conversation are asked if they are ready to commit. If
all partners respond positively, they are asked to
commit their updates. Otherwise, they are asked to roll
back their updates.

U
user-based pricing. A pricing option that provides the
capability for the customer to pay for a licensed
program on the basis of the number of users.

user liaison. The department responsible for
communication between data processing functions and
end users.

user shell. An interactive shell initiated by a user by
issuing a STRCICSUSR CL command. The user’s CICS
application programs run directly under this CICS
facility. See also shell.

user storage space. These storage areas are obtained
and managed by CICS, but are used by application
modules requesting main storage. Contrast with system
storage.

user trace. An option whereby an application program
can write trace entries containing user-defined trace
areas. User trace entries can be written to either
internal or auxiliary trace.

V
virtual storage access method (VSAM). In CICS,
support to access all three types of emulated VSAM
files is provided: KSDS, ESDS and RRDS. Refer to
separate types for more detailed information.

VSAM. See virtual storage access method.

596 CICS for iSeries Application Programming Guide V5

W
wait. A state in which a task’s execution has been
suspended. One common cause, is a task waiting for a
resource to become available.

warm start. One of the ways in which temporary
storage and transient data queues are recovered when a
CICS control region is started following a normal
shutdown of the region. A warm start affects these
resources as defined in the system initialization table.
This may result in one or more queues being cleared or
recovered, that is, returned to their state prior to
shutdown. Contrast with cold start and emergency start.

Glossary 597

598 CICS for iSeries Application Programming Guide V5

Index

Numerics
3270 Information Display System

attribute characters 144
color select 145
field concepts 143
input operations 141
screen sizes 147

5250 Information Display System
color select 145
emulation of 3270 141
input operations 141

A
ABCODE option

ABEND command 323
ASSIGN command 328

abend codes, table of 540
ABEND command 323
ABEND exit, reactivating 369
abend support commands 319
abend user task, EDF 235
abends 102
abnormal termination

recovery 109
task 369

ABSTIME option
ASKTIME command 327
FORMATTIME command 362

access to system information
ADDRESS command 324
ASSIGN command 327
CICS storage areas 324
EXEC interface block (EIB) 211

ACCESSMETHOD option
INQUIRE CONNECTION

command 481
INQUIRE FILE command 484

ACQSTATUS option
INQUIRE CONNECTION

command 482
INQUIRE TERMINAL command 501
SET TERMINAL command 520

activation groups 53
activation unit 25
ADD option

INQUIRE FILE command 485
SET FILE command 511

adding records 123
ADDRESS command 324
address, cursor 551
AFTER option

START command 449
AID (attention identifier)

3270 input operation 142
EIBAID field 162
HANDLE AID command 163

ALARM option
SEND CONTROL command 435
SEND MAP command 437

ALARM option (continued)
SEND TEXT command 439

ALARM value
CTRL operand, DFHMDI macro 563
CTRL operand, DFHMSD macro 557

ALLOCATE command 325
alternate screen size 147
ALWBLK parameter

CRTCICSC CL command 297
CRTCICSCBL CL command 279

ALWCPYDTA parameter
CRTCICSC CL command 296
CRTCICSCBL CL command 278

ANY option
GETMAIN command 367

ANYKEY option 163
HANDLE AID command 371

APPC logical unit
acquiring session to 325
initiating conversation with 335
returning mapped sessions to

CICS 364
sending and receiving 337

APPC mapped conversation
commands 319
ensuring transmission of accumulated

data 461
receiving data 410
sending data 430

APPC mapped conversations
abending 374
extracting attributes of 359
informing partner of error 377
issuing a positive response 375
requesting change of direction 379
retrieving values from attach

header 360
returning sessions to CICS 364

application programs
asynchronous processing 185
compiling 16, 40
design considerations 61
distributed program link 176
distributed transaction

processing 186
efficiency 67
function shipping 176
intercommunication

considerations 175
logical levels 27, 53, 200
performance considerations 82, 83
transaction routing 175

application shell facility
application shell environment 191
transaction scheduling 191
work flow

initialization 192
processing 192
shutdown 192

APPLID option
ASSIGN command 328

architecture, base and towers 139
argument values

COBOL programs 308
ILE C programs 309

ASA option
SPOOLOPEN OUTPUT

command 442
ASIS option

basic mapping support 161
RECEIVE (5250 or 3270 logical)

command 413
RECEIVE MAP command 415

ASKIP value
ATTRB operand, DFHMDF

macro 568
ASKTIME command 193

request current time of day 326
ASSIGN command 327
assigning CVDA values 310
asynchronous page build 167
asynchronous processing 4, 185
AT option

START command 449
ATI (automatic transaction

initiation) 216
ATIFACILITY option

INQUIRE TDQUEUE command 496
SET TDQUEUE command 518

ATISTATUS option
INQUIRE TERMINAL command 501
SET TERMINAL command 520

ATITERMID option
INQUIRE TDQUEUE command 496
SET TDQUEUE command 518

ATITRANID option
INQUIRE TDQUEUE command 496
SET TDQUEUE command 519

attention identifier (AID) 371
EIBAID field 551
HANDLE AID command 550
list of constants, DFHAID 548, 550
terminal control 551

attention identifier list 548
ATTRB operand

DFHMDF macro 568
attributes

characters 144, 154
control character list,

DFHBMSCA 545
attributes, extended 165
AUTINSTMODEL option

DISCARD command 477
INQUIRE AUTINSTMODEL NEXT

command 481
INQUIRE command 480

automatic transaction initiation
(ATI) 216

autoskip field 144
AUXILIARY option

WRITEQ TS command 472
auxiliary temporary storage 73

© Copyright IBM Corp. 1998, 2004 599

auxiliary temporary storage data 219
auxiliary trace 67
AUXSTATUS option

INQUIRE TRACEDEST
command 505

SET TRACEDEST command 522

B
back out to a syncpoint 458
background transparency 146
backout of resources 106
base and towers architecture 139
base color 145
base file, accessing 116
BASE operand

DFHMSD macro 556
BASE value

PS operand, DFHMDF macro 575
PS operand, DFHMDI macro 565
PS operand, DFHMSD macro 559

basic mapping support (BMS)
BMS support 141
cataloging maps 148
commands 319
coordinating BMS and another screen

manager 159
creating maps 148
cursor position 159
data streams 77
device control options 158
exception conditions 162
field data format 153
field definition macro,

DFHMDF 148, 553, 567
incorrect data 155
input field suffix 153
map definition macro, DFHMDI 147,

553, 562
map set definition macro,

DFHMSD 147, 553, 555
map set suffixing 149
map set termination 148
map sets 136
mapping input data 160, 415
mapping output data 155
maps 151
output field suffixes 153
physical map 149
pregenerated versions 139
related constants 545
sending data to a display 155
sending text data (SEND TEXT) 164
symbolic map 148, 152

batch shells 191
BELOW option

GETMAIN command 367
BIF DEEDIT command 332
blank fields 78
blank lines and printers 168
BLANK value

JUSTIFY operand, DFHMDF
macro 572

BLINK value
HILIGHT operand, DFHMDF

macro 571

BLINK value (continued)
HILIGHT operand, DFHMDI

macro 564
HILIGHT operand, DFHMSD

macro 558
BOTTOM command, CEBR

transaction 246
BOX value

OUTLINE operand, DFHMDF
macro 573

OUTLINE operand, DFHMDI
macro 565

OUTLINE operand, DFHMSD
macro 559

bracket protocol, LAST option 172
bright intensity field 144
browse operation

ending 353
files 76
INQUIRE AUTINSTMODEL

command 480
INQUIRE CONNECTION

command 483
INQUIRE FILE command 487
INQUIRE JOURNALNUM

command 489
INQUIRE PROGRAM command 492
INQUIRE TDQUEUE command 499
INQUIRE TERMINAL command 504
INQUIRE TRANSACTION

command 508
read next record 395
read previous record 400
records 119
reset starting point 418

BROWSE option
INQUIRE FILE command 485
SET FILE command 511

BROWSE TEMP STORAGE option,
CEDF 235

browsing
PROGRAM entries 490
resource definitions 315
TERMINAL entries 500
TRANSACTION entries 506

BRT value
ATTRB operand, DFHMDF

macro 568
BTRANS option

ASSIGN command 328
BUFFER option

RECEIVE (5250 or 3270 logical)
command 413

built-in function 319
BUSY option

SET FILE command 512

C
CANCEL command 193, 333
CANCEL option

ABEND command 323
HANDLE ABEND command 370

CASE operand
DFHMDF macro 569

CBLGENLVL parameter
CRTCICSCBL CL command 281

CBLOPT parameter
CRTCICSCBL CL command 275

CCSID (coded character set
identifier) 15

CEBR transaction 243, 248
body 244
BOTTOM command 246
browse transaction 243
CEBR initiation 243
COLUMN command 246
command area 244
displays 244
FIND command 246
GET command 246
header 244
initiation 243
LINE command 247
message line 245
PF keys 244
PURGE command 247
PUT command 247
QUEUE command 247
security considerations 248
temporary storage browse 243
TERMINAL command 247
TOP command 247
transient data 248

CECI (command-level interpreter)
transaction

about to start command 252
ampersand (&) 256
body 253
command completed 252
command input 250
command input line 250
command line 250
command syntax check 251
EIB 257
ENTER key 254
expanded area 255
information area 253
introduction 249
invoking 249
making changes 258
message line 254
messages display 257
PF key values area 254
program control 259
screen layout 250
security considerations 261
status area 251
terminal sharing 259
variables 255

CECS transaction 249
CEDF (execution diagnostic facility) 229
CEDFSTATUS option

INQUIRE PROGRAM command 490
SET PROGRAM command 515

chaining of data 171
character attribute 165
checkout, program 229
CICS COBOL restrictions 20
CICS translator 12
CICS-value data area (CVDA) 309, 579
CICSGENLVL parameter

CRTCICSC CL command 293
CRTCICSCBL CL command 281

600 CICS for iSeries Application Programming Guide V5

CICSMAP parameter
CRTCICSMAP CL command 302

CICSOPT parameter
CRTCICSC CL command 292
CRTCICSCBL CL command 273

CICSSTATUS option
INQUIRE SYSTEM command 493

CL commands
CRTBNDC 289
CRTCICSC 286
CRTCICSCBL 266
CRTCICSMAP 301
CRTCMOD 289
CRTPGM 289
STRCICSUSR 191

CLASS option
SPOOLOPEN OUTPUT

command 443
CLEAR key 142, 144, 163
CLEAR option 163

HANDLE AID command 371
client system 176
closing spool files 223
CLOSQLCSR parameter

CRTCICSC CL command 298
CRTCICSCBL CL command 280

CNOTCOMPL option
SEND (SCS) command 432

COBOL
addressing CICS data areas 18
CALL statement 20, 22
calling programs 22
calling subprograms 20
program segments 18

COBOL variations
argument values 308
translated code 14

COBOLTYPE option
INQUIRE PROGRAM command 490

coded character set identifier
(CCSID) 15

coding CICS statements in ILE C
applications 37

COLOR operand
DFHMDF macro 569
DFHMDI macro 562
DFHMSD macro 556

COLOR option
ASSIGN command 328

color, extended 145
COLUMN command, CEBR

transaction 246
COLUMN operand

DFHMDI macro 563
commands

argument values 307
command input area 244
format 305
reference information 323

COMMAREA option 201, 203
ADDRESS command 324
LINK command 70, 199, 382
RETURN command 72, 425
XCTL command 70, 474

COMMIT parameter
CRTCICSC CL command 296
CRTCICSCBL CL command 272

commitment control 105, 128
common programming interface

communications (CPI
communications) 186

common work area (CWA) 71
compilers supported

COBOL 14
ILE C 38

compiling application programs 16, 40
conditions, exception 87
CONFIRM option

SEND (APPC) command 430
CONNECT PROCESS command 335
CONNECTION option

INQUIRE CONNECTION
command 482

INQUIRE CONNECTION NEXT
command 483

CONNECTION, INQUIRE
command 481

CONNECTION, SET command 509
CONNSTATUS option

INQUIRE CONNECTION
command 482

constants
3270 attributes 154
AID values, DFHAID 548
attribute values, DFHBMSCA 545
for 3270 attributes 545
for examining EIBAID field 162, 548
for printer format controls 545
printer control values,

DFHBMSCA 545
contention for resources 62
control region

shared resources 189
work flow 189
work management 189

conversational programming 61, 80
CONVERSE (5250 or 3270 logical)

command 339
CONVERSE (APPC) command 337
converse with terminal or LU 550
CONVID option

CONNECT PROCESS command 335
CONVERSE (APPC) command 337
EXTRACT ATTRIBUTES (APPC)

command 359
EXTRACT PROCESS command 360
FREE (APPC) command 364
ISSUE ABEND command 374
ISSUE CONFIRMATION

command 375
ISSUE ERROR command 377
ISSUE PREPARE command 378
ISSUE SIGNAL (APPC)

command 379
RECEIVE (APPC) command 410
SEND (APPC) command 430
WAIT CONVID command 461

COPY option
SET PROGRAM command 515

copybooks
DFHAID 548
DFHBMSCA 154, 545

copying symbolic description maps 152

COUTPUT parameter
CRTCICSC CL command 291

CPI communications 186
CR see control region 189
create logical file (CRTLF) 116
creating BMS maps 148
CRTBNDC CL command 289
CRTCICSC CL command 286
CRTCICSCBL CL command 266
CRTCICSMAP CL command 301
CRTCMOD CL command 289
CRTPGM CL command 289
CSMT log 103
CTLCHAR option

CONVERSE (5250 or 3270 logical)
command 339

SEND (5250 or 3270 logical)
command 433

CTRL operand
DFHMDI macro 563
DFHMSD macro 557

CURAUXDS option
INQUIRE TRACEDEST

command 505
cursor address 551
CURSOR option

SEND CONTROL command 435
SEND MAP command 437
SEND TEXT command 439

cursor position
basic mapping support 159
terminal control 551

cursor select key
handling in program 163

CVDA (CICS-value data area) 579
CVDA options

MAXLIFETIME
DEQ 351
ENQ 356

STATE
CONNECT PROCESS 336
EXTRACT ATTRIBUTES

(APPC) 359
FREE (APPC) 364
ISSUE ABEND command 374
ISSUE CONFIRMATION 375
ISSUE ERROR 377
ISSUE PREPARE 378
ISSUE SIGNAL (APPC) 379

CVDA values
ALLOCATED

ISSUE PREPARE 378
APPC commands 311
CONFFREE

ISSUE PREPARE 378
CONFRECEIVE

ISSUE PREPARE 378
CONFSEND

ISSUE PREPARE 378
FREE

ISSUE PREPARE 378
LUW

DEQ 351
ENQ 356

PENDFREE
ISSUE PREPARE 378

Index 601

CVDA values (continued)
PENDRECEIVE

ISSUE PREPARE 378
RECEIVE

ISSUE PREPARE 378
ROLLBACK

ISSUE PREPARE 378
SEND

ISSUE PREPARE 378
SYNCFREE

ISSUE PREPARE 378
SYNCRECEIVE

ISSUE PREPARE 378
SYNCSEND

ISSUE PREPARE 378
TASK

DEQ 351
ENQ 356

CWA option
ADDRESS command 324

CWALENG option
ASSIGN command 328

D
data

chaining 171
deleting

file control records 344
temporary storage queues 349
transient data queues 348

passing to new tasks 448
passing to other programs 201
reading from a display 160
storing within transaction 68

data communication 133
data definition services (DDS) 117
DATA option

FREEMAIN command 365
data storing

within transaction 68
data streams

BMS 77
compressing 79
inbound 78

data-area arguments 307
data-entry operations 79
data-value arguments 307
DATALENGTH option

LINK command 382
DATAONLY

sending changed fields 78
DATAONLY option

modifying displays 156
SEND MAP command 437

DATASET option 311
date field of EIB 211
DATE option

FORMATTIME command 362
DATEFORM option

FORMATTIME command 362
DATESEP option

FORMATTIME command 362
DATFMT parameter

CRTCICSC CL command 299
CRTCICSCBL CL command 284

DATSEP parameter
CRTCICSC CL command 300
CRTCICSCBL CL command 285

DAYCOUNT option
FORMATTIME command 362

DAYOFMONTH option
FORMATTIME command 362

DAYOFWEEK option
FORMATTIME command 362

DBCS 166, 174
CCSID 15
GRAPHIC option of CRTCICSC

command 292
GRAPHIC option of CRTCICSCBL

command 274
DBGVIEW parameter

CRTCICSC CL command 291
DDMMYY option

FORMATTIME command 362
DDMMYYYY option

FORMATTIME command 363
deadlock prevention 65, 128
debugging 229
default action for conditions 87
default screen size 147
DEFAULT value

COLOR operand, DFHMDF
macro 569

COLOR operand, DFHMDI
macro 563

COLOR operand, DFHMSD
macro 557

defining map sets 147
definite response protocol

terminal control 172
DEFRESP option

CONVERSE (5250 or 3270 logical)
command 339

SEND (5250 or 3270 logical)
command 434

SEND (SCS) command 432
DELAY command 193, 341
delay processing, task 341
DELETE command 123, 344
delete loaded program 417
DELETE option

INQUIRE FILE command 485
SET FILE command 512
SPOOLCLOSE command 441

DELETEQ TD command 348
DELETEQ TS command 349
deleting records 123
DEQ command 350
dequeue from resource 350
dequeuing resources 197
design considerations for applications

conversational 61
exclusive control of resources 64
nonconversational 61
pseudoconversational 61

destinations
extrapartition 215
indirect 216
intrapartition 215

device control options, BMS 158
DEVICE option

INQUIRE TERMINAL command 501

device-dependent data stream 135
DFHAID 162, 548, 550
DFHBMSCA 154, 545
DFHMDF, field definition macro 148,

553, 567
DFHMDI, map definition macro 147,

553, 562
DFHMSD, map set definition

macro 147, 553, 555
DFHRESP built-in function 87, 313
DFHVALUE built-in function 310
DFTRDBCOL parameter

CRTCICSC CL command 300
CRTCICSCBL CL command 286

diagnostic services commands 319
DISABLED condition

DELETE command 346
DELETEQ TD command 349
READ command 392
READQ TD command 405
STARTBR command 455
UNLOCK command 459
WRITE command 465
WRITEQ TD command 470

DISCARD commands 211, 318
AUTINSTMODEL 477
FILE 478
PROGRAM 478
TRANSACTION 479

discarding resources
resource definitions 477

display device operations
attention identifier (AID) 551
attention identifier list, DFHAID 548
cursor address 551
input operation without data 551
standard attribute and printer control

character 545
standard attributes

(DFHBMSCA) 545
terminal 550

display screens 72
display-device operations

pass control on receipt of an
AID 371, 374

display, reading from 160
distributed program link (DPL) 4, 176,

199
client system 176, 381
COMMAREA option 179
DPL API subset 183
exception conditions 184
independent syncpoints 180
options 178
programming considerations 182
RMTPGMID parameter 178
server program 178
server program restrictions 381
server system 176, 179, 381
SYSID option 179
TRANSID option 179

distributed transaction processing
(DTP) 4, 169, 175

DL/I (IMS) data base access 4
DLYPRP parameter

CRTCICSC CL command 298
CRTCICSCBL CL command 280

602 CICS for iSeries Application Programming Guide V5

DRK value
ATTRB operand, DFHMDF

macro 569
DSATTS operand

DFHMDI macro 563
DFHMSD macro 557

DSNAME option
INQUIRE FILE command 485

DTIMEOUT option
INQUIRE TRANSACTION

command 506
DUMP option

PERFORM SHUTDOWN
command 509

DUMP TRANSACTION command 352
DUMPCODE option

DUMP TRANSACTION
command 352

DUMPING option
INQUIRE SYSTEM command 493
INQUIRE TRANSACTION

command 506
SET SYSTEM command 517
SET TRANSACTION command 524

DUPKEY condition
DELETE command 346
READ command 392
READNEXT command 398
READPREV command 402

DUPREC condition
REWRITE command 428
WRITE command 465

E
ECADDR option

WAIT EVENT command 462
EDF

abend user task 235
browse temporary storage 235
CEDF transaction 229
displays 231
dual-screen mode 240
functions 230
invoking 229
modifying execution 240
options on function (PF) keys 235
overtyping displays 240
PF key 231
program labels 241
pseudoconversational programs 239
single-screen mode 238

EDF (execution diagnostic facility) 229
EIB option

ADDRESS command 324
EIBAID field

contents of 529
copybook DFHAID 162, 548
examining contents of 548

EIBATT field 529
EIBCALEN field 529
EIBCOMPL field 529
EIBCONF field 529
EIBCPOSN field 529
EIBDATE field 530
EIBDS field 530
EIBEOC field 530

EIBERR field 530
EIBERRCD field 530
EIBFMH field 530
EIBFN field 530
EIBFREE field 534
EIBNODAT field 534
EIBRCODE field 535
EIBRECV field 539
EIBREQID field 540
EIBRESP field 540
EIBRESP2 field 542
EIBRLDBK field 542
EIBRSRCE field 542
EIBSIG field 542
EIBSYNC field 542
EIBSYNRB field 543
EIBTASKN field 543
EIBTIME field 543
EIBTRMID field 543
EIBTRNID field 543
EMPTYSTATUS option

INQUIRE FILE command 485
INQUIRE TDQUEUE command 497
SET FILE command 512

ENABLESTATUS option
INQUIRE FILE command 485
INQUIRE TDQUEUE command 497
SET FILE command 512
SET TDQUEUE command 519

END condition
INQUIRE AUTINSTMODEL NEXT

command 481
INQUIRE CONNECTION NEXT

command 483
INQUIRE FILE NEXT command 488
INQUIRE JOURNALNUM

command 489
INQUIRE PROGRAM NEXT

command 493
INQUIRE TDQUEUE NEXT

command 499
INQUIRE TERMINAL NEXT

command 504
INQUIRE TRANSACTION NEXT

command 508
END option

INQUIRE AUTINSTMODEL (browse)
command 481

INQUIRE CONNECTION (browse)
command 483

INQUIRE FILE (browse)
command 487

INQUIRE JOURNALNUM (browse)
command 489

INQUIRE PROGRAM (browse)
command 492

INQUIRE TDQUEUE (browse)
command 499

INQUIRE TERMINAL (browse)
command 504

INQUIRE TRANSACTION (browse)
command 508

ENDBR command 353
ENDDATA condition

RETRIEVE command 423
ENDFILE condition

READNEXT command 398

ENDFILE condition (continued)
READPREV command 402

ENQ command 355
ENQBUSY condition

ENQ command 356
enqueuing resources 197
ENTER option 163

HANDLE AID command 371
ENTER TRACENUM command 357
entry point, trace 112
entry-sequenced file (ESDS) 116
ENVDEFERR condition

RETRIEVE command 423
environment services commands 319
EOC condition

CONVERSE (5250 or 3270 logical)
command 341

CONVERSE (APPC) command 338
RECEIVE (5250 or 3270 logical)

command 414
RECEIVE (APPC) command 411

EQUAL option
READ command 390
RESETBR command 419
STARTBR command 454

ERASE option
CONVERSE (5250 or 3270 logical)

command 340
SEND (5250 or 3270 logical)

command 434
SEND CONTROL command 435
SEND MAP command 437
SEND TEXT command 440

ERASEAUP option
SEND CONTROL command 435
SEND MAP command 437

ERROR condition 87
ESDS (entry-sequenced file) 116
event, timer 193

control area 387
events, timer

waiting for 461
examples

browsing the PPT 317
CICS command format 305
CRTCICSC command 39
CRTCICSCBL CL command 15
EXEC CICS READ command 305
getting map set storage (COBOL) 20
passing CDVA value (short

form) 310
passing CVDA value (flexible

form) 310
RECEIVE MAP command 160
SEND MAP command 158
testing CVDA values 310
testing RESP values 313
translated code (COBOL) 14
translated code (ILE C) 40
translator source command 14, 39
using DFHVALUE(IGNORE) 318
using null values 318
using pointer variables (COBOL) 19
using pointer variables (ILE C) 42
using the BIF DEEDIT command 333
using the CANCEL command 323
using the DELAY command 343, 344

Index 603

examples (continued)
using the DELETE command 348
using the DEQ command 352
using the DUMP TRANSACTION

command 353
using the ENQ command 357
using the ENTER TRACENUM

command 358
using the FORMATTIME

command 364
using the FREEMAIN command 366
using the GETMAIN command 369
using the HANDLE ABEND

command 370
using the HANDLE AID

command 372
using the HANDLE CONDITION

command 373
using the LINK command 385
using the POST command 389
using the READ command 394
using the READQ TD command 407
using the READQ TS command 409
using the RELEASE command 418
using the RETRIEVE command 424
using the REWRITE command 429
using the START command 447
using the STORAGE=AUTO

operand 44
using the WAIT EVENT

command 462
using the WRITE command 467
using the WRITE JOURNALNUM

command 469
using the WRITEQ TD

command 471
using the WRITEQ TS command 474
using the XCTL command 476

exception conditions
ALLOCATE command 326
basic mapping support 162
CANCEL command 334
CONVERSE (5250 or 3270 logical)

command 341
CONVERSE (APPC) command 338
DELAY command 343
DELETE command 346
DELETEQ TD command 349
DELETEQ TS command 350
description 87
DISCARD AUTINSTMODEL

command 477
DISCARD FILE command 478
DISCARD PROGRAM command 479
DISCARD TRANSACTION

command 479
ENDBR command 354
ENTER TRACENUM command 358
FREEMAIN command 365
GETMAIN command 368
HANDLE ABEND command 370
HANDLE CONDITION

command 92, 93
IGNORE CONDITION command 92
INQUIRE AUTINSTMODEL

command 480

exception conditions (continued)
INQUIRE CONNECTION

command 482
INQUIRE FILE command 487
INQUIRE JOURNALNUM

command 488
INQUIRE PROGRAM command 492
INQUIRE TASK command 495
INQUIRE TDQUEUE command 498
INQUIRE TERMINAL command 503
INQUIRE TRANSACTION

command 507
LINK command 383
LOAD command 386
PERFORM SHUTDOWN

command 509
POP HANDLE command 387
POST command 388
READ command 392
READNEXT command 398
READPREV command 402
READQ TD command 405
READQ TS command 408
RECEIVE (5250 or 3270 logical)

command 414
RECEIVE (APPC) command 411
RECEIVE MAP command 416
RESETBR command 420
RETURN command 426
REWRITE command 428
SEND (5250 or 3270 logical)

command 434
SEND (APPC) command 431
SEND (SCS) command 433
SEND CONTROL command 436
SEND MAP command 439
SEND TEXT command 440
SET CONNECTION command 510
SET FILE command 513
SET JOURNALNUM command 514
SET PROGRAM command 516
SET SYSTEM command 517
SET TASK command 518
SET TDQUEUE command 519
SET TERMINAL command 521
SET TRACEDEST command 523
SET TRANSACTION command 525
SPOOLCLOSE command 441
SPOOLOPEN OUTPUT

command 443
SPOOLWRITE command 444
STARTBR command 455
UNLOCK command 459
WAIT CONVID command 461
WRITE command 465
WRITE JOURNALNUM

command 468
WRITEQ TD command 470
WRITEQ TS command 473
XCTL command 475

exception support
commands 320

exclusive control release, UNLOCK
command 458

exclusive resources 64
EXEC CICS command format 305

EXEC CICS commands
reference information 323

EXEC interface block (EIB)
description 211
fields 529

EXEC interface program 11, 36
execution diagnostic facility (CEDF) 229
EXECUTIONSET option

INQUIRE PROGRAM command 490
SET PROGRAM command 515

exit, abnormal termination recovery 369
expiration time

notification when reached 387
specifying 194

EXPIRED condition
DELAY command 343
POST command 388

EXTATT operand
DFHMDI macro 563
DFHMSD macro 557

EXTDS option
ASSIGN command 328

extended attributes 165
extended color 145
EXTRACT ATTRIBUTES (APPC)

command 359
EXTRACT PROCESS command 360
extrapartition transient data 76, 215

F
FACILITY option

ASSIGN command 328
INQUIRE TASK command 494

FACILITYTYPE option
INQUIRE TASK command 494

FCI option
ASSIGN command 328

field concepts, 3270 143
field data format, BMS 153
field definition macro, BMS 148, 553,

567
FIELD option

BIF DEEDIT command 333
field outlining 146
FIELDS operand

DFHMDI macro 564
file control

an overview 115
browse operation, ending 353
browse operation, starting 452
commands 320
deleting records 344
emulated VSAM files 127
end browse operation 353
exception conditions 398
read next record 395
read previous record 400
reading records 390
release exclusive control 458
reset start for browse 418
specify start for browse 452
specify starting point 452
start browse operation 452
table (FCT) 117
update a record 427
writing new record 463

604 CICS for iSeries Application Programming Guide V5

FILE option
DELETE command 345
DISCARD command 478
ENDBR command 353
INQUIRE FILE command 485
INQUIRE FILE NEXT command 487
READ command 390
READNEXT command 396
READPREV command 401
RESETBR command 419
REWRITE command 427
SET FILE 511
STARTBR command 454
UNLOCK command 459
WRITE command 463

FILE, INQUIRE command 484
FILE, SET command 511
FILENOTFOUND condition

DELETE command 346
ENDBR command 354
READ command 392
READNEXT command 398
READPREV command 403
RESETBR command 420
REWRITE command 428
STARTBR command 455
UNLOCK command 459
WRITE command 465

files
input to translator 14, 39

FIND command, CEBR transaction 246
fixed-length records, defining 117
FLAG parameter

CRTCICSCBL CL command 282
FLAGSTD parameter

CRTCICSC CL command 299
CRTCICSCBL CL command 282

FLENGTH option
GETMAIN command 367
RECEIVE (5250 or 3270 logical)

command 413
RECEIVE (APPC) command 410
SEND (5250 or 3270 logical)

command 434
SEND (APPC) command 430
SEND (SCS) command 432
SPOOLWRITE command 444

FOLD operand
DFHMSD macro 557

FOR option
DELAY command 342

form feed control, BMS 168
format of EXEC CICS commands 305
FORMATTIME command 193, 361
FORMFEED option

SEND CONTROL command 436
SEND MAP command 437
SEND TEXT command 440

FREE (APPC) command 364
free main storage 365
FREEKB option

SEND CONTROL command 436
SEND MAP command 437
SEND TEXT command 440

FREEKB value
CTRL operand, DFHMDI macro 563
CTRL operand, DFHMSD macro 557

FREEMAIN command 365
FROM option 125

CONVERSE (5250 or 3270 logical)
command 340

CONVERSE (APPC) command 337
ENTER TRACENUM command 358
RECEIVE MAP command 415
REWRITE command 427
SEND (5250 or 3270 logical)

command 434
SEND (APPC) command 430
SEND (SCS) command 432
SEND MAP command 437
SEND TEXT command 440
SPOOLWRITE command 444
START command 449
WRITE command 464
WRITE JOURNALNUM

command 468
WRITEQ TD command 469
WRITEQ TS command 472

FROMFLENGTH option
CONVERSE (5250 or 3270 logical)

command 340
CONVERSE (APPC) command 337

FROMLENGTH option
CONVERSE (5250 or 3270 logical)

command 340
CONVERSE (APPC) command 337
ENTER TRACENUM command 358

FRSET option
SEND CONTROL command 436
SEND MAP command 438

FRSET value
CTRL operand, DFHMDI macro 563
CTRL operand, DFHMSD macro 557

FSET value
ATTRB operand, DFHMDF

macro 569
fullword length options

FLENGTH 549
FROMFLENGTH 549
MAXFLENGTH 549
TOFLENGTH 549

function (PF) keys, CEBR
transaction 245

function shipping 4, 176

G
GCHARS option

INQUIRE TERMINAL command 501
GCODES option

INQUIRE TERMINAL command 501
generic key 118
GENERIC option

DELETE command 345
READ command 390
RESETBR command 419
STARTBR command 454

GET command, CEBR transaction 246
GETMAIN command 367
GINIT operand

DFHMDF macro 569
glossary of terms and abbreviations 589
graphic data fields 166

GRPNAME operand
DFHMDF macro 570

GTEQ option
READ command 391
RESETBR command 419
STARTBR command 454

H
HANDLE ABEND command 369
HANDLE AID command 163, 371
HANDLE CONDITION command 92,

372
hardware print key 167
hhmmss arguments 307
highlighting 145
HILIGHT operand

DFHMDF macro 571
DFHMDI macro 564
DFHMSD macro 558

HILIGHT option
ASSIGN command 329

HOLD option
LOAD command 385

HOLDSTATUS option
INQUIRE PROGRAM command 491

HOME key 142
HOURS option

DELAY command 342
START command 449

I
IC attribute 159
IC value

ATTRB operand, DFHMDF
macro 569

IGNORE CONDITION command 92,
373

ILE C compiler 38
ILE C language variations

argument values 309
translated code 40

ILLOGIC condition
DELETE command 346
ENDBR command 354
INQUIRE AUTINSTMODEL (browse)

command 481
INQUIRE CONNECTION (browse)

command 483
INQUIRE FILE (browse)

command 488
INQUIRE JOURNALNUM (browse)

commands 489
INQUIRE PROGRAM (browse)

command 493
INQUIRE TDQUEUE (browse)

command 499
INQUIRE TERMINAL (browse)

command 504
INQUIRE TRANSACTION (browse)

command 508
READ command 393
READNEXT command 398
READPREV command 403
RESETBR command 420

Index 605

ILLOGIC condition (continued)
REWRITE command 428
STARTBR command 455
UNLOCK command 459
WRITE command 465

IMMEDIATE option
PERFORM SHUTDOWN

command 509
RETURN command 425

IMS (DL/I) data base access 4
inbound data streams 78
INCFILE parameter

CRTCICSC CL command 296
CRTCICSCBL CL command 278

incorrect output 102
index, alternate 116
indirect destinations 216
INDIRECTNAME option

INQUIRE TDQUEUE command 497
INITIAL operand

DFHMDF macro 571
initialize main storage 367
initialize working storage 7
initiate a task 448
INITIMG option

GETMAIN command 368
input data

chaining of 171
input files to translator 14, 39
input operation without data 551
input operations 141
INPUTMSG option 203, 205

LINK command 382
RETURN command 425
XCTL command 475

INPUTMSGLEN option
LINK command 382
RETURN command 426
XCTL command 475

INQUIRE commands 211, 315
AUTINSTMODEL 480
CONNECTION 481
FILE 484
JOURNALNUM 488
NETNAME 500
PROGRAM 490
SYSTEM 493
TASK 494
TDQUEUE 496
TERMINAL 500
TRACEDEST 505
TRANSACTION 506

insert-cursor indicator 146
interactive debugging

CECI (command-level
interpreter) 249

CECS transaction 249
CEDF transaction 229
EDF (execution diagnostic

facility) 229
intercommunication 175
interval control 193

CANCEL command 193
cancel interval control command 333
commands 321
DELAY command 194
delay processing of a task 193, 341

interval control (continued)
expiration time 194
FORMATTIME options 362
notification when specified time

expires 387
POST command 194
retrieve data stored for task 421
specifying request identifier 196
start a task 193, 445
START command 194
task states 194
timer-related tasks 194
wait for event to occur 461

INTERVAL option
DELAY command 342
POST command 388
START command 449

INTO option 125
CONVERSE (5250 or 3270 logical)

command 340
CONVERSE (APPC) command 337
READ command 391
READNEXT command 396
READPREV command 401
READQ TD command 405
READQ TS command 407
RECEIVE (5250 or 3270 logical)

command 413
RECEIVE (APPC) command 410
RECEIVE MAP command 415
RETRIEVE command 422

intrapartition transient data 74, 215
INTSTATUS option

INQUIRE TRACEDEST
command 505

SET TRACEDEST command 523
INVITE option

SEND (5250 or 3270 logical)
command 434

SEND (APPC) command 430
SEND (SCS) command 432
SEND/RECEIVE protocol 171

INVMPSZ condition
RECEIVE MAP command 416
SEND MAP command 439

invoking CICS services 12, 37
invoking EDF 229
INVREQ condition

ADDRESS command 325
ALLOCATE command 326
ASSIGN command 332
CANCEL command 334
CONNECT PROCESS command 336
CONVERSE (5250 or 3270 logical)

command 341
CONVERSE (APPC) command 338
DELAY command 343
DELETE command 346
DELETEQ TD command 349
DELETEQ TS command 350
DEQ command 351
DUMP TRANSACTION

command 352
ENDBR command 354
ENQ command 357
ENTER TRACENUM command 358

INVREQ condition (continued)
EXTRACT ATTRIBUTES (APPC)

command 359
EXTRACT PROCESS command 360
FORMATTIME command 363
FREE (APPC) command 365
FREEMAIN command 365
HANDLE AID command 372
ISSUE ABEND command 374
ISSUE CONFIRMATION

command 375
ISSUE ERASEAUP command 376
ISSUE ERROR command 377
ISSUE PREPARE command 379
ISSUE SIGNAL (APPC)

command 380
LINK command 383
POP HANDLE command 387
POST command 388
READ command 393
READNEXT command 398
READPREV command 403
READQ TD command 405
READQ TS command 408
RECEIVE (5250 or 3270 logical)

command 414
RECEIVE (APPC) command 411
RECEIVE MAP command 416
RELEASE command 417
RESETBR command 420
RETRIEVE command 423
RETURN command 426
REWRITE command 428
SEND (5250 or 3270 logical)

command 434
SEND (APPC) command 431
SEND (SCS) command 433
SEND CONTROL command 436
SEND MAP command 439
SEND TEXT command 440
SPOOLCLOSE command 441
START command 451
STARTBR command 455
SYNCPOINT command 457
SYNCPOINT ROLLBACK 458
WAIT CONVID command 461
WAIT EVENT command 462
WRITE command 465
WRITEQ TD command 470
WRITEQ TS command 473
XCTL command 475

IOERR condition
DELETE command 347
READ command 393
READNEXT command 399
READPREV command 403
READQ TD command 406
READQ TS command 408
RESETBR command 421
RETRIEVE command 423
REWRITE command 428
START command 452
STARTBR command 456
UNLOCK command 460
WRITE command 465
WRITE JOURNALNUM

command 468

606 CICS for iSeries Application Programming Guide V5

IOERR condition (continued)
WRITEQ TD command 470
WRITEQ TS command 473

IOTYPE option
INQUIRE TDQUEUE command 497

ISCINVREQ condition
CANCEL command 334
DELETE command 347
DELETEQ TD command 349
DELETEQ TS command 350
ENDBR command 354
READ command 393
READNEXT command 399
READPREV command 403
READQ TD command 406
READQ TS command 408
RESETBR command 421
REWRITE command 428
START command 452
STARTBR command 456
UNLOCK command 460
WRITE command 466
WRITEQ TD command 470
WRITEQ TS command 473

ISSUE ABEND command 374
ISSUE CONFIRMATION command 375
ISSUE ERASEAUP command 376
ISSUE ERROR command 377
ISSUE PREPARE command 378
ISSUE SIGNAL (APPC) command 379
ITEM option

READQ TS command 407
WRITEQ TS command 472

ITEMERR condition
READQ TS command 409
WRITEQ TS command 473

J
JIDERR condition

WRITE JOURNALNUM
command 468

journal
creating record 467
receiver 105
record layout 107
records 76
records (user) 106

journal control
output synchronization 107

journal files
defining 106
nonswitchable 107
physical files 107
switchable 107

journaling
commands 321

JOURNALNUM option
INQUIRE FILE command 485
INQUIRE JOURNALNUM NEXT

command 489
WAIT JOURNALNUM

command 463
WRITE JOURNALNUM

command 468
JOURNALNUM, INQUIRE

command 488

JOURNALNUM, SET command 514
JTYPE option

INQUIRE JOURNALNUM
command 488

JTYPEID option
WRITE JOURNALNUM

command 468
JUSTIFY operand

DFHMDF macro 572

K
KATAKANA option

ASSIGN command 329
KEEP option

SPOOLCLOSE command 441
KEXTATT operand

DFHMDI macro 564
DFHMSD macro 558

key
alternate (secondary) 116
generic 118
primary 116

key-sequenced file (KSDS) 116
KEYLENGTH option

DELETE command 345
INQUIRE FILE command 485
READ command 391
READNEXT command 396
READPREV command 401
remote file 127
RESETBR command 419
STARTBR command 454
WRITE command 464

KSDS (key-sequenced file) 116

L
label arguments 307
LABEL option

HANDLE ABEND command 370
LANG operand

DFHMSD macro 558
LANGID parameter

CRTCICSCBL CL command 283
LANGUAGE option

INQUIRE PROGRAM command 491
LAST option

bracket protocol 172
SEND (5250 or 3270 logical)

command 434
SEND (APPC) command 430
SEND (SCS) command 432

LEFT value
JUSTIFY operand, DFHMDF

macro 572
OUTLINE operand, DFHMDF

macro 573
OUTLINE operand, DFHMDI

macro 565
OUTLINE operand, DFHMSD

macro 559
LENGERR condition

CONNECT PROCESS command 336
CONVERSE (5250 or 3270 logical)

command 341

LENGERR condition (continued)
CONVERSE (APPC) command 338
DEQ command 352
ENQ command 357
ENTER TRACENUM command 358
EXTRACT PROCESS command 361
GETMAIN command 368
LINK command 384
READ command 393
READNEXT command 399
READPREV command 403
READQ TD command 406
READQ TS command 409
RECEIVE (5250 or 3270 logical)

command 414
RECEIVE (APPC) command 411
RETRIEVE command 424
RETURN command 426
REWRITE command 429
SEND (5250 or 3270 logical)

command 435
SEND (APPC) command 431
SEND (SCS) command 433
SPOOLWRITE command 444
START command 452
WRITE command 466
WRITE JOURNALNUM

command 468
WRITEQ TD command 470
WRITEQ TS command 473
XCTL command 475

LENGTH operand
DFHMDF macro 572

LENGTH option
BIF DEEDIT command 333
built-in function 333
DEQ command 351
ENQ command 355
GETMAIN command 368
INQUIRE PROGRAM command 491
LINK command 383
READ command 391
READNEXT command 396
READPREV command 401
READQ TD command 405
READQ TS command 408
RECEIVE (5250 or 3270 logical)

command 413
RECEIVE (APPC) command 410
RECEIVE MAP command 416
RETRIEVE command 422
RETURN command 426
REWRITE command 427
SEND (5250 or 3270 logical)

command 434
SEND (APPC) command 430
SEND (SCS) command 432
SEND MAP command 438
SEND TEXT command 440
size of 312
START command 449
WRITE command 464
WRITE JOURNALNUM

command 468
WRITEQ TD command 469
WRITEQ TS command 472
XCTL command 475

Index 607

levels, application program logical 200
LINE command, CEBR transaction 247
LINE operand

DFHMDI macro 565
line transmission capacity 66
line width for printer 168
LINK command 200, 380
link to program, expecting return 200,

380
listing, output from translator 15, 39
LMAPMBR parameter

CRTCICSMAP CL command 303
LMAPSRC parameter

CRTCICSMAP CL command 303
load a map set 151, 385
load a table 385
LOAD command 385
locks, record 128
logging files 76
logical levels, application program 27,

53, 200
logical unit

3270 SCS Printer 432
3270-display 339
conversing with (CONVERSE) 550
reading data from terminal

control 549
logical unit of work (LUW)

description 62
recoverable resources 62
syncpoints used 106

logical units (LUs)
facilities for 170

loops 102
LUs (logical units)

facilities for 170

M
macro

field definition, DFHMDF 553, 567
map definition, DFHMDI 553, 562
map set definition, DFHMSD 553,

555
macros, BMS

field definition, DFHMDF 148
map definition, DFHMDI 147
map set definition, DFHMSD 147

MAIN option
WRITEQ TS command 472

main storage
initialize 367
obtain 367
temporary data 219

main temporary storage 73
main temporary storage data 219
map definition macro, BMS 147, 553,

562
MAP option

RECEIVE MAP command 416
SEND MAP command 438

map set
definition macro, BMS 147, 553, 555
definition, terminating 148
loading 151
name 148
suffixing 149

MAPATTS operand
DFHMDI macro 565
DFHMSD macro 558

MAPCOLUMN option
ASSIGN command 329

MAPFAIL condition 144
RECEIVE MAP command 416

MAPHEIGHT option
ASSIGN command 329

MAPLINE option
ASSIGN command 329

MAPONLY option
modifying displays 156
SEND MAP command 438
sending constant data 78

MAPONLY value
EXTATT operand, DFHMDI

macro 564
EXTATT operand, DFHMSD

macro 557
KEXTATT operand, DFHMDI

macro 565
mapping input data 160
maps

BMS 77, 78
copying symbolic description 152
creating 148
physical 136
sets 64
symbolic 136

maps, loading 385
MAPSET option

RECEIVE MAP command 416
SEND MAP command 438

MAPWIDTH option
ASSIGN command 329

MARGINS parameter
CRTCICSC CL command 294

MASSINSERT option
WRITE command 464

MAXFLENGTH option
CONVERSE (5250 or 3270 logical)

command 340
CONVERSE (APPC) command 337
RECEIVE (5250 or 3270 logical)

command 413
RECEIVE (APPC) command 410

MAXLENGTH option
CONVERSE (5250 or 3270 logical)

command 340
CONVERSE (APPC) command 337
RECEIVE (5250 or 3270 logical)

command 413
RECEIVE (APPC) command 410

MAXLIFETIME option
DEQ command 351
ENQ command 356

MAXPROCLEN option
EXTRACT PROCESS command 360

migration considerations 5
MINUTES option

DELAY command 342
START command 449

MMDDYY option
FORMATTIME command 363

MMDDYYYY option
FORMATTIME command 363

MODE operand
DFHMSD macro 559

MODENAME option
INQUIRE TERMINAL command 502

modified data tag (MDT) 77, 142, 145
modifying execution, EDF 240
modular program 63
MONTHOFYEAR option

FORMATTIME command 363
MSGLMT parameter

CRTCICSC CL command 291
multithread testing 103
MUSTENTER value

VALIDN operand, DFHMDF
macro 575

VALIDN operand, DFHMDI
macro 566

VALIDN operand, DFHMSD
macro 561

MUSTFILL value
VALIDN operand, DFHMDF

macro 575
VALIDN operand, DFHMDI

macro 566
VALIDN operand, DFHMSD

macro 561

N
name arguments 307
naming restriction 13, 38
NETNAME option

ASSIGN command 329
INQUIRE CONNECTION

command 482
INQUIRE TERMINAL command 502

NETNAME, INQUIRE command 500
new tasks, passing data to 448
NEXT option

INQUIRE AUTINSTMODEL (browse)
command 481

INQUIRE CONNECTION (browse)
command 483

INQUIRE FILE (browse)
command 487

INQUIRE JOURNALNUM (browse)
command 489

INQUIRE PROGRAM (browse)
command 492

INQUIRE TDQUEUE (browse)
command 499

INQUIRE TERMINAL (browse)
command 504

INQUIRE TRANSACTION (browse)
command 508

READQ TS command 408
NEXTTRANSID option

INQUIRE TERMINAL command 502
SET TERMINAL command 521

NLEOM option
SEND TEXT command 440

NO value
EXTATT operand, DFHMDI

macro 564
EXTATT operand, DFHMSD

macro 557

608 CICS for iSeries Application Programming Guide V5

NO value (continued)
KEXTATT operand, DFHMDI

macro 565
NOCC option

SPOOLOPEN OUTPUT
command 443

NOCHECK option
START command 449

NODUMP option
ABEND command 323

NOHANDLE option 90, 312
NOJBUFSP condition

WRITE JOURNALNUM
command 468

nonconversational programming 61
nondisplay fields 144
NOQUEUE option

ALLOCATE command 325
NORM value

ATTRB operand, DFHMDF
macro 569

normal intensity field 144
NOSPACE condition

REWRITE command 429
WRITE command 466
WRITEQ TD command 470
WRITEQ TS command 473

NOSTG condition
GETMAIN command 368

NOSUSPEND option
ALLOCATE command 325
ENQ command 356
GETMAIN command 368
READQ TD command 405
WRITE JOURNALNUM

command 468
WRITEQ TS command 472

NOTALLOC condition
CONNECT PROCESS command 336
CONVERSE (APPC) command 339
EXTRACT ATTRIBUTES (APPC)

command 359
EXTRACT PROCESS command 361
FREE (APPC) command 365
ISSUE ABEND command 375
ISSUE CONFIRMATION

command 376
ISSUE ERROR command 377
ISSUE PREPARE command 379
ISSUE SIGNAL (APPC)

command 380
RECEIVE (APPC) command 412
SEND (APPC) command 431
WAIT CONVID command 461

NOTAUTH condition 87
CANCEL command 334
DELETE command 347
DELETEQ TD command 349
DELETEQ TS command 350
ENDBR command 354
HANDLE ABEND command 370
LINK command 384
LOAD command 386
READ command 394
READNEXT command 399
READPREV command 404
READQ TD command 406

NOTAUTH condition (continued)
READQ TS command 409
RECEIVE MAP command 417
RELEASE command 418
RESETBR command 421
REWRITE command 429
SEND MAP command 439
START command 452
STARTBR command 456
UNLOCK command 460
WRITE command 466
WRITE JOURNALNUM

command 469
WRITEQ TD command 470
WRITEQ TS command 473
XCTL command 476

NOTFND condition
CANCEL command 334
DELETE command 347
READ command 394
READNEXT command 399
READPREV command 404
RESETBR command 421
RETRIEVE command 424
SPOOLCLOSE command 441
SPOOLOPEN OUTPUT

command 443
STARTBR command 456

NOTOPEN condition
DELETE command 347
READ command 394
READQ TD command 406
SPOOLCLOSE command 441
SPOOLOPEN OUTPUT

command 443
SPOOLWRITE command 445
STARTBR command 456
UNLOCK command 460
WRITE command 466
WRITE JOURNALNUM

command 469
WRITEQ TD command 470

NOTRUNCATE option
CONVERSE (5250 or 3270 logical)

command 340
CONVERSE (APPC) command 338
RECEIVE (5250 or 3270 logical)

command 414
RECEIVE (APPC) command 411

null lines and printers 168
null values 317

use of 80
NUM value

ATTRB operand, DFHMDF
macro 568

numeric-only field (3270 attribute
character) 144

NUMITEMS option
INQUIRE TDQUEUE command 497
READQ TS command 408
WRITEQ TS command 472

NUMREC option
DELETE command 345

O
OBJ parameter

CRTCICSC CL command 290
object types 289
OBJTYPE parameter

CRTCICSC CL command 290
CRTCICSCBL CL command 272

OCCURS operand
DFHMDF macro 573

OFF value
HILIGHT operand, DFHMDF

macro 571
HILIGHT operand, DFHMDI

macro 564
HILIGHT operand, DFHMSD

macro 558
OPCLASS option

ASSIGN command 329
OPENERR condition

SPOOLOPEN OUTPUT
command 443

OPENSTATUS option
INQUIRE FILE command 486
INQUIRE JOURNALNUM

command 488
INQUIRE TDQUEUE command 497
SET FILE command 512
SET JOURNALNUM command 514
SET TDQUEUE command 519

OPID option
ASSIGN command 329

OPREL option
INQUIRE SYSTEM command 493

OPSYS option
INQUIRE SYSTEM command 494

options
fullword length 549
on function keys, EDF 235
translator 14

options, translator 38
OS/400 journal 105
OUTFILE parameter

CRTCICSC CL command 293
OUTLINE operand

DFHMDF macro 573
DFHMDI macro 565
DFHMSD macro 559

OUTLINE option
ASSIGN command 330

OUTMBR parameter
CRTCICSC CL command 293

output data, chaining of 171
output operations 143
output, incorrect 102
OVER value

OUTLINE operand, DFHMDF
macro 573

OUTLINE operand, DFHMDI
macro 565

OUTLINE operand, DFHMSD
macro 559

overtyping EDF displays 240

Index 609

P
PA (program access) key 142, 163
PA1 option 163
PA1–PA3 option

HANDLE AID command 371
PA2 option 163
PA3 option 163
page width for printer 168
passing control

anticipating return (LINK) 200
expecting return (LINK) 380
on receipt of an AID (HANDLE AID

command) 371
on receipt of an AID (IGNORE

AID) 374
without return (XCTL) 474

passing data
to other programs 201

passing data to new tasks 448
path, alternate index 116
PERFORM command 211, 318

SHUTDOWN 509
PERFORM guidelines 22
performance considerations 81
period, use of 13, 38
PF (program function) key

BMS 163
PF1–24 option

HANDLE AID command 371
PFn option 163
PFXLENG option

WRITE JOURNALNUM
command 468

PGM parameter
CRTCICSCBL CL command 271

PGMIDERR condition
HANDLE ABEND command 370
LINK command 384
LOAD command 386
RELEASE command 418
XCTL command 476

physical maps 136
PICIN operand

DFHMDF macro 573
PICOUT operand

DFHMDF macro 574
PIPLENGTH option

CONNECT PROCESS command 335
PIPLIST option

CONNECT PROCESS command 335
pointer-ref arguments 307
pointer-value arguments 307
POP HANDLE command 95, 386
portability 5, 117
POS operand

DFHMDF macro 554, 574
POST command 193, 387
posting timer event control area 387
PREFIX option

WRITE JOURNALNUM
command 468

preprocessing
PP option of CRTCICSC

command 293
preprocessor 38
prevention of deadlocks 65, 128

PRINSYSID option
ASSIGN command 330

PRINT option
SEND CONTROL command 436
SEND MAP command 438
SEND TEXT command 440
SPOOLOPEN OUTPUT

command 443
PRINT value

CTRL operand, DFHMDI macro 563
CTRL operand, DFHMSD macro 557

printer control character list,
DFHBMSCA 545

printer spooling 223
commands 321

printers
and blank lines 167
page width 167
printing displayed data 167
starting a printer task 167

printing contents of screen 167
problems, application programs

abends 102
incorrect output 102
loops 102
waits 102

processor storage guidelines 67
processor time guidelines 67
PROCLENGTH option

CONNECT PROCESS command 335
EXTRACT PROCESS command 360

PROCNAME option
CONNECT PROCESS command 335
EXTRACT PROCESS command 360

PROFILE option
ALLOCATE command 325

program access (PA) key 163
program activation 25
program control

commands 321
deleting loaded program 417
linking to another program 200, 380
load a table or map set 385
passing data to another program 201
program logical levels 200
returning program control 424
transfer program control 474

program design
conversational 80

program function (PF) key
BMS 163

program labels in EDF 241
PROGRAM option

HANDLE ABEND command 370
INQUIRE PROGRAM NEXT

command 492
INQUIRE TRANSACTION

command 506
LINK command 383
LOAD command 385
RELEASE command 417
XCTL command 475

program segments 18
program storage 70
program testing 229
program, calling 22
PROGRAM, DISCARD command 478

PROGRAM, INQUIRE command 490
PROGRAM, SET command 515
programming for a CICS

environment 66
programming implications for CICS 66
programming techniques

general 61, 63
programs

compiling application 16, 40
PROGTYPE option

INQUIRE PROGRAM command 491
PROT value

ATTRB operand, DFHMDF
macro 568

PROTECT option
START command 450

protected fields 144
PS option

ASSIGN command 330
pseudoconversational programming 61
PUNCH option

SPOOLOPEN OUTPUT
command 443

PURGE command, CEBR
transaction 247

PURGEABILITY option
INQUIRE TRANSACTION

command 507
SET TRANSACTION command 525

PURGETYPE option
SET CONNECTION command 510
SET TASK command 517
SET TERMINAL command 521

PUSH HANDLE command 95, 389
PUT command, CEBR transaction 247

Q
QBUSY condition

READQ TD command 406
QIDERR condition

DELETEQ TD command 349
DELETEQ TS command 350
READQ TD command 406
READQ TS command 409
WRITEQ TD command 471
WRITEQ TS command 473

QNAME option
ASSIGN command 330

QUEUE command, CEBR
transaction 247

QUEUE option
DELETEQ TD command 348
DELETEQ TS command 350
READQ TD command 405
READQ TS command 408
RETRIEVE command 422
START command 450
WRITEQ TD command 470
WRITEQ TS command 472

queues
temporary storage 219
transient data 215

QZERO condition
READQ TD command 406

610 CICS for iSeries Application Programming Guide V5

R
RBA (relative byte address) 116, 128
RBA option

READ command 391
READNEXT command 397
READPREV command 402
RESETBR command 419
STARTBR command 454
WRITE command 464

reactivate an ABEND exit 369
READ command 390
READ option

INQUIRE FILE command 486
SET FILE command 512

reading data from a display 160
reading records 117

browsing, next 395
from temporary storage queue 407
from terminal or LU 549
from transient data queue 404

READNEXT command 395
READPREV command 400
READQ TD command 404
READQ TS command 407
RECEIVE command

5250 or 3270 logical 412
APPC 410
input operation without data 551
read from terminal or logical

unit 549
RECEIVE MAP command 415
RECEIVE MAP, uses of 160, 162
receiving CVDA values 310
record backspace 142, 163
record locks 128
RECORDFORMAT option

INQUIRE FILE command 486
INQUIRE TDQUEUE command 497

RECORDLENGTH option
INQUIRE TDQUEUE command 497

records
adding 123
browsing 117

data definition services (DDS) 117
defining length 117
deleting 123
reading 117
release exclusive control 458
updating 122
user journal 106
writing 122, 123
writing new 463

RECORDSIZE option
INQUIRE FILE command 486

recoverable files 105
defining 105

recoverable resources 62
recovery

exclusive use of resources 62
of resources 64
problem avoidance 101
syncpoint 106

RECOVSTATUS option
INQUIRE FILE command 486
INQUIRE TDQUEUE command 498

regression testing 103
relative byte address (RBA) 116, 128

relative record file (RRDS) 116
relative record number (RRN) 116, 128
RELEASE command 417
RELEASE option

INQUIRE SYSTEM command 494
release storage, FREEMAIN

command 365
release-to-release compatibility 10
remote file, KEYLENGTH option 127
REMOTENAME option

INQUIRE FILE command 486
INQUIRE PROGRAM command 491
INQUIRE TDQUEUE command 498
INQUIRE TERMINAL command 502
INQUIRE TRANSACTION

command 507
REMOTESYSTEM option

INQUIRE FILE command 486
INQUIRE PROGRAM command 491
INQUIRE TDQUEUE command 498
INQUIRE TERMINAL command 502
INQUIRE TRANSACTION

command 507
REPLACE parameter

CRTCICSC CL command 300
CRTCICSCBL CL command 286
CRTCICSMAP CL command 303

REQID option
CANCEL command 334
DELAY command 342
ENDBR command 353
POST command 388
READNEXT command 397
READPREV command 402
RESETBR command 420
START command 450
STARTBR command 454
WAIT JOURNALNUM

command 463
WRITE JOURNALNUM

command 468
request/response unit (RU) 171
RESCOUNT option

INQUIRE PROGRAM command 491
RESET option

HANDLE ABEND command 370
reset start for browse 418
RESETBR command 418
resource definitions, browsing 315
RESOURCE option

DEQ command 351
ENQ command 356
ENTER TRACENUM command 358

resource scheduling 350
resources

PERFORM guidelines 22
RESP option 87, 313

deactivating NOHANDLE 93, 373
using DFHRESP 87
values 540

RESP2 option 87, 313
values 542

RESTART option
ASSIGN command 330

RETRIEVE command 193, 421
retrieve data stored for task 421
RETURN command 203, 424

return program control 424
REVERSE value

HILIGHT operand, DFHMDF
macro 571

HILIGHT operand, DFHMDI
macro 564

HILIGHT operand, DFHMSD
macro 558

REWRITE command 427
REWRITE option

WRITEQ TS command 472
RIDFLD option 124

DELETE command 345
READ command 391
READNEXT command 397
READPREV command 402
RESETBR command 420
STARTBR command 454
WRITE command 464

RIGHT value
JUSTIFY operand, DFHMDF

macro 572
OUTLINE operand, DFHMDF

macro 573
OUTLINE operand, DFHMDI

macro 565
OUTLINE operand, DFHMSD

macro 559
RMTPGMID parameter 178
ROLLEDBACK condition

LINK command 384
SYNCPOINT command 457

RRDS (relative record file) 116
RRN (relative record number) 116, 128
RRN option

DELETE command 346
READ command 392
READNEXT command 397
READPREV command 402
RESETBR command 420
STARTBR command 454
WRITE command 464

RTERMID option
RETRIEVE command 423
START command 450

RTIMEOUT option
INQUIRE TRANSACTION

command 507
RTRANSID option

RETRIEVE command 423
START command 451

RU (request/response unit) 171
run unit in ILE C 27

S
SA (set attribute) order 165
SAAFLAG parameter

CRTCICSC CL command 298
CRTCICSCBL CL command 282

sample application programs
COBOL 27
ILE C 53

SBA characters 144
schedule use of resource by task 350,

355

Index 611

screen layout design
input operations 141
output operations 143
requirements 146

screen size 147
screen, printing contents 167
SCREENHEIGHT option

INQUIRE TERMINAL command 502
screens, testing 101
SCREENWIDTH option

INQUIRE TERMINAL command 502
SCRNHT option

ASSIGN command 330
SCRNSIZE option

INQUIRE TRANSACTION
command 507

SCRNWD option
ASSIGN command 330

SCS, SNA character string
SEND command 432

SECONDS option
DELAY command 343
START command 451

security 223
segments, program 18
SEND (5250 or 3270 logical)

command 433
SEND (APPC) command 430
SEND (SCS) command 432
SEND command

write to terminal 550
SEND CONTROL command 435
SEND MAP command 436

use of 155
SEND TEXT command 164, 439
SEND/RECEIVE mode 170
sequential files 76
sequential retrieval, browsing 390
server program 178
server system 176, 179
services, invoking CICS 12, 37
SERVSTATUS option

INQUIRE CONNECTION
command 482

INQUIRE TERMINAL command 502
SET CONNECTION command 510
SET TERMINAL command 521

SESSIONTYPE option
INQUIRE TERMINAL command 502

set attribute (SA) order 165
set buffer address (SBA) 144
SET commands 211, 315

CONNECTION 509
FILE 511
JOURNALNUM 514
PROGRAM 515
SYSTEM 517
TASK 517
TDQUEUE 518
TERMINAL 520
TRACEDEST 522
TRANSACTION 524

SET option 125
CONVERSE (5250 or 3270 logical)

command 340
CONVERSE (APPC) command 338
GETMAIN command 368

SET option (continued)
LOAD command 386
POST command 388
READ command 392
READNEXT command 397
READPREV command 402
READQ TD command 405
READQ TS command 408
RECEIVE (5250 or 3270 logical)

command 414
RECEIVE (APPC) command 411
RECEIVE MAP command 416
RETRIEVE command 423

SHARED option
GETMAIN command 213, 368

sharing data across transactions 70
SHUTDOWN, PERFORM command 509
SIGDATA option

ASSIGN command 330
SIGNAL condition

CONVERSE (APPC) command 339
ISSUE ERROR command 377
RECEIVE (APPC) command 412
SEND (APPC) command 431

SIGNONSTATUS option
INQUIRE TERMINAL command 503

single-screen mode, EDF 238
single-thread testing 103
SIZE operand

DFHMDI macro 565
skip-sequential processing 121
SOSI option

ASSIGN command 330
creation 146

SPOLBUSY condition
SPOOLOPEN OUTPUT

command 443
SPOLERR condition

SPOOLWRITE command 445
SPOOL commands

SPOOLCLOSE command 441
SPOOLOPEN OUTPUT

command 442
SPOOLWRITE command 444

spool files, closing 223
SPOOLCLOSE command 441
SPOOLOPEN OUTPUT command 442
SPOOLWRITE command 444
SQL

statements, compiling 13, 38, 270
SQLGENLVL parameter

CRTCICSC CL command 298
CRTCICSCBL CL command 281

SQLOPT parameter
CRTCICSC CL command 294
CRTCICSCBL CL command 274

SRCFILE parameter
CRTCICSC CL command 290
CRTCICSCBL CL command 271
CRTCICSMAP CL command 302

SRCMBR parameter
CRTCICSC CL command 290
CRTCICSCBL CL command 271
CRTCICSMAP CL command 302

SRTSEQ parameter
CRTCICSCBL CL command 282

standard attributes (DFHBMSCA) 545

START command 193, 445
START option

INQUIRE AUTINSTMODEL (browse)
command 481

INQUIRE CONNECTION (browse)
command 483

INQUIRE FILE (browse)
command 487

INQUIRE JOURNALNUM (browse)
command 489

INQUIRE PROGRAM (browse)
command 492

INQUIRE TDQUEUE (browse)
command 499

INQUIRE TERMINAL (browse)
command 504

INQUIRE TRANSACTION (browse)
command 508

STARTBR command 452
STARTCODE option

ASSIGN command 330
INQUIRE TASK command 495

STARTIO option
WAIT JOURNALNUM

command 463
WRITE JOURNALNUM

command 468
STARTUP option

INQUIRE SYSTEM command 494
STATE option

ALLOCATE command 326
CONNECT PROCESS command 336
CONVERSE (APPC) command 338
EXTRACT ATTRIBUTES (APPC)

command 359
FREE (APPC) command 364
ISSUE ABEND command 374
ISSUE CONFIRMATION

command 375
ISSUE ERROR command 377
ISSUE PREPARE command 378
ISSUE SIGNAL (APPC)

command 379
RECEIVE (APPC) command 411
SEND (APPC) command 430
WAIT CONVID command 461

STATUS option
INQUIRE PROGRAM command 491
INQUIRE TRANSACTION

command 507
SET PROGRAM command 516
SET TRANSACTION command 525

stopper field 144
storage area length 327
storage control 213

commands 321
storage environment 63
STORAGE operand

DFHMSD macro 559
storage, allocation of 152
STRCICSUSR CL command 191
STRFIELD option

CONVERSE (5250 or 3270 logical)
command 340

SEND (5250 or 3270 logical)
command 434

SEND (SCS) command 432

612 CICS for iSeries Application Programming Guide V5

subprogram, calling 20
SUFFIX operand 149

DFHMSD macro 559
suffixing map sets 149
SUSPEND command 457
SWITCHACTION option

SET TRACEDEST command 523
SWITCHSTATUS option

INQUIRE TRACEDEST
command 505

SET TRACEDEST command 523
symbolic cursor positioning 146, 159
symbolic description maps

copying 152
definition 136
field data format 153

synchronize action
journal output 107

SYNCLEVEL option
CONNECT PROCESS command 336
EXTRACT PROCESS command 360

SYNCONRETURN option
LINK command 383

syncpoint 106
backing out 458
command 321
establishing 457

SYNCPOINT command 457
SYNCPOINT ROLLBACK

command 458
syncpointing, DPL 180
syntax notation 306
SYSBUSY condition

ALLOCATE command 326
SYSID option 179

ALLOCATE command 326
ASSIGN command 331
CANCEL command 334
DELETE command 346
DELETEQ TD command 349
DELETEQ TS command 350
ENDBR command 354
LINK command 383
READ command 392
READNEXT command 397
READPREV command 402
READQ TD command 405
READQ TS command 408
RESETBR command 420
REWRITE command 428
START command 451
STARTBR command 455
UNLOCK command 459
WRITE command 464
WRITEQ TD command 470
WRITEQ TS command 473

SYSIDERR condition
ALLOCATE command 326
CANCEL command 335
DELETE command 348
DELETEQ TD command 349
DELETEQ TS command 350
ENDBR command 354
LINK command 384
READ command 394
READNEXT command 399
READPREV command 404

SYSIDERR condition (continued)
READQ TD command 406
READQ TS command 409
RESETBR command 421
REWRITE command 429
START command 452
STARTBR command 456
UNLOCK command 460
WRITE command 466
WRITEQ TD command 471
WRITEQ TS command 474

system connections 481
system information, access to 211
system programming commands

AUTINSTMODEL, DISCARD
command 477

AUTINSTMODEL, INQUIRE 480
CONNECTION, INQUIRE 481
CONNECTION, SET 509
FILE, DISCARD 478
FILE, INQUIRE 484
FILE, SET 511
JOURNALNUM, INQUIRE 488
JOURNALNUM, SET 514
NETNAME, INQUIRE 500
PROGRAM, DISCARD 478
PROGRAM, INQUIRE 490
PROGRAM, SET 515
SHUTDOWN, PERFORM 509
SYSTEM, INQUIRE 493
SYSTEM, SET 517
TASK, INQUIRE 494
TASK, SET 517
TDQUEUE, INQUIRE 496
TDQUEUE, SET 518
TERMINAL, INQUIRE 500
TERMINAL, SET 520
TRACEDEST, INQUIRE 505
TRACEDEST, SET 522
TRANSACTION, DISCARD 479
TRANSACTION, INQUIRE 506
TRANSACTION, SET 524

system resources 66
system trace entry point 112
SYSTEM, INQUIRE command 493
SYSTEM, SET command 517

T
tables

loading 385
TABLESIZE option

INQUIRE TRACEDEST
command 506

SET TRACEDEST command 523
task

abnormal termination 369
delay processing of 341
initiation 448

task control 197
commands 321
DEQ command 197
ENQ command 197

task identification 170
TASK, INQUIRE command 494
TASK, SET command 517

TASKID option
INQUIRE TERMINAL command 503

TCTUA (terminal control table user
area) 71

TCTUA option
ADDRESS command 324

TCTUALENG option
ASSIGN command 331

TDQUEUE option
INQUIRE TDQUEUE NEXT

command 499
TDQUEUE, INQUIRE command 496
TDQUEUE, SET command 518
techniques, programming 61, 63
temporary source file members

output from translator 15, 39
temporary storage 4

auxiliary 73, 219
browse transaction, CEBR 243
commands 321
data 219
main 73, 219
queue 219
write data to TS queue 471

TERM operand
DFHMSD 560

TERMCODE option
ASSIGN command 331

TERMERR condition
CONVERSE (5250 or 3270 logical)

command 341
CONVERSE (APPC) command 339
ISSUE ABEND command 375
ISSUE CONFIRMATION

command 376
ISSUE ERASEAUP command 376
ISSUE ERROR command 378
ISSUE PREPARE command 379
ISSUE SIGNAL (APPC)

command 380
LINK command 385
RECEIVE (5250 or 3270 logical)

command 414
RECEIVE (APPC) command 412
SEND (5250 or 3270 logical)

command 435
SEND (APPC) command 431
SEND (SCS) command 433

TERMID option
START command 451

TERMIDERR condition
START command 452

TERMINAL command, CEBR
transaction 247

terminal control
3270 field concept 143
an overview 169
bracket protocol, LAST option 172
chaining of input data 171
chaining of output data 171
commands 322
definite response 172
facilities for logical units 170
handle attention identifier 163
map input data 160
operations 77
print (ISSUE PRINT) 167

Index 613

TERMINAL option
INQUIRE TERMINAL NEXT

command 504
RECEIVE MAP command 416

terminal sharing 259
terminal-oriented task identification 170
TERMINAL, INQUIRE command 500
TERMINAL, SET command 520
TERMMODEL option

INQUIRE TERMINAL command 503
testing applications 101
testing CVDA values 310
testing RESP 87
testing, levels of

multithread 103
regression 103
single-thread 103

text data format 136
TEXT parameter

CRTCICSC CL command 291
CRTCICSCBL CL command 272
CRTCICSMAP CL command 304

TGTRLS parameter
CRTCICSC CL command 294
CRTCICSMAP CL command 303

time of day, request 326
TIME option

DELAY command 343
FORMATTIME command 363
POST command 388
START command 451

timer event control area 387
TIMESEP option

FORMATTIME command 363
TIMFMT parameter

CRTCICSC CL command 299
CRTCICSCBL CL command 284

TIMSEP parameter
CRTCICSC CL command 300
CRTCICSCBL CL command 285

TIOAPFX operand
DFHMSD macro 560

TIOAPFX, effect of
in RECEIVE MAP 416
in SEND MAP 438

TOFLENGTH option
CONVERSE (5250 or 3270 logical)

command 341
CONVERSE (APPC) command 338

TOKEN option
SPOOLCLOSE command 441
SPOOLOPEN OUTPUT

command 443
SPOOLWRITE command 444

TOLENGTH option
CONVERSE (5250 or 3270 logical)

command 341
CONVERSE (APPC) command 338

TOP command, CEBR transaction 247
trace

description 111
trace entry point 112

TRACEDEST, INQUIRE command 505
TRACEDEST, SET command 522
TRACENUM option

ENTER TRACENUM command 358

transaction identifier
CEBR 243
CECI 249
CEDF 229

TRANSACTION option
INQUIRE TASK command 495
INQUIRE TRANSACTION NEXT

command 508
transaction routing 4, 175
transaction work area (TWA) 69
TRANSACTION, DISCARD

command 479
TRANSACTION, INQUIRE

command 506
TRANSACTION, SET command 524
transactions

conversational 61
nonconversational 61
pseudoconversational 61

transfer program control 474
TRANSID option 179

CANCEL command 334
INQUIRE PROGRAM command 492
LINK command 383
RETURN command 426
START command 451

TRANSIDERR condition
START command 452

transient data 4
automatic transaction initiation

(ATI) 216
delete intrapartition queue 348
extrapartition 76, 215
indirect 216
intrapartition 74, 215
queues 74
read data from TD queue 404
write data to TD queue 469

transient data control 215
commands 322

translated code
COBOL 14
ILE C 40

translator
basic processes 12, 38
input to 14, 38
options 14
output from

listing 15, 39
temporary source file

members 15, 39
source command, example 14, 39

translator files
input 14, 39

translator options 38
transmission 67
TRANSP operand

DFHMDF macro 575
DFHMDI macro 566
DFHMSD macro 560

TRIGGER value
VALIDN operand, DFHMDF

macro 575
VALIDN operand, DFHMDI

macro 566
VALIDN operand, DFHMSD

macro 561

TRIGGERLEVEL option
INQUIRE TDQUEUE command 498
SET TDQUEUE command 519

TRIGRAF operand
DFHMSD macro 560

TTISTATUS option
INQUIRE TERMINAL command 503
SET TERMINAL command 521

TWA (transaction work area) 69
TWA option

ADDRESS command 324
TWALENG option

ASSIGN command 331
TWASIZE option

INQUIRE TRANSACTION
command 507

TYPE operand
DFHMSD macro 561

TYPE option
INQUIRE FILE command 486
INQUIRE TDQUEUE command 498

U
UNATTEND option

ASSIGN command 331
UNDER value

OUTLINE operand, DFHMDF
macro 573

OUTLINE operand, DFHMDI
macro 565

OUTLINE operand, DFHMSD
macro 559

UNDERLINE value
HILIGHT operand, DFHMDF

macro 571
HILIGHT operand, DFHMDI

macro 564
HILIGHT operand, DFHMSD

macro 558
unformatted data stream 144
UNLOCK command 458
UNPROT value

ATTRB operand, DFHMDF
macro 568

unprotected field, 3270 attribute
character 144

UNTIL option
DELAY command 343

UPDATE option
INQUIRE FILE command 487
READ command 392
SET FILE command 513

updating records 122, 427
use of #include 42
USECOUNT option

INQUIRE PROGRAM command 492
user files 74
user journaling 105, 106
user storage 69
user trace entry point 112
USERAREA option

INQUIRE TERMINAL command 503
USERAREALEN option

INQUIRE TERMINAL command 503
USERID option

ASSIGN command 332

614 CICS for iSeries Application Programming Guide V5

USERID option (continued)
INQUIRE TASK command 495
INQUIRE TERMINAL command 503
SPOOLOPEN OUTPUT

command 443
USERNAME option

INQUIRE TERMINAL command 503
USERSTATUS option

SET TRACEDEST command 506, 523

V
VALIDATION option

ASSIGN command 332
VALIDN operand

DFHMDF macro 575
DFHMDI macro 566
DFHMSD macro 561

values of arguments 307
variable-length records, defining 117
variables, CECI/CECS 255
vertical forms control 168
virtual storage environment 61, 63
VSAM, access to mainframe VSAM

data 4

W
WAIT CONVID command 461
WAIT EVENT command 193, 461
WAIT JOURNALNUM command 462
WAIT option

RETRIEVE command 423
SEND (5250 or 3270 logical)

command 434
SEND (APPC) command 431
SEND (SCS) command 432
SEND command 550
SEND MAP command 438
SEND TEXT command 440
WRITE JOURNALNUM

command 468
waits

for event to occur 461
problems, application programs 102

WRITE command 463
WRITE JOURNALNUM command 467

create a journal record 106
WRITEQ TD command 469
WRITEQ TS command 471
writing CICS programs

COBOL 17
ILE C 41

writing data
to terminal or logical unit 550

writing records 122, 123
file control 463

X
XCTL command 201, 474
XINIT operand

DFHMDF macro 575

Y
YEAR option

FORMATTIME command 363
YES value

EXTATT operand, DFHMDI
macro 564

EXTATT operand, DFHMSD
macro 557

KEXTATT operand, DFHMDI
macro 565

YYDDD option
FORMATTIME command 363

YYDDMM option
FORMATTIME command 363

YYMMDD option
FORMATTIME command 363

YYYYDDD option
FORMATTIME command 363

YYYYDDMM option
FORMATTIME command 363

YYYYMMDD option
FORMATTIME command 363

Z
ZERO value

JUSTIFY operand, DFHMDF
macro 572

Index 615

616 CICS for iSeries Application Programming Guide V5

Readers’ Comments — We’d Like to Hear from You

iSeries
CICS for iSeries Application
Programming Guide
Version 5

 Publication No. SC41-5454-02

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

 Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SC41-5454-02

SC41-5454-02

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM CORPORATION
ATTN DEPT 542 IDCLERK
3605 HWY 52 N
ROCHESTER MN 55901-7829

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in USA

SC41-5454-02

	Contents
	Figures
	Tables
	About CICS® for iSeries Application Programming Guide (SC41-5454)
	Who should read this book
	What you need to know to understand this book
	Conventions and terminology used in this book
	Prerequisite and related information
	CICS/400 library
	Books from related libraries
	Other CICS books
	Compilers
	SQL
	System Programming Support, Control language (CL)
	Common user access
	Miscellaneous books

	How to send your comments

	Part 1. Introduction
	Chapter 1. Introducing CICS for iSeries application programming
	If CICS is new to you
	What’s different about CICS programs?
	Benefits of CICS for iSeries to CICS programmers

	Chapter 2. Portability and migration considerations
	Migrating from another CICS platform
	CICS/400
	BMS
	Terminal Control
	COBOL
	ILE C
	SQL
	iSeries
	Source code

	Migrating from another CICS/400 release
	BMS
	Application programs
	Resource definitions

	Chapter 3. Preparing and writing CICS applications in COBOL
	Preparing a COBOL application
	Coding CICS statements in COBOL applications
	Preprocessing
	Translating a COBOL program
	Characteristics of the input source file
	CCSID of source files
	Output from the translator

	Compiling an application program

	Writing CICS programs in COBOL
	Modular programming
	Pointer-based addressing
	Example of using pointer variables

	Getting map set storage
	Source code considerations

	Calling programs from COBOL
	Using CICS commands
	Using COBOL CALL statements
	Static COBOL call
	Dynamic COBOL call

	Rules governing calling CICS COBOL programs
	Program activation

	Sample application programs
	Data declarations used by the ACCT sample
	Defining resources for the ACCT sample
	Running the ACCT sample
	Displaying an account record
	Adding an account record
	Searching by account holder’s name
	Modifying an account record
	Deleting an account record
	Printing an account record

	Chapter 4. Preparing and writing CICS applications in ILE C
	Preparing an ILE C application
	Coding CICS statements in iSeries applications
	Preprocessing
	Translating an ILE C program
	Characteristics of the input source file
	Output from the translator

	Compiling an application program

	Writing CICS programs in ILE C
	Modular programming
	Use of #include
	Use of modules

	Pointer-based addressing
	Example of using pointer variables
	EXEC CICS ADDRESS EIB
	EXEC CICS ADDRESS COMMAREA
	EXEC CICS READ/REWRITE

	Getting map set storage
	Passing arguments by value
	Exception handling
	Data declarations needed for ILE C
	Naming EIB fields
	Data types

	Source code considerations

	Calling programs and ILE procedures from ILE C
	Using EXEC CICS commands
	Using C language calls
	Dynamic program calls
	Calling procedures
	Procedure pointer calls

	Rules governing calling CICS ILE C programs
	Program activation

	Sample application programs
	Data declarations used by the FILEA sample
	Defining resources for the FILEA sample
	Running the FILEA sample
	Operator instruction sample program
	Browse sample program
	Inquiry and update sample program
	Low balance report sample program
	Order entry sample program
	Order entry queue print sample program

	Part 2. Application design
	Chapter 5. Designing efficient applications
	Program size and structure
	Choosing between pseudoconversational and conversational design
	General programming techniques
	Storage usage
	Minimizing memory requirements

	Processor usage
	Recovery design implications
	Terminal interruptibility
	Summary of pseudoconversational and conversational design

	Using resources effectively
	Processor storage
	Processor time
	Exclusive-use resources
	Line transmission capacity

	Other suggestions
	Auxiliary trace
	Unnecessary commands
	Resource retention
	Data definition and manipulation considerations

	Storing data within a transaction
	Transaction work area (TWA)
	User storage
	COMMAREA in EXEC CICS LINK and EXEC CICS XCTL commands
	Program storage

	Sharing data across transactions
	Common work area (CWA)
	TCTTE user area (TCTUA)
	COMMAREA in EXEC CICS RETURN commands
	Display screen
	Temporary storage
	Intrapartition transient data
	Your own files

	Data operations
	Emulating VSAM files
	Browsing files
	Logging files
	Sequential file access

	Terminal operations
	Data stream considerations
	BMS considerations
	Avoid turning on modified data tags (MDTs) unnecessarily
	Use FRSET to reduce inbound traffic
	Do not send blank fields to the screen
	Use the MAPONLY option when possible
	Send only changed fields to an existing screen
	Design data entry operations to reduce line traffic
	Compress data sent to the screen
	Use nulls instead of blanks
	Use methods that avoid the need for nulls or blanks
	Sending messages to destinations other than the input terminal

	Additional terminal control considerations
	Use only one EXEC CICS SEND command per screen
	Use the EXEC CICS CONVERSE command
	Avoid using unnecessary transactions
	Send unformatted data without maps

	Performance considerations
	CICS and multiprocessor AS/400s
	CICS SIT parameters
	CICS internal trace (INTTRCCTL) and auxiliary trace (AUXTRCCTL)
	CICS files left open count and open timeout (FILECTL)
	CICS interval control processing (ITVCTL)
	BMS map set suffixing (DEVCTL)

	COBOL application code
	COBOL generation options

	ILE C application code
	ILE C generation options

	*DEBUG or *NODEBUG
	EXEC CICS LINK command or host language call
	Terminal communication
	BMS and terminal types
	BMS DATAONLY option
	Data stream compression

	Chapter 6. Dealing with exception conditions
	Programs in any supported language
	How to use the RESP and RESP2 options
	Example of coding and testing a RESP value

	How to use the NOHANDLE option

	COBOL programs only
	How to use the EXEC CICS IGNORE CONDITION command
	Passing control to a specified label
	How to use the EXEC CICS HANDLE CONDITION condition command
	How to use the EXEC CICS HANDLE CONDITION ERROR command

	Relying on the system default action
	How to use EXEC CICS PUSH HANDLE and POP HANDLE commands
	How to use an EXEC CICS HANDLE CONDITION condition command
	How CICS selects whether to take the system default action

	Mixing the methods

	How CICS keeps track of what to do

	Chapter 7. Testing your application
	Testing applications
	Screen usage, checks and considerations
	Types of problems
	Levels of testing
	Finding a problem in application code on a production system

	Chapter 8. Recovery considerations
	CICS and OS/400 commitment control recovery
	Defining recoverable files to CICS (an overview)
	Syncpointing
	User journaling
	Journal records
	Journal output synchronization

	Chapter 9. Abnormal termination recovery
	Creating a program-level abend exit
	Restrictions on retrying operations
	Trace
	Trace entry points
	System trace entry points
	User trace entry points

	Dump

	Part 3. Files and databases
	Chapter 10. File control
	Emulated VSAM files
	Key-sequenced file (KSDS)
	Entry-sequenced file (ESDS)
	Relative record file (RRDS)
	VSAM-like logical views

	Reading records
	Direct reading (using EXEC CICS READ)
	Direct reading from a KSDS
	Direct reading from an ESDS
	Direct reading from an RRDS
	Direct reading by way of a path

	Sequential reading (browsing)
	Browsing through a KSDS
	Browsing through an ESDS
	Browsing through an RRDS
	Browsing using a path
	Ending the browse
	Simultaneous browse operations

	Skip-sequential processing

	Updating records
	Specifying record length

	Deleting records
	Deleting groups of records (generic delete)

	Adding records
	Adding to a KSDS
	Adding to an ESDS
	Adding to an RRDS
	Specifying record length

	Review of file control command options
	The RIDFLD option
	The INTO and SET options
	The FROM option

	Avoiding transaction deadlocks
	KEYLENGTH option for remote files
	Record identification
	Identifying records by key
	Relative byte address (RBA) and relative record number (RRN)
	RBA
	RRN

	CICS locking of emulated VSAM records in recoverable files

	Part 4. Data communication
	Chapter 11. Introduction to data communication
	Chapter 12. Introduction to basic mapping support (BMS)
	How BMS affects programming
	BMS maps
	BMS map definition
	Creating BMS map sets
	Cataloging BMS map sets

	BMS commands
	Level of BMS
	Base and towers architecture

	Summary of support for CICS/400 BMS

	Chapter 13. CICS/400 basic mapping support (BMS)
	Information display systems
	IBM 3270 Information Display System
	IBM 5250 Information Display System
	Input operations
	Sending data
	Modified data tags
	Attention identifiers

	Output operations
	Display field concepts
	Attribute character

	Screen layout design
	Screen sizes

	Defining BMS maps
	Defining a map set
	Defining maps within a map set
	Data fields
	Maps without fields

	Defining fields within a BMS map
	Terminating a map set definition

	Creating BMS maps
	Symbolic description map
	Physical map
	Map set suffixing

	Writing programs to use BMS services
	Copying symbolic description maps
	Data structures
	Input map data structures
	Input field suffixes
	Output map data structures
	Attribute constants
	Incorrect data

	Sending data to a display device
	Composite displays
	Refreshing and modifying displays
	Getting storage for a data structure
	Alternative data structures
	Device control options

	Cursor positioning
	Normal cursor positioning
	Initial display position
	Symbolic cursor positioning

	Accessing data outside the program
	Receiving data from a display
	Receiving data into an alternative data structure
	Uppercase translation
	Mapping data from another data area

	Responding to terminal input
	Exception conditions
	The EIBAID field
	The EXEC CICS HANDLE AID command

	Text processing
	Display characters in text
	Control characters in text
	Character attribute control (3270 devices only)
	Unsupported attributes

	Graphic data fields

	Printed output
	Using the hardware print key
	Using asynchronous page build transaction
	Printer formatting considerations
	Blank lines and 3270 printers
	Setting the printer page width
	Form feed characters

	Chapter 14. Terminal control
	Terminal-oriented task identification
	Logical unit communication protocol
	Send/receive mode
	Send/receive protocol (INVITE option)
	Chaining the input data
	Chaining the output data
	Response protocol
	Preventing interruptions (bracket protocol)

	Handling attention identifiers (EXEC CICS HANDLE AID)
	OS/400 display data streams
	Terminal control and DBCS

	Chapter 15. Intercommunication considerations
	Design considerations
	Transaction routing
	Function shipping
	Distributed program link (DPL)
	Using the distributed program link function
	Examples of distributed program link
	Programming considerations for distributed program link
	Issuing multiple distributed program links from the same client task
	Sharing resources between the client program and server program
	Mixing DPL and function shipping to the same CICS system
	Mixing DPL and DTP to the same CICS system
	Restricting a program to the distributed program link subset
	Determining how a program was invoked
	Exception conditions for EXEC CICS LINK command

	Asynchronous processing
	Distributed transaction processing (DTP)
	Common Programming Interface Communications (CPI Communications)

	Part 5. CICS management functions
	Chapter 16. Control region
	Chapter 17. Application shell
	Chapter 18. Interval control
	Timer-related tasks
	Expiration times
	Request identifiers

	Chapter 19. Task control
	Chapter 20. Program control
	Defining and using CICS tables
	Application program logical levels
	Link to another program expecting return
	Passing data to other programs
	COMMAREA
	INPUTMSG
	Using the INPUTMSG option on the EXEC CICS RETURN command
	Other ways of passing data
	Examples of passing data

	Chapter 21. Access to system information
	System programming commands
	EXEC interface block (EIB)

	Chapter 22. Storage control
	Chapter 23. Transient data control
	Intrapartition destinations
	Extrapartition destinations
	Indirect destinations
	Automatic transaction initiation (ATI)

	Chapter 24. Temporary storage control
	Temporary storage queues
	Temporary storage commands
	Typical uses of temporary storage control

	Chapter 25. Printer spooling
	When are printer spooling files closed?

	Part 6. Supplied transactions
	Chapter 26. Introduction to CICS-supplied transactions
	Chapter 27. Execution diagnostic facility (EDF)
	Getting started
	Restrictions when using EDF

	Where does EDF intercept the program?
	What does EDF display?
	The header
	The body
	How you can intervene in program execution
	EDF menu functions

	How to use EDF
	Using EDF in single-screen mode
	Checking pseudoconversational programs

	Using EDF in dual-screen mode
	Stopping EDF
	Overtyping to make changes
	EDF responses

	Chapter 28. Temporary storage browse (CEBR)
	How to use the CEBR transaction
	What does the CEBR transaction display?
	The header
	The command area
	The body
	The message line
	The CEBR options on function keys

	The CEBR commands
	Using the CEBR transaction with transient data
	Security considerations

	Chapter 29. Command-level interpreter (CECI)
	How to use CECI
	What does CECI display?
	The command line
	The status line
	Command syntax check
	About to start command
	Command completed

	The body
	The message line
	CECI options on function keys

	Additional displays
	Expanded area
	Variables
	Defining variables

	The EXEC interface block (EIB)
	Error messages display

	Making changes
	How CECI runs
	CECI sessions
	Abends
	Exception conditions
	Program control commands
	Terminal Sharing
	Saving commands

	Security considerations

	Part 7. Programming reference
	Chapter 30. OS/400 control language (CL) commands
	Interpreting the syntax diagrams
	CRTCICSCBL
	CRTCICSC
	CRTCICSMAP

	Chapter 31. Programming reference
	Introduction to EXEC CICS commands
	Command format
	CICS syntax notation used
	Argument values
	COBOL argument values
	ILE C argument values

	CICS-value data areas (CVDAs)
	DATASET option
	INTO and SET options
	LENGTH options
	NOHANDLE option
	RESP and RESP2 options
	System programming commands
	INQUIRE and SET commands
	Browsing resource definitions
	Null values

	PERFORM command
	DISCARD commands

	Commands by function
	Abend support
	APPC mapped conversation
	BMS
	Built-in function
	Diagnostic services
	Environment services
	Exception support
	File control
	Interval control
	Journaling
	Printer spooling
	Program control
	Storage control
	Syncpoint
	Task control
	Temporary storage control
	Terminal control
	Transient data control

	Chapter 32. Application programming commands - reference
	ABEND
	ADDRESS
	ALLOCATE
	ASKTIME
	ASSIGN
	BIF DEEDIT
	CANCEL
	CONNECT PROCESS
	CONVERSE (APPC)
	CONVERSE (5250 or 3270 logical)
	DELAY
	DELETE
	DELETEQ TD
	DELETEQ TS
	DEQ
	DUMP TRANSACTION
	ENDBR
	ENQ
	ENTER TRACENUM
	EXTRACT ATTRIBUTES (APPC)
	EXTRACT PROCESS
	FORMATTIME
	FREE (APPC)
	FREEMAIN
	GETMAIN
	HANDLE ABEND
	HANDLE AID
	HANDLE CONDITION
	IGNORE CONDITION
	ISSUE ABEND
	ISSUE CONFIRMATION
	ISSUE ERASEAUP
	ISSUE ERROR
	ISSUE PREPARE
	ISSUE SIGNAL (APPC)
	LINK
	LOAD
	POP HANDLE
	POST
	PUSH HANDLE
	READ
	READNEXT
	READPREV
	READQ TD
	READQ TS
	RECEIVE (APPC)
	RECEIVE (5250 or 3270 logical)
	RECEIVE MAP
	RELEASE
	RESETBR
	RETRIEVE
	RETURN
	REWRITE
	SEND (APPC)
	SEND (SCS)
	SEND (5250 or 3270 logical)
	SEND CONTROL
	SEND MAP
	SEND TEXT
	SPOOLCLOSE
	SPOOLOPEN OUTPUT
	SPOOLWRITE
	START
	STARTBR
	SUSPEND
	SYNCPOINT
	SYNCPOINT ROLLBACK
	UNLOCK
	WAIT CONVID
	WAIT EVENT
	WAIT JOURNALNUM
	WRITE
	WRITE JOURNALNUM
	WRITEQ TD
	WRITEQ TS
	XCTL

	Chapter 33. System programming reference
	DISCARD commands
	DISCARD AUTINSTMODEL
	DISCARD FILE
	DISCARD PROGRAM
	DISCARD TRANSACTION
	INQUIRE commands
	INQUIRE AUTINSTMODEL
	INQUIRE AUTINSTMODEL (browse)
	INQUIRE CONNECTION
	INQUIRE CONNECTION (browse)
	NQUIRE FILE
	INQUIRE FILE (browse)
	INQUIRE JOURNALNUM
	INQUIRE JOURNALNUM (browse)
	INQUIRE PROGRAM
	INQUIRE PROGRAM (browse)
	INQUIRE SYSTEM
	INQUIRE TASK
	INQUIRE TDQUEUE
	INQUIRE TDQUEUE (browse)
	INQUIRE TERMINAL or NETNAME
	INQUIRE TERMINAL (browse)
	INQUIRE TRACEDEST
	INQUIRE TRANSACTION
	INQUIRE TRANSACTION (browse)
	PERFORM SHUTDOWN command
	SET commands
	SET CONNECTION
	SET FILE
	SET JOURNALNUM
	SET PROGRAM
	SET SYSTEM
	SET TASK
	SET TDQUEUE
	SET TERMINAL
	SET TRACEDEST
	SET TRANSACTION

	Part 8. Appendixes
	Appendix A. EXEC interface block
	EIB fields

	Appendix B. BMS-related constants
	Field attribute and printer control characters
	Attention identifier constants, DFHAID

	Appendix C. Terminal control
	Commands and options for terminals and logical units
	Fullword lengths
	Read from terminal or logical unit (EXEC CICS RECEIVE)
	Write to terminal or logical unit (EXEC CICS SEND)
	WAIT option of the EXEC CICS SEND command

	Converse with terminal or logical unit (EXEC CICS CONVERSE)

	Display device operations
	Erase all unprotected fields (EXEC CICS ISSUE ERASEAUP)
	Input operation without data (EXEC CICS RECEIVE)
	Cursor position (EIBCPOSN)
	Attention identifier (EIBAID)

	Appendix D. BMS macro summary
	Defining map sets, maps, and fields
	Map set definition macro (DFHMSD)
	Map definition macro (DFHMDI)
	Field definition macro (DFHMDF)
	Ending a map set definition

	Defining field groups
	DFHMSD
	DFHMDI
	DFHMDF
	Sample map with DBCS data definitions

	Appendix E. CICS-value data areas supported by CICS/400
	CVDAs by symbolic name
	CVDAs by numeric value
	CVDAs returned by the INQUIRE TERMINAL|NETNAME DEVICE command

	Appendix F. Notices
	Programming Interface Information
	Trademarks

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

