
WebSphere

Development

Studio

ILE

C/C++

Language

Reference

Version

5.3

SC09-7852-00

ERserver

���

WebSphere

Development

Studio

ILE

C/C++

Language

Reference

Version

5.3

SC09-7852-00

ERserver

���

Note!

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

347.

First

Edition

(November,

2003)

This

edition

applies

to

Version

5,

Release

3,

Modification

0

of

IBM

WebSphere®

Development

Studio

for

iSeries™

(program

5722–WDS),

ILE

C/C++

compilers,

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

This

edition

replaces

ILE

C/C++

Language

Reference,

SC09–4815–00.

IBM

welcomes

your

comments.

You

can

send

them

by

the

Internet

to

the

following

address:

compinfo@ca.ibm.com

Include

the

title

and

order

number

of

this

book,

and

the

page

number

or

topic

related

to

your

comment.

Be

sure

to

include

your

e-mail

address

if

you

want

a

reply.

IBM

welcomes

your

comments.

You

can

send

them

by

the

Internet

to

the

following

address:

compinfo@ca.ibm.com

Include

the

title

and

order

number

of

this

book,

and

the

page

number

or

topic

related

to

your

comment.

Be

sure

to

include

your

e-mail

address

if

you

want

a

reply.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1998,

2003.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

This

Reference

.

.

.

.

.

.

.

. vii

Highlighting

Conventions

.

.

.

.

.

.

.

.

. viii

How

to

Read

the

Syntax

Diagrams

.

.

.

.

.

. viii

Chapter

1.

Scope

and

Linkage

.

.

.

.

. 1

Scope

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

Local

Scope

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Function

Scope

.

.

.

.

.

.

.

.

.

.

.

. 3

Function

Prototype

Scope

.

.

.

.

.

.

.

.

. 3

Global

Scope

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Class

Scope

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Name

Spaces

of

Identifiers

.

.

.

.

.

.

.

. 4

Name

Hiding

.

.

.

.

.

.

.

.

.

.

.

.

. 5

Program

Linkage

.

.

.

.

.

.

.

.

.

.

.

.

. 6

Internal

Linkage

.

.

.

.

.

.

.

.

.

.

.

. 7

External

Linkage

.

.

.

.

.

.

.

.

.

.

.

. 7

No

Linkage

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

Linkage

Specifications

—

Linking

to

Non-C++

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

Name

Mangling

.

.

.

.

.

.

.

.

.

.

.

. 9

Chapter

2.

Lexical

Elements

.

.

.

.

. 11

Tokens

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Punctuators

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Alternative

Tokens

.

.

.

.

.

.

.

.

.

. 12

Source

Program

Character

Set

.

.

.

.

.

.

.

. 12

Escape

Sequences

.

.

.

.

.

.

.

.

.

.

. 13

The

Unicode

Standard

.

.

.

.

.

.

.

.

.

. 14

Trigraph

Sequences

.

.

.

.

.

.

.

.

.

.

. 14

Multibyte

Characters

.

.

.

.

.

.

.

.

.

. 15

Comments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Identifiers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

Reserved

Identifiers

.

.

.

.

.

.

.

.

.

. 18

Case

Sensitivity

and

Special

Characters

in

Identifiers

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

Keywords

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

Keywords

for

language

extensions

.

.

.

.

. 19

Alternative

Representations

of

Operators

and

Punctuators

.

.

.

.

.

.

.

.

.

.

.

. 19

Literals

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Boolean

Literals

.

.

.

.

.

.

.

.

.

.

.

. 19

Integer

Literals

.

.

.

.

.

.

.

.

.

.

.

. 20

Decimal

Integer

Literals

.

.

.

.

.

.

.

. 20

Hexadecimal

Integer

Literals

.

.

.

.

.

. 21

Octal

Integer

Literals

.

.

.

.

.

.

.

.

. 21

Floating-Point

Literals

.

.

.

.

.

.

.

.

.

. 21

Packed

Decimal

Literals

.

.

.

.

.

.

.

. 23

Character

Literals

.

.

.

.

.

.

.

.

.

.

. 23

String

Literals

.

.

.

.

.

.

.

.

.

.

.

. 24

Chapter

3.

Declarations

.

.

.

.

.

.

. 27

Declaration

Overview

.

.

.

.

.

.

.

.

.

.

. 27

The

__align

Specifier

.

.

.

.

.

.

.

.

.

. 28

Objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Storage

Class

Specifiers

.

.

.

.

.

.

.

.

.

. 29

auto

Storage

Class

Specifier

.

.

.

.

.

.

.

. 30

extern

Storage

Class

Specifier

.

.

.

.

.

.

. 31

mutable

Storage

Class

Specifier

.

.

.

.

.

.

. 32

register

Storage

Class

Specifier

.

.

.

.

.

.

. 33

static

Storage

Class

Specifier

.

.

.

.

.

.

.

. 34

typedef

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Type

Specifiers

.

.

.

.

.

.

.

.

.

.

.

.

. 36

Type

Names

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Compatible

Types

.

.

.

.

.

.

.

.

.

.

. 38

Simple

Type

Specifiers

.

.

.

.

.

.

.

.

.

. 39

Boolean

Variables

.

.

.

.

.

.

.

.

.

. 39

char

and

wchar_t

Type

Specifiers

.

.

.

.

. 40

The

wchar_t

Type

Specifier

.

.

.

.

.

. 40

Floating-Point

Variables

.

.

.

.

.

.

.

. 40

Packed

Decimal

Variables

.

.

.

.

.

.

.

. 41

Integer

Variables

.

.

.

.

.

.

.

.

.

.

. 42

void

Type

.

.

.

.

.

.

.

.

.

.

.

.

. 43

Compound

Types

.

.

.

.

.

.

.

.

.

.

. 43

Structures

.

.

.

.

.

.

.

.

.

.

.

.

. 44

Declaring

and

Defining

a

Structure

.

.

. 45

Defining

a

Structure

Variable

.

.

.

.

. 46

Initializing

Structures

.

.

.

.

.

.

.

. 46

Declaring

Structure

Types

and

Variables

in

the

Same

Statement

.

.

.

.

.

.

.

.

. 47

Declaring

and

Using

Bit

Fields

in

Structures

.

.

.

.

.

.

.

.

.

.

.

. 48

Unions

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

Declaring

a

Union

.

.

.

.

.

.

.

.

. 51

Defining

a

Union

Variable

.

.

.

.

.

. 52

Anonymous

Unions

.

.

.

.

.

.

.

. 52

Enumerations

.

.

.

.

.

.

.

.

.

.

.

. 54

Declaring

an

Enumeration

Data

Type

.

.

. 54

Enumeration

Constants

.

.

.

.

.

.

. 54

Defining

Enumeration

Variables

.

.

.

. 55

Defining

an

Enumeration

Type

and

Enumeration

Objects

.

.

.

.

.

.

.

. 56

Type

Qualifiers

.

.

.

.

.

.

.

.

.

.

.

.

. 57

The

const

Type

Qualifier

.

.

.

.

.

.

.

.

. 59

The

volatile

Type

Qualifier

.

.

.

.

.

.

.

. 60

ILE

Type

Qualifiers

.

.

.

.

.

.

.

.

.

.

. 60

The

__ptr128

Qualifier

.

.

.

.

.

.

.

.

. 60

The

__ptr64

Qualifier

.

.

.

.

.

.

.

.

. 61

The

asm

Declaration

.

.

.

.

.

.

.

.

.

.

. 61

Incomplete

Types

.

.

.

.

.

.

.

.

.

.

.

. 61

Chapter

4.

Declarators

.

.

.

.

.

.

.

. 63

Initializers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

Declaring

Pointers

.

.

.

.

.

.

.

.

.

.

. 66

Assigning

Pointers

.

.

.

.

.

.

.

.

.

.

. 66

Initializing

Pointers

.

.

.

.

.

.

.

.

.

.

. 67

Using

Pointers

.

.

.

.

.

.

.

.

.

.

.

. 67

Pointer

Arithmetic

.

.

.

.

.

.

.

.

.

.

. 68

Arrays

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Declaring

Arrays

.

.

.

.

.

.

.

.

.

.

. 70

©

Copyright

IBM

Corp.

1998,

2003

iii

Initializing

Arrays

.

.

.

.

.

.

.

.

.

.

. 71

Function

Specifiers

.

.

.

.

.

.

.

.

.

.

.

. 75

References

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

Initializing

References

.

.

.

.

.

.

.

.

.

. 76

Chapter

5.

Expressions

and

Operators

79

Operator

Precedence

and

Associativity

.

.

.

.

. 80

Lvalues

and

Rvalues

.

.

.

.

.

.

.

.

.

.

. 83

Primary

Expressions

.

.

.

.

.

.

.

.

.

.

. 84

Identifier

Expressions

.

.

.

.

.

.

.

.

.

. 85

Integer

Constant

Expressions

.

.

.

.

.

.

. 85

Parenthesized

Expressions

(

)

.

.

.

.

.

.

. 86

C++

Scope

Resolution

Operator

::

.

.

.

.

.

. 87

Postfix

Expressions

.

.

.

.

.

.

.

.

.

.

.

. 88

Function

Call

Operator

(

)

.

.

.

.

.

.

.

. 88

Array

Subscripting

Operator

[

]

.

.

.

.

.

. 90

Dot

Operator

.

.

.

.

.

.

.

.

.

.

.

.

. 91

Arrow

Operator

−>

.

.

.

.

.

.

.

.

.

. 91

The

typeid

Operator

.

.

.

.

.

.

.

.

.

. 92

static_cast

Operator

.

.

.

.

.

.

.

.

.

.

. 93

reinterpret_cast

Operator

.

.

.

.

.

.

.

.

. 94

const_cast

Operator

.

.

.

.

.

.

.

.

.

.

. 95

dynamic_cast

Operator

.

.

.

.

.

.

.

.

. 96

Unary

Expressions

.

.

.

.

.

.

.

.

.

.

.

. 98

Increment

++

.

.

.

.

.

.

.

.

.

.

.

.

. 99

Decrement

−−

.

.

.

.

.

.

.

.

.

.

.

. 99

Unary

Plus

+

.

.

.

.

.

.

.

.

.

.

.

. 100

Unary

Minus

−

.

.

.

.

.

.

.

.

.

.

.

. 100

Logical

Negation

!

.

.

.

.

.

.

.

.

.

.

. 100

Bitwise

Negation

~

.

.

.

.

.

.

.

.

.

. 100

Address

&

.

.

.

.

.

.

.

.

.

.

.

.

. 101

Indirection

*

.

.

.

.

.

.

.

.

.

.

.

.

. 101

sizeof

Operator

.

.

.

.

.

.

.

.

.

.

.

. 102

C++

new

Operator

.

.

.

.

.

.

.

.

.

. 103

Initializing

Objects

Created

with

the

new

Operator

.

.

.

.

.

.

.

.

.

.

.

.

. 106

set_new_handler()

—

Set

Behavior

for

new

Failure

.

.

.

.

.

.

.

.

.

.

.

.

. 106

C++

delete

Operator

.

.

.

.

.

.

.

.

.

. 107

Cast

Expressions

.

.

.

.

.

.

.

.

.

.

.

. 108

Binary

Expressions

.

.

.

.

.

.

.

.

.

.

. 109

Multiplication

*

.

.

.

.

.

.

.

.

.

.

.

. 110

Division

/

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Remainder

%

.

.

.

.

.

.

.

.

.

.

.

. 111

Addition

+

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Subtraction

−

.

.

.

.

.

.

.

.

.

.

.

. 111

Bitwise

Left

and

Right

Shift

<<

>>

.

.

.

.

. 112

Relational

<

>

<=

>=

.

.

.

.

.

.

.

.

.

. 112

Equality

==

!=

.

.

.

.

.

.

.

.

.

.

.

. 114

Bitwise

AND

&

.

.

.

.

.

.

.

.

.

.

.

. 115

Bitwise

Exclusive

OR

^

.

.

.

.

.

.

.

.

. 115

Bitwise

Inclusive

OR

|

.

.

.

.

.

.

.

.

. 116

Logical

AND

&&

.

.

.

.

.

.

.

.

.

.

. 116

Logical

OR

||

.

.

.

.

.

.

.

.

.

.

.

. 117

C++

Pointer

to

Member

Operators

.*

−>*

.

.

. 118

Conditional

Expressions

.

.

.

.

.

.

.

.

.

. 118

Type

of

Conditional

C

Expressions

.

.

.

.

. 119

Type

of

Conditional

C++

Expressions

.

.

.

. 119

Examples

of

Conditional

Expressions

.

.

.

. 120

Assignment

Expressions

.

.

.

.

.

.

.

.

.

. 120

Simple

Assignment

=

.

.

.

.

.

.

.

.

.

. 120

Compound

Assignment

.

.

.

.

.

.

.

.

. 121

Comma

Expressions

.

.

.

.

.

.

.

.

.

.

. 122

C++

throw

Expressions

.

.

.

.

.

.

.

.

.

. 123

Chapter

6.

Implicit

Type

Conversions

125

Integral

and

Floating-Point

Promotions

.

.

.

.

. 125

Standard

Type

Conversions

.

.

.

.

.

.

.

.

. 126

Lvalue-to-Rvalue

Conversions

.

.

.

.

.

.

. 126

Boolean

Conversions

.

.

.

.

.

.

.

.

.

. 127

Integral

Conversions

.

.

.

.

.

.

.

.

.

. 127

Floating-Point

Conversions

.

.

.

.

.

.

.

. 128

Pointer

Conversions

.

.

.

.

.

.

.

.

.

. 128

Reference

Conversions

.

.

.

.

.

.

.

.

. 129

Pointer-to-Member

Conversions

.

.

.

.

.

. 130

Qualification

Conversions

.

.

.

.

.

.

.

. 130

Function

Argument

Conversions

.

.

.

.

.

. 130

Other

Conversions

.

.

.

.

.

.

.

.

.

. 130

Arithmetic

Conversions

.

.

.

.

.

.

.

.

.

. 131

The

explicit

Keyword

.

.

.

.

.

.

.

.

.

.

. 132

Chapter

7.

Functions

.

.

.

.

.

.

.

. 135

C++

Enhancements

to

C

Functions

.

.

.

.

.

. 135

Function

Declarations

.

.

.

.

.

.

.

.

.

. 136

C++

Function

Declarations

.

.

.

.

.

.

.

. 138

Multiple

Function

Declarations

.

.

.

.

. 138

Parameter

Names

in

Function

Declarations

139

Examples

of

Function

Declarations

.

.

.

.

. 139

Function

Definitions

.

.

.

.

.

.

.

.

.

.

. 140

Ellipsis

and

void

.

.

.

.

.

.

.

.

.

.

. 144

Examples

of

Function

Definitions

.

.

.

.

.

. 145

The

main()

Function

.

.

.

.

.

.

.

.

.

.

. 146

Arguments

to

main

.

.

.

.

.

.

.

.

.

. 146

Example

of

Arguments

to

main

.

.

.

.

.

. 146

Calling

Functions

and

Passing

Arguments

.

.

.

. 147

Passing

Arguments

by

Value

.

.

.

.

.

.

. 148

Passing

Arguments

by

Reference

.

.

.

.

.

. 149

Default

Arguments

in

C++

Functions

.

.

.

.

. 150

Restrictions

on

Default

Arguments

.

.

.

.

. 151

Evaluating

Default

Arguments

.

.

.

.

.

. 152

Function

Return

Values

.

.

.

.

.

.

.

.

.

. 153

Using

References

as

Return

Types

.

.

.

.

. 154

Allocation

and

Deallocation

Functions

.

.

.

.

. 154

Pointers

to

Functions

.

.

.

.

.

.

.

.

.

.

. 155

Inline

Functions

.

.

.

.

.

.

.

.

.

.

.

. 156

Chapter

8.

Statements

.

.

.

.

.

.

. 157

Labels

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

Expression

Statements

.

.

.

.

.

.

.

.

.

. 158

Resolving

Ambiguous

Statements

in

C++

.

.

. 158

Block

Statement

.

.

.

.

.

.

.

.

.

.

.

. 159

if

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

. 160

switch

Statement

.

.

.

.

.

.

.

.

.

.

.

. 162

while

Statement

.

.

.

.

.

.

.

.

.

.

.

. 165

do

Statement

.

.

.

.

.

.

.

.

.

.

.

.

. 166

for

Statement

.

.

.

.

.

.

.

.

.

.

.

.

. 167

break

Statement

.

.

.

.

.

.

.

.

.

.

.

. 169

continue

Statement

.

.

.

.

.

.

.

.

.

.

. 169

return

Statement

.

.

.

.

.

.

.

.

.

.

.

. 171

Value

of

a

return

Expression

and

Function

Value

172

goto

Statement

.

.

.

.

.

.

.

.

.

.

.

.

. 172

iv

ILE

C/C++

Language

Reference

Null

Statement

.

.

.

.

.

.

.

.

.

.

.

.

. 173

Chapter

9.

Preprocessor

Directives

175

Preprocessor

Overview

.

.

.

.

.

.

.

.

.

. 175

Preprocessor

Directive

Format

.

.

.

.

.

.

.

. 176

Macro

Definition

and

Expansion

(#define)

.

.

.

. 176

Object-Like

Macros

.

.

.

.

.

.

.

.

.

. 177

Function-Like

Macros

.

.

.

.

.

.

.

.

. 177

Scope

of

Macro

Names

(#undef)

.

.

.

.

.

.

. 180

#

Operator

.

.

.

.

.

.

.

.

.

.

.

.

.

. 180

Macro

Concatenation

with

the

##

Operator

.

.

. 181

Preprocessor

Error

Directive

(#error)

.

.

.

.

.

. 182

File

Inclusion

(#include)

.

.

.

.

.

.

.

.

.

. 183

ISO

Standard

Predefined

Macro

Names

.

.

.

. 184

Conditional

Compilation

Directives

.

.

.

.

.

. 185

#if,

#elif

.

.

.

.

.

.

.

.

.

.

.

.

.

. 186

#ifdef

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

#ifndef

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

#else

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 188

#endif

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 188

Line

Control

(#line)

.

.

.

.

.

.

.

.

.

.

. 189

Null

Directive

(#)

.

.

.

.

.

.

.

.

.

.

.

. 190

Pragma

Directives

(#pragma)

.

.

.

.

.

.

.

. 190

Chapter

10.

Namespaces

.

.

.

.

.

. 191

Defining

Namespaces

.

.

.

.

.

.

.

.

.

. 191

Declaring

Namespaces

.

.

.

.

.

.

.

.

.

. 191

Creating

a

Namespace

Alias

.

.

.

.

.

.

.

. 191

Creating

an

Alias

for

a

Nested

Namespace

.

.

. 192

Extending

Namespaces

.

.

.

.

.

.

.

.

.

. 192

Namespaces

and

Overloading

.

.

.

.

.

.

.

. 193

Unnamed

Namespaces

.

.

.

.

.

.

.

.

.

. 193

Namespace

Member

Definitions

.

.

.

.

.

.

. 195

Namespaces

and

Friends

.

.

.

.

.

.

.

.

. 195

Using

Directive

.

.

.

.

.

.

.

.

.

.

.

.

. 196

The

using

Declaration

and

Namespaces

.

.

.

. 196

Explicit

Access

.

.

.

.

.

.

.

.

.

.

.

.

. 197

Chapter

11.

Overloading

.

.

.

.

.

.

. 199

Overloading

Functions

.

.

.

.

.

.

.

.

.

. 199

Restrictions

on

Overloaded

Functions

.

.

.

. 200

Overloading

Operators

.

.

.

.

.

.

.

.

.

. 201

Overloading

Unary

Operators

.

.

.

.

.

.

. 202

Overloading

Increment

and

Decrement

.

.

.

. 203

Overloading

Binary

Operators

.

.

.

.

.

.

. 205

Overloading

Assignments

.

.

.

.

.

.

.

. 205

Overloading

Function

Calls

.

.

.

.

.

.

.

. 207

Overloading

Subscripting

.

.

.

.

.

.

.

. 208

Overloading

Class

Member

Access

.

.

.

.

. 209

Overload

Resolution

.

.

.

.

.

.

.

.

.

.

. 209

Implicit

Conversion

Sequences

.

.

.

.

.

. 210

Resolving

Addresses

of

Overloaded

Functions

211

Chapter

12.

Classes

.

.

.

.

.

.

.

. 213

Declaring

Class

Types

.

.

.

.

.

.

.

.

.

. 213

Using

Class

Objects

.

.

.

.

.

.

.

.

.

. 214

Classes

and

Structures

.

.

.

.

.

.

.

.

.

. 215

Scope

of

Class

Names

.

.

.

.

.

.

.

.

.

. 216

Incomplete

Class

Declarations

.

.

.

.

.

.

. 217

Nested

Classes

.

.

.

.

.

.

.

.

.

.

.

. 218

Local

Classes

.

.

.

.

.

.

.

.

.

.

.

. 220

Local

Type

Names

.

.

.

.

.

.

.

.

.

.

. 221

Chapter

13.

Class

Members

and

Friends

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

Class

Member

Lists

.

.

.

.

.

.

.

.

.

.

. 223

Data

Members

.

.

.

.

.

.

.

.

.

.

.

.

. 224

Member

Functions

.

.

.

.

.

.

.

.

.

.

. 224

const

and

volatile

Member

Functions

.

.

.

. 226

Virtual

Member

Functions

.

.

.

.

.

.

.

. 226

Special

Member

Functions

.

.

.

.

.

.

.

. 226

Member

Scope

.

.

.

.

.

.

.

.

.

.

.

.

. 226

Pointers

to

Members

.

.

.

.

.

.

.

.

.

.

. 228

The

this

Pointer

.

.

.

.

.

.

.

.

.

.

.

. 229

Static

Members

.

.

.

.

.

.

.

.

.

.

.

.

. 232

Using

the

Class

Access

Operators

with

Static

Members

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

Static

Data

Members

.

.

.

.

.

.

.

.

.

. 233

Static

Member

Functions

.

.

.

.

.

.

.

. 235

Member

Access

.

.

.

.

.

.

.

.

.

.

.

.

. 236

Friends

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

Friend

Scope

.

.

.

.

.

.

.

.

.

.

.

. 240

Friend

Access

.

.

.

.

.

.

.

.

.

.

.

. 243

Chapter

14.

Inheritance

.

.

.

.

.

.

. 245

Derivation

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

Inherited

Member

Access

.

.

.

.

.

.

.

.

. 250

Protected

Members

.

.

.

.

.

.

.

.

.

. 250

Access

Control

of

Base

Class

Members

.

.

.

. 251

The

using

Declaration

and

Class

Members

.

.

. 252

Overloading

Member

Functions

from

Base

and

Derived

Classes

.

.

.

.

.

.

.

.

.

.

. 253

Changing

the

Access

of

a

Class

Member

.

.

. 255

Multiple

Inheritance

.

.

.

.

.

.

.

.

.

.

. 256

Virtual

Base

Classes

.

.

.

.

.

.

.

.

.

. 257

Multiple

Access

.

.

.

.

.

.

.

.

.

.

. 258

Ambiguous

Base

Classes

.

.

.

.

.

.

.

. 259

Virtual

Functions

.

.

.

.

.

.

.

.

.

.

.

. 262

Ambiguous

Virtual

Function

Calls

.

.

.

.

. 266

Virtual

Function

Access

.

.

.

.

.

.

.

.

. 267

Abstract

Classes

.

.

.

.

.

.

.

.

.

.

.

. 268

Chapter

15.

Special

Member

Functions

.

.

.

.

.

.

.

.

.

.

.

.

. 271

Constructors

and

Destructors

Overview

.

.

.

. 271

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

.

. 272

Default

Constructors

.

.

.

.

.

.

.

.

.

. 273

Explicit

Initialization

with

Constructors

.

.

. 274

Initializing

Base

Classes

and

Members

.

.

.

. 276

Construction

Order

of

Derived

Class

Objects

279

Destructors

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

Free

Store

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

Temporary

Objects

.

.

.

.

.

.

.

.

.

.

. 287

User-Defined

Conversions

.

.

.

.

.

.

.

.

. 288

Conversion

by

Constructor

.

.

.

.

.

.

.

. 289

Conversion

Functions

.

.

.

.

.

.

.

.

. 291

Copy

Constructors

.

.

.

.

.

.

.

.

.

.

. 291

Copy

Assignment

Operators

.

.

.

.

.

.

.

. 293

Chapter

16.

Templates

.

.

.

.

.

.

. 295

Contents

v

Template

Parameters

.

.

.

.

.

.

.

.

.

.

. 296

Type

Template

Parameters

.

.

.

.

.

.

.

. 296

Non-Type

Template

Parameters

.

.

.

.

.

. 296

Template

Template

Parameters

.

.

.

.

.

. 297

Default

Arguments

for

Template

Parameters

.

. 297

Template

Arguments

.

.

.

.

.

.

.

.

.

.

. 298

Template

Type

Arguments

.

.

.

.

.

.

.

. 298

Template

Non-Type

Arguments

.

.

.

.

.

. 299

Template

Template

Arguments

.

.

.

.

.

. 300

Class

Templates

.

.

.

.

.

.

.

.

.

.

.

. 301

Class

Template

Declarations

and

Definitions

.

. 303

Static

Data

Members

and

Templates

.

.

.

.

. 303

Member

Functions

of

Class

Templates

.

.

.

. 304

Friends

and

Templates

.

.

.

.

.

.

.

.

. 304

Function

Templates

.

.

.

.

.

.

.

.

.

.

. 305

Template

Argument

Deduction

.

.

.

.

.

. 306

Deducing

Type

Template

Arguments

.

.

. 309

Deducing

Non-Type

Template

Arguments

310

Overloading

Function

Templates

.

.

.

.

.

. 311

Partial

Ordering

of

Function

Templates

.

.

.

. 312

Template

Instantiation

.

.

.

.

.

.

.

.

.

. 313

Implicit

Instantiation

.

.

.

.

.

.

.

.

.

. 313

Explicit

Instantiation

.

.

.

.

.

.

.

.

.

. 314

Template

Specialization

.

.

.

.

.

.

.

.

.

. 315

Explicit

Specialization

.

.

.

.

.

.

.

.

. 316

Definition

and

Declaration

of

Explicit

Specializations

.

.

.

.

.

.

.

.

.

.

. 317

Explicit

Specialization

and

Scope

.

.

.

.

. 317

Class

Members

of

Explicit

Specializations

317

Explicit

Specialization

of

Function

Templates

318

Explicit

Specialization

of

Members

of

Class

Templates

.

.

.

.

.

.

.

.

.

.

.

. 318

Partial

Specialization

.

.

.

.

.

.

.

.

.

. 320

Template

Parameter

and

Argument

Lists

of

Partial

Specializations

.

.

.

.

.

.

.

. 321

Matching

of

Class

Template

Partial

Specializations

.

.

.

.

.

.

.

.

.

.

. 322

Name

Binding

and

Dependent

Names

.

.

.

.

. 322

The

typename

Keyword

.

.

.

.

.

.

.

.

.

. 323

The

Keyword

template

as

Qualifier

.

.

.

.

.

. 324

Chapter

17.

Exception

Handling

.

.

. 327

The

try

Keyword

.

.

.

.

.

.

.

.

.

.

.

. 327

Nested

Try

Blocks

.

.

.

.

.

.

.

.

.

.

. 329

catch

Blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

Function

try

block

Handlers

.

.

.

.

.

.

. 330

Arguments

of

catch

Blocks

.

.

.

.

.

.

.

. 333

Matching

between

Exceptions

Thrown

and

Caught

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

Order

of

Catching

.

.

.

.

.

.

.

.

.

.

. 334

The

throw

Expression

.

.

.

.

.

.

.

.

.

. 335

Rethrowing

an

Exception

.

.

.

.

.

.

.

. 335

Stack

Unwinding

.

.

.

.

.

.

.

.

.

.

.

. 337

Exception

Specifications

.

.

.

.

.

.

.

.

.

. 338

Special

Exception

Handling

Functions

.

.

.

.

. 341

unexpected()

.

.

.

.

.

.

.

.

.

.

.

. 341

terminate()

.

.

.

.

.

.

.

.

.

.

.

.

. 342

set_unexpected()

and

set_terminate()

.

.

.

. 343

Example

Using

the

Exception

Handling

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

. 344

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 347

Programming

Interface

Information

.

.

.

.

.

. 349

Trademarks

and

Service

Marks

.

.

.

.

.

.

. 349

Industry

Standards

.

.

.

.

.

.

.

.

.

.

. 349

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 351

vi

ILE

C/C++

Language

Reference

About

This

Reference

The

C/C++

Language

Reference

describes

the

syntax,

semantics,

and

IBM

implementation

of

the

C

and

C++

programming

languages.

Syntax

and

semantics

constitute

a

complete

specification

of

a

programming

language,

but

complete

implementations

can

differ

because

of

extensions.

The

IBM

implementations

of

Standard

C

and

Standard

C++

attest

to

the

organic

nature

of

programming

languages,

reflecting

pragmatic

considerations

and

advances

in

programming

techniques,

which

are

factors

that

influence

growth

and

change.

The

language

extensions

to

C

and

C++

also

reflect

the

changing

needs

of

modern

programming

environments.

The

aims

of

this

reference

are

to

provide

a

description

of

the

C

and

C++

languages

outside

of

any

comprehensive

historical

context,

and

to

promote

a

programming

style

that

emphasizes

portability.

The

expression

Standard

C

is

a

generic

term

for

the

current

formal

definition

of

the

C

language,

preprocessor,

and

run-time

library.

The

expression

is

ambiguous

because

subsequent

formal

definitions

of

the

language

have

appeared

while

implementations

of

its

predecessors

are

still

in

use.

This

reference

describes

a

C

language

consistent

with

the

C89

language

level.

To

avoid

further

ambiguity

and

confusion

with

K&R

C,

this

reference

uses

ISO

C

to

mean

Standard

C,

avoiding

the

term

Standard

C,

and

the

term

Classic

C

to

refer

to

the

C

language

plus

the

generally

accepted

extensions

produced

by

Brian

Kernighan

and

Dennis

Ritchie

(K&R

C)

that

were

in

use

prior

to

ISO

C.

The

expression

Standard

C++

is

unambiguous

because

there

has

been

only

one

formal

definition

of

the

language.

The

focus

of

this

book

is

on

the

fundamentals

and

intricacies

of

the

C

and

C++

languages.

The

availability

of

a

particular

language

feature

at

a

particular

language

level

is

controlled

by

compiler

options.

Comprehensive

coverage

of

the

possibilities

offered

by

the

compiler

options

is

available

in

ILE

C/C++

Compiler

Reference.

The

C

and

C++

languages

described

in

this

reference

are

based

on

the

following

standards:

v

The

C

language

described

in

Programming

languages

–

C

(ISO/IEC

9899:1990),

henceforth

referred

to

as

C89.

This

was

the

first

ISO

C

standard.

v

The

C++

language

described

in

Programming

languages

–

C++

(ISO/IEC

14882:1998),

the

first

formal

definition

of

the

language.

2000400

The

C++

language

described

in

this

reference

is

consistent

with

Standard

C++

and

documents

the

features

supported

by

the

IBM

C++

compiler.

The

depth

of

coverage

assumes

some

previous

experience

with

C

or

another

programming

language.

The

intent

is

to

present

the

syntax

and

semantics

of

each

language

implementation

to

help

you

write

good

programs.

The

compiler

does

not

enforce

certain

conventions

of

programming

style,

even

though

they

lead

to

well-ordered

programs.

A

program

that

conforms

strictly

to

its

language

specification

will

have

maximum

portability

among

different

environments.

In

theory,

a

program

that

compiles

correctly

with

one

standards-conforming

compiler

will

compile

and

execute

correctly

under

all

other

conforming

compilers,

insofar

as

hardware

differences

©

Copyright

IBM

Corp.

1998,

2003

vii

permit.

A

program

that

correctly

exploits

the

extensions

to

the

language

that

are

provided

by

the

language

implementation

can

improve

the

efficiency

of

its

object

code.

Highlighting

Conventions

Bold

Identifies

commands,

keywords,

files,

directories,

and

other

items

whose

names

are

predefined

by

the

system.

Italics

Identify

parameters

whose

actual

names

or

values

are

to

be

supplied

by

the

programmer.

Italics

are

also

used

for

the

first

mention

of

new

terms.

Example

Identifies

examples

of

specific

data

values,

examples

of

text

similar

to

what

you

might

see

displayed,

examples

of

portions

of

program

code,

messages

from

the

system,

or

information

that

you

should

actually

type.

Examples

are

intended

to

be

instructional

and

do

not

attempt

to

minimize

run

time,

conserve

storage,

or

check

for

errors.

The

examples

do

not

demonstrate

all

of

the

possible

uses

of

language

constructs.

Some

examples

are

only

code

fragments

and

will

not

compile

without

additional

code.

How

to

Read

the

Syntax

Diagrams

v

Read

the

syntax

diagrams

from

left

to

right,

from

top

to

bottom,

following

the

path

of

the

line.

The

��───

symbol

indicates

the

beginning

of

a

command,

directive,

or

statement.

The

───�

symbol

indicates

that

the

command,

directive,

or

statement

syntax

is

continued

on

the

next

line.

The

�───

symbol

indicates

that

a

command,

directive,

or

statement

is

continued

from

the

previous

line.

The

───��

symbol

indicates

the

end

of

a

command,

directive,

or

statement.

Diagrams

of

syntactical

units

other

than

complete

commands,

directives,

or

statements

start

with

the

�───

symbol

and

end

with

the

───�

symbol.

Note:

In

the

following

diagrams,

statement

represents

a

C

or

C++

command,

directive,

or

statement.

v

Required

items

appear

on

the

horizontal

line

(the

main

path).

��

statement

required_item

��

v

Optional

items

appear

below

the

main

path.

��

statement

optional_item

��

v

If

you

can

choose

from

two

or

more

items,

they

appear

vertically,

in

a

stack.

If

you

must

choose

one

of

the

items,

one

item

of

the

stack

appears

on

the

main

path.

��

statement

required_choice1

required_choice2

��

If

choosing

one

of

the

items

is

optional,

the

entire

stack

appears

below

the

main

path.

viii

ILE

C/C++

Language

Reference

��

statement

optional_choice1

optional_choice2

��

The

item

that

is

the

default

appears

above

the

main

path.

��

statement

default_item

alternate_item

��

v

An

arrow

returning

to

the

left

above

the

main

line

indicates

an

item

that

can

be

repeated.

��

statement

�

repeatable_item

��

A

repeat

arrow

above

a

stack

indicates

that

you

can

make

more

than

one

choice

from

the

stacked

items,

or

repeat

a

single

choice.

v

Keywords

appear

in

nonitalic

letters

and

should

be

entered

exactly

as

shown

(for

example,

extern).

Variables

appear

in

italicized

lowercase

letters

(for

example,

identifier).

They

represent

user-supplied

names

or

values.

v

If

punctuation

marks,

parentheses,

arithmetic

operators,

or

other

such

symbols

are

shown,

you

must

enter

them

as

part

of

the

syntax.

The

following

syntax

diagram

example

shows

the

syntax

for

the

#pragma

comment

directive.

See

“Pragma

Directives

(#pragma)”

on

page

190

for

information

on

the

#pragma

directive.

�1�

This

is

the

start

of

the

syntax

diagram.

�2�

The

symbol

#

must

appear

first.

�3�

The

keyword

pragma

must

appear

following

the

#

symbol.

�4�

The

name

of

the

pragma

comment

must

appear

following

the

keyword

pragma.

�5�

An

opening

parenthesis

must

be

present.

�6�

The

comment

type

must

be

entered

only

as

one

of

the

types

indicated:

compiler,

date,

timestamp,

copyright,

or

user.

�7�

A

comma

must

appear

between

the

comment

type

copyright

or

user,

and

an

optional

character

string.

�8�

A

character

string

must

follow

the

comma.

The

character

string

must

be

enclosed

in

double

quotation

marks.

�9�

A

closing

parenthesis

is

required.

�10�

This

is

the

end

of

the

syntax

diagram.

�1�

�2�

�3�

�4�

�5�

�6�

�9�

�10�

��─#──pragma──comment──(─┬─────compiler────────────────────────┬──)─��

│

│

├─────date────────────────────────────┤

│

│

├─────timestamp───────────────────────┤

│

│

└──┬──copyright──┬──┬─────────────────┤

│

│

│

│

└──user───────┘

└──,─"characters"─┘

�7�

�8�

Reading

the

Syntax

Diagrams

About

This

Reference

ix

The

following

examples

of

the

#pragma

comment

directive

are

syntactically

correct

according

to

the

diagram

shown

above:

#pragma

comment(date)

#pragma

comment(user)

#pragma

comment(copyright,"This

text

will

appear

in

the

module")

Reading

the

Syntax

Diagrams

x

ILE

C/C++

Language

Reference

Chapter

1.

Scope

and

Linkage

Scope

is

the

largest

region

of

program

text

in

which

a

name

can

potentially

be

used

without

qualification

to

refer

to

an

entity;

that

is,

the

largest

region

in

which

the

name

potentially

is

valid.

Broadly

speaking,

scope

is

the

general

context

used

to

differentiate

the

meanings

of

entity

names.

The

rules

for

scope

combined

with

those

for

name

resolution

enable

the

compiler

to

determine

whether

a

reference

to

an

identifier

is

legal

at

a

given

point

in

a

file.

The

scope

of

a

declaration

and

the

visibility

of

an

identifier

are

related

but

distinct

concepts.

Scope

is

the

mechanism

by

which

it

is

possible

to

limit

the

visibility

of

declarations

in

a

program.

The

visibility

of

an

identifier

is

that

region

of

program

text

from

which

the

object

associated

with

the

identifier

can

be

legally

accessed.

Scope

can

exceed

visibility,

but

visibility

cannot

exceed

scope.

Scope

exceeds

visibility

when

a

duplicate

identifier

is

used

in

an

inner

declarative

region,

thereby

hiding

the

object

declared

in

the

outer

declarative

region.

The

original

identifier

cannot

be

used

to

access

the

first

object

until

the

scope

of

the

duplicate

identifier

(the

lifetime

of

the

second

object)

has

ended.

Thus,

the

scope

of

an

identifier

is

interrelated

with

the

storage

duration

of

the

identified

object,

which

is

the

length

of

time

that

an

object

remains

in

an

identified

region

of

storage.

The

lifetime

of

the

object

is

influenced

by

its

storage

duration,

which

in

turn

was

affected

by

the

scope

of

the

object

identifier.

Linkage

refers

to

the

use

or

availability

of

a

name

across

multiple

translation

units

or

within

a

single

translation

unit.

The

term

translation

unit

refers

to

a

source

code

file

plus

all

the

header

and

other

source

files

that

are

included

after

preprocessing

with

the

#include

directive,

minus

any

source

lines

skipped

because

of

conditional

preprocessing

directives.

Linkage

allows

the

correct

association

of

each

instance

of

an

identifier

with

one

particular

object

or

function.

Scope

and

linkage

are

distinguishable

in

that

scope

is

for

the

benefit

of

the

compiler,

whereas

linkage

is

for

the

benefit

of

the

binder.

During

the

translation

of

a

source

file

to

object

code,

the

compiler

keeps

track

of

the

identifiers

that

have

external

linkage

and

stores

them

as

exports

in

a

module.

The

binder

is

thereby

able

to

determine

which

names

have

external

linkage,

but

is

unaware

of

those

with

internal

or

no

linkage.

Related

References

v

“Program

Linkage”

on

page

6

Scope

The

scope

of

an

identifier

is

the

largest

region

of

the

program

text

in

which

the

identifier

can

potentially

be

used

to

refer

to

its

object.

In

C++,

the

object

being

referred

to

must

be

unique.

However,

the

name

to

access

the

object,

the

identifier

itself,

can

be

reused.

The

meaning

of

the

identifier

depends

upon

the

context

in

which

the

identifier

is

used.

Scope

is

the

general

context

used

to

distinguish

the

meanings

of

names.

The

scope

of

an

identifier

is

possibly

noncontiguous.

One

of

the

ways

that

breakage

occurs

is

when

the

same

name

is

reused

to

declare

a

different

entity,

thereby

creating

a

contained

declarative

region

(inner)

and

a

containing

declarative

©

Copyright

IBM

Corp.

1998,

2003

1

region

(outer).

Thus,

point

of

declaration

is

a

factor

affecting

scope.

Exploiting

the

possibility

of

a

noncontiguous

scope

is

the

basis

for

the

technique

called

information

hiding.

The

concept

of

scope

that

exists

in

C

was

expanded

and

refined

in

C++.

The

following

table

shows

the

kinds

of

scopes

and

the

minor

differences

in

terminology.

Kinds

of

scope

2000C

2000C++

block

local

function

function

function

prototype

function

prototype

file

(global)

global

namespace

namespace

class

In

all

declarations,

the

identifier

is

in

scope

before

the

initializer.

The

following

example

demonstrates

this:

int

x;

void

f()

{

int

x

=

x;

}

The

x

declared

in

function

f()

has

local

scope,

not

global

namespace

scope.

2000C++

The

remainder

of

this

section

pertains

to

C++

only.

Global

scope

or

global

namespace

scope

is

the

outermost

namespace

scope

of

a

program,

in

which

objects,

functions,

types

and

templates

can

be

defined.

A

user-defined

namespace

can

be

nested

within

the

global

scope

using

namespace

definitions,

and

each

user-defined

namespace

is

a

different

scope,

distinct

from

the

global

scope.

A

function

name

that

is

first

declared

as

a

friend

of

a

class

is

in

the

innermost

nonclass

scope

that

encloses

the

class.

A

function

name

that

is

first

declared

in

an

outer

namespace

will

not

be

used

as

the

friend

declaration.

For

example,

int

f();

namespace

A

{

class

X

{

friend

f();

//

refers

to

A::f()

not

to

::f();

}

f()

{

/*

definition

of

f()

*/

}

}

If

the

friend

function

is

a

member

of

another

class,

it

has

the

scope

of

that

class.

The

scope

of

a

class

name

first

declared

as

a

friend

of

a

class

is

the

first

nonclass

enclosing

scope.

The

implicit

declaration

of

the

class

is

not

visible

until

another

declaration

of

that

same

class

is

seen.

Scope

2

ILE

C/C++

Language

Reference

Local

Scope

A

name

has

local

scope

or

block

scope

if

it

is

declared

in

a

block.

A

name

with

local

scope

can

be

used

in

that

block

and

in

blocks

enclosed

within

that

block,

but

the

name

must

be

declared

before

it

is

used.

When

the

block

is

exited,

the

names

declared

in

the

block

are

no

longer

available.

Parameter

names

for

a

function

have

the

scope

of

the

outermost

block

of

that

function.

Also

if

the

function

is

declared

and

not

defined,

these

parameter

names

have

function

prototype

scope.

When

one

block

is

nested

inside

another,

the

variables

from

the

outer

block

are

usually

visible

in

the

nested

block.

However,

if

the

declaration

of

a

variable

in

a

nested

block

has

the

same

name

as

a

variable

that

is

declared

in

an

enclosing

block,

the

declaration

in

the

nested

block

hides

the

variable

that

was

declared

in

the

enclosing

block.

The

original

declaration

is

restored

when

program

control

returns

to

the

outer

block.

This

is

called

block

visibility.

Name

resolution

in

a

local

scope

begins

in

the

immediate

scope

in

which

the

name

is

used

and

continues

outward

with

each

enclosing

scope.

The

order

in

which

scopes

are

searched

during

name

resolution

causes

the

phenomenon

of

information

hiding.

A

declaration

in

an

enclosing

scope

is

hidden

by

a

declaration

of

the

same

identifier

in

a

nested

scope.

Related

References

v

“Block

Statement”

on

page

159

Function

Scope

The

only

type

of

identifier

with

function

scope

is

a

label

name.

A

label

is

implicitly

declared

by

its

appearance

in

the

program

text

and

is

visible

throughout

the

function

that

declares

it.

A

label

can

be

used

in

a

goto

statement

before

the

actual

label

is

seen.

Related

References

v

“Labels”

on

page

157

Function

Prototype

Scope

In

a

function

declaration

(also

called

a

function

prototype)

or

in

any

function

declarator—except

the

declarator

of

a

function

definition—parameter

names

have

function

prototype

scope.

Function

prototype

scope

terminates

at

the

end

of

the

nearest

enclosing

function

declarator.

Related

References

v

“Function

Declarations”

on

page

136

Global

Scope

2000C

A

name

has

global

scope

if

the

identifier’s

declaration

appears

outside

of

any

block.

A

name

with

global

scope

and

internal

linkage

is

visible

from

the

point

where

it

is

declared

to

the

end

of

the

translation

unit.

Scope

Chapter

1.

Scope

and

Linkage

3

2000C++ A

name

has

global

namespace

scope

if

the

identifier’s

declaration

appears

outside

of

all

blocks,

namespaces,

and

classes.

A

name

with

global

namespace

scope

and

internal

linkage

is

visible

from

the

point

where

it

is

declared

to

the

end

of

the

translation

unit.

A

name

with

global

(namespace)

scope

is

also

accessible

for

the

initialization

of

global

variables.

If

that

name

is

declared

extern,

it

is

also

visible

at

link

time

in

all

object

files

being

linked.

Related

References

v

Chapter

10,

“Namespaces,”

on

page

191

v

“Internal

Linkage”

on

page

7

Class

Scope

2000C++

A

name

declared

within

a

member

function

hides

a

declaration

of

the

same

name

whose

scope

extends

to

or

past

the

end

of

the

member

function’s

class.

When

the

scope

of

a

declaration

extends

to

or

past

the

end

of

a

class

definition,

the

regions

defined

by

the

member

definitions

of

that

class

are

included

in

the

scope

of

the

class.

Members

defined

lexically

outside

of

the

class

are

also

in

this

scope.

In

addition,

the

scope

of

the

declaration

includes

any

portion

of

the

declarator

following

the

identifier

in

the

member

definitions.

The

name

of

a

class

member

has

class

scope

and

can

only

be

used

in

the

following

cases:

v

In

a

member

function

of

that

class

v

In

a

member

function

of

a

class

derived

from

that

class

v

After

the

.

(dot)

operator

applied

to

an

instance

of

that

class

v

After

the

.

(dot)

operator

applied

to

an

instance

of

a

class

derived

from

that

class,

as

long

as

the

derived

class

does

not

hide

the

name

v

After

the

->

(arrow)

operator

applied

to

a

pointer

to

an

instance

of

that

class

v

After

the

->

(arrow)

operator

applied

to

a

pointer

to

an

instance

of

a

class

derived

from

that

class,

as

long

as

the

derived

class

does

not

hide

the

name

v

After

the

::

(scope

resolution)

operator

applied

to

the

name

of

a

class

v

After

the

::

(scope

resolution)

operator

applied

to

a

class

derived

from

that

class.

Related

References

v

Chapter

12,

“Classes,”

on

page

213

v

“Scope

of

Class

Names”

on

page

216

v

“Access

Control

of

Base

Class

Members”

on

page

251

Name

Spaces

of

Identifiers

Name

spaces

are

the

various

syntactic

contexts

within

which

an

identifier

can

be

used.

Within

the

same

context

and

the

same

scope,

an

identifier

must

uniquely

identify

an

entity.

Note

that

the

term

name

space

as

used

here

applies

to

C

as

well

as

C++

and

does

not

refer

to

the

C++

namespace

language

feature.

The

compiler

sets

up

name

spaces

to

distinguish

among

identifiers

referring

to

different

kinds

of

entities.

Identical

identifiers

in

different

name

spaces

do

not

interfere

with

each

other,

even

if

they

are

in

the

same

scope.

The

same

identifier

can

declare

different

objects

as

long

as

each

identifier

is

unique

within

its

name

space.

The

syntactic

context

of

an

identifier

within

a

program

lets

the

compiler

resolve

its

name

space

without

ambiguity.

Scope

4

ILE

C/C++

Language

Reference

Within

each

of

the

following

four

name

spaces,

the

identifiers

must

be

unique.

v

Tags

of

these

types

must

be

unique

within

a

single

scope:

–

Enumerations

–

Structures

and

unions
v

Members

of

structures,

unions,

and

classes

must

be

unique

within

a

single

structure,

union,

or

class

type.

v

Statement

labels

have

function

scope

and

must

be

unique

within

a

function.

v

All

other

ordinary

identifiers

must

be

unique

within

a

single

scope:

–

C

function

names

(C++

function

names

can

be

overloaded)

–

Variable

names

–

Names

of

function

parameters

–

Enumeration

constants

–

typedef

names.

You

can

redefine

identifiers

in

the

same

name

space

but

within

enclosed

program

blocks.

Structure

tags,

structure

members,

variable

names,

and

statement

labels

are

in

four

different

name

spaces.

No

name

conflict

occurs

among

the

items

named

student

in

the

following

example:

int

get_item()

{

struct

student

/*

structure

tag

*/

{

char

name[20];

/*

this

structure

member

may

not

be

named

student

*/

int

section;

int

id;

}

sam;

/*

this

structure

variable

should

not

be

named

student

*/

goto

student;

student:;

/*

null

statement

label

*/

return

0;

student

fred;

/*

legal

struct

declaration

in

C++

*/

}

The

compiler

interprets

each

occurrence

of

student

by

its

context

in

the

program.

For

example,

when

student

appears

after

the

keyword

struct,

it

is

a

structure

tag.

The

name

student

may

not

be

used

for

a

structure

member

of

struct

student.

When

student

appears

after

the

goto

statement,

the

compiler

passes

control

to

the

null

statement

label.

In

other

contexts,

the

identifier

student

refers

to

the

structure

variable.

Name

Hiding

2000C++

If

a

class

name

or

enumeration

name

is

in

scope

and

not

hidden

it

is

visible.

A

class

name

or

enumeration

name

can

be

hidden

by

an

explicit

declaration

of

that

same

name

—

as

an

object,

function,

or

enumerator

—

in

a

nested

declarative

region

or

derived

class.

The

class

name

or

enumeration

name

is

hidden

wherever

the

object,

function,

or

enumerator

name

is

visible.

This

process

is

referred

to

as

name

hiding.

In

a

member

function

definition,

the

declaration

of

a

local

name

hides

the

declaration

of

a

member

of

the

class

with

the

same

name.

The

declaration

of

a

member

in

a

derived

class

hides

the

declaration

of

a

member

of

a

base

class

of

the

same

name.

Name

Spaces

of

Identifiers

Chapter

1.

Scope

and

Linkage

5

Suppose

a

name

x

is

a

member

of

namespace

A,

and

suppose

that

the

members

of

namespace

A

are

visible

in

a

namespace

B

because

of

a

using

declaration.

A

declaration

of

an

object

named

x

in

namespace

B

will

hide

A::x.

The

following

example

demonstrates

this:

#include

<iostream>

#include

<typeinfo>

using

namespace

std;

namespace

A

{

char

x;

};

namespace

B

{

using

namespace

A;

int

x;

};

int

main()

{

cout

<<

typeid(B::x).name()

<<

endl;

}

The

following

is

the

output

of

the

above

example:

int

The

declaration

of

the

integer

x

in

namespace

B

hides

the

character

x

introduced

by

the

using

declaration.

Related

References

v

Chapter

12,

“Classes,”

on

page

213

v

“Member

Functions”

on

page

224

v

“Member

Scope”

on

page

226

v

Chapter

10,

“Namespaces,”

on

page

191

Program

Linkage

Linkage

determines

whether

identifiers

that

have

identical

names

refer

to

the

same

object,

function,

or

other

entity,

even

if

those

identifiers

appear

in

different

translation

units.

The

linkage

of

an

identifier

depends

on

how

it

was

declared.

There

are

three

types

of

linkages:

external,

internal,

and

no

linkage.

v

Identifiers

with

external

linkage

can

be

seen

(and

refered

to)

in

other

translation

units.

v

Identifiers

with

internal

linkage

can

only

be

seen

within

the

translation

unit.

v

Identifiers

with

no

linkage

can

only

be

seen

in

the

scope

in

which

they

are

defined.

Linkage

does

not

affect

scoping,

and

normal

name

lookup

considerations

apply.

2000400

You

can

have

linkage

between

translation

units

written

in

different

programming

languages,

which

is

called

language

linkage.

Language

linkage

enables

the

close

relationship

among

all

ILE

languages

by

allowing

code

in

one

ILE

language

to

link

with

code

written

in

another

ILE

language.

In

C++,

all

identifiers

have

a

language

linkage,

which

by

default

is

C++.

Language

linkage

must

be

consistent

across

translation

units.

Non-C

or

non-C++

language

linkage

implies

that

an

identifier

has

external

linkage.

For

iSeries-specific

usage

information,

see

″ILE

Calling

Conventions,″

chapter

25

in

ILE

C/C++

Programmer’s

Guide.

Name

Spaces

of

Identifiers

6

ILE

C/C++

Language

Reference

Internal

Linkage

The

following

kinds

of

identifiers

have

internal

linkage:

v

Objects,

references,

or

functions

explicitly

declared

static.

v

Objects

or

references

declared

in

namespace

scope

(or

global

scope

in

C)

with

the

specifier

const

and

neither

explicitly

declared

extern,

nor

previously

declared

to

have

external

linkage.

v

Data

members

of

an

anonymous

union.

v

2000C++

Function

templates

explicitly

declared

static.

v

2000C++

Identifiers

declared

in

the

unnamed

namespace.

A

function

declared

inside

a

block

will

usually

have

external

linkage.

An

object

declared

inside

a

block

will

usually

have

external

linkage

if

it

is

specified

extern.

If

a

variable

that

has

static

storage

is

defined

outside

a

function,

the

variable

has

internal

linkage

and

is

available

from

the

point

where

it

is

defined

to

the

end

of

the

current

translation

unit.

If

the

declaration

of

an

identifier

has

the

keyword

extern

and

if

a

previous

declaration

of

the

identifier

is

visible

at

namespace

or

global

scope,

the

identifier

has

the

same

linkage

as

the

first

declaration.

External

Linkage

2000C

In

global

scope,

identifiers

for

the

following

kinds

of

entities

declared

without

the

static

storage

class

specifier

have

external

linkage:

v

An

object.

v

A

function.

If

an

identifier

in

C

is

declared

with

the

extern

keyword

and

if

a

previous

declaration

of

an

object

or

function

with

the

same

identifier

is

visible,

the

identifier

has

the

same

linkage

as

the

first

declaration.

For

example,

a

variable

or

function

that

is

first

declared

with

the

keyword

static

and

later

declared

with

the

keyword

extern

has

internal

linkage.

However,

a

variable

or

function

that

has

no

linkage

and

was

later

declared

with

a

linkage

specifier

will

have

the

linkage

that

was

expressly

specified.

2000C++

In

namespace

scope,

the

identifiers

for

the

following

kinds

of

entities

have

external

linkage:

v

A

reference

or

an

object

that

does

not

have

internal

linkage.

v

A

function

that

does

not

have

internal

linkage.

v

A

named

class

or

enumeration.

v

An

unnamed

class

or

enumeration

defined

in

a

typedef

declaration.

v

An

enumerator

of

an

enumeration

that

has

external

linkage.

v

A

template,

unless

it

is

a

function

template

with

internal

linkage.

v

A

namespace,

unless

it

is

declared

in

an

unnamed

namespace.

If

the

identifier

for

a

class

has

external

linkage,

then,

in

the

implementation

of

that

class,

the

identifiers

for

the

following

will

also

have

external

linkage:

v

A

member

function.

v

A

static

data

member.

v

A

class

of

class

scope.

v

An

enumeration

of

class

scope.

Program

Linkage

Chapter

1.

Scope

and

Linkage

7

No

Linkage

The

following

kinds

of

identifiers

have

no

linkage:

v

Names

that

have

neither

external

or

internal

linkage

v

Names

declared

in

local

scopes

(with

exceptions

like

certain

entities

declared

with

the

extern

keyword)

v

Identifiers

that

do

not

represent

an

object

or

a

function,

including

labels,

enumerators,

typedef

names

that

refer

to

entities

with

no

linkage,

type

names,

function

parameters,

and

template

names

You

cannot

use

a

name

with

no

linkage

to

declare

an

entity

with

linkage.

For

example,

you

cannot

use

the

name

of

a

class

or

enumeration

or

a

typedef

name

referring

to

an

entity

with

no

linkage

to

declare

an

entity

with

linkage.

The

following

example

demonstrates

this:

int

main()

{

struct

A

{

};

//

extern

A

a1;

typedef

A

myA;

//

extern

myA

a2;

}

The

compiler

will

not

allow

the

declaration

of

a1

with

external

linkage.

Class

A

has

no

linkage.

The

compiler

will

not

allow

the

declaration

of

a2

with

external

linkage.

The

typedef

name

a2

has

no

linkage

because

A

has

no

linkage.

Linkage

Specifications

—

Linking

to

Non-C++

Programs

2000400

2000C

On

an

iSeries

system,

language

linkage

is

available

for

C

through

the

use

of

#pragma

argument.

See

chapter

3

″ILE

C/C++

Pragmas″

in

ILE

C/C++

Compiler

Reference

and

chapter

25

″ILE

Calling

Conventions″

in

ILE

C/C++

Programmer’s

Guide

for

more

information.

2000C++

Linkage

between

C++

and

non-C++

code

fragments

is

called

language

linkage.

All

function

types,

function

names,

and

variable

names

have

a

language

linkage,

which

by

default

is

C++.

You

can

link

C++

object

modules

to

object

modules

produced

using

other

source

languages

such

as

C

by

using

a

linkage

specification.

The

syntax

is:

��

extern

string_literal

�

declaration

{

}

declaration

��

The

string_literal

is

used

to

specify

the

linkage

associated

with

a

particular

function.

String

literals

used

in

linkage

specifications

should

be

considered

as

case-sensitive.

All

platforms

support

the

following

values

for

string_literal

"C++"

Unless

otherwise

specified,

objects

and

functions

have

this

default

linkage

specification.

"C"

Indicates

linkage

to

a

C

procedure

Calling

shared

libraries

that

were

written

before

C++

needed

to

be

taken

into

account

requires

the

#include

directive

to

be

within

an

extern

"C"

{}

declaration.

Program

Linkage

8

ILE

C/C++

Language

Reference

extern

"C"

{

#include

"shared.h"

}

The

following

example

shows

a

C

printing

function

that

is

called

from

C++.

//

in

C++

program

extern

"C"

int

displayfoo(const

char

*);

int

main()

{

return

displayfoo("hello");

}

/*

in

C

program

*/

#include

<stdio.h>

extern

int

displayfoo(const

char

*

str)

{

while

(*str)

{

putchar(*str);

putchar(’

’);

++str;

}

putchar(’\n’);

}

Name

Mangling

2000C++

Name

mangling

is

the

encoding

of

function

and

variable

names

into

unique

names

so

that

linkers

can

separate

common

names

in

the

language.

Type

names

may

also

be

mangled.

The

compiler

generates

function

names

with

an

encoding

of

the

types

of

the

function

arguments

when

the

module

is

compiled.

Name

mangling

is

commonly

used

to

facilitate

the

overloading

feature

and

visibility

within

different

scopes.

Name

mangling

also

applies

to

variable

names.

If

a

variable

is

in

a

namespace,

the

name

of

the

namespace

is

mangled

into

the

variable

name

so

that

the

same

variable

name

can

exist

in

more

than

one

namespace.

The

C++

compiler

also

mangles

C

variable

names

to

identify

the

namespace

in

which

the

C

variable

resides.

The

scheme

for

producing

a

mangled

name

differs

with

the

object

model

used

to

compile

the

source

code:

the

mangled

name

of

an

object

of

a

class

compiled

using

one

object

model

will

be

different

from

that

of

an

object

of

the

same

class

compiled

using

a

different

object

model.

The

object

model

is

controlled

by

compiler

option

or

by

pragma.

Name

mangling

is

not

desirable

when

linking

C

modules

with

libraries

or

object

files

compiled

with

a

C++

compiler.

To

prevent

the

C++

compiler

from

mangling

the

name

of

a

function,

you

can

apply

the

extern

"C"

linkage

specifier

to

the

declaration

or

declarations,

as

shown

in

the

following

example:

extern

"C"

{

int

f1(int);

int

f2(int);

int

f3(int);

};

This

declaration

tells

the

compiler

that

references

to

the

functions

f1,

f2,

and

f3

should

not

be

mangled.

The

extern

"C"

linkage

specifier

can

also

be

used

to

prevent

mangling

of

functions

that

are

defined

in

C++

so

that

they

can

be

called

from

C.

For

example,

Linkage

Specifications

Chapter

1.

Scope

and

Linkage

9

extern

"C"

{

void

p(int){

/*

not

mangled

*/

}

};

Linkage

Specifications

10

ILE

C/C++

Language

Reference

Chapter

2.

Lexical

Elements

A

lexical

element

refers

to

a

character

or

groupings

of

characters

that

may

legally

appear

in

a

source

file.

This

section

contains

discussions

of

the

basic

lexical

elements

and

conventions

of

the

C

and

C++

programming

languages:

tokens,

character

sets,

comments,

identifiers,

and

literals.

Tokens

Source

code

is

treated

during

preprocessing

and

compilation

as

a

sequence

of

tokens.

A

token

is

the

smallest

independent

unit

of

meaning

in

a

program,

as

defined

by

the

compiler.

There

are

five

different

types

of

tokens:

v

Identifiers

v

Keywords

v

Literals

v

Operators

v

Punctuators

Adjacent

identifiers,

keywords,

and

literals

must

be

separated

with

white

space.

Other

tokens

should

be

separated

by

white

space

to

make

the

source

code

more

readable.

White

space

includes

blanks,

horizontal

and

vertical

tabs,

new

lines,

form

feeds,

and

comments.

Punctuators

A

punctuator

is

a

token

that

has

syntactic

and

semantic

meaning

to

the

compiler,

but

the

exact

significance

depends

on

the

context.

A

punctuator

can

also

be

token

that

is

used

in

the

syntax

of

the

preprocessor.

At

the

C89

language

level,

a

punctuator

does

not

cause

an

action.

For

example,

a

comma

is

a

punctuator

in

an

argument

list

or

in

an

initializer

list,

but

is

an

operator

when

used

within

a

parenthesized

expression.

At

the

C89

language

level,

a

punctuator

can

be

a

character

that

separates

tokens,

such

as:

[

]

(

)

{

}

,

:

;

or

any

of

the

following:

*

=

...

#

C89

restricts

the

use

of

the

number

sign

#

to

preprocessor

directives

only.

2000C++

In

addition

to

the

C89

punctuators

and

preprocessing

tokens,

C++

increases

the

number

of

legal

tokens

for

a

punctuator

or

preprocessing

token

to

include

the

C

and

C++

operators.

A

punctuator

that

specifies

an

operation

to

be

performed

is

known

as

an

operator.

C++

allows

the

following

tokens,

which

include

preprocessing

tokens

that

are

converted

by

the

preprocessor

into

tokens

for

operators

and

punctuators:

.

->

++

--

.*

->*

&

+

-

~

!

::

/

%

<<

>>

new

delete

<

>

<=

>=

==

!=

©

Copyright

IBM

Corp.

1998,

2003

11

^

|

&&

||

?

*=

/=

%=

+=

-=

<<=

>>=

&=

^=

|=

##

<:

:>

<%

%>

%:

%:%:

and

and_eq

bitand

bitor

comp

not

not_eq

or

or_eq

xor

xor_eq

Alternative

Tokens

C

and

C++

provide

alternative

representations

for

some

operators

and

punctuators.

The

following

table

lists

the

operators

and

punctuators

and

their

alternative

representation:

Operator

or

Punctuator

Alternative

Representation

{

<%

}

%>

[

<:

]

:>

#

%:

##

%:%:

&&

and

|

bitor

||

or

^

xor

~

compl

&

bitand

&=

and_eq

|=

or_eq

^=

xor_eq

!

not

!=

not_eq

Source

Program

Character

Set

The

following

lists

the

basic

source

character

set

that

must

be

available

at

both

compile

and

run

time:

v

The

uppercase

and

lowercase

letters

of

the

English

alphabet

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

v

The

decimal

digits

0

through

9

0

1

2

3

4

5

6

7

8

9

v

The

following

graphic

characters:

!

"

#

%

&

’

(

)

*

+

,

-

.

/

:

;

<

=

>

?

[

\

]

_

{

}

~

–

The

caret

(^)

character

in

ASCII

(bitwise

exclusive

OR

symbol)

or

the

equivalent

not

(¬)

character

in

EBCDIC

–

The

split

vertical

bar

(¦)

character

in

ASCII,

which

may

be

represented

by

the

vertical

bar

(|)

character

on

EBCDIC

systems
v

The

space

character

v

The

control

characters

representing

new-line,

horizontal

tab,

vertical

tab,

and

form

feed,

and

end

of

string

(NULL

character)

Tokens

12

ILE

C/C++

Language

Reference

Depending

on

the

implementation

and

compiler

option,

other

specialized

identifiers,

such

as

the

dollar

sign

($)

or

characters

in

national

character

sets,

may

be

allowed

to

appear

in

an

identifier.

Escape

Sequences

You

can

represent

any

member

of

the

execution

character

set

by

an

escape

sequence.

They

are

primarily

used

to

put

nonprintable

characters

in

character

and

string

literals.

For

example,

you

can

use

escape

sequences

to

put

such

characters

as

tab,

carriage

return,

and

backspace

into

an

output

stream.

��

\

escape_sequence_character

x

hexadecimal_digits

octal_digits

��

An

escape

sequence

contains

a

backslash

(\)

symbol

followed

by

one

of

the

escape

sequence

characters

or

an

octal

or

hexadecimal

number.

A

hexadecimal

escape

sequence

contains

an

x

followed

by

one

or

more

hexadecimal

digits

(0-9,

A-F,

a-f).

An

octal

escape

sequence

uses

up

to

three

octal

digits

(0-7).

The

value

of

the

hexadecimal

or

octal

number

specifies

the

value

of

the

desired

character

or

wide

character.

Note:

The

line

continuation

sequence

(\

followed

by

a

new-line

character)

is

not

an

escape

sequence.

It

is

used

in

character

strings

to

indicate

that

the

current

line

continues

on

the

next

line.

The

escape

sequences

and

the

characters

they

represent

are:

Escape

Sequence

Character

Represented

\a

Alert

(bell,

alarm)

\b

Backspace

\f

Form

feed

(new

page)

\n

New-line

\r

Carriage

return

\t

Horizontal

tab

\v

Vertical

tab

\’

Single

quotation

mark

\"

Double

quotation

mark

\?

Question

mark

\\

Backslash

The

value

of

an

escape

sequence

represents

the

member

of

the

character

set

used

at

run

time.

Escape

sequences

are

translated

during

preprocessing.

For

example,

on

a

system

using

the

ASCII

character

codes,

the

value

of

the

escape

sequence

\x56

is

the

letter

V.

On

a

system

using

EBCDIC

character

codes,

the

value

of

the

escape

sequence

\xE5

is

the

letter

V.

Use

escape

sequences

only

in

character

constants

or

in

string

literals.

An

error

message

is

issued

if

an

escape

sequence

is

not

recognized.

In

string

and

character

sequences,

when

you

want

the

backslash

to

represent

itself

(rather

than

the

beginning

of

an

escape

sequence),

you

must

use

a

\\

backslash

escape

sequence.

For

example:

cout

<<

"The

escape

sequence

\\n."

<<

endl;

Character

Set

Chapter

2.

Lexical

elements

13

This

statement

results

in

the

following

output:

The

escape

sequence

\n.

The

Unicode

Standard

The

Unicode

Standard

is

the

specification

of

an

encoding

scheme

for

written

characters

and

text.

It

is

a

universal

standard

that

enables

consistent

encoding

of

multilingual

text

and

allows

text

data

to

be

interchanged

internationally

without

conflict.

The

ISO

standards

for

C

and

C++

refer

to

ISO/IEC

10646–1:2000,

Information

Technology—Universal

Multiple-Octet

Coded

Character

Set

(UCS).

(The

term

octet

is

used

by

ISO

to

refer

to

a

byte.)

The

ISO/IEC

10646

standard

is

more

restrictive

than

the

Unicode

Standard

in

the

number

of

encoding

forms:

a

character

set

that

conforms

to

ISO/IEC

10646

is

also

conformant

to

the

Unicode

Standard.

The

Unicode

Standard

specifies

a

unique

numeric

value

and

name

for

each

character

and

defines

three

encoding

forms

for

the

bit

representation

of

the

numeric

value.

The

name/value

pair

creates

an

identity

for

a

character.

The

hexadecimal

value

representing

a

character

is

called

a

code

point.

The

specification

also

describes

overall

character

properties,

such

as

case,

directionality,

alphabetic

properties,

and

other

semantic

information

for

each

character.

Modeled

on

ASCII,

the

Unicode

Standard

treats

alphabetic

characters,

ideographic

characters,

and

symbols,

and

allows

implementation-defined

character

codes

in

reserved

code

point

ranges.

The

encoding

scheme

of

the

Unicode

Standard

is

therefore

sufficiently

flexible

to

handle

all

known

character

encoding

requirements,

including

coverage

of

historical

scripts

from

any

country

in

the

world.

C++

allows

the

universal

character

name

construct

defined

in

ISO/IEC

10646

to

represent

characters

outside

the

basic

source

character

set.

The

universal

character

name

is

permitted

in

identifiers,

character

constants,

and

string

literals.

This

language

feature

is

independent

of

the

language

level

specified

at

compile

time.

The

following

table

shows

the

generic

universal

character

name

construct

and

how

it

corresponds

to

the

ISO/IEC

10646

short

name.

Universal

character

name

ISO/IEC

10646

short

name

\UNNNNNNNN

NNNNNNNN

\uNNNN

0000NNNN

where

N

is

a

hexadecimal

digit

C++

disallows

the

hexadecimal

values

representing

characters

in

the

base

source

code

set

and

the

code

points

reserved

by

ISO/IEC

10646

for

control

characters.

The

following

characters

are

also

disallowed:

v

Any

character

whose

short

identifier

is

less

than

00A0.

The

exceptions

are

0024

($),

0040

(@),

or

0060

(`).

v

Any

character

whose

short

identifier

is

in

the

code

point

range

D800

through

DFFF

inclusive.

Trigraph

Sequences

Some

characters

from

the

C

and

C++

character

set

are

not

available

in

all

environments.

You

can

enter

these

characters

into

a

C

or

C++

source

program

using

a

sequence

of

three

characters

called

a

trigraph.

The

trigraph

sequences

are:

Trigraph

Single

character

Description

??=

#

pound

sign

Character

Set

14

ILE

C/C++

Language

Reference

Trigraph

Single

character

Description

??(

[

left

bracket

??)

]

right

bracket

??<

{

left

brace

??>

}

right

brace

??/

\

backslash

??’

^

caret

??!

|

vertical

bar

??-

~

tilde

The

preprocessor

replaces

trigraph

sequences

with

the

corresponding

single-character

representation.

Multibyte

Characters

A

multibyte

character

is

a

character

whose

bit

representation

fits

into

one

or

more

bytes

and

is

a

member

of

the

extended

character

set.

The

extended

character

set

is

a

superset

of

the

basic

character

set.

The

term

wide

character

is

a

character

whose

bit

representation

accommodates

an

object

of

type

wchar_t,

capable

of

representing

any

character

in

the

current

locale.

Related

References

v

“char

and

wchar_t

Type

Specifiers”

on

page

40

Comments

A

comment

is

text

replaced

during

preprocessing

by

a

single

space

character;

the

compiler

therefore

ignores

all

comments.

There

are

two

kinds

of

comments:

v

The

/*

(slash,

asterisk)

characters,

followed

by

any

sequence

of

characters

(including

new

lines),

followed

by

the

*/

characters.

This

kind

of

comment

is

commonly

called

a

C-style

comment.

v

2000C++

The

//

(two

slashes)

characters

followed

by

any

sequence

of

characters.

A

new

line

not

immediately

preceded

by

a

backslash

terminates

this

form

of

comment.

This

kind

of

comment

is

commonly

called

a

single-line

comment

or

a

C++

comment.

A

C++

comment

can

span

more

than

one

physical

source

line

if

it

is

joined

into

one

logical

source

line

with

line-continuation

(\)

characters.

The

backslash

character

can

also

be

represented

by

a

trigraph.

You

can

put

comments

anywhere

the

language

allows

white

space.

You

cannot

nest

C-style

comments

inside

other

C-style

comments.

Each

comment

ends

at

the

first

occurrence

of

*/.

Multibyte

characters

can

also

be

included

within

a

comment.

Note:

The

/*

or

*/

characters

found

in

a

character

constant

or

string

literal

do

not

start

or

end

comments.

In

the

following

program,

the

second

printf()

is

a

comment:

#include

<stdio.h>

int

main(void)

{

Character

Set

Chapter

2.

Lexical

elements

15

printf("This

program

has

a

comment.\n");

/*

printf("This

is

a

comment

line

and

will

not

print.\n");

*/

return

0;

}

Because

the

second

printf()

is

equivalent

to

a

space,

the

output

of

this

program

is:

This

program

has

a

comment.

Because

the

comment

delimiters

are

inside

a

string

literal,

printf()

in

the

following

program

is

not

a

comment.

#include

<stdio.h>

int

main(void)

{

printf("This

program

does

not

have

\

/*

NOT

A

COMMENT

*/

a

comment.\n");

return

0;

}

The

output

of

the

program

is:

This

program

does

not

have

/*

NOT

A

COMMENT

*/

a

comment.

In

the

following

example,

the

comments

are

highlighted:

/*

A

program

with

nested

comments.

*/

#include

<stdio.h>

int

main(void)

{

test_function();

return

0;

}

int

test_function(void)

{

int

number;

char

letter;

/*

number

=

55;

letter

=

’A’;

/*

number

=

44;

*/

*/

return

999;

}

In

test_function,

the

compiler

reads

the

first

/*

through

to

the

first

*/.

The

second

*/

causes

an

error.

To

avoid

commenting

over

comments

already

in

the

source

code,

you

should

use

conditional

compilation

preprocessor

directives

to

cause

the

compiler

to

bypass

sections

of

a

program.

For

example,

instead

of

commenting

out

the

above

statements,

change

the

source

code

in

the

following

way:

/*

A

program

with

conditional

compilation

to

avoid

nested

comments.

*/

#define

TEST_FUNCTION

0

#include

<stdio.h>

int

main(void)

{

test_function();

return

0;

}

Comments

16

ILE

C/C++

Language

Reference

int

test_function(void)

{

int

number;

char

letter;

#if

TEST_FUNCTION

number

=

55;

letter

=

’A’;

/*number

=

44;*/

#endif

/*TEST_FUNCTION

*/

}

You

can

nest

single

line

comments

within

C-style

comments.

For

example,

the

following

program

will

not

output

anything:

#include

<stdio.h>

int

main(void)

{

/*

printf("This

line

will

not

print.\n");

//

This

is

a

single

line

comment

//

This

is

another

single

line

comment

printf("This

line

will

also

not

print.\n");

*/

return

0;

}

Related

References

v

“Trigraph

Sequences”

on

page

14

Identifiers

Identifiers

provide

names

for

the

following

language

elements:

v

Functions

v

Objects

v

Labels

v

Function

parameters

v

Macros

and

macro

parameters

v

Typedefs

v

Enumerated

types

and

enumerators

v

Struct

and

union

names

v

2000C++

Classes

and

class

members

v

2000C++

Templates

v

2000C++

Template

parameters

v

2000C++

Namespaces

An

identifier

consists

of

an

arbitrary

number

of

letters,

digits,

or

the

underscore

character

in

the

form:

��

letter

_

�

letter

digit

_

��

2000C++

The

universal

character

names

for

letters

and

digits

outside

of

the

basic

source

character

set

are

also

allowed.

Comments

Chapter

2.

Lexical

elements

17

Reserved

Identifiers

Identifiers

with

two

initial

underscores

or

an

initial

underscore

followed

by

an

uppercase

letter

are

reserved

globally

for

the

use

by

the

compiler.

2000C

Identifiers

that

begin

with

an

underscore

are

reserved

as

identifiers

with

file

scope

in

both

the

ordinary

and

tag

name

spaces.

2000C++

C++

extends

the

C

reservations

to

include

more

identifiers

in

a

larger

name

space.

Any

name

that

contains

double

underscores

anywhere

is

reserved.

Any

identifier

that

begins

with

an

underscore

is

reserved

in

the

global

namespace.

Case

Sensitivity

and

Special

Characters

in

Identifiers

The

compiler

distinguishes

between

uppercase

and

lowercase

letters

in

identifiers.

For

example,

PROFIT

and

profit

represent

different

identifiers.

Avoid

creating

identifiers

that

begin

with

an

underscore

(_)

for

function

names

and

variable

names.

The

first

character

in

an

identifier

must

be

a

letter.

The

_

(underscore)

character

is

considered

a

letter;

however,

identifiers

beginning

with

an

underscore

are

reserved

by

the

compiler

for

identifiers

at

global

namespace

scope.

Identifiers

that

contain

two

consecutive

underscores

or

begin

with

an

underscore

followed

by

a

capital

letter

are

reserved

in

all

contexts.

You

should

always

include

the

appropriate

headers

when

using

standard

library

functions.

Although

the

names

of

system

calls

and

library

functions

are

not

reserved

words

if

you

do

not

include

the

appropriate

headers,

avoid

using

them

as

identifiers.

Duplication

of

a

predefined

name

can

lead

to

confusion

for

the

maintainers

of

your

code

and

can

cause

errors

at

link

time

or

run

time.

If

you

include

a

library

in

a

program,

be

aware

of

the

function

names

in

that

library

to

avoid

name

duplications.

You

should

always

include

the

appropriate

headers

when

using

standard

library

functions.

Keywords

Keywords

are

identifiers

reserved

by

the

language

for

special

use.

Although

you

can

use

them

for

preprocessor

macro

names,

it

is

poor

programming

style.

Only

the

exact

spelling

of

keywords

is

reserved.

For

example,

auto

is

reserved

but

AUTO

is

not.

The

following

lists

the

keywords

common

to

both

the

C

and

C++

languages:

auto

break

case

char

const

continue

default

do

double

else

enum

extern

float

for

goto

if

int

long

register

return

short

signed

sizeof

static

struct

switch

typedef

union

unsigned

void

volatile

while

Identifiers

18

ILE

C/C++

Language

Reference

2000C++ The

C++

language

also

reserves

the

following

keywords:

asm

bool

catch

class

const_cast

delete

dynamic_cast

explicit

export

false

friend

inline

mutable

namespace

new

operator

private

protected

public

reinterpret_cast

static_cast

template

this

throw

true

try

typeid

typename

using

virtual

wchar_t

Keywords

for

language

extensions

2000400

In

addition

to

standard

language

keywords,

ILE

C/C++

reserves

identifiers

for

language

extensions

and

for

future

use.

The

following

keywords

are

reserved

for

use

in

language

extensions:

decimal

_Decimal

__align

__alignof

_Packed

__ptr128

__ptr64

Alternative

Representations

of

Operators

and

Punctuators

In

addition

to

the

reserved

language

keywords,

the

following

alternative

representations

of

operators

and

punctuators

are

also

reserved

in

C

and

C++:

and

and_eq

bitand

bitor

compl

not

not_eq

or

or_eq

xor

xor_eq

Literals

The

term

literal

constant

or

literal

refers

to

a

value

that

occurs

in

a

program

and

cannot

be

changed.

The

C

language

uses

the

term

constant

in

place

of

the

noun

literal.

The

adjective

literal

adds

to

the

concept

of

a

constant

the

notion

that

we

can

speak

of

it

only

in

terms

of

its

value.

A

literal

constant

is

nonaddressable,

which

means

that

its

value

is

stored

somewhere

in

memory,

but

we

have

no

means

of

accessing

that

address.

Every

literal

has

a

value

and

a

data

type.

The

value

of

any

literal

does

not

change

while

the

program

runs

and

must

be

in

the

range

of

representable

values

for

its

type.

The

following

are

the

available

types

of

literals:

v

2000C++

Boolean

v

Integer

v

Character

v

Floating-point

v

2000400

Packed

decimal

v

String

Boolean

Literals

2000C++

There

are

only

two

boolean

literals:

true

and

false.

These

literals

have

type

bool

and

are

not

lvalues.

Related

References

v

“Boolean

Variables”

on

page

39

Identifiers

Chapter

2.

Lexical

elements

19

v

“Lvalues

and

Rvalues”

on

page

83

Integer

Literals

Integer

literals

can

represent

decimal,

octal,

or

hexadecimal

values.

They

are

numbers

that

do

not

have

a

decimal

point

or

an

exponential

part.

However,

an

integer

literal

may

have

a

prefix

that

specifies

its

base,

or

a

suffix

that

specifies

its

type.

��

decimal_constant

octal_constant

hexadecimal_constant

l

L

u

ll

U

LL

u

U

l

L

ll

LL

��

The

data

type

of

an

integer

literal

is

determined

by

its

form,

value,

and

suffix.

The

following

table

lists

the

integer

literals

and

shows

the

possible

data

types.

The

smallest

data

type

that

can

represent

the

constant

value

is

used

to

store

the

constant.

Integer

Literal

Possible

Data

Types

unsuffixed

decimal

int,

long

int,

unsigned

long

int,

long

long

int

unsuffixed

octal

int,

unsigned

int,

long

int,

unsigned

long

int,

long

long

int,

unsigned

long

long

int

unsuffixed

hexadecimal

int,

unsigned

int,

long

int,

unsigned

long

int,

long

long

int,

unsigned

long

long

int

decimal,

octal,

or

hexadecimal

suffixed

by

u

or

U

unsigned

int,

unsigned

long

int,

unsigned

long

long

int

decimal

suffixed

by

l

or

L

long

int,

long

long

int

octal

or

hexadecimal

suffixed

by

l

or

L

long

int,

unsigned

long

int,

long

long

int,

unsigned

long

long

int

decimal,

octal,

or

hexadecimal

suffixed

by

both

u

or

U,

and

l

or

L

unsigned

long

int,

unsigned

long

long

int

decimal

suffixed

by

ll

or

LL

long

long

int

octal

or

hexadecimal

suffixed

by

ll

or

LL

long

long

int,

unsigned

long

long

int

decimal,

octal,

or

hexadecimal

suffixed

by

both

u

or

U,

and

ll

or

LL

unsigned

long

long

int

A

plus

(+)

or

minus

(-)

symbol

can

precede

an

integer

literal.

The

operator

is

treated

as

a

unary

operator

rather

than

as

part

of

the

literal.

Decimal

Integer

Literals

A

decimal

integer

literal

contains

any

of

the

digits

0

through

9.

The

first

digit

cannot

be

0.

Literals

20

ILE

C/C++

Language

Reference

��

digit_1_to_9

�

digit_0_to_9

��

Integer

literals

beginning

with

the

digit

0

are

interpreted

as

an

octal

integer

literal

rather

than

as

a

decimal

integer

literal.

The

following

are

examples

of

decimal

literals:

485976

-433132211

+20

5

A

plus

(+)

or

minus

(-)

symbol

can

precede

the

decimal

integer

literal.

The

operator

is

treated

as

a

unary

operator

rather

than

as

part

of

the

literal.

Hexadecimal

Integer

Literals

A

hexadecimal

integer

literal

begins

with

the

0

digit

followed

by

either

an

x

or

X,

followed

by

any

combination

of

the

digits

0

through

9

and

the

letters

a

through

f

or

A

through

F.

The

letters

A

(or

a)

through

F

(or

f)

represent

the

values

10

through

15,

respectively.

��

0x

0X

�

digit_0_to_f

digit_0_to_F

��

The

following

are

examples

of

hexadecimal

integer

literals:

0x3b24

0XF96

0x21

0x3AA

0X29b

0X4bD

Octal

Integer

Literals

An

octal

integer

literal

begins

with

the

digit

0

and

contains

any

of

the

digits

0

through

7.

��

0

�

digit_0_to_7

��

The

following

are

examples

of

octal

integer

literals:

0

0125

034673

03245

Floating-Point

Literals

A

floating-point

literal

consists

of

the

following:

v

An

integral

part

v

A

decimal

point

v

A

fractional

part

v

An

exponent

part

Literals

Chapter

2.

Lexical

elements

21

v

An

optional

suffix

Both

the

integral

and

fractional

parts

are

made

up

of

decimal

digits.

You

can

omit

either

the

integral

part

or

the

fractional

part,

but

not

both.

You

can

omit

either

the

decimal

point

or

the

exponent

part,

but

not

both.

��

�

�

�

�

.

digit

digit

exponent

digit

.

exponent

digit

exponent

f

F

l

L

��

Exponent:

e

E

+

-

�

digit

The

magnitude

range

of

float

is

approximately

1.2e-38

to

3.4e38.

The

magnitude

range

of

double

or

long

double

is

approximately

2.2e-308

to

1.8e308.

If

a

floating-point

constant

is

too

large

or

too

small,

the

result

is

undefined

by

the

language.

The

suffix

f

or

F

indicates

a

type

of

float,

and

the

suffix

l

or

L

indicates

a

type

of

long

double.

If

a

suffix

is

not

specified,

the

floating-point

constant

has

a

type

double.

A

plus

(+)

or

minus

(-)

symbol

can

precede

a

floating-point

literal.

However,

it

is

not

part

of

the

literal;

it

is

interpreted

as

a

unary

operator.

The

following

are

examples

of

floating-point

literals:

Floating-Point

Constant

Value

5.3876e4

53,876

4e-11

0.00000000004

1e+5

100000

7.321E-3

0.007321

3.2E+4

32000

0.5e-6

0.0000005

0.45

0.45

6.e10

60000000000

2000C

When

you

use

the

printf

function

to

display

a

floating-point

constant

value,

make

certain

that

the

printf

conversion

code

modifiers

that

you

specify

are

large

enough

for

the

floating-point

constant

value.

Literals

22

ILE

C/C++

Language

Reference

Related

References

v

“Floating-Point

Variables”

on

page

40

v

“Unary

Expressions”

on

page

98

Packed

Decimal

Literals

2000400

2000C

A

packed

decimal

literal

is

a

kind

of

floating-point

literal

that

provides

the

ability

to

accurately

represent

large

numeric

quantities.

It

can

consist

of

an

integral

part,

a

decimal

point,

a

fractional

part,

and

the

mandatory

suffix

D.

A

packed

decimal

literal

can

have

up

to

sixty-three

significant

digits,

including

integral

and

fractional

parts.

A

packed

decimal

literal

is

of

the

form:

��

�

�

.

digit

digit

d

D

��

Both

the

integral

and

fractional

parts

are

made

up

of

decimal

digits.

You

can

omit

either

the

intergral

part

or

the

fractional

part,

but

not

both.

Related

References

v

See

ILE

C/C++

Programmer’s

Guide

for

more

information.

Character

Literals

A

character

literal

contains

a

sequence

of

characters

or

escape

sequences

enclosed

in

single

quotation

mark

symbols,

for

example

’c’.

A

character

literal

may

be

prefixed

with

the

letter

L,

for

example

L’c’.

A

character

literal

without

the

L

prefix

is

an

ordinary

character

literal

or

a

narrow

character

literal.

A

character

literal

with

the

L

prefix

is

a

wide

character

literal.

An

ordinary

character

literal

that

contains

more

than

one

character

or

escape

sequence

(excluding

single

quotes

(’),

backslashes

(\)

or

new-line

characters)

is

a

multicharacter

literal.

Character

literals

have

the

following

form:

��

L

'

�

character

escape_sequence

'

��

At

least

one

character

or

escape

sequence

must

appear

in

the

character

literal.

The

characters

can

be

from

the

source

program

character

set,

excluding

the

single

quotation

mark,

backslash

and

new-line

symbols.

A

character

literal

must

appear

on

a

single

logical

source

line.

2000C

A

character

literal

has

type

int.

2000C++

A

character

literal

that

contains

only

one

character

has

type

char,

which

is

an

integral

type.

In

both

C

and

C++,

a

wide

character

literal

has

type

wchar_t,

and

a

multicharacter

literal

has

type

int.

Literals

Chapter

2.

Lexical

elements

23

2000400 The

value

of

a

narrow

or

wide

character

literal

containing

a

single

character

is

the

numeric

representation

of

the

character

in

the

character

set

used

at

run

time.

The

lowest

four

bytes

represent

the

value

of

an

integer

character

literal

that

contains

more

than

one

character.

The

lowest

two

bytes

of

the

lowest

multibyte

charcacter

represent

the

value

of

a

wide

character

literal.

For

the

locale

type

utf

LOCALETYPE(*LOCALEUTF),

the

lowest

four

bytes

of

the

lowest

multibyte

character

represent

the

value

of

the

wide

character

literal.

You

can

represent

the

double

quotation

mark

symbol

by

itself,

but

you

must

use

the

backslash

symbol

followed

by

a

single

quotation

mark

symbol

(\’

escape

sequence)

to

represent

the

single

quotation

mark

symbol.

You

can

represent

the

new-line

character

by

the

\n

new-line

escape

sequence.

You

can

represent

the

backslash

character

by

the

\\

backslash

escape

sequence.

The

following

are

examples

of

character

literals:

’a’

’\’’

L’0’

’(’

Related

References

v

“char

and

wchar_t

Type

Specifiers”

on

page

40

String

Literals

A

string

literal

contains

a

sequence

of

characters

or

escape

sequences

enclosed

in

double

quotation

mark

symbols.

��

L

"

�

character

escape_sequence

"

��

A

string

literal

with

the

prefix

L

is

a

wide

string

literal.

A

string

literal

without

the

prefix

L

is

an

ordinary

or

narrow

string

literal.

2000C

The

type

of

a

narrow

string

literal

is

array

of

char

and

the

type

of

a

wide

string

literal

is

array

of

wchar_t.

2000C++

The

type

of

a

narrow

string

literal

is

array

of

const

char

and

the

type

of

a

wide

string

literal

is

array

of

const

wchar_t.

Both

types

have

static

storage

duration.

The

following

are

examples

of

string

literals:

char

titles[

]

=

"Handel’s

\"Water

Music\"";

char

*mail_addr

=

"Last

Name

First

Name

MI

Street

Address

\

City

Province

Postal

code

";

char

*temp_string

=

"abc"

"def"

"ghi";

/*

*temp_string

=

"abcdefghi\0"

*/

wchar_t

*wide_string

=

L"longstring";

A

null

('\0')

character

is

appended

to

each

string.

For

a

wide

string

literal,

the

value

'\0'

of

type

wchar_t

is

appended.

By

convention,

programs

recognize

the

end

of

a

string

by

finding

the

null

character.

Literals

24

ILE

C/C++

Language

Reference

Multiple

spaces

contained

within

a

string

literal

are

retained.

To

continue

a

string

on

the

next

line,

use

the

line

continuation

character

(\

symbol)

followed

by

optional

whitespace

and

a

new-line

character

(required).

In

the

following

example,

the

string

literal

second

causes

a

compile-time

error.

char

*first

=

"This

string

continues

onto

the

next\

line,

where

it

ends.";

/*

compiles

successfully.

*/

char

*second

=

"The

comment

makes

the

\

/*

continuation

symbol

*/

invisible

to

the

compiler.";

/*

compilation

error.

*/

Concatenation

Another

way

to

continue

a

string

is

to

have

two

or

more

consecutive

strings.

Adjacent

string

literals

will

be

concatenated

to

produce

a

single

string.

If

a

wide

string

literal

and

a

narrow

string

literal

are

adjacent

to

each

other,

the

resulting

behavior

is

undefined.

The

following

example

demonstrates

this:

"hello

"

"there"

/*

is

equivalent

to

"hello

there"

*/

"hello

"

L"there"

/*

the

behavior

at

the

C89

language

level

is

undefined

*/

"hello"

"there"

/*

is

equivalent

to

"hellothere"

*/

Characters

in

concatenated

strings

remain

distinct.

For

example,

the

strings

″\xab″

and

″3″

are

concatenated

to

form

″\xab3″.

However,

the

characters

\xab

and

3

remain

distinct

and

are

not

merged

to

form

the

hexadecimal

character

\xab3.

Following

any

concatenation,

'\0'

of

type

char

is

appended

at

the

end

of

each

string.

C++

programs

find

the

end

of

a

string

by

scanning

for

this

value.

For

a

wide

string

literal,

'\0'

of

type

wchar_t

is

appended.

For

example:

char

*first

=

"Hello

";

/*

stored

as

"Hello

\0"

*/

char

*second

=

"there";

/*

stored

as

"there\0"

*/

char

*third

=

"Hello

"

"there";

/*

stored

as

"Hello

there\0"

*/

Related

References

v

“char

and

wchar_t

Type

Specifiers”

on

page

40

v

“Type

Qualifiers”

on

page

57

v

“static

Storage

Class

Specifier”

on

page

34

Literals

Chapter

2.

Lexical

elements

25

Literals

26

ILE

C/C++

Language

Reference

Chapter

3.

Declarations

A

declaration

establishes

the

names

and

characteristics

of

data

objects

and

functions

used

in

a

program.

A

definition

allocates

storage

for

data

objects

or

specifies

the

body

for

a

function,

and

associates

an

identifier

with

that

object

or

function.

When

you

declare

or

define

a

type,

no

storage

is

allocated.

In

diverse

ways,

declarations

determine

the

interrelated

attributes

of

an

object:

storage

class,

type,

scope,

visibility,

storage

duration,

and

linkage.

Declaration

Overview

Declarations

determine

the

following

properties

of

data

objects

and

their

identifiers:

v

Scope,

which

describes

the

region

of

program

text

in

which

an

identifier

can

be

used

to

access

its

object.

v

Visibility,

which

describes

the

region

of

program

text

from

which

legal

access

can

be

made

to

the

identifier’s

object.

v

Duration,

which

defines

the

period

during

which

the

identifiers

have

real,

physical

objects

allocated

in

memory.

v

Linkage,

which

describes

the

correct

association

of

an

identifier

to

one

particular

object.

v

Type,

which

determines

how

much

memory

is

allocated

to

an

object

and

how

the

bit

patterns

found

in

the

storage

allocation

of

that

object

should

be

interpreted

by

the

program.

The

lexical

order

of

elements

of

a

declaration

for

a

data

object

is

as

follows:

v

Storage

duration

and

linkage

specification

v

Type

specification

v

Declarators,

which

introduce

identifiers

and

make

use

of

type

qualifiers

and

storage

qualifiers

v

Initializers,

which

initialize

storage

with

initial

values

All

data

declarations

have

the

form:

��

�

storage_class_specifier

type_specifier

type_qualifier

�

,

declarator

initializer

;

��

The

following

table

shows

examples

of

declarations

and

definitions.

The

identifiers

declared

in

the

first

column

do

not

allocate

storage;

they

refer

to

a

corresponding

definition.

In

the

case

of

a

function,

the

corresponding

definition

is

the

code

or

body

of

the

function.

The

identifiers

declared

in

the

second

column

allocate

storage;

they

are

both

declarations

and

definitions.

Declarations

Declarations

and

Definitions

extern

double

pi;

double

pi

=

3.14159265;

float

square(float

x);

float

square(float

x)

{

return

x*x;

}

©

Copyright

IBM

Corp.

1998,

2003

27

Declarations

Declarations

and

Definitions

struct

payroll;

struct

payroll

{

char

*name;

float

salary;

}

employee;

Related

References

v

Chapter

4,

“Declarators,”

on

page

63

The

__align

Specifier

2000400

The

__align

keyword

allows

you

to

specify

an

explicit

alignment

for

a

data

structure.

The

keyword

is

an

orthogonal

language

extension

intended

to

be

used

in

the

definition

of

an

aggregate

type

or

in

the

declaration

of

a

first-level

variable.

The

specified

byte

boundary

affects

the

alignment

of

an

aggregate

as

a

whole,

not

that

of

its

members.

The

__align

specifier

can

be

applied

to

an

aggregate

definition

nested

within

another

aggregate

definition,

but

not

to

individual

elements

of

an

aggregate

or

class.

The

alignment

specification

is

ignored

for

parameters

and

automatic

variables.

A

declaration

takes

one

of

the

following

forms:

��

declarator

__align

(

int_constant

)

identifier

;

��

Structure

or

union

syntax:

��

__align

(

int_constant

)

struct_or_union_specifier

{

struct_declaration_list

}

;

tag

��

where:

int_constant

Is

a

positive

integer

value

indicating

the

byte-alignment

boundary.

The

legal

values

are

1,

2,

4,

8,

or

16.

struct_or_union_specifier

Is

a

structure

or

union

specifier.

struct_declaration_list

Is

a

structure

declaration

list.

tag

Is

a

structure

or

union

identifier.

Restrictions

and

limitations

The

__align

specifier

cannot

be

used

where

the

size

of

the

variable

alignment

is

smaller

than

the

size

of

the

type

alignment.

Not

all

alignments

may

be

representable

in

an

object

file.

The

__align

specifier

cannot

be

applied

to

the

following:

v

Individual

elements

within

an

aggregate

definition.

v

Individual

elements

of

an

array.

v

Variables

of

incomplete

type.

v

Aggregates

declared

but

not

defined.

v

Other

types

of

declarations

or

definitions,

such

as

a

typedef,

a

function,

or

an

enumeration.

Declarations

28

ILE

C/C++

Language

Reference

2000400 The

alignment

of

an

aggregate

is

not

guaranteed

to

be

aligned

in

memory

on

the

boundary

specified

by

__align.

The

reason

is

that

certain

iSeries

types

require

a

specific

alignment.

If

an

aggregate

has

a

member

that

is

of

one

of

these

types,

the

alignment

specified

by

__align

on

the

aggregate

will

be

superseded

by

that

required

by

it

member.

For

example,

a

16-byte

iSeries

pointer

must

be

aligned

on

a

16-byte

boundary.

Objects

An

object

is

a

region

of

storage

that

contains

a

value

or

group

of

values.

Each

value

can

be

accessed

using

its

identifier

or

a

more

complex

expression

that

refers

to

the

object.

In

addition,

each

object

has

a

unique

data

type.

Both

the

identifier

and

data

type

of

an

object

are

established

in

the

object

declaration.

The

data

type

of

an

object

determines

the

initial

storage

allocation

for

that

object

and

the

interpretation

of

the

values

during

subsequent

access.

It

is

also

used

in

any

type

checking

operations.

Both

C

and

C++

have

built-in,

or

fundamental,

data

types

and

user-defined

data

types.

Standard

data

types

include

signed

and

unsigned

integers,

floating-point

numbers,

and

characters.

User-defined

types

include

enumerations,

structures,

and

unions.

All

C++

classes

are

considered

user-defined

types.

An

instance

of

a

class

type

is

commonly

called

a

class

object.

The

individual

class

members

are

also

called

objects.

The

set

of

all

member

objects

comprises

a

class

object.

Related

References

v

“Lvalues

and

Rvalues”

on

page

83

v

Chapter

12,

“Classes,”

on

page

213

Storage

Class

Specifiers

A

storage

class

specifier

is

used

to

refine

the

declaration

of

a

variable,

a

function,

and

parameters.

The

storage

class

specifier

used

within

the

declaration

determines

whether:

v

The

object

has

internal,

external,

or

no

linkage

v

The

object

is

to

be

stored

in

memory

or

in

a

register,

if

available

v

The

object

receives

the

default

initial

value

0

or

an

indeterminate

default

initial

value

v

The

object

can

be

referenced

throughout

a

program

or

only

within

the

function,

block,

or

source

file

where

the

variable

is

defined

v

The

storage

duration

for

the

object

is

static

(storage

is

maintained

throughout

program

run

time)

or

automatic

(storage

is

maintained

only

during

the

execution

of

the

block

where

the

object

is

defined)

For

a

variable,

its

default

storage

duration,

scope,

and

linkage

depend

on

where

it

is

declared:

whether

inside

or

outside

a

block

statement

or

the

body

of

a

function.

When

these

defaults

are

not

satisfactory,

you

can

specify

an

explicit

storage

class:

auto,

static,

extern,

or

register.

In

C++,

you

have

the

additional

option

of

being

able

to

specify

the

storage

class

mutable

for

a

class

data

member

to

make

it

modifiable,

even

though

the

member

is

part

of

an

object

that

has

been

declared

const.

For

a

function,

the

storage

class

specifier

determines

the

linkage

of

the

function.

The

only

options

are

extern

and

static.

A

function

that

is

declared

with

the

extern

Declarations

Chapter

3.

Declarations

29

storage

class

specifier

has

external

linkage,

which

means

that

it

can

be

called

from

other

translation

units.

A

function

declared

with

the

static

storage

class

specifier

has

internal

linkage,

which

means

that

it

may

be

called

only

within

the

translation

unit

in

which

it

is

defined.

The

default

for

a

function

is

external

linkage.

2000C

The

only

storage

class

that

can

be

specified

for

a

function

parameter

is

register.

The

reason

is

that

function

parameters

have

the

same

properties

as

auto

variables:

automatic

storage

duration,

block

scope,

and

no

linkage.

Declarations

with

the

auto

or

register

storage

class

specifier

result

in

automatic

storage.

Those

with

the

static

storage

class

specifier

result

in

static

storage.

Most

local

declarations

that

do

not

include

the

extern

storage

class

specifier

allocate

storage;

however,

function

declarations

and

type

declarations

do

not

allocate

storage.

The

only

storage

class

specifiers

allowed

in

a

namespace

or

global

scope

declaration

are

static

and

extern.

In

C++,

the

use

of

static

for

a

specifying

internal

linkage

is

deprecated.

Use

the

unnamed

namespace

instead.

The

storage

class

specifiers

in

C

and

C++

are:

v

auto

v

extern

v

2000C++

mutable

v

register

v

static

v

typedef

typedef

is

categorized

as

a

storage

class

specifier

because

of

similarities

in

syntax

rather

than

functionality

and

because

a

typedef

declaration

does

not

allocate

storage.

auto

Storage

Class

Specifier

The

auto

storage

class

specifier

lets

you

explicitly

declare

a

variable

with

automatic

storage.

The

auto

storage

class

is

the

default

for

variables

declared

inside

a

block.

A

variable

x

that

has

automatic

storage

is

deleted

when

the

block

in

which

x

was

declared

exits.

You

can

only

apply

the

auto

storage

class

specifier

to

names

of

variables

declared

in

a

block

or

to

names

of

function

parameters.

However,

these

names

by

default

have

automatic

storage.

Therefore

the

storage

class

specifier

auto

is

usually

redundant

in

a

data

declaration.

Initialization

You

can

initialize

any

auto

variable

except

parameters.

If

you

do

not

explicitly

initialize

an

automatic

object,

its

value

is

indeterminate.

If

you

provide

an

initial

value,

the

expression

representing

the

initial

value

can

be

any

valid

C

or

C++

expression.

The

object

is

then

set

to

that

initial

value

each

time

the

program

block

that

contains

the

object’s

definition

is

entered.

Note

that

if

you

use

the

goto

statement

to

jump

into

the

middle

of

a

block,

automatic

variables

within

that

block

are

not

initialized.

Storage

duration

Storage

Class

Specifiers

30

ILE

C/C++

Language

Reference

Objects

with

the

auto

storage

class

specifier

have

automatic

storage

duration.

Each

time

a

block

is

entered,

storage

for

auto

objects

defined

in

that

block

is

made

available.

When

the

block

is

exited,

the

objects

are

no

longer

available

for

use.

An

object

declared

with

no

linkage

specification

and

without

the

static

storage

class

specifier

has

automatic

storage

duration.

If

an

auto

object

is

defined

within

a

function

that

is

recursively

invoked,

memory

is

allocated

for

the

object

at

each

invocation

of

the

block.

Linkage

An

auto

variable

has

block

scope

and

no

linkage.

Related

References

v

“Block

Statement”

on

page

159

v

“goto

Statement”

on

page

172

v

“Function

Declarations”

on

page

136

extern

Storage

Class

Specifier

The

extern

storage

class

specifier

lets

you

declare

objects

and

functions

that

several

source

files

can

use.

An

extern

variable,

function

definition,

or

declaration

makes

the

described

variable

or

function

usable

by

the

succeeding

part

of

the

current

source

file.

This

declaration

does

not

replace

the

definition.

The

declaration

is

used

to

describe

the

variable

that

is

externally

defined.

An

extern

declaration

can

appear

outside

a

function

or

at

the

beginning

of

a

block.

If

the

declaration

describes

a

function

or

appears

outside

a

function

and

describes

an

object

with

external

linkage,

the

keyword

extern

is

optional.

If

you

do

not

specify

a

storage

class

specifier,

the

function

is

assumed

to

have

external

linkage.

If

a

declaration

for

an

identifier

already

exists

at

file

scope,

any

extern

declaration

of

the

same

identifier

found

within

a

block

refers

to

that

same

object.

If

no

other

declaration

for

the

identifier

exists

at

file

scope,

the

identifier

has

external

linkage.

It

is

an

error

to

include

a

declaration

for

the

same

function

with

the

storage

class

specifier

static

before

the

declaration

with

no

storage

class

specifier

because

of

the

incompatible

declarations.

Including

the

extern

storage

class

specifier

on

the

original

declaration

is

valid

and

the

function

has

internal

linkage.

2000C++

The

following

remarks

pertain

to

C++

only:

v

C++

restricts

the

use

of

the

extern

storage

class

specifier

to

the

names

of

objects

or

functions.

Using

the

extern

specifier

with

type

declarations

is

illegal.

v

In

C++,

an

extern

declaration

cannot

appear

in

class

scope.

Initialization

You

can

initialize

any

object

with

the

extern

storage

class

specifier

at

global

scope

in

C

or

at

namespace

scope

in

C++.

The

initializer

for

an

extern

object

must

either:

v

Appear

as

part

of

the

definition

and

the

initial

value

must

be

described

by

a

constant

expression.

OR

v

Reduce

to

the

address

of

a

previously

declared

object

with

static

storage

duration.

You

may

modify

this

object

with

pointer

arithmetic.

(In

other

words,

you

may

modify

the

object

by

adding

or

subtracting

an

integral

constant

expression.)

Storage

Class

Specifiers

Chapter

3.

Declarations

31

If

you

do

not

explicitly

initialize

an

extern

variable,

its

initial

value

is

zero

of

the

appropriate

type.

Initialization

of

an

extern

object

is

completed

by

the

time

the

program

starts

running.

Storage

duration

All

extern

objects

have

static

storage

duration.

Memory

is

allocated

for

extern

objects

before

the

main

function

begins

running,

and

is

freed

when

the

program

terminates.

The

scope

of

the

variable

depends

on

the

location

of

the

declaration

in

the

program

text.

If

the

declaration

appears

within

a

block,

the

variable

has

block

scope;

otherwise,

it

has

file

scope.

Linkage

2000C

Like

the

scope,

the

linkage

of

a

variable

declared

extern

depends

on

the

placement

of

the

declaration

in

the

program

text.

If

the

variable

declaration

appears

outside

of

any

function

definition

and

has

been

declared

static

earlier

in

the

file,

the

variable

has

internal

linkage;

otherwise,

it

has

external

linkage

in

most

cases.

All

object

declarations

that

occur

outside

a

function

and

that

do

not

contain

a

storage

class

specifier

declare

identifiers

with

external

linkage.

All

function

definitions

that

do

not

specify

a

storage

class

define

functions

with

external

linkage.

2000C++

For

objects

in

the

unnamed

namespace,

the

linkage

may

be

external,

but

the

name

is

unique,

and

so

from

the

perspective

of

other

translation

units,

the

name

effectively

has

internal

linkage.

Related

References

v

“External

Linkage”

on

page

7

v

“Internal

Linkage”

on

page

7

v

“static

Storage

Class

Specifier”

on

page

34

v

“Class

Scope”

on

page

4

v

Chapter

10,

“Namespaces,”

on

page

191

v

“Inline

Functions”

on

page

156

mutable

Storage

Class

Specifier

2000C++

The

mutable

storage

class

specifier

is

used

only

on

a

class

data

member

to

make

it

modifiable

even

though

the

member

is

part

of

an

object

declared

as

const.

You

cannot

use

the

mutable

specifier

with

names

declared

as

static

or

const,

or

reference

members.

class

A

{

public:

A()

:

x(4),

y(5)

{

};

mutable

int

x;

int

y;

};

int

main()

{

const

A

var2;

var2.x

=

345;

//

var2.y

=

2345;

}

Storage

Class

Specifiers

32

ILE

C/C++

Language

Reference

In

this

example,

the

compiler

would

not

allow

the

assignment

var2.y

=

2345

because

var2

has

been

declared

as

const.

The

compiler

will

allow

the

assignment

var2.x

=

345

because

A::x

has

been

declared

as

mutable.

register

Storage

Class

Specifier

The

register

storage

class

specifier

indicates

to

the

compiler

that

the

value

of

the

object

should

reside

in

a

machine

register.

The

compiler

is

not

required

to

honor

this

request.

Because

of

the

limited

size

and

number

of

registers

available

on

most

systems,

few

variables

can

actually

be

put

in

registers.

If

the

compiler

does

not

allocate

a

machine

register

for

a

register

object,

the

object

is

treated

as

having

the

storage

class

specifier

auto.

A

register

storage

class

specifier

indicates

that

the

object,

such

as

a

loop

control

variable,

is

heavily

used

and

that

the

programmer

hopes

to

enhance

performance

by

minimizing

access

time.

An

object

having

the

register

storage

class

specifier

must

be

defined

within

a

block

or

declared

as

a

parameter

to

a

function.

Initialization

You

can

initialize

any

register

object

except

parameters.

If

you

do

not

initialize

an

automatic

object,

its

value

is

indeterminate.

If

you

provide

an

initial

value,

the

expression

representing

the

initial

value

can

be

any

valid

C

or

C++

expression.

The

object

is

then

set

to

that

initial

value

each

time

the

program

block

that

contains

the

object’s

definition

is

entered.

Storage

duration

Objects

with

the

register

storage

class

specifier

have

automatic

storage

duration.

Each

time

a

block

is

entered,

storage

for

register

objects

defined

in

that

block

is

made

available.

When

the

block

is

exited,

the

objects

are

no

longer

available

for

use.

If

a

register

object

is

defined

within

a

function

that

is

recursively

invoked,

memory

is

allocated

for

the

variable

at

each

invocation

of

the

block.

Linkage

Since

a

register

object

is

treated

as

the

equivalent

to

an

object

of

the

auto

storage

class,

it

has

no

linkage.

2000C

Restrictions

v

The

register

storage

class

specifier

is

legal

only

for

variables

declared

in

a

block.

You

cannot

use

it

in

global

scope

data

declarations.

v

A

register

does

not

have

an

address.

Therefore,

you

cannot

apply

the

address

operator

(&)

to

a

register

variable.

2000C++

Restrictions

v

You

cannot

use

the

register

storage

class

specifier

when

declaring

objects

in

namespace

scope.

v

Unlike

C,

C++

lets

you

take

the

address

of

an

object

with

the

register

storage

class.

For

example:

register

int

i;

int*

b

=

&i;

//

valid

in

C++,

but

not

in

C

Storage

Class

Specifiers

Chapter

3.

Declarations

33

static

Storage

Class

Specifier

The

static

storage

class

specifier

lets

you

define

objects

or

functions

with

internal

linkage,

which

means

that

each

instance

of

a

particular

identifier

represents

the

same

object

or

function

within

one

file

only.

In

addition,

objects

declared

static

have

static

storage

duration,

which

means

that

memory

for

these

objects

is

allocated

when

the

program

begins

running

and

is

freed

when

the

program

terminates.

Static

storage

duration

for

an

object

is

different

from

file

or

global

scope:

an

object

can

have

static

duration

but

local

scope.

On

the

other

hand,

the

static

storage

class

specifier

can

be

used

in

a

function

declaration

only

if

it

is

at

file

scope.

The

static

storage

class

specifier

can

only

be

applied

to

the

following

names:

v

Objects

v

Functions

v

Class

members

v

Anonymous

unions

You

cannot

declare

any

of

the

following

as

static:

v

Type

declarations

v

Function

declarations

within

a

block

v

Function

parameters

2000C

The

keyword

static

is

the

major

mechanism

in

C

to

enforce

information

hiding.

C++

enforces

information

hiding

through

the

namespace

language

feature

and

the

access

control

of

classes.

2000C++

The

use

of

the

keyword

static

to

limit

the

scope

of

external

variables

is

deprecated

for

declaring

objects

in

namespace

scope.

Initialization

You

initialize

a

static

object

with

a

constant

expression,

or

an

expression

that

reduces

to

the

address

of

a

previously

declared

extern

or

static

object,

possibly

modified

by

a

constant

expression.

If

you

do

not

explicitly

initialize

a

static

(or

external)

variable,

it

will

have

a

value

of

zero

of

the

appropriate

type.

A

static

variable

in

a

block

is

initialized

only

one

time,

prior

to

program

execution,

whereas

an

auto

variable

that

has

an

initializer

is

initialized

every

time

it

comes

into

existence.

Each

time

a

recursive

function

is

called,

it

gets

a

new

set

of

auto

variables.

However,

if

the

function

has

a

static

variable,

the

same

storage

location

is

used

by

all

calls

of

the

function.

2000C++

A

static

object

of

class

type

will

use

the

default

constructor

if

you

do

not

initialize

it.

Automatic

and

register

variables

that

are

not

initialized

will

have

undefined

values.

In

C++,

you

may

initialize

a

static

object

with

a

non-constant

expression,

but

the

following

usage

has

been

deprecated:

static

int

staticInt

=

5;

int

main()

{

//

.

.

.

}

Storage

Class

Specifiers

34

ILE

C/C++

Language

Reference

C++

provides

the

namespaces

language

feature

to

limit

the

scope

of

external

variables.

Linkage

A

declaration

of

an

object

or

file

that

contains

the

static

storage

class

specifier

and

has

file

scope,

gives

the

identifier

internal

linkage.

Each

instance

of

the

particular

identifier

therefore

represents

the

same

object

or

function

within

one

file

only.

Example

Suppose

a

static

variable

x

has

been

declared

in

function

f().

When

the

program

exits

the

scope

of

f(),

x

is

not

destroyed.

The

following

example

demonstrates

this:

#include

<stdio.h>

int

f(void)

{

static

int

x

=

0;

x++;

return

x;

}

int

main(void)

{

int

j;

for

(j

=

0;

j

<

5;

j++)

{

printf("Value

of

f():

%d\n",

f());

}

return

0;

}

The

following

is

the

output

of

the

above

example:

Value

of

f():

1

Value

of

f():

2

Value

of

f():

3

Value

of

f():

4

Value

of

f():

5

Because

x

is

a

static

variable,

it

is

not

reinitialized

to

0

on

successive

calls

to

f().

typedef

A

typedef

declaration

lets

you

define

your

own

identifiers

that

can

be

used

in

place

of

type

specifiers

such

as

int,

float,

and

double.

A

typedef

declaration

does

not

reserve

storage.

The

names

you

define

using

typedef

are

not

new

data

types,

but

synonyms

for

the

data

types

or

combinations

of

data

types

they

represent.

The

name

space

for

a

typedef

name

is

the

same

as

other

identifiers.

When

an

object

is

defined

using

a

typedef

identifier,

the

properties

of

the

defined

object

are

exactly

the

same

as

if

the

object

were

defined

by

explicitly

listing

the

data

type

associated

with

the

identifier.

Examples

of

typedef

Declarations

The

following

statements

declare

LENGTH

as

a

synonym

for

int

and

then

use

this

typedef

to

declare

length,

width,

and

height

as

integer

variables:

typedef

int

LENGTH;

LENGTH

length,

width,

height;

The

following

declarations

are

equivalent

to

the

above

declaration:

int

length,

width,

height;

Storage

Class

Specifiers

Chapter

3.

Declarations

35

Similarly,

typedef

can

be

used

to

define

a

class

type

(structure,

union,

or

C++

class).

For

example:

typedef

struct

{

int

scruples;

int

drams;

int

grains;

}

WEIGHT;

The

structure

WEIGHT

can

then

be

used

in

the

following

declarations:

WEIGHT

chicken,

cow,

horse,

whale;

In

the

following

example,

the

type

of

yds

is

″pointer

to

function

with

no

parameter

specified,

returning

int″.

typedef

int

SCROLL();

extern

SCROLL

*yds;

In

the

following

typedefs,

the

token

struct

is

part

of

the

type

name:

the

type

of

ex1

is

struct

a;

the

type

of

ex2

is

struct

b.

typedef

struct

a

{

char

x;

}

ex1,

*ptr1;

typedef

struct

b

{

char

x;

}

ex2,

*ptr2;

Type

ex1

is

compatible

with

the

type

struct

a

and

the

type

of

the

object

pointed

to

by

ptr1.

Type

ex1

is

not

compatible

with

char,

ex2,

or

struct

b.

2000C++

The

remainder

of

this

section

pertains

to

C++

only.

In

C++,

a

typedef

name

must

be

different

from

any

class

type

name

declared

within

the

same

scope.

If

the

typedef

name

is

the

same

as

a

class

type

name,

it

can

only

be

so

if

that

typedef

is

a

synonym

of

the

class

name.

This

condition

is

not

the

same

as

in

C.

The

following

can

be

found

in

standard

C

headers:

typedef

class

C

{

/*

data

and

behavior

*/

}

C;

A

C++

class

defined

in

a

typedef

without

being

named

is

given

a

dummy

name

and

the

typedef

name

for

linkage.

Such

a

class

cannot

have

constructors

or

destructors.

For

example:

typedef

class

{

Trees();

}

Trees;

Here

the

function

Trees()

is

an

ordinary

member

function

of

a

class

whose

type

name

is

unspecified.

In

the

above

example,

Trees

is

an

alias

for

the

unnamed

class,

not

the

class

type

name

itself,

so

Trees()

cannot

be

a

constructor

for

that

class.

Type

Specifiers

Type

specifiers

indicate

the

type

of

the

object

or

function

being

declared.

The

following

are

the

available

kinds

of

type

specifiers:

v

Simple

type

specifiers

v

Enumerated

specifiers

v

const

and

volatile

qualifiers

v

2000C++

Class

specifiers

v

2000C++

Elaborated

type

specifiers

Storage

Class

Specifiers

36

ILE

C/C++

Language

Reference

The

term

scalar

types

collectively

refers

in

C

to

arithmetic

types

or

pointer

types.

In

C++,

scalar

types

include

all

the

cv-qualified

versions

of

the

C

scalar

types,

plus

all

the

cv-qualified

versions

of

enumeration

and

pointer-to-member

types.

The

term

aggregate

type

refers

in

both

C

and

C++

to

array

and

structure

types.

2000C++

In

C++,

types

must

be

declared

in

declarations.

They

may

not

be

declared

in

expressions.

Type

Names

A

data

type,

more

precisely,

a

type

name,

is

required

in

several

contexts

as

something

that

you

must

specify

without

declaring

an

object;

for

example,

when

writing

an

explicit

cast

expression

or

when

applying

the

sizeof

operator

to

a

type.

Syntactically,

the

name

of

a

data

type

is

the

same

as

a

declaration

of

a

function

or

object

of

that

type,

but

without

the

identifier.

To

read

or

write

a

type

name

correctly,

put

an

″imaginary″

identifier

within

the

syntax,

splitting

the

type

name

into

simpler

components.

For

example,

int

is

a

type

specifier,

and

it

always

appears

to

the

left

of

the

identifier

in

a

declaration.

An

imaginary

identifier

is

unnecessary

in

this

simple

case.

However,

int

*[5]

(an

array

of

5

pointers

to

int)

is

also

the

name

of

a

type.

The

type

specifier

int

*

always

appears

to

the

left

of

the

identifier,

and

the

array

subscripting

operator

always

appears

to

the

right.

In

this

case,

an

imaginary

identifier

is

helpful

in

distinguishing

the

type

specifier.

As

a

general

rule,

the

identifier

in

a

declaration

always

appears

to

the

left

of

the

subscripting

and

function

call

operators,

and

to

the

right

of

a

type

specifier,

type

qualifier,

or

indirection

operator.

Only

the

subscripting,

function

call,

and

indirection

operators

may

appear

in

a

declaration.

They

bind

according

to

normal

operator

precedence,

which

is

that

the

indirection

operator

is

of

lower

precedence

than

either

the

subscripting

or

function

call

operators,

which

have

equal

ranking

in

the

order

of

precedence.

Parentheses

may

be

used

to

control

the

binding

of

the

indirection

operator.

It

is

possible

to

have

a

type

name

within

a

type

name.

For

example,

in

a

function

type,

the

parameter

type

syntax

nests

within

the

function

type

name.

The

same

rules

of

thumb

still

apply,

recursively.

The

following

constructions

illustrate

applications

of

the

type

naming

rules.

int

*[5]

/*

array

of

5

pointers

to

int

*/

int

(*)[5]

/*

pointer

to

an

array

of

5

ints

*/

int

*()

/*

function

with

no

parameter

specification

returning

a

pointer

to

int

*/

int

(*)(void)

/*

function

with

no

parameters

returning

an

int

*/

int

(*const

[])(unsigned

int,

...)

/*

array

of

an

unspecified

number

of

constant

pointers

to

functions

returning

an

int

Each

function

takes

one

parameter

of

type

unsigned

int

and

an

unspecified

number

of

other

parameters

*/

The

compiler

turns

any

function

designator

into

a

pointer

to

the

function.

This

behavior

simplifies

the

syntax

of

function

calls.

int

foo(float);

/*

foo

is

a

function

designator

*/

int

(*p)(float);

/*

p

is

a

pointer

to

a

function

*/

p=&foo;

/*

legal,

but

redundant

*/

p=foo;

/*

legal

because

the

compiler

turns

foo

into

a

function

pointer

*/

Type

Specifiers

Chapter

3.

Declarations

37

2000C++ In

C++,

the

keywords

typename

and

class,

which

are

interchangeable,

indicate

the

name

of

the

type.

Compatible

Types

2000C

The

concept

of

compatible

types

combines

the

notions

of

being

able

to

use

two

types

together

without

modification

(as

in

an

assignment

expression),

being

able

to

substitute

one

for

the

other

without

modification,

and

uniting

them

into

a

composite

type.

A

composite

type

is

that

which

results

from

combining

two

compatible

types.

Determining

the

resultant

composite

type

for

two

compatible

types

is

similar

to

following

the

usual

binary

conversions

of

integral

types

when

they

are

combined

with

some

arithmetic

operators.

Obviously,

two

types

that

are

the

same

are

compatible;

their

composite

type

is

the

same

type.

Less

obvious

are

the

rules

governing

type

compatibility

of

non-identical

types,

function

prototypes,

and

type-qualified

types.

Names

in

typedef

definitions

are

only

synonyms

for

types,

and

so

typedef

names

can

possibly

indicate

identical

and

therefore

compatible

types.

Pointers,

functions,

and

arrays

with

certain

properties

can

also

be

compatible

types.

Identical

Types

The

presence

of

type

specifiers

in

various

combinations

for

arithmetic

types

may

or

may

not

indicate

different

types.

For

example,

the

type

signed

int

is

the

same

as

int,

except

when

used

as

the

types

of

bit

fields;

but

char,

signed

char,

and

unsigned

char

are

different

types.

The

presence

of

a

type

qualifier

changes

the

type.

That

is,

const

int

is

not

the

same

type

as

int,

and

therefore

the

two

types

are

not

compatible.

Two

arithmetic

types

are

compatible

only

if

they

are

the

same

type.

Compatibility

Across

Separately

Compiled

Source

Files

The

definition

of

a

structure,

union,

or

enumeration

results

in

a

new

type.

When

the

definitions

for

two

structures,

unions,

or

enumerations

are

defined

in

separate

source

files,

each

file

can

theoretically

contain

a

different

definition

for

an

object

of

that

type

with

the

same

name.

The

two

declarations

must

be

compatible,

or

the

run

time

behavior

of

the

program

is

undefined.

Therefore,

the

compatibility

rules

are

more

restrictive

and

specific

than

those

for

compatibility

within

the

same

source

file.

For

structure,

union,

and

enumeration

types

defined

in

separately

compiled

files,

the

composite

type

is

the

type

in

the

current

source

file.

The

requirements

for

compatibility

between

two

structure,

union,

or

enumerated

types

declared

in

separate

source

files

are

as

follows:

v

If

one

is

declared

with

a

tag,

the

other

must

also

be

declared

with

the

same

tag.

v

If

both

are

completed

types,

their

members

must

correspond

exactly

in

number,

be

declared

with

compatible

types,

and

have

matching

names.

For

enumerations,

corresponding

members

must

also

have

the

same

values.

For

structures

and

unions,

the

following

additional

requirements

must

be

met

for

type

compatibility:

v

Corresponding

members

must

be

declared

in

the

same

order

(applies

to

structures

only).

v

Corresponding

bit

fields

must

have

the

same

widths.

Type

Specifiers

38

ILE

C/C++

Language

Reference

2000C++ A

separate

notion

of

type

compatibility

as

distinct

from

being

of

the

same

type

does

not

exist

in

C++.

Generally

speaking,

type

checking

in

C++

is

stricter

than

in

C:

identical

types

are

required

in

situations

where

C

would

only

require

compatible

types.

Simple

Type

Specifiers

A

simple

type

specifier

either

specifies

a

(previously

declared)

user-defined

type

or

a

fundamental

type.

A

fundamental

type

is

a

one

that

is

built

into

the

language.

The

following

outline

shows

the

categories

of

fundamental

types:

v

Arithmetic

types

–

Integral

types

-

2000C++

bool

-

char

-

wchar_t

-

Signed

integer

types

v

signed

char

v

short

int

v

int

v

long

int
-

Unsigned

integer

types

v

unsigned

char

v

unsigned

short

int

v

unsigned

int

v

unsigned

long

int
–

Floating-point

types

-

float

-

double

-

long

double
v

void

Boolean

Variables

2000C++

Variables

of

type

bool

can

hold

either

one

of

two

values:

true

or

false.

An

rvalue

of

type

bool

can

be

promoted

to

an

integral

type.

A

bool

rvalue

of

false

is

promoted

to

the

value

0,

and

a

bool

rvalue

of

true

is

promoted

to

the

value

1.

The

result

of

the

equality,

relational,

and

logical

operators

is

of

type

bool:

either

of

the

Boolean

constants

true

or

false.

Use

the

type

specifier

bool

and

the

literals

true

and

false

to

make

boolean

logic

tests.

A

boolean

logic

test

is

used

to

express

the

results

of

a

logical

operation.

For

example:

bool

f(int

a,

int

b)

{

return

a==b;

}

If

a

and

b

have

the

same

value,

f()

returns

true.

If

not,

f()

returns

false.

Type

Specifiers

Chapter

3.

Declarations

39

char

and

wchar_t

Type

Specifiers

The

char

specifier

has

the

following

syntax:

��

unsigned

signed

char

��

The

char

specifier

is

an

integral

type.

A

char

has

enough

storage

to

represent

a

character

from

the

basic

character

set.

The

amount

of

storage

allocated

for

a

char

is

implementation-dependent.

You

initialize

a

variable

of

type

char

with

a

character

literal

(consisting

of

one

character)

or

with

an

expression

that

evaluates

to

an

integer.

Use

signed

char

or

unsigned

char

to

declare

numeric

variables

that

occupy

a

single

byte.

2000C++

For

the

purposes

of

distinguishing

overloaded

functions,

a

C++

char

is

a

distinct

type

from

signed

char

and

unsigned

char.

Examples

of

the

char

Type

Specifier

The

following

example

defines

the

identifier

end_of_string

as

a

constant

object

of

type

char

having

the

initial

value

\0

(the

null

character):

const

char

end_of_string

=

’\0’;

The

following

example

defines

the

unsigned

char

variable

switches

as

having

the

initial

value

3:

unsigned

char

switches

=

3;

The

following

example

defines

string_pointer

as

a

pointer

to

a

character:

char

*string_pointer;

The

following

example

defines

name

as

a

pointer

to

a

character.

After

initialization,

name

points

to

the

first

letter

in

the

character

string

"Johnny":

char

*name

=

"Johnny";

The

following

example

defines

a

one-dimensional

array

of

pointers

to

characters.

The

array

has

three

elements.

Initially

they

are

a

pointer

to

the

string

"Venus",

a

pointer

to

"Jupiter",

and

a

pointer

to

"Saturn":

static

char

*planets[

]

=

{

"Venus",

"Jupiter",

"Saturn"

};

The

wchar_t

Type

Specifier:

The

wchar_t

type

specifier

is

an

integral

type

that

has

enough

storage

to

represent

a

wide

character

literal.

(A

wide

character

literal

is

a

character

literal

that

is

prefixed

with

the

letter

L,

for

example

L’x’)

Floating-Point

Variables

There

are

three

types

of

floating-point

variables:

v

float

v

double

v

long

double

Type

Specifiers

40

ILE

C/C++

Language

Reference

To

declare

a

data

object

that

is

a

floating-point

type,

use

the

following

float

specifier:

��

float

double

long

double

��

The

declarator

for

a

simple

floating-point

declaration

is

an

identifier.

Initialize

a

simple

floating-point

variable

with

a

float

constant

or

with

a

variable

or

expression

that

evaluates

to

an

integer

or

floating-point

number.

The

storage

class

of

a

variable

determines

how

you

initialize

the

variable.

Examples

of

Floating-Point

Data

Types

The

following

example

defines

the

identifier

pi

as

an

object

of

type

double:

double

pi;

The

following

example

defines

the

float

variable

real_number

with

the

initial

value

100.55:

static

float

real_number

=

100.55f;

Note:

If

you

do

not

add

the

f

suffix

to

a

floating-point

literal,

that

number

will

be

of

type

double.

If

you

initialize

an

object

of

type

float

with

an

object

of

type

double,

the

compiler

will

implicitly

convert

the

object

of

type

double

to

an

object

of

type

float.

The

following

example

defines

the

float

variable

float_var

with

the

initial

value

0.0143:

float

float_var

=

1.43e-2f;

The

following

example

declares

the

long

double

variable

maximum:

extern

long

double

maximum;

The

following

example

defines

the

array

table

with

20

elements

of

type

double:

double

table[20];

Related

References

v

“Floating-Point

Literals”

on

page

21

v

“Assignment

Expressions”

on

page

120

Packed

Decimal

Variables

2000400

The

packed

decimal

data

type

is

supported

as

an

extension

to

ISO

C89

and

Standard

C++.

The

data

type

provides

the

ability

to

accurately

represent

large

numeric

quantities.

It

can

consist

of

an

integral

part,

a

decimal

point,

a

fractional

part,

and

the

suffix

D.

A

variable

of

packed

decimal

type

can

have

up

to

sixty-three

significant

digits,

including

integral

and

fractional

parts.

A

packed

decimal

data

type

is

of

the

form:

��

decimal

(

n

,

precision

)

_Decimal

��

where

n

represents

the

total

number

of

significant

digits,

to

a

maximum

of

value

of

Type

Specifiers

Chapter

3.

Declarations

41

63,

and

precision

represents

the

number

of

digits

of

precision.

The

value

of

precision

must

be

less

than

or

equal

to

n.

For

example,

decimal(4,2)

x

=

12.34D;

/*

Requires

#include

<decimal.h>

*/

_Decimal(4,2)

y

=

12.34d;

/*

Declaration

without

including

<decimal.h>

*/

See

″Using

Packed

Decimal

Data

in

a

C

Program,″

chapter

24

in

ILE

C/C++

Programmer’s

Guide.

Integer

Variables

Integer

variables

fall

into

the

following

categories:

v

integral

types

–

2000C++

bool

–

char

–

wchar_t

–

signed

integer

types

-

signed

char

-

short

int

-

int

-

long

int
–

unsigned

integer

types

-

unsigned

char

-

unsigned

short

int

-

unsigned

int

-

unsigned

long

int

The

default

integer

type

for

a

bit

field

is

unsigned.

The

amount

of

storage

allocated

for

integer

data

is

implementation-dependent.

The

unsigned

prefix

indicates

that

the

object

is

a

nonnegative

integer.

Each

unsigned

type

provides

the

same

size

storage

as

its

signed

equivalent.

For

example,

int

reserves

the

same

storage

as

unsigned

int.

Because

a

signed

type

reserves

a

sign

bit,

an

unsigned

type

can

hold

a

larger

positive

integer

value

than

the

equivalent

signed

type.

The

declarator

for

a

simple

integer

definition

or

declaration

is

an

identifier.

You

can

initialize

a

simple

integer

definition

with

an

integer

constant

or

with

an

expression

that

evaluates

to

a

value

that

can

be

assigned

to

an

integer.

The

storage

class

of

a

variable

determines

how

you

can

initialize

the

variable.

2000C++

When

the

arguments

in

overloaded

functions

and

overloaded

operators

are

integer

types,

two

integer

types

that

both

come

from

the

same

group

are

not

treated

as

distinct

types.

For

example,

you

cannot

overload

an

int

argument

against

a

signed

int

argument.

Examples

of

Integer

Data

Types

The

following

example

defines

the

short

int

variable

flag:

short

int

flag;

The

following

example

defines

the

int

variable

result:

int

result;

Type

Specifiers

42

ILE

C/C++

Language

Reference

The

following

example

defines

the

unsigned

long

int

variable

ss_number

as

having

the

initial

value

438888834

:

unsigned

long

ss_number

=

438888834ul;

void

Type

The

void

data

type

always

represents

an

empty

set

of

values.

The

only

object

that

can

be

declared

with

the

type

specifier

void

is

a

pointer.

When

a

function

does

not

return

a

value,

you

should

use

void

as

the

type

specifier

in

the

function

definition

and

declaration.

An

argument

list

for

a

function

taking

no

arguments

is

void.

You

cannot

declare

a

variable

of

type

void,

but

you

can

explicitly

convert

any

expression

to

type

void.

The

resulting

expression

can

only

be

used

as

one

of

the

following:

v

An

expression

statement

v

The

left

operand

of

a

comma

expression

v

The

second

or

third

operand

in

a

conditional

expression.

Example

of

void

Type

In

the

following

example,

the

function

find_max

is

declared

as

having

type

void.

Note:

2000C

The

use

of

the

sizeof

operator

in

the

line

find_max(numbers,

(sizeof(numbers)

/

sizeof(numbers[0])));

is

a

standard

method

of

determining

the

number

of

elements

in

an

array.

/**

**

Example

of

void

type

**/

#include

<stdio.h>

/*

declaration

of

function

find_max

*/

extern

void

find_max(int

x[

],

int

j);

int

main(void)

{

static

int

numbers[

]

=

{

99,

54,

-102,

89};

find_max(numbers,

(sizeof(numbers)

/

sizeof(numbers[0])));

return(0);

}

void

find_max(int

x[

],

int

j)

{

/*

begin

definition

of

function

find_max

*/

int

i,

temp

=

x[0];

for

(i

=

1;

i

<

j;

i++)

{

if

(x[i]

>

temp)

temp

=

x[i];

}

printf("max

number

=

%d\n",

temp);

}

/*

end

definition

of

function

find_max

*/

Compound

Types

2000C++

C++

formally

defines

the

concept

of

a

compound

type

and

how

one

can

be

constructed.

Many

of

the

compound

types

originated

in

C.

Type

Specifiers

Chapter

3.

Declarations

43

You

are

using

a

compound

type

when

you

construct

any

of

the

following:

v

An

array

of

objects

of

a

given

type

v

Any

functions,

which

have

parameters

of

a

given

type

and

return

void

or

objects

of

a

given

type

v

A

pointer

to

void,

to

an

object,

or

to

a

function

of

a

given

type

v

A

reference

to

an

object

or

function

of

a

given

type

v

A

class

v

A

union

v

An

enumeration

v

A

pointer

to

a

non-static

class

member

Structures

A

structure

contains

an

ordered

group

of

data

objects.

Unlike

the

elements

of

an

array,

the

data

objects

within

a

structure

can

have

varied

data

types.

Each

data

object

in

a

structure

is

a

member

or

field.

2000C++

In

C++,

a

structure

member

must

be

a

complete

type.

Use

structures

to

group

logically

related

objects.

For

example,

to

allocate

storage

for

the

components

of

one

address,

define

the

following

variables:

int

street_no;

char

*street_name;

char

*city;

char

*prov;

char

*postal_code;

To

allocate

storage

for

more

than

one

address,

group

the

components

of

each

address

by

defining

a

structure

data

type

and

as

many

variables

as

you

need

to

have

the

structure

data

type.

2000C++

In

C++,

a

structure

is

the

same

as

a

class

except

that

its

members

and

inheritance

are

public

by

default.

In

the

following

example,

line

int

street_no;

through

to

char

*postal_code;

declare

the

structure

tag

address:

struct

address

{

int

street_no;

char

*street_name;

char

*city;

char

*prov;

char

*postal_code;

};

struct

address

perm_address;

struct

address

temp_address;

struct

address

*p_perm_address

=

&perm_address;

The

variables

perm_address

and

temp_address

are

instances

of

the

structure

data

type

address.

Both

contain

the

members

described

in

the

declaration

of

address.

The

pointer

p_perm_address

points

to

a

structure

of

address

and

is

initialized

to

point

to

perm_address.

Refer

to

a

member

of

a

structure

by

specifying

the

structure

variable

name

with

the

dot

operator

(.)

or

a

pointer

with

the

arrow

operator

(->)

and

the

member

name.

For

example,

both

of

the

following:

perm_address.prov

=

"Ontario";

p_perm_address

->

prov

=

"Ontario";

Type

Specifiers

44

ILE

C/C++

Language

Reference

assign

a

pointer

to

the

string

"Ontario"

to

the

pointer

prov

that

is

in

the

structure

perm_address.

All

references

to

structures

must

be

fully

qualified.

In

the

example,

you

cannot

reference

the

fourth

field

by

prov

alone.

You

must

reference

this

field

by

perm_address.prov.

Structures

with

identical

members

but

different

names

are

not

compatible

and

cannot

be

assigned

to

each

other.

Structures

are

not

intended

to

conserve

storage.

If

you

need

direct

control

of

byte

mapping,

use

pointers.

Compatible

Structures

2000C

Each

structure

definition

creates

a

new

structure

type

that

is

neither

the

same

as

nor

compatible

with

any

other

structure

type

in

the

same

source

file.

However,

a

type

specifier

that

is

a

reference

to

a

previously

defined

structure

type

is

the

same

type.

The

structure

tag

associates

the

reference

with

the

definition,

and

effectively

acts

as

the

type

name.

To

illustrate

this,

only

the

types

of

structures

j

and

k

are

the

same.

struct

{

int

a;

int

b;

}

h;

struct

{

int

a;

int

b;

}

i;

struct

S

{

int

a;

int

b;

}

j;

struct

S

k;

Declaring

and

Defining

a

Structure:

A

structure

type

definition

describes

the

members

that

are

part

of

the

structure.

It

contains

the

struct

keyword

followed

by

an

optional

identifier

(the

structure

tag)

and

a

brace-enclosed

list

of

members.

A

declaration

of

a

structure

data

type

has

the

form:

��

struct

�

identifier

{

member

;

}

identifier

��

The

keyword

struct

followed

by

an

identifier

(tag)

gives

a

name

to

the

data

type.

If

you

do

not

provide

a

tag

name,

you

must

put

all

variable

definitions

that

refer

to

it

within

the

declaration

of

the

data

type.

A

structure

declaration

has

the

same

form

as

a

structure

definition

except

the

declaration

does

not

have

a

brace-enclosed

list

of

members.

A

structure

definition

has

the

same

form

as

the

declaration

of

that

structure

data

type,

but

ends

with

a

semicolon.

Defining

Structure

Members

The

list

of

members

provides

the

structure

data

type

with

a

description

of

the

values

that

can

be

stored

in

the

structure.

In

C,

a

structure

member

may

be

of

any

type

except

″function

returning

T″

(for

some

type

T),

any

incomplete

type,

and

void.

Because

incomplete

types

are

not

allowed

as

a

structure

member,

a

structure

type

may

not

contain

an

instance

of

itself

as

a

member,

but

is

allowed

to

contain

a

pointer

to

an

instance

of

itself.

Type

Specifiers

Chapter

3.

Declarations

45

The

definition

of

a

structure

member

has

the

form

of

a

variable

declaration.

The

names

of

structure

members

must

be

distinct

within

a

single

structure,

but

the

same

member

name

may

be

used

in

another

structure

type

that

is

defined

within

the

same

scope,

and

may

even

be

the

same

as

a

variable,

function,

or

type

name.

A

member

that

does

not

represent

a

bit

field

can

be

of

any

data

type,

which

can

be

qualified

with

either

of

the

type

qualifiers

volatile

or

const.

The

result

is

an

lvalue.

However,

a

bit

field

without

a

type

qualifier

can

be

declared

as

a

structure

member.

If

the

bit

field

is

unnamed,

it

does

not

participate

in

initialization,

and

will

have

indeterminate

value

after

initialization.

2000C

Structure

members

are

assigned

to

memory

addresses

in

increasing

order,

with

the

first

component

starting

at

the

beginning

address

of

the

structure

name

itself.

To

allow

proper

alignment

of

components,

holes

or

padding

may

appear

between

any

consecutive

members

in

the

structure

layout.

Defining

a

Structure

Variable:

2000C

A

structure

variable

definition

contains

an

optional

storage

class

keyword,

the

struct

keyword,

a

structure

tag,

a

declarator,

and

an

optional

identifier.

The

structure

tag

indicates

the

data

type

of

the

structure

variable.

2000C++

The

keyword

struct

is

optional

in

C++.

You

can

declare

structures

having

any

storage

class.

Structures

declared

with

the

register

storage

class

specifier

are

treated

as

automatic

structures.

Initializing

Structures:

An

initializer

for

a

structure

is

a

brace-enclosed

comma-separated

list

of

values.

An

initializer

is

preceded

by

an

equal

sign

(=).

In

the

absence

of

designations,

memory

for

structure

members

is

allocated

in

the

order

declared,

and

memory

address

are

assigned

in

increasing

order,

with

the

first

component

starting

at

the

beginning

address

of

the

structure

name

itself.

You

do

not

have

to

initialize

all

members

of

a

structure.

The

default

initializer

for

a

structure

with

static

storage

is

the

recursive

default

for

each

component;

a

structure

with

automatic

storage

has

none.

2000C

The

initializer

for

an

automatic

variable

of

a

structure

or

any

aggregate

type

must

be

a

constant

expression.

Example

The

following

definition

shows

a

completely

initialized

structure:

struct

address

{

int

street_no;

char

*street_name;

char

*city;

char

*prov;

char

*postal_code;

};

static

struct

address

perm_address

=

{

3,

"Savona

Dr.",

"Dundas",

"Ontario",

"L4B

2A1"};

The

values

of

perm_address

are:

Member

Value

perm_address.street_no

3

perm_address.street_name

address

of

string

"Savona

Dr."

perm_address.city

address

of

string

"Dundas"

perm_address.prov

address

of

string

"Ontario"

Type

Specifiers

46

ILE

C/C++

Language

Reference

perm_address.postal_code

address

of

string

"L4B

2A1"

The

following

definition

shows

a

partially

initialized

structure:

struct

address

{

int

street_no;

char

*street_name;

char

*city;

char

*prov;

char

*postal_code;

};

struct

address

temp_address

=

{

44,

"Knyvet

Ave.",

"Hamilton",

"Ontario"

};

The

values

of

temp_address

are:

Member

Value

temp_address.street_no

44

temp_address.street_name

address

of

string

"Knyvet

Ave."

temp_address.city

address

of

string

"Hamilton"

temp_address.prov

address

of

string

"Ontario"

temp_address.postal_code

value

depends

on

the

storage

class.

Note:

The

initial

value

of

uninitialized

structure

members

like

temp_address.postal_code

depends

on

the

storage

class

associated

with

the

member.

Declaring

Structure

Types

and

Variables

in

the

Same

Statement:

2000C

To

define

a

structure

type

and

a

structure

variable

in

one

statement,

put

a

declarator

and

an

optional

initializer

after

the

type

definition.

To

specify

a

storage

class

specifier

for

the

variable,

you

must

put

the

storage

class

specifier

at

the

beginning

of

the

statement.

For

example:

static

struct

{

int

street_no;

char

*street_name;

char

*city;

char

*prov;

char

*postal_code;

}

perm_address,

temp_address;

Because

this

example

does

not

name

the

structure

data

type,

perm_address

and

temp_address

are

the

only

structure

variables

that

will

have

this

data

type.

Putting

an

identifier

after

struct,

lets

you

make

additional

variable

definitions

of

this

data

type

later

in

the

program.

The

structure

type

(or

tag)

cannot

have

the

volatile

qualifier,

but

a

member

or

a

structure

variable

can

be

defined

as

having

the

volatile

qualifier.

For

example:

static

struct

class1

{

char

descript[20];

volatile

long

code;

short

complete;

}

volatile

file1,

file2;

struct

class1

subfile;

This

example

qualifies

the

structures

file1

and

file2,

and

the

structure

member

subfile.code

as

volatile.

Type

Specifiers

Chapter

3.

Declarations

47

Declaring

and

Using

Bit

Fields

in

Structures:

Both

C

and

C++

allow

integer

members

to

be

stored

into

memory

spaces

smaller

than

the

compiler

would

ordinarily

allow.

These

space-saving

structure

members

are

called

bit

fields,

and

their

width

in

bits

can

be

explicitly

declared.

Bit

fields

are

used

in

programs

that

must

force

a

data

structure

to

correspond

to

a

fixed

hardware

representation

and

are

unlikely

to

be

portable.

The

syntax

for

declaring

a

bit

field

is

as

follows:

��

type_specifier

:

declarator

constant_expression

;

��

A

bit

field

declaration

contains

a

type

specifier

followed

by

an

optional

declarator,

a

colon,

a

constant

integer

expression

that

indicates

the

field

width

in

bits,

and

a

semicolon.

A

bit

field

declaration

may

not

use

either

of

the

type

qualifiers,

const

or

volatile.

2000C++

C++

extends

the

list

of

allowable

types

for

bit

fields

to

include

any

integral

type

or

enumeration

type.

In

either

language,

when

you

assign

a

value

that

is

out

of

range

to

a

bit

field,

the

low-order

bit

pattern

is

preserved

and

the

appropriate

bits

are

assigned.

Bit

fields

with

a

length

of

0

must

be

unnamed.

Unnamed

bit

fields

cannot

be

referenced

or

initialized.

A

zero-width

bit

field

can

cause

the

next

field

to

be

aligned

on

the

next

container

boundary

where

the

container

is

the

same

size

as

the

underlying

type

of

the

bit

field.

The

following

restrictions

apply

to

bit

fields.

You

cannot:

v

Define

an

array

of

bit

fields

v

Take

the

address

of

a

bit

field

v

Have

a

pointer

to

a

bit

field

v

Have

a

reference

to

a

bit

field

The

following

structure

has

three

bit-field

members

kingdom,

phylum,

and

genus,

occupying

12,

6,

and

2

bits

respectively:

struct

taxonomy

{

int

kingdom

:

12;

int

phylum

:

6;

int

genus

:

2;

};

Alignment

of

Bit

Fields

If

a

series

of

bit

fields

does

not

add

up

to

the

size

of

an

int,

padding

can

take

place.

The

amount

of

padding

is

determined

by

the

alignment

characteristics

of

the

members

of

the

structure.

The

following

example

demonstrates

padding,

and

is

valid

for

all

implementations.

Suppose

that

an

int

occupies

4

bytes.

The

example

declares

the

identifier

kitchen

to

be

of

type

struct

on_off:

struct

on_off

{

unsigned

light

:

1;

unsigned

toaster

:

1;

int

count;

/*

4

bytes

*/

unsigned

ac

:

4;

Type

Specifiers

48

ILE

C/C++

Language

Reference

unsigned

:

4;

unsigned

clock

:

1;

unsigned

:

0;

unsigned

flag

:

1;

}

kitchen

;

The

structure

kitchen

contains

eight

members

totalling

16

bytes.

The

following

table

describes

the

storage

that

each

member

occupies:

Member

Name

Storage

Occupied

light

1

bit

toaster

1

bit

(padding

—

30

bits)

To

the

next

int

boundary

count

The

size

of

an

int

(4

bytes)

ac

4

bits

(unnamed

field)

1

bit

clock

1

bit

(padding

—

23

bits)

To

the

next

int

boundary

(unnamed

field)

flag

1

bit

(padding

—

31

bits)

To

the

next

int

boundary

All

references

to

structure

fields

must

be

fully

qualified.

For

instance,

you

cannot

reference

the

second

field

by

toaster.

You

must

reference

this

field

by

kitchen.toaster.

The

following

expression

sets

the

light

field

to

1:

kitchen.light

=

1;

When

you

assign

to

a

bit

field

a

value

that

is

out

of

its

range,

the

bit

pattern

is

preserved

and

the

appropriate

bits

are

assigned.

The

following

expression

sets

the

toaster

field

of

the

kitchen

structure

to

0

because

only

the

least

significant

bit

is

assigned

to

the

toaster

field:

kitchen.toaster

=

2;

Example

Program

Using

Structures:

The

following

program

finds

the

sum

of

the

integer

numbers

in

a

linked

list:

/**

**

Example

program

illustrating

structures

using

linked

lists

**/

#include

<stdio.h>

struct

record

{

int

number;

struct

record

*next_num;

};

int

main(void)

{

struct

record

name1,

name2,

name3;

struct

record

*recd_pointer

=

&name1;

int

sum

=

0;

name1.number

=

144;

name2.number

=

203;

Type

Specifiers

Chapter

3.

Declarations

49

name3.number

=

488;

name1.next_num

=

&name2;

name2.next_num

=

&name3;

name3.next_num

=

NULL;

while

(recd_pointer

!=

NULL)

{

sum

+=

recd_pointer->number;

recd_pointer

=

recd_pointer->next_num;

}

printf("Sum

=

%d\n",

sum);

return(0);

}

The

structure

type

record

contains

two

members:

the

integer

number

and

next_num,

which

is

a

pointer

to

a

structure

variable

of

type

record.

The

record

type

variables

name1,

name2,

and

name3

are

assigned

the

following

values:

Member

Name

Value

name1.number

144

name1.next_num

The

address

of

name2

name2.number

203

name2.next_num

The

address

of

name3

name3.number

488

name3.next_num

NULL

(Indicating

the

end

of

the

linked

list.)

The

variable

recd_pointer

is

a

pointer

to

a

structure

of

type

record.

It

is

initialized

to

the

address

of

name1

(the

beginning

of

the

linked

list).

The

while

loop

causes

the

linked

list

to

be

scanned

until

recd_pointer

equals

NULL.

The

statement:

recd_pointer

=

recd_pointer->next_num;

advances

the

pointer

to

the

next

object

in

the

list.

Related

References

v

“Incomplete

Types”

on

page

61

Unions

A

union

is

an

object

similar

to

a

structure

except

that

all

of

its

members

start

at

the

same

location

in

memory.

A

union

can

contain

the

value

of

only

one

of

its

members

at

a

time.

The

default

initializer

for

a

union

with

static

storage

is

the

default

for

the

first

component;

a

union

with

automatic

storage

has

none.

The

storage

allocated

for

a

union

is

the

storage

required

for

the

largest

member

of

the

union

(plus

any

padding

that

is

required

so

that

the

union

will

end

at

a

natural

boundary

of

its

member

having

the

most

stringent

requirements).

All

of

a

union’s

components

are

effectively

overlaid

in

memory:

each

member

of

a

union

is

allocated

storage

starting

at

the

beginning

of

the

union,

and

only

one

member

can

occupy

the

storage

at

a

time.

2000C

Only

the

first

member

of

a

union

can

be

initialized.

Type

Specifiers

50

ILE

C/C++

Language

Reference

Compatible

Unions

2000C

Each

union

definition

creates

a

new

union

type

that

is

neither

the

same

as

nor

compatible

with

any

other

union

type

in

the

same

source

file.

However,

a

type

specifier

that

is

a

reference

to

a

previously

defined

union

type

is

the

same

type.

The

union

tag

associates

the

reference

with

the

definition,

and

effectively

acts

as

the

type

name.

2000C++

In

C++,

a

union

is

a

limited

form

of

the

class

type.

It

can

contain

access

specifiers

(public,

protected,

private),

member

data,

and

member

functions,

including

constructors

and

destructors.

It

cannot

contain

virtual

member

functions

or

static

data

members.

Default

access

of

members

in

a

union

is

public.

A

union

cannot

be

used

as

a

base

class

and

cannot

be

derived

from

a

base

class.

C++

places

additional

limitations

on

the

allowable

data

types

for

a

union

member.

In

C++,

a

union

member

cannot

be

a

class

object

that

has

a

constructor,

destructor,

or

overloaded

copy

assignment

operator,

nor

can

it

be

of

reference

type.

A

union

member

cannot

be

declared

with

the

keyword

static.

Declaring

a

Union:

A

union

type

definition

contains

the

union

keyword

followed

by

an

optional

identifier

(tag)

and

a

brace-enclosed

list

of

members.

A

union

definition

has

the

following

form:

��

union

�

identifier

{

member

;

}

identifier

��

A

union

declaration

has

the

same

form

as

a

union

definition

except

that

the

declaration

has

no

brace-enclosed

list

of

members.

The

identifier

is

a

tag

given

to

the

union

specified

by

the

member

list.

Once

a

tag

is

specified,

any

subsequent

declaration

of

the

union

(in

the

same

scope)

can

be

made

by

declaring

the

tag

and

omitting

the

member

list.

If

a

tag

is

not

specified,

all

variable

definitions

that

refer

to

that

union

must

be

placed

within

the

statement

that

defines

the

data

type.

The

list

of

members

provides

the

data

type

with

a

description

of

the

objects

that

can

be

stored

in

the

union.

A

union

member

definition

has

same

form

as

a

variable

declaration.

A

member

of

a

union

can

be

referenced

the

same

way

as

a

member

of

a

structure.

For

example:

union

{

char

birthday[9];

int

age;

float

weight;

}

people;

people.birthday[0]

=

’\n’;

Type

Specifiers

Chapter

3.

Declarations

51

assigns

’\n’

to

the

first

element

in

the

character

array

birthday,

a

member

of

the

union

people.

A

union

can

represent

only

one

of

its

members

at

a

time.

In

the

example,

the

union

people

contains

either

age,

birthday,

or

weight

but

never

more

than

one

of

these.

The

printf

statement

in

the

following

example

does

not

give

the

correct

result

because

people.age

replaces

the

value

assigned

to

people.birthday

in

the

first

line:

#include

<stdio.h>

#include

<string.h>

union

{

char

birthday[9];

int

age;

float

weight;

}

people;

int

main(void)

{

strcpy(people.birthday,

"03/06/56");

printf("%s\n",

people.birthday);

people.age

=

38;

printf("%s\n",

people.birthday);

}

The

output

of

the

above

example

will

be

similar

to

the

following:

03/06/56

&

Defining

a

Union

Variable:

2000C

A

union

variable

definition

has

the

following

form:

��

storage_class_specifier

union

union_data_type_name

identifier

�

�

=

initialization_value

��

You

must

declare

the

union

data

type

before

you

can

define

a

union

having

that

type.

You

can

initialize

only

the

first

member

of

a

union.

The

following

example

shows

how

you

would

initialize

the

first

union

member

birthday

of

the

union

variable

people:

union

{

char

birthday[9];

int

age;

float

weight;

}

people

=

{"23/07/57"};

You

can

define

a

union

data

type

and

a

union

of

that

type

in

the

same

statement

by

placing

the

variable

declarator

after

the

data

type

definition.

The

storage

class

specifier

for

the

variable

must

appear

at

the

beginning

of

the

statement.

Anonymous

Unions:

An

anonymous

union

is

a

union

without

a

class

name.

It

cannot

be

followed

by

a

declarator.

An

anonymous

union

is

not

a

type;

it

defines

an

unnamed

object

and

it

cannot

have

member

functions.

Type

Specifiers

52

ILE

C/C++

Language

Reference

The

member

names

of

an

anonymous

union

must

be

distinct

from

other

names

within

the

scope

in

which

the

union

is

declared.

You

can

use

member

names

directly

in

the

union

scope

without

any

additional

member

access

syntax.

For

example,

in

the

following

code

fragment,

you

can

access

the

data

members

i

and

cptr

directly

because

they

are

in

the

scope

containing

the

anonymous

union.

Because

i

and

cptr

are

union

members

and

have

the

same

address,

you

should

only

use

one

of

them

at

a

time.

The

assignment

to

the

member

cptr

will

change

the

value

of

the

member

i.

void

f()

{

union

{

int

i;

char*

cptr

;

};

/*

.

.

.

*/

i

=

5;

cptr

=

"string_in_union";

//

overrides

the

value

5

}

2000C++

An

anonymous

union

cannot

have

protected

or

private

members.

A

global

or

namespace

anonymous

union

must

be

declared

with

the

keyword

static.

Examples

of

Unions:

The

following

example

defines

a

union

data

type

(not

named)

and

a

union

variable

(named

length).

The

member

of

length

can

be

a

long

int,

a

float,

or

a

double.

union

{

float

meters;

double

centimeters;

long

inches;

}

length;

The

following

example

defines

the

union

type

data

as

containing

one

member.

The

member

can

be

named

charctr,

whole,

or

real.

The

second

statement

defines

two

data

type

variables:

input

and

output.

union

data

{

char

charctr;

int

whole;

float

real;

};

union

data

input,

output;

The

following

statement

assigns

a

character

to

input:

input.charctr

=

’h’;

The

following

statement

assigns

a

floating-point

number

to

member

output:

output.real

=

9.2;

The

following

example

defines

an

array

of

structures

named

records.

Each

element

of

records

contains

three

members:

the

integer

id_num,

the

integer

type_of_input,

and

the

union

variable

input.

input

has

the

union

data

type

defined

in

the

previous

example.

struct

{

int

id_num;

int

type_of_input;

union

data

input;

}

records[10];

The

following

statement

assigns

a

character

to

the

structure

member

input

of

the

first

element

of

records:

records[0].input.charctr

=

’g’;

Type

Specifiers

Chapter

3.

Declarations

53

Enumerations

An

enumeration

is

a

data

type

consisting

of

a

set

of

values

that

are

named

integral

constants.

It

is

also

referred

to

as

an

enumerated

type

because

you

must

list

(enumerate)

each

of

the

values

in

creating

a

name

for

each

of

them.

A

named

value

in

an

enumeration

is

called

an

enumeration

constant.

In

addition

to

providing

a

way

of

defining

and

grouping

sets

of

integral

constants,

enumerations

are

useful

for

variables

that

have

a

small

number

of

possible

values.

You

can

define

an

enumeration

data

type

and

all

variables

that

have

that

enumeration

type

in

one

statement,

or

you

can

declare

an

enumeration

type

separately

from

the

definition

of

variables

of

that

type.

The

identifier

associated

with

the

data

type

(not

an

object)

is

called

an

enumeration

tag.

Each

distinct

enumeration

is

a

different

enumeration

type.

Compatible

Enumerations

2000C

In

C,

each

enumerated

type

must

be

compatible

with

the

integer

type

that

represents

it.

Enumeration

variables

and

constants

are

treated

by

the

compiler

as

integer

types.

Consequently,

in

C

you

can

freely

mix

the

values

of

different

enumerated

types,

regardless

of

type

compatibility.

2000C++

C++

treats

enumerated

types

as

distinct

from

each

other

and

from

integer

types.

You

must

explicitly

cast

an

integer

in

order

to

use

it

as

an

enumeration

value.

Declaring

an

Enumeration

Data

Type:

An

enumeration

type

declaration

contains

the

enum

keyword

followed

by

an

optional

identifier

(the

enumeration

tag)

and

a

brace-enclosed

list

of

enumerators.

Commas

separate

each

enumerator

in

the

enumerator

list.

A

declaration

of

an

enumeration

has

the

form:

��

enum

identifier

�

,

{

enumerator

}

;

��

The

keyword

enum,

followed

by

the

identifier,

names

the

data

type

(like

the

tag

on

a

struct

data

type).

The

list

of

enumerators

provides

the

data

type

with

a

set

of

values.

In

C,

each

enumerator

represents

an

integer

value.

In

C++,

each

enumerator

represents

a

value

that

can

be

converted

to

an

integral

value.

An

enumerator

has

the

form:

��

identifier

=

integral_constant_expression

��

To

conserve

space,

enumerations

may

be

stored

in

spaces

smaller

than

that

of

an

int.

Enumeration

Constants:

When

you

define

an

enumeration

data

type,

you

specify

a

set

of

identifiers

that

the

data

type

represents.

Each

identifier

in

this

set

is

an

enumeration

constant.

Type

Specifiers

54

ILE

C/C++

Language

Reference

The

value

of

the

constant

is

determined

in

the

following

way:

1.

An

equal

sign

(=)

and

a

constant

expression

after

the

enumeration

constant

gives

an

explicit

value

to

the

constant.

The

identifier

represents

the

value

of

the

constant

expression.

2.

If

no

explicit

value

is

assigned,

the

leftmost

constant

in

the

list

receives

the

value

zero

(0).

3.

Identifiers

with

no

explicitly

assigned

values

receive

the

integer

value

that

is

one

greater

than

the

value

represented

by

the

previous

identifier.

2000C

In

C,

enumeration

constants

have

type

int.

If

a

constant

expression

is

used

as

an

initializer,

the

value

of

the

expression

cannot

exceed

the

range

of

int

(that

is,

INT_MIN

to

INT_MAX

as

defined

in

the

header

<limits.h>).

2000C++

In

C++,

each

enumeration

constant

has

a

value

that

can

be

promoted

to

a

signed

or

unsigned

integer

value

and

a

distinct

type

that

does

not

have

to

be

integral.

Use

an

enumeration

constant

anywhere

an

integer

constant

is

allowed,

or

for

C++,

anywhere

a

value

of

the

enumeration

type

is

allowed.

Each

enumeration

constant

must

be

unique

within

the

scope

in

which

the

enumeration

is

defined.

In

the

following

example,

second

declarations

of

average

and

poor

cause

compiler

errors:

func()

{

enum

score

{

poor,

average,

good

};

enum

rating

{

below,

average,

above

};

int

poor;

}

The

following

data

type

declarations

list

oats,

wheat,

barley,

corn,

and

rice

as

enumeration

constants.

The

number

under

each

constant

shows

the

integer

value.

enum

grain

{

oats,

wheat,

barley,

corn,

rice

};

/*

0

1

2

3

4

*/

enum

grain

{

oats=1,

wheat,

barley,

corn,

rice

};

/*

1

2

3

4

5

*/

enum

grain

{

oats,

wheat=10,

barley,

corn=20,

rice

};

/*

0

10

11

20

21

*/

It

is

possible

to

associate

the

same

integer

with

two

different

enumeration

constants.

For

example,

the

following

definition

is

valid.

The

identifiers

suspend

and

hold

have

the

same

integer

value.

enum

status

{

run,

clear=5,

suspend,

resume,

hold=6

};

/*

0

5

6

7

6

*/

Defining

Enumeration

Variables:

An

enumeration

variable

definition

has

the

following

form:

��

storage_class_specifier

enum

enumeration_data_type_name

identifier

�

�

=

enumeration_constant

��

You

must

declare

the

enumeration

data

type

before

you

can

define

a

variable

having

that

type.

Type

Specifiers

Chapter

3.

Declarations

55

2000C++ The

initializer

for

an

enumeration

variable

contains

the

=

symbol

followed

by

an

expression

enumeration_constant.

In

C++,

the

initializer

must

have

the

same

type

as

the

associated

enumeration

type.

The

first

line

of

the

following

example

declares

the

enumeration

grain.

The

second

line

defines

the

variable

g_food

and

gives

g_food

the

initial

value

of

barley

(2).

enum

grain

{

oats,

wheat,

barley,

corn,

rice

};

enum

grain

g_food

=

barley;

The

type

specifier

enum

grain

indicates

that

the

value

of

g_food

is

a

member

of

the

enumerated

data

type

grain.

2000C++

The

enum

keyword

is

optional

when

declaring

a

variable

with

enumeration

type.

However,

it

is

required

when

declaring

the

enumeration

itself.

For

example,

both

statements

declare

a

variable

of

enumeration

type:

enum

grain

g_food

=

barley;

grain

cob_food

=

corn;

Defining

an

Enumeration

Type

and

Enumeration

Objects:

You

can

define

a

type

and

a

variable

in

one

statement

by

using

a

declarator

and

an

optional

initializer

after

the

type

definition.

To

specify

a

storage

class

specifier

for

the

variable,

you

must

put

the

storage

class

specifier

at

the

beginning

of

the

declaration.

For

example:

register

enum

score

{

poor=1,

average,

good

}

rating

=

good;

2000C++

C++

also

lets

you

put

the

storage

class

immediately

before

the

declarator

list.

For

example:

enum

score

{

poor=1,

average,

good

}

register

rating

=

good;

Either

of

these

examples

is

equivalent

to

the

following

two

declarations:

enum

score

{

poor=1,

average,

good

};

register

enum

score

rating

=

good;

Both

examples

define

the

enumeration

data

type

score

and

the

variable

rating.

rating

has

the

storage

class

specifier

register,

the

data

type

enum

score,

and

the

initial

value

good.

Combining

a

data

type

definition

with

the

definitions

of

all

variables

having

that

data

type

lets

you

leave

the

data

type

unnamed.

For

example:

enum

{

Sunday,

Monday,

Tuesday,

Wednesday,

Thursday,

Friday,

Saturday

}

weekday;

defines

the

variable

weekday,

which

can

be

assigned

any

of

the

specified

enumeration

constants.

Example

Program

Using

Enumerations:

The

following

program

receives

an

integer

as

input.

The

output

is

a

sentence

that

gives

the

French

name

for

the

weekday

that

is

associated

with

the

integer.

If

the

integer

is

not

associated

with

a

weekday,

the

program

prints

"C’est

le

mauvais

jour."

/**

**

Example

program

using

enumerations

**/

#include

<stdio.h>

enum

days

{

Type

Specifiers

56

ILE

C/C++

Language

Reference

Monday=1,

Tuesday,

Wednesday,

Thursday,

Friday,

Saturday,

Sunday

}

weekday;

void

french(enum

days);

int

main(void)

{

int

num;

printf("Enter

an

integer

for

the

day

of

the

week.

"

"Mon=1,...,Sun=7\n");

scanf("%d",

&num);

weekday=num;

french(weekday);

return(0);

}

void

french(enum

days

weekday)

{

switch

(weekday)

{

case

Monday:

printf("Le

jour

de

la

semaine

est

lundi.\n");

break;

case

Tuesday:

printf("Le

jour

de

la

semaine

est

mardi.\n");

break;

case

Wednesday:

printf("Le

jour

de

la

semaine

est

mercredi.\n");

break;

case

Thursday:

printf("Le

jour

de

la

semaine

est

jeudi.\n");

break;

case

Friday:

printf("Le

jour

de

la

semaine

est

vendredi.\n");

break;

case

Saturday:

printf("Le

jour

de

la

semaine

est

samedi.\n");

break;

case

Sunday:

printf("Le

jour

de

la

semaine

est

dimanche.\n");

break;

default:

printf("C’est

le

mauvais

jour.\n");

}

}

Type

Qualifiers

C

recognizes

the

type

qualifiers,

const

and

volatile,

which

C++

refers

to

as

cv-qualifiers.

In

both

languages,

the

cv-qualifiers

are

meaningful

only

in

expressions

that

are

lvalues.

C++

allows

a

cv-qualifier

to

apply

to

functions,

which

is

disallowed

in

C.

Syntax

for

the

const

and

volatile

keywords

For

a

volatile

or

const

pointer,

you

must

put

the

keyword

between

the

*

and

the

identifier.

For

example:

int

*

volatile

x;

/*

x

is

a

volatile

pointer

to

an

int

*/

int

*

const

y

=

&z;

/*

y

is

a

const

pointer

to

the

int

variable

z

*/

For

a

pointer

to

a

volatile

or

const

data

object,

the

type

specifier,

qualifier,

and

storage

class

specifier

can

be

in

any

order.

For

example:

Type

Specifiers

Chapter

3.

Declarations

57

volatile

int

*x;

/*

x

is

a

pointer

to

a

volatile

int

or

*/

int

volatile

*x;

/*

x

is

a

pointer

to

a

volatile

int

*/

const

int

*y;

/*

y

is

a

pointer

to

a

const

int

or

*/

int

const

*y;

/*

y

is

a

pointer

to

a

const

int

*/

In

the

following

example,

the

pointer

to

y

is

a

constant.

You

can

change

the

value

that

y

points

to,

but

you

cannot

change

the

value

of

y:

int

*

const

y

In

the

following

example,

the

value

that

y

points

to

is

a

constant

integer

and

cannot

be

changed.

However,

you

can

change

the

value

of

y:

const

int

*

y

For

other

types

of

volatile

and

const

variables,

the

position

of

the

keyword

within

the

definition

(or

declaration)

is

less

important.

For

example:

volatile

struct

omega

{

int

limit;

char

code;

}

group;

provides

the

same

storage

as:

struct

omega

{

int

limit;

char

code;

}

volatile

group;

In

both

examples,

only

the

structure

variable

group

receives

the

volatile

qualifier.

Similarly,

if

you

specified

the

const

keyword

instead

of

volatile,

only

the

structure

variable

group

receives

the

const

qualifier.

The

const

and

volatile

qualifiers

when

applied

to

a

structure,

union,

or

class

also

apply

to

the

members

of

the

structure,

union,

or

class.

Although

enumeration,

class,

structure,

and

union

variables

can

receive

the

volatile

or

const

qualifier,

enumeration,

class,

structure,

and

union

tags

do

not

carry

the

volatile

or

const

qualifier.

For

example,

the

blue

structure

does

not

carry

the

volatile

qualifier:

volatile

struct

whale

{

int

weight;

char

name[8];

}

beluga;

struct

whale

blue;

The

keywords

volatile

and

const

cannot

separate

the

keywords

enum,

class,

struct,

and

union

from

their

tags.

You

can

declare

or

define

a

volatile

or

const

function

only

if

it

is

a

nonstatic

member

function.

You

can

define

or

declare

any

function

to

return

a

pointer

to

a

volatile

or

const

function.

An

item

can

be

both

const

and

volatile.

In

this

case

the

item

cannot

be

legitimately

modified

by

its

own

program

but

can

be

modified

by

some

asynchronous

process.

You

can

put

more

than

one

qualifier

on

a

declaration

but

you

cannot

specify

the

same

qualifier

more

than

once

on

a

declaration.

Type

Specifiers

58

ILE

C/C++

Language

Reference

The

const

Type

Qualifier

2000C

The

const

qualifier

explicitly

declares

a

data

object

as

something

that

cannot

be

changed.

Its

value

is

set

at

initialization.

You

cannot

use

const

data

objects

in

expressions

requiring

a

modifiable

lvalue.

For

example,

a

const

data

object

cannot

appear

on

the

lefthand

side

of

an

assignment

statement.

An

object

that

is

declared

const

is

guaranteed

to

remain

constant

for

its

lifetime,

not

throughout

the

entire

execution

of

the

program.

For

this

reason,

a

const

object

cannot

be

used

in

constant

expressions.

In

the

following

example,

the

const

object

k

is

declared

within

foo,

is

initialized

to

the

value

of

foo’s

argument,

and

remains

constant

until

the

function

returns.

In

C,

k

cannot

be

used

to

specify

the

length

of

an

array

because

that

value

will

not

be

known

until

foo

is

called.

void

foo(int

j)

{

const

int

k

=

j;

int

ary[k];

/*

Violates

rule

that

the

length

of

each

array

must

be

known

to

the

compiler

*/

}

In

C,

a

const

object

that

is

declared

outside

a

block

has

external

linkage

and

can

be

shared

among

files.

In

the

following

example,

you

cannot

use

k

to

specify

the

length

of

the

array

because

it

is

probably

defined

in

another

file.

extern

const

int

k;

int

ary[k];

/*

Another

violation

of

the

rule

that

the

length

of

each

array

must

be

known

to

the

compiler

*/

A

top-level

declaration

of

a

const

object

without

an

explicit

storage

class

is

considered

to

be

extern

in

C,

but

is

considered

static

in

C++.

const

int

k

=

12;

/*

Different

meanings

in

C

and

C++

*/

static

const

int

k2

=

120;

/*

Same

meaning

in

C

and

C++

*/

extern

const

int

k3

=

121;

/*

Same

meaning

in

C

and

C++

*/

In

C++,

all

const

declarations

must

have

initializers,

except

those

referencing

externally

defined

constants.

2000C++

The

remainder

of

this

section

pertains

to

C++

only.

A

const

object

can

appear

in

a

constant

expression

if

it

is

an

integer

and

it

is

initialized

to

a

constant.

The

following

example

demonstrates

this.

const

int

k

=

10;

int

ary[k];

/*

allowed

in

C++,

not

legal

in

C

*/

In

C++,

a

const

object

can

be

defined

in

header

files

because

a

const

object

has

internal

linkage

by

default.

const

Pointers

The

keyword

const

for

pointers

can

appear

before

the

type,

after

the

type,

or

in

both

places.

The

following

are

legal

declarations:

const

int

*

ptr1;

/*

A

pointer

to

a

constant

integer:

the

value

pointed

to

cannot

be

changed

*/

int

*

const

ptr2;

/*

A

constant

pointer

to

integer:

the

integer

can

be

changed,

but

ptr2

cannot

point

to

anything

else

*/

Type

Specifiers

Chapter

3.

Declarations

59

const

int

*

const

ptr3;

/*

A

constant

pointer

to

a

constant

integer:

neither

the

value

pointed

to

nor

the

pointer

itself

can

be

changed

*/

Declaring

an

object

to

be

const

means

that

the

this

pointer

is

a

pointer

to

a

const

object.

A

const

this

pointer

can

by

used

only

with

const

member

functions.

const

Member

Functions

Declaring

a

member

function

const

means

that

the

this

pointer

is

a

pointer

to

a

const

object.

Data

members

of

the

class

will

be

const

within

that

function.

The

function

is

still

able

to

change

the

value,

but

requires

a

const_cast

to

do

so:

void

foo::p()

const{

member

=

1;

//

illegal

const_cast

<int&>

(member)

=

1;

//

a

bad

practice

but

legal

}

A

better

technique

would

be

to

declare

member

mutable.

The

volatile

Type

Qualifier

The

volatile

qualifier

maintains

consistency

of

memory

access

to

data

objects.

Volatile

objects

are

read

from

memory

each

time

their

value

is

needed,

and

written

back

to

memory

each

time

they

are

changed.

The

volatile

qualifier

declares

a

data

object

that

can

have

its

value

changed

in

ways

outside

the

control

or

detection

of

the

compiler

(such

as

a

variable

updated

by

the

system

clock).

The

compiler

is

thereby

notified

not

to

apply

certain

optimizations

to

code

referring

to

the

object.

Accessing

any

lvalue

expression

that

is

volatile-qualified

produces

a

side

effect.

A

side

effect

means

that

the

state

of

the

execution

environment

changes.

References

to

an

object

of

type

″pointer

to

volatile″

may

be

optimized,

but

no

optimization

can

occur

to

references

to

the

object

to

which

it

points.

An

explicit

cast

must

be

used

to

assign

a

value

of

type

″pointer

to

volatileT″

to

an

object

of

type

″pointer

to

T″.

The

following

shows

valid

uses

of

volatile

objects.

volatile

int

*

pvol;

int

*ptr;

pvol

=

ptr;

/*

Legal

*/

ptr

=

(int

*)pvol;

/*

Explicit

cast

required

*/

2000C

A

signal-handling

function

may

store

a

value

in

a

variable

of

type

sig_atomic_t,

provided

that

the

variable

is

declared

volatile.

This

is

an

exception

to

the

rule

that

a

signal-handling

function

may

not

access

variables

with

static

storage

duration.

ILE

Type

Qualifiers

2000400

The

following

type

qualifiers

have

been

introduced

into

C

and

C++

as

language

extensions

to

address

needs

that

are

specific

to

the

iSeries

platform.

See

chapter

23

″Using

iSeries

Pointers

in

a

Program″

and

chapter

28

″Using

Teraspace″

in

ILE

C/C++

Programmer’s

Guide

for

more

information.

The

__ptr128

Qualifier

2000400

The

keyword

__ptr128

is

a

qualifier

that

can

be

applied

to

an

iSeries

pointer

type

to

explicitly

specify

its

size

as

16

bytes

and

a

16-byte

alignment.

This

language

extension

is

provided

to

facilitate

porting

applications

to

the

iSeries

Type

Specifiers

60

ILE

C/C++

Language

Reference

system

and,

more

specifically,

to

allow

applications

to

take

advantage

of

the

teraspace

storage

model

and

run-time

environment.

The

__ptr128

qualifier

specifies

a

traditional

iSeries

pointer,

as

opposed

to

a

process

local

pointer,

which

is

8

bytes

and

has

no

special

alignment

requirement.

A

process

local

pointer

is

used

to

access

teraspace

storage.

The

__ptr128

keyword

can

appear

in

the

declarator

part

of

a

pointer

declaration,

wherever

a

C++

cv-qualifier

can

be

used.

For

example,

int

*

__ptr128

p;

declares

p

to

be

a

16-byte

pointer

to

int.

int

*

__ptr128

const

r;

declares

r

to

be

a

const

16-byte

pointer.

The

__ptr64

Qualifier

2000400

The

keyword

__ptr64

is

a

qualifier

that

can

be

applied

to

an

iSeries

pointer

type

to

constrain

its

size

to

8

bytes.

An

8-byte

pointer,

also

referred

to

as

a

process

local

pointer,

is

used

to

access

teraspace

storage.

The

language

extension

is

provided

to

facilitate

porting

applications

to

the

iSeries

system

and,

more

specifically,

to

allow

applications

to

take

advantage

of

the

teraspace

storage

model

and

run-time

environment.

The

ILE

C/C++

compiler

silently

performs

one

level

of

conversion

between

8-byte

and

16-byte

pointers

during

an

assignment

operation

or

parameter

association.

The

__ptr64

qualifier

specifies

a

process

local

pointer,

which

is

8

bytes

and

has

no

special

alignment

requirement.

The

__ptr64

keyword

can

appear

in

the

declarator

part

of

a

pointer

declaration,

wherever

a

C++

cv-qualifier

can

be

used.

The

asm

Declaration

The

keyword

asm

stands

for

assembly

code.

In

this

implementation,

the

compiler

recognizes

and

ignores

the

keyword

asm

in

a

declaration.

Incomplete

Types

The

following

are

incomplete

types:

v

Type

void

v

Array

of

unknown

size

v

Arrays

of

elements

that

are

of

incomplete

type

v

Structure,

union,

or

enumerations

that

have

no

definition

v

2000C++

Pointers

to

class

types

that

are

declared

but

not

defined

v

2000C++

Classes

that

are

declared

but

not

defined

void

is

an

incomplete

type

that

cannot

be

completed.

Incomplete

structure

or

union

and

enumeration

tags

must

be

completed

before

being

used

to

declare

an

object,

although

you

can

define

a

pointer

to

an

incomplete

structure

or

union.

The

following

examples

illustrate

incomplete

types:

void

*incomplete_ptr;

struct

dimension

linear;

/*

no

previous

definition

of

dimension

*/

Type

Specifiers

Chapter

3.

Declarations

61

void

is

an

incomplete

type

that

cannot

be

completed.

Incomplete

structure,

union,

or

enumeration

tags

must

be

completed

before

being

used

to

declare

an

object.

However,

you

can

define

a

pointer

to

an

incomplete

structure

or

union.

Type

Specifiers

62

ILE

C/C++

Language

Reference

Chapter

4.

Declarators

A

declarator

designates

a

data

object

or

function.

Declarators

appear

in

most

data

definitions

and

declarations

and

in

some

type

definitions.

In

a

declarator,

you

can

specify

the

type

of

an

object

to

be

an

array,

a

pointer,

or

a

reference.

You

can

also

perform

initialization

in

a

declarator.

A

declarator

has

the

form:

declarator

��

�

pointer_operator

direct_declarator

��

direct_declarator

��

declarator_name

direct_declarator

(

parameter_declaration_list

)

cv_qualifiers

exception_specification

direct_declarator

[

]

constant_expression

(

declarator

)

��

pointer_operator

��

*

cv_qualifiers

&

nested_name_specifier

*

::

cv_qualifiers

��

2000C

The

syntax

for

a

declarator

name

in

C:

declarator_id

��

identifier

��

2000C++

The

syntax

for

a

declarator

name

in

C++:

declarator_id

��

identifier_expression

type_name

::

nested_name_specifier

��

Notes

on

the

declarator

syntax

©

Copyright

IBM

Corp.

1998,

2003

63

v

The

cv_qualifiers

variable

represents

one

or

a

combination

of

const

and

volatile.

In

C,

you

cannot

declare

or

define

a

volatile

or

const

function.

However,

in

C++,

you

can

qualify

a

nonstatic

member

function

with

a

cv-qualifier

const

or

volatile.

v

2000C++

The

variables

exception_specification

and

nested_name_specifier

and

the

scope

resolution

operator

::

are

available

only

in

C++.

v

2000C++

An

identifier_expression

can

be

a

qualified

or

unqualified

identifier.

The

complexity

added

by

scope

resolution

operator,

templates,

and

other

advanced

features

does

not

exist

for

C.

v

2000C++

A

nested_name_specifier

is

a

qualified

identifier

expression.

The

following

table

provides

some

examples

of

declarators:

Example

Description

int

owner

owner

is

an

int

data

object.

int

*node

node

is

a

pointer

to

an

int

data

object.

int

names[126]

names

is

an

array

of

126

int

elements.

int

*action(

)

action

is

a

function

returning

a

pointer

to

an

int.

volatile

int

min

min

is

an

int

that

has

the

volatile

qualifier.

int

*

volatile

volume

volume

is

a

volatile

pointer

to

an

int.

volatile

int

*

next

next

is

a

pointer

to

a

volatile

int.

volatile

int

*

sequence[5]

sequence

is

an

array

of

five

pointers

to

volatile

int

objects.

extern

const

volatile

int

clock

clock

is

a

constant

and

volatile

integer

with

static

storage

duration

and

external

linkage.

Initializers

An

initializer

is

an

optional

part

of

a

data

declaration

that

specifies

an

initial

value

of

a

data

object.

The

initializers

that

are

legal

for

a

particular

declaration

depend

on

the

type

and

storage

class

of

the

object

to

be

initialized.

The

initialization

properties

and

special

requirements

of

each

data

type

are

described

in

the

section

for

that

data

type.

The

initializer

consists

of

the

=

symbol

followed

by

an

initial

expression

or

a

brace-enclosed

list

of

initial

expressions

separated

by

commas.

Individual

expressions

must

be

separated

by

commas,

and

groups

of

expressions

can

be

enclosed

in

braces

and

separated

by

commas.

Braces

({

})

are

optional

if

the

initializer

for

a

character

string

is

a

string

literal.

The

number

of

initializers

must

not

be

greater

than

the

number

of

elements

to

be

initialized.

The

initial

expression

evaluates

to

the

first

value

of

the

data

object.

To

assign

a

value

to

an

arithmetic

or

pointer

type,

use

the

simple

initializer:

=

expression.

For

example,

the

following

data

definition

uses

the

initializer

=

3

to

set

the

initial

value

of

group

to

3:

int

group

=

3;

For

unions,

structures,

and

aggregate

classes

(classes

with

no

constructors,

base

classes,

virtual

functions,

or

private

or

protected

members),

the

set

of

initial

expressions

must

be

enclosed

in

braces

unless

the

initializer

is

a

string

literal.

Declarators

64

ILE

C/C++

Language

Reference

In

an

array,

structure,

or

union

initialized

using

a

brace-enclosed

initializer

list,

any

members

or

subscripts

that

are

not

initialized

are

implicitly

initialized

to

zero

of

the

appropriate

type.

Example

In

the

following

example,

only

the

first

eight

elements

of

the

array

grid

are

explicitly

initialized.

The

remaining

four

elements

that

are

not

explicitly

initialized

are

initialized

as

if

they

were

explicitly

initialized

to

zero.

static

short

grid[3]

[4]

=

{0,

0,

0,

1,

0,

0,

1,

1};

The

initial

values

of

grid

are:

Element

Value

Element

Value

grid[0]

[0]

0

grid[1]

[2]

1

grid[0]

[1]

0

grid[1]

[3]

1

grid[0]

[2]

0

grid[2]

[0]

0

grid[0]

[3]

1

grid[2]

[1]

0

grid[1]

[0]

0

grid[2]

[2]

0

grid[1]

[1]

0

grid[2]

[3]

0

2000C++

The

remainder

of

this

section

pertains

to

C++

only.

In

C++,

you

can

initialize

variables

at

namespace

scope

with

nonconstant

expressions.

In

C,

you

cannot

do

the

same

at

global

scope.

If

your

code

jumps

over

declarations

that

contain

initializations,

the

compiler

generates

an

error.

For

example,

the

following

code

is

not

valid:

goto

skiplabel;

//

error

-

jumped

over

declaration

int

i

=

3;

//

and

initialization

of

i

skiplabel:

i

=

4;

You

can

initialize

classes

in

external,

static,

and

automatic

definitions.

The

initializer

contains

an

=

(equal

sign)

followed

by

a

brace-enclosed,

comma-separated

list

of

values.

You

do

not

need

to

initialize

all

members

of

a

class.

Pointers

A

pointer

type

variable

holds

the

address

of

a

data

object

or

a

function.

A

pointer

can

refer

to

an

object

of

any

one

data

type;

it

cannot

refer

to

a

bit

field

or

a

reference.

A

pointer

is

classified

as

a

scalar

type,

which

means

that

it

can

hold

only

one

value

at

a

time.

Some

common

uses

for

pointers

are:

v

To

access

dynamic

data

structures

such

as

linked

lists,

trees,

and

queues.

v

To

access

elements

of

an

array

or

members

of

a

structure

or

C++

class.

v

To

access

an

array

of

characters

as

a

string.

v

To

pass

the

address

of

a

variable

to

a

function.

(In

C++,

you

can

also

use

a

reference

to

do

this.)

By

referencing

a

variable

through

its

address,

a

function

can

change

the

contents

of

that

variable.

2000C

The

remainder

of

this

section

pertains

to

C

only.

Initializers

Chapter

4.

Declarators

65

You

cannot

use

pointers

to

reference

objects

that

are

declared

with

the

register

storage

class

specifier.

Two

pointer

types

with

the

same

type

qualifiers

are

compatible

if

they

point

to

objects

of

compatible

types.

The

composite

type

for

two

compatible

pointer

types

is

the

similarly

qualified

pointer

to

the

composite

type.

Declaring

Pointers

The

following

example

declares

pcoat

as

a

pointer

to

an

object

having

type

long:

long

*pcoat;

If

the

keyword

volatile

appears

before

the

*,

the

declarator

describes

a

pointer

to

a

volatile

object.

If

the

keyword

volatile

appears

between

the

*

and

the

identifier,

the

declarator

describes

a

volatile

pointer.

The

keyword

const

operates

in

the

same

manner

as

the

volatile

keyword.

In

the

following

example,

pvolt

is

a

constant

pointer

to

an

object

having

type

short:

extern

short

*

const

pvolt;

The

following

example

declares

pnut

as

a

pointer

to

an

int

object

having

the

volatile

qualifier:

extern

int

volatile

*pnut;

The

following

example

defines

psoup

as

a

volatile

pointer

to

an

object

having

type

float:

float

*

volatile

psoup;

The

following

example

defines

pfowl

as

a

pointer

to

an

enumeration

object

of

type

bird:

enum

bird

*pfowl;

The

next

example

declares

pvish

as

a

pointer

to

a

function

that

takes

no

parameters

and

returns

a

char

object:

char

(*pvish)(void);

Assigning

Pointers

When

you

use

pointers

in

an

assignment

operation,

you

must

ensure

that

the

types

of

the

pointers

in

the

operation

are

compatible.

The

following

example

shows

compatible

declarations

for

the

assignment

operation:

float

subtotal;

float

*

sub_ptr;

/*

...

*/

sub_ptr

=

&subtotal;

printf("The

subtotal

is

%f\n",

*sub_ptr);

The

next

example

shows

incompatible

declarations

for

the

assignment

operation:

double

league;

int

*

minor;

/*

...

*/

minor

=

&league;

/*

error

*/

Initializers

66

ILE

C/C++

Language

Reference

Initializing

Pointers

The

initializer

is

an

=

(equal

sign)

followed

by

the

expression

that

represents

the

address

that

the

pointer

is

to

contain.

The

following

example

defines

the

variables

time

and

speed

as

having

type

double

and

amount

as

having

type

pointer

to

a

double.

The

pointer

amount

is

initialized

to

point

to

total:

double

total,

speed,

*amount

=

&total;

The

compiler

converts

an

unsubscripted

array

name

to

a

pointer

to

the

first

element

in

the

array.

You

can

assign

the

address

of

the

first

element

of

an

array

to

a

pointer

by

specifying

the

name

of

the

array.

The

following

two

sets

of

definitions

are

equivalent.

Both

define

the

pointer

student

and

initialize

student

to

the

address

of

the

first

element

in

section:

int

section[80];

int

*student

=

section;

is

equivalent

to:

int

section[80];

int

*student

=

§ion[0];

You

can

assign

the

address

of

the

first

character

in

a

string

constant

to

a

pointer

by

specifying

the

string

constant

in

the

initializer.

The

following

example

defines

the

pointer

variable

string

and

the

string

constant

"abcd".

The

pointer

string

is

initialized

to

point

to

the

character

a

in

the

string

"abcd".

char

*string

=

"abcd";

The

following

example

defines

weekdays

as

an

array

of

pointers

to

string

constants.

Each

element

points

to

a

different

string.

The

pointer

weekdays[2],

for

example,

points

to

the

string

"Tuesday".

static

char

*weekdays[

]

=

{

"Sunday",

"Monday",

"Tuesday",

"Wednesday",

"Thursday",

"Friday",

"Saturday"

};

A

pointer

can

also

be

initialized

to

null

using

any

integer

constant

expression

that

evaluates

to

0,

for

example

char

*

a=0;.

Such

a

pointer

is

a

null

pointer.

It

does

not

point

to

any

object.

Using

Pointers

Two

operators

are

commonly

used

in

working

with

pointers,

the

address

(&)

operator

and

the

indirection

(*)

operator.

You

can

use

the

&

operator

to

refer

to

the

address

of

an

object.

For

example,

the

assignment

in

the

following

function

assigns

the

address

of

x

to

the

variable

p_to_int.

The

variable

p_to_int

has

been

defined

as

a

pointer:

void

f(int

x,

int

*p_to_int)

{

p_to_int

=

&x;

}

The

*

(indirection)

operator

lets

you

access

the

value

of

the

object

a

pointer

refers

to.

The

assignment

in

the

following

example

assigns

to

y

the

value

of

the

object

that

p_to_float

points

to:

Initializers

Chapter

4.

Declarators

67

void

g(float

y,

float

*p_to_float)

{

y

=

*p_to_float;

}

The

assignment

in

the

following

example

assigns

the

value

of

z

to

the

variable

that

*p_to_char

references:

void

h(char

z,

char

*p_to_char)

{

*p_to_char

=

z;

}

Pointer

Arithmetic

You

can

perform

a

limited

number

of

arithmetic

operations

on

pointers.

These

operations

are:

v

Increment

and

decrement

v

Addition

and

subtraction

v

Comparison

v

Assignment

The

increment

(++)

operator

increases

the

value

of

a

pointer

by

the

size

of

the

data

object

the

pointer

refers

to.

For

example,

if

the

pointer

refers

to

the

second

element

in

an

array,

the

++

makes

the

pointer

refer

to

the

third

element

in

the

array.

The

decrement

(--)

operator

decreases

the

value

of

a

pointer

by

the

size

of

the

data

object

the

pointer

refers

to.

For

example,

if

the

pointer

refers

to

the

second

element

in

an

array,

the

--

makes

the

pointer

refer

to

the

first

element

in

the

array.

You

can

add

an

integer

to

a

pointer

but

you

cannot

add

a

pointer

to

a

pointer.

If

the

pointer

p

points

to

the

first

element

in

an

array,

the

following

expression

causes

the

pointer

to

point

to

the

third

element

in

the

same

array:

p

=

p

+

2;

If

you

have

two

pointers

that

point

to

the

same

array,

you

can

subtract

one

pointer

from

the

other.

This

operation

yields

the

number

of

elements

in

the

array

that

separate

the

two

addresses

that

the

pointers

refer

to.

You

can

compare

two

pointers

with

the

following

operators:

==,

!=,

<,

>,

<=,

and

>=.

Pointer

comparisons

are

defined

only

when

the

pointers

point

to

elements

of

the

same

array.

Pointer

comparisons

using

the

==

and

!=

operators

can

be

performed

even

when

the

pointers

point

to

elements

of

different

arrays.

You

can

assign

to

a

pointer

the

address

of

a

data

object,

the

value

of

another

compatible

pointer

or

the

NULL

pointer.

Example

Program

Using

Pointers

The

following

program

contains

pointer

arrays:

/**

**

Program

to

search

for

the

first

occurrence

of

a

specified

**

**

character

string

in

an

array

of

character

strings.

**

**/

#include

<stdio.h>

#include

<stdlib.h>

#include

<string.h>

Initializers

68

ILE

C/C++

Language

Reference

#define

SIZE

20

int

main(void)

{

static

char

*names[

]

=

{

"Jim",

"Amy",

"Mark",

"Sue",

NULL

};

char

*

find_name(char

**,

char

*);

char

new_name[SIZE],

*name_pointer;

printf("Enter

name

to

be

searched.\n");

scanf("%s",

new_name);

name_pointer

=

find_name(names,

new_name);

printf("name

%s%sfound\n",

new_name,

(name_pointer

==

NULL)

?

"

not

"

:

"

");

}

/*

End

of

main

*/

/**

**

Function

find_name.

This

function

searches

an

array

of

**

**

names

to

see

if

a

given

name

already

exists

in

the

array.

**

**

It

returns

a

pointer

to

the

name

or

NULL

if

the

name

is

**

**

not

found.

**

**

**

**

char

**arry

is

a

pointer

to

arrays

of

pointers

(existing

names)

**

**

char

*strng

is

a

pointer

to

character

array

entered

(new

name)

**

**/

char

*

find_name(char

**arry,

char

*strng)

{

for

(;

*arry

!=

NULL;

arry++)

/*

for

each

name

*/

{

if

(strcmp(*arry,

strng)

==

0)

/*

if

strings

match

*/

return(*arry);

/*

found

it!

*/

}

return(*arry);

/*

return

the

pointer

*/

}

/*

End

of

find_name

*/

Interaction

with

this

program

could

produce

the

following

sessions:

Output

Enter

name

to

be

searched.

Input

Mark

Output

name

Mark

found

or:

Output

Enter

name

to

be

searched.

Input

Deborah

Output

name

Deborah

not

found

Arrays

An

array

is

a

collection

of

objects

of

the

same

data

type.

Individual

objects

in

an

array,

called

elements,

are

accessed

by

their

position

in

the

array.

The

subscripting

operator

([])

provides

the

mechanics

for

creating

an

index

to

array

elements.

This

form

of

access

is

called

indexing

or

subscripting.

An

array

facilitates

the

coding

of

repetitive

tasks

by

allowing

the

statements

executed

on

each

element

to

be

put

into

a

loop

that

iterates

through

each

element

in

the

array.

The

C

and

C++

languages

provide

limited

built-in

support

for

an

array

type:

reading

and

writing

individual

elements.

Assignment

of

one

array

to

another,

the

Initializers

Chapter

4.

Declarators

69

comparison

of

two

arrays

for

equality,

returning

self-knowledge

of

size

are

operations

unsupported

by

either

language.

An

array

type

describes

contiguously

allocated

memory

for

a

set

of

objects

of

a

particular

type.

The

array

type

is

derived

from

the

type

of

its

elements,

in

what

is

called

array

type

derivation.

If

array

objects

are

of

incomplete

type,

the

array

type

is

also

considered

incomplete.

Array

elements

may

not

be

of

type

void

or

of

function

type.

However,

arrays

of

pointers

to

functions

are

allowed.

In

C++,

array

elements

may

not

be

of

reference

type

or

of

an

abstract

class

type.

2000C

Two

array

types

that

are

similarly

qualified

are

compatible

if

the

types

of

their

elements

are

compatible.

For

example,

char

ex1[25];

const

char

ex2[25];

are

not

compatible.

The

composite

type

of

two

compatible

array

types

is

an

array

with

the

composite

element

type.

The

sizes

of

both

original

types

must

be

equivalent

if

they

are

known.

Except

in

certain

contexts,

an

unsubscripted

array

name

(for

example,

region

instead

of

region[4])

represents

a

pointer

whose

value

is

the

address

of

the

first

element

of

the

array,

provided

that

the

array

has

previously

been

declared.

The

exceptions

are

when

the

array

name

passes

the

array

itself.

For

example,

the

array

name

passes

the

entire

array

when

it

is

the

operand

of

the

sizeof

operator

or

the

address

(&)

operator.

Similarly,

an

array

type

in

the

parameter

list

of

a

function

is

converted

to

the

corresponding

pointer

type.

Information

about

the

size

of

the

argument

array

is

lost

when

the

array

is

accessed

from

within

the

function

body.

Declaring

Arrays

The

array

declarator

contains

an

identifier

followed

by

an

optional

subscript

declarator.

An

identifier

preceded

by

an

asterisk

(*)

is

an

array

of

pointers.

A

subscript

declarator

has

the

form:

��

[

]

type_qualifier_list

assignment_expression

static

assignment_expression

type_qualifier_list

type_qualifier_list

static

assignment_expression

*

type_qualifier_list

�

�

�

[

constant_expression

]

��

where

constant_expression

is

a

constant

integer

expression,

indicating

the

size

of

the

array,

which

must

be

positive.

Initializers

70

ILE

C/C++

Language

Reference

The

subscript

declarator

describes

the

number

of

dimensions

in

the

array

and

the

number

of

elements

in

each

dimension.

Each

bracketed

expression,

or

subscript,

describes

a

different

dimension

and

must

be

a

constant

expression.

The

following

example

defines

a

one-dimensional

array

that

contains

four

elements

having

type

char:

char

list[4];

The

first

subscript

of

each

dimension

is

0.

The

array

list

contains

the

elements:

list[0]

list[1]

list[2]

list[3]

The

following

example

defines

a

two-dimensional

array

that

contains

six

elements

of

type

int:

int

roster[3][2];

Multidimensional

arrays

are

stored

in

row-major

order.

When

elements

are

referred

to

in

order

of

increasing

storage

location,

the

last

subscript

varies

the

fastest.

For

example,

the

elements

of

array

roster

are

stored

in

the

order:

roster[0][0]

roster[0][1]

roster[1][0]

roster[1][1]

roster[2][0]

roster[2][1]

In

storage,

the

elements

of

roster

would

be

stored

as:

│

│

│

└───────────────┴───────────────┴

───────────────

�

�

�

│

│

│

roster[0][0]

roster[0][1]

roster[1][0]

You

can

leave

the

first

(and

only

the

first)

set

of

subscript

brackets

empty

in

v

Array

definitions

that

contain

initializations

v

extern

declarations

v

Parameter

declarations

In

array

definitions

that

leave

the

first

set

of

subscript

brackets

empty,

the

initializer

determines

the

number

of

elements

in

the

first

dimension.

In

a

one-dimensional

array,

the

number

of

initialized

elements

becomes

the

total

number

of

elements.

In

a

multidimensional

array,

the

initializer

is

compared

to

the

subscript

declarator

to

determine

the

number

of

elements

in

the

first

dimension.

Initializing

Arrays

The

initializer

for

an

array

is

a

comma-separated

list

of

constant

expressions

enclosed

in

braces

({

}).

The

initializer

is

preceded

by

an

equal

sign

(=).

You

do

not

need

to

initialize

all

elements

in

an

array.

If

an

array

is

partially

initialized,

elements

that

are

not

initialized

receive

the

value

0

of

the

appropriate

type.

The

Initializers

Chapter

4.

Declarators

71

same

applies

to

elements

of

arrays

with

static

storage

duration.

(All

file-scope

variables

and

function-scope

variables

declared

with

the

static

keyword

have

static

storage

duration.)

The

following

definition

shows

a

completely

initialized

one-dimensional

array:

static

int

number[3]

=

{

5,

7,

2

};

The

array

number

contains

the

following

values:

number[0]

is

5,

number[1]

is

7;

number[2]

is

2.

When

you

have

an

expression

in

the

subscript

declarator

defining

the

number

of

elements

(in

this

case

3),

you

cannot

have

more

initializers

than

the

number

of

elements

in

the

array.

The

following

definition

shows

a

partially

initialized

one-dimensional

array:

static

int

number1[3]

=

{

5,

7

};

The

values

of

number1

are:number1[0]

and

number1[1]

are

the

same

as

in

the

previous

definition,

but

number1[2]

is

0.

Instead

of

an

expression

in

the

subscript

declarator

defining

the

number

of

elements,

the

following

one-dimensional

array

definition

defines

one

element

for

each

initializer

specified:

static

int

item[

]

=

{

1,

2,

3,

4,

5

};

The

compiler

gives

item

the

five

initialized

elements,

because

no

size

was

specified

and

there

are

five

initializers.

You

can

initialize

a

one-dimensional

character

array

by

specifying:

v

A

brace-enclosed

comma-separated

list

of

constants,

each

of

which

can

be

contained

in

a

character

v

A

string

constant

(Braces

surrounding

the

constant

are

optional)

Initializing

a

string

constant

places

the

null

character

(\0)

at

the

end

of

the

string

if

there

is

room

or

if

the

array

dimensions

are

not

specified.

The

following

definitions

show

character

array

initializations:

static

char

name1[

]

=

{

’J’,

’a’,

’n’

};

static

char

name2[

]

=

{

"Jan"

};

static

char

name3[4]

=

"Jan";

These

definitions

create

the

following

elements:

Element

Value

Element

Value

Element

Value

name1[0]

J

name2[0]

J

name3[0]

J

name1[1]

a

name2[1]

a

name3[1]

a

name1[2]

n

name2[2]

n

name3[2]

n

name2[3]

\0

name3[3]

\0

Note

that

the

following

definition

would

result

in

the

null

character

being

lost:

static

char

name3[3]="Jan";

2000C++

When

initializing

an

array

of

characters

with

a

string,

the

number

of

characters

in

the

string

—

including

the

terminating

’\0’

—

must

not

exceed

the

number

of

elements

in

the

array.

Initializers

72

ILE

C/C++

Language

Reference

You

can

initialize

a

multidimensional

array

using

any

of

the

following

techniques:

v

Listing

the

values

of

all

elements

you

want

to

initialize,

in

the

order

that

the

compiler

assigns

the

values.

The

compiler

assigns

values

by

increasing

the

subscript

of

the

last

dimension

fastest.

This

form

of

a

multidimensional

array

initialization

looks

like

a

one-dimensional

array

initialization.

The

following

definition

completely

initializes

the

array

month_days:

static

month_days[2][12]

=

{

31,

28,

31,

30,

31,

30,

31,

31,

30,

31,

30,

31,

31,

29,

31,

30,

31,

30,

31,

31,

30,

31,

30,

31

};

v

Using

braces

to

group

the

values

of

the

elements

you

want

initialized.

You

can

put

braces

around

each

element,

or

around

any

nesting

level

of

elements.

The

following

definition

contains

two

elements

in

the

first

dimension

(you

can

consider

these

elements

as

rows).

The

initialization

contains

braces

around

each

of

these

two

elements:

static

int

month_days[2][12]

=

{

{

31,

28,

31,

30,

31,

30,

31,

31,

30,

31,

30,

31

},

{

31,

29,

31,

30,

31,

30,

31,

31,

30,

31,

30,

31

}

};

v

Using

nested

braces

to

initialize

dimensions

and

elements

in

a

dimension

selectively.

The

following

definition

explicitly

initializes

six

elements

in

a

12-element

array:

static

int

matrix[3][4]

=

{

{1,

2},

{3,

4},

{5,

6}

};

The

initial

values

of

matrix

are

shown

in

the

following

table.

All

other

elements

are

initialized

to

zero.

Element

Value

Element

Value

matrix[0][0]

1

matrix[1][2]

0

matrix[0][1]

2

matrix[1][3]

0

matrix[0][2]

0

matrix[2][0]

5

matrix[0][3]

0

matrix[2][1]

6

matrix[1][0]

3

matrix[2][2]

0

matrix[1][1]

4

matrix[2][3]

0

Example

Programs

Using

Arrays

The

following

program

defines

a

floating-point

array

called

prices.

The

first

for

statement

prints

the

values

of

the

elements

of

prices.

The

second

for

statement

adds

five

percent

to

the

value

of

each

element

of

prices,

and

assigns

the

result

to

total,

and

prints

the

value

of

total.

/**

**

Example

of

one-dimensional

arrays

**/

#include

<stdio.h>

#define

ARR_SIZE

5

int

main(void)

Initializers

Chapter

4.

Declarators

73

{

static

float

const

prices[ARR_SIZE]

=

{

1.41,

1.50,

3.75,

5.00,

.86

};

auto

float

total;

int

i;

for

(i

=

0;

i

<

ARR_SIZE;

i++)

{

printf("price

=

$%.2f\n",

prices[i]);

}

printf("\n");

for

(i

=

0;

i

<

ARR_SIZE;

i++)

{

total

=

prices[i]

*

1.05;

printf("total

=

$%.2f\n",

total);

}

return(0);

}

This

program

produces

the

following

output:

price

=

$1.41

price

=

$1.50

price

=

$3.75

price

=

$5.00

price

=

$0.86

total

=

$1.48

total

=

$1.58

total

=

$3.94

total

=

$5.25

total

=

$0.90

The

following

program

defines

the

multidimensional

array

salary_tbl.

A

for

loop

prints

the

values

of

salary_tbl.

/**

**

Example

of

a

multidimensional

array

**/

#include

<stdio.h>

#define

ROW_SIZE

3

#define

COLUMN_SIZE

5

int

main(void)

{

static

int

salary_tbl[ROW_SIZE][COLUMN_SIZE]

=

{

{

500,

550,

600,

650,

700

},

{

600,

670,

740,

810,

880

},

{

740,

840,

940,

1040,

1140

}

};

int

grade

,

step;

for

(grade

=

0;

grade

<

ROW_SIZE;

++grade)

for

(step

=

0;

step

<

COLUMN_SIZE;

++step)

{

printf("salary_tbl[%d]

[%d]

=

%d\n",

grade,

step,

salary_tbl[grade]

[step]);

}

return(0);

}

Initializers

74

ILE

C/C++

Language

Reference

This

program

produces

the

following

output:

salary_tbl[0]

[0]

=

500

salary_tbl[0]

[1]

=

550

salary_tbl[0]

[2]

=

600

salary_tbl[0]

[3]

=

650

salary_tbl[0]

[4]

=

700

salary_tbl[1]

[0]

=

600

salary_tbl[1]

[1]

=

670

salary_tbl[1]

[2]

=

740

salary_tbl[1]

[3]

=

810

salary_tbl[1]

[4]

=

880

salary_tbl[2]

[0]

=

740

salary_tbl[2]

[1]

=

840

salary_tbl[2]

[2]

=

940

salary_tbl[2]

[3]

=

1040

salary_tbl[2]

[4]

=

1140

Function

Specifiers

2000C++

The

function

specifier

inline

is

used

to

make

a

suggestion

to

the

compiler

to

incorporate

the

code

of

a

function

into

the

code

at

the

point

of

the

call.

Instead

of

creating

a

single

set

of

the

function

instructions

in

memory,

the

compiler

is

supposed

to

copy

the

code

from

the

inline

function

directly

into

the

calling

function.

However,

a

standards-compliant

compiler

may

ignore

this

suggestion

for

better

optimization.

Both

regular

functions

and

member

functions

can

be

declared

inline.

A

member

function

can

be

made

inline

by

using

the

keyword

inline,

even

if

the

function

is

declared

outside

of

the

class

declaration.

The

keywords

virtual

and

explicit

are

used

only

in

C++

function

declarations

as

function

specifiers.

The

function

specifier

virtual

can

only

be

used

in

nonstatic

member

function

declarations.

The

function

specifier

explicit

can

only

be

used

in

declarations

of

constructors

within

a

class

declaration.

It

is

used

to

control

unwanted

implicit

type

conversions

when

an

object

is

being

initialized.

An

explicit

constructor

differs

from

a

non-explicit

constructor

in

that

an

explicit

constructor

can

only

construct

objects

where

direct

initialization

syntax

or

explicit

casts

are

used.

References

2000C++

A

reference

is

an

alias

or

an

alternative

name

for

an

object.

All

operations

applied

to

a

reference

act

on

the

object

to

which

the

reference

refers.

The

address

of

a

reference

is

the

address

of

the

aliased

object.

A

reference

type

is

defined

by

placing

the

reference

declarator

&

after

the

type

specifier.

You

must

initialize

all

references

except

function

parameters

when

they

are

defined.

Once

defined,

a

reference

cannot

be

reassigned.

What

happens

when

you

try

to

reassign

a

reference

turns

out

to

be

the

assignment

of

a

new

value

to

the

target.

Because

arguments

of

a

function

are

passed

by

value,

a

function

call

does

not

modify

the

actual

values

of

the

arguments.

If

a

function

needs

to

modify

the

actual

value

of

an

argument

or

needs

to

return

more

than

one

value,

the

argument

must

Initializers

Chapter

4.

Declarators

75

be

passed

by

reference

(as

opposed

to

being

passed

by

value).

Passing

arguments

by

reference

can

be

done

using

either

references

or

pointers.

Unlike

C,

C++

does

not

force

you

to

use

pointers

if

you

want

to

pass

arguments

by

reference.

The

syntax

of

using

a

reference

is

somewhat

simpler

than

that

of

using

a

pointer.

Passing

an

object

by

reference

enables

the

function

to

change

the

object

being

referred

to

without

creating

a

copy

of

the

object

within

the

scope

of

the

function.

Only

the

address

of

the

actual

original

object

is

put

on

the

stack,

not

the

entire

object.

For

example:

int

f(int&);

int

main()

{

extern

int

i;

f(i);

}

You

cannot

tell

from

the

function

call

f(i)

that

the

argument

is

being

passed

by

reference.

References

to

NULL

are

not

allowed.

Initializing

References

The

object

that

you

use

to

initialize

a

reference

must

be

of

the

same

type

as

the

reference,

or

it

must

be

of

a

type

that

is

convertible

to

the

reference

type.

If

you

initialize

a

reference

to

a

constant

using

an

object

that

requires

conversion,

a

temporary

object

is

created.

In

the

following

example,

a

temporary

object

of

type

float

is

created:

int

i;

const

float&

f

=

i;

//

reference

to

a

constant

float

When

you

initialize

a

reference

with

an

object,

you

bind

that

reference

to

that

object.

Attempting

to

initialize

a

nonconstant

reference

with

an

object

that

requires

a

conversion

is

an

error.

Once

a

reference

has

been

initialized,

it

cannot

be

modified

to

refer

to

another

object.

For

example:

int

num1

=

10;

int

num2

=

20;

int

&RefOne

=

num1;

//

valid

int

&RefOne

=

num2;

//

error,

two

definitions

of

RefOne

RefOne

=

num2;

//

assign

num2

to

num1

int

&RefTwo;

//

error,

uninitialized

reference

int

&RefTwo

=

num2;

//

valid

Note

that

the

initialization

of

a

reference

is

not

the

same

as

an

assignment

to

a

reference.

Initialization

operates

on

the

actual

reference

by

initializing

the

reference

with

the

object

it

is

an

alias

for.

Assignment

operates

through

the

reference

on

the

object

referred

to.

A

reference

can

be

declared

without

an

initializer:

v

When

it

is

used

in

an

parameter

declaration

v

In

the

declaration

of

a

return

type

for

a

function

call

v

In

the

declaration

of

class

member

within

its

class

declaration

v

When

the

extern

specifier

is

explicitly

used

References

76

ILE

C/C++

Language

Reference

You

cannot

have

references

to

any

of

the

following:

v

Other

references

v

Bit

fields

v

Arrays

of

references

v

Pointers

to

references

Direct

Binding

Suppose

a

reference

r

of

type

T

is

initialized

by

an

expression

e

of

type

U.

The

reference

r

is

bound

directly

to

e

if

the

following

statements

are

true:

v

Expression

e

is

an

lvalue

v

T

is

the

same

type

as

U,

or

T

is

a

base

class

of

U

v

T

has

the

same,

or

more,

const

or

volatile

qualifiers

than

U

The

reference

r

is

also

bound

directly

to

e

if

e

can

be

implicitly

converted

to

a

type

such

that

the

previous

list

of

statements

is

true.

References

Chapter

4.

Declarators

77

78

ILE

C/C++

Language

Reference

Chapter

5.

Expressions

and

Operators

Expressions

are

sequences

of

operators,

operands,

and

punctuators

that

specify

a

computation.

The

evaluation

of

expressions

is

based

on

the

operators

that

the

expressions

contain

and

the

context

in

which

they

are

used.

An

expression

can

result

in

a

value

and

can

produce

side

effects.

A

side

effect

is

a

change

in

the

state

of

the

execution

environment.

Both

ISO

C

and

ISO

C++

heed

points

in

the

execution

sequence

at

which

all

side

effects

of

previous

evaluations

are

complete

and

no

side

effects

of

subsequent

evaluations

will

have

occurred.

Such

times

are

called

sequence

points.

A

scalar

object

may

be

modified

only

once

between

successive

sequence

points;

otherwise,

the

result

is

undefined.

Sequence

points

occur

at

the

completion

of

all

expressions

that

are

not

part

of

a

larger

expression,

such

as

in

the

following

situations:

v

After

the

evaluation

of

the

first

operand

of

a

logical

AND

&&,

logical

OR

||,

conditional

?:,

or

comma

expression

v

After

the

evaluation

of

the

arguments

in

a

function

call

v

At

the

end

of

a

full

declarator

v

At

the

end

of

a

full

expression

v

Before

a

library

function

returns

v

After

the

actions

of

a

formatted

I/O

function

conversion

specifier

v

Before

and

after

a

call

to

a

comparison

function,

and

between

any

call

to

the

comparison

function

and

any

movement

of

the

objects

passed

as

arguments

to

that

function

call

The

term

full

expression

can

mean

an

initializer,

an

expression

statement,

the

expression

in

a

return

statement,

and

the

control

expressions

in

a

conditional,

iterative,

or

switch

statement.

This

includes

each

expression

in

a

for

statement.

2000C++

C++

operators

can

be

defined

to

behave

differently

when

applied

to

operands

of

class

type.

This

is

called

operator

overloading.

This

chapter

describes

the

behavior

of

operators

that

are

not

overloaded.

Related

References

v

“Lvalues

and

Rvalues”

on

page

83

v

“Overloading

Operators”

on

page

201

Operator

Precedence

and

Associativity

Two

operator

characteristics

determine

how

operands

group

with

operators:

precedence

and

associativity.

Precedence

is

the

priority

for

grouping

different

types

of

operators

with

their

operands.

Associativity

is

the

left-to-right

or

right-to-left

order

for

grouping

operands

to

operators

that

have

the

same

precedence.

An

operator’s

precedence

is

meaningful

only

if

other

operators

with

higher

or

lower

precedence

are

present.

Expressions

with

higher-precedence

operators

are

evaluated

first.

The

grouping

of

operands

can

be

forced

by

using

parentheses.

For

example,

in

the

following

statements,

the

value

of

5

is

assigned

to

both

a

and

b

because

of

the

right-to-left

associativity

of

the

=

operator.

The

value

of

c

is

assigned

to

b

first,

and

then

the

value

of

b

is

assigned

to

a.

©

Copyright

IBM

Corp.

1998,

2003

79

b

=

9;

c

=

5;

a

=

b

=

c;

Because

the

order

of

subexpression

evaluation

is

not

specified,

you

can

explicitly

force

the

grouping

of

operands

with

operators

by

using

parentheses.

In

the

expression

a

+

b

*

c

/

d

the

*

and

/

operations

are

performed

before

+

because

of

precedence.

b

is

multiplied

by

c

before

it

is

divided

by

d

because

of

associativity.

The

following

table

lists

the

C

and

C++

language

operators

in

order

of

precedence

and

shows

the

direction

of

associativity

for

each

operator.

The

C++

scope

resolution

operator

(::)

has

the

highest

precedence.

The

comma

operator

has

the

lowest

precedence.

Operators

that

have

the

same

rank

have

the

same

precedence.

Precedence

and

associativity

of

C

and

C++

operators

Rank

Right

Associative?

Operator

Function

Usage

1

yes

2000C++

global

scope

resolution

::

name_or_qualified

name

1

2000C++

class

or

namespace

scope

resolution

class_or_namespace

::

member

2

member

selection

object

.

member

2

member

selection

pointer

->

member

2

subscripting

pointer

[

expr

]

2

function

call

expr

(

expr_list

)

2

value

construction

type

(

expr_list

)

2

postfix

increment

lvalue

++

2

postfix

decrement

lvalue

--

2

yes

2000C++

type

identification

typeid

(

type

)

2

yes

2000C++

type

identification

at

run

time

typeid

(

expr

)

2

yes

2000C++

conversion

checked

at

compile

time

static_cast

<

type

>

(

expr

)

2

yes

2000C++

conversion

checked

at

run

time

dynamic_cast

<

type

>

(

expr

)

2

yes

2000C++

unchecked

conversion

reinterpret_cast

<

type

>

(

expr

)

2

yes

2000C++

const

conversion

const_cast

<

type

>

(

expr

)

3

yes

size

of

object

in

bytes

sizeof

expr

3

yes

size

of

type

in

bytes

sizeof

(

type

)

3

yes

prefix

increment

++

lvalue

3

yes

prefix

decrement

--

lvalue

3

yes

bitwise

negation

~

expr

3

yes

not

!

expr

3

yes

unary

minus

-

expr

3

yes

unary

plus

+

expr

3

yes

address

of

&

lvalue

3

yes

indirection

or

dereference

*

expr

Operator

Precedence

and

Associativity

80

ILE

C/C++

Language

Reference

Precedence

and

associativity

of

C

and

C++

operators

Rank

Right

Associative?

Operator

Function

Usage

3

yes

2000C++

create

(allocate

memory)

new

type

3

yes

2000C++

create

(allocate

and

initialize

memory)

new

type

(

expr_list

)

type

3

yes

2000C++

create

(placement)

new

type

(

expr_list

)

type

(

expr_list

)

3

yes

2000C++

destroy

(deallocate

memory)

delete

pointer

3

yes

2000C++

destroy

array

delete

[

]

pointer

3

yes

type

conversion

(cast)

(

type

)

expr

4

member

selection

object

.*

ptr_to_member

4

member

selection

object

->*

ptr_to_member

5

multiplication

expr

*

expr

5

division

expr

/

expr

5

modulo

(remainder)

expr

%

expr

6

binary

addition

expr

+

expr

6

binary

subtraction

expr

-

expr

7

bitwise

shift

left

expr

<<

expr

7

bitwise

shift

right

expr

>>

expr

8

less

than

expr

<

expr

8

less

than

or

equal

to

expr

<=

expr

8

greater

than

expr

>

expr

8

greater

than

or

equal

to

expr

>=

expr

9

equal

expr

==

expr

9

not

equal

expr

!=

expr

10

bitwise

AND

expr

&

expr

11

bitwise

exclusive

OR

expr

^

expr

12

bitwise

inclusive

OR

expr

|

expr

13

logical

AND

expr

&&

expr

14

logical

inclusive

OR

expr

||

expr

15

conditional

expression

expr

?

expr

:

expr

16

yes

simple

assignment

lvalue

=

expr

16

yes

multiply

and

assign

lvalue

*=

expr

16

yes

divide

and

assign

lvalue

/=

expr

16

yes

modulo

and

assign

lvalue

%=

expr

16

yes

add

and

assign

lvalue

+=

expr

16

yes

subtract

and

assign

lvalue

-=

expr

16

yes

shift

left

and

assign

lvalue

<<=

expr

16

yes

shift

right

and

assign

lvalue

>>=

expr

16

yes

bitwise

AND

and

assign

lvalue

&=

expr

16

yes

bitwise

exclusive

OR

and

assign

lvalue

^=

expr

16

yes

bitwise

inclusive

OR

and

assign

lvalue

|=

expr

17

yes

2000C++

throw

expression

throw

expr

18

comma

(sequencing)

expr

,

expr

The

order

of

evaluation

for

function

call

arguments

or

for

the

operands

of

binary

operators

is

not

specified.

Avoid

writing

ambiguous

expressions

such

as:

z

=

(x

*

++y)

/

func1(y);

func2(++i,

x[i]);

Operator

Precedence

and

Associativity

Chapter

5.

Expressions

and

Operators

81

In

the

example

above,

++y

and

func1(y)

might

not

be

evaluated

in

the

same

order

by

all

C

language

implementations.

If

y

has

the

value

of

1

before

the

first

statement,

it

is

not

known

whether

or

not

the

value

of

1

or

2

is

passed

to

func1().

In

the

second

statement,

if

i

has

the

value

of

1

before

the

expression

is

evaluated,

it

is

not

known

whether

x[1]

or

x[2]

is

passed

as

the

second

argument

to

func2().

Examples

of

Expressions

and

Precedence

The

parentheses

in

the

following

expressions

explicitly

show

how

the

compiler

groups

operands

and

operators.

total

=

(4

+

(5

*

3));

total

=

(((8

*

5)

/

10)

/

3);

total

=

(10

+

(5/3));

If

parentheses

did

not

appear

in

these

expressions,

the

operands

and

operators

would

be

grouped

in

the

same

manner

as

indicated

by

the

parentheses.

For

example,

the

following

expressions

produce

the

same

output.

total

=

(4+(5*3));

total

=

4+5*3;

Because

the

order

of

grouping

operands

with

operators

that

are

both

associative

and

commutative

is

not

specified,

the

compiler

can

group

the

operands

and

operators

in

the

expression:

total

=

price

+

prov_tax

+

city_tax;

in

the

following

ways

(as

indicated

by

parentheses):

total

=

(price

+

(prov_tax

+

city_tax));

total

=

((price

+

prov_tax)

+

city_tax);

total

=

((price

+

city_tax)

+

prov_tax);

The

grouping

of

operands

and

operators

does

not

affect

the

result

unless

one

ordering

causes

an

overflow

and

another

does

not.

For

example,

if

price

=

32767,

prov_tax

=

-42,

and

city_tax

=

32767,

and

all

three

of

these

variables

have

been

declared

as

integers,

the

third

statement

total

=

((price

+

city_tax)

+

prov_tax)

will

cause

an

integer

overflow

and

the

rest

will

not.

Because

intermediate

values

are

rounded,

different

groupings

of

floating-point

operators

may

give

different

results.

In

certain

expressions,

the

grouping

of

operands

and

operators

can

affect

the

result.

For

example,

in

the

following

expression,

each

function

call

might

be

modifying

the

same

global

variables.

a

=

b()

+

c()

+

d();

This

expression

can

give

different

results

depending

on

the

order

in

which

the

functions

are

called.

If

the

expression

contains

operators

that

are

both

associative

and

commutative

and

the

order

of

grouping

operands

with

operators

can

affect

the

result

of

the

expression,

separate

the

expression

into

several

expressions.

For

example,

the

following

expressions

could

replace

the

previous

expression

if

the

called

functions

do

not

produce

any

side

effects

that

affect

the

variable

a.

a

=

b();

a

+=

c();

a

+=

d();

Operator

Precedence

and

Associativity

82

ILE

C/C++

Language

Reference

Lvalues

and

Rvalues

An

object

is

a

region

of

storage

that

can

be

examined

and

stored

into.

An

lvalue

is

an

expression

that

refers

to

such

an

object.

An

lvalue

does

not

necessarily

permit

modification

of

the

object

it

designates.

For

example,

a

const

object

is

an

lvalue

that

cannot

be

modified.

The

term

modifiable

lvalue

is

used

to

emphasize

that

the

lvalue

allows

the

designated

object

to

be

changed

as

well

as

examined.

The

following

object

types

are

lvalues,

but

not

modifiable

lvalues:

v

An

array

type

v

An

incomplete

type

v

A

const-qualified

type

v

An

object

is

a

structure

or

union

type

and

one

of

its

members

has

a

const-qualified

type

Because

these

lvalues

are

not

modifiable,

they

cannot

appear

on

the

left

side

of

an

assignment

statement.

The

term

rvalue

refers

to

a

data

value

that

is

stored

at

some

address

in

memory.

An

rvalue

is

an

expression

that

cannot

have

a

value

assigned

to

it.

Both

a

literal

constant

and

a

variable

can

serve

as

an

rvalue.

When

an

lvalue

appears

in

a

context

that

requires

an

rvalue,

the

lvalue

is

implicitly

converted

to

an

rvalue.

The

reverse,

however,

is

not

true:

an

rvalue

cannot

be

converted

to

an

lvalue.

Rvalues

always

have

complete

types

or

the

void

type.

2000C

ISO

C

defines

a

function

designator

as

an

expression

that

has

function

type

A

function

designator

is

distinct

from

an

object

type

or

an

lvalue.

It

can

be

the

name

of

a

function

or

the

result

of

dereferencing

a

function

pointer.

The

C

language

also

differentiates

between

its

treatment

of

a

function

pointer

and

an

object

pointer.

2000C++

On

the

other

hand,

in

C++,

a

function

call

that

returns

a

reference

is

an

lvalue.

Otherwise,

a

function

call

is

an

rvalue

expression.

In

C++,

every

expression

produces

an

lvalue,

an

rvalue,

or

no

value.

In

both

C

and

C++,

certain

operators

require

lvalues

for

some

of

their

operands.

The

table

below

lists

these

operators

and

additional

constraints

on

their

usage.

Operator

Requirement

&

(unary)

Operand

must

be

an

lvalue.

++

--

Operand

must

be

an

lvalue.

This

applies

to

both

prefix

and

postfix

forms.

=

+=

-=

*=

%=

<<=

>>=

&=

^=

|=

Left

operand

must

be

an

lvalue.

For

example,

all

assignment

operators

evaluate

their

right

operand

and

assign

that

value

to

their

left

operand.

The

left

operand

must

be

a

modifiable

lvalue

or

a

reference

to

a

modifiable

object.

The

address

operator

(&)

requires

an

lvalue

as

an

operand

while

the

increment

(++)

and

the

decrement

(--)

operators

require

a

modifiable

lvalue

as

an

operand.

The

following

example

shows

expressions

and

their

corresponding

lvalues.

Expression

Lvalue

x

=

42

x

lvalue

Chapter

5.

Expressions

and

Operators

83

Expression

Lvalue

*ptr

=

newvalue

*ptr

a++

a

2000C++

int&

f()

The

function

call

to

f()

Related

References

v

“Lvalue-to-Rvalue

Conversions”

on

page

126

Primary

Expressions

Primary

expressions

fall

into

the

following

general

categories:

v

Names

(identifiers)

v

Literals

(constants)

v

Parenthesized

expressions

v

2000C++

The

this

pointer

v

2000C++

Names

qualified

by

the

scope

resolution

operator

(::)

Names

The

value

of

a

name

depends

on

its

type,

which

is

determined

by

how

that

name

is

declared.

The

following

table

shows

whether

a

name

is

an

lvalue

expression.

Primary

expressions:

Names

Name

declared

as

Evaluates

to

Is

an

lvalue

Variable

of

arithmetic,

pointer,

enumeration,

structure,

or

union

type

An

object

of

that

type

Lvalue

Enumeration

constant

The

associated

integer

value

Not

an

lvalue

Array

That

array.

In

contexts

subject

to

conversions,

a

pointer

to

the

first

object

in

the

array,

except

where

the

name

is

used

as

the

argument

to

the

sizeof

operator.

2000C

Not

an

lvalue

Function

That

function.

In

contexts

subject

to

conversions,

a

pointer

to

that

function,

except

where

the

name

is

used

as

the

argument

to

the

sizeof

operator,

or

as

the

function

in

a

function

call

expression.

2000C

Not

an

lvalue

2000C++

Lvalue

As

an

expression,

a

name

may

not

refer

to

a

label,

typedef

name,

structure

component

name,

union

component

name,

structure

tag,

union

tag,

or

enumeration

tag.

Names

that

can

be

referred

to

by

a

name

in

an

expression

reside

in

a

name

space

that

is

separate

from

that

of

names

for

these

purposes.

Some

of

these

names

may

be

referred

to

within

expressions

by

means

of

special

constructs.

For

example,

the

dot

or

arrow

operators

may

be

used

to

refer

to

structure

and

union

component

names;

typedef

names

may

be

used

in

casts

or

as

an

argument

to

the

sizeof

operator.

lvalue

84

ILE

C/C++

Language

Reference

Literals

A

literal

is

a

numeric

constant

or

string

literal.

When

a

literal

is

evaluated

as

an

expression,

its

value

is

a

constant.

A

lexical

constant

is

never

an

lvalue.

However,

a

string

literal

is

an

lvalue.

Related

References

v

“Literals”

on

page

19

v

“The

this

Pointer”

on

page

229

Identifier

Expressions

2000C++

An

identifier

expression,

or

id-expression,

is

a

restricted

form

of

primary

expression.

Syntactically,

an

id-expression

requires

a

higher

level

of

complexity

than

a

simple

identifier

to

provide

a

name

for

all

of

the

language

elements

of

C++.

An

id-expression

can

be

either

a

qualified

or

unqualified

identifier.

It

can

also

appear

after

the

dot

and

arrow

operators.

Syntax

–

id-expression

��

unqualified_id

qualified_id

��

unqualified_id:

identifier

operator_function_id

conversion_function_id

~

class_name

template_id

qualified_id:

�

::

id

::

operator_function_id

::

template_id

class_or_namespace

::

unqualified_id

::

class_or_namespace

::

template

class_or_namespace

::

template

Related

References

v

“Identifiers”

on

page

17

v

Chapter

4,

“Declarators,”

on

page

63

Integer

Constant

Expressions

An

integer

compile-time

constant

is

a

value

that

is

determined

during

compilation

and

cannot

be

changed

at

run

time.

An

integer

compile-time

constant

expression

is

an

expression

that

is

composed

of

constants

and

evaluated

to

a

constant.

An

integer

constant

expression

is

an

expression

that

is

composed

of

only

the

following:

v

literals

v

enumerators

v

const

variables

lvalue

Chapter

5.

Expressions

and

Operators

85

v

static

data

members

of

integral

or

enumeration

types

v

casts

to

integral

types

v

sizeof

expressions

You

must

use

an

integer

constant

expression

in

the

following

situations:

v

In

the

subscript

declarator

as

the

description

of

an

array

bound.

v

After

the

keyword

case

in

a

switch

statement.

v

In

an

enumerator,

as

the

numeric

value

of

an

enum

constant.

v

In

a

bit-field

width

specifier.

v

In

the

preprocessor

#if

statement.

(Enumeration

constants,

address

constants,

and

sizeof

cannot

be

specified

in

a

preprocessor

#if

statement.)

Related

References

v

“Literals”

on

page

19

v

“Enumerations”

on

page

54

Parenthesized

Expressions

(

)

Use

parentheses

to

explicitly

force

the

order

of

expression

evaluation.

The

following

expression

does

not

use

parentheses

to

group

operands

and

operators.

The

parentheses

surrounding

weight,

zipcode

are

used

to

form

a

function

call.

Note

how

the

compiler

groups

the

operands

and

operators

in

the

expression

according

to

the

rules

for

operator

precedence

and

associativity:

handling- discount item +

+

*

*

(weight

expression

expression

unary minus

function call

parameters

expression

zipcode),

lvalue

86

ILE

C/C++

Language

Reference

The

following

expression

is

similar

to

the

previous

expression,

but

it

contains

parentheses

that

change

how

the

operands

and

operators

are

grouped:

handlingitem +

+

*

*

((weight

expression

expression

expression

parenthesized expression

function callexpression

expression

zipcode)),

parameters

- discount

unary minus

In

an

expression

that

contains

both

associative

and

commutative

operators,

you

can

use

parentheses

to

specify

the

grouping

of

operands

with

operators.

The

parentheses

in

the

following

expression

guarantee

the

order

of

grouping

operands

with

the

operators:

x

=

f

+

(g

+

h);

C++

Scope

Resolution

Operator

::

2000C++

The

::

(scope

resolution)

operator

is

used

to

qualify

hidden

names

so

that

you

can

still

use

them.

You

can

use

the

unary

scope

operator

if

a

namespace

scope

or

global

scope

name

is

hidden

by

an

explicit

declaration

of

the

same

name

in

a

block

or

class.

For

example:

int

count

=

0;

int

main(void)

{

int

count

=

0;

::count

=

1;

//

set

global

count

to

1

count

=

2;

//

set

local

count

to

2

return

0;

}

The

declaration

of

count

declared

in

the

main()

function

hides

the

integer

named

count

declared

in

global

namespace

scope.

The

statement

::count

=

1

accesses

the

variable

named

count

declared

in

global

namespace

scope.

You

can

also

use

the

class

scope

operator

to

qualify

class

names

or

class

member

names.

If

a

class

member

name

is

hidden,

you

can

use

it

by

qualifying

it

with

its

class

name

and

the

class

scope

operator.

lvalue

Chapter

5.

Expressions

and

Operators

87

In

the

following

example,

the

declaration

of

the

variable

X

hides

the

class

type

X,

but

you

can

still

use

the

static

class

member

count

by

qualifying

it

with

the

class

type

X

and

the

scope

resolution

operator.

#include

<iostream>

using

namespace

std;

class

X

{

public:

static

int

count;

};

int

X::count

=

10;

//

define

static

data

member

int

main

()

{

int

X

=

0;

//

hides

class

type

X

cout

<<

X::count

<<

endl;

//

use

static

member

of

class

X

}

Related

References

v

“Scope

of

Class

Names”

on

page

216

v

Chapter

10,

“Namespaces,”

on

page

191

Postfix

Expressions

Postfix

operators

are

operators

that

appear

after

their

operands.

A

postfix

expression

is

a

primary

expression,

or

a

primary

expression

that

contains

a

postfix

operator.

The

following

summarizes

the

available

postfix

operators:

Precedence

and

associativity

of

postfix

operators

Rank

Right

Associative?

Operator

Function

Usage

2

member

selection

object

.

member

2

member

selection

pointer

->

member

2

subscripting

pointer

[

expr

]

2

function

call

expr

(

expr_list

)

2

value

construction

type

(

expr_list

)

2

postfix

increment

lvalue

++

2

postfix

decrement

lvalue

--

2

yes

2000C++

type

identification

typeid

(

type

)

2

yes

2000C++

type

identification

at

run

time

typeid

(

expr

)

2

yes

2000C++

conversion

checked

at

compile

time

static_cast

<

type

>

(

expr

)

2

yes

2000C++

conversion

checked

at

run

time

dynamic_cast

<

type

>

(

expr

)

2

yes

2000C++

unchecked

conversion

reinterpret_cast

<

type

>

(

expr

)

2

yes

2000C++

const

conversion

const_cast

<

type

>

(

expr

)

Function

Call

Operator

(

)

A

function

call

is

an

expression

containing

a

simple

type

name

and

a

parenthesized

argument

list.

The

argument

list

can

contain

any

number

of

expressions

separated

by

commas.

It

can

also

be

empty.

For

example:

lvalue

88

ILE

C/C++

Language

Reference

stub()

overdue(account,

date,

amount)

notify(name,

date

+

5)

report(error,

time,

date,

++num)

There

are

two

kinds

of

function

calls:

ordinary

function

calls

and

C++

member

function

calls.

Any

function

may

call

itself

except

for

the

function

main.

Type

of

a

Function

Call

The

type

of

a

function

call

expression

is

the

return

type

of

the

function.

This

type

can

either

be

a

complete

type,

a

reference

type,

or

the

type

void.

A

function

call

is

an

lvalue

if

and

only

if

the

type

of

the

function

is

a

reference.

Arguments

and

Parameters

A

function

argument

is

an

expression

that

you

use

within

the

parentheses

of

a

function

call.

A

function

parameter

is

an

object

or

reference

declared

within

the

parentheses

of

a

function

declaration

or

definition.

When

you

call

a

function,

the

arguments

are

evaluated,

and

each

parameter

is

initialized

with

the

value

of

the

corresponding

argument.

The

semantics

of

argument

passing

are

identical

to

those

of

assignment.

A

function

can

change

the

values

of

its

non-const

parameters,

but

these

changes

have

no

effect

on

the

argument

unless

the

parameter

is

a

reference

type.

Linkage

and

Function

Calls

2000C

In

C,

if

a

function

definition

has

external

linkage

and

a

return

type

of

int,

calls

to

the

function

can

be

made

before

it

is

explicitly

declared

because

an

implicit

declaration

of

extern

int

func();

is

assumed.

This

is

not

true

for

C++.

Type

Conversions

of

Arguments

Arguments

that

are

arrays

or

functions

are

converted

to

pointers

before

being

passed

as

function

arguments.

Arguments

passed

to

nonprototyped

C

functions

undergo

conversions:

type

short

or

char

parameters

are

converted

to

int,

and

float

parameters

to

double.

Use

a

cast

expression

for

other

conversions.

The

compiler

compares

the

data

types

provided

by

the

calling

function

with

the

data

types

that

the

called

function

expects

and

performs

necessary

type

conversions.

For

example,

when

function

funct

is

called,

argument

f

is

converted

to

a

double,

and

argument

c

is

converted

to

an

int:

char

*

funct

(double

d,

int

i);

/*

...

*/

int

main(void)

{

float

f;

char

c;

funct(f,

c)

/*

f

is

converted

to

a

double,

c

is

converted

to

an

int

*/

return

0;

}

Evaluation

Order

of

Arguments

lvalue

Chapter

5.

Expressions

and

Operators

89

The

order

in

which

arguments

are

evaluated

is

not

specified.

Avoid

such

calls

as:

method(sample1,

batch.process--,

batch.process);

In

this

example,

batch.process--

might

be

evaluated

last,

causing

the

last

two

arguments

to

be

passed

with

the

same

value.

Example

of

Function

Calls

In

the

following

example,

main

passes

func

two

values:

5

and

7.

The

function

func

receives

copies

of

these

values

and

accesses

them

by

the

identifiers:

a

and

b.

The

function

func

changes

the

value

of

a.

When

control

passes

back

to

main,

the

actual

values

of

x

and

y

are

not

changed.

The

called

function

func

only

receives

copies

of

the

values

of

x

and

y,

not

the

variables

themselves.

/**

**

This

example

illustrates

function

calls

**/

#include

<stdio.h>

void

func

(int

a,

int

b)

{

a

+=

b;

printf("In

func,

a

=

%d

b

=

%d\n",

a,

b);

}

int

main(void)

{

int

x

=

5,

y

=

7;

func(x,

y);

printf("In

main,

x

=

%d

y

=

%d\n",

x,

y);

return

0;

}

This

program

produces

the

following

output:

In

func,

a

=

12

b

=

7

In

main,

x

=

5

y

=

7

Array

Subscripting

Operator

[

]

A

postfix

expression

followed

by

an

expression

in

[

]

(brackets)

specifies

an

element

of

an

array.

The

expression

within

the

brackets

is

referred

to

as

a

subscript.

The

first

element

of

an

array

has

the

subscript

zero.

By

definition,

the

expression

a[b]

is

equivalent

to

the

expression

*((a)

+

(b)),

and,

because

addition

is

associative,

it

is

also

equivalent

to

b[a].

Between

expressions

a

and

b,

one

must

be

a

pointer

to

a

type

T,

and

the

other

must

have

integral

or

enumeration

type.

The

result

of

an

array

subscript

is

an

lvalue.

The

following

example

demonstrates

this:

#include

<stdio.h>

int

main(void)

{

int

a[3]

=

{

10,

20,

30

};

printf("a[0]

=

%d\n",

a[0]);

printf("a[1]

=

%d\n",

1[a]);

printf("a[2]

=

%d\n",

*(2

+

a));

return

0;

}

The

following

is

the

output

of

the

above

example:

lvalue

90

ILE

C/C++

Language

Reference

a[0]

=

10

a[1]

=

20

a[2]

=

30

2000C++

The

above

restrictions

on

the

types

of

expressions

required

by

the

subscript

operator,

as

well

as

the

relationship

between

the

subscript

operator

and

pointer

arithmetic,

do

not

apply

if

you

overload

operator[]

of

a

class.

The

first

element

of

each

array

has

the

subscript

0.

The

expression

contract[35]

refers

to

the

36th

element

in

the

array

contract.

In

a

multidimensional

array,

you

can

reference

each

element

(in

the

order

of

increasing

storage

locations)

by

incrementing

the

right-most

subscript

most

frequently.

For

example,

the

following

statement

gives

the

value

100

to

each

element

in

the

array

code[4][3][6]:

for

(first

=

0;

first

<

4;

++first)

{

for

(second

=

0;

second

<

3;

++second)

{

for

(third

=

0;

third

<

6;

++third)

{

code[first][second][third]

=

100;

}

}

}

Dot

Operator

.

The

.

(dot)

operator

is

used

to

access

class,

structure,

or

union

members.

The

member

is

specified

by

a

postfix

expression,

followed

by

a

.

(dot)

operator,

followed

by

a

possibly

qualified

identifier

or

a

pseudo-destructor

name.

The

postfix

expression

must

be

an

object

of

type

class,

struct

or

union.

The

name

must

be

a

member

of

that

object.

The

value

of

the

expression

is

the

value

of

the

selected

member.

If

the

postfix

expression

and

the

name

are

lvalues,

the

expression

value

is

also

an

lvalue.

If

the

postfix

expression

is

type-qualified,

the

same

type

qualifiers

will

apply

to

the

designated

member

in

the

resulting

expression.

Pseudo-destructors

2000C++

A

pseudo-destructor

is

a

destructor

of

a

nonclass

type

named

type_name

in

the

following

syntax

diagram

:

��

type_name

::

~

type_name

::

nested_name_specifier

nested_name_specifier

template

template_identifier

::

~

type_name

::

~

type_name

::

nested_name_specifier

��

Arrow

Operator

−>

The

->

(arrow)

operator

is

used

to

access

class,

structure

or

union

members

using

a

pointer.

A

postfix

expression,

followed

by

an

->

(arrow)

operator,

followed

by

a

possibly

qualified

identifier

or

a

pseudo-destructor

name,

designates

a

member

of

lvalue

Chapter

5.

Expressions

and

Operators

91

the

object

to

which

the

pointer

points.

(A

pseudo-destructor

is

a

destructor

of

a

nonclass

type.)

The

postfix

expression

must

be

a

pointer

to

an

object

of

type

class,

struct

or

union.

The

name

must

be

a

member

of

that

object.

The

value

of

the

expression

is

the

value

of

the

selected

member.

If

the

name

is

an

lvalue,

the

expression

value

is

also

an

lvalue.

If

the

expression

is

a

pointer

to

a

qualified

type,

the

same

type-qualifiers

will

apply

to

the

designated

member

in

the

resulting

expression.

Related

References

v

“Dot

Operator

.”

on

page

91

The

typeid

Operator

2000C++

The

typeid

operator

provides

a

program

with

the

ability

to

retrieve

the

actual

derived

type

of

the

object

referred

to

by

a

pointer

or

a

reference.

This

operator,

along

with

the

dynamic_cast

operator,

are

provided

for

run-time

type

identification

(RTTI)

support

in

C++.

The

operator

has

the

following

form:

��

typeid

(

expr

)

type-name

��

The

typeid

operator

returns

an

lvalue

of

type

const

std::type_info

that

represents

the

type

of

expression

expr.

You

must

include

the

standard

template

library

header

<typeinfo>

to

use

the

typeid

operator.

If

expr

is

a

reference

or

a

dereferenced

pointer

to

a

polymorphic

class,

typeid

will

return

a

type_info

object

that

represents

the

object

that

the

reference

or

pointer

denotes

at

run

time.

If

it

is

not

a

polymorphic

class,

typeid

will

return

a

type_info

object

that

represents

the

type

of

the

reference

or

dereferenced

pointer.

The

following

example

demonstrates

this:

#include

<iostream>

#include

<typeinfo>

using

namespace

std;

struct

A

{

virtual

~A()

{

}

};

struct

B

:

A

{

};

struct

C

{

};

struct

D

:

C

{

};

int

main()

{

B

bobj;

A*

ap

=

&bobj;

A&

ar

=

bobj;

cout

<<

"ap:

"

<<

typeid(*ap).name()

<<

endl;

cout

<<

"ar:

"

<<

typeid(ar).name()

<<

endl;

D

dobj;

C*

cp

=

&dobj;

C&

cr

=

dobj;

cout

<<

"cp:

"

<<

typeid(*cp).name()

<<

endl;

cout

<<

"cr:

"

<<

typeid(cr).name()

<<

endl;

}

The

following

is

the

output

of

the

above

example:

lvalue

92

ILE

C/C++

Language

Reference

ap:

B

ar:

B

cp:

C

cr:

C

Classes

A

and

B

are

polymorphic;

classes

C

and

D

are

not.

Although

cp

and

cr

refer

to

an

object

of

type

D,

typeid(*cp)

and

typeid(cr)

return

objects

that

represent

class

C.

Lvalue-to-rvalue,

array-to-pointer,

and

function-to-pointer

conversions

will

not

be

applied

to

expr.

For

example,

the

output

of

the

following

example

will

be

int

[10],

not

int

*:

#include

<iostream>

#include

<typeinfo>

using

namespace

std;

int

main()

{

int

myArray[10];

cout

<<

typeid(myArray).name()

<<

endl;

}

If

expr

is

a

class

type,

that

class

must

be

completely

defined.

The

typeid

operator

ignores

top-level

const

or

volatile

qualifiers.

static_cast

Operator

2000C++

The

static_cast

operator

converts

a

given

expression

to

a

specified

type.

Syntax

–

static_cast

��

static_cast

<

Type

>

(

expression

)

��

The

following

is

an

example

of

the

static_cast

operator.

#include

<iostream>

using

namespace

std;

int

main()

{

int

j

=

41;

int

v

=

4;

float

m

=

j/v;

float

d

=

static_cast<float>(j)/v;

cout

<<

"m

=

"

<<

m

<<

endl;

cout

<<

"d

=

"

<<

d

<<

endl;

}

The

following

is

the

output

of

the

above

example:

m

=

10

d

=

10.25

In

this

example,

m

=

j/v;

produces

an

answer

of

type

int

because

both

j

and

v

are

integers.

Conversely,

d

=

static_cast<float>(j)/v;

produces

an

answer

of

type

float.

The

static_cast

operator

converts

variable

j

to

a

type

float.

This

allows

the

compiler

to

generate

a

division

with

an

answer

of

type

float.

All

static_cast

operators

resolve

at

compile

time

and

do

not

remove

any

const

or

volatile

modifiers.

lvalue

Chapter

5.

Expressions

and

Operators

93

Applying

the

static_cast

operator

to

a

null

pointer

will

convert

it

to

a

null

pointer

value

of

the

target

type.

You

can

explicitly

convert

a

pointer

of

a

type

A

to

a

pointer

of

a

type

B

if

A

is

a

base

class

of

B.

If

A

is

not

a

base

class

of

B,

a

compiler

error

will

result.

You

may

cast

an

lvalue

of

a

type

A

to

a

type

B&

if

the

following

are

true:

v

A

is

a

base

class

of

B

v

You

are

able

to

convert

a

pointer

of

type

A

to

a

pointer

of

type

B

v

The

type

B

has

the

same

or

greater

const

or

volatile

qualifiers

than

type

A

v

A

is

not

a

virtual

base

class

of

B

The

result

is

an

lvalue

of

type

B.

A

pointer

to

member

type

can

be

explicitly

converted

into

a

different

pointer

to

member

type

if

both

types

are

pointers

to

members

of

the

same

class.

This

form

of

explicit

conversion

may

also

take

place

if

the

pointer

to

member

types

are

from

separate

classes,

however

one

of

the

class

types

must

be

derived

from

the

other.

reinterpret_cast

Operator

2000C++

A

reinterpret_cast

operator

handles

conversions

between

unrelated

types.

Syntax

–

reinterpret_cast

��

reinterpret_cast

<

Type

>

(

expression

)

��

The

reinterpret_cast

operator

produces

a

value

of

a

new

type

that

has

the

same

bit

pattern

as

its

argument.

You

cannot

cast

away

a

const

or

volatile

qualification.

You

can

explicitly

perform

the

following

conversions:

v

A

pointer

to

any

integral

type

large

enough

to

hold

it

v

A

value

of

integral

or

enumeration

type

to

a

pointer

v

A

pointer

to

a

function

to

a

pointer

to

a

function

of

a

different

type

v

A

pointer

to

an

object

to

a

pointer

to

an

object

of

a

different

type

v

A

pointer

to

a

member

to

a

pointer

to

a

member

of

a

different

class

or

type,

if

the

types

of

the

members

are

both

function

types

or

object

types

A

null

pointer

value

is

converted

to

the

null

pointer

value

of

the

destination

type.

Given

an

lvalue

expression

of

type

T

and

an

object

x,

the

following

two

conversions

are

synonymous:

v

reinterpret_cast<T&>(x)

v

reinterpret_cast<T>(&x)

ISO

C++

also

supports

C-style

casts.

The

two

styles

of

explicit

casts

have

different

syntax

but

the

same

semantics,

and

either

way

of

reinterpreting

one

type

of

pointer

as

an

incompatible

type

of

pointer

is

usually

invalid.

The

reinterpret_cast

operator,

as

well

as

the

other

named

cast

operators,

is

more

easily

spotted

than

C-style

casts,

and

highlights

the

paradox

of

a

strongly

typed

language

that

allows

explicit

casts.

The

C++

compiler

detects

and

quietly

fixes

most

but

not

all

violations.

It

is

important

to

remember

that

even

though

a

program

compiles,

its

source

code

may

not

be

completely

correct.

On

some

platforms,

performance

optimizations

are

lvalue

94

ILE

C/C++

Language

Reference

predicated

on

strict

adherence

to

ISO

aliasing

rules.

Although

the

C++

compiler

tries

to

help

with

type-based

aliasing

violations,

it

cannot

detect

all

possible

cases.

The

following

example

violates

the

aliasing

rule,

but

will

execute

as

expected

when

compiled

unoptimized

in

C++

or

in

K&R

C.

It

will

also

successfully

compile

optimized

in

C++,

but

will

not

necessarily

execute

as

expected.

The

offending

line

7

causes

an

old

or

uninitialized

value

for

x

to

be

printed.

1

extern

int

y

=

7.;

2

3

int

main()

{

4

float

x;

5

int

i;

6

x

=

y;

7

i

=

*(int

*)

&x;

8

printf("i=%d.

x=%f.\n",

i,

x);

9

}

The

next

code

example

contains

an

incorrect

cast

that

the

compiler

cannot

even

detect

because

the

cast

is

across

two

different

files.

1

/*

separately

compiled

file

1

*/

2

extern

float

f;

3

extern

int

*

int_pointer_to_f

=

(int

*)

&f;

/*

suspicious

cast

*/

4

5

/*

separately

compiled

file

2

*/

6

extern

float

f;

7

extern

int

*

int_pointer_to_f;

8

f

=

1.0;

9

int

i

=

*int_pointer_to_f;

/*

no

suspicious

cast

but

wrong

*/

In

line

8,

there

is

no

way

for

the

compiler

to

know

that

f

=

1.0

is

storing

into

the

same

object

that

int

i

=

*int_pointer_to_f

is

loading

from.

Related

References

v

“Standard

Type

Conversions”

on

page

126

v

“User-Defined

Conversions”

on

page

288

const_cast

Operator

2000C++

A

const_cast

operator

is

used

to

add

or

remove

a

const

or

volatile

modifier

to

or

from

a

type.

Syntax

–

const_cast

��

const_cast

<

Type

>

(

expression

)

��

Type

and

the

type

of

expression

may

only

differ

with

respect

to

their

const

and

volatile

qualifiers.

Their

cast

is

resolved

at

compile

time.

A

single

const_cast

expression

may

add

or

remove

any

number

of

const

or

volatile

modifiers.

The

result

of

a

const_cast

expression

is

an

rvalue

unless

Type

is

a

reference

type.

In

this

case,

the

result

is

an

lvalue.

Types

can

not

be

defined

within

const_cast.

The

following

demonstrates

the

use

of

the

const_cast

operator:

#include

<iostream>

using

namespace

std;

lvalue

Chapter

5.

Expressions

and

Operators

95

void

f(int*

p)

{

cout

<<

*p

<<

endl;

}

int

main(void)

{

const

int

a

=

10;

const

int*

b

=

&a;

//

Function

f()

expects

int*,

not

const

int*

//

f(b);

int*

c

=

const_cast<int>(b);

f(c);

//

Lvalue

is

const

//

*b

=

20;

//

Undefined

behavior

//

*c

=

30;

int

a1

=

40;

const

int*

b1

=

&a1;

int*

c1

=

const_cast<int>(b1);

//

Integer

a1,

the

object

referred

to

by

c1,

has

//

not

been

declared

const

*c1

=

50;

return

0;

}

The

compiler

will

not

allow

the

function

call

f(b).

Function

f()

expects

a

pointer

to

an

int,

not

a

const

int.

The

statement

int*

c

=

const_cast<int>(b)

returns

a

pointer

c

that

refers

to

a

without

the

const

qualification

of

a.

This

process

of

using

const_cast

to

remove

the

const

qualification

of

an

object

is

called

casting

away

constness.

Consequently

the

compiler

will

allow

the

function

call

f(c).

The

compiler

would

not

allow

the

assignment

*b

=

20

because

b

points

to

an

object

of

type

const

int.

The

compiler

will

allow

the

*c

=

30,

but

the

behavior

of

this

statement

is

undefined.

If

you

cast

away

the

constness

of

an

object

that

has

been

explicitly

declared

as

const,

and

attempt

to

modify

it,

the

results

are

undefined.

However,

if

you

cast

away

the

constness

of

an

object

that

has

not

been

explicitly

declared

as

const,

you

can

modify

it

safely.

In

the

above

example,

the

object

referred

to

by

b1

has

not

been

declared

const,

but

you

cannot

modify

this

object

through

b1.

You

may

cast

away

the

constness

of

b1

and

modify

the

value

to

which

it

refers.

Related

References

v

“Type

Qualifiers”

on

page

57

dynamic_cast

Operator

2000C++

The

dynamic_cast

operator

performs

type

conversions

at

run

time.

The

dynamic_cast

operator

guarantees

the

conversion

of

a

pointer

to

a

base

class

to

a

pointer

to

a

derived

class,

or

the

conversion

of

an

lvalue

referring

to

a

base

class

to

a

reference

to

a

derived

class.

A

program

can

thereby

use

a

class

hierarchy

safely.

This

operator

and

the

typeid

operator

provide

run-time

type

information

(RTTI)

support

in

C++.

lvalue

96

ILE

C/C++

Language

Reference

The

expression

dynamic_cast<T>(v)

converts

the

expression

v

to

type

T.

Type

T

must

be

a

pointer

or

reference

to

a

complete

class

type

or

a

pointer

to

void.

If

T

is

a

pointer

and

the

dynamic_cast

operator

fails,

the

operator

returns

a

null

pointer

of

type

T.

If

T

is

a

reference

and

the

dynamic_cast

operator

fails,

the

operator

throws

the

exception

std::bad_cast.

You

can

find

this

class

in

the

standard

library

header

<typeinfo>.

If

T

is

a

void

pointer,

then

dynamic_cast

will

return

the

starting

address

of

the

object

pointed

to

by

v.

The

following

example

demonstrates

this:

#include

<iostream>

using

namespace

std;

struct

A

{

virtual

~A()

{

};

};

struct

B

:

A

{

};

int

main()

{

B

bobj;

A*

ap

=

&bobj;

void

*

vp

=

dynamic_cast<void

*>(ap);

cout

<<

"Address

of

vp

:

"

<<

vp

<<

endl;

cout

<<

"Address

of

bobj:

"

<<

&bobj

<<

endl;

}

The

output

of

this

example

will

be

similar

to

the

following.

Both

vp

and

&bobj

will

refer

to

the

same

address:

Address

of

vp

:

12FF6C

Address

of

bobj:

12FF6C

The

primary

purpose

for

the

dynamic_cast

operator

is

to

perform

type-safe

downcasts.

A

downcast

is

the

conversion

of

a

pointer

or

reference

to

a

class

A

to

pointer

or

reference

to

a

class

B,

where

class

A

is

a

base

class

of

B.

The

problem

with

downcasts

is

that

a

pointer

of

type

A*

can

and

must

point

to

any

object

of

a

class

that

has

been

derived

from

A.

The

dynamic_cast

operator

ensures

that

if

you

convert

a

pointer

of

class

A

to

a

pointer

of

a

class

B,

the

object

that

A

points

to

belongs

to

class

B

or

a

class

derived

from

B.

The

following

example

demonstrates

the

use

of

the

dynamic_cast

operator:

#include

<iostream>

using

namespace

std;

struct

A

{

virtual

void

f()

{

cout

<<

"Class

A"

<<

endl;

}

};

struct

B

:

A

{

virtual

void

f()

{

cout

<<

"Class

B"

<<

endl;

}

};

struct

C

:

A

{

virtual

void

f()

{

cout

<<

"Class

C"

<<

endl;

}

};

void

f(A*

arg)

{

B*

bp

=

dynamic_cast<B*>(arg);

C*

cp

=

dynamic_cast<C*>(arg);

if

(bp)

bp->f();

else

if

(cp)

lvalue

Chapter

5.

Expressions

and

Operators

97

cp->f();

else

arg->f();

};

int

main()

{

A

aobj;

C

cobj;

A*

ap

=

&cobj;

A*

ap2

=

&aobj;

f(ap);

f(ap2);

}

The

following

is

the

output

of

the

above

example:

Class

C

Class

A

The

function

f()

determines

whether

the

pointer

arg

points

to

an

object

of

type

A,

B,

or

C.

The

function

does

this

by

trying

to

convert

arg

to

a

pointer

of

type

B,

then

to

a

pointer

of

type

C,

with

the

dynamic_cast

operator.

If

the

dynamic_cast

operator

succeeds,

it

returns

a

pointer

that

points

to

the

object

denoted

by

arg.

If

dynamic_cast

fails,

it

returns

0.

You

may

perform

downcasts

with

the

dynamic_cast

operator

only

on

polymorphic

classes.

In

the

above

example,

all

the

classes

are

polymorphic

because

class

A

has

a

virtual

function.

The

dynamic_cast

operator

uses

the

run-time

type

information

generated

from

polymorphic

classes.

Related

References

v

“Derivation”

on

page

247

v

“User-Defined

Conversions”

on

page

288

Unary

Expressions

A

unary

expression

contains

one

operand

and

a

unary

operator.

All

unary

operators

have

the

same

precedence

and

have

right-to-left

associativity.

A

unary

expression

is

therefore

a

postfix

expression.

As

indicated

in

the

following

descriptions,

the

usual

arithmetic

conversions

are

performed

on

the

operands

of

most

unary

expressions.

The

following

table

summarizes

the

operators

for

unary

expressions:

Precedence

and

associativity

of

unary

operators

Rank

Right

Associative?

Operator

Function

Usage

3

yes

size

of

object

in

bytes

sizeof

(

expr

)

3

yes

size

of

type

in

bytes

sizeof

type

3

yes

prefix

increment

++

lvalue

3

yes

prefix

decrement

--

lvalue

3

yes

complement

~

expr

3

yes

not

!

expr

3

yes

unary

minus

-

expr

3

yes

unary

plus

+

expr

3

yes

address

of

&

lvalue

3

yes

indirection

or

dereference

*

expr

3

yes

2000C++

create

(allocate

memory)

new

type

lvalue

98

ILE

C/C++

Language

Reference

Precedence

and

associativity

of

unary

operators

Rank

Right

Associative?

Operator

Function

Usage

3

yes

2000C++

create

(allocate

and

initialize

memory)

new

type

(

expr_list

)

type

3

yes

2000C++

create

(placement)

new

type

(

expr_list

)

type

(

expr_list

)

3

yes

2000C++

destroy

(deallocate

memory)

delete

pointer

3

yes

2000C++

destroy

array

delete

[

]

pointer

3

yes

type

conversion

(cast)

(

type

)

expr

Increment

++

The

++

(increment)

operator

adds

1

to

the

value

of

a

scalar

operand,

or

if

the

operand

is

a

pointer,

increments

the

operand

by

the

size

of

the

object

to

which

it

points.

The

operand

receives

the

result

of

the

increment

operation.

The

operand

must

be

a

modifiable

lvalue

of

arithmetic

or

pointer

type.

You

can

put

the

++

before

or

after

the

operand.

If

it

appears

before

the

operand,

the

operand

is

incremented.

The

incremented

value

is

then

used

in

the

expression.

If

you

put

the

++

after

the

operand,

the

value

of

the

operand

is

used

in

the

expression

before

the

operand

is

incremented.

For

example:

play

=

++play1

+

play2++;

is

similar

to

the

following

expressions;

play2

is

altered

before

play:

int

temp,

temp1,

temp2;

temp1

=

play1

+

1;

temp2

=

play2;

play1

=

temp1;

temp

=

temp1

+

temp2;

play2

=

play2

+

1;

play

=

temp;

The

result

has

the

same

type

as

the

operand

after

integral

promotion.

The

usual

arithmetic

conversions

on

the

operand

are

performed.

Decrement

−−

The

--

(decrement)

operator

subtracts

1

from

the

value

of

a

scalar

operand,

or

if

the

operand

is

a

pointer,

decreases

the

operand

by

the

size

of

the

object

to

which

it

points.

The

operand

receives

the

result

of

the

decrement

operation.

The

operand

must

be

a

modifiable

lvalue.

You

can

put

the

--

before

or

after

the

operand.

If

it

appears

before

the

operand,

the

operand

is

decremented,

and

the

decremented

value

is

used

in

the

expression.

If

the

--

appears

after

the

operand,

the

current

value

of

the

operand

is

used

in

the

expression

and

the

operand

is

decremented.

For

example:

play

=

--play1

+

play2--;

is

similar

to

the

following

expressions;

play2

is

altered

before

play:

Unary

Expressions

Chapter

5.

Expressions

and

Operators

99

int

temp,

temp1,

temp2;

temp1

=

play1

-

1;

temp2

=

play2;

play1

=

temp1;

temp

=

temp1

+

temp2;

play2

=

play2

-

1;

play

=

temp;

The

result

has

the

same

type

as

the

operand

after

integral

promotion,

but

is

not

an

lvalue.

The

usual

arithmetic

conversions

are

performed

on

the

operand.

Unary

Plus

+

The

+

(unary

plus)

operator

maintains

the

value

of

the

operand.

The

operand

can

have

any

arithmetic

type

or

pointer

type.

The

result

is

not

an

lvalue.

The

result

has

the

same

type

as

the

operand

after

integral

promotion.

Note:

Any

plus

sign

in

front

of

a

constant

is

not

part

of

the

constant.

Unary

Minus

−

The

-

(unary

minus)

operator

negates

the

value

of

the

operand.

The

operand

can

have

any

arithmetic

type.

The

result

is

not

an

lvalue.

For

example,

if

quality

has

the

value

100,

-quality

has

the

value

-100.

The

result

has

the

same

type

as

the

operand

after

integral

promotion.

Note:

Any

minus

sign

in

front

of

a

constant

is

not

part

of

the

constant.

Logical

Negation

!

The

!

(logical

negation)

operator

determines

whether

the

operand

evaluates

to

0

(false)

or

nonzero

(true).

2000C

The

expression

yields

the

value

1

(true)

if

the

operand

evaluates

to

0,

and

yields

the

value

0

(false)

if

the

operand

evaluates

to

a

nonzero

value.

2000C++

The

expression

yields

the

value

true

if

the

operand

evaluates

to

false

(0),

and

yields

the

value

false

if

the

operand

evaluates

to

true

(nonzero).

The

operand

is

implicitly

converted

to

bool,

and

the

type

of

the

result

is

bool.

The

following

two

expressions

are

equivalent:

!right;

right

==

0;

Bitwise

Negation

~

The

~

(bitwise

negation)

operator

yields

the

bitwise

complement

of

the

operand.

In

the

binary

representation

of

the

result,

every

bit

has

the

opposite

value

of

the

same

bit

in

the

binary

representation

of

the

operand.

The

operand

must

have

an

integral

type.

The

result

has

the

same

type

as

the

operand

but

is

not

an

lvalue.

Suppose

x

represents

the

decimal

value

5.

The

16-bit

binary

representation

of

x

is:

0000000000000101

Unary

Expressions

100

ILE

C/C++

Language

Reference

The

expression

~x

yields

the

following

result

(represented

here

as

a

16-bit

binary

number):

1111111111111010

Note

that

the

~

character

can

be

represented

by

the

trigraph

??-.

The

16-bit

binary

representation

of

~0

is:

1111111111111111

Address

&

The

&

(address)

operator

yields

a

pointer

to

its

operand.

The

operand

must

be

an

lvalue,

a

function

designator,

or

a

qualified

name.

It

cannot

be

a

bit

field,

nor

can

it

have

the

storage

class

register.

If

the

operand

is

an

lvalue

or

function,

the

resulting

type

is

a

pointer

to

the

expression

type.

For

example,

if

the

expression

has

type

int,

the

result

is

a

pointer

to

an

object

having

type

int.

If

the

operand

is

a

qualified

name

and

the

member

is

not

static,

the

result

is

a

pointer

to

a

member

of

class

and

has

the

same

type

as

the

member.

The

result

is

not

an

lvalue.

If

p_to_y

is

defined

as

a

pointer

to

an

int

and

y

as

an

int,

the

following

expression

assigns

the

address

of

the

variable

y

to

the

pointer

p_to_y

:

p_to_y

=

&y;

2000C++

The

remainder

of

this

section

pertains

to

C++

only.

The

ampersand

symbol

&

is

used

in

C++

as

a

reference

declarator

in

addition

to

being

the

address

operator.

The

meanings

are

related

but

not

identical.

int

target;

int

&rTarg

=

target;

//

rTarg

is

a

reference

to

an

integer.

//

The

reference

is

initialized

to

refer

to

target.

void

f(int*&

p);

//

p

is

a

reference

to

a

pointer

If

you

take

the

address

of

a

reference,

it

returns

the

address

of

its

target.

Using

the

previous

declarations,

&rTarg

is

the

same

memory

address

as

&target.

You

may

take

the

address

of

a

register

variable.

You

can

use

the

&

operator

with

overloaded

functions

only

in

an

initialization

or

assignment

where

the

left

side

uniquely

determines

which

version

of

the

overloaded

function

is

used.

Related

References

v

“Pointers”

on

page

65

v

“References”

on

page

75

Indirection

*

The

*

(indirection)

operator

determines

the

value

referred

to

by

the

pointer-type

operand.

The

operand

cannot

be

a

pointer

to

an

incomplete

type.

If

the

operand

points

to

an

object,

the

operation

yields

an

lvalue

referring

to

that

object.

If

the

operand

points

to

a

function,

the

result

is

a

function

designator

in

C

or,

in

C++,

an

lvalue

referring

to

the

object

to

which

the

operand

points.

Arrays

and

functions

are

converted

to

pointers.

Unary

Expressions

Chapter

5.

Expressions

and

Operators

101

The

type

of

the

operand

determines

the

type

of

the

result.

For

example,

if

the

operand

is

a

pointer

to

an

int,

the

result

has

type

int.

Do

not

apply

the

indirection

operator

to

any

pointer

that

contains

an

address

that

is

not

valid,

such

as

NULL.

The

result

is

not

defined.

If

p_to_y

is

defined

as

a

pointer

to

an

int

and

y

as

an

int,

the

expressions:

p_to_y

=

&y;

*p_to_y

=

3;

cause

the

variable

y

to

receive

the

value

3.

Related

References

v

“Pointers”

on

page

65

sizeof

Operator

The

sizeof

operator

yields

the

size

in

bytes

of

the

operand,

which

can

be

an

expression

or

the

parenthesized

name

of

a

type.

A

sizeof

expression

has

the

form:

��

sizeof

expr

(

type-name

)

��

The

result

for

either

kind

of

operand

is

not

an

lvalue,

but

a

constant

integer

value.

The

type

of

the

result

is

the

unsigned

integral

type

size_t

defined

in

the

header

file

stddef.h.

The

sizeof

operator

applied

to

a

type

name

yields

the

amount

of

memory

that

would

be

used

by

an

object

of

that

type,

including

any

internal

or

trailing

padding.

The

size

of

any

of

the

three

kinds

of

char

objects

(unsigned,

signed,

or

plain)

is

the

size

of

a

byte,

1.

The

sizeof

operator

may

not

be

applied

to:

v

A

bit

field

v

A

function

type

v

An

undefined

structure

or

class

v

An

incomplete

type

(such

as

void)

The

sizeof

operator

applied

to

an

expression

yields

the

same

result

as

if

it

had

been

applied

to

only

the

name

of

the

type

of

the

expression.

At

compile

time,

the

compiler

analyzes

the

expression

to

determine

its

type,

but

does

not

evaluate

it.

None

of

the

usual

type

conversions

that

occur

in

the

type

analysis

of

the

expression

are

directly

attributable

to

the

sizeof

operator.

However,

if

the

operand

contains

operators

that

perform

conversions,

the

compiler

does

take

these

conversions

into

consideration

in

determining

the

type.

The

second

line

of

the

following

sample

causes

the

usual

arithmetic

conversions

to

be

performed.

Assuming

that

a

short

uses

2

bytes

of

storage

and

an

int

uses

4

bytes,

short

x;

...

sizeof

(x)

/*

the

value

of

sizeof

operator

is

2

*/

short

x;

...

sizeof

(x

+

1)

/*

value

is

4,

result

of

addition

is

type

int

*/

The

result

of

the

expression

x

+

1

has

type

int

and

is

equivalent

to

sizeof(int).

The

value

is

also

4

if

x

has

type

char,

short,

or

int

or

any

enumeration

type.

Types

cannot

be

defined

in

a

sizeof

expression.

Unary

Expressions

102

ILE

C/C++

Language

Reference

In

the

following

example,

the

compiler

is

able

to

evaluate

the

size

at

compile

time.

The

operand

of

sizeof,

an

expression,

is

not

evaluated.

The

value

of

b

is

the

integer

constant

5,

from

initialization

to

the

end

of

program

run

time:

#include

<stdio.h>

int

main(void){

int

b

=

5;

sizeof(b++);

return

0;

}

Except

in

preprocessor

directives,

you

can

use

a

sizeof

expression

wherever

an

integral

constant

is

required.

One

of

the

most

common

uses

for

the

sizeof

operator

is

to

determine

the

size

of

objects

that

are

referred

to

during

storage

allocation,

input,

and

output

functions.

Another

use

of

sizeof

is

in

porting

code

across

platforms.

You

should

use

the

sizeof

operator

to

determine

the

size

that

a

data

type

represents.

For

example:

sizeof(int);

The

result

of

a

sizeof

expression

depends

on

the

type

it

is

applied

to.

Operand

Result

An

array

The

result

is

the

total

number

of

bytes

in

the

array.

For

example,

in

an

array

with

10

elements,

the

size

is

equal

to

10

times

the

size

of

a

single

element.

The

compiler

does

not

convert

the

array

to

a

pointer

before

evaluating

the

expression.

2000C++

A

class

The

result

is

always

nonzero,

and

is

equal

to

the

number

of

bytes

in

an

object

of

that

class

including

any

padding

required

for

placing

class

objects

in

an

array.

2000C++

A

reference

The

result

is

the

size

of

the

referenced

object.

C++

new

Operator

2000C++

The

new

operator

provides

dynamic

storage

allocation.

The

syntax

for

an

allocation

expression

containing

the

new

operator

is:

��

::

new

(

argument_list

)

(

type

)

new_type

�

�

(

)

initial_value

��

If

you

prefix

new

with

the

scope

resolution

operator

(::),

the

global

operator

new()

is

used.

If

you

specify

an

argument_list,

the

overloaded

new

operator

that

corresponds

to

that

argument_list

is

used.

The

type

is

an

existing

built-in

or

user-defined

type.

A

new_type

is

a

type

that

has

not

already

been

defined

and

can

include

type

specifiers

and

declarators.

An

allocation

expression

containing

the

new

operator

is

used

to

find

storage

in

free

store

for

the

object

being

created.

The

new

expression

returns

a

pointer

to

the

object

created

and

can

be

used

to

initialize

the

object.

If

the

object

is

an

array,

a

pointer

to

the

initial

element

is

returned.

Unary

Expressions

Chapter

5.

Expressions

and

Operators

103

You

can

use

set_new_handler()

only

to

specify

what

new

does

when

it

fails.

You

cannot

use

the

new

operator

to

allocate

function

types,

void,

or

incomplete

class

types

because

these

are

not

object

types.

However,

you

can

allocate

pointers

to

functions

with

the

new

operator.

You

cannot

create

a

reference

with

the

new

operator.

When

the

object

being

created

is

an

array,

only

the

first

dimension

can

be

a

general

expression.

All

subsequent

dimensions

must

be

constant

integral

expressions.

The

first

dimension

can

be

a

general

expression

even

when

an

existing

type

is

used.

You

can

create

an

array

with

zero

bounds

with

the

new

operator.

For

example:

char

*

c

=

new

char[0];

In

this

case,

a

pointer

to

a

unique

object

is

returned.

An

object

created

with

operator

new()

or

operator

new[]()

exists

until

the

operator

delete()

or

operator

delete[]()

is

called

to

deallocate

the

object’s

memory.

A

delete

operator

or

a

destructor

will

not

be

implicitly

called

for

an

object

created

with

a

new

that

has

not

been

explicitly

deallocated

before

the

end

of

the

program.

If

parentheses

are

used

within

a

new

type,

parentheses

should

also

surround

the

new

type

to

prevent

syntax

errors.

In

the

following

example,

storage

is

allocated

for

an

array

of

pointers

to

functions:

void

f();

void

g();

int

main(void)

{

void

(**p)(),

(**q)();

//

declare

p

and

q

as

pointers

to

pointers

to

void

functions

p

=

new

(void

(*[3])());

//

p

now

points

to

an

array

of

pointers

to

functions

q

=

new

void(*[3])();

//

error

//

error

-

bound

as

’q

=

(new

void)

(*[3])();’

p[0]

=

f;

//

p[0]

to

point

to

function

f

q[2]

=

g;

//

q[2]

to

point

to

function

g

p[0]();

//

call

f()

q[2]();

//

call

g()

return

(0);

}

However,

the

second

use

of

new

causes

an

erroneous

binding

of

q

=

(new

void)

(*[3])().

The

type

of

the

object

being

created

cannot

contain

class

declarations,

enumeration

declarations,

or

const

or

volatile

types.

It

can

contain

pointers

to

const

or

volatile

objects.

For

example,

const

char*

is

allowed,

but

char*

const

is

not.

Placement

Syntax

Additional

arguments

can

be

supplied

to

new

by

using

the

argument_list,

also

called

the

placement

syntax.

If

placement

arguments

are

used,

a

declaration

of

operator

new()

or

operator

new[]()

with

these

arguments

must

exist.

For

example:

Unary

Expressions

104

ILE

C/C++

Language

Reference

#include

<new>

using

namespace

std;

class

X

{

public:

void*

operator

new(size_t,int,

int){

/*

...

*/

}

};

//

...

int

main

()

{

X*

ptr

=

new(1,2)

X;

}

The

placement

syntax

is

commonly

used

to

invoke

the

global

placement

new

function.

The

global

placement

new

function

initializes

an

object

or

objects

at

the

location

specified

by

the

placement

argument

in

the

placement

new

expression.

This

location

must

address

storage

that

has

previously

been

allocated

by

some

other

means,

because

the

global

placement

new

function

does

not

itself

allocate

memory.

In

the

following

example,

no

new

memory

is

allocated

by

the

calls

new(whole)

X(8);,

new(seg2)

X(9);,

or

new(seg3)

X(10);

Instead,

the

constructors

X(8),

X(9),

and

X(10)

are

called

to

reinitialize

the

memory

allocated

to

the

buffer

whole.

Because

placement

new

does

not

allocate

memory,

you

should

not

use

delete

to

deallocate

objects

created

with

the

placement

syntax.

You

can

only

delete

the

entire

memory

pool

(delete

whole).

In

the

example,

you

can

keep

the

memory

buffer

but

destroy

the

object

stored

in

it

by

explicitly

calling

a

destructor.

#include

<new>

class

X

{

public:

X(int

n):

id(n){

}

~X(){

}

private:

int

id;

//

...

};

int

main()

{

char*

whole

=

new

char[

3

*

sizeof(X)

];

//

a

3-part

buffer

X

*

p1

=

new(whole)

X(8);

//

fill

the

front

char*

seg2

=

&whole[

sizeof(X)

];

//

mark

second

segment

X

*

p2

=

new(seg2)

X(9);

//

fill

second

segment

char*

seg3

=

&whole[

2

*

sizeof(X)

];

//

mark

third

segment

X

*

p3

=

new(seg3)

X(10);

//

fill

third

segment

p2->~X();

//

clear

only

middle

segment,

but

keep

the

buffer

//

...

return

0;

}

The

placement

new

syntax

can

also

be

used

for

passing

parameters

to

an

allocation

routine

rather

than

to

a

constructor.

Related

References

v

“Free

Store”

on

page

283

v

“set_new_handler()

—

Set

Behavior

for

new

Failure”

on

page

106

v

“C++

delete

Operator”

on

page

107

Unary

Expressions

Chapter

5.

Expressions

and

Operators

105

v

“C++

Scope

Resolution

Operator

::”

on

page

87

v

“Constructors

and

Destructors

Overview”

on

page

271

v

“Objects”

on

page

29

Initializing

Objects

Created

with

the

new

Operator

2000C++

You

can

initialize

objects

created

with

the

new

operator

in

several

ways.

For

nonclass

objects,

or

for

class

objects

without

constructors,

a

new

initializer

expression

can

be

provided

in

a

new

expression

by

specifying

(

expression

)

or

().

For

example:

double*

pi

=

new

double(3.1415926);

int*

score

=

new

int(89);

float*

unknown

=

new

float();

If

a

class

does

not

have

a

default

constructor,

the

new

initializer

must

be

provided

when

any

object

of

that

class

is

allocated.

The

arguments

of

the

new

initializer

must

match

the

arguments

of

a

constructor.

You

cannot

specify

an

initializer

for

arrays.

You

can

initialize

an

array

of

class

objects

only

if

the

class

has

a

default

constructor.

The

constructor

is

called

to

initialize

each

array

element

(class

object).

Initialization

using

the

new

initializer

is

performed

only

if

new

successfully

allocates

storage.

Related

References

v

“Free

Store”

on

page

283

v

“Constructors

and

Destructors

Overview”

on

page

271

set_new_handler()

—

Set

Behavior

for

new

Failure

2000C++

When

the

new

operator

creates

a

new

object,

it

calls

the

operator

new()

or

operator

new[]()

function

to

obtain

the

needed

storage.

When

new

cannot

allocate

storage

to

create

a

new

object,

it

calls

a

new

handler

function

if

one

has

been

installed

by

a

call

to

set_new_handler().

The

std::set_new_handler()

function

is

declared

in

the

header

<new>.

Use

it

to

call

a

new

handler

you

have

defined

or

the

default

new

handler.

Your

new

handler

must

perform

one

of

the

following:

v

obtain

more

storage

for

memory

allocation,

then

return

v

throw

an

exception

of

type

std::bad_alloc

or

a

class

derived

from

std::bad_alloc

v

call

either

abort()

or

exit()

The

set_new_handler()

function

has

the

prototype:

typedef

void(*PNH)();

PNH

set_new_handler(PNH);

set_new_handler()

takes

as

an

argument

a

pointer

to

a

function

(the

new

handler),

which

has

no

arguments

and

returns

void.

It

returns

a

pointer

to

the

previous

new

handler

function.

If

you

do

not

specify

your

own

set_new_handler()

function,

new

throws

an

exception

of

type

std::bad_alloc.

The

following

program

fragment

shows

how

you

could

use

set_new_handler()

to

return

a

message

if

the

new

operator

cannot

allocate

storage:

Unary

Expressions

106

ILE

C/C++

Language

Reference

#include

<iostream>

#include

<new>

#include

<cstdlib>

using

namespace

std;

void

no_storage()

{

std::cerr

<<

"Operator

new

failed:

no

storage

is

available.\n";

std::exit(1);

}

int

main(void)

{

std::set_new_handler(&no_storage);

//

Rest

of

program

...

}

If

the

program

fails

because

new

cannot

allocate

storage,

the

program

exits

with

the

message:

Operator

new

failed:

no

storage

is

available.

Related

References

v

“C++

new

Operator”

on

page

103

v

“Free

Store”

on

page

283

C++

delete

Operator

2000C++

The

delete

operator

destroys

the

object

created

with

new

by

deallocating

the

memory

associated

with

the

object.

The

delete

operator

has

a

void

return

type.

It

has

the

syntax:

��

::

delete

object_pointer

��

The

operand

of

delete

must

be

a

pointer

returned

by

new,

and

cannot

be

a

pointer

to

constant.

Deleting

a

null

pointer

has

no

effect.

The

delete[]

operator

frees

storage

allocated

for

array

objects

created

with

new[].

The

delete

operator

frees

storage

allocated

for

individual

objects

created

with

new.

It

has

the

syntax:

��

::

delete

[

]

array

��

The

result

of

deleting

an

array

object

with

delete

is

undefined,

as

is

deleting

an

individual

object

with

delete[].

The

array

dimensions

do

not

need

to

be

specified

with

delete[].

The

result

of

any

attempt

to

access

a

deleted

object

or

array

is

undefined.

If

a

destructor

has

been

defined

for

a

class,

delete

invokes

that

destructor.

Whether

a

destructor

exists

or

not,

delete

frees

the

storage

pointed

to

by

calling

the

function

operator

delete()

of

the

class

if

one

exists.

Unary

Expressions

Chapter

5.

Expressions

and

Operators

107

The

global

::operator

delete()

is

used

if:

v

The

class

has

no

operator

delete().

v

The

object

is

of

a

nonclass

type.

v

The

object

is

deleted

with

the

::delete

expression.

The

global

::operator

delete[]()

is

used

if:

v

The

class

has

no

operator

delete[]()

v

The

object

is

of

a

nonclass

type

v

The

object

is

deleted

with

the

::delete[]

expression.

The

default

global

operator

delete()

only

frees

storage

allocated

by

the

default

global

operator

new().

The

default

global

operator

delete[]()

only

frees

storage

allocated

for

arrays

by

the

default

global

operator

new[]().

Related

References

v

“Free

Store”

on

page

283

v

“Constructors

and

Destructors

Overview”

on

page

271

v

“void

Type”

on

page

43

Cast

Expressions

The

cast

operator

is

used

for

explicit

type

conversions.

This

operator

has

the

following

form,

where

T

is

a

type,

and

expr

is

an

expression:

(

T

)

expr

It

converts

the

value

of

expr

to

the

type

T.

In

C,

the

result

of

this

operation

is

not

an

lvalue.

In

C++,

the

result

of

this

operation

is

an

lvalue

if

T

is

a

reference;

in

all

other

cases,

the

result

is

an

rvalue.

2000C++

The

remainder

of

this

section

pertains

to

C++

only.

A

cast

is

a

valid

lvalue

if

its

operand

is

an

lvalue.

In

the

following

simple

assignment

expression,

the

right-hand

side

is

first

converted

to

the

specified

type,

then

to

the

type

of

the

inner

left-hand

side

expression,

and

the

result

is

stored.

The

value

is

converted

back

to

the

specified

type,

and

becomes

the

value

of

the

assignment.

In

the

following

example,

i

is

of

type

char

*.

(int)i

=

8

//

This

is

equivalent

to

the

following

expression

(int)(i

=

(char*)

(int)(8))

For

compound

assignment

operation

applied

to

a

cast,

the

arithmetic

operator

of

the

compound

assignment

is

performed

using

the

type

resulting

from

the

cast,

and

then

proceeds

as

in

the

case

of

simple

assignment.

The

following

expressions

are

equivalent.

Again,

i

is

of

type

char

*.

(int)i

+=

8

//

This

is

equivalent

to

the

following

expression

(int)(i

=

(char*)

(int)((int)i

=

8))

Taking

the

address

of

an

lvalue

cast

will

not

work

because

the

address

operator

may

not

be

applied

to

a

bit

field.

You

can

also

use

the

following

function-style

notation

to

convert

the

value

of

expr

to

the

type

T.

:

expr(

T

)

Unary

Expressions

108

ILE

C/C++

Language

Reference

A

function-style

cast

with

no

arguments,

such

as

X()

is

equivalent

to

the

declaration

X

t(),

where

t

is

a

temporary

object.

Similarly,

a

function-style

cast

with

more

than

one

argument,

such

as

X(a,

b),

is

equivalent

to

the

declaration

X

t(a,

b).

For

C++,

the

operand

can

have

class

type.

If

the

operand

has

class

type,

it

can

be

cast

to

any

type

for

which

the

class

has

a

user-defined

conversion

function.

Casts

can

invoke

a

constructor,

if

the

target

type

is

a

class,

or

they

can

invoke

a

conversion

function,

if

the

source

type

is

a

class.

They

can

be

ambiguous

if

both

conditions

hold.

An

explicit

type

conversion

can

also

be

expressed

by

using

the

C++

type

conversion

operator

static_cast.

Example

The

following

demonstrates

the

use

of

the

cast

operator.

The

example

dynamically

creates

an

integer

array

of

size

10:

#include

<stdlib.h>

int

main(void)

{

int*

myArray

=

(int*)

malloc(10

*

sizeof(int));

free(myArray);

return

0;

}

The

malloc()

library

function

returns

a

void

pointer

that

points

to

memory

that

will

hold

an

object

of

the

size

of

its

argument.

The

statement

int*

myArray

=

(int*)

malloc(10

*

sizeof(int))

does

the

following

v

Creates

a

void

pointer

that

points

to

memory

that

can

hold

ten

integers.

v

Converts

that

void

pointer

into

an

integer

pointer

with

the

use

of

the

cast

operator.

v

Assigns

that

integer

pointer

to

myArray.

Because

a

name

of

an

array

is

the

same

as

a

pointer

to

the

initial

element

of

the

array,

myArray

is

an

array

of

ten

integers

stored

in

the

memory

created

by

the

call

to

malloc().

Binary

Expressions

A

binary

expression

contains

two

operands

separated

by

one

operator.

Not

all

binary

operators

have

the

same

precedence.

All

binary

operators

have

left-to-right

associativity.

The

order

in

which

the

operands

of

most

binary

operators

are

evaluated

is

not

specified.

To

ensure

correct

results,

avoid

creating

binary

expressions

that

depend

on

the

order

in

which

the

compiler

evaluates

the

operands.

As

indicated

in

the

following

descriptions,

the

usual

arithmetic

conversions

are

performed

on

the

operands

of

most

binary

expressions.

The

following

table

summarizes

the

operators

for

binary

expressions:

Precedence

and

associativity

of

binary

operators

Rank

Right

Associative?

Operator

Function

Usage

5

multiplication

expr

*

expr

5

division

expr

/

expr

Cast

Expressions

Chapter

5.

Expressions

and

Operators

109

Precedence

and

associativity

of

binary

operators

Rank

Right

Associative?

Operator

Function

Usage

5

modulo

(remainder)

expr

%

expr

6

binary

addition

expr

+

expr

6

binary

subtraction

expr

-

expr

7

bitwise

shift

left

expr

<<

expr

7

bitwise

shift

right

expr

>>

expr

8

less

than

expr

<

expr

8

less

than

or

equal

to

expr

<=

expr

8

greater

than

expr

>

expr

8

greater

than

or

equal

to

expr

>=

expr

9

equal

expr

==

expr

9

not

equal

expr

!=

expr

10

bitwise

AND

expr

&

expr

11

bitwise

exclusive

OR

expr

^

expr

12

bitwise

inclusive

OR

expr

|

expr

13

logical

AND

expr

&&

expr

14

logical

inclusive

OR

expr

||

expr

16

yes

simple

assignment

lvalue

=

expr

16

yes

multiply

and

assign

lvalue

*=

expr

16

yes

divide

and

assign

lvalue

/=

expr

16

yes

modulo

and

assign

lvalue

%=

expr

16

yes

add

and

assign

lvalue

+=

expr

16

yes

subtract

and

assign

lvalue

-=

expr

16

yes

shift

left

and

assign

lvalue

<<=

expr

16

yes

shift

right

and

assign

lvalue

>>=

expr

16

yes

bitwise

AND

and

assign

lvalue

&=

expr

16

yes

bitwise

exclusive

OR

and

assign

lvalue

^=

expr

16

yes

bitwise

inclusive

OR

and

assign

lvalue

|=

expr

18

comma

(sequencing)

expr

,

expr

Related

References

v

“Operator

Precedence

and

Associativity”

on

page

79

v

“Arithmetic

Conversions”

on

page

131

Multiplication

*

The

*

(multiplication)

operator

yields

the

product

of

its

operands.

The

operands

must

have

an

arithmetic

or

enumeration

type.

The

result

is

not

an

lvalue.

The

usual

arithmetic

conversions

on

the

operands

are

performed.

Because

the

multiplication

operator

has

both

associative

and

commutative

properties,

the

compiler

can

rearrange

the

operands

in

an

expression

that

contains

more

than

one

multiplication

operator.

For

example,

the

expression:

sites

*

number

*

cost

can

be

interpreted

in

any

of

the

following

ways:

(sites

*

number)

*

cost

sites

*

(number

*

cost)

(cost

*

sites)

*

number

Binary

Expressions

110

ILE

C/C++

Language

Reference

Division

/

The

/

(division)

operator

yields

the

algebraic

quotient

of

its

operands.

Throwing

away

the

fractional

part

is

often

called

truncation

toward

zero.

The

operands

must

have

an

arithmetic

or

enumeration

type.

The

right

operand

may

not

be

zero:

the

result

is

undefined

if

the

right

operand

evaluates

to

0.

For

example,

expression

7

/

4

yields

the

value

1

(rather

than

1.75

or

2).

The

result

is

not

an

lvalue.

The

usual

arithmetic

conversions

on

the

operands

are

performed.

Remainder

%

The

%

(remainder)

operator

yields

the

remainder

from

the

division

of

the

left

operand

by

the

right

operand.

For

example,

the

expression

5

%

3

yields

2.

The

result

is

not

an

lvalue.

Both

operands

must

have

an

integral

or

enumeration

type.

If

the

right

operand

evaluates

to

0,

the

result

is

undefined.

If

either

operand

has

a

negative

value,

the

result

is

such

that

the

following

expression

always

yields

the

value

of

a

if

b

is

not

0

and

a/b

is

representable:

(

a

/

b

)

*

b

+

a

%b;

The

usual

arithmetic

conversions

on

the

operands

are

performed.

Addition

+

The

+

(addition)

operator

yields

the

sum

of

its

operands.

Both

operands

must

have

an

arithmetic

type,

or

one

operand

must

be

a

pointer

to

an

object

type

and

the

other

operand

must

have

an

integral

or

enumeration

type.

When

both

operands

have

an

arithmetic

type,

the

usual

arithmetic

conversions

on

the

operands

are

performed.

The

result

has

the

type

produced

by

the

conversions

on

the

operands

and

is

not

an

lvalue.

A

pointer

to

an

object

in

an

array

can

be

added

to

a

value

having

integral

type.

The

result

is

a

pointer

of

the

same

type

as

the

pointer

operand.

The

result

refers

to

another

element

in

the

array,

offset

from

the

original

element

by

the

amount

of

the

integral

value

treated

as

a

subscript.

If

the

resulting

pointer

points

to

storage

outside

the

array,

other

than

the

first

location

outside

the

array,

the

result

is

undefined.

A

pointer

to

one

element

past

the

end

of

an

array

cannot

be

used

to

access

the

memory

content

at

that

address.

The

compiler

does

not

provide

boundary

checking

on

the

pointers.

For

example,

after

the

addition,

ptr

points

to

the

third

element

of

the

array:

int

array[5];

int

*ptr;

ptr

=

array

+

2;

Subtraction

−

The

-

(subtraction)

operator

yields

the

difference

of

its

operands.

Both

operands

must

have

an

arithmetic

or

enumeration

type,

or

the

left

operand

must

have

a

pointer

type

and

the

right

operand

must

have

the

same

pointer

type

or

an

integral

or

enumeration

type.

You

cannot

subtract

a

pointer

from

an

integral

value.

When

both

operands

have

an

arithmetic

type,

the

usual

arithmetic

conversions

on

the

operands

are

performed.

The

result

has

the

type

produced

by

the

conversions

on

the

operands

and

is

not

an

lvalue.

Binary

Expressions

Chapter

5.

Expressions

and

Operators

111

When

the

left

operand

is

a

pointer

and

the

right

operand

has

an

integral

type,

the

compiler

converts

the

value

of

the

right

to

an

address

offset.

The

result

is

a

pointer

of

the

same

type

as

the

pointer

operand.

If

both

operands

are

pointers

to

elements

in

the

same

array,

the

result

is

the

number

of

objects

separating

the

two

addresses.

The

number

is

of

type

ptrdiff_t,

which

is

defined

in

the

header

file

stddef.h.

Behavior

is

undefined

if

the

pointers

do

not

refer

to

objects

in

the

same

array.

Bitwise

Left

and

Right

Shift

<<

>>

The

bitwise

shift

operators

move

the

bit

values

of

a

binary

object.

The

left

operand

specifies

the

value

to

be

shifted.

The

right

operand

specifies

the

number

of

positions

that

the

bits

in

the

value

are

to

be

shifted.

The

result

is

not

an

lvalue.

Both

operands

have

the

same

precedence

and

are

left-to-right

associative.

Operator

Usage

<<

Indicates

the

bits

are

to

be

shifted

to

the

left.

>>

Indicates

the

bits

are

to

be

shifted

to

the

right.

Each

operand

must

have

an

integral

or

enumeration

type.

The

compiler

performs

integral

promotions

on

the

operands,

and

then

the

right

operand

is

converted

to

type

int.

The

result

has

the

same

type

as

the

left

operand

(after

the

arithmetic

conversions).

The

right

operand

should

not

have

a

negative

value

or

a

value

that

is

greater

than

or

equal

to

the

width

in

bits

of

the

expression

being

shifted.

The

result

of

bitwise

shifts

on

such

values

is

unpredictable.

If

the

right

operand

has

the

value

0,

the

result

is

the

value

of

the

left

operand

(after

the

usual

arithmetic

conversions).

The

<<

operator

fills

vacated

bits

with

zeros.

For

example,

if

left_op

has

the

value

4019,

the

bit

pattern

(in

16-bit

format)

of

left_op

is:

0000111110110011

The

expression

left_op

<<

3

yields:

0111110110011000

The

expression

left_op

>>

3

yields:

0000000111110110

Relational

<

>

<=

>=

The

relational

operators

compare

two

operands

and

determine

the

validity

of

a

relationship.

2000C

The

type

of

the

result

is

int

and

has

the

values

1

if

the

specified

relationship

is

true,

and

0

if

false.

2000C++

The

type

of

the

result

is

bool

and

has

the

values

true

or

false.

The

result

is

not

an

lvalue.

Binary

Expressions

112

ILE

C/C++

Language

Reference

The

following

table

describes

the

four

relational

operators:

Operator

Usage

<

Indicates

whether

the

value

of

the

left

operand

is

less

than

the

value

of

the

right

operand.

>

Indicates

whether

the

value

of

the

left

operand

is

greater

than

the

value

of

the

right

operand.

<=

Indicates

whether

the

value

of

the

left

operand

is

less

than

or

equal

to

the

value

of

the

right

operand.

>=

Indicates

whether

the

value

of

the

left

operand

is

greater

than

or

equal

to

the

value

of

the

right

operand.

Both

operands

must

have

arithmetic

or

enumeration

types

or

be

pointers

to

the

same

type.

2000C

The

result

has

type

int.

2000C++

The

result

has

type

bool.

If

the

operands

have

arithmetic

types,

the

usual

arithmetic

conversions

on

the

operands

are

performed.

When

the

operands

are

pointers,

the

result

is

determined

by

the

locations

of

the

objects

to

which

the

pointers

refer.

If

the

pointers

do

not

refer

to

objects

in

the

same

array,

the

result

is

not

defined.

A

pointer

can

be

compared

to

a

constant

expression

that

evaluates

to

0.

You

can

also

compare

a

pointer

to

a

pointer

of

type

void*.

The

pointer

is

converted

to

a

pointer

of

type

void*.

If

two

pointers

refer

to

the

same

object,

they

are

considered

equal.

If

two

pointers

refer

to

nonstatic

members

of

the

same

object,

the

pointer

to

the

object

declared

later

is

greater,

provided

that

they

are

not

separated

by

an

access

specifier;

otherwise

the

comparison

is

undefined.

If

two

pointers

refer

to

data

members

of

the

same

union,

they

have

the

same

address

value.

If

two

pointers

refer

to

elements

of

the

same

array,

or

to

the

first

element

beyond

the

last

element

of

an

array,

the

pointer

to

the

element

with

the

higher

subscript

value

is

greater.

You

can

only

compare

members

of

the

same

object

with

relational

operators.

Relational

operators

have

left-to-right

associativity.

For

example,

the

expression:

a

<

b

<=

c

is

interpreted

as:

(a

<

b)

<=

c

If

the

value

of

a

is

less

than

the

value

of

b,

the

first

relationship

yields

1

in

C,

or

true

in

C++.

The

compiler

then

compares

the

value

true

(or

1)

with

the

value

of

c

(integral

promotions

are

carried

out

if

needed).

Binary

Expressions

Chapter

5.

Expressions

and

Operators

113

Equality

==

!=

The

equality

operators,

like

the

relational

operators,

compare

two

operands

for

the

validity

of

a

relationship.

The

equality

operators,

however,

have

a

lower

precedence

than

the

relational

operators.

2000C

The

type

of

the

result

is

int

and

has

the

values

1

if

the

specified

relationship

is

true,

and

0

if

false.

2000C++

The

type

of

the

result

is

bool

and

has

the

values

true

or

false.

The

following

table

describes

the

two

equality

operators:

Operator

Usage

==

Indicates

whether

the

value

of

the

left

operand

is

equal

to

the

value

of

the

right

operand.

!=

Indicates

whether

the

value

of

the

left

operand

is

not

equal

to

the

value

of

the

right

operand.

Both

operands

must

have

arithmetic

or

enumeration

types

or

be

pointers

to

the

same

type,

or

one

operand

must

have

a

pointer

type

and

the

other

operand

must

be

a

pointer

to

void

or

a

null

pointer.

The

result

is

type

int

in

C

or

bool

in

C++.

If

the

operands

have

arithmetic

types,

the

usual

arithmetic

conversions

on

the

operands

are

performed.

If

the

operands

are

pointers,

the

result

is

determined

by

the

locations

of

the

objects

to

which

the

pointers

refer.

If

one

operand

is

a

pointer

and

the

other

operand

is

an

integer

having

the

value

0,

the

==

expression

is

true

only

if

the

pointer

operand

evaluates

to

NULL.

The

!=

operator

evaluates

to

true

if

the

pointer

operand

does

not

evaluate

to

NULL.

You

can

also

use

the

equality

operators

to

compare

pointers

to

members

that

are

of

the

same

type

but

do

not

belong

to

the

same

object.

The

following

expressions

contain

examples

of

equality

and

relational

operators:

time

<

max_time

==

status

<

complete

letter

!=

EOF

Note:

The

equality

operator

(==)

should

not

be

confused

with

the

assignment

(=)

operator.

For

example,

if

(x

==

3)

evaluates

to

true

(or

1)

if

x

is

equal

to

three.

Equality

tests

like

this

should

be

coded

with

spaces

between

the

operator

and

the

operands

to

prevent

unintentional

assignments.

while

if

(x

=

3)

is

taken

to

be

true

because

(x

=

3)

evaluates

to

a

nonzero

value

(3).

The

expression

also

assigns

the

value

3

to

x.

Related

References

v

“Simple

Assignment

=”

on

page

120

Binary

Expressions

114

ILE

C/C++

Language

Reference

Bitwise

AND

&

The

&

(bitwise

AND)

operator

compares

each

bit

of

its

first

operand

to

the

corresponding

bit

of

the

second

operand.

If

both

bits

are

1’s,

the

corresponding

bit

of

the

result

is

set

to

1.

Otherwise,

it

sets

the

corresponding

result

bit

to

0.

Both

operands

must

have

an

integral

or

enumeration

type.

The

usual

arithmetic

conversions

on

each

operand

are

performed.

The

result

has

the

same

type

as

the

converted

operands.

Because

the

bitwise

AND

operator

has

both

associative

and

commutative

properties,

the

compiler

can

rearrange

the

operands

in

an

expression

that

contains

more

than

one

bitwise

AND

operator.

The

following

example

shows

the

values

of

a,

b,

and

the

result

of

a

&

b

represented

as

16-bit

binary

numbers:

bit

pattern

of

a

0000000001011100

bit

pattern

of

b

0000000000101110

bit

pattern

of

a

&

b

0000000000001100

Note:

The

bitwise

AND

(&)

should

not

be

confused

with

the

logical

AND.

(&&)

operator.

For

example,

1

&

4

evaluates

to

0

while

1

&&

4

evaluates

to

true

Related

References

v

“Logical

AND

&&”

on

page

116

Bitwise

Exclusive

OR

^

The

bitwise

exclusive

OR

operator

(in

EBCDIC,

the

^

symbol

is

represented

by

the

¬

symbol)

compares

each

bit

of

its

first

operand

to

the

corresponding

bit

of

the

second

operand.

If

both

bits

are

1’s

or

both

bits

are

0’s,

the

corresponding

bit

of

the

result

is

set

to

0.

Otherwise,

it

sets

the

corresponding

result

bit

to

1.

Both

operands

must

have

an

integral

or

enumeration

type.

The

usual

arithmetic

conversions

on

each

operand

are

performed.

The

result

has

the

same

type

as

the

converted

operands

and

is

not

an

lvalue.

Because

the

bitwise

exclusive

OR

operator

has

both

associative

and

commutative

properties,

the

compiler

can

rearrange

the

operands

in

an

expression

that

contains

more

than

one

bitwise

exclusive

OR

operator.

Note

that

the

^

character

can

be

represented

by

the

trigraph

??'.

The

following

example

shows

the

values

of

a,

b,

and

the

result

of

a

^

b

represented

as

16-bit

binary

numbers:

bit

pattern

of

a

0000000001011100

bit

pattern

of

b

0000000000101110

bit

pattern

of

a

^

b

0000000001110010

Related

References

v

“Trigraph

Sequences”

on

page

14

Binary

Expressions

Chapter

5.

Expressions

and

Operators

115

Bitwise

Inclusive

OR

|

The

|

(bitwise

inclusive

OR)

operator

compares

the

values

(in

binary

format)

of

each

operand

and

yields

a

value

whose

bit

pattern

shows

which

bits

in

either

of

the

operands

has

the

value

1.

If

both

of

the

bits

are

0,

the

result

of

that

bit

is

0;

otherwise,

the

result

is

1.

Both

operands

must

have

an

integral

or

enumeration

type.

The

usual

arithmetic

conversions

on

each

operand

are

performed.

The

result

has

the

same

type

as

the

converted

operands

and

is

not

an

lvalue.

Because

the

bitwise

inclusive

OR

operator

has

both

associative

and

commutative

properties,

the

compiler

can

rearrange

the

operands

in

an

expression

that

contains

more

than

one

bitwise

inclusive

OR

operator.

Note

that

the

|

character

can

be

represented

by

the

trigraph

??!.

The

following

example

shows

the

values

of

a,

b,

and

the

result

of

a

|

b

represented

as

16-bit

binary

numbers:

bit

pattern

of

a

0000000001011100

bit

pattern

of

b

0000000000101110

bit

pattern

of

a

|

b

0000000001111110

Note:

The

bitwise

OR

(|)

should

not

be

confused

with

the

logical

OR

(||)

operator.

For

example,

1

|

4

evaluates

to

5

while

1

||

4

evaluates

to

true

Related

References

v

“Trigraph

Sequences”

on

page

14

v

“Logical

OR

||”

on

page

117

Logical

AND

&&

The

&&

(logical

AND)

operator

indicates

whether

both

operands

are

true.

2000C

If

both

operands

have

nonzero

values,

the

result

has

the

value

1.

Otherwise,

the

result

has

the

value

0.

The

type

of

the

result

is

int.

Both

operands

must

have

a

arithmetic

or

pointer

type.

The

usual

arithmetic

conversions

on

each

operand

are

performed.

2000C++

If

both

operands

have

values

of

true,

the

result

has

the

value

true.

Otherwise,

the

result

has

the

value

false.

Both

operands

are

implicitly

converted

to

bool

and

the

result

type

is

bool.

Unlike

the

&

(bitwise

AND)

operator,

the

&&

operator

guarantees

left-to-right

evaluation

of

the

operands.

If

the

left

operand

evaluates

to

0

(or

false),

the

right

operand

is

not

evaluated.

The

following

examples

show

how

the

expressions

that

contain

the

logical

AND

operator

are

evaluated:

Binary

Expressions

116

ILE

C/C++

Language

Reference

Expression

Result

1

&&

0

false

or

0

1

&&

4

true

or

1

0

&&

0

false

or

0

The

following

example

uses

the

logical

AND

operator

to

avoid

division

by

zero:

(y

!=

0)

&&

(x

/

y)

The

expression

x

/

y

is

not

evaluated

when

y

!=

0

evaluates

to

0

(or

false).

Note:

The

logical

AND

(&&)

should

not

be

confused

with

the

bitwise

AND

(&)

operator.

For

example:

1

&&

4

evaluates

to

1

(or

true)

while

1

&

4

evaluates

to

0

Related

References

v

“Bitwise

AND

&”

on

page

115

Logical

OR

||

The

||

(logical

OR)

operator

indicates

whether

either

operand

is

true.

2000C

If

either

of

the

operands

has

a

nonzero

value,

the

result

has

the

value

1.

Otherwise,

the

result

has

the

value

0.

The

type

of

the

result

is

int.

Both

operands

must

have

a

arithmetic

or

pointer

type.

The

usual

arithmetic

conversions

on

each

operand

are

performed.

2000C++

If

either

operand

has

a

value

of

true,

the

result

has

the

value

true.

Otherwise,

the

result

has

the

value

false.

Both

operands

are

implicitly

converted

to

bool

and

the

result

type

is

bool.

Unlike

the

|

(bitwise

inclusive

OR)

operator,

the

||

operator

guarantees

left-to-right

evaluation

of

the

operands.

If

the

left

operand

has

a

nonzero

(or

true)

value,

the

right

operand

is

not

evaluated.

The

following

examples

show

how

expressions

that

contain

the

logical

OR

operator

are

evaluated:

Expression

Result

1

||

0

true

or

1

1

||

4

true

or

1

0

||

0

false

or

0

The

following

example

uses

the

logical

OR

operator

to

conditionally

increment

y:

++x

||

++y;

The

expression

++y

is

not

evaluated

when

the

expression

++x

evaluates

to

a

nonzero

(or

true)

quantity.

Note:

The

logical

OR

(||)

should

not

be

confused

with

the

bitwise

OR

(|)

operator.

For

example:

Binary

Expressions

Chapter

5.

Expressions

and

Operators

117

1

||

4

evaluates

to

1

(or

true)

while

1

|

4

evaluates

to

5

Related

References

v

“Bitwise

Inclusive

OR

|”

on

page

116

C++

Pointer

to

Member

Operators

.*

−>*

2000C++

There

are

two

pointer

to

member

operators:

.*

and

−>*.

The

.*

operator

is

used

to

dereference

pointers

to

class

members.

The

first

operand

must

be

of

class

type.

If

the

type

of

the

first

operand

is

class

type

T,

or

is

a

class

that

has

been

derived

from

class

type

T,

the

second

operand

must

be

a

pointer

to

a

member

of

a

class

type

T.

The

->*

operator

is

also

used

to

dereference

pointers

to

class

members.

The

first

operand

must

be

a

pointer

to

a

class

type.

If

the

type

of

the

first

operand

is

a

pointer

to

class

type

T,

or

is

a

pointer

to

a

class

derived

from

class

type

T,

the

second

operand

must

be

a

pointer

to

a

member

of

class

type

T.

The

.*

and

->*

operators

bind

the

second

operand

to

the

first,

resulting

in

an

object

or

function

of

the

type

specified

by

the

second

operand.

If

the

result

of.*

or

->*

is

a

function,

you

can

only

use

the

result

as

the

operand

for

the

(

)

(function

call)

operator.

If

the

second

operand

is

an

lvalue,

the

result

of

.*

or

->*

is

an

lvalue.

Related

References

v

“Lvalues

and

Rvalues”

on

page

83

v

“Pointers

to

Members”

on

page

228

Conditional

Expressions

A

conditional

expression

is

a

compound

expression

that

contains

a

condition

that

is

implicitly

converted

to

type

bool

in

C++(operand1),

an

expression

to

be

evaluated

if

the

condition

evaluates

to

true

(operand2),

and

an

expression

to

be

evaluated

if

the

condition

has

the

value

false

(operand3).

The

conditional

expression

contains

one

two-part

operator.

The

?

symbol

follows

the

condition,

and

the

:

symbol

appears

between

the

two

action

expressions.

All

expressions

that

occur

between

the

?

and

:

are

treated

as

one

expression.

The

first

operand

must

have

a

scalar

type.

The

type

of

the

second

and

third

operands

must

be

one

of

the

following:

v

An

arithmetic

type

v

A

compatible

pointer,

structure,

or

union

type

v

void

The

second

and

third

operands

can

also

be

a

pointer

or

a

null

pointer

constant.

Two

objects

are

compatible

when

they

have

the

same

type

but

not

necessarily

the

same

type

qualifiers

(volatile

or

const).

Pointer

objects

are

compatible

if

they

have

the

same

type

or

are

pointers

to

void.

Binary

Expressions

118

ILE

C/C++

Language

Reference

The

first

operand

is

evaluated,

and

its

value

determines

whether

the

second

or

third

operand

is

evaluated:

v

If

the

value

is

true,

the

second

operand

is

evaluated.

v

If

the

value

is

false,

the

third

operand

is

evaluated.

The

result

is

the

value

of

the

second

or

third

operand.

If

the

second

and

third

expressions

evaluate

to

arithmetic

types,

the

usual

arithmetic

conversions

are

performed

on

the

values.

The

types

of

the

second

and

third

operands

determine

the

type

of

the

result

as

shown

in

the

following

tables.

Conditional

expressions

have

right-to-left

associativity

with

respect

to

their

first

and

third

operands.

The

leftmost

operand

is

evaluated

first,

and

then

only

one

of

the

remaining

two

operands

is

evaluated.

The

following

expressions

are

equivalent:

a

?

b

:

c

?

d

:

e

?

f

:

g

a

?

b

:

(c

?

d

:

(e

?

f

:

g))

Type

of

Conditional

C

Expressions

In

C,

a

conditional

expression

is

not

an

lvalue,

nor

is

its

result.

Type

of

One

Operand

Type

of

Other

Operand

Type

of

Result

Arithmetic

Arithmetic

Arithmetic

type

after

usual

arithmetic

conversions

Structure

or

union

type

Compatible

structure

or

union

type

Structure

or

union

type

with

all

the

qualifiers

on

both

operands

void

void

void

Pointer

to

compatible

type

Pointer

to

compatible

type

Pointer

to

type

with

all

the

qualifiers

specified

for

the

type

Pointer

to

type

C:

The

constant

0

cast

as

void*

C++:

NULL

pointer

(the

constant

0)

Pointer

to

type

Pointer

to

object

or

incomplete

type

Pointer

to

void

Pointer

to

void

with

all

the

qualifiers

specified

for

the

type

Type

of

Conditional

C++

Expressions

In

C++,

a

conditional

expression

is

a

valid

lvalue

if

its

type

is

not

void,

and

its

result

is

an

lvalue.

Type

of

One

Operand

Type

of

Other

Operand

Type

of

Result

Reference

to

type

Reference

to

type

Reference

after

usual

reference

conversions

Class

T

Class

T

Class

T

Class

T

Class

X

Class

type

for

which

a

conversion

exists.

If

more

than

one

possible

conversion

exists,

the

result

is

ambiguous.

throw

expression

Other

(type,

pointer,

reference)

Type

of

the

expression

that

is

not

a

throw

expression

Conditional

Expressions

Chapter

5.

Expressions

and

Operators

119

Examples

of

Conditional

Expressions

The

following

expression

determines

which

variable

has

the

greater

value,

y

or

z,

and

assigns

the

greater

value

to

the

variable

x:

x

=

(y

>

z)

?

y

:

z;

The

following

is

an

equivalent

statement:

if

(y

>

z)

x

=

y;

else

x

=

z;

The

following

expression

calls

the

function

printf,

which

receives

the

value

of

the

variable

c,

if

c

evaluates

to

a

digit.

Otherwise,

printf

receives

the

character

constant

’x’.

printf("

c

=

%c\n",

isdigit(c)

?

c

:

’x’);

If

the

last

operand

of

a

conditional

expression

contains

an

assignment

operator,

use

parentheses

to

ensure

the

expression

evaluates

properly.

For

example,

the

=

operator

has

higher

precedence

than

the

?:

operator

in

the

following

expression:

int

i,j,k;

(i

==

7)

?

j

++

:

k

=

j;

The

compiler

will

interpret

this

expression

as

if

it

were

parenthesized

this

way:

int

i,j,k;

((i

==

7)

?

j

++

:

k)

=

j;

That

is,

k

is

treated

as

the

third

operand,

not

the

entire

assignment

expression

k

=

j.

To

assign

the

value

of

j

to

k

when

i

==

7

is

false,

enclose

the

last

operand

in

parentheses:

int

i,j,k;

(i

==

7)

?

j

++

:

(k

=

j);

Assignment

Expressions

An

assignment

expression

stores

a

value

in

the

object

designated

by

the

left

operand.

There

are

two

types

of

assignment

operators:

simple

assignment

and

compound

assignment.

The

left

operand

in

all

assignment

expressions

must

be

a

modifiable

lvalue.

The

type

of

the

expression

is

the

type

of

the

left

operand.

The

value

of

the

expression

is

the

value

of

the

left

operand

after

the

assignment

has

completed.

The

result

of

an

assignment

expression

is

not

an

lvalue

in

C,

but

is

an

lvalue

in

C++.

All

assignment

operators

have

the

same

precedence

and

have

right-to-left

associativity.

Simple

Assignment

=

The

simple

assignment

operator

has

the

following

form:

lvalue

=

expr

Conditional

Expressions

120

ILE

C/C++

Language

Reference

The

operator

stores

the

value

of

the

right

operand

expr

in

the

object

designated

by

the

left

operand

lvalue.

The

left

operand

must

be

a

modifiable

lvalue.

The

type

of

an

assignment

operation

is

the

type

of

the

left

operand.

If

the

left

operand

is

not

a

class

type,

the

right

operand

is

implicitly

converted

to

the

type

of

the

left

operand.

This

converted

type

will

not

be

qualified

by

const

or

volatile.

If

the

left

operand

is

a

class

type,

that

type

must

be

complete.

The

copy

assignment

operator

of

the

left

operand

will

be

called.

If

the

left

operand

is

an

object

of

reference

type,

the

compiler

will

assign

the

value

of

the

right

operand

to

the

object

denoted

by

the

reference.

Related

References

v

“Lvalues

and

Rvalues”

on

page

83

v

“Pointers”

on

page

65

v

“Type

Qualifiers”

on

page

57

Compound

Assignment

The

compound

assignment

operators

consist

of

a

binary

operator

and

the

simple

assignment

operator.

They

perform

the

operation

of

the

binary

operator

on

both

operands

and

store

the

result

of

that

operation

into

the

left

operand,

which

must

be

a

modifiable

lvalue.

The

following

table

shows

the

operand

types

of

compound

assignment

expressions:

Operator

Left

Operand

Right

Operand

+=

or

-=

Arithmetic

Arithmetic

+=

or

-=

Pointer

Integral

type

*=,

/=,

and

%=

Arithmetic

Arithmetic

<<=,

>>=,

&=,

^=,

and

|=

Integral

type

Integral

type

Note

that

the

expression

a

*=

b

+

c

is

equivalent

to

a

=

a

*

(b

+

c)

and

not

a

=

a

*

b

+

c

The

following

table

lists

the

compound

assignment

operators

and

shows

an

expression

using

each

operator:

Operator

Example

Equivalent

Expression

+=

index

+=

2

index

=

index

+

2

-=

*(pointer++)

-=

1

*pointer

=

*(pointer++)

-

1

*=

bonus

*=

increase

bonus

=

bonus

*

increase

Assignment

Expressions

Chapter

5.

Expressions

and

Operators

121

Operator

Example

Equivalent

Expression

/=

time

/=

hours

time

=

time

/

hours

%=

allowance

%=

1000

allowance

=

allowance

%

1000

<<=

result

<<=

num

result

=

result

<<

num

>>=

form

>>=

1

form

=

form

>>

1

&=

mask

&=

2

mask

=

mask

&

2

^=

test

^=

pre_test

test

=

test

^

pre_test

|=

flag

|=

ON

flag

=

flag

|

ON

Although

the

equivalent

expression

column

shows

the

left

operands

(from

the

example

column)

twice,

it

is

in

effect

evaluated

only

once.

2000C++

In

addition

to

the

table

of

operand

types,

an

expression

is

implicitly

converted

to

the

cv-unqualified

type

of

the

left

operand

if

it

is

not

of

class

type.

However,

if

the

left

operand

is

of

class

type,

the

class

becomes

complete,

and

assignment

to

objects

of

the

class

behaves

as

a

copy

assignment

operation.

Compound

expressions

and

conditional

expressions

are

lvalues

in

C++,

which

allows

them

to

be

a

left

operand

in

a

compound

assignment

expression.

Comma

Expressions

A

comma

expression

contains

two

operands

of

any

type

separated

by

a

comma

and

has

left-to-right

associativity.

The

left

operand

is

fully

evaluated,

possibly

producing

side

effects,

and

its

value,

if

there

is

one,

is

discarded.

The

right

operand

is

then

evaluated.

The

type

and

value

of

the

result

of

a

comma

expression

are

those

of

its

right

operand,

after

the

usual

unary

conversions.

In

C,

the

result

of

a

comma

expression

is

not

an

lvalue.

In

C++,

the

result

is

an

lvalue

if

the

right

operand

is

an

lvalue.

The

following

statements

are

equivalent:

r

=

(a,b,...,c);

a;

b;

r

=

c;

The

difference

is

that

the

comma

operator

may

be

suitable

for

expression

contexts,

such

as

loop

control

expressions.

Similarly,

the

address

of

a

compound

expression

can

be

taken

if

the

right

operand

is

an

lvalue.

&(a,

b)

a,

&b

Any

number

of

expressions

separated

by

commas

can

form

a

single

expression

because

the

comma

operator

is

associative.

The

use

of

the

comma

operator

guarantees

that

the

subexpressions

will

be

evaluated

in

left-to-right

order,

and

the

value

of

the

last

becomes

the

value

of

the

entire

expression.

In

the

following

example,

if

omega

has

the

value

11,

the

expression

increments

delta

and

assigns

the

value

3

to

alpha:

alpha

=

(delta++,

omega

%

4);

A

sequence

point

occurs

after

the

evaluation

of

the

first

operand.

The

value

of

delta

is

discarded.

For

example,

the

value

of

the

expression:

intensity++,

shade

*

increment,

rotate(direction);

Assignment

Expressions

122

ILE

C/C++

Language

Reference

is

the

value

of

the

expression:

rotate(direction)

The

primary

use

of

the

comma

operator

is

to

produce

side

effects

in

the

following

situations:

v

Calling

a

function

v

Entering

or

repeating

an

iteration

loop

v

Testing

a

condition

v

Other

situations

where

a

side

effect

is

required

but

the

result

of

the

expression

is

not

immediately

needed

In

some

contexts

where

the

comma

character

is

used,

parentheses

are

required

to

avoid

ambiguity.

For

example,

the

function

f(a,

(t

=

3,

t

+

2),

c);

has

only

three

arguments:

the

value

of

a,

the

value

5,

and

the

value

of

c.

Other

contexts

in

which

parentheses

are

required

are

in

field-length

expressions

in

structure

and

union

declarator

lists,

enumeration

value

expressions

in

enumeration

declarator

lists,

and

initialization

expressions

in

declarations

and

initializers.

In

the

previous

example,

the

comma

is

used

to

separate

the

argument

expressions

in

a

function

invocation.

In

this

context,

its

use

does

not

guarantee

the

order

of

evaluation

(left

to

right)

of

the

function

arguments.

The

following

table

gives

some

examples

of

the

uses

of

the

comma

operator:

Statement

Effects

for

(i=0;

i<2;

++i,

f()

);

A

for

statement

in

which

i

is

incremented

and

f()

is

called

at

each

iteration.

if

(

f(),

++i,

i>1

)

{

/*

...

*/

}

An

if

statement

in

which

function

f()

is

called,

variable

i

is

incremented,

and

variable

i

is

tested

against

a

value.

The

first

two

expressions

within

this

comma

expression

are

evaluated

before

the

expression

i>1.

Regardless

of

the

results

of

the

first

two

expressions,

the

third

is

evaluated

and

its

result

determines

whether

the

if

statement

is

processed.

func(

(

++a,

f(a)

)

);

A

function

call

to

func()

in

which

a

is

incremented,

the

resulting

value

is

passed

to

a

function

f(),

and

the

return

value

of

f()

is

passed

to

func().

The

function

func()

is

passed

only

a

single

argument,

because

the

comma

expression

is

enclosed

in

parentheses

within

the

function

argument

list.

C++

throw

Expressions

2000C++

A

throw

expression

is

used

to

throw

exceptions

to

C++

exception

handlers.

A

throw

expression

is

of

type

void.

Related

References

v

Chapter

17,

“Exception

Handling,”

on

page

327

v

“void

Type”

on

page

43

Comma

Expression

Chapter

5.

Expressions

and

Operators

123

Comma

Expression

124

ILE

C/C++

Language

Reference

Chapter

6.

Implicit

Type

Conversions

An

expression

e

of

a

given

type

is

implicitly

converted

if

used

in

one

of

the

following

situations:

v

Expression

e

is

used

as

an

operand

of

an

arithmetic

or

logical

operation.

v

Expression

e

is

used

as

a

condition

in

an

if

statement

or

an

iteration

statement

(such

as

a

for

loop).

Expression

e

will

be

converted

to

bool

(or

int

in

C).

v

Expression

e

is

used

in

a

switch

statement.

Expression

e

will

be

converted

to

an

integral

type.

v

Expression

e

is

used

in

an

initialization.

This

includes

the

following:

–

An

assignment

is

made

to

an

lvalue

that

has

a

different

type

than

e.

–

A

function

is

provided

an

argument

value

of

e

that

has

a

different

type

than

the

parameter.

–

Expression

e

is

specified

in

the

return

statement

of

a

function,

and

e

has

a

different

type

from

the

defined

return

type

for

the

function.

The

compiler

will

allow

an

implicit

conversion

of

an

expression

e

to

a

type

T

if

and

only

if

the

compiler

would

allow

the

following

statement:

T

var

=

e;

For

example

when

you

add

values

having

different

data

types,

both

values

are

first

converted

to

the

same

type:

when

a

short

int

value

and

an

int

value

are

added

together,

the

short

int

value

is

converted

to

the

int

type.

You

can

perform

explicit

type

conversions

using

one

of

the

cast

operators,

the

function

style

cast,

or

the

C-style

cast.

Integral

and

Floating-Point

Promotions

An

integral

promotion

is

the

conversion

of

one

integral

type

to

another

where

the

second

type

can

hold

all

possible

values

of

the

first

type.

Certain

fundamental

types

can

be

used

wherever

an

integer

can

be

used.

The

following

fundamental

types

can

be

converted

through

integral

promotion

are:

v

char

v

2000C++

bool

v

wchar_t

v

short

int

v

enumerators

v

objects

of

enumeration

type

v

integer

bit

fields

(both

signed

and

unsigned)

Except

for

wchar_t,

if

the

value

cannot

be

represented

by

an

int,

the

value

is

converted

to

an

unsigned

int.

For

wchar_t,

if

an

int

can

represent

all

the

values

of

the

original

type,

the

value

is

converted

to

the

type

that

can

best

represent

all

the

values

of

the

original

type.

For

example,

if

a

long

can

represent

all

the

values,

the

value

is

converted

to

a

long.

Floating-Point

Promotions

You

can

convert

an

rvalue

of

type

float

to

an

rvalue

of

type

double.

The

value

of

the

expression

is

unchanged.

This

conversion

is

a

floating-point

promotion.

©

Copyright

IBM

Corp.

1998,

2003

125

Standard

Type

Conversions

Many

C

and

C++

operators

cause

implicit

type

conversions,

which

change

the

type

of

an

expression.

When

you

add

values

having

different

data

types,

both

values

are

first

converted

to

the

same

type.

For

example,

when

a

short

int

value

and

an

int

value

are

added

together,

the

short

int

value

is

converted

to

the

int

type.

It

can

result

in

loss

of

data

if

the

value

of

the

original

object

is

outside

the

range

representable

by

the

shorter

type.

Implicit

type

conversions

can

occur

when:

v

An

operand

is

prepared

for

an

arithmetic

or

logical

operation.

v

An

assignment

is

made

to

an

lvalue

that

has

a

different

type

than

the

assigned

value.

v

A

function

is

provided

an

argument

value

that

has

a

different

type

than

the

parameter.

v

The

value

specified

in

the

return

statement

of

a

function

has

a

different

type

from

the

defined

return

type

for

the

function.

You

can

perform

explicit

type

conversions

using

the

C-style

cast,

the

C++

function-style

cast,

or

one

of

the

C++

cast

operators.

#include

<iostream>

using

namespace

std;

int

main()

{

float

num

=

98.76;

int

x1

=

(int)

num;

int

x2

=

int(num);

int

x3

=

static_cast<int>(num);

cout

<<

"x1

=

"

<<

x1

<<

endl;

cout

<<

"x2

=

"

<<

x2

<<

endl;

cout

<<

"x3

=

"

<<

x3

<<

endl;

}

The

following

is

the

output

of

the

above

example:

x1

=

98

x2

=

98

x3

=

98

The

integer

x1

is

assigned

a

value

in

which

num

has

been

explicitly

converted

to

an

int

with

the

C-style

cast.

The

integer

x2

is

assigned

a

value

that

has

been

converted

with

the

function-style

cast.

The

integer

x3

is

assigned

a

value

that

has

been

converted

with

the

static_cast

operator.

Related

References

v

“User-Defined

Conversions”

on

page

288

Lvalue-to-Rvalue

Conversions

If

an

lvalue

appears

in

a

situation

in

which

the

compiler

expects

an

rvalue,

the

compiler

converts

the

lvalue

to

an

rvalue.

An

lvalue

e

of

a

type

T

can

be

converted

to

an

rvalue

if

T

is

not

a

function

or

array

type.

The

type

of

e

after

conversion

will

be

T.

The

following

table

lists

exceptions

to

this:

Situation

before

conversion

Resulting

behavior

T

is

an

incomplete

type

compile-time

error

Standard

Type

Conversions

126

ILE

C/C++

Language

Reference

Situation

before

conversion

Resulting

behavior

e

refers

to

an

uninitialized

object

undefined

behavior

e

refers

to

an

object

not

of

type

T

undefined

behavior

2000C++

e

refers

to

an

object

not

of

type

T,

nor

a

type

derived

from

T

undefined

behavior

2000C++

T

is

a

non-class

type

the

type

of

e

after

conversion

is

T,

not

qualified

by

either

const

or

volatile

Related

References

v

“Lvalues

and

Rvalues”

on

page

83

Boolean

Conversions

2000C++

You

can

convert

integral,

floating-point,

arithmetic,

enumeration,

pointer,

and

pointer

to

member

rvalue

types

to

an

rvalue

of

type

bool.

A

zero,

null

pointer,

or

null

member

pointer

value

is

converted

to

false.

All

other

values

are

converted

to

true.

The

following

is

an

example

of

boolean

conversions:

void

f(int*

a,

int

b)

{

bool

d

=

a;

//

false

if

a

==

NULL

bool

e

=

b;

//

false

if

b

==

0

}

The

variable

d

will

be

false

if

a

is

equal

to

a

null

pointer.

Otherwise,

d

will

be

true.

The

variable

e

will

be

false

if

b

is

equal

to

zero.

Otherwise,

e

will

be

true.

Related

References

v

“Boolean

Variables”

on

page

39

Integral

Conversions

You

can

convert

the

following:

v

An

rvalue

of

integer

type

(including

signed

and

unsigned

integer

types)

to

another

rvalue

of

integer

type

v

An

rvalue

of

enumeration

type

to

an

rvalue

of

integer

type

If

you

are

converting

an

integer

a

to

an

unsigned

type,

the

resulting

value

x

is

the

least

unsigned

integer

such

that

a

and

x

are

congruent

modulo

2^n,

where

n

is

the

number

of

bits

used

to

represent

an

unsigned

type.

If

two

numbers

a

and

x

are

congruent

modulo

2^n,

the

following

expression

is

true,

where

the

function

pow(m,

n)

returns

the

value

of

m

to

the

power

of

n:

a

%

pow(2,

n)

==

x

%

pow(2,

n)

If

you

are

converting

an

integer

a

to

a

signed

type,

the

compiler

does

not

change

the

resulting

value

if

the

new

type

is

large

enough

to

hold

a.

If

the

new

type

is

not

large

enough,

the

behavior

is

defined

by

the

compiler.

2000C++

If

you

are

converting

a

bool

to

an

integer,

values

of

false

are

converted

to

0;

values

of

true

are

converted

to

1.

Integer

promotions

belong

to

a

different

category

of

conversions;

they

are

not

integral

conversions.

Standard

Type

Conversions

Chapter

6.

Implicit

Type

Conversions

127

Related

References

v

“Integer

Variables”

on

page

42

Floating-Point

Conversions

You

can

convert

an

rvalue

of

floating-point

type

to

another

rvalue

of

floating-point

type.

Floating-point

promotions

(converting

from

float

to

double)

belong

to

a

different

category

of

conversions;

they

are

not

floating-point

conversions.

Related

References

v

“Floating-Point

Variables”

on

page

40

v

“Integral

and

Floating-Point

Promotions”

on

page

125

Pointer

Conversions

Pointer

conversions

are

performed

when

pointers

are

used,

including

pointer

assignment,

initialization,

and

comparison.

2000400

Conversions

among

the

seven

kinds

of

iSeries

pointers

is

described

in

″Pointer

Support

in

the

C/C++

Compilers,″

in

chapter

28

″Using

Teraspace″

of

ILE

C/C++

Programmer’s

Guide.

2000C

Conversions

that

involve

pointers

must

use

an

explicit

type

cast.

The

exceptions

to

this

rule

are

the

allowable

assignment

conversions

for

C

pointers.

In

the

following

table,

a

const-qualified

lvalue

cannot

be

used

as

a

left

operand

of

the

assignment.

Table

1.

Legal

assignment

conversions

for

C

pointers

Left

operand

type

Permitted

right

operand

types

pointer

to

(object)

T

the

constant

0

a

pointer

to

a

type

compatible

with

T

a

pointer

to

void

(void*)

pointer

to

(function)

F

the

constant

0

a

pointer

to

a

function

compatible

with

F

The

referenced

type

of

the

left

operand

must

have

the

same

qualifiers

as

the

right

operand.

An

object

pointer

may

be

an

incomplete

type

if

the

other

pointer

has

type

void*.

Pointer

arguments

given

to

functions

should

be

explicitly

cast

to

ensure

that

the

correct

type

expected

by

the

function

is

being

passed.

The

generic

object

pointer

in

C

is

void*,

but

there

is

no

generic

function

pointer.

Conversion

to

void*

Any

pointer

to

an

object

of

a

type

T,

optionally

type-qualified,

can

be

converted

to

void*,

keeping

the

same

const

or

volatile

qualifications.

2000C

The

allowable

assignment

conversions

involving

void*

as

the

left

operand

are

shown

in

the

following

table.

Standard

Type

Conversions

128

ILE

C/C++

Language

Reference

Table

2.

Legal

assignment

conversions

in

C

for

void*

Left

operand

type

Permitted

right

operand

types

(void*)

the

constant

0

a

pointer

to

(object)

T

(void*)

2000400

8-byte

pointer

16-pointer

2000400

16-pointer

8-byte

pointer

The

object

T

may

be

an

incomplete

type.

2000C++

Pointers

to

functions

cannot

be

converted

to

the

type

void*

with

a

standard

conversion:

this

can

be

accomplished

explicitly,

provided

that

a

void*

has

sufficient

bits

to

hold

it.

Derived-to-Base

Conversions

2000C++

You

can

convert

an

rvalue

pointer

of

type

B*

to

an

rvalue

pointer

of

class

A*

where

A

is

an

accessible

base

class

of

B

as

long

as

the

conversion

is

not

ambiguous.

The

conversion

is

ambiguous

if

the

expression

for

the

accessible

base

class

can

refer

to

more

than

one

distinct

class.

The

resulting

value

points

to

the

base

class

subobject

of

the

derived

class

object.

If

the

pointer

of

type

B*

is

null,

it

will

be

converted

to

a

null

pointer

of

type

A*.

Note

that

you

cannot

convert

a

pointer

to

a

class

into

a

pointer

to

its

base

class

if

the

base

class

is

a

virtual

base

class

of

the

derived

class.

Null

Pointer

Constants

A

constant

expression

that

evaluates

to

zero

is

a

null

pointer

constant.

This

expression

can

be

converted

to

a

pointer.

This

pointer

will

be

a

null

pointer

(pointer

with

a

zero

value),

and

is

guaranteed

not

to

point

to

any

object.

Array-to-Pointer

Conversions

You

can

convert

an

lvalue

or

rvalue

with

type

″array

of

N,″

where

N

is

the

type

of

a

single

element

of

the

array,

to

N*.

The

result

is

a

pointer

to

the

initial

element

of

the

array.

You

cannot

perform

the

conversion

if

the

expression

is

used

as

the

operand

of

the

&

(address)

operator

or

the

sizeof

operator.

Function-to-Pointer

Conversions

You

can

convert

an

lvalue

that

is

a

function

of

type

T

to

an

rvalue

that

is

a

pointer

to

a

function

of

type

T,

except

when

the

expression

is

used

as

the

operand

of

the

&

(address)

operator,

the

()

(function

call)

operator,

or

the

sizeof

operator.

Reference

Conversions

2000C++

A

reference

conversion

can

be

performed

wherever

a

reference

initialization

occurs,

including

reference

initialization

done

in

argument

passing

and

function

return

values.

A

reference

to

a

class

can

be

converted

to

a

reference

to

an

accessible

base

class

of

that

class

as

long

as

the

conversion

is

not

ambiguous.

The

result

of

the

conversion

is

a

reference

to

the

base

class

subobject

of

the

derived

class

object.

Reference

conversion

is

allowed

if

the

corresponding

pointer

conversion

is

allowed.

Standard

Type

Conversions

Chapter

6.

Implicit

Type

Conversions

129

Pointer-to-Member

Conversions

2000C++

Pointer-to-member

conversion

can

occur

when

pointers

to

members

are

initialized,

assigned,

or

compared.

Note

that

pointer

to

a

member

is

not

the

same

as

a

pointer

to

an

object

or

a

pointer

to

a

function.

A

constant

expression

that

evaluates

to

zero

can

be

converted

to

the

null

pointer

to

a

member.

A

pointer

to

a

member

of

a

base

class

can

be

converted

to

a

pointer

to

a

member

of

a

derived

class

if

the

following

conditions

are

true:

v

The

conversion

is

not

ambiguous.

The

conversion

is

ambiguous

if

multiple

instances

of

the

base

class

are

in

the

derived

class.

v

A

pointer

to

the

derived

class

can

be

converted

to

a

pointer

to

the

base

class.

If

this

is

the

case,

the

base

class

is

said

to

be

accessible.

v

Member

types

must

match.

For

example

suppose

class

A

is

a

base

class

of

class

B.

You

cannot

convert

a

pointer

to

member

of

A

of

type

int

to

a

pointer

to

member

of

type

B

of

type

float.

v

The

base

class

cannot

be

virtual.

Qualification

Conversions

2000C++

You

can

convert

an

rvalue

of

type

cv1

T*

where

cv1

is

any

combination

of

zero

or

more

const

or

volatile

qualifications,

to

an

rvalue

of

type

cv2

T*

if

cv2

T*

is

more

const

or

volatile

qualified

than

cv1

T*.

You

can

convert

an

rvalue

of

type

pointer

to

member

of

a

class

X

of

cv1

T,

to

an

rvalue

of

type

pointer

to

member

of

a

class

X

of

cv2

T

if

cv2

T

is

more

const

or

volatile

qualified

than

cv1

T.

Related

References

v

“Type

Qualifiers”

on

page

57

Function

Argument

Conversions

2000C

If

a

function

declaration

is

present

and

includes

declared

argument

types,

the

compiler

performs

type

checking.

If

no

function

declaration

is

visible

when

a

function

is

called,

or

when

an

expression

appears

as

an

argument

in

the

variable

part

of

a

prototype

argument

list,

the

compiler

performs

default

argument

promotions

or

converts

the

value

of

the

expression

before

passing

any

arguments

to

the

function.

The

automatic

conversions

consist

of

the

following:

v

Integral

promotions

v

Arguments

with

type

float

are

converted

to

type

double.

2000C++

Function

declarations

in

C++

must

always

specify

their

parameter

types.

Also,

functions

may

not

be

called

if

it

has

not

already

been

declared.

Related

References

v

“Integral

and

Floating-Point

Promotions”

on

page

125

v

“Function

Declarations”

on

page

136

Other

Conversions

2000400

Conversions

among

the

seven

kinds

of

iSeries

pointers

are

described

in

″Pointer

Support

in

the

C/C++

Compilers,″

in

chapter

28

″Using

Teraspace″

of

ILE

C/C++

Programmer’s

Guide.

Standard

Type

Conversions

130

ILE

C/C++

Language

Reference

The

void

type

By

definition,

the

void

type

has

no

value.

Therefore,

it

cannot

be

converted

to

any

other

type,

and

no

other

value

can

be

converted

to

void

by

assignment.

However,

a

value

can

be

explicitly

cast

to

void.

Structure

or

union

types

No

conversions

between

structure

or

union

types

are

allowed,

except

for

the

following.

In

C,

an

assignment

conversion

between

compatible

structure

or

union

types

is

allowed

if

the

right

operand

is

of

a

type

compatible

with

that

of

the

left

operand.

Table

3.

Legal

assignment

conversions

in

C

for

structure

or

union

types

Left

operand

type

Permitted

right

operand

types

2000C

a

structure

or

union

type

a

compatible

structure

or

union

type

Class

types

2000C++

There

are

no

standard

conversions

between

class

types,

but

you

can

write

your

own

conversion

operators

for

class

types.

Enumeration

types

2000C

In

C,

when

you

define

a

value

using

the

enum

type

specifier,

the

value

is

treated

as

an

int.

Conversions

to

and

from

an

enum

value

proceed

as

for

the

int

type.

You

can

convert

from

an

enum

to

any

integral

type

but

not

from

an

integral

type

to

an

enum.

Related

References

v

“void

Type”

on

page

43

v

“User-Defined

Conversions”

on

page

288

v

“Enumerations”

on

page

54

Arithmetic

Conversions

The

conversions

depend

on

the

specific

operator

and

the

type

of

the

operand

or

operands.

However,

many

operators

perform

similar

conversions

on

operands

of

integer

and

floating-point

types.

These

standard

conversions

are

known

as

the

arithmetic

conversions

because

they

apply

to

the

types

of

values

ordinarily

used

in

arithmetic.

Arithmetic

conversions

are

used

for

matching

operands

of

arithmetic

operators.

Arithmetic

conversion

proceeds

in

the

following

order:

Operand

Type

Conversion

One

operand

has

long

double

type

The

other

operand

is

converted

to

long

double.

One

operand

has

double

type

The

other

operand

is

converted

to

double.

One

operand

has

float

type

The

other

operand

is

converted

to

float.

Standard

Type

Conversions

Chapter

6.

Implicit

Type

Conversions

131

Operand

Type

Conversion

One

operand

has

unsigned

long

long

int

type

The

other

operand

is

converted

to

unsigned

long

long

int

One

operand

has

long

long

type.

The

other

operand

is

converted

to

long

long.

One

operand

has

unsigned

long

int

type

The

other

operand

is

converted

to

unsigned

long

int.

One

operand

has

unsigned

int

type

and

the

other

operand

has

long

int

type

and

the

value

of

the

unsigned

int

can

be

represented

in

a

long

int

The

operand

with

unsigned

int

type

is

converted

to

long

int.

One

operand

has

unsigned

int

type

and

the

other

operand

has

long

int

type

and

the

value

of

the

unsigned

int

cannot

be

represented

in

a

long

int

Both

operands

are

converted

to

unsigned

long

int.

One

operand

has

long

int

type

The

other

operand

is

converted

to

long

int.

One

operand

has

unsigned

int

type

The

other

operand

is

converted

to

unsigned

int.

Both

operands

have

int

type

The

result

is

type

int.

Related

References

v

Chapter

5,

“Expressions

and

Operators,”

on

page

79

v

“Integer

Variables”

on

page

42

v

“Floating-Point

Variables”

on

page

40

The

explicit

Keyword

2000C++

A

constructor

declared

with

only

one

argument

and

without

the

explicit

keyword

is

a

converting

constructor.

You

can

construct

objects

with

a

converting

constructor

using

the

assignment

operator.

Declaring

a

constructor

of

this

type

with

the

explicit

keyword

prevents

this

behavior.

The

explicit

keyword

controls

unwanted

implicit

type

conversions.

It

can

only

be

used

in

declarations

of

constructors

within

a

class

declaration.

For

example,

except

for

the

default

constructor,

the

constructors

in

the

following

class

are

converting

constructors.

class

A

{

public:

A();

A(int);

A(const

char*,

int

=

0);

};

The

following

declarations

are

legal.

A

c

=

1;

A

d

=

"Venditti";

The

first

declaration

is

equivalent

to

A

c

=

A(1).

If

you

declare

the

constructor

of

the

class

with

the

explicit

keyword,

the

previous

declarations

would

be

illegal.

For

example,

if

you

declare

the

class

as:

Arithmetic

Conversions

132

ILE

C/C++

Language

Reference

class

A

{

public:

explicit

A();

explicit

A(int);

explicit

A(const

char*,

int

=

0);

};

You

can

only

assign

values

that

match

the

values

of

the

class

type.

For

example,

the

following

statements

will

be

legal:

A

a1;

A

a2

=

A(1);

A

a3(1);

A

a4

=

A("Venditti");

A*

p

=

new

A(1);

A

a5

=

(A)1;

A

a6

=

static_cast<A>(1);

Related

References

v

“Conversion

by

Constructor”

on

page

289

Arithmetic

Conversions

Chapter

6.

Implicit

Type

Conversions

133

Arithmetic

Conversions

134

ILE

C/C++

Language

Reference

Chapter

7.

Functions

In

the

context

of

programming

languages,

the

term

function

means

an

assemblage

of

statements

used

for

computing

an

output

value.

The

word

is

used

less

strictly

than

in

mathematics,

where

it

means

a

set

relating

input

variables

uniquely

to

output

variables.

Functions

in

C

or

C++

programs

may

not

produce

consistent

outputs

for

all

inputs,

may

not

produce

output

at

all,

or

may

have

side

effects.

Functions

can

be

understood

as

user-defined

operations,

in

which

the

parameters

of

the

parameter

list,

if

any,

are

the

operands.

Functions

fall

into

two

categories:

those

written

by

you

and

those

provided

with

the

C

language

implementation.

The

latter

are

called

library

functions,

since

they

belong

to

the

library

of

functions

supplied

with

the

compiler.

The

result

of

a

function

is

called

its

return

value.

The

data

type

of

the

return

value

is

called

the

return

type.

A

function

identifier

preceded

by

its

return

type

and

followed

by

its

parameter

list

is

called

a

function

declaration

or

function

prototype.

The

term

function

body

refers

to

the

statements

that

represent

the

actions

that

the

function

performs.

The

body

of

a

function

is

enclosed

in

braces,

which

creates

what

is

called

a

function

block.

The

function

return

type,

followed

by

its

name,

parameter

list,

and

body

constitute

the

function

definition.

The

function

name

followed

by

the

function

call

operator,

(),

causes

evaluation

of

the

function.

If

the

function

has

been

defined

to

receive

parameters,

the

values

that

are

to

be

sent

into

the

function

are

listed

inside

the

parentheses

of

the

function

call

operator.

These

values

are

the

arguments

for

the

parameters,

and

the

process

just

described

is

called

passing

arguments

to

the

function.

2000C++

In

C++,

the

parameter

list

of

a

function

is

referred

to

as

its

signature.

The

name

and

signature

of

a

function

uniquely

identify

it.

As

the

word

itself

suggests,

the

function

signature

is

used

by

the

compiler

to

distinguish

among

the

different

instances

of

overloaded

functions.

Related

References

v

Chapter

11,

“Overloading,”

on

page

199

C++

Enhancements

to

C

Functions

2000C++

The

C++

language

provides

many

enhancements

to

C

functions.

These

are:

v

Reference

arguments

v

Default

arguments

v

Reference

return

types

v

Inline

functions

v

Member

functions

v

Overloaded

functions

v

Operator

functions

v

Constructor

and

destructor

functions

v

Conversion

functions

v

Virtual

functions

v

Function

templates

v

Exception

specifications

©

Copyright

IBM

Corp.

1998,

2003

135

v

Constructor

initializers

Related

References

v

“Passing

Arguments

by

Reference”

on

page

149

v

“Default

Arguments

in

C++

Functions”

on

page

150

v

“Using

References

as

Return

Types”

on

page

154

v

“Inline

Functions”

on

page

156

v

“Member

Functions”

on

page

224

v

“Overloading

Functions”

on

page

199

v

“Overloading

Operators”

on

page

201

v

“Constructors

and

Destructors

Overview”

on

page

271

v

“Conversion

Functions”

on

page

291

v

“Virtual

Functions”

on

page

262

Function

Declarations

A

function

declaration

establishes

the

name

of

the

function

and

the

number

and

types

of

its

parameters.

A

function

declaration

consists

of

a

return

type,

a

name,

and

a

parameter

list.

In

addition,

a

function

declaration

may

optionally

specify

the

function’s

linkage.

In

C++,

the

declaration

can

also

specify

an

exception

specification,

a

const-qualification,

or

a

volatile-qualification.

A

declaration

informs

the

compiler

of

the

format

and

existence

of

a

function

prior

to

its

use.

A

function

can

be

declared

several

times

in

a

program,

provided

that

all

the

declarations

agree.

Every

function

must

be

declared

implicitly

or

explicitly

before

it

can

be

called.

In

C89,

if

a

function

is

called

without

an

explicit

prototype,

the

compiler

provides

an

implicit

declaration.

The

compiler

checks

for

mismatches

between

the

parameters

of

a

function

call

and

those

in

the

function

declaration.

The

compiler

also

uses

the

declaration

for

argument

type

checking

and

argument

conversions.

A

function

definition

contains

a

function

declaration

and

the

body

of

the

function.

A

function

can

only

have

one

definition.

Declarations

are

typically

placed

in

header

files,

while

function

definitions

appear

in

source

files.

��

extern

static

type_specifier

function_name

�

�

�

,

(

)

parameter

,

...

const

volatile

�

�

exception_specification

;

��

A

function

argument

is

an

expression

that

you

use

within

the

parentheses

of

a

function

call.

A

function

parameter

is

an

object

or

reference

declared

within

the

C++

Enhancements

to

C

Functions

136

ILE

C/C++

Language

Reference

parenthesis

of

a

function

declaration

or

definition.

When

you

call

a

function,

the

arguments

are

evaluated,

and

each

parameter

is

initialized

with

the

value

of

the

corresponding

argument.

The

semantics

of

argument

passing

are

identical

to

those

of

assignment.

Some

declarations

do

not

name

the

parameters

within

the

parameter

lists;

the

declarations

simply

specify

the

types

of

parameters

and

the

return

values.

This

is

called

prototyping

A

function

prototype

consists

of

the

function

return

type,

the

name

of

the

function,

and

the

parameter

list.

The

following

example

demonstrates

this:

int

func(int,long);

Function

prototypes

are

required

for

compatibility

between

C

and

C++.

The

non-prototype

form

of

a

function

that

has

an

empty

parameter

list

means

that

the

function

takes

an

unknown

number

of

parameters

in

C,

whereas

in

C++,

it

means

that

it

takes

no

parameters.

Function

Return

Type

You

can

define

a

function

to

return

any

type

of

value,

except

arrays

and

the

result

of

a

function

call.

These

exclusions

must

be

handled

by

returning

a

pointer

to

the

array

or

function.

A

function

may

return

a

pointer

to

function,

or

a

pointer

to

the

first

element

of

an

array,

but

it

may

not

return

a

value

that

has

a

type

of

array

or

function.

To

indicate

that

the

function

does

not

return

a

value,

declare

it

with

a

return

type

of

void.

A

function

cannot

be

declared

as

returning

a

data

object

having

a

volatile

or

const

type,

but

it

can

return

a

pointer

to

a

volatile

or

const

object.

2000C++

Limitations

When

Declaring

Functions

in

C++

Every

function

declaration

must

specify

a

return

type.

2000400

The

ILE

C++

compiler

supports

implicit

int

as

a

function

return

type,

provided

that

LANGLVL(*EXTENDED)

or

LANGLVL(*LEGACY)

has

been

specified.

Only

member

functions

may

have

const

or

volatile

specifiers

after

the

parenthesized

parameter

list.

The

exception_specification

limits

the

function

from

throwing

only

a

specified

list

of

exceptions.

Other

Limitations

When

Declaring

a

Function

The

ellipsis

(...)

may

be

the

only

argument

in

C++.

In

this

case,

the

comma

is

not

required.

In

C,

you

cannot

have

an

ellipsis

as

the

only

argument.

Types

cannot

be

defined

in

return

or

argument

types.

For

example,

the

C++

compiler

will

allow

the

following

declaration

of

print():

struct

X

{

int

i;

};

void

print(X

x);

The

C

compiler

will

allow

the

following

declaration:

Function

Declarations

Chapter

7.

Functions

137

struct

X

{

int

i;

};

void

print(struct

X

x);

Neither

the

C

nor

C++

compiler

will

not

allow

the

following

declaration

of

the

same

function:

void

print(struct

X

{

int

i;

}

x);

//error

This

example

attempts

to

declare

a

function

print()

that

takes

an

object

x

of

class

X

as

its

argument.

However,

the

class

definition

is

not

allowed

within

the

argument

list.

In

another

example,

the

C++

compiler

will

allow

the

following

declaration

of

counter():

enum

count

{one,

two,

three};

count

counter();

Similarly,

the

C

compiler

will

allow

the

following

declaration:

enum

count

{one,

two,

three};

enum

count

counter();

Neither

compiler

will

not

allow

the

following

declaration

of

the

same

function:

enum

count{one,

two,

three}

counter();

//error

In

the

attempt

to

declare

counter(),

the

enumeration

type

definition

cannot

appear

in

the

return

type

of

the

function

declaration.

Related

References

v

“Type

Qualifiers”

on

page

57

v

“Exception

Specifications”

on

page

338

C++

Function

Declarations

2000C++

In

C++,

you

can

specify

the

qualifiers

volatile

and

const

in

member

function

declarations.

You

can

also

specify

exception

specifications

in

function

declarations.

All

C++

functions

must

be

declared

before

they

can

be

called.

Related

References

v

“Type

Qualifiers”

on

page

57

v

“const

and

volatile

Member

Functions”

on

page

226

v

“Exception

Specifications”

on

page

338

Multiple

Function

Declarations

2000C++

All

function

declarations

for

one

particular

function

must

have

the

same

number

and

type

of

parameters,

and

must

have

the

same

return

type.

These

return

and

parameter

types

are

part

of

the

function

type,

although

the

default

arguments

and

exception

specifications

are

not.

If

a

previous

declaration

of

an

object

or

function

is

visible

in

an

enclosing

scope,

the

identifier

has

the

same

linkage

as

the

first

declaration.

However,

a

variable

or

function

that

has

no

linkage

and

later

declared

with

a

linkage

specifier

will

have

the

linkage

you

have

specified.

For

the

purposes

of

argument

matching,

ellipsis

and

linkage

keywords

are

considered

a

part

of

the

function

type.

They

must

be

used

consistently

in

all

declarations

of

a

function.

If

the

only

difference

between

the

parameter

types

in

Function

Declarations

138

ILE

C/C++

Language

Reference

two

declarations

is

in

the

use

of

typedef

names

or

unspecified

argument

array

bounds,

the

declarations

are

the

same.

A

const

or

volatile

type

qualifier

is

also

part

of

the

function

type,

but

can

only

be

part

of

a

declaration

or

definition

of

a

nonstatic

member

function.

If

two

function

declarations

match

in

both

return

type

and

parameter

lists,

then

the

second

declaration

is

treated

as

redclaration

of

the

first.

The

following

example

declares

the

same

function:

int

foo(const

string

&bar);

int

foo(const

string

&);

Declaring

two

functions

differing

only

in

return

type

is

not

valid

function

overloading,

and

is

flagged

as

a

compile-time

error.

For

example:

void

f();

int

f();

//

error,

two

definitions

differ

only

in

//

return

type

int

g()

{

return

f();

}

Related

References

v

“Overloading

Functions”

on

page

199

Parameter

Names

in

Function

Declarations

2000C++

You

can

supply

parameter

names

in

a

function

declaration,

but

the

compiler

ignores

them

except

in

the

following

two

situations:

1.

If

two

parameter

names

have

the

same

name

within

a

single

declaration.

This

is

an

error.

2.

If

a

parameter

name

is

the

same

as

a

name

outside

the

function.

In

this

case

the

name

outside

the

function

is

hidden

and

cannot

be

used

in

the

parameter

declaration.

In

the

following

example,

the

third

parameter

name

intersects

is

meant

to

have

enumeration

type

subway_line,

but

this

name

is

hidden

by

the

name

of

the

first

parameter.

The

declaration

of

the

function

subway()

causes

a

compile-time

error

because

subway_line

is

not

a

valid

type

name

because

the

first

parameter

name

subway_line

hides

the

namespace

scope

enum

type

and

cannot

be

used

again

in

the

second

parameter.

enum

subway_line

{yonge,

university,

spadina,

bloor};

int

subway(char

*

subway_line,

int

stations,

subway_line

intersects);

Examples

of

Function

Declarations

The

following

code

fragments

show

several

function

declarations.

The

first

declares

a

function

f

that

takes

two

integer

arguments

and

has

a

return

type

of

void:

void

f(int,

int);

The

following

code

fragment

declares

a

pointer

p1

to

a

function

that

takes

a

pointer

to

a

constant

character

and

returns

an

integer:

int

(*p1)

(const

char*);

The

following

code

fragment

declares

a

function

f1

that

takes

an

integer

argument,

and

returns

a

pointer

to

a

function

that

takes

an

integer

argument

and

returns

an

integer:

Function

Declarations

Chapter

7.

Functions

139

int

(*f1(int))

(int);

Alternatively,

a

typedef

can

be

used

for

the

complicated

return

type

of

function

f1:

typedef

int

f1_return_type(int);

f1_return_type*

f1(int);

2000C++

The

remainder

of

this

section

pertains

to

C++

only.

The

following

declaration

is

of

an

external

function

f2

that

takes

a

constant

integer

as

its

first

argument,

can

have

a

variable

number

and

variable

types

of

other

arguments,

and

returns

type

int.

int

extern

f2(const

int

...);

However,

in

C,

a

comma

is

required

before

the

ellipsis:

int

extern

f2(const

int,

...);

Function

f3

has

a

return

type

int,

and

takes

an

int

argument

with

a

default

value

that

is

the

value

returned

from

function

f2:

const

int

j

=

5;

int

f3(

int

x

=

f2(j)

);

Function

f6

is

a

const

class

member

function

of

class

X,

takes

no

arguments,

and

has

a

return

type

of

int:

class

X

{

public:

int

f6()

const;

};

Function

f4

takes

no

arguments,

has

return

type

void,

and

can

throw

class

objects

of

types

X

and

Y.

class

X;

class

Y;

//

...

void

f4()

throw(X,Y);

Function

f5

takes

no

arguments,

has

return

type

void,

and

will

call

unexpected()

if

it

throws

an

exception

of

any

type.

void

f5()

throw();

Function

Definitions

A

function

definition

contains

a

function

declaration

and

the

body

of

a

function.

2000C

The

syntax

for

a

C

function

definition

is

as

follows:

��

�

type_specifier

extern

static

function_name

�

Function

Declarations

140

ILE

C/C++

Language

Reference

�

�

(

)

,

parameter_declaration

,

...

function_body

��

function_body:

block_statement

2000C++

The

syntax

for

a

C++

function

definition

is

as

follows:

��

�

type_specifier

extern

static

function_name

�

�

�

(

)

,

parameter_declaration

,

...

...

const

volatile

�

�

exception_specification

function_body

��

function_body:

body

try

body

catch_handlers

body:

:

constructor_initializer_list

block_statement

catch_handlers:

�

catch

(

parameter_declaration

)

block_statement

...

In

both

languages,

a

function

definition

contains

the

following:

Function

Definitions

Chapter

7.

Functions

141

v

At

least

one

type

specifier,

which

determines

the

type

of

value

that

the

function

returns.

For

example,

the

syntax

for

a

function

that

returns

an

unsigned

long

int

uses

three

type

specifiers.

v

An

optional

storage

class

specifier

extern

or

static,

which

determines

the

scope

of

the

function.

If

a

storage

class

specifier

is

not

given,

the

function

has

external

linkage.

v

A

function

declarator

is

the

function

name

followed

by

a

parenthesized

list

of

parameter

types

and

names

each

parameter

that

the

function

expects.

In

the

following

function

definition,

f(int

a,

int

b)

is

the

function

declarator:

int

f(int

a,

int

b)

{

return

a

+

b;

}

v

A

block

statement,

which

contains

data

definitions

and

code.

2000C++

A

C++

function

definition

may

optionally

contain

the

following:

v

const

or

volatile

specifiers

after

the

function

declarator

for

a

member

function.

v

An

exception

specification,

which

limits

the

function

from

throwing

only

a

specified

list

of

exceptions.

v

A

try

block

with

one

or

more

catch

handlers

instead

of

a

block

statement.

v

A

constructor

initializer

list

before

the

block

statement

if

the

function

definition

is

for

a

constructor.

In

the

following

definition

of

class

A,

x(0),

y(’c’)

is

the

constructor

initializer

list:

class

A

{

int

x;

char

y;

public:

A()

:

x(0),

y(’c’)

{

}

};

A

function

can

be

called

by

itself

or

by

other

functions.

By

default,

function

definitions

have

external

linkage,

and

can

be

called

by

functions

defined

in

other

files.

A

storage

class

specifier

of

static

means

that

the

function

name

has

global

scope

only,

and

can

be

directly

invoked

only

from

within

the

same

translation

unit.

2000C++

This

use

of

static

is

deprecated

in

C++.

Instead,

place

the

function

in

the

unnamed

namespace.

2000C

In

C,

if

a

function

definition

has

external

linkage

and

a

return

type

of

int,

calls

to

the

function

can

be

made

before

it

is

visible

because

an

implicit

declaration

of

extern

int

func();

is

assumed.

To

be

compatible

with

C++,

all

functions

must

be

declared

with

prototypes.

2000C

If

the

function

does

not

return

a

value,

use

the

keyword

void

as

the

type

specifier.

If

the

function

does

not

take

any

parameters,

use

the

keyword

void

rather

than

an

empty

parameter

list

to

indicate

that

the

function

is

not

passed

any

arguments.

In

C,

a

function

with

an

empty

parameter

list

signifies

a

function

that

takes

an

unknown

number

of

parameters;

in

C++,

it

means

it

takes

no

parameters.

2000C

In

C,

you

cannot

declare

a

function

as

a

struct

or

union

member.

Compatibility

of

Function

Declarations

All

declarations

for

a

given

function

must

be

compatible;

that

is,

the

return

type

is

the

same

and

the

parameters

have

the

same

type.

Function

Definitions

142

ILE

C/C++

Language

Reference

Compatibility

of

Function

Types

2000C

The

notion

of

type

compatibility

pertains

only

to

C.

For

two

function

types

to

be

compatible,

the

return

types

must

be

compatible.

If

both

function

types

are

specified

without

prototypes,

this

is

the

only

requirement.

For

two

functions

declared

with

prototypes,

the

composite

type

must

meet

the

following

additional

requirements:

v

If

one

of

the

function

types

has

a

parameter

type

list,

the

composite

type

is

a

function

prototype

with

the

same

parameter

type

list.

v

If

both

types

are

function

types

with

parameter

lists,

then

each

parameter

in

the

parameter

list

of

the

composite

is

the

composite

type

of

the

corresponding

parameters.

and

may

use

the

[*]

notation

in

their

sequences

of

declarator

specifiers

to

specify

variable

length

array

types.

If

the

function

declarator

is

not

part

of

the

function

definition,

the

parameters

may

have

incomplete

type.

The

parameters

may

also

specify

variable

length

array

types

by

using

the

[*]

notation

in

their

sequences

of

declarator

specifiers.

The

following

are

examples

of

compatible

function

prototype

declarators:

double

maximum(int

n,

int

m,

double

a[n][m]);

double

maximum(int

n,

int

m,

double

a[*][*]);

double

maximum(int

n,

int

m,

double

a[

][*]);

double

maximum(int

n,

int

m,

double

a[

][m]);

Examples

of

Function

Definitions

The

following

example

is

a

definition

of

the

function

sum:

int

sum(int

x,int

y)

{

return(x

+

y);

}

The

function

sum

has

external

linkage,

returns

an

object

that

has

type

int,

and

has

two

parameters

of

type

int

declared

as

x

and

y.

The

function

body

contains

a

single

statement

that

returns

the

sum

of

x

and

y.

In

the

following

example,

ary

is

an

array

of

two

function

pointers.

Type

casting

is

performed

to

the

values

assigned

to

ary

for

compatibility:

#include

<stdio.h>

typedef

void

(*ARYTYPE)();

int

func1(void);

void

func2(double

a);

int

main(void)

{

double

num

=

333.3333;

int

retnum;

ARYTYPE

ary[2];

ary[0]=(ARYTYPE)func1;

ary[1]=(ARYTYPE)func2;

retnum=((int

(*)())ary[0])();

/*

calls

func1

*/

printf("number

returned

=

%i\n",

retnum);

((void

(*)(double))ary[1])(num);

/*

calls

func2

*/

Function

Definitions

Chapter

7.

Functions

143

return(0);

}

int

func1(void)

{

int

number=3;

return

number;

}

void

func2(double

a)

{

printf("result

of

func2

=

%f\n",

a);

}

The

following

is

the

output

of

the

above

example:

number

returned

=

3

result

of

func2

=

333.333300

Related

References

v

“extern

Storage

Class

Specifier”

on

page

31

v

“static

Storage

Class

Specifier”

on

page

34

v

“Type

Qualifiers”

on

page

57

Ellipsis

and

void

An

ellipsis

at

the

end

of

the

parameter

specifications

is

used

to

specify

that

a

function

has

a

variable

number

of

parameters.

The

number

of

parameters

is

equal

to,

or

greater

than,

the

number

of

parameter

specifications.

At

least

one

parameter

declaration

must

come

before

the

ellipsis.

int

f(int,

...);

2000C++

The

comma

before

the

ellipsis

is

optional.

In

addition,

a

parameter

declaration

is

not

required

before

the

ellipsis.

2000C

The

comma

before

the

ellipsis

as

well

as

a

parameter

declaration

before

the

ellipsis

are

both

required

in

C.

Parameter

promotions

are

performed

as

needed,

but

no

type

checking

is

done

on

the

variable

arguments.

You

can

declare

a

function

with

no

arguments

in

two

ways:

int

f(void);

int

f();

2000C++

An

empty

argument

declaration

list

or

the

argument

declaration

list

of

(void)

indicates

a

function

that

takes

no

arguments.

2000C

An

empty

argument

declaration

list

means

that

the

function

may

take

any

number

or

type

of

parameters.

The

type

void

cannot

be

used

as

an

argument

type,

although

types

derived

from

void

(such

as

pointers

to

void)

can

be

used.

In

the

following

example,

the

function

f()

takes

one

integer

argument

and

returns

no

value,

while

g()

expects

no

arguments

and

returns

an

integer.

void

f(int);

int

g(void);

Function

Definitions

144

ILE

C/C++

Language

Reference

Examples

of

Function

Definitions

The

following

example

contains

a

function

declarator

i_sort

with

table

declared

as

a

pointer

to

int

and

length

declared

as

type

int.

Note

that

arrays

as

parameters

are

implicitly

converted

to

a

pointer

to

the

element

type.

/**

**

This

example

illustrates

function

definitions.

**

Note

that

arrays

as

parameters

are

implicitly

**

converted

to

a

pointer

to

the

type.

**/

#include

<stdio.h>

void

i_sort(int

table[

],

int

length);

int

main(void)

{

int

table[

]={1,5,8,4};

int

length=4;

printf("length

is

%d\n",length);

i_sort(table,length);

}

void

i_sort(int

table[

],

int

length)

{

int

i,

j,

temp;

for

(i

=

0;

i

<

length

-1;

i++)

for

(j

=

i

+

1;

j

<

length;

j++)

if

(table[i]

>

table[j])

{

temp

=

table[i];

table[i]

=

table[j];

table[j]

=

temp;

}

}

The

following

are

examples

of

function

declarations

(also

called

function

prototypes):

double

square(float

x);

int

area(int

x,int

y);

static

char

*search(char);

The

following

example

illustrates

how

a

typedef

identifier

can

be

used

in

a

function

declarator:

typedef

struct

tm_fmt

{

int

minutes;

int

hours;

char

am_pm;

}

struct_t;

long

time_seconds(struct_t

arrival)

The

following

function

set_date

declares

a

pointer

to

a

structure

of

type

date

as

a

parameter.

date_ptr

has

the

storage

class

specifier

register.

void

set_date(register

struct

date

*date_ptr)

{

date_ptr->mon

=

12;

date_ptr->day

=

25;

date_ptr->year

=

87;

}

Function

Definitions

Chapter

7.

Functions

145

The

main()

Function

When

a

program

begins

running,

the

system

calls

the

function

main,

which

marks

the

entry

point

of

the

program.

Every

program

must

have

one

function

named

main.

No

other

function

in

the

program

can

be

called

main.

A

main

function

has

one

of

two

forms:

2000C

int

main

(void)

block_statement

2000C++

int

main

(

)block_statement

int

main

(int

argc,

char

**

argv)block_statement

The

argument

argc

is

the

number

of

command-line

arguments

passed

to

the

program.

The

argument

argv

is

a

pointer

to

an

array

of

strings,

where

argv[0]

is

the

name

you

used

to

run

your

program

from

the

command-line,

argv[1]

the

first

argument

that

you

passed

to

your

program,

argv[2]

the

second

argument,

and

so

on.

By

default,

main

has

the

storage

class

extern.

2000C++

You

cannot

declare

main

as

inline

or

static.

You

cannot

call

main

from

within

a

program

or

take

the

address

of

main.

You

cannot

overload

this

function.

Arguments

to

main

The

function

main

can

be

declared

with

or

without

parameters.

int

main(int

argc,

char

*argv[])

Although

any

name

can

be

given

to

these

parameters,

they

are

usually

referred

to

as

argc

and

argv.

The

first

parameter,

argc

(argument

count),

has

type

int

and

indicates

how

many

arguments

were

entered

on

the

command

line.

The

second

parameter,

argv

(argument

vector),

has

type

array

of

pointers

to

char

array

objects.

char

array

objects

are

null-terminated

strings.

The

value

of

argc

indicates

the

number

of

pointers

in

the

array

argv.

If

a

program

name

is

available,

the

first

element

in

argv

points

to

a

character

array

that

contains

the

program

name

or

the

invocation

name

of

the

program

that

is

being

run.

If

the

name

cannot

be

determined,

the

first

element

in

argv

points

to

a

null

character.

This

name

is

counted

as

one

of

the

arguments

to

the

function

main.

For

example,

if

only

the

program

name

is

entered

on

the

command

line,

argc

has

a

value

of

1

and

argv[0]

points

to

the

program

name.

Regardless

of

the

number

of

arguments

entered

on

the

command

line,

argv[argc]

always

contains

NULL.

Example

of

Arguments

to

main

The

following

program

backward

prints

the

arguments

entered

on

a

command

line

such

that

the

last

argument

is

printed

first:

main

146

ILE

C/C++

Language

Reference

#include

<stdio.h>

int

main(int

argc,

char

*argv[])

{

while

(--argc

>

0)

printf(“%s

”,

argv[argc]);

}

Invoking

this

program

from

a

command

line

with

the

following:

backward

string1

string2

gives

the

following

output:

string2

string1

The

arguments

argc

and

argv

would

contain

the

following

values:

Object

Value

argc

3

argv[0]

pointer

to

string

“backward”

argv[1]

pointer

to

string

“string1”

argv[2]

pointer

to

string

“string2”

argv[3]

NULL

Note:

Be

careful

when

entering

mixed

case

characters

on

a

command

line

because

some

environments

are

not

case-sensitive.

Also,

the

exact

format

of

the

string

pointed

to

by

argv[0]

is

system-dependent.

Calling

Functions

and

Passing

Arguments

The

arguments

of

a

function

call

are

used

to

initialize

the

parameters

of

the

function

definition.

Array

expressions

and

C

function

designators

as

arguments

are

converted

to

pointers

before

the

call.

Integral

and

floating-point

promotions

will

first

be

done

to

the

values

of

the

arguments

before

the

function

is

called.

The

type

of

an

argument

is

checked

against

the

type

of

the

corresponding

parameter

in

the

function

declaration.

All

standard

and

user-defined

type

conversions

are

applied

as

necessary.

The

value

of

each

argument

expression

is

converted

to

the

type

of

the

corresponding

parameter

as

if

by

assignment.

For

example:

#include

<stdio.h>

#include

<math.h>

/*

Declaration

*/

extern

double

root(double,

double);

/*

Definition

*/

double

root(double

value,

double

base)

{

double

temp

=

exp(log(value)/base);

return

temp;

}

int

main(void)

{

int

value

=

144;

main

Chapter

7.

Functions

147

int

base

=

2;

printf("The

root

is:

%f\n",

root(value,

base));

return

0;

}

The

output

is

The

root

is:

12.000000

In

the

above

example,

because

the

function

root

is

expecting

arguments

of

type

double,

the

two

int

arguments

value

and

base

are

implicitly

converted

to

type

double

when

the

function

is

called.

The

order

in

which

arguments

are

evaluated

and

passed

to

the

function

is

implementation-defined.

For

example,

the

following

sequence

of

statements

calls

the

function

tester:

int

x;

x

=

1;

tester(x++,

x);

The

call

to

tester

in

the

example

may

produce

different

results

on

different

compilers.

Depending

on

the

implementation,

x++

may

be

evaluated

first

or

x

may

be

evaluated

first.

To

avoid

the

ambiguity

and

have

x++

evaluated

first,

replace

the

preceding

sequence

of

statements

with

the

following:

int

x,

y;

x

=

1;

y

=

x++;

tester(y,

x);

2000C++

The

remainder

of

this

section

pertains

only

to

C

++.

If

a

nonstatic

class

member

function

is

passed

as

an

argument,

the

argument

is

converted

to

a

pointer

to

member.

If

a

class

has

a

destructor

or

a

copy

constructor

that

does

more

than

a

bitwise

copy,

passing

a

class

object

by

value

results

in

the

construction

of

a

temporary

that

is

actually

passed

by

reference.

It

is

an

error

when

a

function

argument

is

a

class

object

and

all

of

the

following

properties

hold:

v

The

class

needs

a

copy

constructor.

v

The

class

does

not

have

a

user-defined

copy

constructor.

v

A

copy

constructor

cannot

be

generated

for

that

class.

Passing

Arguments

by

Value

If

you

call

a

function

with

an

argument

that

corresponds

to

a

non-reference

parameter,

you

have

passed

that

argument

by

value.

The

parameter

is

initialized

with

the

value

of

the

argument.

You

can

change

the

value

of

the

parameter

(if

that

parameter

has

not

been

declared

const)

within

the

scope

of

the

function,

but

these

changes

will

not

affect

the

value

of

the

argument

in

the

calling

function.

The

following

are

examples

of

passing

arguments

by

value:

The

following

statement

calls

the

function

printf,

which

receives

a

character

string

and

the

return

value

of

the

function

sum,

which

receives

the

values

of

a

and

b:

printf("sum

=

%d\n",

sum(a,b));

Calling

Functions

and

Passing

Arguments

148

ILE

C/C++

Language

Reference

The

following

program

passes

the

value

of

count

to

the

function

increment,

which

increases

the

value

of

the

parameter

x

by

1.

/**

**

An

example

of

passing

an

argument

to

a

function

**/

#include

<stdio.h>

void

increment(int);

int

main(void)

{

int

count

=

5;

/*

value

of

count

is

passed

to

the

function

*/

increment(count);

printf("count

=

%d\n",

count);

return(0);

}

void

increment(int

x)

{

++x;

printf("x

=

%d\n",

x);

}

The

output

illustrates

that

the

value

of

count

in

main

remains

unchanged:

x

=

6

count

=

5

Related

References

v

“Function

Call

Operator

(

)”

on

page

88

Passing

Arguments

by

Reference

Passing

by

reference

refers

to

a

method

of

passing

arguments

where

the

value

of

an

argument

in

the

calling

function

can

be

modified

in

the

called

function.

To

pass

an

argument

by

reference,

you

declare

the

corresponding

parameter

with

a

reference

type.

The

following

example

shows

how

arguments

are

passed

by

reference.

Note

that

reference

parameters

are

initialized

with

the

actual

arguments

when

the

function

is

called.

#include

<stdio.h>

void

swapnum(int

&i,

int

&j)

{

int

temp

=

i;

i

=

j;

j

=

temp;

}

int

main(void)

{

int

a

=

10;

int

b

=

20;

swapnum(a,

b);

printf("A

is

%d

and

B

is

%d\n",

a,

b);

return

0;

}

Calling

Functions

and

Passing

Arguments

Chapter

7.

Functions

149

When

the

function

swapnum()

is

called,

the

actual

values

of

the

variables

a

and

b

are

exchanged

because

they

are

passed

by

reference.

The

output

is:

A

is

20

and

B

is

10

You

must

define

the

parameters

of

swapnum()

as

references

if

you

want

the

values

of

the

actual

arguments

to

be

modified

by

the

function

swapnum().

2000C++

In

order

to

modify

a

reference

that

is

const-qualified,

you

must

cast

away

its

constness

with

the

const_cast

operator.

The

following

example

demonstrates

this:

#include

<iostream>

using

namespace

std;

void

f(const

int&

x)

{

int*

y

=

const_cast<int>(&x);

(*y)++;

}

int

main()

{

int

a

=

5;

f(a);

cout

<<

a

<<

endl;

}

This

example

outputs

6.

You

can

modify

the

values

of

nonconstant

objects

through

pointer

parameters.

The

following

example

demonstrates

this:

#include

<stdio.h>

int

main(void)

{

void

increment(int

*x);

int

count

=

5;

/*

address

of

count

is

passed

to

the

function

*/

increment(&count);

printf("count

=

%d\n",

count);

return(0);

}

void

increment(int

*x)

{

++*x;

printf("*x

=

%d\n",

*x);

}

The

following

is

the

output

of

the

above

code:

*x

=

6

count

=

6

The

example

passes

the

address

of

count

to

increment().

Function

increment()

increments

count

through

the

pointer

parameter

x.

Default

Arguments

in

C++

Functions

2000C++

You

can

provide

default

values

for

function

parameters.

For

example:

Calling

Functions

and

Passing

Arguments

150

ILE

C/C++

Language

Reference

#include

<iostream>

using

namespace

std;

int

a

=

1;

int

f(int

a)

{

return

a;

}

int

g(int

x

=

f(a))

{

return

x;

}

int

h()

{

a

=

2;

{

int

a

=

3;

return

g();

}

}

int

main()

{

cout

<<

h()

<<

endl;

}

This

example

prints

2

to

standard

output,

because

the

a

referred

to

in

the

declaration

of

g()

is

the

one

at

file

scope,

which

has

the

value

2

when

g()

is

called.

The

default

argument

must

be

implicitly

convertible

to

the

parameter

type.

A

pointer

to

a

function

must

have

the

same

type

as

the

function.

Attempts

to

take

the

address

of

a

function

by

reference

without

specifying

the

type

of

the

function

will

produce

an

error.

The

type

of

a

function

is

not

affected

by

arguments

with

default

values.

The

following

example

shows

that

default

arguments

are

not

considered

part

of

a

function’s

type.

The

default

argument

allows

you

to

call

a

function

without

specifying

all

of

the

arguments,

it

does

not

allow

you

to

create

a

pointer

to

the

function

that

does

not

specify

the

types

of

all

the

arguments.

Function

f

can

be

called

without

an

explicit

argument,

but

the

pointer

badpointer

cannot

be

defined

without

specifying

the

type

of

the

argument:

int

f(int

=

0);

void

g()

{

int

a

=

f(1);

//

ok

int

b

=

f();

//

ok,

default

argument

used

}

int

(*pointer)(int)

=

&f;

//

ok,

type

of

f()

specified

(int)

int

(*badpointer)()

=

&f;

//

error,

badpointer

and

f

have

//

different

types.

badpointer

must

//

be

initialized

with

a

pointer

to

//

a

function

taking

no

arguments.

Related

References

v

“Pointers

to

Functions”

on

page

155

Restrictions

on

Default

Arguments

Of

the

operators,

only

the

function

call

operator

and

the

operator

new

can

have

default

arguments

when

they

are

overloaded.

Parameters

with

default

arguments

must

be

the

trailing

parameters

in

the

function

declaration

parameter

list.

For

example:

void

f(int

a,

int

b

=

2,

int

c

=

3);

//

trailing

defaults

void

g(int

a

=

1,

int

b

=

2,

int

c);

//

error,

leading

defaults

void

h(int

a,

int

b

=

3,

int

c);

//

error,

default

in

middle

Default

Arguments

in

C++

Functions

Chapter

7.

Functions

151

Once

a

default

argument

has

been

given

in

a

declaration

or

definition,

you

cannot

redefine

that

argument,

even

to

the

same

value.

However,

you

can

add

default

arguments

not

given

in

previous

declarations.

For

example,

the

last

declaration

below

attempts

to

redefine

the

default

values

for

a

and

b:

void

f(int

a,

int

b,

int

c=1);

//

valid

void

f(int

a,

int

b=1,

int

c);

//

valid,

add

another

default

void

f(int

a=1,

int

b,

int

c);

//

valid,

add

another

default

void

f(int

a=1,

int

b=1,

int

c=1);

//

error,

redefined

defaults

You

can

supply

any

default

argument

values

in

the

function

declaration

or

in

the

definition.

Any

parameters

in

the

parameter

list

following

a

default

argument

value

must

have

a

default

argument

value

specified

in

this

or

a

previous

declaration

of

the

function.

You

cannot

use

local

variables

in

default

argument

expressions.

For

example,

the

compiler

generates

errors

for

both

function

g()

and

function

h()

below:

void

f(int

a)

{

int

b=4;

void

g(int

c=a);

//

Local

variable

"a"

cannot

be

used

here

void

h(int

d=b);

//

Local

variable

"b"

cannot

be

used

here

}

Related

References

v

“Function

Call

Operator

(

)”

on

page

88

v

“C++

new

Operator”

on

page

103

v

“Default

Arguments

in

C++

Functions”

on

page

150

Evaluating

Default

Arguments

When

a

function

defined

with

default

arguments

is

called

with

trailing

arguments

missing,

the

default

expressions

are

evaluated.

For

example:

void

f(int

a,

int

b

=

2,

int

c

=

3);

//

declaration

//

...

int

a

=

1;

f(a);

//

same

as

call

f(a,2,3)

f(a,10);

//

same

as

call

f(a,10,3)

f(a,10,20);

//

no

default

arguments

Default

arguments

are

checked

against

the

function

declaration

and

evaluated

when

the

function

is

called.

The

order

of

evaluation

of

default

arguments

is

undefined.

Default

argument

expressions

cannot

use

other

parameters

of

the

function.

For

example:

int

f(int

q

=

3,

int

r

=

q);

//

error

The

argument

r

cannot

be

initialized

with

the

value

of

the

argument

q

because

the

value

of

q

may

not

be

known

when

it

is

assigned

to

r.

If

the

above

function

declaration

is

rewritten:

int

q=5;

int

f(int

q

=

3,

int

r

=

q);

//

error

The

value

of

r

in

the

function

declaration

still

produces

an

error

because

the

variable

q

defined

outside

of

the

function

is

hidden

by

the

argument

q

declared

for

the

function.

Similarly:

typedef

double

D;

int

f(int

D,

int

z

=

D(5.3)

);

//

error

Default

Arguments

in

C++

Functions

152

ILE

C/C++

Language

Reference

Here

the

type

D

is

interpreted

within

the

function

declaration

as

the

name

of

an

integer.

The

type

D

is

hidden

by

the

argument

D.

The

cast

D(5.3)

is

therefore

not

interpreted

as

a

cast

because

D

is

the

name

of

the

argument

not

a

type.

In

the

following

example,

the

nonstatic

member

a

cannot

be

used

as

an

initializer

because

a

does

not

exist

until

an

object

of

class

X

is

constructed.

You

can

use

the

static

member

b

as

an

initializer

because

b

is

created

independently

of

any

objects

of

class

X.

You

can

declare

the

member

b

after

its

use

as

a

default

argument

because

the

default

values

are

not

analyzed

until

after

the

final

bracket

}

of

the

class

declaration.

class

X

{

int

a;

f(int

z

=

a)

;

//

error

g(int

z

=

b)

;

//

valid

static

int

b;

};

Related

References

v

“Default

Arguments

in

C++

Functions”

on

page

150

Function

Return

Values

You

must

return

a

value

from

a

function

unless

the

function

has

a

return

type

of

void.

The

return

value

is

specified

in

a

return

statement.

The

following

code

fragment

shows

a

function

definition,

including

the

return

statement:

int

add(int

i,

int

j)

{

return

i

+

j;

//

return

statement

}

The

function

add()

can

be

called

as

shown

in

the

following

code

fragment:

int

a

=

10,

b

=

20;

int

answer

=

add(a,

b);

//

answer

is

30

In

this

example,

the

return

statement

initializes

a

variable

of

the

returned

type.

The

variable

answer

is

initialized

with

the

int

value

30.

The

type

of

the

returned

expression

is

checked

against

the

returned

type.

All

standard

and

user-defined

conversions

are

performed

as

necessary.

Each

time

a

function

is

called,

new

copies

of

its

variables

with

automatic

storage

are

created.

Because

the

storage

for

these

automatic

variables

may

be

reused

after

the

function

has

terminated,

a

pointer

or

reference

to

an

automatic

variable

should

not

be

returned.

2000C++

If

a

class

object

is

returned,

a

temporary

object

may

be

created

if

the

class

has

copy

constructors

or

a

destructor.

Related

References

v

“return

Statement”

on

page

171

v

“Value

of

a

return

Expression

and

Function

Value”

on

page

172

v

“Temporary

Objects”

on

page

287

Default

Arguments

in

C++

Functions

Chapter

7.

Functions

153

Using

References

as

Return

Types

References

can

also

be

used

as

return

types

for

functions.

The

reference

returns

the

lvalue

of

the

object

to

which

it

refers.

This

allows

you

to

place

function

calls

on

the

left

side

of

assignment

statements.

2000C++

Referenced

return

values

are

used

when

assignment

operators

and

subscripting

operators

are

overloaded

so

that

the

results

of

the

overloaded

operators

can

be

used

as

actual

values.

Note:

Returning

a

reference

to

an

automatic

variable

gives

unpredictable

results.

Allocation

and

Deallocation

Functions

2000C++

You

may

define

your

own

new

operator

or

allocation

function

as

a

class

member

function

or

a

global

namespace

function

with

the

following

restrictions:

v

The

first

parameter

must

be

of

type

std::size_t.

It

cannot

have

a

default

parameter.

v

The

return

type

must

be

of

type

void*.

v

Your

allocation

function

may

be

a

template

function.

Neither

the

first

parameter

nor

the

return

type

may

depend

on

a

template

parameter.

v

If

you

declare

your

allocation

function

with

the

empty

exception

specification

throw(),

your

allocation

function

must

return

a

null

pointer

if

your

function

fails.

Otherwise,

your

function

must

throw

an

exception

of

type

std::bad_alloc

or

a

class

derived

from

std::bad_alloc

if

your

function

fails.

You

may

define

your

own

delete

operator

or

deallocation

function

as

a

class

member

function

or

a

global

namespace

function

with

the

following

restrictions:

v

The

first

parameter

must

be

of

type

void*.

v

The

return

type

must

be

of

type

void.

v

Your

deallocation

function

may

be

a

template

function.

Neither

the

first

parameter

nor

the

return

type

may

depend

on

a

template

parameter.

The

following

example

defines

replacement

functions

for

global

namespace

new

and

delete:

#include

<cstdio>

#include

<cstdlib>

using

namespace

std;

void*

operator

new(size_t

sz)

{

printf("operator

new

with

%d

bytes\n",

sz);

void*

p

=

malloc(sz);

if

(p

==

0)

printf("Memory

error\n");

return

p;

}

void

operator

delete(void*

p)

{

if

(p

==

0)

printf

("Deleting

a

null

pointer\n");

else

{

printf("delete

object\n");

free(p);

}

}

struct

A

{

const

char*

data;

A()

:

data("Text

String")

{

printf("Constructor

of

S\n");

}

~A()

{

printf("Destructor

of

S\n");

}

};

Function

Return

Values

154

ILE

C/C++

Language

Reference

int

main()

{

A*

ap1

=

new

A;

delete

ap1;

printf("Array

of

size

2:\n");

A*

ap2

=

new

A[2];

delete[]

ap2;

}

The

following

is

the

output

of

the

above

example:

operator

new

with

40

bytes

operator

new

with

33

bytes

operator

new

with

4

bytes

Constructor

of

S

Destructor

of

S

delete

object

Array

of

size

2:

operator

new

with

16

bytes

Constructor

of

S

Constructor

of

S

Destructor

of

S

Destructor

of

S

delete

object

Related

References

v

“Free

Store”

on

page

283

Pointers

to

Functions

A

pointer

to

a

function

points

to

the

address

of

the

executable

code

of

the

function.

You

can

use

pointers

to

call

functions

and

to

pass

functions

as

arguments

to

other

functions.

You

cannot

perform

pointer

arithmetic

on

pointers

to

functions.

The

type

of

a

pointer

to

a

function

is

based

on

both

the

return

type

and

parameter

types

of

the

function.

A

declaration

of

a

pointer

to

a

function

must

have

the

pointer

name

in

parentheses.

The

function

call

operator

()

has

a

higher

precedence

than

the

dereference

operator

*.

Without

them,

the

compiler

interprets

the

statement

as

a

function

that

returns

a

pointer

to

a

specified

return

type.

For

example:

int

*f(int

a);

/*

function

f

returning

an

int*

*/

int

(*g)(int

a);

/*

pointer

g

to

a

function

returning

an

int

*/

char

(*h)(int,

int)

/*

h

is

a

function

that

takes

two

integer

parameters

and

returns

char

*/

In

the

first

declaration,

f

is

interpreted

as

a

function

that

takes

an

int

as

argument,

and

returns

a

pointer

to

an

int.

In

the

second

declaration,

g

is

interpreted

as

a

pointer

to

a

function

that

takes

an

int

argument

and

that

returns

an

int.

Related

References

v

“Pointer

Conversions”

on

page

128

Function

Return

Values

Chapter

7.

Functions

155

Inline

Functions

An

inline

function

is

one

for

which

the

compiler

copies

the

code

from

the

function

definition

directly

into

the

code

of

the

calling

function

rather

than

creating

a

separate

set

of

instructions

in

memory.

Instead

of

transferring

control

to

and

from

the

function

code

segment,

a

modified

copy

of

the

function

body

may

be

substituted

directly

for

the

function

call.

In

this

way,

the

performance

overhead

of

a

function

call

is

avoided.

A

function

is

declared

inline

by

using

the

inline

function

specifier

or

by

defining

a

member

function

within

a

class

or

structure

definition.

The

inline

specifier

is

only

a

suggestion

to

the

compiler

that

an

inline

expansion

can

be

performed;

the

compiler

is

free

to

ignore

the

suggestion.

The

following

code

fragment

shows

an

inline

function

definition.

inline

int

add(int

i,

int

j)

{

return

i

+

j;

}

The

use

of

the

inline

specifier

does

not

change

the

meaning

of

the

function.

However,

the

inline

expansion

of

a

function

may

not

preserve

the

order

of

evaluation

of

the

actual

arguments.

Inline

expansion

also

does

not

change

the

linkage

of

a

function:

the

linkage

is

external

by

default.

2000C++

In

C++,

both

member

and

nonmember

functions

can

be

inlined.

Member

functions

that

are

implemented

inside

the

body

of

a

class

declaration

are

implicitly

declared

inline.

Constructors,

copy

constructors,

assignment

operators,

and

destructors

that

are

created

by

the

compiler

are

also

implicitly

declared

inline.

An

inline

function

that

the

compiler

does

not

inline

is

treated

similarly

to

an

ordinary

function:

only

a

single

copy

of

the

function

exists,

regardless

of

the

number

of

translation

units

in

which

it

is

defined.

The

compiler

might

still

choose

not

to

inline

the

extern

inline

function

two,

despite

the

presence

of

the

inline

function

specifier.

Related

References

v

“Member

Functions”

on

page

224

v

“extern

Storage

Class

Specifier”

on

page

31

Inline

Functions

156

ILE

C/C++

Language

Reference

Chapter

8.

Statements

A

statement,

the

smallest

independent

computational

unit,

specifies

an

action

to

be

performed.

In

most

cases,

statements

are

executed

in

sequence.

The

following

is

a

summary

of

the

statements

available

in

C

and

C++:

v

labeled

statements

–

identifier

labels

–

case

labels

–

default

labels
v

expression

statements

v

block

or

compound

statements

v

selection

statements

–

if

statements

–

switch

statements
v

iteration

statements

–

while

statements

–

do

statements

–

for

statements
v

jump

statements

–

break

statements

–

continue

statements

–

return

statements

–

goto

statements
v

declaration

statements

v

2000C++

try

blocks

Labels

There

are

three

kinds

of

labels:

identifier,

case,

and

default.

Identifier

label

statements

have

the

following

form:

��

identifier

:

statement

��

The

label

consists

of

the

identifier

and

the

colon

(:)

character.

2000C

A

label

name

must

be

unique

within

the

function

in

which

it

appears.

2000C++

In

C++,

an

identifier

label

may

only

be

used

as

the

target

of

a

goto

statement.

A

goto

statement

can

use

a

label

before

its

definition.

Identifier

labels

have

their

own

name

space;

you

do

not

have

to

worry

about

identifier

labels

conflicting

with

other

identifiers.

However,

you

may

not

redeclare

a

label

within

a

function.

Case

and

default

label

statements

only

appear

in

switch

statements.

These

labels

are

accessible

only

within

the

closest

enclosing

switch

statement.

Case

statements

have

the

following

form:

��

case

constant_expression

:

statement

��

Default

label

statements

have

the

following

form:

©

Copyright

IBM

Corp.

1998,

2003

157

��

default

:

statement

��

Examples

of

Labels

comment_complete

:

;

/*

null

statement

label

*/

test_for_null

:

if

(NULL

==

pointer)

Related

References

v

“goto

Statement”

on

page

172

v

“switch

Statement”

on

page

162

Expression

Statements

An

expression

statement

contains

an

expression.

The

expression

can

be

null.

An

expression

statement

has

the

form:

��

expression

;

��

An

expression

statement

evaluates

expression,

then

discards

the

value

of

the

expression.

An

expression

statement

without

an

expression

is

a

null

statement.

Examples

of

Expressions

printf("Account

Number:

\n");

/*

call

to

the

printf

*/

marks

=

dollars

*

exch_rate;

/*

assignment

to

marks

*/

(difference

<

0)

?

++losses

:

++gain;

/*

conditional

increment

*/

Related

References

v

Chapter

5,

“Expressions

and

Operators,”

on

page

79

Resolving

Ambiguous

Statements

in

C++

2000C++

The

C++

syntax

does

not

disambiguate

between

expression

statements

and

declaration

statements.

The

ambiguity

arises

when

an

expression

statement

has

a

function-style

cast

as

its

left-most

subexpression.

(Note

that,

because

C

does

not

support

function-style

casts,

this

ambiguity

does

not

occur

in

C

programs.)

If

the

statement

can

be

interpreted

both

as

a

declaration

and

as

an

expression,

the

statement

is

interpreted

as

a

declaration

statement.

Note:

The

ambiguity

is

resolved

only

on

a

syntactic

level.

The

disambiguation

does

not

use

the

meaning

of

the

names,

except

to

assess

whether

or

not

they

are

type

names.

The

following

expressions

disambiguate

into

expression

statements

because

the

ambiguous

subexpression

is

followed

by

an

assignment

or

an

operator.

type_spec

in

the

expressions

can

be

any

type

specifier:

type_spec(i)++;

//

expression

statement

type_spec(i,3)<<d;

//

expression

statement

type_spec(i)->l=24;

//

expression

statement

In

the

following

examples,

the

ambiguity

cannot

be

resolved

syntactically,

and

the

statements

are

interpreted

as

declarations.

type_spec

is

any

type

specifier:

Labels

158

ILE

C/C++

Language

Reference

type_spec(*i)(int);

//

declaration

type_spec(j)[5];

//

declaration

type_spec(m)

=

{

1,

2

};

//

declaration

type_spec(*k)

(float(3));

//

declaration

The

last

statement

above

causes

a

compile-time

error

because

you

cannot

initialize

a

pointer

with

a

float

value.

Any

ambiguous

statement

that

is

not

resolved

by

the

above

rules

is

by

default

a

declaration

statement.

All

of

the

following

are

declaration

statements:

type_spec(a);

//

declaration

type_spec(*b)();

//

declaration

type_spec(c)=23;

//

declaration

type_spec(d),e,f,g=0;

//

declaration

type_spec(h)(e,3);

//

declaration

Related

References

v

Chapter

3,

“Declarations,”

on

page

27

v

Chapter

5,

“Expressions

and

Operators,”

on

page

79

v

“Function

Call

Operator

(

)”

on

page

88

Block

Statement

A

block

statement,

or

compound

statement,

lets

you

group

any

number

of

data

definitions,

declarations,

and

statements

into

one

statement.

All

definitions,

declarations,

and

statements

enclosed

within

a

single

set

of

braces

are

treated

as

a

single

statement.

You

can

use

a

block

wherever

a

single

statement

is

allowed.

A

block

statement

has

the

form:

��

�

�

{

}

type_definition

statement

file_scope_data_declaration

block_scope_data_declaration

��

2000C

At

the

C89

language

level,

definitions

and

declarations

must

precede

any

statements.

2000C++

Declarations

and

definitions

can

appear

anywhere,

mixed

in

with

other

code.

A

block

defines

a

local

scope.

If

a

data

object

is

usable

within

a

block

and

its

identifier

is

not

redefined,

all

nested

blocks

can

use

that

data

object.

Example

of

Blocks

The

following

program

shows

how

the

values

of

data

objects

change

in

nested

blocks:

/**

**

This

example

shows

how

data

objects

change

in

nested

blocks.

**/

#include

<stdio.h>

int

main(void)

{

Expression

Chapter

8.

Statements

159

int

x

=

1;

/*

Initialize

x

to

1

*/

int

y

=

3;

if

(y

>

0)

{

int

x

=

2;

/*

Initialize

x

to

2

*/

printf("second

x

=

%4d\n",

x);

}

printf("first

x

=

%4d\n",

x);

return(0);

}

The

program

produces

the

following

output:

second

x

=

2

first

x

=

1

Two

variables

named

x

are

defined

in

main.

The

first

definition

of

x

retains

storage

while

main

is

running.

However,

because

the

second

definition

of

x

occurs

within

a

nested

block,

printf("second

x

=

%4d\n",

x);

recognizes

x

as

the

variable

defined

on

the

previous

line.

Because

printf("first

x

=

%4d\n",

x);

is

not

part

of

the

nested

block,

x

is

recognized

as

the

first

definition

of

x.

if

Statement

An

if

statement

is

a

selection

statement

that

allows

more

than

one

possible

flow

of

control.

2000C++

An

if

statement

lets

you

conditionally

process

a

statement

when

the

specified

test

expression,

implicitly

converted

to

bool,

evaluates

to

true.

If

the

implicit

conversion

to

bool

fails

the

program

is

ill-formed.

2000C

In

C,

an

if

statement

lets

you

conditionally

process

a

statement

when

the

specified

test

expression

evaluates

to

a

nonzero

value.

The

test

expression

must

be

of

arithmetic

or

pointer

type.

You

can

optionally

specify

an

else

clause

on

the

if

statement.

If

the

test

expression

evaluates

to

false

(or

in

C,

a

zero

value)

and

an

else

clause

exists,

the

statement

associated

with

the

else

clause

runs.

If

the

test

expression

evaluates

to

true,

the

statement

following

the

expression

runs

and

the

else

clause

is

ignored.

An

if

statement

has

the

form:

��

if

(

expression

)

statement

else

statement

��

When

if

statements

are

nested

and

else

clauses

are

present,

a

given

else

is

associated

with

the

closest

preceding

if

statement

within

the

same

block.

A

single

statement

following

any

selection

statements

(if,

switch)

is

treated

as

a

compound

statement

containing

the

original

statement.

As

a

result

any

variables

declared

on

that

statement

will

be

out

of

scope

after

the

if

statement.

For

example:

if

(x)

int

i;

is

equivalent

to:

Block

Statement

160

ILE

C/C++

Language

Reference

if

(x)

{

int

i;

}

Variable

i

is

visible

only

within

the

if

statement.

The

same

rule

applies

to

the

else

part

of

the

if

statement.

Examples

of

if

Statements

The

following

example

causes

grade

to

receive

the

value

A

if

the

value

of

score

is

greater

than

or

equal

to

90.

if

(score

>=

90)

grade

=

’A’;

The

following

example

displays

Number

is

positive

if

the

value

of

number

is

greater

than

or

equal

to

0.

If

the

value

of

number

is

less

than

0,

it

displays

Number

is

negative.

if

(number

>=

0)

printf("Number

is

positive\n");

else

printf("Number

is

negative\n");

The

following

example

shows

a

nested

if

statement:

if

(paygrade

==

7)

if

(level

>=

0

&&

level

<=

8)

salary

*=

1.05;

else

salary

*=

1.04;

else

salary

*=

1.06;

cout

<<

"salary

is

"

<<

salary

<<

endl;

The

following

example

shows

a

nested

if

statement

that

does

not

have

an

else

clause.

Because

an

else

clause

always

associates

with

the

closest

if

statement,

braces

might

be

needed

to

force

a

particular

else

clause

to

associate

with

the

correct

if

statement.

In

this

example,

omitting

the

braces

would

cause

the

else

clause

to

associate

with

the

nested

if

statement.

if

(kegs

>

0)

{

if

(furlongs

>

kegs)

fpk

=

furlongs/kegs;

}

else

fpk

=

0;

The

following

example

shows

an

if

statement

nested

within

an

else

clause.

This

example

tests

multiple

conditions.

The

tests

are

made

in

order

of

their

appearance.

If

one

test

evaluates

to

a

nonzero

value,

a

statement

runs

and

the

entire

if

statement

ends.

if

(value

>

0)

++increase;

else

if

(value

==

0)

++break_even;

else

++decrease;

if

Statement

Chapter

8.

Statements

161

switch

Statement

A

switch

statement

is

a

selection

statement

that

lets

you

transfer

control

to

different

statements

within

the

switch

body

depending

on

the

value

of

the

switch

expression.

The

switch

expression

must

evaluate

to

an

integral

or

enumeration

value.

The

body

of

the

switch

statement

contains

case

clauses

that

consist

of

v

A

case

label

v

An

optional

default

label

v

A

case

expression

v

A

list

of

statements.

If

the

value

of

the

switch

expression

equals

the

value

of

one

of

the

case

expressions,

the

statements

following

that

case

expression

are

processed.

If

not,

the

default

label

statements,

if

any,

are

processed.

A

switch

statement

has

the

form:

��

switch

(

expression

)

switch_body

��

The

switch

body

is

enclosed

in

braces

and

can

contain

definitions,

declarations,

case

clauses,

and

a

default

clause.

Each

case

clause

and

default

clause

can

contain

statements.

��

{

�

type_definition

file_scope_data_declaration

block_scope_data_declaration

�

case_clause

�

�

default_clause

�

case_clause

}

��

Note:

An

initializer

within

a

type_definition,

file_scope_data_declaration

or

block_scope_data_declaration

is

ignored.

A

case

clause

contains

a

case

label

followed

by

any

number

of

statements.

A

case

clause

has

the

form:

��

case_label

�

statement

��

A

case

label

contains

the

word

case

followed

by

an

integral

constant

expression

and

a

colon.

The

value

of

each

integral

constant

expression

must

represent

a

different

value;

you

cannot

have

duplicate

case

labels.

Anywhere

you

can

put

one

case

label,

you

can

put

multiple

case

labels.

A

case

label

has

the

form:

��

�

case

integral_constant_expression

:

��

switch

Statement

162

ILE

C/C++

Language

Reference

A

default

clause

contains

a

default

label

followed

by

one

or

more

statements.

You

can

put

a

case

label

on

either

side

of

the

default

label.

A

switch

statement

can

have

only

one

default

label.

A

default_clause

has

the

form:

��

case_label

default

:

case_label

�

statement

��

The

switch

statement

passes

control

to

the

statement

following

one

of

the

labels

or

to

the

statement

following

the

switch

body.

The

value

of

the

expression

that

precedes

the

switch

body

determines

which

statement

receives

control.

This

expression

is

called

the

switch

expression.

The

value

of

the

switch

expression

is

compared

with

the

value

of

the

expression

in

each

case

label.

If

a

matching

value

is

found,

control

is

passed

to

the

statement

following

the

case

label

that

contains

the

matching

value.

If

there

is

no

matching

value

but

there

is

a

default

label

in

the

switch

body,

control

passes

to

the

default

labelled

statement.

If

no

matching

value

is

found,

and

there

is

no

default

label

anywhere

in

the

switch

body,

no

part

of

the

switch

body

is

processed.

When

control

passes

to

a

statement

in

the

switch

body,

control

only

leaves

the

switch

body

when

a

break

statement

is

encountered

or

the

last

statement

in

the

switch

body

is

processed.

If

necessary,

an

integral

promotion

is

performed

on

the

controlling

expression,

and

all

expressions

in

the

case

statements

are

converted

to

the

same

type

as

the

controlling

expression.

The

switch

expression

can

also

be

of

class

type

if

there

is

a

single

conversion

to

integral

or

enumeration

type.

Restrictions

and

Limitations

You

can

put

data

definitions

at

the

beginning

of

the

switch

body,

but

the

compiler

does

not

initialize

auto

and

register

variables

at

the

beginning

of

a

switch

body.

You

can

have

declarations

in

the

body

of

the

switch

statement.

You

cannot

use

a

switch

statement

to

jump

over

initializations.

2000C++

In

C++,

you

cannot

transfer

control

over

a

declaration

containing

an

explicit

or

implicit

initializer

unless

the

declaration

is

located

in

an

inner

block

that

is

completely

bypassed

by

the

transfer

of

control.

All

declarations

within

the

body

of

a

switch

statement

that

contain

initializers

must

be

contained

in

an

inner

block.

Examples

of

switch

Statements

The

following

switch

statement

contains

several

case

clauses

and

one

default

clause.

Each

clause

contains

a

function

call

and

a

break

statement.

The

break

statements

prevent

control

from

passing

down

through

each

statement

in

the

switch

body.

If

the

switch

expression

evaluated

to

’/’,

the

switch

statement

would

call

the

function

divide.

Control

would

then

pass

to

the

statement

following

the

switch

body.

switch

Statement

Chapter

8.

Statements

163

char

key;

printf("Enter

an

arithmetic

operator\n");

scanf("%c",&key);

switch

(key)

{

case

’+’:

add();

break;

case

’-’:

subtract();

break;

case

’*’:

multiply();

break;

case

’/’:

divide();

break;

default:

printf("invalid

key\n");

break;

}

If

the

switch

expression

matches

a

case

expression,

the

statements

following

the

case

expression

are

processed

until

a

break

statement

is

encountered

or

the

end

of

the

switch

body

is

reached.

In

the

following

example,

break

statements

are

not

present.

If

the

value

of

text[i]

is

equal

to

’A’,

all

three

counters

are

incremented.

If

the

value

of

text[i]

is

equal

to

’a’,

lettera

and

total

are

increased.

Only

total

is

increased

if

text[i]

is

not

equal

to

’A’

or

’a’.

char

text[100];

int

capa,

lettera,

total;

//

...

for

(i=0;

i<sizeof(text);

i++)

{

switch

(text[i])

{

case

’A’:

capa++;

case

’a’:

lettera++;

default:

total++;

}

}

The

following

switch

statement

performs

the

same

statements

for

more

than

one

case

label:

/**

**

This

example

contains

a

switch

statement

that

performs

**

the

same

statement

for

more

than

one

case

label.

**/

#include

<stdio.h>

int

main(void)

{

int

month;

switch

Statement

164

ILE

C/C++

Language

Reference

/*

Read

in

a

month

value

*/

printf("Enter

month:

");

scanf("%d",

&month);

/*

Tell

what

season

it

falls

into

*/

switch

(month)

{

case

12:

case

1:

case

2:

printf("month

%d

is

a

winter

month\n",

month);

break;

case

3:

case

4:

case

5:

printf("month

%d

is

a

spring

month\n",

month);

break;

case

6:

case

7:

case

8:

printf("month

%d

is

a

summer

month\n",

month);

break;

case

9:

case

10:

case

11:

printf("month

%d

is

a

fall

month\n",

month);

break;

case

66:

case

99:

default:

printf("month

%d

is

not

a

valid

month\n",

month);

}

return(0);

}

If

the

expression

month

has

the

value

3,

control

passes

to

the

statement:

printf("month

%d

is

a

spring

month\n",

month);

The

break

statement

passes

control

to

the

statement

following

the

switch

body.

while

Statement

A

while

statement

repeatedly

runs

the

body

of

a

loop

until

the

controlling

expression

evaluates

to

false

(or

0

in

C).

A

while

statement

has

the

form:

��

while

(

expression

)

statement

��

2000C

The

expression

must

be

of

arithmetic

or

pointer

type.

The

expression

is

evaluated

to

determine

whether

or

not

to

process

the

body

of

the

loop.

switch

Statement

Chapter

8.

Statements

165

2000C++ The

expression

must

be

convertible

to

bool.

If

the

expression

evaluates

to

false,

the

body

of

the

loop

never

runs.

If

the

expression

does

not

evaluate

to

false,

the

loop

body

is

processed.

After

the

body

has

run,

control

passes

back

to

the

expression.

Further

processing

depends

on

the

value

of

the

condition.

A

break,

return,

or

goto

statement

can

cause

a

while

statement

to

end,

even

when

the

condition

does

not

evaluate

to

false.

2000C++

A

throw

expression

also

can

cause

a

while

statement

to

end

prior

to

the

condition

being

evaluated.

Example

of

while

Statements

In

the

following

program,

item[index]

triples

and

is

printed

out,

as

long

as

the

value

of

the

expression

++index

is

less

than

MAX_INDEX.

When

++index

evaluates

to

MAX_INDEX,

the

while

statement

ends.

/**

**

This

example

illustrates

the

while

statement.

**/

#define

MAX_INDEX

(sizeof(item)

/

sizeof(item[0]))

#include

<stdio.h>

int

main(void)

{

static

int

item[

]

=

{

12,

55,

62,

85,

102

};

int

index

=

0;

while

(index

<

MAX_INDEX)

{

item[index]

*=

3;

printf("item[%d]

=

%d\n",

index,

item[index]);

++index;

}

return(0);

}

do

Statement

A

do

statement

repeatedly

runs

a

statement

until

the

test

expression

evaluates

to

false

(or

0

in

C).

Because

of

the

order

of

processing,

the

statement

is

run

at

least

once.

A

do

statement

has

the

form:

��

do

statement

while

(

expression

)

;

��

2000C++

The

controlling

expression

must

convertible

to

type

bool.

2000C

The

expression

must

be

of

arithmetic

or

pointer

type.

The

body

of

the

loop

is

run

before

the

controlling

while

clause

is

evaluated.

Further

processing

of

the

do

statement

depends

on

the

value

of

the

while

clause.

If

while

Statement

166

ILE

C/C++

Language

Reference

the

while

clause

does

not

evaluate

to

false,

the

statement

runs

again.

When

the

while

clause

evaluates

to

false,

the

statement

ends.

A

break,

return,

or

goto

statement

can

cause

the

processing

of

a

do

statement

to

end,

even

when

the

while

clause

does

not

evaluate

to

false.

2000C++

A

throw

expression

also

can

cause

a

while

statement

to

end

prior

to

the

condition

being

evaluated.

Example

of

do

Statements

The

following

example

keeps

incrementing

i

while

i

is

less

than

5:

#include

<stdio.h>

int

main(void)

{

int

i

=

0;

do

{

i++;

printf("Value

of

i:

%d\n",

i);

}

while

(i

<

5);

return

0;

}

The

following

is

the

output

of

the

above

example:

Value

of

i:

1

Value

of

i:

2

Value

of

i:

3

Value

of

i:

4

Value

of

i:

5

for

Statement

A

for

statement

lets

you

do

the

following:

v

Evaluate

an

expression

before

the

first

iteration

of

the

statement

(initialization)

v

Specify

an

expression

to

determine

whether

or

not

the

statement

should

be

processed

(the

condition)

v

Evaluate

an

expression

after

each

iteration

of

the

statement

(often

used

to

increment

for

each

iteration)

v

Repeatedly

process

the

statement

if

the

controlling

part

does

not

evaluate

to

false

(or

0

in

C).

A

for

statement

has

the

form:

��

for

(

;

;

)

expression1

expression2

expression3

�

�

statement

��

expression1

Is

the

initialization

expression.

It

is

evaluated

only

before

the

statement

is

processed

for

the

first

time.

You

can

use

this

expression

to

initialize

a

variable.

If

you

do

not

want

to

evaluate

an

expression

prior

to

the

first

iteration

of

the

statement,

you

can

omit

this

expression.

expression2

Is

the

conditional

expression.

It

is

evaluated

before

each

iteration

of

the

statement.

do

Statement

Chapter

8.

Statements

167

2000C It

must

evaluate

to

an

arithmetic

or

pointer

type.

If

it

evaluates

to

false

(or

0

in

C),

the

statement

is

not

processed

and

control

moves

to

the

next

statement

following

the

for

statement.

If

expression2

does

not

evaluate

to

false,

the

statement

is

processed.

If

you

omit

expression2,

it

is

as

if

the

expression

had

been

replaced

by

true,

and

the

for

statement

is

not

terminated

by

failure

of

this

condition.

expression3

Is

evaluated

after

each

iteration

of

the

statement.

This

expression

is

often

used

for

incrementing,

decrementing,

or

assigning

to

a

variable.

This

expression

is

optional.

A

break,

return,

or

goto

statement

can

cause

a

for

statement

to

end,

even

when

the

second

expression

does

not

evaluate

to

false.

If

you

omit

expression2,

you

must

use

a

break,

return,

or

goto

statement

to

end

the

for

statement.

2000C++

In

C++

programs,

you

can

also

use

expression1

to

declare

a

variable

as

well

as

initialize

it.

If

you

declare

a

variable

in

this

expression,

or

anywhere

else

in

statement,

that

variable

goes

out

of

scope

at

the

end

of

the

for

loop.

Examples

of

for

Statements

The

following

for

statement

prints

the

value

of

count

20

times.

The

for

statement

initially

sets

the

value

of

count

to

1.

After

each

iteration

of

the

statement,

count

is

incremented.

int

count;

for

(count

=

1;

count

<=

20;

count++)

printf("count

=

%d\n",

count);

The

following

sequence

of

statements

accomplishes

the

same

task.

Note

the

use

of

the

while

statement

instead

of

the

for

statement.

int

count

=

1;

while

(count

<=

20)

{

printf("count

=

%d\n",

count);

count++;

}

The

following

for

statement

does

not

contain

an

initialization

expression:

for

(;

index

>

10;

--index)

{

list[index]

=

var1

+

var2;

printf("list[%d]

=

%d\n",

index,

list[index]);

}

The

following

for

statement

will

continue

running

until

scanf

receives

the

letter

e:

for

(;;)

{

scanf("%c",

&letter);

if

(letter

==

’\n’)

continue;

if

(letter

==

’e’)

break;

printf("You

entered

the

letter

%c\n",

letter);

}

for

Statement

168

ILE

C/C++

Language

Reference

The

following

for

statement

contains

multiple

initializations

and

increments.

The

comma

operator

makes

this

construction

possible.

The

first

comma

in

the

for

expression

is

a

punctuator

for

a

declaration.

It

declares

and

initializes

two

integers,

i

and

j.

The

second

comma,

a

comma

operator,

allows

both

i

and

j

to

be

incremented

at

each

step

through

the

loop.

for

(int

i

=

0,

j

=

50;

i

<

10;

++i,

j

+=

50)

{

cout

<<

"i

=

"

<<

i

<<

"and

j

=

"

<<

j

<<

endl;

}

The

following

example

shows

a

nested

for

statement.

It

prints

the

values

of

an

array

having

the

dimensions

[5][3].

for

(row

=

0;

row

<

5;

row++)

for

(column

=

0;

column

<

3;

column++)

printf("%d\n",

table[row][column]);

The

outer

statement

is

processed

as

long

as

the

value

of

row

is

less

than

5.

Each

time

the

outer

for

statement

is

executed,

the

inner

for

statement

sets

the

initial

value

of

column

to

zero

and

the

statement

of

the

inner

for

statement

is

executed

3

times.

The

inner

statement

is

executed

as

long

as

the

value

of

column

is

less

than

3.

break

Statement

A

break

statement

lets

you

end

an

iterative

(do,

for,

or

while)

statement

or

a

switch

statement

and

exit

from

it

at

any

point

other

than

the

logical

end.

A

break

may

only

appear

on

one

of

these

statements.

A

break

statement

has

the

form:

��

break

;

��

In

an

iterative

statement,

the

break

statement

ends

the

loop

and

moves

control

to

the

next

statement

outside

the

loop.

Within

nested

statements,

the

break

statement

ends

only

the

smallest

enclosing

do,

for,

switch,

or

while

statement.

In

a

switch

statement,

the

break

passes

control

out

of

the

switch

body

to

the

next

statement

outside

the

switch

statement.

continue

Statement

A

continue

statement

ends

the

current

iteration

of

a

loop.

Program

control

is

passed

from

the

continue

statement

to

the

end

of

the

loop

body.

A

continue

statement

has

the

form:

��

continue

;

��

A

continue

statement

can

only

appear

within

the

body

of

an

iterative

statement.

The

continue

statement

ends

the

processing

of

the

action

part

of

an

iterative

(do,

for,

or

while)

statement

and

moves

control

to

the

loop

continuation

portion

of

the

statement.

For

example,

if

the

iterative

statement

is

a

for

statement,

control

moves

for

Statement

Chapter

8.

Statements

169

to

the

third

expression

in

the

condition

part

of

the

statement,

then

to

the

second

expression

(the

test)

in

the

condition

part

of

the

statement.

Within

nested

statements,

the

continue

statement

ends

only

the

current

iteration

of

the

do,

for,

or

while

statement

immediately

enclosing

it.

Examples

of

continue

Statements

The

following

example

shows

a

continue

statement

in

a

for

statement.

The

continue

statement

causes

processing

to

skip

over

those

elements

of

the

array

rates

that

have

values

less

than

or

equal

to

1.

/**

**

This

example

shows

a

continue

statement

in

a

for

statement.

**/

#include

<stdio.h>

#define

SIZE

5

int

main(void)

{

int

i;

static

float

rates[SIZE]

=

{

1.45,

0.05,

1.88,

2.00,

0.75

};

printf("Rates

over

1.00\n");

for

(i

=

0;

i

<

SIZE;

i++)

{

if

(rates[i]

<=

1.00)

/*

skip

rates

<=

1.00

*/

continue;

printf("rate

=

%.2f\n",

rates[i]);

}

return(0);

}

The

program

produces

the

following

output:

Rates

over

1.00

rate

=

1.45

rate

=

1.88

rate

=

2.00

The

following

example

shows

a

continue

statement

in

a

nested

loop.

When

the

inner

loop

encounters

a

number

in

the

array

strings,

that

iteration

of

the

loop

ends.

Processing

continues

with

the

third

expression

of

the

inner

loop.

The

inner

loop

ends

when

the

’\0’

escape

sequence

is

encountered.

/**

**

This

program

counts

the

characters

in

strings

that

are

part

**

of

an

array

of

pointers

to

characters.

The

count

excludes

**

the

digits

0

through

9.

**/

#include

<stdio.h>

#define

SIZE

3

int

main(void)

{

static

char

*strings[SIZE]

=

{

"ab",

"c5d",

"e5"

};

int

i;

int

letter_count

=

0;

char

*pointer;

for

(i

=

0;

i

<

SIZE;

i++)

/*

for

each

string

*/

/*

for

each

each

character

*/

for

(pointer

=

strings[i];

*pointer

!=

’\0’;

continue

Statement

170

ILE

C/C++

Language

Reference

++pointer)

{

/*

if

a

number

*/

if

(*pointer

>=

’0’

&&

*pointer

<=

’9’)

continue;

letter_count++;

}

printf("letter

count

=

%d\n",

letter_count);

return(0);

}

The

program

produces

the

following

output:

letter

count

=

5

return

Statement

A

return

statement

ends

the

processing

of

the

current

function

and

returns

control

to

the

caller

of

the

function.

A

return

statement

has

one

of

two

forms:

��

return

expression

;

��

A

value-returning

function

must

include

an

expression

in

the

return

statement.

A

function

with

a

return

type

is

void

cannot

contain

an

expression

in

its

return

statement.

For

a

function

of

return

type

void,

a

return

statement

is

not

strictly

necessary.

If

the

end

of

such

a

function

is

reached

without

encountering

a

return

statement,

control

is

passed

to

the

caller

as

if

a

return

statement

without

an

expression

were

encountered.

In

other

words,

an

implicit

return

takes

place

upon

completion

of

the

final

statement,

and

control

automatically

returns

to

the

calling

function.

A

function

can

contain

multiple

return

statements.

For

example:

void

copy(

int

*a,

int

*b,

int

c)

{

/*

Copy

array

a

into

b,

assuming

both

arrays

are

the

same

size

*/

if

(!a

||

!b)

/*

if

either

pointer

is

0,

return

*/

return;

if

(a

==

b)

/*

if

both

parameters

refer

*/

return;

/*

to

same

array,

return

*/

if

(c

==

0)

/*

nothing

to

copy

*/

return;

for

(int

i

=

0;

i

<

c;

++i;)

/*

do

the

copying

*/

b[i]

=

a[1];

/*

implicit

return

*/

}

In

this

example,

the

return

statement

is

used

to

cause

a

premature

termination

of

the

function,

similar

to

a

break

statement.

An

expression

appearing

in

a

return

statement

is

converted

to

the

return

type

of

the

function

in

which

the

statement

appears.

If

no

implicit

conversion

is

possible,

the

return

statement

is

invalid.

continue

Statement

Chapter

8.

Statements

171

Value

of

a

return

Expression

and

Function

Value

If

an

expression

is

present

on

a

return

statement,

the

value

of

the

expression

is

returned

to

the

caller.

If

the

data

type

of

the

expression

is

different

from

the

function

return

type,

conversion

of

the

return

value

takes

place

as

if

the

value

of

the

expression

were

assigned

to

an

object

with

the

same

function

return

type.

The

value

of

the

return

statement

for

a

function

of

return

type

void

means

that

the

function

does

not

return

a

value.

If

an

expression

is

not

given

on

a

return

statement

in

a

function

declared

with

a

non-void

return

type,

the

complier

issues

an

error

message.

You

cannot

use

a

return

statement

with

an

expression

when

the

function

is

declared

as

returning

type

void.

Examples

of

return

Statements

return;

/*

Returns

no

value

*/

return

result;

/*

Returns

the

value

of

result

*/

return

1;

/*

Returns

the

value

1

*/

return

(x

*

x);

/*

Returns

the

value

of

x

*

x

*/

The

following

function

searches

through

an

array

of

integers

to

determine

if

a

match

exists

for

the

variable

number.

If

a

match

exists,

the

function

match

returns

the

value

of

i.

If

a

match

does

not

exist,

the

function

match

returns

the

value

-1

(negative

one).

int

match(int

number,

int

array[

],

int

n)

{

int

i;

for

(i

=

0;

i

<

n;

i++)

if

(number

==

array[i])

return

(i);

return(-1);

}

goto

Statement

A

goto

statement

causes

your

program

to

unconditionally

transfer

control

to

the

statement

associated

with

the

label

specified

on

the

goto

statement.

A

goto

statement

has

the

form:

��

goto

label_identifier

;

��

Because

the

goto

statement

can

interfere

with

the

normal

sequence

of

processing,

it

makes

a

program

more

difficult

to

read

and

maintain.

Often,

a

break

statement,

a

continue

statement,

or

a

function

call

can

eliminate

the

need

for

a

goto

statement.

If

an

active

block

is

exited

using

a

goto

statement,

any

local

variables

are

destroyed

when

control

is

transferred

from

that

block.

You

cannot

use

a

goto

statement

to

jump

over

initializations.

Example

of

goto

Statements

The

following

example

shows

a

goto

statement

that

is

used

to

jump

out

of

a

nested

loop.

This

function

could

be

written

without

using

a

goto

statement.

return

Statement

172

ILE

C/C++

Language

Reference

/**

**

This

example

shows

a

goto

statement

that

is

used

to

**

jump

out

of

a

nested

loop.

**/

#include

<stdio.h>

void

display(int

matrix[3][3]);

int

main(void)

{

int

matrix[3][3]=

{1,2,3,4,5,2,8,9,10};

display(matrix);

return(0);

}

void

display(int

matrix[3][3])

{

int

i,

j;

for

(i

=

0;

i

<

3;

i++)

for

(j

=

0;

j

<

3;

j++)

{

if

(

(matrix[i][j]

<

1)

||

(matrix[i][j]

>

6)

)

goto

out_of_bounds;

printf("matrix[%d][%d]

=

%d\n",

i,

j,

matrix[i][j]);

}

return;

out_of_bounds:

printf("number

must

be

1

through

6\n");

}

Null

Statement

The

null

statement

performs

no

operation.

It

has

the

form:

��

;

��

A

null

statement

can

hold

the

label

of

a

labeled

statement

or

complete

the

syntax

of

an

iterative

statement.

Examples

of

Null

Statements

The

following

example

initializes

the

elements

of

the

array

price.

Because

the

initializations

occur

within

the

for

expressions,

a

statement

is

only

needed

to

finish

the

for

syntax;

no

operations

are

required.

for

(i

=

0;

i

<

3;

price[i++]

=

0)

;

A

null

statement

can

be

used

when

a

label

is

needed

before

the

end

of

a

block

statement.

For

example:

void

func(void)

{

if

(error_detected)

goto

depart;

/*

further

processing

*/

depart:

;

/*

null

statement

required

*/

}

goto

Statement

Chapter

8.

Statements

173

Null

Statements

174

ILE

C/C++

Language

Reference

Chapter

9.

Preprocessor

Directives

A

preprocessor

directive

is

a

line

in

a

source

file

that

begins

with

the

character

#

to

distinguish

it

from

lines

of

source

program

text

and

that

ends

with

the

newline

character.

The

effect

of

a

preprocessor

directive

is

a

change

to

the

text

of

the

source

code

before

other

translation,

and

the

result

is

new

source

code

that

does

not

contain

the

directives.

The

preprocessed

source

code

must

be

a

valid

C

or

C++

program,

because

it

becomes

the

input

to

the

compiler.

The

syntax

of

a

preprocessor

directive

is

independent

of

but

similar

to

the

syntax

of

the

rest

of

the

language,

and

the

lexical

conventions

of

the

preprocessing

phase

differ

from

those

of

the

compiler.

The

normal

C

and

C++

tokens

are

preprocessed,

as

well

as

other

characters

that

enable

the

recognition

of

file

names,

the

presence

and

absence

of

white

space,

and

the

location

of

end-of-line

markers.

Preprocessor

directives

and

the

related

subject

of

macro

expansion

are

discussed

in

this

section.

After

an

overview

of

preprocessor

directives,

the

topics

covered

include

textual

macros,

file

inclusion,

ISO

standard

and

predefined

macro

names,

conditional

compilation

directives,

and

pragmas.

Preprocessor

Overview

Preprocessing

is

a

preliminary

operation

on

C

and

C++

files

before

they

are

passed

to

the

compiler.

It

allows

you

to

do

the

following:

v

Replace

tokens

in

the

current

file

with

specified

replacement

tokens

v

Imbed

files

within

the

current

file

v

Conditionally

compile

sections

of

the

current

file

v

Generate

diagnostic

messages

v

Change

the

line

number

of

the

next

line

of

source

and

change

the

file

name

of

the

current

file

v

Apply

machine-specific

rules

to

specified

sections

of

code

A

token

is

a

series

of

characters

delimited

by

white

space.

The

only

white

space

allowed

on

a

preprocessor

directive

is

the

space,

horizontal

tab,

vertical

tab,

form

feed,

and

comments.

The

new-line

character

can

also

separate

preprocessor

tokens.

The

preprocessed

source

program

file

must

be

a

valid

C

or

C++

program.

The

preprocessor

is

controlled

by

the

following

directives:

#define

Defines

a

macro.

#undef

Removes

a

preprocessor

macro

definition.

#error

Defines

text

for

a

compile-time

error

message.

#include

Inserts

text

from

another

source

file.

#if

Conditionally

suppresses

portions

of

source

code,

depending

on

the

result

of

a

constant

expression.

#ifdef

Conditionally

includes

source

text

if

a

macro

name

is

defined.

#ifndef

Conditionally

includes

source

text

if

a

macro

name

is

not

defined.

#else

Conditionally

includes

source

text

if

the

previous

#if,

#ifdef,

#ifndef,

or

#elif

test

fails.

#elif

Conditionally

includes

source

text

if

the

previous

#if,

#ifdef,

#ifndef,

or

#elif

test

fails,

depending

on

the

value

of

a

constant

expression.

#endif

Ends

conditional

text.

©

Copyright

IBM

Corp.

1998,

2003

175

#line

Supplies

a

line

number

for

compiler

messages.

#pragma

Specifies

implementation-defined

instructions

to

the

compiler.

Preprocessor

Directive

Format

Preprocessor

directives

begin

with

the

#

token

followed

by

a

preprocessor

keyword.

The

#

token

must

appear

as

the

first

character

that

is

not

white

space

on

a

line.

The

#

is

not

part

of

the

directive

name

and

can

be

separated

from

the

name

with

white

spaces.

A

preprocessor

directive

ends

at

the

new-line

character

unless

the

last

character

of

the

line

is

the

\

(backslash)

character.

If

the

\

character

appears

as

the

last

character

in

the

preprocessor

line,

the

preprocessor

interprets

the

\

and

the

new-line

character

as

a

continuation

marker.

The

preprocessor

deletes

the

\

(and

the

following

new-line

character)

and

splices

the

physical

source

lines

into

continuous

logical

lines.

White

space

is

allowed

between

backslash

and

the

end

of

line

character

or

the

physical

end

of

record.

However,this

white

space

is

usually

not

visible

during

editing.

Except

for

some

#pragma

directives,

preprocessor

directives

can

appear

anywhere

in

a

program.

Macro

Definition

and

Expansion

(#define)

A

preprocessor

define

directive

directs

the

preprocessor

to

replace

all

subsequent

occurrences

of

a

macro

with

specified

replacement

tokens.

A

preprocessor

#define

directive

has

the

form:

��

#

define

identifier

�

,

(

)

identifier

�

identifier

character

��

The

#define

directive

can

contain

an

object-like

definition

or

a

function-like

definition.

#define

versus

const

v

The

#define

directive

can

be

used

to

create

a

name

for

a

numerical,

character,

or

string

constant,

whereas

a

const

object

of

any

type

can

be

declared.

v

A

const

object

is

subject

to

the

scoping

rules

for

variables,

whereas

a

constant

created

using

#define

is

not.

v

Unlike

a

const

object,

the

value

of

a

macro

does

not

appear

in

the

intermediate

source

code

used

by

the

compiler

because

they

are

expanded

inline.

The

inline

expansion

makes

the

macro

value

unavailable

to

the

debugger.

v

A

macro

can

be

used

in

a

constant

expression,

such

as

an

array

bound,

whereas

a

const

object

cannot.

v

2000C++

The

compiler

does

not

type-check

a

macro,

including

macro

arguments.

Related

References

v

“Object-Like

Macros”

on

page

177

Preprocessor

Overview

176

ILE

C/C++

Language

Reference

v

“Function-Like

Macros”

v

“The

const

Type

Qualifier”

on

page

59

Object-Like

Macros

An

object-like

macro

definition

replaces

a

single

identifier

with

the

specified

replacement

tokens.

The

following

object-like

definition

causes

the

preprocessor

to

replace

all

subsequent

instances

of

the

identifier

COUNT

with

the

constant

1000

:

#define

COUNT

1000

If

the

statement

int

arry[COUNT];

appears

after

this

definition

and

in

the

same

file

as

the

definition,

the

preprocessor

would

change

the

statement

to

int

arry[1000];

in

the

output

of

the

preprocessor.

Other

definitions

can

make

reference

to

the

identifier

COUNT:

#define

MAX_COUNT

COUNT

+

100

The

preprocessor

replaces

each

subsequent

occurrence

of

MAX_COUNT

with

COUNT

+

100,

which

the

preprocessor

then

replaces

with

1000

+

100.

If

a

number

that

is

partially

built

by

a

macro

expansion

is

produced,

the

preprocessor

does

not

consider

the

result

to

be

a

single

value.

For

example,

the

following

will

not

result

in

the

value

10.2

but

in

a

syntax

error.

#define

a

10

a.2

Identifiers

that

are

partially

built

from

a

macro

expansion

may

not

be

produced.

Therefore,

the

following

example

contains

two

identifiers

and

results

in

a

syntax

error:

#define

d

efg

abcd

Function-Like

Macros

More

complex

than

object-like

macros,

a

function-like

macro

definition

declares

the

names

of

formal

parameters

within

parentheses,

separated

by

commas.

An

empty

formal

parameter

list

is

legal:

such

a

macro

can

be

used

to

simulate

a

function

that

takes

no

arguments.

Function-like

macro

definition:

An

identifier

followed

by

a

parameter

list

in

parentheses

and

the

replacement

tokens.

The

parameters

are

imbedded

in

the

replacement

code.

White

space

cannot

separate

the

identifier

(which

is

the

name

of

the

macro)

and

the

left

parenthesis

of

the

parameter

list.

A

comma

must

separate

each

parameter.

For

portability,

you

should

not

have

more

than

31

parameters

for

a

macro.

The

parameter

list

may

end

with

an

ellipsis

(...).

In

this

case,

the

identifier

__VA_ARGS__

may

appear

in

the

replacement

list.

Function-like

macro

invocation:

An

identifier

followed

by

a

comma-separated

list

of

arguments

in

parentheses.

The

number

of

arguments

should

match

the

number

of

#define

Chapter

9.

Preprocessor

Directives

177

parameters

in

the

macro

definition,

unless

the

parameter

list

in

the

definition

ends

with

an

ellipsis.

In

this

latter

case,

the

number

of

arguments

in

the

invocation

should

exceed

the

number

of

parameters

in

the

definition.

The

excess

are

called

trailing

arguments.

Once

the

preprocessor

identifies

a

function-like

macro

invocation,

argument

substitution

takes

place.

A

parameter

in

the

replacement

code

is

replaced

by

the

corresponding

argument.

If

trailing

arguments

are

permitted

by

the

macro

definition,

they

are

merged

with

the

intervening

commas

to

replace

the

identifier

__VA_ARGS__,

as

if

they

were

a

single

argument.

Any

macro

invocations

contained

in

the

argument

itself

are

completely

replaced

before

the

argument

replaces

its

corresponding

parameter

in

the

replacement

code.

This

language

feature

is

an

orthogonal

extension

of

C++.

If

the

identifier

list

does

not

end

with

an

ellipsis,

the

number

of

arguments

in

a

macro

invocation

must

be

the

same

as

the

number

of

parameters

in

the

corresponding

macro

definition.

During

parameter

substitution,

any

arguments

remaining

after

all

specified

arguments

have

been

substituted

(including

any

separating

commas)

are

combined

into

one

argument

called

the

variable

argument.

The

variable

argument

will

replace

any

occurrence

of

the

identifier

__VA_ARGS__

in

the

replacement

list.

The

following

example

illustrates

this:

#define

debug(...)

fprintf(stderr,

__VA_ARGS__)

debug("flag");

/*

Becomes

fprintf(stderr,

"flag");

*/

Commas

in

the

macro

invocation

argument

list

do

not

act

as

argument

separators

when

they

are:

v

In

character

constants

v

In

string

literals

v

Surrounded

by

parentheses

The

following

line

defines

the

macro

SUM

as

having

two

parameters

a

and

b

and

the

replacement

tokens

(a

+

b):

#define

SUM(a,b)

(a

+

b)

This

definition

would

cause

the

preprocessor

to

change

the

following

statements

(if

the

statements

appear

after

the

previous

definition):

c

=

SUM(x,y);

c

=

d

*

SUM(x,y);

In

the

output

of

the

preprocessor,

these

statements

would

appear

as:

c

=

(x

+

y);

c

=

d

*

(x

+

y);

Use

parentheses

to

ensure

correct

evaluation

of

replacement

text.

For

example,

the

definition:

#define

SQR(c)

((c)

*

(c))

requires

parentheses

around

each

parameter

c

in

the

definition

in

order

to

correctly

evaluate

an

expression

like:

y

=

SQR(a

+

b);

The

preprocessor

expands

this

statement

to:

y

=

((a

+

b)

*

(a

+

b));

#define

178

ILE

C/C++

Language

Reference

Without

parentheses

in

the

definition,

the

correct

order

of

evaluation

is

not

preserved,

and

the

preprocessor

output

is:

y

=

(a

+

b

*

a

+

b);

Arguments

of

the

#

and

##

operators

are

converted

before

replacement

of

parameters

in

a

function-like

macro.

Once

defined,

a

preprocessor

identifier

remains

defined

and

in

scope

independent

of

the

scoping

rules

of

the

language.

The

scope

of

a

macro

definition

begins

at

the

definition

and

does

not

end

until

a

corresponding

#undef

directive

is

encountered.

If

there

is

no

corresponding

#undef

directive,

the

scope

of

the

macro

definition

lasts

until

the

end

of

the

translation

unit.

A

recursive

macro

is

not

fully

expanded.

For

example,

the

definition

#define

x(a,b)

x(a+1,b+1)

+

4

expands

x(20,10)

to

x(20+1,10+1)

+

4

rather

than

trying

to

expand

the

macro

x

over

and

over

within

itself.

After

the

macro

x

is

expanded,

it

is

a

call

to

function

x().

A

definition

is

not

required

to

specify

replacement

tokens.

The

following

definition

removes

all

instances

of

the

token

debug

from

subsequent

lines

in

the

current

file:

#define

debug

You

can

change

the

definition

of

a

defined

identifier

or

macro

with

a

second

preprocessor

#define

directive

only

if

the

second

preprocessor

#define

directive

is

preceded

by

a

preprocessor

#undef

directive.

The

#undef

directive

nullifies

the

first

definition

so

that

the

same

identifier

can

be

used

in

a

redefinition.

Within

the

text

of

the

program,

the

preprocessor

does

not

scan

character

constants

or

string

constants

for

macro

invocations.

Example

of

#define

Directives

The

following

program

contains

two

macro

definitions

and

a

macro

invocation

that

refers

to

both

of

the

defined

macros:

/**

**

This

example

illustrates

#define

directives.

**/

#include

<stdio.h>

#define

SQR(s)

((s)

*

(s))

#define

PRNT(a,b)

\

printf("value

1

=

%d\n",

a);

\

printf("value

2

=

%d\n",

b)

;

int

main(void)

{

int

x

=

2;

int

y

=

3;

#define

Chapter

9.

Preprocessor

Directives

179

PRNT(SQR(x),y);

return(0);

}

After

being

interpreted

by

the

preprocessor,

this

program

is

replaced

by

code

equivalent

to

the

following:

#include

<stdio.h>

int

main(void)

{

int

x

=

2;

int

y

=

3;

printf("value

1

=

%d\n",

(

(x)

*

(x)

)

);

printf("value

2

=

%d\n",

y);

return(0);

}

This

program

produces

the

following

output:

value

1

=

4

value

2

=

3

Scope

of

Macro

Names

(#undef)

A

preprocessor

undef

directive

causes

the

preprocessor

to

end

the

scope

of

a

preprocessor

definition.

A

preprocessor

#undef

directive

has

the

form:

��

#

undef

identifier

��

If

the

identifier

is

not

currently

defined

as

a

macro,

#undef

is

ignored.

Example

of

#undef

Directives

The

following

directives

define

BUFFER

and

SQR:

#define

BUFFER

512

#define

SQR(x)

((x)

*

(x))

The

following

directives

nullify

these

definitions:

#undef

BUFFER

#undef

SQR

Any

occurrences

of

the

identifiers

BUFFER

and

SQR

that

follow

these

#undef

directives

are

not

replaced

with

any

replacement

tokens.

Once

the

definition

of

a

macro

has

been

removed

by

an

#undef

directive,

the

identifier

can

be

used

in

a

new

#define

directive.

#

Operator

The

#

(single

number

sign)

operator

converts

a

parameter

of

a

function-like

macro

into

a

character

string

literal.

For

example,

if

macro

ABC

is

defined

using

the

following

directive:

#define

ABC(x)

#x

#define

180

ILE

C/C++

Language

Reference

all

subsequent

invocations

of

the

macro

ABC

would

be

expanded

into

a

character

string

literal

containing

the

argument

passed

to

ABC.

For

example:

Invocation

Result

of

Macro

Expansion

ABC(1)

"1"

ABC(Hello

there)

"Hello

there"

The

#

operator

should

not

be

confused

with

the

null

directive.

Use

the

#

operator

in

a

function-like

macro

definition

according

to

the

following

rules:

v

A

parameter

following

#

operator

in

a

function-

like

macro

is

converted

into

a

character

string

literal

containing

the

argument

passed

to

the

macro.

v

White-space

characters

that

appear

before

or

after

the

argument

passed

to

the

macro

are

deleted.

v

Multiple

white-space

characters

imbedded

within

the

argument

passed

to

the

macro

are

replaced

by

a

single

space

character.

v

If

the

argument

passed

to

the

macro

contains

a

string

literal

and

if

a

\

(backslash)

character

appears

within

the

literal,

a

second

\

character

is

inserted

before

the

original

\

when

the

macro

is

expanded.

v

If

the

argument

passed

to

the

macro

contains

a

"

(double

quotation

mark)

character,

a

\

character

is

inserted

before

the

"

when

the

macro

is

expanded.

v

The

conversion

of

an

argument

into

a

string

literal

occurs

before

macro

expansion

on

that

argument.

v

If

more

than

one

##

operator

or

#

operator

appears

in

the

replacement

list

of

a

macro

definition,

the

order

of

evaluation

of

the

operators

is

not

defined.

v

If

the

result

of

the

macro

expansion

is

not

a

valid

character

string

literal,

the

behavior

is

undefined.

Example

of

the

#

Operator

The

following

examples

demonstrate

the

use

of

the

#

operator:

#define

STR(x)

#x

#define

XSTR(x)

STR(x)

#define

ONE

1

Invocation

Result

of

Macro

Expansion

STR(\n

"\n"

’\n’)

"\n

\"\\n\"

’\\n’"

STR(ONE)

"ONE"

XSTR(ONE)

"1"

XSTR("hello")

"\"hello\""

Macro

Concatenation

with

the

##

Operator

The

##

(double

number

sign)

operator

concatenates

two

tokens

in

a

macro

invocation

(text

and/or

arguments)

given

in

a

macro

definition.

If

a

macro

XY

was

defined

using

the

following

directive:

#define

XY(x,y)

x##y

the

last

token

of

the

argument

for

x

is

concatenated

with

the

first

token

of

the

argument

for

y.

Use

the

##

operator

according

to

the

following

rules:

#

Operator

Chapter

9.

Preprocessor

Directives

181

v

The

##

operator

cannot

be

the

very

first

or

very

last

item

in

the

replacement

list

of

a

macro

definition.

v

The

last

token

of

the

item

in

front

of

the

##

operator

is

concatenated

with

first

token

of

the

item

following

the

##

operator.

v

Concatenation

takes

place

before

any

macros

in

arguments

are

expanded.

v

If

the

result

of

a

concatenation

is

a

valid

macro

name,

it

is

available

for

further

replacement

even

if

it

appears

in

a

context

in

which

it

would

not

normally

be

available.

v

If

more

than

one

##

operator

and/or

#

operator

appears

in

the

replacement

list

of

a

macro

definition,

the

order

of

evaluation

of

the

operators

is

not

defined.

Examples

of

the

##

Operator

The

following

examples

demonstrate

the

use

of

the

##

operator:

#define

ArgArg(x,

y)

x##y

#define

ArgText(x)

x##TEXT

#define

TextArg(x)

TEXT##x

#define

TextText

TEXT##text

#define

Jitter

1

#define

bug

2

#define

Jitterbug

3

Invocation

Result

of

Macro

Expansion

ArgArg(lady,

bug)

"ladybug"

ArgText(con)

"conTEXT"

TextArg(book)

"TEXTbook"

TextText

"TEXTtext"

ArgArg(Jitter,

bug)

3

Preprocessor

Error

Directive

(#error)

A

preprocessor

error

directive

causes

the

preprocessor

to

generate

an

error

message

and

causes

the

compilation

to

fail.

A

#error

directive

has

the

form:

��

#

error

�

preprocessor_token

��

The

#error

directive

is

often

used

in

the

#else

portion

of

a

#if–#elif–#else

construct,

as

a

safety

check

during

compilation.

For

example,

#error

directives

in

the

source

file

can

prevent

code

generation

if

a

section

of

the

program

is

reached

that

should

be

bypassed.

For

example,

the

directive

#define

BUFFER_SIZE

255

#if

BUFFER_SIZE

<

256

#error

"BUFFER_SIZE

is

too

small."

#endif

generates

the

error

message:

BUFFER_SIZE

is

too

small.

##

Operator

182

ILE

C/C++

Language

Reference

File

Inclusion

(#include)

A

preprocessor

include

directive

causes

the

preprocessor

to

replace

the

directive

with

the

contents

of

the

specified

file.

A

preprocessor

#include

directive

has

the

form:

��

#

include

"

file_name

"

<

file_name

>

<

header_name

>

identifiers

��

In

all

C

and

C++

implementations,

the

preprocessor

resolves

macros

contained

in

an

#include

directive.

After

macro

replacement,

the

resulting

token

sequence

must

consist

of

a

file

name

enclosed

in

either

double

quotation

marks

or

the

characters

<

and

>.

For

example:

#define

MONTH

<july.h>

#include

MONTH

If

the

file

name

is

enclosed

in

double

quotation

marks,

for

example:

#include

"payroll.h"

the

preprocessor

treats

it

as

a

user-defined

file,

and

searches

for

the

file

in

a

manner

defined

by

the

preprocessor.

If

the

file

name

is

enclosed

in

angle

brackets,

for

example:

#include

<stdio.h>

it

is

treated

as

a

system-defined

file,

and

the

preprocessor

searches

for

the

file

in

a

manner

defined

by

the

preprocessor.

The

new-line

and

>

characters

cannot

appear

in

a

file

name

delimited

by

<

and

>.

The

new-line

and

"

(double

quotation

marks)

character

cannot

appear

in

a

file

name

delimited

by

"

and

",

although

>

can.

Declarations

that

are

used

by

several

files

can

be

placed

in

one

file

and

included

with

#include

in

each

file

that

uses

them.

For

example,

the

following

file

defs.h

contains

several

definitions

and

an

inclusion

of

an

additional

file

of

declarations:

/*

defs.h

*/

#define

TRUE

1

#define

FALSE

0

#define

BUFFERSIZE

512

#define

MAX_ROW

66

#define

MAX_COLUMN

80

int

hour;

int

min;

int

sec;

#include

"mydefs.h"

You

can

embed

the

definitions

that

appear

in

defs.h

with

the

following

directive:

#include

"defs.h"

#include

Chapter

9.

Preprocessor

Directives

183

In

the

following

example,

a

#define

combines

several

preprocessor

macros

to

define

a

macro

that

represents

the

name

of

the

C

standard

I/O

header

file.

A

#include

makes

the

header

file

available

to

the

program.

#define

C_IO_HEADER

<stdio.h>

/*

The

following

is

equivalent

to:

*

#include

<stdio.h>

*/

#include

C_IO_HEADER

ISO

Standard

Predefined

Macro

Names

Both

C

and

C++

provide

the

following

predefined

macro

names

as

specified

in

the

ISO

C

language

standard.

Except

for

__FILE__

and

__LINE__,

the

value

of

the

predefined

macros

remain

the

constant

throughout

the

translation

unit.

Macro

Name

Description

__DATE__

A

character

string

literal

containing

the

date

when

the

source

file

was

compiled.

The

value

of

__DATE__

changes

as

the

compiler

processes

any

include

files

that

are

part

of

your

source

program.

The

date

is

in

the

form:

"Mmm

dd

yyyy"

where:

Mmm

Represents

the

month

in

an

abbreviated

form

(Jan,

Feb,

Mar,

Apr,

May,

Jun,

Jul,

Aug,

Sep,

Oct,

Nov,

or

Dec).

dd

Represents

the

day.

If

the

day

is

less

than

10,

the

first

d

is

a

blank

character.

yyyy

Represents

the

year.

__FILE__

A

character

string

literal

containing

the

name

of

the

source

file.

The

value

of

__FILE__

changes

as

the

compiler

processes

include

files

that

are

part

of

your

source

program.

It

can

be

set

with

the

#line

directive.

__LINE__

An

integer

representing

the

current

source

line

number.

The

value

of

__LINE__

changes

during

compilation

as

the

compiler

processes

subsequent

lines

of

your

source

program.

It

can

be

set

with

the

#line

directive.

__STDC__

For

C,

the

integer

1

(one)

indicates

that

the

C

compiler

supports

the

ISO

standard.

If

you

set

the

language

level

to

anything

other

than

ANSI,

this

macro

is

undefined.

(When

a

macro

is

undefined,

it

behaves

as

if

it

had

the

integer

value

0

when

used

in

a

#if

statement.)

For

C++,

this

macro

is

predefined

to

have

the

value

0

(zero).

This

indicates

that

the

C++

language

is

not

a

proper

superset

of

C,

and

that

the

compiler

does

not

conform

to

ISO

C.

__STDC_VERSION__

The

integer

constant

of

type

long

int:

199409L

for

the

C89

language

level.

__TIME__

A

character

string

literal

containing

the

time

when

the

source

file

was

compiled.

#include

184

ILE

C/C++

Language

Reference

The

value

of

__TIME__

changes

as

the

compiler

processes

any

include

files

that

are

part

of

your

source

program.

The

time

is

in

the

form:

"hh:mm:ss"

where:

hh

Represents

the

hour.

mm

Represents

the

minutes.

ss

Represents

the

seconds.

__cplusplus

For

C++

programs,

this

macro

expands

to

the

long

integer

literal

199711L,

indicating

that

the

compiler

is

a

C++

compiler.

For

C

programs,

this

macro

is

not

defined.

Note

that

this

macro

name

has

no

trailing

underscores.

In

addition

to

the

predefined

macros

required

by

the

language

standard,

the

predefined

macro

__IBMC__

indicates

the

level

of

the

C

compiler,

and

the

predefined

macro

__IBMCPP__

indicates

that

of

the

C++

compiler.

Related

References

v

“Line

Control

(#line)”

on

page

189

v

“Object-Like

Macros”

on

page

177

Conditional

Compilation

Directives

A

preprocessor

conditional

compilation

directive

causes

the

preprocessor

to

conditionally

suppress

the

compilation

of

portions

of

source

code.

These

directives

test

a

constant

expression

or

an

identifier

to

determine

which

tokens

the

preprocessor

should

pass

on

to

the

compiler

and

which

tokens

should

be

bypassed

during

preprocessing.

The

directives

are:

v

#if

v

#ifdef

v

#else

v

#ifndef

v

#elif

v

#endif

The

preprocessor

conditional

compilation

directive

spans

several

lines:

v

The

condition

specification

line

(beginning

with

#if,

#ifdef,

or

#ifndef)

v

Lines

containing

code

that

the

preprocessor

passes

on

to

the

compiler

if

the

condition

evaluates

to

a

nonzero

value

(optional)

v

The

#elif

line

(optional)

v

Lines

containing

code

that

the

preprocessor

passes

on

to

the

compiler

if

the

condition

evaluates

to

a

nonzero

value

(optional)

v

The

#else

line

(optional)

v

Lines

containing

code

that

the

preprocessor

passes

on

to

the

compiler

if

the

condition

evaluates

to

zero

(optional)

v

The

preprocessor

#endif

directive

For

each

#if,

#ifdef,

and

#ifndef

directive,

there

are

zero

or

more

#elif

directives,

zero

or

one

#else

directive,

and

one

matching

#endif

directive.

All

the

matching

directives

are

considered

to

be

at

the

same

nesting

level.

You

can

nest

conditional

compilation

directives.

In

the

following

directives,

the

first

#else

is

matched

with

the

#if

directive.

#include

Chapter

9.

Preprocessor

Directives

185

#ifdef

MACNAME

/*

tokens

added

if

MACNAME

is

defined

*/

#

if

TEST

<=10

/*

tokens

added

if

MACNAME

is

defined

and

TEST

<=

10

*/

#

else

/*

tokens

added

if

MACNAME

is

defined

and

TEST

>

10

*/

#

endif

#else

/*

tokens

added

if

MACNAME

is

not

defined

*/

#endif

Each

directive

controls

the

block

immediately

following

it.

A

block

consists

of

all

the

tokens

starting

on

the

line

following

the

directive

and

ending

at

the

next

conditional

compilation

directive

at

the

same

nesting

level.

Each

directive

is

processed

in

the

order

in

which

it

is

encountered.

If

an

expression

evaluates

to

zero,

the

block

following

the

directive

is

ignored.

When

a

block

following

a

preprocessor

directive

is

to

be

ignored,

the

tokens

are

examined

only

to

identify

preprocessor

directives

within

that

block

so

that

the

conditional

nesting

level

can

be

determined.

All

tokens

other

than

the

name

of

the

directive

are

ignored.

Only

the

first

block

whose

expression

is

nonzero

is

processed.

The

remaining

blocks

at

that

nesting

level

are

ignored.

If

none

of

the

blocks

at

that

nesting

level

has

been

processed

and

there

is

a

#else

directive,

the

block

following

the

#else

directive

is

processed.

If

none

of

the

blocks

at

that

nesting

level

has

been

processed

and

there

is

no

#else

directive,

the

entire

nesting

level

is

ignored.

#if,

#elif

The

#if

and

#elif

directives

compare

the

value

of

constant_expression

to

zero:

��

#

if

elif

constant_expression

�

token_sequence

��

If

the

constant

expression

evaluates

to

a

nonzero

value,

the

lines

of

code

that

immediately

follow

the

condition

are

passed

on

to

the

compiler.

If

the

expression

evaluates

to

zero

and

the

conditional

compilation

directive

contains

a

preprocessor

#elif

directive,

the

source

text

located

between

the

#elif

and

the

next

#elif

or

preprocessor

#else

directive

is

selected

by

the

preprocessor

to

be

passed

on

to

the

compiler.

The

#elif

directive

cannot

appear

after

the

preprocessor

#else

directive.

All

macros

are

expanded,

any

defined()

expressions

are

processed

and

all

remaining

identifiers

are

replaced

with

the

token

0.

The

constant_expression

that

is

tested

must

be

integer

constant

expressions

with

the

following

properties:

v

No

casts

are

performed.

v

Arithmetic

is

performed

using

long

int

values.

v

The

constant_expression

can

contain

defined

macros.

No

other

identifiers

can

appear

in

the

expression.

Conditional

Compilation

186

ILE

C/C++

Language

Reference

v

The

constant_expression

can

contain

the

unary

operator

defined.

This

operator

can

be

used

only

with

the

preprocessor

keyword

#if

or

#elif.

The

following

expressions

evaluate

to

1

if

the

identifier

is

defined

in

the

preprocessor,

otherwise

to

0:

defined

identifier

defined(identifier)

For

example:

#if

defined(TEST1)

||

defined(TEST2)

Note:

If

a

macro

is

not

defined,

a

value

of

0

(zero)

is

assigned

to

it.

In

the

following

example,

TEST

must

be

a

macro

identifier:

#if

TEST

>=

1

printf("i

=

%d\n",

i);

printf("array[i]

=

%d\n",

array[i]);

#elif

TEST

<

0

printf("array

subscript

out

of

bounds

\n");

#endif

#ifdef

The

#ifdef

directive

checks

for

the

existence

of

macro

definitions.

If

the

identifier

specified

is

defined

as

a

macro,

the

lines

of

code

that

immediately

follow

the

condition

are

passed

on

to

the

compiler.

The

preprocessor

#ifdef

directive

has

the

form:

��

#

ifdef

identifier

�

token_sequence

newline_character

��

The

following

example

defines

MAX_LEN

to

be

75

if

EXTENDED

is

defined

for

the

preprocessor.

Otherwise,

MAX_LEN

is

defined

to

be

50.

#ifdef

EXTENDED

#

define

MAX_LEN

75

#else

#

define

MAX_LEN

50

#endif

#ifndef

The

#ifndef

directive

checks

whether

a

macro

is

not

defined.

If

the

identifier

specified

is

not

defined

as

a

macro,

the

lines

of

code

immediately

follow

the

condition

are

passed

on

to

the

compiler.

The

preprocessor

#ifndef

directive

has

the

form:

��

#

ifndef

identifier

�

token_sequence

newline_character

��

An

identifier

must

follow

the

#ifndef

keyword.

The

following

example

defines

MAX_LEN

to

be

50

if

EXTENDED

is

not

defined

for

the

preprocessor.

Otherwise,

MAX_LEN

is

defined

to

be

75.

Conditional

Compilation

Chapter

9.

Preprocessor

Directives

187

#ifndef

EXTENDED

#

define

MAX_LEN

50

#else

#

define

MAX_LEN

75

#endif

#else

If

the

condition

specified

in

the

#if,

#ifdef,

or

#ifndef

directive

evaluates

to

0,

and

the

conditional

compilation

directive

contains

a

preprocessor

#else

directive,

the

lines

of

code

located

between

the

preprocessor

#else

directive

and

the

preprocessor

#endif

directive

is

selected

by

the

preprocessor

to

be

passed

on

to

the

compiler.

The

preprocessor

#else

directive

has

the

form:

��

#

else

�

token_sequence

newline_character

��

#endif

The

preprocessor

#endif

directive

ends

the

conditional

compilation

directive.

It

has

the

form:

��

#

endif

newline_character

��

Examples

of

Conditional

Compilation

Directives

The

following

example

shows

how

you

can

nest

preprocessor

conditional

compilation

directives:

#if

defined(TARGET1)

#

define

SIZEOF_INT

16

#

ifdef

PHASE2

#

define

MAX_PHASE

2

#

else

#

define

MAX_PHASE

8

#

endif

#elif

defined(TARGET2)

#

define

SIZEOF_INT

32

#

define

MAX_PHASE

16

#else

#

define

SIZEOF_INT

32

#

define

MAX_PHASE

32

#endif

The

following

program

contains

preprocessor

conditional

compilation

directives:

/**

**

This

example

contains

preprocessor

**

conditional

compilation

directives.

**/

#include

<stdio.h>

int

main(void)

{

static

int

array[

]

=

{

1,

2,

3,

4,

5

};

int

i;

for

(i

=

0;

i

<=

4;

i++)

Conditional

Compilation

188

ILE

C/C++

Language

Reference

{

array[i]

*=

2;

#if

TEST

>=

1

printf("i

=

%d\n",

i);

printf("array[i]

=

%d\n",

array[i]);

#endif

}

return(0);

}

Line

Control

(#line)

A

preprocessor

line

control

directive

supplies

line

numbers

for

compiler

messages.

It

causes

the

compiler

to

view

the

line

number

of

the

next

source

line

as

the

specified

number.

A

preprocessor

#line

directive

has

the

form:

��

#

line

decimal_constant

"

file_name

"

characters

��

In

order

for

the

compiler

to

produce

meaningful

references

to

line

numbers

in

preprocessed

source,

the

preprocessor

inserts

#line

directives

where

necessary

(for

example,

at

the

beginning

and

after

the

end

of

included

text).

A

file

name

specification

enclosed

in

double

quotation

marks

can

follow

the

line

number.

If

you

specify

a

file

name,

the

compiler

views

the

next

line

as

part

of

the

specified

file.

If

you

do

not

specify

a

file

name,

the

compiler

views

the

next

line

as

part

of

the

current

source

file.

In

all

C

and

C++

implementations,

the

token

sequence

on

a

#line

directive

is

subject

to

macro

replacement.

After

macro

replacement,

the

resulting

character

sequence

must

consist

of

a

decimal

constant,

optionally

followed

by

a

file

name

enclosed

in

double

quotation

marks.

Example

of

the

#line

Directive

You

can

use

#line

control

directives

to

make

the

compiler

provide

more

meaningful

error

messages.

The

following

program

uses

#line

control

directives

to

give

each

function

an

easily

recognizable

line

number:

/**

**

This

example

illustrates

#line

directives.

**/

#include

<stdio.h>

#define

LINE200

200

int

main(void)

{

func_1();

func_2();

}

#line

100

func_1()

Conditional

Compilation

Chapter

9.

Preprocessor

Directives

189

{

printf("Func_1

-

the

current

line

number

is

%d\n",_

LINE

_);

}

#line

LINE200

func_2()

{

printf("Func_2

-

the

current

line

number

is

%d\n",_

LINE

_);

}

This

program

produces

the

following

output:

Func_1

-

the

current

line

number

is

102

Func_2

-

the

current

line

number

is

202

Null

Directive

(#)

The

null

directive

performs

no

action.

It

consists

of

a

single

#

on

a

line

of

its

own.

The

null

directive

should

not

be

confused

with

the

#

operator

or

the

character

that

starts

a

preprocessor

directive.

In

the

following

example,

if

MINVAL

is

a

defined

macro

name,

no

action

is

performed.

If

MINVAL

is

not

a

defined

identifier,

it

is

defined

1.

#ifdef

MINVAL

#

#else

#define

MINVAL

1

#endif

Related

References

v

“#

Operator”

on

page

180

Pragma

Directives

(#pragma)

A

pragma

is

an

implementation-defined

instruction

to

the

compiler.

It

has

the

general

form:

��

#

pragma

�

character_sequence

new-line

��

where

character_sequence

is

a

series

of

characters

giving

a

specific

compiler

instruction

and

arguments,

if

any.

The

new-line

character

must

terminate

a

pragma

directive.

The

character_sequence

on

a

pragma

is

subject

to

macro

substitutions.

For

example,

#define

XX_ISO_DATA

isolated_call(LG_ISO_DATA)

//

...

#pragma

XX_ISO_DATA

More

than

one

pragma

construct

can

be

specified

on

a

single

#pragma

directive.

The

compiler

ignores

unrecognized

pragmas.

#line

190

ILE

C/C++

Language

Reference

Chapter

10.

Namespaces

2000C++

A

namespace

is

an

optionally

named

scope.

You

declare

names

inside

a

namespace

as

you

would

for

a

class

or

an

enumeration.

You

can

access

names

declared

inside

a

namespace

the

same

way

you

access

a

nested

class

name

by

using

the

scope

resolution

(::)

operator.

However

namespaces

do

not

have

the

additional

features

of

classes

or

enumerations.

The

primary

purpose

of

the

namespace

is

to

add

an

additional

identifier

(the

name

of

the

namespace)

to

a

name.

Related

References

v

“C++

Scope

Resolution

Operator

::”

on

page

87

Defining

Namespaces

2000C++

In

order

to

uniquely

identify

a

namespace,

use

the

namespace

keyword.

Syntax

–

namespace

��

namespace

identifier

{

namespace_body

}

��

The

identifier

in

an

original

namespace

definition

is

the

name

of

the

namespace.

The

identifier

may

not

be

previously

defined

in

the

declarative

region

in

which

the

original

namespace

definition

appears,

except

in

the

case

of

extending

namespace.

If

an

identifier

is

not

used,

the

namespace

is

an

unnamed

namespace.

Related

References

v

“Unnamed

Namespaces”

on

page

193

Declaring

Namespaces

2000C++

The

identifier

used

for

a

namespace

name

should

be

unique.

It

should

not

be

used

previously

as

a

global

identifier.

namespace

Raymond

{

//

namespace

body

here...

}

In

this

example,

Raymond

is

the

identifier

of

the

namespace.

If

you

intend

to

access

a

namespace’s

elements,

the

namespace’s

identifier

must

be

known

in

all

translation

units.

Related

References

v

“Global

Scope”

on

page

3

Creating

a

Namespace

Alias

2000C++

An

alternate

name

can

be

used

in

order

to

refer

to

a

specific

namespace

identifier.

©

Copyright

IBM

Corp.

1998,

2003

191

namespace

INTERNATIONAL_BUSINESS_MACHINES

{

void

f();

}

namespace

IBM

=

INTERNATIONAL_BUSINESS_MACHINES;

In

this

example,

the

IBM

identifier

is

an

alias

for

INTERNATIONAL_BUSINESS_MACHINES.

This

is

useful

for

referring

to

long

namespace

identifiers.

If

a

namespace

name

or

alias

is

declared

as

the

name

of

any

other

entity

in

the

same

declarative

region,

a

compiler

error

will

result.

Also,

if

a

namespace

name

defined

at

global

scope

is

declared

as

the

name

of

any

other

entity

in

any

global

scope

of

the

program,

a

compiler

error

will

result.

Related

References

v

“Global

Scope”

on

page

3

Creating

an

Alias

for

a

Nested

Namespace

2000C++

Namespace

definitions

hold

declarations.

Since

a

namespace

definition

is

a

declaration

itself,

namespace

definitions

can

be

nested.

An

alias

can

also

be

applied

to

a

nested

namespace.

namespace

INTERNATIONAL_BUSINESS_MACHINES

{

int

j;

namespace

NESTED_IBM_PRODUCT

{

void

a()

{

j++;

}

int

j;

void

b()

{

j++;

}

}

}

namespace

NIBM

=

INTERNATIONAL_BUSINESS_MACHINES::NESTED_IBM_PRODUCT

In

this

example,

the

NIBM

identifier

is

an

alias

for

the

namespace

NESTED_IBM_PRODUCT.

This

namespace

is

nested

within

the

INTERNATIONAL_BUSINESS_MACHINES

namespace.

Extending

Namespaces

2000C++

Namespaces

are

extensible.

You

can

add

subsequent

declarations

to

a

previously

defined

namespace.

Extensions

may

appear

in

files

separate

from

or

attached

to

the

original

namespace

definition.

For

example:

namespace

X

{

//

namespace

definition

int

a;

int

b;

}

namespace

X

{

//

namespace

extension

int

c;

int

d;

}

namespace

Y

{

//

equivalent

to

namespace

X

int

a;

int

b;

int

c;

int

d;

}

192

ILE

C/C++

Language

Reference

In

this

example,

namespace

X

is

defined

with

a

and

b

and

later

extended

with

c

and

d.

namespace

X

now

contains

all

four

members.

You

may

also

declare

all

of

the

required

members

within

one

namespace.

This

method

is

represented

by

namespace

Y.

This

namespace

contains

a,

b,

c,

and

d.

Namespaces

and

Overloading

2000C++

You

can

overload

functions

across

namespaces.

For

example:

//

Original

X.h:

f(int);

//

Original

Y.h:

f(char);

//

Original

program.c:

#include

"X.h"

#include

"Y.h"

void

z()

{

f(’a’);

//

calls

f(char)

from

Y.h

}

Namespaces

can

be

introduced

to

the

previous

example

without

drastically

changing

the

source

code.

//

New

X.h:

namespace

X

{

f(int);

}

//

New

Y.h:

namespace

Y

{

f(char);

}

//

New

program.c:

#include

"X.h"

#include

"Y.h"

using

namespace

X;

using

namespace

Y;

void

z()

{

f(’a’);

//

calls

f()

from

Y.h

}

In

program.c,

function

void

z()

calls

function

f(),

which

is

a

member

of

namespace

Y.

If

you

place

the

using

directives

in

the

header

files,

the

source

code

for

program.c

remains

unchanged.

Related

References

v

Chapter

11,

“Overloading,”

on

page

199

Unnamed

Namespaces

2000C++

A

namespace

with

no

identifier

before

an

opening

brace

produces

an

unnamed

namespace.

Each

translation

unit

may

contain

its

own

unique

unnamed

namespace.

The

following

example

demonstrates

how

unnamed

namespaces

are

useful.

Chapter

10.

Namespaces

193

#include

<iostream>

using

namespace

std;

namespace

{

const

int

i

=

4;

int

variable;

}

int

main()

{

cout

<<

i

<<

endl;

variable

=

100;

return

0;

}

In

the

previous

example,

the

unnamed

namespace

permits

access

to

i

and

variable

without

using

a

scope

resolution

operator.

The

following

example

illustrates

an

improper

use

of

unnamed

namespaces.

#include

<iostream>

using

namespace

std;

namespace

{

const

int

i

=

4;

}

int

i

=

2;

int

main()

{

cout

<<

i

<<

endl;

//

error

return

0;

}

Inside

main,

i

causes

an

error

because

the

compiler

cannot

distinguish

between

the

global

name

and

the

unnamed

namespace

member

with

the

same

name.

In

order

for

the

previous

example

to

work,

the

namespace

must

be

uniquely

identified

with

an

identifier

and

i

must

specify

the

namespace

it

is

using.

You

can

extend

an

unnamed

namespace

within

the

same

translation

unit.

For

example:

#include

<iostream>

using

namespace

std;

namespace

{

int

variable;

void

funct

(int);

}

namespace

{

void

funct

(int

i)

{

cout

<<

i

<<

endl;

}

}

int

main()

{

funct(variable);

return

0;

}

194

ILE

C/C++

Language

Reference

both

the

prototype

and

definition

for

funct

are

members

of

the

same

unnamed

namespace.

Note:

Items

defined

in

an

unnamed

namespace

have

internal

linkage.

Rather

than

using

the

keyword

static

to

define

items

with

internal

linkage,

define

them

in

an

unnamed

namespace

instead.

Related

References

v

“Program

Linkage”

on

page

6

v

“Internal

Linkage”

on

page

7

Namespace

Member

Definitions

2000C++

A

namespace

can

define

its

own

members

within

itself

or

externally

using

explicit

qualification.

The

following

is

an

example

of

a

namespace

defining

a

member

internally:

namespace

A

{

void

b()

{

/*

definition

*/

}

}

Within

namespace

A

member

void

b()

is

defined

internally.

A

namespace

can

also

define

its

members

externally

using

explicit

qualification

on

the

name

being

defined.

The

entity

being

defined

must

already

be

declared

in

the

namespace

and

the

definition

must

appear

after

the

point

of

declaration

in

a

namespace

that

encloses

the

declaration’s

namespace.

The

following

is

an

example

of

a

namespace

defining

a

member

externally:

namespace

A

{

namespace

B

{

void

f();

}

void

B::f()

{

/*

defined

outside

of

B

*/

}

}

In

this

example,

function

f()

is

declared

within

namespace

B

and

defined

(outside

B)

in

A.

Namespaces

and

Friends

2000C++

Every

name

first

declared

in

a

namespace

is

a

member

of

that

namespace.

If

a

friend

declaration

in

a

non-local

class

first

declares

a

class

or

function,

the

friend

class

or

function

is

a

member

of

the

innermost

enclosing

namespace.

The

following

is

an

example

of

this

structure:

//

f

has

not

yet

been

defined

void

z(int);

namespace

A

{

class

X

{

friend

void

f(X);

//

A::f

is

a

friend

};

//

A::f

is

not

visible

here

X

x;

void

f(X)

{

/*

definition

*/}

//

f()

is

defined

and

known

to

be

a

friend

}

using

A::x;

Chapter

10.

Namespaces

195

void

z()

{

A::f(x);

//

OK

A::X::f(x);

//

error:

f

is

not

a

member

of

A::X

}

In

this

example,

function

f()

can

only

be

called

through

namespace

A

using

the

call

A::f(s);.

Attempting

to

call

function

f()

through

class

X

using

the

A::X::f(x);

call

results

in

a

compiler

error.

Since

the

friend

declaration

first

occurs

in

a

non-local

class,

the

friend

function

is

a

member

of

the

innermost

enclosing

namespace

and

may

only

be

accessed

through

that

namespace.

Related

References

v

“Friends”

on

page

238

Using

Directive

2000C++

A

using

directive

provides

access

to

all

namespace

qualifiers

and

the

scope

operator.

This

is

accomplished

by

applying

the

using

keyword

to

a

namespace

identifier.

Syntax

–

Using

directive

��

using

namespace

name

;

��

The

name

must

be

a

previously

defined

namespace.

The

using

directive

may

be

applied

at

the

global

and

local

scope

but

not

the

class

scope.

Local

scope

takes

precedence

over

global

scope

by

hiding

similar

declarations.

If

a

scope

contains

a

using

directive

that

nominates

a

second

namespace

and

that

second

namespace

contains

another

using

directive,

the

using

directive

from

the

second

namespace

will

act

as

if

it

resides

within

the

first

scope.

namespace

A

{

int

i;

}

namespace

B

{

int

i;

using

namespace

A;

}

void

f()

{

using

namespace

B;

i

=

7;

//

error

}

In

this

example,

attempting

to

initialize

i

within

function

f()

causes

a

compiler

error,

because

function

f()

cannot

know

which

i

to

call;

i

from

namespace

A,

or

i

from

namespace

B.

Related

References

v

“The

using

Declaration

and

Class

Members”

on

page

252

The

using

Declaration

and

Namespaces

2000C++

A

using

declaration

provides

access

to

a

specific

namespace

member.

This

is

accomplished

by

applying

the

using

keyword

to

a

namespace

name

with

its

corresponding

namespace

member.

196

ILE

C/C++

Language

Reference

Syntax

–

Using

declaration

��

using

namespace

::

member

��

In

this

syntax

diagram,

the

qualifier

name

follows

the

using

declaration

and

the

member

follows

the

qualifier

name.

For

the

declaration

to

work,

the

member

must

be

declared

inside

the

given

namespace.

For

example:

namespace

A

{

int

i;

int

k;

void

f;

void

g;

}

using

A::k

In

this

example,

the

using

declaration

is

followed

by

A,

the

name

of

namespace

A,

which

is

then

followed

by

the

scope

operator

(::),

and

k.

This

format

allows

k

to

be

accessed

outside

of

namespace

A

through

a

using

declaration.

After

issuing

a

using

declaration,

any

extension

made

to

that

specific

namespace

will

not

be

known

at

the

point

at

which

the

using

declaration

occurs.

Overloaded

versions

of

a

given

function

must

be

included

in

the

namespace

prior

to

that

given

function’s

declaration.

A

using

declaration

may

appear

at

namespace,

block

and

class

scope.

Related

References

v

“The

using

Declaration

and

Class

Members”

on

page

252

Explicit

Access

2000C++

To

explicitly

qualify

a

member

of

a

namespace,

use

the

namespace

identifier

with

a

::

scope

resolution

operator.

Syntax

–

Explicit

access

qualification

��

namespace_name

::

member

��

For

example:

namespace

VENDITTI

{

void

j()

};

VENDITTI::j();

In

this

example,

the

scope

resolution

operator

provides

access

to

the

function

j

held

within

namespace

VENDITTI.

The

scope

resolution

operator

::

is

used

to

access

identifiers

in

both

global

and

local

namespaces.

Any

identifier

in

an

application

can

be

accessed

with

sufficient

qualification.

Explicit

access

cannot

be

applied

to

an

unnamed

namespace.

Related

References

v

“C++

Scope

Resolution

Operator

::”

on

page

87

Chapter

10.

Namespaces

197

198

ILE

C/C++

Language

Reference

Chapter

11.

Overloading

2000C++

If

you

specify

more

than

one

definition

for

a

function

name

or

an

operator

in

the

same

scope,

you

have

overloaded

that

function

name

or

operator.

An

overloaded

declaration

is

a

declaration

that

had

been

declared

with

the

same

name

as

a

previously

declared

declaration

in

the

same

scope,

except

that

both

declarations

have

different

types.

If

you

call

an

overloaded

function

name

or

operator,

the

compiler

determines

the

most

appropriate

definition

to

use

by

comparing

the

argument

types

you

used

to

call

the

function

or

operator

with

the

parameter

types

specified

in

the

definitions.

The

process

of

selecting

the

most

appropriate

overloaded

function

or

operator

is

called

overload

resolution.

Overloading

Functions

2000C++

You

overload

a

function

name

f

by

declaring

more

than

one

function

with

the

name

f

in

the

same

scope.

The

declarations

of

f

must

differ

from

each

other

by

the

types

and/or

the

number

of

arguments

in

the

argument

list.

When

you

call

an

overloaded

function

named

f,

the

correct

function

is

selected

by

comparing

the

argument

list

of

the

function

call

with

the

parameter

list

of

each

of

the

overloaded

candidate

functions

with

the

name

f.

A

candidate

function

is

a

function

that

can

be

called

based

on

the

context

of

the

call

of

the

overloaded

function

name.

Consider

a

function

print,

which

displays

an

int.

As

shown

in

the

following

example,

you

can

overload

the

function

print

to

display

other

types,

for

example,

double

and

char*.

You

can

have

three

functions

with

the

same

name,

each

performing

a

similar

operation

on

a

different

data

type:

#include

<iostream>

using

namespace

std;

void

print(int

i)

{

cout

<<

"

Here

is

int

"

<<

i

<<

endl;

}

void

print(double

f)

{

cout

<<

"

Here

is

float

"

<<

f

<<

endl;

}

void

print(char*

c)

{

cout

<<

"

Here

is

char*

"

<<

c

<<

endl;

}

int

main()

{

print(10);

print(10.10);

print("ten");

}

The

following

is

the

output

of

the

above

example:

Here

is

int

10

Here

is

float

10.1

Here

is

char*

ten

©

Copyright

IBM

Corp.

1998,

2003

199

Restrictions

on

Overloaded

Functions

2000C++

You

cannot

overload

the

following

function

declarations

if

they

appear

in

the

same

scope.

Note

that

this

list

applies

only

to

explicitly

declared

functions

and

those

that

have

been

introduced

through

using

declarations:

v

Function

declarations

that

differ

only

by

return

type.

For

example,

you

cannot

declare

the

following

declarations:

int

f();

float

f();

v

Member

function

declarations

that

have

the

same

name

and

the

same

parameter

types,

but

one

of

these

declarations

is

a

static

member

function

declaration.

For

example,

you

cannot

declare

the

following

two

member

function

declarations

of

f():

struct

A

{

static

int

f();

int

f();

};

v

Member

function

template

declarations

that

have

the

same

name,

the

same

parameter

types,

and

the

same

template

parameter

lists,

but

one

of

these

declarations

is

a

static

template

member

function

declaration.

v

Function

declarations

that

have

equivalent

parameter

declarations.

These

declarations

are

not

allowed

because

they

would

be

declaring

the

same

function.

v

Function

declarations

with

parameters

that

differ

only

by

the

use

of

typedef

names

that

represent

the

same

type.

Note

that

a

typedef

is

a

synonym

for

another

type,

not

a

separate

type.

For

example,

the

following

two

declarations

of

f()

are

declarations

of

the

same

function:

typedef

int

I;

void

f(float,

int);

void

f(float

I);

v

Function

declarations

with

parameters

that

differ

only

because

one

is

a

pointer

and

the

other

is

an

array.

For

example,

the

following

are

declarations

of

the

same

function:

f(char*);

f(char[10]);

The

first

array

dimension

is

insignificant

when

differentiating

parameters;

all

other

array

dimensions

are

significant.

For

example,

the

following

are

declarations

of

the

same

function:

g(char(*)[20]);

g(char[5][20]);

The

following

two

declarations

are

not

equivalent:

g(char(*)[20]);

g(char(*)[40]);

v

Function

declarations

with

parameters

that

differ

only

because

one

is

a

function

type

and

the

other

is

a

pointer

to

a

function

of

the

same

type.

For

example,

the

following

are

declarations

of

the

same

function:

void

f(int(float));

void

f(int

(*)(float));

v

Function

declarations

with

parameters

that

differ

only

because

of

const

and

volatile

qualifiers.

This

only

applies

if

you

apply

any

of

these

qualifiers

appear

at

the

outermost

level

of

an

parameter

type

specification.

For

example,

the

following

are

declarations

of

the

same

function:

int

f(int);

int

f(const

int);

int

f(volatile

int);

200

ILE

C/C++

Language

Reference

Note

that

you

can

differentiate

parameters

with

const

and

volatile

qualifiers

if

you

apply

these

qualifiers

within

a

parameter

type

specification.

For

example,

the

following

declarations

are

not

equivalent:

void

g(int*);

void

g(const

int*);

void

g(volatile

int*);

The

following

declarations

are

also

not

equivalent:

void

g(float&);

void

g(const

float&);

void

g(volatile

float&);

v

Function

declarations

with

parameters

that

differ

only

because

their

default

arguments

differ.

For

example,

the

following

are

declarations

of

the

same

function:

void

f(int);

void

f(int

i

=

10);

v

Multiple

functions

with

extern

"C"

language-linkage

and

the

same

name,

regardless

of

whether

their

parameter

lists

are

different.

Overloading

Operators

2000C++

You

can

redefine

or

overload

the

function

of

most

built-in

operators

in

C++.

These

operators

can

be

overloaded

globally

or

on

a

class-by-class

basis.

Overloaded

operators

are

implemented

as

functions

and

can

be

member

functions

or

global

functions.

An

overloaded

operator

is

called

an

operator

function.

You

declare

an

operator

function

with

the

keyword

operator

preceding

the

operator.

Overloaded

operators

are

distinct

from

overloaded

functions,

but

like

overloaded

functions,

they

are

distinguished

by

the

number

and

types

of

operands

used

with

the

operator.

Consider

the

standard

+

(plus)

operator.

When

this

operator

is

used

with

operands

of

different

standard

types,

the

operators

have

slightly

different

meanings.

For

example,

the

addition

of

two

integers

is

not

implemented

in

the

same

way

as

the

addition

of

two

floating-point

numbers.

C++

allows

you

to

define

your

own

meanings

for

the

standard

C++

operators

when

they

are

applied

to

class

types.

In

the

following

example,

a

class

called

complx

is

defined

to

model

complex

numbers,

and

the

+

(plus)

operator

is

redefined

in

this

class

to

add

two

complex

numbers.

//

This

example

illustrates

overloading

the

plus

(+)

operator.

#include

<iostream>

using

namespace

std;

class

complx

{

double

real,

imag;

public:

complx(

double

real

=

0.,

double

imag

=

0.);

//

constructor

complx

operator+(const

complx&)

const;

//

operator+()

};

//

define

constructor

complx::complx(

double

r,

double

i

)

{

real

=

r;

imag

=

i;

}

//

define

overloaded

+

(plus)

operator

Chapter

11.

Overloading

201

complx

complx::operator+

(const

complx&

c)

const

{

complx

result;

result.real

=

(this->real

+

c.real);

result.imag

=

(this->imag

+

c.imag);

return

result;

}

int

main()

{

complx

x(4,4);

complx

y(6,6);

complx

z

=

x

+

y;

//

calls

complx::operator+()

}

You

can

overload

any

of

the

following

operators:

+

−

*

/

%

^

&

|

~

!

=

<

>

+=

−=

*=

/=

%=

^=

&=

|=

<<

>>

<<=

>>=

==

!=

<=

>=

&&

||

++

−−

,

−>*

−>

(

)

[

]

new

delete

new[]

delete[]

where

()

is

the

function

call

operator

and

[]

is

the

subscript

operator.

You

can

overload

both

the

unary

and

binary

forms

of

the

following

operators:

+

-

*

&

You

cannot

overload

the

following

operators:

.

.*

::

?:

You

cannot

overload

the

preprocessor

symbols

#

and

##.

An

operator

function

can

be

either

a

nonstatic

member

function,

or

a

nonmember

function

with

at

least

one

parameter

that

has

class,

reference

to

class,

enumeration,

or

reference

to

enumeration

type.

You

cannot

change

the

precedence,

grouping,

or

the

number

of

operands

of

an

operator.

An

overloaded

operator

(except

for

the

function

call

operator)

cannot

have

default

arguments

or

an

ellipsis

in

the

argument

list.

You

must

declare

the

overloaded

=,

[],

(),

and

->

operators

as

nonstatic

member

functions

to

ensure

that

they

receive

lvalues

as

their

first

operands.

The

operators

new,

delete,

new[],

and

delete[]

do

not

follow

the

general

rules

described

in

this

section.

All

operators

except

the

=

operator

are

inherited.

Overloading

Unary

Operators

2000C++

You

overload

a

unary

operator

with

either

a

nonstatic

member

function

that

has

no

parameters,

or

a

nonmember

function

that

has

one

parameter.

Suppose

202

ILE

C/C++

Language

Reference

a

unary

operator

@

is

called

with

the

statement

@t,

where

t

is

an

object

of

type

T.

A

nonstatic

member

function

that

overloads

this

operator

would

have

the

following

form:

return_type

operator@()

A

nonmember

function

that

overloads

the

same

operator

would

have

the

following

form:

return_type

operator@(T)

An

overloaded

unary

operator

may

return

any

type.

The

following

example

overloads

the

!

operator:

#include

<iostream>

using

namespace

std;

struct

X

{

};

void

operator!(X)

{

cout

<<

"void

operator!(X)"

<<

endl;

}

struct

Y

{

void

operator!()

{

cout

<<

"void

Y::operator!()"

<<

endl;

}

};

struct

Z

{

};

int

main()

{

X

ox;

Y

oy;

Z

oz;

!ox;

!oy;

//

!oz;

}

The

following

is

the

output

of

the

above

example:

void

operator!(X)

void

Y::operator!()

The

operator

function

call

!ox

is

interpreted

as

operator!(x).

The

call

!oy

is

interpreted

as

y.operator!().

(The

compiler

would

not

allow

!oz

because

the

!

operator

has

not

been

defined

for

class

Z.)

Related

References

v

“Unary

Expressions”

on

page

98

Overloading

Increment

and

Decrement

2000C++

You

overload

the

prefix

increment

operator

++

with

either

a

nonmember

function

operator

that

has

one

argument

of

class

type

or

a

reference

to

class

type,

or

with

a

member

function

operator

that

has

no

arguments.

In

the

following

example,

the

increment

operator

is

overloaded

in

both

ways:

class

X

{

public:

//

member

prefix

++x

void

operator++()

{

}

};

Chapter

11.

Overloading

203

class

Y

{

};

//

non-member

prefix

++y

void

operator++(Y&)

{

}

int

main()

{

X

x;

Y

y;

//

calls

x.operator++()

++x;

//

explicit

call,

like

++x

x.operator++();

//

calls

operator++(y)

++y;

//

explicit

call,

like

++y

operator++(y);

}

The

postfix

increment

operator

++

can

be

overloaded

for

a

class

type

by

declaring

a

nonmember

function

operator

operator++()

with

two

arguments,

the

first

having

class

type

and

the

second

having

type

int.

Alternatively,

you

can

declare

a

member

function

operator

operator++()

with

one

argument

having

type

int.

The

compiler

uses

the

int

argument

to

distinguish

between

the

prefix

and

postfix

increment

operators.

For

implicit

calls,

the

default

value

is

zero.

For

example:

class

X

{

public:

//

member

postfix

x++

void

operator++(int)

{

};

};

class

Y

{

};

//

nonmember

postfix

y++

void

operator++(Y&,

int)

{

};

int

main()

{

X

x;

Y

y;

//

calls

x.operator++(0)

//

default

argument

of

zero

is

supplied

by

compiler

x++;

//

explicit

call

to

member

postfix

x++

x.operator++(0);

//

calls

operator++(y,

0)

y++;

//

explicit

call

to

non-member

postfix

y++

operator++(y,

0);

}

The

prefix

and

postfix

decrement

operators

follow

the

same

rules

as

their

increment

counterparts.

204

ILE

C/C++

Language

Reference

Related

References

v

“Increment

++”

on

page

99

v

“Decrement

−−”

on

page

99

Overloading

Binary

Operators

2000C++

You

overload

a

binary

unary

operator

with

either

a

nonstatic

member

function

that

has

one

parameter,

or

a

nonmember

function

that

has

two

parameters.

Suppose

a

binary

operator

@

is

called

with

the

statement

t

@

u,

where

t

is

an

object

of

type

T,

and

u

is

an

object

of

type

U.

A

nonstatic

member

function

that

overloads

this

operator

would

have

the

following

form:

return_type

operator@(T)

A

nonmember

function

that

overloads

the

same

operator

would

have

the

following

form:

return_type

operator@(T,

U)

An

overloaded

binary

operator

may

return

any

type.

The

following

example

overloads

the

*

operator:

struct

X

{

//

member

binary

operator

void

operator*(int)

{

}

};

//

non-member

binary

operator

void

operator*(X,

float)

{

}

int

main()

{

X

x;

int

y

=

10;

float

z

=

10;

x

*

y;

x

*

z;

}

The

call

x

*

y

is

interpreted

as

x.operator*(y).

The

call

x

*

z

is

interpreted

as

operator*(x,

z).

Related

References

v

“Binary

Expressions”

on

page

109

Overloading

Assignments

2000C++

You

overload

the

assignment

operator,

operator=,

with

a

nonstatic

member

function

that

has

only

one

parameter.

You

cannot

declare

an

overloaded

assignment

operator

that

is

a

nonmember

function.

The

following

example

shows

how

you

can

overload

the

assignment

operator

for

a

particular

class:

struct

X

{

int

data;

X&

operator=(X&

a)

{

return

a;

}

X&

operator=(int

a)

{

data

=

a;

return

*this;

}

};

int

main()

{

Chapter

11.

Overloading

205

X

x1,

x2;

x1

=

x2;

//

call

x1.operator=(x2)

x1

=

5;

//

call

x1.operator=(5)

}

The

assignment

x1

=

x2

calls

the

copy

assignment

operator

X&

X::operator=(X&).

The

assignment

x1

=

5

calls

the

copy

assignment

operator

X&

X::operator=(int).

The

compiler

implicitly

declares

a

copy

assignment

operator

for

a

class

if

you

do

not

define

one

yourself.

Consequently,

the

copy

assignment

operator

(operator=)

of

a

derived

class

hides

the

copy

assignment

operator

of

its

base

class.

However,

you

can

declare

any

copy

assignment

operator

as

virtual.

The

following

example

demonstrates

this:

#include

<iostream>

using

namespace

std;

struct

A

{

A&

operator=(char)

{

cout

<<

"A&

A::operator=(char)"

<<

endl;

return

*this;

}

virtual

A&

operator=(const

A&)

{

cout

<<

"A&

A::operator=(const

A&)"

<<

endl;

return

*this;

}

};

struct

B

:

A

{

B&

operator=(char)

{

cout

<<

"B&

B::operator=(char)"

<<

endl;

return

*this;

}

virtual

B&

operator=(const

A&)

{

cout

<<

"B&

B::operator=(const

A&)"

<<

endl;

return

*this;

}

};

struct

C

:

B

{

};

int

main()

{

B

b1;

B

b2;

A*

ap1

=

&b1;

A*

ap2

=

&b1;

*ap1

=

’z’;

*ap2

=

b2;

C

c1;

//

c1

=

’z’;

}

The

following

is

the

output

of

the

above

example:

A&

A::operator=(char)

B&

B::operator=(const

A&)

The

assignment

*ap1

=

’z’

calls

A&

A::operator=(char).

Because

this

operator

has

not

been

declared

virtual,

the

compiler

chooses

the

function

based

on

the

type

of

the

pointer

ap1.

The

assignment

*ap2

=

b2

calls

B&

B::operator=(const

&A).

Because

this

operator

has

been

declared

virtual,

the

compiler

chooses

the

function

based

on

the

type

of

the

object

that

the

pointer

ap1

points

to.

The

compiler

would

not

allow

the

assignment

c1

=

’z’

because

the

implicitly

declared

copy

assignment

operator

declared

in

class

C

hides

B&

B::operator=(char).

206

ILE

C/C++

Language

Reference

Related

References

v

“Copy

Assignment

Operators”

on

page

293

v

“Assignment

Expressions”

on

page

120

Overloading

Function

Calls

2000C++

The

function

call

operator,

when

overloaded,

does

not

modify

how

functions

are

called.

Rather,

it

modifies

how

the

operator

is

to

be

interpreted

when

applied

to

objects

of

a

given

type.

You

overload

the

function

call

operator,

operator(),

with

a

nonstatic

member

function

that

has

any

number

of

parameters.

If

you

overload

a

function

call

operator

for

a

class

its

declaration

will

have

the

following

form:

return_type

operator()(parameter_list)

Unlike

all

other

overloaded

operators,

you

can

provide

default

arguments

and

ellipses

in

the

argument

list

for

the

function

call

operator.

The

following

example

demonstrates

how

the

compiler

interprets

function

call

operators:

struct

A

{

void

operator()(int

a,

char

b,

...)

{

}

void

operator()(char

c,

int

d

=

20)

{

}

};

int

main()

{

A

a;

a(5,

’z’,

’a’,

0);

a(’z’);

//

a();

}

The

function

call

a(5,

’z’,

’a’,

0)

is

interpreted

as

a.operator()(5,

’z’,

’a’,

0).

This

calls

void

A::operator()(int

a,

char

b,

...).

The

function

call

a(’z’)

is

interpreted

as

a.operator()(’z’).

This

calls

void

A::operator()(char

c,

int

d

=

20).

The

compiler

would

not

allow

the

function

call

a()

because

its

argument

list

does

not

match

any

function

call

parameter

list

defined

in

class

A.

The

following

example

demonstrates

an

overloaded

function

call

operator:

class

Point

{

private:

int

x,

y;

public:

Point()

:

x(0),

y(0)

{

}

Point&

operator()(int

dx,

int

dy)

{

x

+=

dx;

y

+=

dy;

return

*this;

}

};

int

main()

{

Point

pt;

//

Offset

this

coordinate

x

with

3

points

//

and

coordinate

y

with

2

points.

pt(3,

2);

}

Chapter

11.

Overloading

207

The

above

example

reinterprets

the

function

call

operator

for

objects

of

class

Point.

If

you

treat

an

object

of

Point

like

a

function

and

pass

it

two

integer

arguments,

the

function

call

operator

will

add

the

values

of

the

arguments

you

passed

to

Point::x

and

Point::y

respectively.

Related

References

v

“Function

Call

Operator

(

)”

on

page

88

Overloading

Subscripting

2000C++

You

overload

operator[]

with

a

nonstatic

member

function

that

has

only

one

parameter.

The

following

example

is

a

simple

array

class

that

has

an

overloaded

subscripting

operator.

The

overloaded

subscripting

operator

throws

an

exception

if

you

try

to

access

the

array

outside

of

its

specified

bounds:

#include

<iostream>

using

namespace

std;

template

<class

T>

class

MyArray

{

private:

T*

storage;

int

size;

public:

MyArray(int

arg

=

10)

{

storage

=

new

T[arg];

size

=

arg;

}

~MyArray()

{

delete[]

storage;

storage

=

0;

}

T&

operator[](const

int

location)

throw

(const

char

*);

};

template

<class

T>

T&

MyArray<T>::operator[](const

int

location)

throw

(const

char

*)

{

if

(location

<

0

||

location

>=

size)

throw

"Invalid

array

access";

else

return

storage[location];

}

int

main()

{

try

{

MyArray<int>

x(13);

x[0]

=

45;

x[1]

=

2435;

cout

<<

x[0]

<<

endl;

cout

<<

x[1]

<<

endl;

x[13]

=

84;

}

catch

(const

char*

e)

{

cout

<<

e

<<

endl;

}

}

The

following

is

the

output

of

the

above

example:

45

2435

Invalid

array

access

The

expression

x[1]

is

interpreted

as

x.operator[](1)

and

calls

int&

MyArray<int>::operator[](const

int).

208

ILE

C/C++

Language

Reference

Related

References

v

“Array

Subscripting

Operator

[

]”

on

page

90

Overloading

Class

Member

Access

2000C++

You

overload

operator->

with

a

nonstatic

member

function

that

has

no

parameters.

The

following

example

demonstrates

how

the

compiler

interprets

overloaded

class

member

access

operators:

struct

Y

{

void

f()

{

};

};

struct

X

{

Y*

ptr;

Y*

operator->()

{

return

ptr;

};

};

int

main()

{

X

x;

x->f();

}

The

statement

x->f()

is

interpreted

as

(x.operator->())->f().

The

operator->

is

used

(often

in

conjunction

with

the

pointer-dereference

operator)

to

implement

″smart

pointers.″

These

pointers

are

objects

that

behave

like

normal

pointers

except

they

perform

other

tasks

when

you

access

an

object

through

them,

such

as

automatic

object

deletion

(either

when

the

pointer

is

destroyed,

or

the

pointer

is

used

to

point

to

another

object),

or

reference

counting

(counting

the

number

of

smart

pointers

that

point

to

the

same

object,

then

automatically

deleting

the

object

when

that

count

reaches

zero).

One

example

of

a

smart

pointer

is

included

in

the

C++

Standard

Library

called

auto_ptr.

You

can

find

it

in

the

<memory>

header.

The

auto_ptr

class

implements

automatic

object

deletion.

Related

References

v

“Arrow

Operator

−>”

on

page

91

Overload

Resolution

2000C++

The

process

of

selecting

the

most

appropriate

overloaded

function

or

operator

is

called

overload

resolution.

Suppose

that

f

is

an

overloaded

function

name.

When

you

call

the

overloaded

function

f(),

the

compiler

creates

a

set

of

candidate

functions.

This

set

of

functions

includes

all

of

the

functions

named

f

that

can

be

accessed

from

the

point

where

you

called

f().

The

compiler

may

include

as

a

candidate

function

an

alternative

representation

of

one

of

those

accessible

functions

named

f

to

facilitate

overload

resolution.

After

creating

a

set

of

candidate

functions,

the

compiler

creates

a

set

of

viable

functions.

This

set

of

functions

is

a

subset

of

the

candidate

functions.

The

number

of

parameters

of

each

viable

function

agrees

with

the

number

of

arguments

you

used

to

call

f().

Chapter

11.

Overloading

209

The

compiler

chooses

the

best

viable

function,

the

function

declaration

that

the

C++

run

time

will

use

when

you

call

f(),

from

the

set

of

viable

functions.

The

compiler

does

this

by

implicit

conversion

sequences.

An

implicit

conversion

sequence

is

the

sequence

of

conversions

required

to

convert

an

argument

in

a

function

call

to

the

type

of

the

corresponding

parameter

in

a

function

declaration.

The

implicit

conversion

sequences

are

ranked;

some

implicit

conversion

sequences

are

better

than

others.

The

compiler

tries

to

find

one

viable

function

in

which

all

of

its

parameters

have

either

better

or

equal-ranked

implicit

conversion

sequences

than

all

of

the

other

viable

functions.

The

viable

function

that

the

compiler

finds

is

the

best

viable

function.

The

compiler

will

not

allow

a

program

in

which

the

compiler

was

able

to

find

more

than

one

best

viable

function.

You

can

override

an

exact

match

by

using

an

explicit

cast.

In

the

following

example,

the

second

call

to

f()

matches

with

f(void*):

void

f(int)

{

};

void

f(void*)

{

};

int

main()

{

f(0xaabb);

//

matches

f(int);

f((void*)

0xaabb);

//

matches

f(void*)

}

Related

References

v

“Implicit

Conversion

Sequences”

Implicit

Conversion

Sequences

2000C++

An

implicit

conversion

sequence

is

the

sequence

of

conversions

required

to

convert

an

argument

in

a

function

call

to

the

type

of

the

corresponding

parameter

in

a

function

declaration.

The

compiler

will

try

to

determine

an

implicit

conversion

sequence

for

each

argument.

It

will

then

categorize

each

implicit

conversion

sequence

in

one

of

three

categories

and

rank

them

depending

on

the

category.

The

compiler

will

not

allow

any

program

in

which

it

cannot

find

an

implicit

conversion

sequence

for

an

argument.

The

following

are

the

three

categories

of

conversion

sequences

in

order

from

best

to

worst:

v

Standard

conversion

sequences

v

User-defined

conversion

sequences

v

Ellipsis

conversion

sequences

Note:

Two

standard

conversion

sequences

or

two

user-defined

conversion

sequences

may

have

different

ranks.

Standard

Conversion

Sequences

Standard

conversion

sequences

are

categorized

in

one

of

three

ranks.

The

ranks

are

listed

in

order

from

best

to

worst:

v

Exact

match:

This

rank

includes

the

following

conversions:

–

Identity

conversions

–

Lvalue-to-rvalue

conversions

–

Array-to-pointer

conversions

–

Qualification

conversions
v

Promotion:

This

rank

includes

integral

and

floating

point

promotions.

v

Conversion:

This

rank

includes

the

following

conversions:

–

Integral

and

floating-point

conversions

210

ILE

C/C++

Language

Reference

–

Floating-integral

conversions

–

Pointer

conversions

–

Pointer-to-member

conversions

–

Boolean

conversions

The

compiler

ranks

a

standard

conversion

sequence

by

its

worst-ranked

standard

conversion.

For

example,

if

a

standard

conversion

sequence

has

a

floating-point

conversion,

then

that

sequence

has

conversion

rank.

User-Defined

Conversion

Sequences

A

user-defined

conversion

sequence

consists

of

the

following:

v

A

standard

conversion

sequence

v

A

user-defined

conversion

v

A

second

standard

conversion

sequence

A

user-defined

conversion

sequence

A

is

better

than

a

user-defined

conversion

sequence

B

if

the

both

have

the

same

user-defined

conversion

function

or

constructor,

and

the

second

standard

conversion

sequence

of

A

is

better

than

the

second

standard

conversion

sequence

of

B.

Ellipsis

Conversion

Sequences

An

ellipsis

conversion

sequence

occurs

when

the

compiler

matches

an

argument

in

a

function

call

with

a

corresponding

ellipsis

parameter.

Related

References

v

“Lvalue-to-Rvalue

Conversions”

on

page

126

v

“Pointer

Conversions”

on

page

128

v

“Qualification

Conversions”

on

page

130

v

“Integral

Conversions”

on

page

127

v

“Floating-Point

Conversions”

on

page

128

v

“Boolean

Conversions”

on

page

127

Resolving

Addresses

of

Overloaded

Functions

2000C++

If

you

use

an

overloaded

function

name

f

without

any

arguments,

that

name

can

refer

to

a

function,

a

pointer

to

a

function,

a

pointer

to

member

function,

or

a

specialization

of

a

function

template.

Because

you

did

not

provide

any

arguments,

the

compiler

cannot

perform

overload

resolution

the

same

way

it

would

for

a

function

call

or

for

the

use

of

an

operator.

Instead,

the

compiler

will

try

to

choose

the

best

viable

function

that

matches

the

type

of

one

of

the

following

expressions,

depending

on

where

you

have

used

f:

v

An

object

or

reference

you

are

initializing

v

The

left

side

of

an

assignment

v

A

parameter

of

a

function

or

a

user-defined

operator

v

The

return

value

of

a

function,

operator,

or

conversion

v

An

explicit

type

conversion

If

the

compiler

chose

a

declaration

of

a

nonmember

function

or

a

static

member

function

when

you

used

f,

the

compiler

matched

the

declaration

with

an

expression

of

type

pointer-to-function

or

reference-to-function.

If

the

compiler

chose

a

declaration

of

a

nonstatic

member

function,

the

compiler

matched

that

declaration

with

an

expression

of

type

pointer-to-member

function.

The

following

example

demonstrates

this:

Chapter

11.

Overloading

211

struct

X

{

int

f(int)

{

return

0;

}

static

int

f(char)

{

return

0;

};

}

int

main()

{

int

(X::*a)(int)

=

&X::f;

//

int

(*b)(int)

=

&X::f;

int

(*c)(int)

=

&X::f;

}

The

compiler

will

not

allow

the

initialization

of

the

function

pointer

b.

No

nonmember

function

or

static

function

of

type

int(int)

has

been

declared.

If

f

is

a

template

function,

the

compiler

will

perform

template

argument

deduction

to

determine

which

template

function

to

use.

If

successful,

it

will

add

that

function

to

the

list

of

viable

functions.

If

there

is

more

than

one

function

in

this

set,

including

a

non-template

function,

the

compiler

will

eliminate

all

template

functions

from

the

set.

If

there

are

only

template

functions

in

this

set,

the

compiler

will

choose

the

most

specialized

template

function.

The

following

example

demonstrates

this:

template<class

T>

int

f(T)

{

return

0;

}

template<>

int

f(int)

{

return

0;

}

int

f(int)

{

return

0;

}

int

main()

{

int

(*a)(int)

=

f;

a(1);

}

The

function

call

a(1)

calls

int

f(int).

Related

References

v

“Pointers

to

Functions”

on

page

155

v

“Pointers

to

Members”

on

page

228

v

“Function

Templates”

on

page

305

v

“Explicit

Specialization”

on

page

316

212

ILE

C/C++

Language

Reference

Chapter

12.

Classes

2000C++

A

class

is

a

mechanism

for

creating

user-defined

data

types.

It

is

similar

to

the

C

language

structure

data

type.

In

C,

a

structure

is

composed

of

a

set

of

data

members.

In

C++,

a

class

type

is

like

a

C

structure,

except

that

a

class

is

composed

of

a

set

of

data

members

and

a

set

of

operations

that

can

be

performed

on

the

class.

In

C++,

a

class

type

can

be

declared

with

the

keywords

union,

struct,

or

class.

A

union

object

can

hold

any

one

of

a

set

of

named

members.

Structure

and

class

objects

hold

a

complete

set

of

members.

Each

class

type

represents

a

unique

set

of

class

members

including

data

members,

member

functions,

and

other

type

names.

The

default

access

for

members

depends

on

the

class

key:

v

The

members

of

a

class

declared

with

the

keyword

class

are

private

by

default.

A

class

is

inherited

privately

by

default.

v

The

members

of

a

class

declared

with

the

keyword

struct

are

public

by

default.

A

structure

is

inherited

publicly

by

default.

v

The

members

of

a

union

(declared

with

the

keyword

union)

are

public

by

default.

A

union

cannot

be

used

as

a

base

class

in

derivation.

Once

you

create

a

class

type,

you

can

declare

one

or

more

objects

of

that

class

type.

For

example:

class

X

{

/*

define

class

members

here

*/

};

int

main()

{

X

xobject1;

//

create

an

object

of

class

type

X

X

xobject2;

//

create

another

object

of

class

type

X

}

You

may

have

polymorphic

classes

in

C++.

Polymorphism

is

the

ability

to

use

a

function

name

that

appears

in

different

classes

(related

by

inheritance),

without

knowing

exactly

the

class

the

function

belongs

to

at

compile

time.

C++

allows

you

to

redefine

standard

operators

and

functions

through

the

concept

of

overloading.

Operator

overloading

facilitates

data

abstraction

by

allowing

you

to

use

classes

as

easily

as

built-in

types.

Declaring

Class

Types

2000C++

A

class

declaration

creates

a

unique

type

class

name.

A

class

specifier

is

a

type

specifier

used

to

declare

a

class.

Once

a

class

specifier

has

been

seen

and

its

members

declared,

a

class

is

considered

to

be

defined

even

if

the

member

functions

of

that

class

are

not

yet

defined.

A

class

specifier

has

the

following

form:

©

Copyright

IBM

Corp.

1998,

2003

213

Syntax

–

Class

Specifier

��

class

struct

union

class_name

:

base_clause

{

}

member_list

��

The

class_name

is

a

unique

identifier

that

becomes

a

reserved

word

within

its

scope.

Once

a

class

name

is

declared,

it

hides

other

declarations

of

the

same

name

within

the

enclosing

scope.

The

member_list

specifies

the

class

members,

both

data

and

functions,

of

the

class

class_name.

If

the

member_list

of

a

class

is

empty,

objects

of

that

class

have

a

nonzero

size.

You

can

use

a

class_name

within

the

member_list

of

the

class

specifier

itself

as

long

as

the

size

of

the

class

is

not

required.

The

base_clause

specifies

the

base

class

or

classes

from

which

the

class

class_name

inherits

members.

If

the

base_clause

is

not

empty,

the

class

class_name

is

called

a

derived

class.

A

structure

is

a

class

declared

with

the

class_key

struct.

The

members

and

base

classes

of

a

structure

are

public

by

default.

A

union

is

a

class

declared

with

the

class_key

union.

The

members

of

a

union

are

public

by

default;

a

union

holds

only

one

data

member

at

a

time.

An

aggregate

class

is

a

class

that

has

no

user-defined

constructors,

no

private

or

protected

non-static

data

members,

no

base

classes,

and

no

virtual

functions.

Using

Class

Objects

2000C++

You

can

use

a

class

type

to

create

instances

or

objects

of

that

class

type.

For

example,

you

can

declare

a

class,

structure,

and

union

with

class

names

X,

Y,

and

Z

respectively:

class

X

{

//

members

of

class

X

};

struct

Y

{

//

members

of

struct

Y

};

union

Z

{

//

members

of

union

Z

};

You

can

then

declare

objects

of

each

of

these

class

types.

Remember

that

classes,

structures,

and

unions

are

all

types

of

C++

classes.

int

main()

{

X

xobj;

//

declare

a

class

object

of

class

type

X

Y

yobj;

//

declare

a

struct

object

of

class

type

Y

Z

zobj;

//

declare

a

union

object

of

class

type

Z

}

In

C++,

unlike

C,

you

do

not

need

to

precede

declarations

of

class

objects

with

the

keywords

union,

struct,

and

class

unless

the

name

of

the

class

is

hidden.

For

example:

Declaring

Class

Objects

214

ILE

C/C++

Language

Reference

struct

Y

{

/*

...

*/

};

class

X

{

/*

...

*/

};

int

main

()

{

int

X;

//

hides

the

class

name

X

Y

yobj;

//

valid

X

xobj;

//

error,

class

name

X

is

hidden

class

X

xobj;

//

valid

}

When

you

declare

more

than

one

class

object

in

a

declaration,

the

declarators

are

treated

as

if

declared

individually.

For

example,

if

you

declare

two

objects

of

class

S

in

a

single

declaration:

class

S

{

/*

...

*/

};

int

main()

{

S

S,T;

//

declare

two

objects

of

class

type

S

}

this

declaration

is

equivalent

to:

class

S

{

/*

...

*/

};

int

main()

{

S

S;

class

S

T;

//

keyword

class

is

required

//

since

variable

S

hides

class

type

S

}

but

is

not

equivalent

to:

class

S

{

/*

...

*/

};

int

main()

{

S

S;

S

T;

//

error,

S

class

type

is

hidden

}

You

can

also

declare

references

to

classes,

pointers

to

classes,

and

arrays

of

classes.

For

example:

class

X

{

/*

...

*/

};

struct

Y

{

/*

...

*/

};

union

Z

{

/*

...

*/

};

int

main()

{

X

xobj;

X

&xref

=

xobj;

//

reference

to

class

object

of

type

X

Y

*yptr;

//

pointer

to

struct

object

of

type

Y

Z

zarray[10];

//

array

of

10

union

objects

of

type

Z

}

Objects

of

class

types

that

are

not

copy

restricted

can

be

assigned,

passed

as

arguments

to

functions,

and

returned

by

functions.

Classes

and

Structures

2000C++

The

C++

class

is

an

extension

of

the

C

language

structure.

Because

the

only

difference

between

a

structure

and

a

class

is

that

structure

members

have

public

access

by

default

and

a

class

members

have

private

access

by

default,

you

can

use

the

keywords

class

or

struct

to

define

equivalent

classes.

Declaring

Class

Objects

Chapter

12.

Classes

215

For

example,

in

the

following

code

fragment,

the

class

X

is

equivalent

to

the

structure

Y:

class

X

{

//

private

by

default

int

a;

public:

//

public

member

function

int

f()

{

return

a

=

5;

};

};

struct

Y

{

//

public

by

default

int

f()

{

return

a

=

5;

};

private:

//

private

data

member

int

a;

};

If

you

define

a

structure

and

then

declare

an

object

of

that

structure

using

the

keyword

class,

the

members

of

the

object

are

still

public

by

default.

In

the

following

example,

main()

has

access

to

the

members

of

obj_X

even

though

obj_X

has

been

declared

using

an

elaborated

type

specifier

that

uses

the

class

key

class:

#include

<iostream>

using

namespace

std;

struct

X

{

int

a;

int

b;

};

class

X

obj_X;

int

main()

{

obj_X.a

=

0;

obj_X.b

=

1;

cout

<<

"Here

are

a

and

b:

"

<<

obj_X.a

<<

"

"

<<

obj_X.b

<<

endl;

}

The

following

is

the

output

of

the

above

example:

Here

are

a

and

b:

0

1

Related

References

v

“Structures”

on

page

44

Scope

of

Class

Names

2000C++

A

class

declaration

introduces

the

class

name

into

the

scope

where

it

is

declared.

Any

class,

object,

function

or

other

declaration

of

that

name

in

an

enclosing

scope

is

hidden.

If

a

class

name

is

declared

in

the

same

scope

as

a

function,

enumerator,

or

object

with

the

same

name,

you

must

refer

to

that

class

using

an

elaborated

type

specifier:

Declaring

Class

Objects

216

ILE

C/C++

Language

Reference

Syntax

–

Elaborated

Type

Specifier

��

class

identifier

struct

::

nested_name_specifier

union

enum

typename

nested_name_specifier

identifier

::

template_name

template

��

Syntax

–

Nested

Name

Specifier

��

class_name

::

namespace_name

template

nested_name_specifier

nested_name_specifier

��

The

following

example

must

use

an

elaborated

type

specifier

to

refer

to

class

A

because

this

class

is

hidden

by

the

definition

of

the

function

A():

class

A

{

};

void

A

(class

A*)

{

};

int

main()

{

class

A*

x;

A(x);

}

The

declaration

class

A*

x

is

an

elaborated

type

specifier.

Declaring

a

class

with

the

same

name

of

another

function,

enumerator,

or

object

as

demonstrated

above

is

not

recommended.

An

elaborated

type

specifier

can

also

be

used

in

the

incomplete

declaration

of

a

class

type

to

reserve

the

name

for

a

class

type

within

the

current

scope.

Incomplete

Class

Declarations

2000C++

An

incomplete

class

declaration

is

a

class

declaration

that

does

not

define

any

class

members.

You

cannot

declare

any

objects

of

the

class

type

or

refer

to

the

members

of

a

class

until

the

declaration

is

complete.

However,

an

incomplete

declaration

allows

you

to

make

specific

references

to

a

class

prior

to

its

definition

as

long

as

the

size

of

the

class

is

not

required.

For

example,

you

can

define

a

pointer

to

the

structure

first

in

the

definition

of

the

structure

second.

Structure

first

is

declared

in

an

incomplete

class

declaration

prior

to

the

definition

of

second,

and

the

definition

of

oneptr

in

structure

second

does

not

require

the

size

of

first:

struct

first;

//

incomplete

declaration

of

struct

first

struct

second

//

complete

declaration

of

struct

second

{

first*

oneptr;

//

pointer

to

struct

first

refers

to

//

struct

first

prior

to

its

complete

//

declaration

first

one;

//

error,

you

cannot

declare

an

object

of

//

an

incompletely

declared

class

type

int

x,

y;

};

Scope

of

Class

Names

Chapter

12.

Classes

217

struct

first

//

complete

declaration

of

struct

first

{

second

two;

//

define

an

object

of

class

type

second

int

z;

};

However,

if

you

declare

a

class

with

an

empty

member

list,

it

is

a

complete

class

declaration.

For

example:

class

X;

//

incomplete

class

declaration

class

Z

{};

//

empty

member

list

class

Y

{

public:

X

yobj;

//

error,

cannot

create

an

object

of

an

//

incomplete

class

type

Z

zobj;

//

valid

};

Related

References

v

“Class

Member

Lists”

on

page

223

Nested

Classes

2000C++

A

nested

class

is

declared

within

the

scope

of

another

class.

The

name

of

a

nested

class

is

local

to

its

enclosing

class.

Unless

you

use

explicit

pointers,

references,

or

object

names,

declarations

in

a

nested

class

can

only

use

visible

constructs,

including

type

names,

static

members,

and

enumerators

from

the

enclosing

class

and

global

variables.

Member

functions

of

a

nested

class

follow

regular

access

rules

and

have

no

special

access

privileges

to

members

of

their

enclosing

classes.

Member

functions

of

the

enclosing

class

have

no

special

access

to

members

of

a

nested

class.

The

following

example

demonstrates

this:

class

A

{

int

x;

class

B

{

};

class

C

{

//

The

compiler

cannot

allow

the

following

//

declaration

because

A::B

is

private:

//

B

b;

int

y;

void

f(A*

p,

int

i)

{

//

The

compiler

cannot

allow

the

following

//

statement

because

A::x

is

private:

//

p->x

=

i;

}

};

void

g(C*

p)

{

//

The

compiler

cannot

allow

the

following

//

statement

because

C::y

is

private:

//

int

z

=

p->y;

Scope

of

Class

Names

218

ILE

C/C++

Language

Reference

}

};

int

main()

{

}

The

compiler

would

not

allow

the

declaration

of

object

b

because

class

A::B

is

private.

The

compiler

would

not

allow

the

statement

p->x

=

i

because

A::x

is

private.

The

compiler

would

not

allow

the

statement

int

z

=

p->y

because

C::y

is

private.

You

can

define

member

functions

and

static

data

members

of

a

nested

class

in

namespace

scope.

For

example,

in

the

following

code

fragment,

you

can

access

the

static

members

x

and

y

and

member

functions

f()

and

g()

of

the

nested

class

nested

by

using

a

qualified

type

name.

Qualified

type

names

allow

you

to

define

a

typedef

to

represent

a

qualified

class

name.

You

can

then

use

the

typedef

with

the

::

(scope

resolution)

operator

to

refer

to

a

nested

class

or

class

member,

as

shown

in

the

following

example:

class

outside

{

public:

class

nested

{

public:

static

int

x;

static

int

y;

int

f();

int

g();

};

};

int

outside::nested::x

=

5;

int

outside::nested::f()

{

return

0;

};

typedef

outside::nested

outnest;

//

define

a

typedef

int

outnest::y

=

10;

//

use

typedef

with

::

int

outnest::g()

{

return

0;

};

However,

using

a

typedef

to

represent

a

nested

class

name

hides

information

and

may

make

the

code

harder

to

understand.

You

cannot

use

a

typedef

name

in

an

elaborated

type

specifier.

To

illustrate,

you

cannot

use

the

following

declaration

in

the

above

example:

class

outnest

obj;

A

nested

class

may

inherit

from

private

members

of

its

enclosing

class.

The

following

example

demonstrates

this:

class

A

{

private:

class

B

{

};

B

*z;

class

C

:

private

B

{

private:

B

y;

//

A::B

y2;

C

*x;

//

A::C

*x2;

};

};

The

nested

class

A::C

inherits

from

A::B.

The

compiler

does

not

allow

the

declarations

A::B

y2

and

A::C

*x2

because

both

A::B

and

A::C

are

private.

Scope

of

Class

Names

Chapter

12.

Classes

219

Local

Classes

2000C++

A

local

class

is

declared

within

a

function

definition.

Declarations

in

a

local

class

can

only

use

type

names,

enumerations,

static

variables

from

the

enclosing

scope,

as

well

as

external

variables

and

functions.

For

example:

int

x;

//

global

variable

void

f()

//

function

definition

{

static

int

y;

//

static

variable

y

can

be

used

by

//

local

class

int

x;

//

auto

variable

x

cannot

be

used

by

//

local

class

extern

int

g();

//

extern

function

g

can

be

used

by

//

local

class

class

local

//

local

class

{

int

g()

{

return

x;

}

//

error,

local

variable

x

//

cannot

be

used

by

g

int

h()

{

return

y;

}

//

valid,static

variable

y

int

k()

{

return

::x;

}

//

valid,

global

x

int

l()

{

return

g();

}

//

valid,

extern

function

g

};

}

int

main()

{

local*

z;

//

error:

the

class

local

is

not

visible

//

...}

Member

functions

of

a

local

class

have

to

be

defined

within

their

class

definition,

if

they

are

defined

at

all.

As

a

result,

member

functions

of

a

local

class

are

inline

functions.

Like

all

member

functions,

those

defined

within

the

scope

of

a

local

class

do

not

need

the

keyword

inline.

A

local

class

cannot

have

static

data

members.

In

the

following

example,

an

attempt

to

define

a

static

member

of

a

local

class

causes

an

error:

void

f()

{

class

local

{

int

f();

//

error,

local

class

has

noninline

//

member

function

int

g()

{return

0;}

//

valid,

inline

member

function

static

int

a;

//

error,

static

is

not

allowed

for

//

local

class

int

b;

//

valid,

nonstatic

variable

};

}

//

.

.

.

An

enclosing

function

has

no

special

access

to

members

of

the

local

class.

Related

References

v

“Member

Functions”

on

page

224

v

“Inline

Functions”

on

page

156

Scope

of

Class

Names

220

ILE

C/C++

Language

Reference

Local

Type

Names

2000C++

Local

type

names

follow

the

same

scope

rules

as

other

names.

Type

names

defined

within

a

class

declaration

have

class

scope

and

cannot

be

used

outside

their

class

without

qualification.

If

you

use

a

class

name,

typedef

name,

or

a

constant

name

that

is

used

in

a

type

name,

in

a

class

declaration,

you

cannot

redefine

that

name

after

it

is

used

in

the

class

declaration.

For

example:

int

main

()

{

typedef

double

db;

struct

st

{

db

x;

typedef

int

db;

//

error

db

y;

};

}

The

following

declarations

are

valid:

typedef

float

T;

class

s

{

typedef

int

T;

void

f(const

T);

};

Here,

function

f()

takes

an

argument

of

type

s::T.

However,

the

following

declarations,

where

the

order

of

the

members

of

s

has

been

reversed,

cause

an

error:

typedef

float

T;

class

s

{

void

f(const

T);

typedef

int

T;

};

In

a

class

declaration,

you

cannot

redefine

a

name

that

is

not

a

class

name,

or

a

typedef

name

to

a

class

name

or

typedef

name

once

you

have

used

that

name

in

the

class

declaration.

Related

References

v

“Scope”

on

page

1

v

“typedef”

on

page

35

Scope

of

Class

Names

Chapter

12.

Classes

221

Scope

of

Class

Names

222

ILE

C/C++

Language

Reference

Chapter

13.

Class

Members

and

Friends

2000C++

This

section

discusses

the

declaration

of

class

members

with

respect

to

the

information

hiding

mechanism

and

how

a

class

can

grant

functions

and

classes

access

to

its

nonpublic

members

by

the

use

of

the

friend

mechanism.

C++

expands

the

concept

of

information

hiding

to

include

the

notion

of

having

a

public

class

interface

but

a

private

implementation.

It

is

the

mechanism

for

limiting

direct

access

to

the

internal

representation

of

a

class

type

by

functions

in

a

program.

Class

Member

Lists

2000C++

An

optional

member

list

declares

subobjects

called

class

members.

Class

members

can

be

data,

functions,

nested

types,

and

enumerators.

Syntax

–

Class

Member

List

��

�

member_declaration

;

=

0

=

constant_expression

member_definition

access_specifier

:

��

The

member

list

follows

the

class

name

and

is

placed

between

braces.

The

following

applies

to

member

lists,

and

members

of

member

lists:

v

A

member_declaration

or

a

member_definition

may

be

a

declaration

or

definition

of

a

data

member,

member

function,

nested

type,

or

enumeration.

(The

enumerators

of

a

enumeration

defined

in

a

class

member

list

are

also

members

of

the

class.)

v

A

member

list

is

the

only

place

where

you

can

declare

class

members.

v

Friend

declarations

are

not

class

members

but

must

appear

in

member

lists.

v

The

member

list

in

a

class

definition

declares

all

the

members

of

a

class;

you

cannot

add

members

elsewhere.

v

You

cannot

declare

a

member

twice

in

a

member

list.

v

You

may

declare

a

data

member

or

member

function

as

static

but

not

auto,

extern,

or

register.

v

You

may

declare

a

nested

class,

a

member

class

template,

or

a

member

function,

and

define

it

outside

the

class.

v

You

must

define

static

data

members

outside

the

class.

v

Nonstatic

members

that

are

class

objects

must

be

objects

of

previously

defined

classes;

a

class

A

cannot

contain

an

object

of

class

A,

but

it

can

contain

a

pointer

or

reference

to

an

object

of

class

A.

v

You

must

specify

all

dimensions

of

a

nonstatic

array

member.

A

constant

initializer

(=

constant_expression)

may

only

appear

in

a

class

member

of

integral

or

enumeration

type

that

has

been

declared

static.

A

pure

specifier

(=

0)

indicates

that

a

function

has

no

definition.

It

is

only

used

with

member

functions

declared

as

virtual

and

replaces

the

function

definition

of

a

member

function

in

the

member

list.

©

Copyright

IBM

Corp.

1998,

2003

223

An

access

specifier

is

one

of

public,

private,

or

protected.

A

member

declaration

declares

a

class

member

for

the

class

containing

the

declaration.

The

order

of

allocation

of

nonstatic

class

members

separated

by

an

access_specifier

is

implementation-dependent.

Suppose

A

is

a

name

of

a

class.

The

following

class

members

of

A

must

have

a

name

different

from

A:

v

All

data

members

v

All

type

members

v

All

enumerators

of

enumerated

type

members

v

All

members

of

all

anonymous

union

members

Data

Members

2000C++

Data

members

include

members

that

are

declared

with

any

of

the

fundamental

types,

as

well

as

other

types,

including

pointer,

reference,

array

types,

bit

fields,

and

user-defined

types.

You

can

declare

a

data

member

the

same

way

as

a

variable,

except

that

explicit

initializers

are

not

allowed

inside

the

class

definition.

However,

a

const

static

data

member

of

integral

or

enumeration

type

may

have

an

explicit

initializer.

If

an

array

is

declared

as

a

nonstatic

class

member,

you

must

specify

all

of

the

dimensions

of

the

array.

A

class

can

have

members

that

are

of

a

class

type

or

are

pointers

or

references

to

a

class

type.

Members

that

are

of

a

class

type

must

be

of

a

class

type

that

has

been

previously

declared.

An

incomplete

class

type

can

be

used

in

a

member

declaration

as

long

as

the

size

of

the

class

is

not

needed.

For

example,

a

member

can

be

declared

that

is

a

pointer

to

an

incomplete

class

type.

A

class

X

cannot

have

a

member

that

is

of

type

X,

but

it

can

contain

pointers

to

X,

references

to

X,

and

static

objects

of

X.

Member

functions

of

X

can

take

arguments

of

type

X

and

have

a

return

type

of

X.

For

example:

class

X

{

X();

X

*xptr;

X

&xref;

static

X

xcount;

X

xfunc(X);

};

Member

Functions

2000C++

Member

functions

are

operators

and

functions

that

are

declared

as

members

of

a

class.

Member

functions

do

not

include

operators

and

functions

declared

with

the

friend

specifier.

These

are

called

friends

of

a

class.

You

can

declare

a

member

function

as

static;

this

is

called

a

static

member

function.

A

member

function

that

is

not

declared

as

static

is

called

a

nonstatic

member

function.

Suppose

that

you

create

an

object

named

x

of

class

A,

and

class

A

has

a

nonstatic

member

function

f().

If

you

call

the

function

x.f(),

the

keyword

this

in

the

body

of

f()

is

the

address

of

x.

Class

Member

Lists

224

ILE

C/C++

Language

Reference

The

definition

of

a

member

function

is

within

the

scope

of

its

enclosing

class.

The

body

of

a

member

function

is

analyzed

after

the

class

declaration

so

that

members

of

that

class

can

be

used

in

the

member

function

body,

even

if

the

member

function

definition

appears

before

the

declaration

of

that

member

in

the

class

member

list.

When

the

function

add()

is

called

in

the

following

example,

the

data

variables

a,

b,

and

c

can

be

used

in

the

body

of

add().

class

x

{

public:

int

add()

//

inline

member

function

add

{return

a+b+c;};

private:

int

a,b,c;

};

Inline

Member

Functions

You

may

either

define

a

member

function

inside

its

class

definition,

or

you

may

define

it

outside

if

you

have

already

declared

(but

not

defined)

the

member

function

in

the

class

definition.

A

member

function

that

is

defined

inside

its

class

member

list

is

called

an

inline

member

function.

Member

functions

containing

a

few

lines

of

code

are

usually

declared

inline.

In

the

above

example,

add()

is

an

inline

member

function.

If

you

define

a

member

function

outside

of

its

class

definition,

it

must

appear

in

a

namespace

scope

enclosing

the

class

definition.

You

must

also

qualify

the

member

function

name

using

the

scope

resolution

(::)

operator.

An

equivalent

way

to

declare

an

inline

member

function

is

to

either

declare

it

in

the

class

with

the

inline

keyword

(and

define

the

function

outside

of

its

class)

or

to

define

it

outside

of

the

class

declaration

using

the

inline

keyword.

In

the

following

example,

member

function

Y::f()

is

an

inline

member

function:

struct

Y

{

private:

char

a*;

public:

char*

f()

{

return

a;

}

};

The

following

example

is

equivalent

to

the

previous

example;

Y::f()

is

an

inline

member

function:

struct

Y

{

private:

char

a*;

public:

char*

f();

};

inline

char*

Z::f()

{

return

a;

}

The

inline

specifier

does

not

affect

the

linkage

of

a

member

or

nonmember

function:

linkage

is

external

by

default.

Member

Functions

of

Local

Classes

Member

functions

of

a

local

class

must

be

defined

within

their

class

definition.

As

a

result,

member

functions

of

a

local

class

are

implicitly

inline

functions.

These

inline

member

functions

have

no

linkage.

Member

Functions

Chapter

13.

Class

Members

and

Friends

225

Related

References

v

“Friends”

on

page

238

v

“Static

Member

Functions”

on

page

235

v

Chapter

7,

“Functions,”

on

page

135

v

“Inline

Functions”

on

page

156

v

“Local

Classes”

on

page

220

const

and

volatile

Member

Functions

2000C++

A

member

function

declared

with

the

const

qualifier

can

be

called

for

constant

and

nonconstant

objects.

A

nonconstant

member

function

can

only

be

called

for

a

nonconstant

object.

Similarly,

a

member

function

declared

with

the

volatile

qualifier

can

be

called

for

volatile

and

nonvolatile

objects.

A

nonvolatile

member

function

can

only

be

called

for

a

nonvolatile

object.

Related

References

v

“Type

Qualifiers”

on

page

57

v

“The

const

Type

Qualifier”

on

page

59

Virtual

Member

Functions

2000C++

Virtual

member

functions

are

declared

with

the

keyword

virtual.

They

allow

dynamic

binding

of

member

functions.

Because

all

virtual

functions

must

be

member

functions,

virtual

member

functions

are

simply

called

virtual

functions.

If

the

definition

of

a

virtual

function

is

replaced

by

a

pure

specifier

in

the

declaration

of

the

function,

the

function

is

said

to

be

declared

pure.

A

class

that

has

at

least

one

pure

virtual

function

is

called

an

abstract

class.

Related

References

v

“Virtual

Functions”

on

page

262

v

“Abstract

Classes”

on

page

268

Special

Member

Functions

2000C++

Special

member

functions

are

used

to

create,

destroy,

initialize,

convert,

and

copy

class

objects.

These

include

the

following:

v

Constructors

v

Destructors

v

Conversion

constructors

v

Conversion

functions

v

Copy

constructors

Related

References

v

Chapter

15,

“Special

Member

Functions,”

on

page

271

Member

Scope

2000C++

Member

functions

and

static

members

can

be

defined

outside

their

class

declaration

if

they

have

already

been

declared,

but

not

defined,

in

the

class

member

list.

Nonstatic

data

members

are

defined

when

an

object

of

their

class

is

created.

The

declaration

of

a

static

data

member

is

not

a

definition.

The

declaration

of

a

member

function

is

a

definition

if

the

body

of

the

function

is

also

given.

Member

Functions

226

ILE

C/C++

Language

Reference

Whenever

the

definition

of

a

class

member

appears

outside

of

the

class

declaration,

the

member

name

must

be

qualified

by

the

class

name

using

the

::

(scope

resolution)

operator.

The

following

example

defines

a

member

function

outside

of

its

class

declaration.

#include

<iostream>

using

namespace

std;

struct

X

{

int

a,

b

;

//

member

function

declaration

only

int

add();

};

//

global

variable

int

a

=

10;

//

define

member

function

outside

its

class

declaration

int

X::add()

{

return

a

+

b;

}

int

main()

{

int

answer;

X

xobject;

xobject.a

=

1;

xobject.b

=

2;

answer

=

xobject.add();

cout

<<

xobject.a

<<

"

+

"

<<

xobject.b

<<

"

=

"

<<

answer

<<

endl;

}

The

output

for

this

example

is:

1

+

2

=

3

All

member

functions

are

in

class

scope

even

if

they

are

defined

outside

their

class

declaration.

In

the

above

example,

the

member

function

add()

returns

the

data

member

a,

not

the

global

variable

a.

The

name

of

a

class

member

is

local

to

its

class.

Unless

you

use

one

of

the

class

access

operators,

.

(dot),

or

->

(arrow),

or

::

(scope

resolution)

operator,

you

can

only

use

a

class

member

in

a

member

function

of

its

class

and

in

nested

classes.

You

can

only

use

types,

enumerations

and

static

members

in

a

nested

class

without

qualification

with

the

::

operator.

The

order

of

search

for

a

name

in

a

member

function

body

is:

1.

Within

the

member

function

body

itself

2.

Within

all

the

enclosing

classes,

including

inherited

members

of

those

classes

3.

Within

the

lexical

scope

of

the

body

declaration

The

search

of

the

enclosing

classes,

including

inherited

members,

is

demonstrated

in

the

following

example:

class

A

{

/*

...

*/

};

class

B

{

/*

...

*/

};

class

C

{

/*

...

*/

};

class

Z

:

A

{

class

Y

:

B

{

class

X

:

C

{

int

f();

/*

...

*/

};

};

};

int

Z::Y::X

f()

Member

Scope

Chapter

13.

Class

Members

and

Friends

227

{

char

j;

return

0;

}

In

this

example,

the

search

for

the

name

j

in

the

definition

of

the

function

f

follows

this

order:

1.

In

the

body

of

the

function

f

2.

In

X

and

in

its

base

class

C

3.

In

Y

and

in

its

base

class

B

4.

In

Z

and

in

its

base

class

A

5.

In

the

lexical

scope

of

the

body

of

f.

In

this

case,

this

is

global

scope.

Note

that

when

the

containing

classes

are

being

searched,

only

the

definitions

of

the

containing

classes

and

their

base

classes

are

searched.

The

scope

containing

the

base

class

definitions

(global

scope,

in

this

example)

is

not

searched.

Related

References

v

“Class

Scope”

on

page

4

Pointers

to

Members

2000C++

Pointers

to

members

allow

you

to

refer

to

nonstatic

members

of

class

objects.

You

cannot

use

a

pointer

to

member

to

point

to

a

static

class

member

because

the

address

of

a

static

member

is

not

associated

with

any

particular

object.

To

point

to

a

static

class

member,

you

must

use

a

normal

pointer.

You

can

use

pointers

to

member

functions

in

the

same

manner

as

pointers

to

functions.

You

can

compare

pointers

to

member

functions,

assign

values

to

them,

and

use

them

to

call

member

functions.

Note

that

a

member

function

does

not

have

the

same

type

as

a

nonmember

function

that

has

the

same

number

and

type

of

arguments

and

the

same

return

type.

Pointers

to

members

can

be

declared

and

used

as

shown

in

the

following

example:

#include

<iostream>

using

namespace

std;

class

X

{

public:

int

a;

void

f(int

b)

{

cout

<<

"The

value

of

b

is

"<<

b

<<

endl;

}

};

int

main()

{

//

declare

pointer

to

data

member

int

X::*ptiptr

=

&X::a;

//

declare

a

pointer

to

member

function

void

(X::*

ptfptr)

(int)

=

&X::f;

//

create

an

object

of

class

type

X

X

xobject;

//

initialize

data

member

xobject.*ptiptr

=

10;

cout

<<

"The

value

of

a

is

"

<<

xobject.*ptiptr

<<

endl;

Member

Scope

228

ILE

C/C++

Language

Reference

//

call

member

function

(xobject.*ptfptr)

(20);

}

The

output

for

this

example

is:

The

value

of

a

is

10

The

value

of

b

is

20

To

reduce

complex

syntax,

you

can

declare

a

typedef

to

be

a

pointer

to

a

member.

A

pointer

to

a

member

can

be

declared

and

used

as

shown

in

the

following

code

fragment:

typedef

int

X::*my_pointer_to_member;

typedef

void

(X::*my_pointer_to_function)

(int);

int

main()

{

my_pointer_to_member

ptiptr

=

&X::a;

my_pointer_to_function

ptfptr

=

&X::f;

X

xobject;

xobject.*ptiptr

=

10;

cout

<<

"The

value

of

a

is

"

<<

xobject.*ptiptr

<<

endl;

(xobject.*ptfptr)

(20);

}

The

pointer

to

member

operators

.*

and

->*

are

used

to

bind

a

pointer

to

a

member

of

a

specific

class

object.

Because

the

precedence

of

()

(function

call

operator)

is

higher

than

.*

and

->*,

you

must

use

parentheses

to

call

the

function

pointed

to

by

ptf.

Related

References

v

“C++

Pointer

to

Member

Operators

.*

−>*”

on

page

118

v

“Objects”

on

page

29

The

this

Pointer

2000C++

The

keyword

this

identifies

a

special

type

of

pointer.

Suppose

that

you

create

an

object

named

x

of

class

A,

and

class

A

has

a

nonstatic

member

function

f().

If

you

call

the

function

x.f(),

the

keyword

this

in

the

body

of

f()

is

the

address

of

x.

You

cannot

declare

the

this

pointer

or

make

assignments

to

it.

A

static

member

function

does

not

have

a

this

pointer.

The

type

of

the

this

pointer

for

a

member

function

of

a

class

type

X,

is

X*

const.

If

the

member

function

is

declared

with

the

const

qualifier,

the

type

of

the

this

pointer

for

that

member

function

for

class

X,

is

const

X*

const.

If

the

member

function

is

declared

with

the

volatile

qualifier,

the

type

of

the

this

pointer

for

that

member

function

for

class

X

is

volatile

X*

const.

For

example,

the

compiler

will

not

allow

the

following:

struct

A

{

int

a;

int

f()

const

{

return

a++;

}

};

The

compiler

will

not

allow

the

statement

a++

in

the

body

of

function

f().

In

the

function

f(),

the

this

pointer

is

of

type

A*

const.

The

function

f()

is

trying

to

modify

part

of

the

object

to

which

this

points.

Pointers

to

Members

Chapter

13.

Class

Members

and

Friends

229

The

this

pointer

is

passed

as

a

hidden

argument

to

all

nonstatic

member

function

calls

and

is

available

as

a

local

variable

within

the

body

of

all

nonstatic

functions.

For

example,

you

can

refer

to

the

particular

class

object

that

a

member

function

is

called

for

by

using

the

this

pointer

in

the

body

of

the

member

function.

The

following

code

example

produces

the

output

a

=

5:

#include

<iostream>

using

namespace

std;

struct

X

{

private:

int

a;

public:

void

Set_a(int

a)

{

//

The

’this’

pointer

is

used

to

retrieve

’xobj.a’

//

hidden

by

the

automatic

variable

’a’

this->a

=

a;

}

void

Print_a()

{

cout

<<

"a

=

"

<<

a

<<

endl;

}

};

int

main()

{

X

xobj;

int

a

=

5;

xobj.Set_a(a);

xobj.Print_a();

}

In

the

member

function

Set_a(),

the

statement

this->a

=

a

uses

the

this

pointer

to

retrieve

xobj.a

hidden

by

the

automatic

variable

a.

Unless

a

class

member

name

is

hidden,

using

the

class

member

name

is

equivalent

to

using

the

class

member

name

with

the

this

pointer

and

the

class

member

access

operator

(->).

The

example

in

the

first

column

of

the

following

table

shows

code

that

uses

class

members

without

the

this

pointer.

The

code

in

the

second

column

uses

the

variable

THIS

to

simulate

the

first

column’s

hidden

use

of

the

this

pointer:

The

this

Pointer

230

ILE

C/C++

Language

Reference

Code

without

using

this

pointer

Equivalent

code,

the

THIS

variable

simulating

the

hidden

use

of

the

this

pointer

#include

<string>

#include

<iostream>

using

namespace

std;

struct

X

{

private:

int

len;

char

*ptr;

public:

int

GetLen()

{

return

len;

}

char

*

GetPtr()

{

return

ptr;

}

X&

Set(char

*);

X&

Cat(char

*);

X&

Copy(X&);

void

Print();

};

X&

X::Set(char

*pc)

{

len

=

strlen(pc);

ptr

=

new

char[len];

strcpy(ptr,

pc);

return

*this;

}

X&

X::Cat(char

*pc)

{

len

+=

strlen(pc);

strcat(ptr,pc);

return

*this;

}

X&

X::Copy(X&

x)

{

Set(x.GetPtr());

return

*this;

}

void

X::Print()

{

cout

<<

ptr

<<

endl;

}

int

main()

{

X

xobj1;

xobj1.Set("abcd")

.Cat("efgh");

xobj1.Print();

X

xobj2;

xobj2.Copy(xobj1)

.Cat("ijkl");

xobj2.Print();

}

#include

<string>

#include

<iostream>

using

namespace

std;

struct

X

{

private:

int

len;

char

*ptr;

public:

int

GetLen

(X*

const

THIS)

{

return

THIS->len;

}

char

*

GetPtr

(X*

const

THIS)

{

return

THIS->ptr;

}

X&

Set(X*

const,

char

*);

X&

Cat(X*

const,

char

*);

X&

Copy(X*

const,

X&);

void

Print(X*

const);

};

X&

X::Set(X*

const

THIS,

char

*pc)

{

THIS->len

=

strlen(pc);

THIS->ptr

=

new

char[THIS->len];

strcpy(THIS->ptr,

pc);

return

*THIS;

}

X&

X::Cat(X*

const

THIS,

char

*pc)

{

THIS->len

+=

strlen(pc);

strcat(THIS->ptr,

pc);

return

*THIS;

}

X&

X::Copy(X*

const

THIS,

X&

x)

{

THIS->Set(THIS,

x.GetPtr(&x));

return

*THIS;

}

void

X::Print(X*

const

THIS)

{

cout

<<

THIS->ptr

<<

endl;

}

int

main()

{

X

xobj1;

xobj1.Set(&xobj1

,

"abcd")

.Cat(&xobj1

,

"efgh");

xobj1.Print(&xobj1);

X

xobj2;

xobj2.Copy(&xobj2

,

xobj1)

.Cat(&xobj2

,

"ijkl");

xobj2.Print(&xobj2);

}

Both

examples

produces

the

following

output:

abcdefgh

abcdefghijkl

Related

References

The

this

Pointer

Chapter

13.

Class

Members

and

Friends

231

v

“Overloading

Assignments”

on

page

205

v

“Copy

Constructors”

on

page

291

Static

Members

2000C++

Class

members

can

be

declared

using

the

storage

class

specifier

static

in

the

class

member

list.

Only

one

copy

of

the

static

member

is

shared

by

all

objects

of

a

class

in

a

program.

When

you

declare

an

object

of

a

class

having

a

static

member,

the

static

member

is

not

part

of

the

class

object.

A

typical

use

of

static

members

is

for

recording

data

common

to

all

objects

of

a

class.

For

example,

you

can

use

a

static

data

member

as

a

counter

to

store

the

number

of

objects

of

a

particular

class

type

that

are

created.

Each

time

a

new

object

is

created,

this

static

data

member

can

be

incremented

to

keep

track

of

the

total

number

of

objects.

You

access

a

static

member

by

qualifying

the

class

name

using

the

::

(scope

resolution)

operator.

In

the

following

example,

you

can

refer

to

the

static

member

f()

of

class

type

X

as

X::f()

even

if

no

object

of

type

X

is

ever

declared:

struct

X

{

static

int

f();

};

int

main()

{

X::f();

}

Related

References

v

“static

Storage

Class

Specifier”

on

page

34

v

“Class

Member

Lists”

on

page

223

Using

the

Class

Access

Operators

with

Static

Members

2000C++

You

do

not

have

to

use

the

class

member

access

syntax

to

refer

to

a

static

member;

to

access

a

static

member

s

of

class

X,

you

could

use

the

expression

X::s.

The

following

example

demonstrates

accessing

a

static

member:

#include

<iostream>

using

namespace

std;

struct

A

{

static

void

f()

{

cout

<<

"In

static

function

A::f()"

<<

endl;

}

};

int

main()

{

//

no

object

required

for

static

member

A::f();

A

a;

A*

ap

=

&a;

a.f();

ap->f();

}

The

three

statements

A::f(),

a.f(),

and

ap->f()

all

call

the

same

static

member

function

A::f().

You

can

directly

refer

to

a

static

member

in

the

same

scope

of

its

class,

or

in

the

scope

of

a

class

derived

from

the

static

member’s

class.

The

following

example

The

this

Pointer

232

ILE

C/C++

Language

Reference

demonstrates

the

latter

case

(directly

referring

to

a

static

member

in

the

scope

of

a

class

derived

from

the

static

member’s

class):

#include

<iostream>

using

namespace

std;

int

g()

{

cout

<<

"In

function

g()"

<<

endl;

return

0;

}

class

X

{

public:

static

int

g()

{

cout

<<

"In

static

member

function

X::g()"

<<

endl;

return

1;

}

};

class

Y:

public

X

{

public:

static

int

i;

};

int

Y::i

=

g();

int

main()

{

}

The

following

is

the

output

of

the

above

code:

In

static

member

function

X::g()

The

initialization

int

Y::i

=

g()

calls

X::g(),

not

the

function

g()

declared

in

the

global

namespace.

A

static

member

can

be

referred

to

independently

of

any

association

with

a

class

object

because

there

is

only

one

static

member

shared

by

all

objects

of

a

class.

A

static

member

will

exist

even

if

no

objects

of

its

class

have

been

declared.

Related

References

v

“Dot

Operator

.”

on

page

91

v

“Arrow

Operator

−>”

on

page

91

Static

Data

Members

2000C++

Only

one

copy

of

a

static

data

member

of

a

class

exists;

it

is

shared

with

all

objects

of

that

class.

Static

data

members

of

a

class

in

namespace

scope

have

external

linkage.

Static

data

members

follow

the

usual

class

access

rules,

except

that

they

can

be

initialized

in

file

scope.

Static

data

members

and

their

initializers

can

access

other

static

private

and

protected

members

of

their

class.

The

initializer

for

a

static

data

member

is

in

the

scope

of

the

class

declaring

the

member.

A

static

data

member

can

be

of

any

type

except

for

void

or

void

qualified

with

const

or

volatile.

The

declaration

of

a

static

data

member

in

the

member

list

of

a

class

is

not

a

definition.

The

definition

of

a

static

data

member

is

equivalent

to

an

external

variable

definition.

You

must

define

the

static

member

outside

of

the

class

declaration

in

namespace

scope.

Static

Members

Chapter

13.

Class

Members

and

Friends

233

For

example:

class

X

{

public:

static

int

i;

};

int

X::i

=

0;

//

definition

outside

class

declaration

Once

you

define

a

static

data

member,

it

exists

even

though

no

objects

of

the

static

data

member’s

class

exist.

In

the

above

example,

no

objects

of

class

X

exist

even

though

the

static

data

member

X::i

has

been

defined.

The

following

example

shows

how

you

can

initialize

static

members

using

other

static

members,

even

though

these

members

are

private:

class

C

{

static

int

i;

static

int

j;

static

int

k;

static

int

l;

static

int

m;

static

int

n;

static

int

p;

static

int

q;

static

int

r;

static

int

s;

static

int

f()

{

return

0;

}

int

a;

public:

C()

{

a

=

0;

}

};

C

c;

int

C::i

=

C::f();

//

initialize

with

static

member

function

int

C::j

=

C::i;

//

initialize

with

another

static

data

member

int

C::k

=

c.f();

//

initialize

with

member

function

from

an

object

int

C::l

=

c.j;

//

initialize

with

data

member

from

an

object

int

C::s

=

c.a;

//

initialize

with

nonstatic

data

member

int

C::r

=

1;

//

initialize

with

a

constant

value

class

Y

:

private

C

{}

y;

int

C::m

=

Y::f();

int

C::n

=

Y::r;

int

C::p

=

y.r;

//

error

int

C::q

=

y.f();

//

error

The

initializations

of

C::p

and

C::x

cause

errors

because

y

is

an

object

of

a

class

that

is

derived

privately

from

C,

and

its

members

are

not

accessible

to

members

of

C.

If

a

static

data

member

is

of

const

integral

or

const

enumeration

type,

you

may

specify

a

constant

initializer

in

the

static

data

member’s

declaration.

This

constant

initializer

must

be

an

integral

constant

expression.

Note

that

the

constant

initializer

is

not

a

definition.

You

still

need

to

define

the

static

member

in

an

enclosing

namespace.

The

following

example

demonstrates

this:

#include

<iostream>

using

namespace

std;

struct

X

{

static

const

int

a

=

76;

};

const

int

X::a;

Static

Members

234

ILE

C/C++

Language

Reference

int

main()

{

cout

<<

X::a

<<

endl;

}

The

tokens

=

76

at

the

end

of

the

declaration

of

static

data

member

a

is

a

constant

initializer.

You

can

only

have

one

definition

of

a

static

member

in

a

program.

Unnamed

classes

and

classes

contained

within

unnamed

classes

cannot

have

static

data

members.

You

cannot

declare

a

static

data

member

as

mutable.

Local

classes

cannot

have

static

data

members.

Static

Member

Functions

2000C++

You

cannot

have

static

and

nonstatic

member

functions

with

the

same

names

and

the

same

number

and

type

of

arguments.

Like

static

data

members,

you

may

access

a

static

member

function

f()

of

a

class

A

without

using

an

object

of

class

A.

A

static

member

function

does

not

have

a

this

pointer.

The

following

example

demonstrates

this:

#include

<iostream>

using

namespace

std;

struct

X

{

private:

int

i;

static

int

si;

public:

void

set_i(int

arg)

{

i

=

arg;

}

static

void

set_si(int

arg)

{

si

=

arg;

}

void

print_i()

{

cout

<<

"Value

of

i

=

"

<<

i

<<

endl;

cout

<<

"Again,

value

of

i

=

"

<<

this->i

<<

endl;

}

static

void

print_si()

{

cout

<<

"Value

of

si

=

"

<<

si

<<

endl;

//

cout

<<

"Again,

value

of

si

=

"

<<

this->si

<<

endl;

}

};

int

X::si

=

77;

//

Initialize

static

data

member

int

main()

{

X

xobj;

xobj.set_i(11);

xobj.print_i();

//

static

data

members

and

functions

belong

to

the

class

and

//

can

be

accessed

without

using

an

object

of

class

X

X::print_si();

X::set_si(22);

X::print_si();

}

Static

Members

Chapter

13.

Class

Members

and

Friends

235

The

following

is

the

output

of

the

above

example:

Value

of

i

=

11

Again,

value

of

i

=

11

Value

of

si

=

77

Value

of

si

=

22

The

compiler

does

not

allow

the

member

access

operation

this->si

in

function

A::print_si()

because

this

member

function

has

been

declared

as

static,

and

therefore

does

not

have

a

this

pointer.

You

can

call

a

static

member

function

using

the

this

pointer

of

a

nonstatic

member

function.

In

the

following

example,

the

nonstatic

member

function

printall()

calls

the

static

member

function

f()

using

the

this

pointer:

#include

<iostream>

using

namespace

std;

class

C

{

static

void

f()

{

cout

<<

"Here

is

i:

"

<<

i

<<

endl;

}

static

int

i;

int

j;

public:

C(int

firstj):

j(firstj)

{

}

void

printall();

};

void

C::printall()

{

cout

<<

"Here

is

j:

"

<<

this->j

<<

endl;

this->f();

}

int

C::i

=

3;

int

main()

{

C

obj_C(0);

obj_C.printall();

}

The

following

is

the

output

of

the

above

example:

Here

is

j:

0

Here

is

i:

3

A

static

member

function

cannot

be

declared

with

the

keywords

virtual,

const,

volatile,

or

const

volatile.

A

static

member

function

can

access

only

the

names

of

static

members,

enumerators,

and

nested

types

of

the

class

in

which

it

is

declared.

Suppose

a

static

member

function

f()

is

a

member

of

class

X.

The

static

member

function

f()

cannot

access

the

nonstatic

members

X

or

the

nonstatic

members

of

a

base

class

of

X.

Related

References

v

“The

this

Pointer”

on

page

229

Member

Access

2000C++

Member

access

determines

if

a

class

member

is

accessible

in

an

expression

or

declaration.

Suppose

x

is

a

member

of

class

A.

Class

member

x

can

be

declared

to

have

one

of

the

following

levels

of

accessibility:

Static

Members

236

ILE

C/C++

Language

Reference

v

public:

x

can

be

used

anywhere

without

the

access

restrictions

defined

by

private

or

protected.

v

private:

x

can

be

used

only

by

the

members

and

friends

of

class

A.

v

protected:

x

can

be

used

only

by

the

members

and

friends

of

class

A,

and

the

members

and

friends

of

classes

derived

from

class

A.

Members

of

classes

declared

with

the

keyword

class

are

private

by

default.

Members

of

classes

declared

with

the

keyword

struct

or

union

are

public

by

default.

To

control

the

access

of

a

class

member,

you

use

one

of

the

access

specifiers

public,

private,

or

protected

as

a

label

in

a

class

member

list.

The

following

example

demonstrates

these

access

specifiers:

struct

A

{

friend

class

C;

private:

int

a;

public:

int

b;

protected:

int

c;

};

struct

B

:

A

{

void

f()

{

//

a

=

1;

b

=

2;

c

=

3;

}

};

struct

C

{

void

f(A

x)

{

x.a

=

4;

x.b

=

5;

x.c

=

6;

}

};

int

main()

{

A

y;

//

y.a

=

7;

y.b

=

8;

//

y.c

=

9;

B

z;

//

z.a

=

10;

z.b

=

11;

//

z.c

=

12;

}

The

following

table

lists

the

access

of

data

members

A::a

A::b,

and

A::c

in

various

scopes

of

the

above

example:

Scope

A::a

A::b

A::c

function

B::f()

No

access.

Member

A::a

is

private.

Access.

Member

A::b

is

public.

Access.

Class

B

inherits

from

A.

function

C::f()

Access.

Class

C

is

a

friend

of

A.

Access.

Member

A::b

is

public.

Access.

Class

C

is

a

friend

of

A.

object

y

in

main()

No

access.

Member

y.a

is

private.

Access.

Member

y.a

is

public.

No

access.

Member

y.c

is

protected.

Member

Access

Chapter

13.

Class

Members

and

Friends

237

Scope

A::a

A::b

A::c

object

z

in

main()

No

access.

Member

z.a

is

private.

Access.

Member

z.a

is

public.

No

access.

Member

z.c

is

protected.

An

access

specifier

specifies

the

accessibility

of

members

that

follow

it

until

the

next

access

specifier

or

until

the

end

of

the

class

definition.

You

can

use

any

number

of

access

specifiers

in

any

order.

If

you

later

define

a

class

member

within

its

class

definition,

its

access

specification

must

be

the

same

as

its

declaration.

The

following

example

demonstrates

this:

class

A

{

class

B;

public:

class

B

{

};

};

The

compiler

will

not

allow

the

definition

of

class

B

because

this

class

has

already

been

declared

as

private.

A

class

member

has

the

same

access

control

regardless

whether

it

has

been

defined

within

its

class

or

outside

its

class.

Access

control

applies

to

names.

In

particular,

if

you

add

access

control

to

a

typedef

name,

it

affects

only

the

typedef

name.

The

following

example

demonstrates

this:

class

A

{

class

B

{

};

public:

typedef

B

C;

};

int

main()

{

A::C

x;

//

A::B

y;

}

The

compiler

will

allow

the

declaration

A::C

x

because

the

typedef

name

A::C

is

public.

The

compiler

would

not

allow

the

declaration

A::B

y

because

A::B

is

private.

Note

that

accessibility

and

visibility

are

independent.

Visibility

is

based

on

the

scoping

rules

of

C++.

A

class

member

can

be

visible

and

inaccessible

at

the

same

time.

Friends

2000C++

A

friend

of

a

class

X

is

a

function

or

class

that

is

not

a

member

of

X,

but

is

granted

the

same

access

to

X

as

the

members

of

X.

Functions

declared

with

the

friend

specifier

in

a

class

member

list

are

called

friend

functions

of

that

class.

Classes

declared

with

the

friend

specifier

in

the

member

list

of

another

class

are

called

friend

classes

of

that

class.

A

class

Y

must

be

defined

before

any

member

of

Y

can

be

declared

a

friend

of

another

class.

In

the

following

example,

the

friend

function

print

is

a

member

of

class

Y

and

accesses

the

private

data

members

a

and

b

of

class

X.

Member

Access

238

ILE

C/C++

Language

Reference

#include

<iostream>

using

namespace

std;

class

X;

class

Y

{

public:

void

print(X&

x);

};

class

X

{

int

a,

b;

friend

void

Y::print(X&

x);

public:

X()

:

a(1),

b(2)

{

}

};

void

Y::print(X&

x)

{

cout

<<

"a

is

"

<<

x.a

<<

endl;

cout

<<

"b

is

"

<<

x.b

<<

endl;

}

int

main()

{

X

xobj;

Y

yobj;

yobj.print(xobj);

}

The

following

is

the

output

of

the

above

example:

a

is

1

b

is

2

You

can

declare

an

entire

class

as

a

friend.

Suppose

class

F

is

a

friend

of

class

A.

This

means

that

every

member

function

and

static

data

member

definition

of

class

F

has

access

to

class

A.

In

the

following

example,

the

friend

class

F

has

a

member

function

print

that

accesses

the

private

data

members

a

and

b

of

class

X

and

performs

the

same

task

as

the

friend

function

print

in

the

above

example.

Any

other

members

declared

in

class

F

also

have

access

to

all

members

of

class

X:

#include

<iostream>

using

namespace

std;

class

X

{

int

a,

b;

friend

class

F;

public:

X()

:

a(1),

b(2)

{

}

};

class

F

{

public:

void

print(X&

x)

{

cout

<<

"a

is

"

<<

x.a

<<

endl;

cout

<<

"b

is

"

<<

x.b

<<

endl;

}

};

int

main()

{

X

xobj;

F

fobj;

fobj.print(xobj);

}

Friends

Chapter

13.

Class

Members

and

Friends

239

The

following

is

the

output

of

the

above

example:

a

is

1

b

is

2

You

must

use

an

elaborated

type

specifier

when

you

declare

a

class

as

a

friend.

The

following

example

demonstrates

this:

class

F;

class

G;

class

X

{

friend

class

F;

friend

G;

};

You

cannot

define

a

class

in

a

friend

declaration.

For

example,

the

compiler

will

not

allow

the

following:

class

F;

class

X

{

friend

class

F

{

};

};

However,

you

can

define

a

function

in

a

friend

declaration.

The

class

must

be

a

non-local

class,

function,

the

function

name

must

be

unqualified,

and

the

function

has

namespace

scope.

The

following

example

demonstrates

this:

class

A

{

void

g();

};

void

z()

{

class

B

{

//

friend

void

f()

{

};

};

}

class

C

{

//

friend

void

A::g()

{

}

friend

void

h()

{

}

};

The

compiler

would

not

allow

the

function

definition

of

f()

or

g().

The

compiler

will

allow

the

definition

of

h().

You

cannot

declare

a

friend

with

a

storage

class

specifier.

Related

References

v

“Member

Access”

on

page

236

v

“Inherited

Member

Access”

on

page

250

Friend

Scope

2000C++

The

name

of

a

friend

function

or

class

first

introduced

in

a

friend

declaration

is

not

in

the

scope

of

the

class

granting

friendship

(also

called

the

enclosing

class)

and

is

not

a

member

of

the

class

granting

friendship.

The

name

of

a

function

first

introduced

in

a

friend

declaration

is

in

the

scope

of

the

first

nonclass

scope

that

contains

the

enclosing

class.

The

body

of

a

function

provided

in

a

friend

declaration

is

handled

in

the

same

way

as

a

member

function

defined

within

a

class.

Processing

of

the

definition

does

not

start

until

the

end

of

Friends

240

ILE

C/C++

Language

Reference

the

outermost

enclosing

class.

In

addition,

unqualified

names

in

the

body

of

the

function

definition

are

searched

for

starting

from

the

class

containing

the

function

definition.

A

class

that

is

first

declared

in

a

friend

declaration

is

equivalent

to

an

extern

declaration.

For

example:

class

B

{};

class

A

{

friend

class

B;

//

global

class

B

is

a

friend

of

A

};

If

the

name

of

a

friend

class

has

been

introduced

before

the

friend

declaration,

the

compiler

searches

for

a

class

name

that

matches

the

name

of

the

friend

class

beginning

at

the

scope

of

the

friend

declaration.

If

the

declaration

of

a

nested

class

is

followed

by

the

declaration

of

a

friend

class

with

the

same

name,

the

nested

class

is

a

friend

of

the

enclosing

class.

The

scope

of

a

friend

class

name

is

the

first

nonclass

enclosing

scope.

For

example:

class

A

{

class

B

{

//

arbitrary

nested

class

definitions

friend

class

C;

};

};

is

equivalent

to:

class

C;

class

A

{

class

B

{

//

arbitrary

nested

class

definitions

friend

class

C;

};

};

If

the

friend

function

is

a

member

of

another

class,

you

need

to

use

the

scope

resolution

operator

(::).

For

example:

class

A

{

public:

int

f()

{

}

};

class

B

{

friend

int

A::f();

};

Friends

of

a

base

class

are

not

inherited

by

any

classes

derived

from

that

base

class.

The

following

example

demonstrates

this:

class

A

{

friend

class

B;

int

a;

};

class

B

{

};

class

C

:

public

B

{

void

f(A*

p)

{

//

p->a

=

2;

}

};

Friends

Chapter

13.

Class

Members

and

Friends

241

The

compiler

would

not

allow

the

statement

p->a

=

2

because

class

C

is

not

a

friend

of

class

A,

although

C

inherits

from

a

friend

of

A.

Friendship

is

not

transitive.

The

following

example

demonstrates

this:

class

A

{

friend

class

B;

int

a;

};

class

B

{

friend

class

C;

};

class

C

{

void

f(A*

p)

{

//

p->a

=

2;

}

};

The

compiler

would

not

allow

the

statement

p->a

=

2

because

class

C

is

not

a

friend

of

class

A,

although

C

is

a

friend

of

a

friend

of

A.

If

you

declare

a

friend

in

a

local

class,

and

the

friend’s

name

is

unqualified,

the

compiler

will

look

for

the

name

only

within

the

innermost

enclosing

nonclass

scope.

You

must

declare

a

function

before

declaring

it

as

a

friend

of

a

local

scope.

You

do

not

have

to

do

so

with

classes.

However,

a

declaration

of

a

friend

class

will

hide

a

class

in

an

enclosing

scope

with

the

same

name.

The

following

example

demonstrates

this:

class

X

{

};

void

a();

void

f()

{

class

Y

{

};

void

b();

class

A

{

friend

class

X;

friend

class

Y;

friend

class

Z;

//

friend

void

a();

friend

void

b();

//

friend

void

c();

};

::X

moocow;

//

X

moocow2;

}

In

the

above

example,

the

compiler

will

allow

the

following

statements:

v

friend

class

X:

This

statement

does

not

declare

::X

as

a

friend

of

A,

but

the

local

class

X

as

a

friend,

even

though

this

class

is

not

otherwise

declared.

v

friend

class

Y:

Local

class

Y

has

been

declared

in

the

scope

of

f().

v

friend

class

Z:

This

statement

declares

the

local

class

Z

as

a

friend

of

A

even

though

Z

is

not

otherwise

declared.

v

friend

void

b():

Function

b()

has

been

declared

in

the

scope

of

f().

v

::X

moocow:

This

declaration

creates

an

object

of

the

nonlocal

class

::X.

The

compiler

would

not

allow

the

following

statements:

v

friend

void

a():

This

statement

does

not

consider

function

a()

declared

in

namespace

scope.

Since

function

a()

has

not

been

declared

in

the

scope

of

f(),

the

compiler

would

not

allow

this

statement.

Friends

242

ILE

C/C++

Language

Reference

v

friend

void

c():

Since

function

c()

has

not

been

declared

in

the

scope

of

f(),

the

compiler

would

not

allow

this

statement.

v

X

moocow2:

This

declaration

tries

to

create

an

object

of

the

local

class

X,

not

the

nonlocal

class

::X.

Since

local

class

X

has

not

been

defined,

the

compiler

would

not

allow

this

statement.

Related

References

v

“Local

Classes”

on

page

220

Friend

Access

2000C++

A

friend

of

a

class

can

access

the

private

and

protected

members

of

that

class.

Normally,

you

can

only

access

the

private

members

of

a

class

through

member

functions

of

that

class,

and

you

can

only

access

the

protected

members

of

a

class

through

member

functions

of

a

class

or

classes

derived

from

that

class.

Friend

declarations

are

not

affected

by

access

specifiers.

Related

References

v

“Member

Access”

on

page

236

Friends

Chapter

13.

Class

Members

and

Friends

243

Friends

244

ILE

C/C++

Language

Reference

Chapter

14.

Inheritance

2000C++

Inheritance

is

a

mechanism

of

reusing

and

extending

existing

classes

without

modifying

them.

Inheritance

is

almost

like

embedding

an

object

into

a

class.

Suppose

that

you

declare

an

object

x

of

class

A

in

the

class

definition

of

B.

As

a

result,

class

B

will

have

access

to

all

the

public

data

members

and

member

functions

of

class

A.

However,

in

class

B,

you

have

to

access

the

data

members

and

member

functions

of

class

A

through

object

x.

The

following

example

demonstrates

this:

#include

<iostream>

using

namespace

std;

class

A

{

int

data;

public:

void

f(int

arg)

{

data

=

arg;

}

int

g()

{

return

data;

}

};

class

B

{

public:

A

x;

};

int

main()

{

B

obj;

obj.x.f(20);

cout

<<

obj.x.g()

<<

endl;

//

cout

<<

obj.g()

<<

endl;

}

In

the

main

function,

object

obj

accesses

function

A::f()

through

its

data

member

B::x

with

the

statement

obj.x.f(20).

Object

obj

accesses

A::g()

in

a

similar

manner

with

the

statement

obj.x.g().

The

compiler

would

not

allow

the

statement

obj.g()

because

g()

is

a

member

function

of

class

A,

not

class

B.

The

inheritance

mechanism

lets

you

use

a

statement

like

obj.g()

in

the

above

example.

In

order

for

that

statement

to

be

legal,

g()

must

be

a

member

function

of

class

B.

Inheritance

lets

you

include

the

names

and

definitions

of

another

class’s

members

as

part

of

a

new

class.

The

class

whose

members

you

want

to

include

in

your

new

class

is

called

a

base

class.

Your

new

class

is

derived

from

the

base

class.

You

new

class

will

contain

a

subobject

of

the

type

of

the

base

class.

The

following

example

is

the

same

as

the

previous

example

except

it

uses

the

inheritance

mechanism

to

give

class

B

access

to

the

members

of

class

A:

#include

<iostream>

using

namespace

std;

class

A

{

int

data;

public:

void

f(int

arg)

{

data

=

arg;

}

int

g()

{

return

data;

}

};

©

Copyright

IBM

Corp.

1998,

2003

245

class

B

:

public

A

{

};

int

main()

{

B

obj;

obj.f(20);

cout

<<

obj.g()

<<

endl;

}

Class

A

is

a

base

class

of

class

B.

The

names

and

definitions

of

the

members

of

class

A

are

included

in

the

definition

of

class

B;

class

B

inherits

the

members

of

class

A.

Class

B

is

derived

from

class

A.

Class

B

contains

a

subobject

of

type

A.

You

can

also

add

new

data

members

and

member

functions

to

the

derived

class.

You

can

modify

the

implementation

of

existing

member

functions

or

data

by

overriding

base

class

member

functions

or

data

in

the

newly

derived

class.

You

may

derive

classes

from

other

derived

classes,

thereby

creating

another

level

of

inheritance.

The

following

example

demonstrates

this:

struct

A

{

};

struct

B

:

A

{

};

struct

C

:

B

{

};

Class

B

is

a

derived

class

of

A,

but

is

also

a

base

class

of

C.

The

number

of

levels

of

inheritance

is

only

limited

by

resources.

Multiple

inheritance

allows

you

to

create

a

derived

class

that

inherits

properties

from

more

than

one

base

class.

Because

a

derived

class

inherits

members

from

all

its

base

classes,

ambiguities

can

result.

For

example,

if

two

base

classes

have

a

member

with

the

same

name,

the

derived

class

cannot

implicitly

differentiate

between

the

two

members.

Note

that,

when

you

are

using

multiple

inheritance,

the

access

to

names

of

base

classes

may

be

ambiguous.

A

direct

base

class

is

a

base

class

that

appears

directly

as

a

base

specifier

in

the

declaration

of

its

derived

class.

An

indirect

base

class

is

a

base

class

that

does

not

appear

directly

in

the

declaration

of

the

derived

class

but

is

available

to

the

derived

class

through

one

of

its

base

classes.

For

a

given

class,

all

base

classes

that

are

not

direct

base

classes

are

indirect

base

classes.

The

following

example

demonstrates

direct

and

indirect

base

classes:

class

A

{

public:

int

x;

};

class

B

:

public

A

{

public:

int

y;

};

class

C

:

public

B

{

};

Class

B

is

a

direct

base

class

of

C.

Class

A

is

a

direct

base

class

of

B.

Class

A

is

an

indirect

base

class

of

C.

(Class

C

has

x

and

y

as

its

data

members.)

Polymorphic

functions

are

functions

that

can

be

applied

to

objects

of

more

than

one

type.

In

C++,

polymorphic

functions

are

implemented

in

two

ways:

v

Overloaded

functions

are

statically

bound

at

compile

time.

246

ILE

C/C++

Language

Reference

v

C++

provides

virtual

functions.

A

virtual

function

is

a

function

that

can

be

called

for

a

number

of

different

user-defined

types

that

are

related

through

derivation.

Virtual

functions

are

bound

dynamically

at

run

time.

Related

References

v

“Multiple

Access”

on

page

258

v

“Multiple

Inheritance”

on

page

256

v

“Virtual

Functions”

on

page

262

Derivation

2000C++

Inheritance

is

implemented

in

C++

through

the

mechanism

of

derivation.

Derivation

allows

you

to

derive

a

class,

called

a

derived

class,

from

another

class,

called

a

base

class.

Syntax

–

Derived

Class

Derivation

��

derived_class

:

�

�

�

,

qualified_class_specifier

virtual

public

private

protected

public

private

virtual

protected

��

In

the

declaration

of

a

derived

class,

you

list

the

base

classes

of

the

derived

class.

The

derived

class

inherits

its

members

from

these

base

classes.

The

qualified_class_specifier

must

be

a

class

that

has

been

previously

declared

in

a

class

declaration.

An

access

specifier

is

one

of

public,

private,

or

protected.

The

virtual

keyword

can

be

used

to

declare

virtual

base

classes.

The

following

example

shows

the

declaration

of

the

derived

class

D

and

the

base

classes

V,

B1,

and

B2.

The

class

B1

is

both

a

base

class

and

a

derived

class

because

it

is

derived

from

class

V

and

is

a

base

class

for

D:

class

V

{

/*

...

*/

};

class

B1

:

virtual

public

V

{

/*

...

*/

};

class

B2

{

/*

...

*/

};

class

D

:

public

B1,

private

B2

{

/*

...

*/

};

Classes

that

are

declared

but

not

defined

are

not

allowed

in

base

lists.

For

example:

class

X;

//

error

class

Y:

public

X

{

};

Chapter

14.

Inheritance

247

The

compiler

will

not

allow

the

declaration

of

class

Y

because

X

has

not

been

defined.

When

you

derive

a

class,

the

derived

class

inherits

class

members

of

the

base

class.

You

can

refer

to

inherited

members

(base

class

members)

as

if

they

were

members

of

the

derived

class.

For

example:

class

Base

{

public:

int

a,b;

};

class

Derived

:

public

Base

{

public:

int

c;

};

int

main()

{

Derived

d;

d.a

=

1;

//

Base::a

d.b

=

2;

//

Base::b

d.c

=

3;

//

Derived::c

}

The

derived

class

can

also

add

new

class

members

and

redefine

existing

base

class

members.

In

the

above

example,

the

two

inherited

members,

a

and

b,

of

the

derived

class

d,

in

addition

to

the

derived

class

member

c,

are

assigned

values.

If

you

redefine

base

class

members

in

the

derived

class,

you

can

still

refer

to

the

base

class

members

by

using

the

::

(scope

resolution)

operator.

For

example:

#include

<iostream>

using

namespace

std;

class

Base

{

public:

char*

name;

void

display()

{

cout

<<

name

<<

endl;

}

};

class

Derived:

public

Base

{

public:

char*

name;

void

display()

{

cout

<<

name

<<

",

"

<<

Base::name

<<

endl;

}

};

int

main()

{

Derived

d;

d.name

=

"Derived

Class";

d.Base::name

=

"Base

Class";

//

call

Derived::display()

d.display();

//

call

Base::display()

d.Base::display();

}

The

following

is

the

output

of

the

above

example:

Derived

Class,

Base

Class

Base

Class

Derivation

248

ILE

C/C++

Language

Reference

You

can

manipulate

a

derived

class

object

as

if

it

were

a

base

class

object.

You

can

use

a

pointer

or

a

reference

to

a

derived

class

object

in

place

of

a

pointer

or

reference

to

its

base

class.

For

example,

you

can

pass

a

pointer

or

reference

to

a

derived

class

object

D

to

a

function

expecting

a

pointer

or

reference

to

the

base

class

of

D.

You

do

not

need

to

use

an

explicit

cast

to

achieve

this;

a

standard

conversion

is

performed.

You

can

implicitly

convert

a

pointer

to

a

derived

class

to

point

to

an

accessible

unambiguous

base

class.

You

can

also

implicitly

convert

a

reference

to

a

derived

class

to

a

reference

to

a

base

class.

The

following

example

demonstrates

a

standard

conversion

from

a

pointer

to

a

derived

class

to

a

pointer

to

a

base

class:

#include

<iostream>

using

namespace

std;

class

Base

{

public:

char*

name;

void

display()

{

cout

<<

name

<<

endl;

}

};

class

Derived:

public

Base

{

public:

char*

name;

void

display()

{

cout

<<

name

<<

",

"

<<

Base::name

<<

endl;

}

};

int

main()

{

Derived

d;

d.name

=

"Derived

Class";

d.Base::name

=

"Base

Class";

Derived*

dptr

=

&d;

//

standard

conversion

from

Derived*

to

Base*

Base*

bptr

=

dptr;

//

call

Base::display()

bptr->display();

}

The

following

is

the

output

of

the

above

example:

Base

Class

The

statement

Base*

bptr

=

dptr

converts

a

pointer

of

type

Derived

to

a

pointer

of

type

Base.

The

reverse

case

is

not

allowed.

You

cannot

implicitly

convert

a

pointer

or

a

reference

to

a

base

class

object

to

a

pointer

or

reference

to

a

derived

class.

For

example,

the

compiler

will

not

allow

the

following

code

if

the

classes

Base

and

Class

are

defined

as

in

the

above

example:

int

main()

{

Base

b;

b.name

=

"Base

class";

Derived*

dptr

=

&b;

}

Derivation

Chapter

14.

Inheritance

249

The

compiler

will

not

allow

the

statement

Derived*

dptr

=

&b

because

the

statement

is

trying

to

implicitly

convert

a

pointer

of

type

Base

to

a

pointer

of

type

Derived.

If

a

member

of

a

derived

class

and

a

member

of

a

base

class

have

the

same

name,

the

base

class

member

is

hidden

in

the

derived

class.

If

a

member

of

a

derived

class

has

the

same

name

as

a

base

class,

the

base

class

name

is

hidden

in

the

derived

class.

Related

References

v

“Virtual

Base

Classes”

on

page

257

v

“Incomplete

Class

Declarations”

on

page

217

v

“C++

Scope

Resolution

Operator

::”

on

page

87

Inherited

Member

Access

This

section

discusses

the

access

rules

affecting

a

protected

nonstatic

base

class

member

and

how

to

declare

a

derived

class

using

an

access

specifier.

Protected

Members

2000C++

A

protected

nonstatic

base

class

member

can

be

accessed

by

members

and

friends

of

any

classes

derived

from

that

base

class

by

using

one

of

the

following:

v

A

pointer

to

a

directly

or

indirectly

derived

class

v

A

reference

to

a

directly

or

indirectly

derived

class

v

An

object

of

a

directly

or

indirectly

derived

class

If

a

class

is

derived

privately

from

a

base

class,

all

protected

base

class

members

become

private

members

of

the

derived

class.

If

you

reference

a

protected

nonstatic

member

x

of

a

base

class

A

in

a

friend

or

a

member

function

of

a

derived

class

B,

you

must

access

x

through

a

pointer

to,

reference

to,

or

object

of

a

class

derived

from

A.

However,

if

you

are

accessing

x

to

create

a

pointer

to

member,

you

must

qualify

x

with

a

nested

name

specifier

that

names

the

derived

class

B.

The

following

example

demonstrates

this:

class

A

{

public:

protected:

int

i;

};

class

B

:

public

A

{

friend

void

f(A*,

B*);

void

g(A*);

};

void

f(A*

pa,

B*

pb)

{

//

pa->i

=

1;

pb->i

=

2;

//

int

A::*

point_i

=

&A::i;

int

A::*

point_i2

=

&B::i;

}

void

B::g(A*

pa)

{

//

pa->i

=

1;

i

=

2;

//

int

A::*

point_i

=

&A::i;

int

A::*

point_i2

=

&B::i;

Derivation

250

ILE

C/C++

Language

Reference

}

void

h(A*

pa,

B*

pb)

{

//

pa->i

=

1;

//

pb->i

=

2;

}

int

main()

{

}

Class

A

contains

one

protected

data

member,

an

integer

i.

Because

B

derives

from

A,

the

members

of

B

have

access

to

the

protected

member

of

A.

Function

f()

is

a

friend

of

class

B:

v

The

compiler

would

not

allow

pa->i

=

1

because

pa

is

not

a

pointer

to

the

derived

class

B.

v

The

compiler

would

not

allow

int

A::*

point_i

=

&A::i

because

i

has

not

been

qualified

with

the

name

of

the

derived

class

B.

Function

g()

is

a

member

function

of

class

B.

The

previous

list

of

remarks

about

which

statements

the

compiler

would

and

would

not

allow

apply

for

g()

except

for

the

following:

v

The

compiler

allows

i

=

2

because

it

is

equivalent

to

this->i

=

2.

Function

h()

cannot

access

any

of

the

protected

members

of

A

because

h()

is

neither

a

friend

or

a

member

of

a

derived

class

of

A.

Related

References

v

“References”

on

page

75

v

“Objects”

on

page

29

Access

Control

of

Base

Class

Members

2000C++

When

you

declare

a

derived

class,

an

access

specifier

can

precede

each

base

class

in

the

base

list

of

the

derived

class.

This

does

not

alter

the

access

attributes

of

the

individual

members

of

a

base

class

as

seen

by

the

base

class,

but

allows

the

derived

class

to

restrict

the

access

control

of

the

members

of

a

base

class.

You

can

derive

classes

using

any

of

the

three

access

specifiers:

v

In

a

public

base

class,

public

and

protected

members

of

the

base

class

remain

public

and

protected

members

of

the

derived

class.

v

In

a

protected

base

class,

public

and

protected

members

of

the

base

class

are

protected

members

of

the

derived

class.

v

In

a

private

base

class,

public

and

protected

members

of

the

base

class

become

private

members

of

the

derived

class.

In

all

cases,

private

members

of

the

base

class

remain

private.

Private

members

of

the

base

class

cannot

be

used

by

the

derived

class

unless

friend

declarations

within

the

base

class

explicitly

grant

access

to

them.

In

the

following

example,

class

d

is

derived

publicly

from

class

b.

Class

b

is

declared

a

public

base

class

by

this

declaration.

class

b

{

};

class

d

:

public

b

//

public

derivation

{

};

You

can

use

both

a

structure

and

a

class

as

base

classes

in

the

base

list

of

a

derived

class

declaration:

v

If

the

derived

class

is

declared

with

the

keyword

class,

the

default

access

specifier

in

its

base

list

specifiers

is

private.

Inherited

Member

Access

Chapter

14.

Inheritance

251

v

If

the

derived

class

is

declared

with

the

keyword

struct,

the

default

access

specifier

in

its

base

list

specifiers

is

public.

In

the

following

example,

private

derivation

is

used

by

default

because

no

access

specifier

is

used

in

the

base

list

and

the

derived

class

is

declared

with

the

keyword

class:

struct

B

{

};

class

D

:

B

//

private

derivation

{

};

Members

and

friends

of

a

class

can

implicitly

convert

a

pointer

to

an

object

of

that

class

to

a

pointer

to

either:

v

A

direct

private

base

class

v

A

protected

base

class

(either

direct

or

indirect)

Related

References

v

“Member

Access”

on

page

236

v

“Member

Scope”

on

page

226

The

using

Declaration

and

Class

Members

2000C++

A

using

declaration

in

a

definition

of

a

class

A

allows

you

to

introduce

a

name

of

a

data

member

or

member

function

from

a

base

class

of

A

into

the

scope

of

A.

You

would

need

a

using

declaration

in

a

class

definition

if

you

want

to

create

a

set

of

overload

a

member

functions

from

base

and

derived

classes,

or

you

want

to

change

the

access

of

a

class

member.

Syntax

–

using

Declaration

��

using

nested_name_specifier

unqualified_id

;

typename

::

::

unqualified_id

;

��

A

using

declaration

in

a

class

A

may

name

one

of

the

following:

v

A

member

of

a

base

class

of

A

v

A

member

of

an

anonymous

union

that

is

a

member

of

a

base

class

of

A

v

An

enumerator

for

an

enumeration

type

that

is

a

member

of

a

base

class

of

A

The

following

example

demonstrates

this:

struct

Z

{

int

g();

};

struct

A

{

void

f();

enum

E

{

e

};

union

{

int

u;

};

};

struct

B

:

A

{

using

A::f;

using

A::e;

using

A::u;

//

using

Z::g;

};

Inherited

Member

Access

252

ILE

C/C++

Language

Reference

The

compiler

would

not

allow

the

using

declaration

using

Z::g

because

Z

is

not

a

base

class

of

A.

A

using

declaration

cannot

name

a

template.

For

example,

the

compiler

will

not

allow

the

following:

struct

A

{

template<class

T>

void

f(T);

};

struct

B

:

A

{

using

A::f<int>;

};

Every

instance

of

the

name

mentioned

in

a

using

declaration

must

be

accessible.

The

following

example

demonstrates

this:

struct

A

{

private:

void

f(int);

public:

int

f();

protected:

void

g();

};

struct

B

:

A

{

//

using

A::f;

using

A::g;

};

The

compiler

would

not

allow

the

using

declaration

using

A::f

because

void

A::f(int)

is

not

accessible

from

B

even

though

int

A::f()

is

accessible.

Overloading

Member

Functions

from

Base

and

Derived

Classes

2000C++

A

member

function

named

f

in

a

class

A

will

hide

all

other

members

named

f

in

the

base

classes

of

A,

regardless

of

return

types

or

arguments.

The

following

example

demonstrates

this:

struct

A

{

void

f()

{

}

};

struct

B

:

A

{

void

f(int)

{

}

};

int

main()

{

B

obj_B;

obj_B.f(3);

//

obj_B.f();

}

The

compiler

would

not

allow

the

function

call

obj_B.f()

because

the

declaration

of

void

B::f(int)

has

hidden

A::f().

To

overload,

rather

than

hide,

a

function

of

a

base

class

A

in

a

derived

class

B,

you

introduce

the

name

of

the

function

into

the

scope

of

B

with

a

using

declaration.

The

following

example

is

the

same

as

the

previous

example

except

for

the

using

declaration

using

A::f:

Inherited

Member

Access

Chapter

14.

Inheritance

253

struct

A

{

void

f()

{

}

};

struct

B

:

A

{

using

A::f;

void

f(int)

{

}

};

int

main()

{

B

obj_B;

obj_B.f(3);

obj_B.f();

}

Because

of

the

using

declaration

in

class

B,

the

name

f

is

overloaded

with

two

functions.

The

compiler

will

now

allow

the

function

call

obj_B.f().

You

can

overload

virtual

functions

in

the

same

way.

The

following

example

demonstrates

this:

#include

<iostream>

using

namespace

std;

struct

A

{

virtual

void

f()

{

cout

<<

"void

A::f()"

<<

endl;

}

virtual

void

f(int)

{

cout

<<

"void

A::f(int)"

<<

endl;

}

};

struct

B

:

A

{

using

A::f;

void

f(int)

{

cout

<<

"void

B::f(int)"

<<

endl;

}

};

int

main()

{

B

obj_B;

B*

pb

=

&obj_B;

pb->f(3);

pb->f();

}

The

following

is

the

output

of

the

above

example:

void

B::f(int)

void

A::f()

Suppose

that

you

introduce

a

function

f

from

a

base

class

A

a

derived

class

B

with

a

using

declaration,

and

there

exists

a

function

named

B::f

that

has

the

same

parameter

types

as

A::f.

Function

B::f

will

hide,

rather

than

conflict

with,

function

A::f.

The

following

example

demonstrates

this:

#include

<iostream>

using

namespace

std;

struct

A

{

void

f()

{

}

void

f(int)

{

cout

<<

"void

A::f(int)"

<<

endl;

}

};

struct

B

:

A

{

using

A::f;

void

f(int)

{

cout

<<

"void

B::f(int)"

<<

endl;

}

};

Inherited

Member

Access

254

ILE

C/C++

Language

Reference

int

main()

{

B

obj_B;

obj_B.f(3);

}

The

following

is

the

output

of

the

above

example:

void

B::f(int)

Changing

the

Access

of

a

Class

Member

2000C++

Suppose

class

B

is

a

direct

base

class

of

class

A.

To

restrict

access

of

class

B

to

the

members

of

class

A,

derive

B

from

A

using

either

the

access

specifiers

protected

or

private.

To

increase

the

access

of

a

member

x

of

class

A

inherited

from

class

B,

use

a

using

declaration.

You

cannot

restrict

the

access

to

x

with

a

using

declaration.

You

may

increase

the

access

of

the

following

members:

v

A

member

inherited

as

private.

(You

cannot

increase

the

access

of

a

member

declared

as

private

because

a

using

declaration

must

have

access

to

the

member’s

name.)

v

A

member

either

inherited

or

declared

as

protected

The

following

example

demonstrates

this:

struct

A

{

protected:

int

y;

public:

int

z;

};

struct

B

:

private

A

{

};

struct

C

:

private

A

{

public:

using

A::y;

using

A::z;

};

struct

D

:

private

A

{

protected:

using

A::y;

using

A::z;

};

struct

E

:

D

{

void

f()

{

y

=

1;

z

=

2;

}

};

struct

F

:

A

{

public:

using

A::y;

private:

using

A::z;

};

int

main()

{

B

obj_B;

//

obj_B.y

=

3;

//

obj_B.z

=

4;

C

obj_C;

Inherited

Member

Access

Chapter

14.

Inheritance

255

obj_C.y

=

5;

obj_C.z

=

6;

D

obj_D;

//

obj_D.y

=

7;

//

obj_D.z

=

8;

F

obj_F;

obj_F.y

=

9;

obj_F.z

=

10;

}

The

compiler

would

not

allow

the

following

assignments

from

the

above

example:

v

obj_B.y

=

3

and

obj_B.z

=

4:

Members

y

and

z

have

been

inherited

as

private.

v

obj_D.y

=

7

and

obj_D.z

=

8:

Members

y

and

z

have

been

inherited

as

private,

but

their

access

have

been

changed

to

protected.

The

compiler

allows

the

following

statements

from

the

above

example:

v

y

=

1

and

z

=

2

in

D::f():

Members

y

and

z

have

been

inherited

as

private,

but

their

access

have

been

changed

to

protected.

v

obj_C.y

=

5

and

obj_C.z

=

6:

Members

y

and

z

have

been

inherited

as

private,

but

their

access

have

been

changed

to

public.

v

obj_F.y

=

9:

The

access

of

member

y

has

been

changed

from

protected

to

public.

v

obj_F.z

=

10:

The

access

of

member

z

is

still

public.

The

private

using

declaration

using

A::z

has

no

effect

on

the

access

of

z.

Multiple

Inheritance

2000C++

You

can

derive

a

class

from

any

number

of

base

classes.

Deriving

a

class

from

more

than

one

direct

base

class

is

called

multiple

inheritance.

In

the

following

example,

classes

A,

B,

and

C

are

direct

base

classes

for

the

derived

class

X:

class

A

{

/*

...

*/

};

class

B

{

/*

...

*/

};

class

C

{

/*

...

*/

};

class

X

:

public

A,

private

B,

public

C

{

/*

...

*/

};

The

following

inheritance

graph

describes

the

inheritance

relationships

of

the

above

example.

An

arrow

points

to

the

direct

base

class

of

the

class

at

the

tail

of

the

arrow:

A B

X

C

The

order

of

derivation

is

relevant

only

to

determine

the

order

of

default

initialization

by

constructors

and

cleanup

by

destructors.

A

direct

base

class

cannot

appear

in

the

base

list

of

a

derived

class

more

than

once:

class

B1

{

/*

...

*/

};

//

direct

base

class

class

D

:

public

B1,

private

B1

{

/*

...

*/

};

//

error

Inherited

Member

Access

256

ILE

C/C++

Language

Reference

However,

a

derived

class

can

inherit

an

indirect

base

class

more

than

once,

as

shown

in

the

following

example:

B2 B3

L L

D

class

L

{

/*

...

*/

};

//

indirect

base

class

class

B2

:

public

L

{

/*

...

*/

};

class

B3

:

public

L

{

/*

...

*/

};

class

D

:

public

B2,

public

B3

{

/*

...

*/

};

//

valid

In

the

above

example,

class

D

inherits

the

indirect

base

class

L

once

through

class

B2

and

once

through

class

B3.

However,

this

may

lead

to

ambiguities

because

two

subobjects

of

class

L

exist,

and

both

are

accessible

through

class

D.

You

can

avoid

this

ambiguity

by

referring

to

class

L

using

a

qualified

class

name.

For

example:

B2::L

or

B3::L.

You

can

also

avoid

this

ambiguity

by

using

the

base

specifier

virtual

to

declare

a

base

class.

Virtual

Base

Classes

2000C++

Suppose

you

have

two

derived

classes

B

and

C

that

have

a

common

base

class

A,

and

you

also

have

another

class

D

that

inherits

from

B

and

C.

You

can

declare

the

base

class

A

as

virtual

to

ensure

that

B

and

C

share

the

same

subobject

of

A.

In

the

following

example,

an

object

of

class

D

has

two

distinct

subobjects

of

class

L,

one

through

class

B1

and

another

through

class

B2.

You

can

use

the

keyword

virtual

in

front

of

the

base

class

specifiers

in

the

base

lists

of

classes

B1

and

B2

to

indicate

that

only

one

subobject

of

type

L,

shared

by

class

B1

and

class

B2,

exists.

For

example:

B1 B2

D

L

Multiple

Inheritance

Chapter

14.

Inheritance

257

class

L

{

/*

...

*/

};

//

indirect

base

class

class

B1

:

virtual

public

L

{

/*

...

*/

};

class

B2

:

virtual

public

L

{

/*

...

*/

};

class

D

:

public

B1,

public

B2

{

/*

...

*/

};

//

valid

Using

the

keyword

virtual

in

this

example

ensures

that

an

object

of

class

D

inherits

only

one

subobject

of

class

L.

A

derived

class

can

have

both

virtual

and

nonvirtual

base

classes.

For

example:

B1

V V

B3B2

X

class

V

{

/*

...

*/

};

class

B1

:

virtual

public

V

{

/*

...

*/

};

class

B2

:

virtual

public

V

{

/*

...

*/

};

class

B3

:

public

V

{

/*

...

*/

};

class

X

:

public

B1,

public

B2,

public

B3

{

/*

...

*/

};

In

the

above

example,

class

X

has

two

subobjects

of

class

V,

one

that

is

shared

by

classes

B1

and

B2

and

one

through

class

B3.

Multiple

Access

2000C++

In

an

inheritance

graph

containing

virtual

base

classes,

a

name

that

can

be

reached

through

more

than

one

path

is

accessed

through

the

path

that

gives

the

most

access.

For

example:

class

L

{

public:

void

f();

};

class

B1

:

private

virtual

L

{

};

class

B2

:

public

virtual

L

{

};

class

D

:

public

B1,

public

B2

{

public:

void

f()

{

//

L::f()

is

accessed

through

B2

//

and

is

public

L::f();

}

};

In

the

above

example,

the

function

f()

is

accessed

through

class

B2.

Because

class

B2

is

inherited

publicly

and

class

B1

is

inherited

privately,

class

B2

offers

more

access.

Multiple

Inheritance

258

ILE

C/C++

Language

Reference

Ambiguous

Base

Classes

2000C++

When

you

derive

classes,

ambiguities

can

result

if

base

and

derived

classes

have

members

with

the

same

names.

Access

to

a

base

class

member

is

ambiguous

if

you

use

a

name

or

qualified

name

that

does

not

refer

to

a

unique

function

or

object.

The

declaration

of

a

member

with

an

ambiguous

name

in

a

derived

class

is

not

an

error.

The

ambiguity

is

only

flagged

as

an

error

if

you

use

the

ambiguous

member

name.

For

example,

suppose

that

two

classes

named

A

and

B

both

have

a

member

named

x,

and

a

class

named

C

inherits

from

both

A

and

B.

An

attempt

to

access

x

from

class

C

would

be

ambiguous.

You

can

resolve

ambiguity

by

qualifying

a

member

with

its

class

name

using

the

scope

resolution

(::)

operator.

class

B1

{

public:

int

i;

int

j;

void

g(int)

{

}

};

class

B2

{

public:

int

j;

void

g()

{

}

};

class

D

:

public

B1,

public

B2

{

public:

int

i;

};

int

main()

{

D

dobj;

D

*dptr

=

&dobj;

dptr->i

=

5;

//

dptr->j

=

10;

dptr->B1::j

=

10;

//

dobj.g();

dobj.B2::g();

}

The

statement

dptr->j

=

10

is

ambiguous

because

the

name

j

appears

both

in

B1

and

B2.

The

statement

dobj.g()

is

ambiguous

because

the

name

g

appears

both

in

B1

and

B2,

even

though

B1::g(int)

and

B2::g()

have

different

parameters.

The

compiler

checks

for

ambiguities

at

compile

time.

Because

ambiguity

checking

occurs

before

access

control

or

type

checking,

ambiguities

may

result

even

if

only

one

of

several

members

with

the

same

name

is

accessible

from

the

derived

class.

Name

Hiding

Suppose

two

subobjects

named

A

and

B

both

have

a

member

name

x.

The

member

name

x

of

subobject

B

hides

the

member

name

x

of

subobject

A

if

A

is

a

base

class

of

B.

The

following

example

demonstrates

this:

struct

A

{

int

x;

};

struct

B:

A

{

int

x;

};

Multiple

Inheritance

Chapter

14.

Inheritance

259

struct

C:

A,

B

{

void

f()

{

x

=

0;

}

};

int

main()

{

C

i;

i.f();

}

The

assignment

x

=

0

in

function

C::f()

is

not

ambiguous

because

the

declaration

B::x

has

hidden

A::x.

However,

the

compiler

will

warn

you

that

deriving

C

from

A

is

redundant

because

you

already

have

access

to

the

subobject

A

through

B.

A

base

class

declaration

can

be

hidden

along

one

path

in

the

inheritance

graph

and

not

hidden

along

another

path.

The

following

example

demonstrates

this:

struct

A

{

int

x;

};

struct

B

{

int

y;

};

struct

C:

A,

virtual

B

{

};

struct

D:

A,

virtual

B

{

int

x;

int

y;

};

struct

E:

C,

D

{

};

int

main()

{

E

e;

//

e.x

=

1;

e.y

=

2;

}

The

assignment

e.x

=

1

is

ambiguous.

The

declaration

D::x

hides

A::x

along

the

path

D::A::x,

but

it

does

not

hide

A::x

along

the

path

D::A::x.

Therefore

the

variable

x

could

refer

to

either

D::x

or

A::x.

The

assignment

e.y

=

2

is

not

ambiguous.

The

declaration

D::y

hides

B::y

along

both

paths

D::B::y

and

C::B::y

because

B

is

a

virtual

base

class.

Ambiguity

and

using

Declarations

Suppose

you

have

a

class

named

C

that

inherits

from

a

class

named

A,

and

x

is

a

member

name

of

A.

If

you

use

a

using

declaration

to

declare

A::x

in

C,

then

x

is

also

a

member

of

C;

C::x

does

not

hide

A::x.

Therefore

using

declarations

cannot

resolve

ambiguities

due

to

inherited

members.

The

following

example

demonstrates

this:

struct

A

{

int

x;

};

struct

B:

A

{

};

struct

C:

A

{

using

A::x;

};

struct

D:

B,

C

{

void

f()

{

x

=

0;

}

};

int

main()

{

D

i;

i.f();

}

Multiple

Inheritance

260

ILE

C/C++

Language

Reference

The

compiler

will

not

allow

the

assignment

x

=

0

in

function

D::f()

because

it

is

ambiguous.

The

compiler

can

find

x

in

two

ways:

as

B::x

or

as

C::x.

Unambiguous

Class

Members

The

compiler

can

unambiguously

find

static

members,

nested

types,

and

enumerators

defined

in

a

base

class

A

regardless

of

the

number

of

subobjects

of

type

A

an

object

has.

The

following

example

demonstrates

this:

struct

A

{

int

x;

static

int

s;

typedef

A*

Pointer_A;

enum

{

e

};

};

int

A::s;

struct

B:

A

{

};

struct

C:

A

{

};

struct

D:

B,

C

{

void

f()

{

s

=

1;

Pointer_A

pa;

int

i

=

e;

//

x

=

1;

}

};

int

main()

{

D

i;

i.f();

}

The

compiler

allows

the

assignment

s

=

1,

the

declaration

Pointer_A

pa,

and

the

statement

int

i

=

e.

There

is

only

one

static

variable

s,

only

one

typedef

Pointer_A,

and

only

one

enumerator

e.

The

compiler

would

not

allow

the

assignment

x

=

1

because

x

can

be

reached

either

from

class

B

or

class

C.

Pointer

Conversions

Conversions

(either

implicit

or

explicit)

from

a

derived

class

pointer

or

reference

to

a

base

class

pointer

or

reference

must

refer

unambiguously

to

the

same

accessible

base

class

object.

(An

accessible

base

class

is

a

publicly

derived

base

class

that

is

neither

hidden

nor

ambiguous

in

the

inheritance

hierarchy.)

For

example:

class

W

{

/*

...

*/

};

class

X

:

public

W

{

/*

...

*/

};

class

Y

:

public

W

{

/*

...

*/

};

class

Z

:

public

X,

public

Y

{

/*

...

*/

};

int

main

()

{

Z

z;

X*

xptr

=

&z;

//

valid

Y*

yptr

=

&z;

//

valid

W*

wptr

=

&z;

//

error,

ambiguous

reference

to

class

W

//

X’s

W

or

Y’s

W

?

}

You

can

use

virtual

base

classes

to

avoid

ambiguous

reference.

For

example:

Multiple

Inheritance

Chapter

14.

Inheritance

261

class

W

{

/*

...

*/

};

class

X

:

public

virtual

W

{

/*

...

*/

};

class

Y

:

public

virtual

W

{

/*

...

*/

};

class

Z

:

public

X,

public

Y

{

/*

...

*/

};

int

main

()

{

Z

z;

X*

xptr

=

&z;

//

valid

Y*

yptr

=

&z;

//

valid

W*

wptr

=

&z;

//

valid,

W

is

virtual

therefore

only

one

//

W

subobject

exists

}

Overload

Resolution

Overload

resolution

takes

place

after

the

compiler

unambiguously

finds

a

given

function

name.

The

following

example

demonstrates

this:

struct

A

{

int

f()

{

return

1;

}

};

struct

B

{

int

f(int

arg)

{

return

arg;

}

};

struct

C:

A,

B

{

int

g()

{

return

f();

}

};

The

compiler

will

not

allow

the

function

call

to

f()

in

C::g()

because

the

name

f

has

been

declared

both

in

A

and

B.

The

compiler

detects

the

ambiguity

error

before

overload

resolution

can

select

the

base

match

A::f().

Related

References

v

“C++

Scope

Resolution

Operator

::”

on

page

87

v

“Virtual

Base

Classes”

on

page

257

Virtual

Functions

2000C++

By

default,

C++

matches

a

function

call

with

the

correct

function

definition

at

compile

time.

This

is

called

static

binding.

You

can

specify

that

the

compiler

match

a

function

call

with

the

correct

function

definition

at

run

time;

this

is

called

dynamic

binding.

You

declare

a

function

with

the

keyword

virtual

if

you

want

the

compiler

to

use

dynamic

binding

for

that

specific

function.

The

following

examples

demonstrate

the

differences

between

static

and

dynamic

binding.

The

first

example

demonstrates

static

binding:

#include

<iostream>

using

namespace

std;

struct

A

{

void

f()

{

cout

<<

"Class

A"

<<

endl;

}

};

struct

B:

A

{

void

f()

{

cout

<<

"Class

B"

<<

endl;

}

};

void

g(A&

arg)

{

arg.f();

}

Multiple

Inheritance

262

ILE

C/C++

Language

Reference

int

main()

{

B

x;

g(x);

}

The

following

is

the

output

of

the

above

example:

Class

A

When

function

g()

is

called,

function

A::f()

is

called,

although

the

argument

refers

to

an

object

of

type

B.

At

compile

time,

the

compiler

knows

only

that

the

argument

of

function

g()

will

be

a

reference

to

an

object

derived

from

A;

it

cannot

determine

whether

the

argument

will

be

a

reference

to

an

object

of

type

A

or

type

B.

However,

this

can

be

determined

at

run

time.

The

following

example

is

the

same

as

the

previous

example,

except

that

A::f()

is

declared

with

the

virtual

keyword:

#include

<iostream>

using

namespace

std;

struct

A

{

virtual

void

f()

{

cout

<<

"Class

A"

<<

endl;

}

};

struct

B:

A

{

void

f()

{

cout

<<

"Class

B"

<<

endl;

}

};

void

g(A&

arg)

{

arg.f();

}

int

main()

{

B

x;

g(x);

}

The

following

is

the

output

of

the

above

example:

Class

B

The

virtual

keyword

indicates

to

the

compiler

that

it

should

choose

the

appropriate

definition

of

f()

not

by

the

type

of

reference,

but

by

the

type

of

object

that

the

reference

refers

to.

Therefore,

a

virtual

function

is

a

member

function

you

may

redefine

for

other

derived

classes,

and

can

ensure

that

the

compiler

will

call

the

redefined

virtual

function

for

an

object

of

the

corresponding

derived

class,

even

if

you

call

that

function

with

a

pointer

or

reference

to

a

base

class

of

the

object.

A

class

that

declares

or

inherits

a

virtual

function

is

called

a

polymorphic

class.

You

redefine

a

virtual

member

function,

like

any

member

function,

in

any

derived

class.

Suppose

you

declare

a

virtual

function

named

f

in

a

class

A,

and

you

derive

directly

or

indirectly

from

A

a

class

named

B.

If

you

declare

a

function

named

f

in

class

B

with

the

same

name

and

same

parameter

list

as

A::f,

then

B::f

is

also

virtual

(regardless

whether

or

not

you

declare

B::f

with

the

virtual

keyword)

and

it

overrides

A::f.

However,

if

the

parameter

lists

of

A::f

and

B::f

are

different,

A::f

and

B::f

are

considered

different,

B::f

does

not

override

A::f,

and

B::f

is

not

virtual

(unless

you

have

declared

it

with

the

virtual

keyword).

Instead

B::f

hides

A::f.

The

following

example

demonstrates

this:

Virtual

Functions

Chapter

14.

Inheritance

263

#include

<iostream>

using

namespace

std;

struct

A

{

virtual

void

f()

{

cout

<<

"Class

A"

<<

endl;

}

};

struct

B:

A

{

void

f(int)

{

cout

<<

"Class

B"

<<

endl;

}

};

struct

C:

B

{

void

f()

{

cout

<<

"Class

C"

<<

endl;

}

};

int

main()

{

B

b;

C

c;

A*

pa1

=

&b;

A*

pa2

=

&c;

//

b.f();

pa1->f();

pa2->f();

}

The

following

is

the

output

of

the

above

example:

Class

A

Class

C

The

function

B::f

is

not

virtual.

It

hides

A::f.

Thus

the

compiler

will

not

allow

the

function

call

b.f().

The

function

C::f

is

virtual;

it

overrides

A::f

even

though

A::f

is

not

visible

in

C.

If

you

declare

a

base

class

destructor

as

virtual,

a

derived

class

destructor

will

override

that

base

class

destructor,

even

though

destructors

are

not

inherited.

The

return

type

of

an

overriding

virtual

function

may

differ

from

the

return

type

of

the

overridden

virtual

function.

This

overriding

function

would

then

be

called

a

covariant

virtual

function.

Suppose

that

B::f

overrides

the

virtual

function

A::f.

The

return

types

of

A::f

and

B::f

may

differ

if

all

the

following

conditions

are

met:

v

The

function

B::f

returns

a

reference

or

pointer

to

a

class

of

type

T,

and

A::f

returns

a

pointer

or

a

reference

to

an

unambiguous

direct

or

indirect

base

class

of

T.

v

The

const

or

volatile

qualification

of

the

pointer

or

reference

returned

by

B::f

has

the

same

or

less

const

or

volatile

qualification

of

the

pointer

or

reference

returned

by

A::f.

v

The

return

type

of

B::f

must

be

complete

at

the

point

of

declaration

of

B::f,

or

it

can

be

of

type

B.

The

following

example

demonstrates

this:

#include

<iostream>

using

namespace

std;

struct

A

{

};

class

B

:

private

A

{

friend

class

D;

friend

class

F;

};

A

global_A;

B

global_B;

Virtual

Functions

264

ILE

C/C++

Language

Reference

struct

C

{

virtual

A*

f()

{

cout

<<

"A*

C::f()"

<<

endl;

return

&global_A;

}

};

struct

D

:

C

{

B*

f()

{

cout

<<

"B*

D::f()"

<<

endl;

return

&global_B;

}

};

struct

E;

struct

F

:

C

{

//

Error:

//

E

is

incomplete

//

E*

f();

};

struct

G

:

C

{

//

Error:

//

A

is

an

inaccessible

base

class

of

B

//

B*

f();

};

int

main()

{

D

d;

C*

cp

=

&d;

D*

dp

=

&d;

A*

ap

=

cp->f();

B*

bp

=

dp->f();

};

The

following

is

the

output

of

the

above

example:

B*

D::f()

B*

D::f()

The

statement

A*

ap

=

cp->f()

calls

D::f()

and

converts

the

pointer

returned

to

type

A*.

The

statement

B*

bp

=

dp->f()

calls

D::f()

as

well

but

does

not

convert

the

pointer

returned;

the

type

returned

is

B*.

The

compiler

would

not

allow

the

declaration

of

the

virtual

function

F::f()

because

E

is

not

a

complete

class.

The

compiler

would

not

allow

the

declaration

of

the

virtual

function

G::f()

because

class

A

is

not

an

accessible

base

class

of

B

(unlike

friend

classes

D

and

F,

the

definition

of

B

does

not

give

access

to

its

members

for

class

G).

A

virtual

function

cannot

be

global

or

static

because,

by

definition,

a

virtual

function

is

a

member

function

of

a

base

class

and

relies

on

a

specific

object

to

determine

which

implementation

of

the

function

is

called.

You

can

declare

a

virtual

function

to

be

a

friend

of

another

class.

If

a

function

is

declared

virtual

in

its

base

class,

you

can

still

access

it

directly

using

the

scope

resolution

(::)

operator.

In

this

case,

the

virtual

function

call

mechanism

is

suppressed

and

the

function

implementation

defined

in

the

base

class

is

used.

In

addition,

if

you

do

not

override

a

virtual

member

function

in

a

derived

class,

a

call

to

that

function

uses

the

function

implementation

defined

in

the

base

class.

Virtual

Functions

Chapter

14.

Inheritance

265

A

virtual

function

must

be

one

of

the

following:

v

Defined

v

Declared

pure

v

Defined

and

declared

pure

A

base

class

containing

one

or

more

pure

virtual

member

functions

is

called

an

abstract

class.

Ambiguous

Virtual

Function

Calls

2000C++

You

cannot

override

one

virtual

function

with

two

or

more

ambiguous

virtual

functions.

This

can

happen

in

a

derived

class

that

inherits

from

two

nonvirtual

bases

that

are

derived

from

a

virtual

base

class.

For

example:

class

V

{

public:

virtual

void

f()

{

}

};

class

A

:

virtual

public

V

{

void

f()

{

}

};

class

B

:

virtual

public

V

{

void

f()

{

}

};

//

Error:

//

Both

A::f()

and

B::f()

try

to

override

V::f()

class

D

:

public

A,

public

B

{

};

int

main()

{

D

d;

V*

vptr

=

&d;

//

which

f(),

A::f()

or

B::f()?

vptr->f();

}

The

compiler

will

not

allow

the

definition

of

class

D.

In

class

A,

only

A::f()

will

override

V::f().

Similarly,

in

class

B,

only

B::f()

will

override

V::f().

However,

in

class

D,

both

A::f()

and

B::f()

will

try

to

override

V::f().

This

attempt

is

not

allowed

because

it

is

not

possible

to

decide

which

function

to

call

if

a

D

object

is

referenced

with

a

pointer

to

class

V,

as

shown

in

the

above

example.

Only

one

function

can

override

a

virtual

function.

A

special

case

occurs

when

the

ambiguous

overriding

virtual

functions

come

from

separate

instances

of

the

same

class

type.

In

the

following

example,

class

D

has

two

separate

subobjects

of

class

A:

#include

<iostream>

using

namespace

std;

struct

A

{

virtual

void

f()

{

cout

<<

"A::f()"

<<

endl;

};

};

struct

B

:

A

{

void

f()

{

cout

<<

"B::f()"

<<

endl;};

};

struct

C

:

A

{

Virtual

Functions

266

ILE

C/C++

Language

Reference

void

f()

{

cout

<<

"C::f()"

<<

endl;};

};

struct

D

:

B,

C

{

};

int

main()

{

D

d;

B*

bp

=

&d;

A*

ap

=

bp;

D*

dp

=

&d;

ap->f();

//

dp->f();

}

Class

D

has

two

occurrences

of

class

A,

one

inherited

from

B,

and

another

inherited

from

C.

Therefore

there

are

also

two

occurrences

of

the

virtual

function

A::f.

The

statement

ap->f()

calls

D::B::f.

However

the

compiler

would

not

allow

the

statement

dp->f()

because

it

could

either

call

D::B::f

or

D::C::f.

Virtual

Function

Access

2000C++

The

access

for

a

virtual

function

is

specified

when

it

is

declared.

The

access

rules

for

a

virtual

function

are

not

affected

by

the

access

rules

for

the

function

that

later

overrides

the

virtual

function.

In

general,

the

access

of

the

overriding

member

function

is

not

known.

If

a

virtual

function

is

called

with

a

pointer

or

reference

to

a

class

object,

the

type

of

the

class

object

is

not

used

to

determine

the

access

of

the

virtual

function.

Instead,

the

type

of

the

pointer

or

reference

to

the

class

object

is

used.

In

the

following

example,

when

the

function

f()

is

called

using

a

pointer

having

type

B*,

bptr

is

used

to

determine

the

access

to

the

function

f().

Although

the

definition

of

f()

defined

in

class

D

is

executed,

the

access

of

the

member

function

f()

in

class

B

is

used.

When

the

function

f()

is

called

using

a

pointer

having

type

D*,

dptr

is

used

to

determine

the

access

to

the

function

f().

This

call

produces

an

error

because

f()

is

declared

private

in

class

D.

class

B

{

public:

virtual

void

f();

};

class

D

:

public

B

{

private:

void

f();

};

int

main()

{

D

dobj;

B*

bptr

=

&dobj;

D*

dptr

=

&dobj;

//

valid,

virtual

B::f()

is

public,

//

D::f()

is

called

bptr->f();

//

error,

D::f()

is

private

dptr->f();

}

Virtual

Functions

Chapter

14.

Inheritance

267

Abstract

Classes

2000C++

An

abstract

class

is

a

class

that

is

designed

to

be

specifically

used

as

a

base

class.

An

abstract

class

contains

at

least

one

pure

virtual

function.

You

declare

a

pure

virtual

function

by

using

a

pure

specifier

(=

0)

in

the

declaration

of

a

virtual

member

function

in

the

class

declaration.

The

following

is

an

example

of

an

abstract

class::

class

AB

{

public:

virtual

void

f()

=

0;

};

Function

AB::f

is

a

pure

virtual

function.

A

function

declaration

cannot

have

both

a

pure

specifier

and

a

definition.

For

example,

the

compiler

will

not

allow

the

following:

struct

A

{

virtual

void

g()

{

}

=

0;

};

You

cannot

use

an

abstract

class

as

a

parameter

type,

a

function

return

type,

or

the

type

of

an

explicit

conversion,

nor

can

you

declare

an

object

of

an

abstract

class.

You

can,

however,

declare

pointers

and

references

to

an

abstract

class.

The

following

example

demonstrates

this:

struct

A

{

virtual

void

f()

=

0;

};

struct

B

:

A

{

virtual

void

f()

{

}

};

//

Error:

//

Class

A

is

an

abstract

class

//

A

g();

//

Error:

//

Class

A

is

an

abstract

class

//

void

h(A);

A&

i(A&);

int

main()

{

//

Error:

//

Class

A

is

an

abstract

class

//

A

a;

A*

pa;

B

b;

//

Error:

//

Class

A

is

an

abstract

class

//

static_cast<A>(b);

}

Class

A

is

an

abstract

class.

The

compiler

would

not

allow

the

function

declarations

A

g()

or

void

h(A),

declaration

of

object

a,

nor

the

static

cast

of

b

to

type

A.

Virtual

member

functions

are

inherited.

A

class

derived

from

an

abstract

base

class

will

also

be

abstract

unless

you

override

each

pure

virtual

function

in

the

derived

class.

Abstract

Classes

268

ILE

C/C++

Language

Reference

For

example:

class

AB

{

public:

virtual

void

f()

=

0;

};

class

D2

:

public

AB

{

void

g();

};

int

main()

{

D2

d;

}

The

compiler

will

not

allow

the

declaration

of

object

d

because

D2

is

an

abstract

class;

it

inherited

the

pure

virtual

function

f()from

AB.

The

compiler

will

allow

the

declaration

of

object

d

if

you

define

function

D2::g().

Note

that

you

can

derive

an

abstract

class

from

a

nonabstract

class,

and

you

can

override

a

non-pure

virtual

function

with

a

pure

virtual

function.

You

can

call

member

functions

from

a

constructor

or

destructor

of

an

abstract

class.

However,

the

results

of

calling

(directly

or

indirectly)

a

pure

virtual

function

from

its

constructor

are

undefined.

The

following

example

demonstrates

this:

struct

A

{

A()

{

direct();

indirect();

}

virtual

void

direct()

=

0;

virtual

void

indirect()

{

direct();

}

};

The

default

constructor

of

A

calls

the

pure

virtual

function

direct()

both

directly

and

indirectly

(through

indirect()).

Abstract

Classes

Chapter

14.

Inheritance

269

Abstract

Classes

270

ILE

C/C++

Language

Reference

Chapter

15.

Special

Member

Functions

2000C++

The

default

constructor,

destructor,

copy

constructor,

and

copy

assignment

operator

are

special

member

functions.

These

functions

create,

destroy,

convert,

initialize,

and

copy

class

objects.

Constructors

and

Destructors

Overview

2000C++

Because

classes

have

complicated

internal

structures,

including

data

and

functions,

object

initialization

and

cleanup

for

classes

is

much

more

complicated

than

it

is

for

simple

data

structures.

Constructors

and

destructors

are

special

member

functions

of

classes

that

are

used

to

construct

and

destroy

class

objects.

Construction

may

involve

memory

allocation

and

initialization

for

objects.

Destruction

may

involve

cleanup

and

deallocation

of

memory

for

objects.

Like

other

member

functions,

constructors

and

destructors

are

declared

within

a

class

declaration.

They

can

be

defined

inline

or

external

to

the

class

declaration.

Constructors

can

have

default

arguments.

Unlike

other

member

functions,

constructors

can

have

member

initialization

lists.

The

following

restrictions

apply

to

constructors

and

destructors:

v

Constructors

and

destructors

do

not

have

return

types

nor

can

they

return

values.

v

References

and

pointers

cannot

be

used

on

constructors

and

destructors

because

their

addresses

cannot

be

taken.

v

Constructors

cannot

be

declared

with

the

keyword

virtual.

v

Constructors

and

destructors

cannot

be

declared

static,

const,

or

volatile.

v

Unions

cannot

contain

class

objects

that

have

constructors

or

destructors.

Constructors

and

destructors

obey

the

same

access

rules

as

member

functions.

For

example,

if

you

declare

a

constructor

with

protected

access,

only

derived

classes

and

friends

can

use

it

to

create

class

objects.

The

compiler

automatically

calls

constructors

when

defining

class

objects

and

calls

destructors

when

class

objects

go

out

of

scope.

A

constructor

does

not

allocate

memory

for

the

class

object

its

this

pointer

refers

to,

but

may

allocate

storage

for

more

objects

than

its

class

object

refers

to.

If

memory

allocation

is

required

for

objects,

constructors

can

explicitly

call

the

new

operator.

During

cleanup,

a

destructor

may

release

objects

allocated

by

the

corresponding

constructor.

To

release

objects,

use

the

delete

operator.

Derived

classes

do

not

inherit

constructors

or

destructors

from

their

base

classes,

but

they

do

call

the

constructor

and

destructor

of

base

classes.

Destructors

can

be

declared

with

the

keyword

virtual.

Constructors

are

also

called

when

local

or

temporary

class

objects

are

created,

and

destructors

are

called

when

local

or

temporary

objects

go

out

of

scope.

You

can

call

member

functions

from

constructors

or

destructors.

You

can

call

a

virtual

function,

either

directly

or

indirectly,

from

a

constructor

or

destructor

of

a

class

A.

In

this

case,

the

function

called

is

the

one

defined

in

A

or

a

base

class

of

A,

©

Copyright

IBM

Corp.

1998,

2003

271

but

not

a

function

overridden

in

any

class

derived

from

A.

This

avoids

the

possibility

of

accessing

an

unconstructed

object

from

a

constructor

or

destructor.

The

following

example

demonstrates

this:

#include

<iostream>

using

namespace

std;

struct

A

{

virtual

void

f()

{

cout

<<

"void

A::f()"

<<

endl;

}

virtual

void

g()

{

cout

<<

"void

A::g()"

<<

endl;

}

virtual

void

h()

{

cout

<<

"void

A::h()"

<<

endl;

}

};

struct

B

:

A

{

virtual

void

f()

{

cout

<<

"void

B::f()"

<<

endl;

}

B()

{

f();

g();

h();

}

};

struct

C

:

B

{

virtual

void

f()

{

cout

<<

"void

C::f()"

<<

endl;

}

virtual

void

g()

{

cout

<<

"void

C::g()"

<<

endl;

}

virtual

void

h()

{

cout

<<

"void

C::h()"

<<

endl;

}

};

int

main()

{

C

obj;

}

The

following

is

the

output

of

the

above

example:

void

B::f()

void

A::g()

void

A::h()

The

constructor

of

B

does

not

call

any

of

the

functions

overridden

in

C

because

C

has

been

derived

from

B,

although

the

example

creates

an

object

of

type

C

named

obj.

You

can

use

the

typeid

or

the

dynamic_cast

operator

in

constructors

or

destructors,

as

well

as

member

initializers

of

constructors.

Related

References

v

“C++

new

Operator”

on

page

103

v

“C++

delete

Operator”

on

page

107

v

“Free

Store”

on

page

283

Constructors

2000C++

A

constructor

is

a

member

function

with

the

same

name

as

its

class.

For

example:

class

X

{

public:

X();

//

constructor

for

class

X

};

Constructors

are

used

to

create,

and

can

initialize,

objects

of

their

class

type.

272

ILE

C/C++

Language

Reference

You

cannot

declare

a

constructor

as

virtual

or

static,

nor

can

you

declare

a

constructor

as

const,

volatile,

or

const

volatile.

You

do

not

specify

a

return

type

for

a

constructor.

A

return

statement

in

the

body

of

a

constructor

cannot

have

a

return

value.

Related

References

v

“Free

Store”

on

page

283

Default

Constructors

2000C++

A

default

constructor

is

a

constructor

that

either

has

no

parameters,

or

if

it

has

parameters,

all

the

parameters

have

default

values.

If

no

user-defined

constructor

exists

for

a

class

A

and

one

is

needed,

the

compiler

implicitly

declares

a

constructor

A::A().

This

constructor

is

an

inline

public

member

of

its

class.

The

compiler

will

implicitly

define

A::A()

when

the

compiler

uses

this

constructor

to

create

an

object

of

type

A.

The

constructor

will

have

no

constructor

initializer

and

a

null

body.

The

compiler

first

implicitly

defines

the

implicitly

declared

constructors

of

the

base

classes

and

nonstatic

data

members

of

a

class

A

before

defining

the

implicitly

declared

constructor

of

A.

No

default

constructor

is

created

for

a

class

that

has

any

constant

or

reference

type

members.

A

constructor

of

a

class

A

is

trivial

if

all

the

following

are

true:

v

It

is

implicitly

defined

v

A

has

no

virtual

functions

and

no

virtual

base

classes

v

All

the

direct

base

classes

of

A

have

trivial

constructors

v

The

classes

of

all

the

nonstatic

data

members

of

A

have

trivial

constructors

If

any

of

the

above

are

false,

then

the

constructor

is

nontrivial.

A

union

member

cannot

be

of

a

class

type

that

has

a

nontrivial

constructor.

Like

all

functions,

a

constructor

can

have

default

arguments.

They

are

used

to

initialize

member

objects.

If

default

values

are

supplied,

the

trailing

arguments

can

be

omitted

in

the

expression

list

of

the

constructor.

Note

that

if

a

constructor

has

any

arguments

that

do

not

have

default

values,

it

is

not

a

default

constructor.

A

copy

constructor

for

a

class

A

is

a

constructor

whose

first

parameter

is

of

type

A&,

const

A&,

volatile

A&,

or

const

volatile

A&.

Copy

constructors

are

used

to

make

a

copy

of

one

class

object

from

another

class

object

of

the

same

class

type.

You

cannot

use

a

copy

constructor

with

an

argument

of

the

same

type

as

its

class;

you

must

use

a

reference.

You

can

provide

copy

constructors

with

additional

parameters

as

long

as

they

all

have

default

arguments.

If

a

user-defined

copy

constructor

does

not

exist

for

a

class

and

one

is

needed,

the

compiler

implicitly

creates

a

copy

constructor,

with

public

access,

for

that

class.

A

copy

constructor

is

not

created

for

a

class

if

any

of

its

members

or

base

classes

have

an

inaccessible

copy

constructor.

The

following

code

fragment

shows

two

classes

with

constructors,

default

constructors,

and

copy

constructors:

class

X

{

public:

//

default

constructor,

no

arguments

Chapter

15.

Special

Member

Functions

273

X();

//

constructor

X(int,

int

,

int

=

0);

//

copy

constructor

X(const

X&);

//

error,

incorrect

argument

type

X(X);

};

class

Y

{

public:

//

default

constructor

with

one

//

default

argument

Y(

int

=

0);

//

default

argument

//

copy

constructor

Y(const

Y&,

int

=

0);

};

Related

References

v

“Copy

Constructors”

on

page

291

Explicit

Initialization

with

Constructors

2000C++

A

class

object

with

a

constructor

must

be

explicitly

initialized

or

have

a

default

constructor.

Except

for

aggregate

initialization,

explicit

initialization

using

a

constructor

is

the

only

way

to

initialize

nonstatic

constant

and

reference

class

members.

A

class

object

that

has

no

constructors,

no

virtual

functions,

no

private

or

protected

members,

and

no

base

classes

is

called

an

aggregate.

Examples

of

aggregates

are

C-style

structures

and

unions.

You

explicitly

initialize

a

class

object

when

you

create

that

object.

There

are

two

ways

to

initialize

a

class

object:

v

Using

a

parenthesized

expression

list.

The

compiler

calls

the

constructor

of

the

class

using

this

list

as

the

constructor’s

argument

list.

v

Using

a

single

initialization

value

and

the

=

operator.

Because

this

type

of

expression

is

an

initialization,

not

an

assignment,

the

assignment

operator

function,

if

one

exists,

is

not

called.

The

type

of

the

single

argument

must

match

the

type

of

the

first

argument

to

the

constructor.

If

the

constructor

has

remaining

arguments,

these

arguments

must

have

default

values.

v

The

syntax

for

an

initializer

that

explicitly

initializes

a

class

object

with

a

constructor

is:

��

�

(

expression

)

=

expression

,

{

expression

}

,

��

274

ILE

C/C++

Language

Reference

The

following

example

shows

the

declaration

and

use

of

several

constructors

that

explicitly

initialize

class

objects:

//

This

example

illustrates

explicit

initialization

//

by

constructor.

#include

<iostream>

using

namespace

std;

class

complx

{

double

re,

im;

public:

//

default

constructor

complx()

:

re(0),

im(0)

{

}

//

copy

constructor

complx(const

complx&

c)

{

re

=

c.re;

im

=

c.im;

}

//

constructor

with

default

trailing

argument

complx(

double

r,

double

i

=

0.0)

{

re

=

r;

im

=

i;

}

void

display()

{

cout

<<

"re

=

"<<

re

<<

"

im

=

"

<<

im

<<

endl;

}

};

int

main()

{

//

initialize

with

complx(double,

double)

complx

one(1);

//

initialize

with

a

copy

of

one

//

using

complx::complx(const

complx&)

complx

two

=

one;

//

construct

complx(3,4)

//

directly

into

three

complx

three

=

complx(3,4);

//

initialize

with

default

constructor

complx

four;

//

complx(double,

double)

and

construct

//

directly

into

five

complx

five

=

5;

one.display();

two.display();

three.display();

four.display();

five.display();

}

The

above

example

produces

the

following

output:

re

=

1

im

=

0

re

=

1

im

=

0

re

=

3

im

=

4

re

=

0

im

=

0

re

=

5

im

=

0

Related

References

v

“Initializers”

on

page

64

Chapter

15.

Special

Member

Functions

275

Initializing

Base

Classes

and

Members

2000C++

Constructors

can

initialize

their

members

in

two

different

ways.

A

constructor

can

use

the

arguments

passed

to

it

to

initialize

member

variables

in

the

constructor

definition:

complx(double

r,

double

i

=

0.0)

{

re

=

r;

im

=

i;

}

Or

a

constructor

can

have

an

initializer

list

within

the

definition

but

prior

to

the

function

body:

complx(double

r,

double

i

=

0)

:

re(r),

im(i)

{

/*

...

*/

}

Both

methods

assign

the

argument

values

to

the

appropriate

data

members

of

the

class.

The

syntax

for

a

constructor

initializer

list

is:

��

:

�

�

,

identifier

(

)

class_name

assignment_expression

��

Include

the

initialization

list

as

part

of

the

function

definition,

not

as

part

of

the

constructor

declaration.

For

example:

#include

<iostream>

using

namespace

std;

class

B1

{

int

b;

public:

B1()

{

cout

<<

"B1::B1()"

<<

endl;

};

//

inline

constructor

B1(int

i)

:

b(i)

{

cout

<<

"B1::B1(int)"

<<

endl;

}

};

class

B2

{

int

b;

protected:

B2()

{

cout

<<

"B1::B1()"

<<

endl;

}

//

noninline

constructor

B2(int

i);

};

//

B2

constructor

definition

including

initialization

list

B2::B2(int

i)

:

b(i)

{

cout

<<

"B2::B2(int)"

<<

endl;

}

class

D

:

public

B1,

public

B2

{

int

d1,

d2;

public:

D(int

i,

int

j)

:

B1(i+1),

B2(),

d1(i)

{

cout

<<

"D1::D1(int,

int)"

<<

endl;

d2

=

j;}

};

int

main()

{

D

obj(1,

2);

}

The

following

is

the

output

of

the

above

example:

276

ILE

C/C++

Language

Reference

B1::B1(int)

B1::B1()

D1::D1(int,

int)

If

you

do

not

explicitly

initialize

a

base

class

or

member

that

has

constructors

by

calling

a

constructor,

the

compiler

automatically

initializes

the

base

class

or

member

with

a

default

constructor.

In

the

above

example,

if

you

leave

out

the

call

B2()

in

the

constructor

of

class

D

(as

shown

below),

a

constructor

initializer

with

an

empty

expression

list

is

automatically

created

to

initialize

B2.

The

constructors

for

class

D,

shown

above

and

below,

result

in

the

same

construction

of

an

object

of

class

D:

class

D

:

public

B1,

public

B2

{

int

d1,

d2;

public:

//

call

B2()

generated

by

compiler

D(int

i,

int

j)

:

B1(i+1),

d1(i)

{

cout

<<

"D1::D1(int,

int)"

<<

endl;

d2

=

j;}

};

In

the

above

example,

the

compiler

will

automatically

call

the

default

constructor

for

B2().

Note

that

you

must

declare

constructors

as

public

or

protected

to

enable

a

derived

class

to

call

them.

For

example:

class

B

{

B()

{

}

};

class

D

:

public

B

{

//

error:

implicit

call

to

private

B()

not

allowed

D()

{

}

};

The

compiler

does

not

allow

the

definition

of

D::D()

because

this

constructor

cannot

access

the

private

constructor

B::B().

You

must

initialize

the

following

with

an

initializer

list:

base

classes

with

no

default

constructors,

reference

data

members,

non-static

const

data

members,

or

a

class

type

which

contains

a

constant

data

member.

The

following

example

demonstrates

this:

class

A

{

public:

A(int)

{

}

};

class

B

:

public

A

{

static

const

int

i;

const

int

j;

int

&k;

public:

B(int&

arg)

:

A(0),

j(1),

k(arg)

{

}

};

int

main()

{

int

x

=

0;

B

obj(x);

};

Chapter

15.

Special

Member

Functions

277

The

data

members

j

and

k,

as

well

as

the

base

class

A

must

be

initialized

in

the

initializer

list

of

the

constructor

of

B.

You

can

use

data

members

when

initializing

members

of

a

class.

The

following

example

demonstrate

this:

struct

A

{

int

k;

A(int

i)

:

k(i)

{

}

};

struct

B:

A

{

int

x;

int

i;

int

j;

int&

r;

B(int

i):

r(x),

A(i),

j(this->i),

i(i)

{

}

};

The

constructor

B(int

i)

initializes

the

following:

v

B::r

to

refer

to

B::x

v

Class

A

with

the

value

of

the

argument

to

B(int

i)

v

B::j

with

the

value

of

B::i

v

B::i

with

the

value

of

the

argument

to

B(int

i)

You

can

also

call

member

functions

(including

virtual

member

functions)

or

use

the

operators

typeid

or

dynamic_cast

when

initializing

members

of

a

class.

However

if

you

perform

any

of

these

operations

in

a

member

initialization

list

before

all

base

classes

have

been

initialized,

the

behavior

is

undefined.

The

following

example

demonstrates

this:

#include

<iostream>

using

namespace

std;

struct

A

{

int

i;

A(int

arg)

:

i(arg)

{

cout

<<

"Value

of

i:

"

<<

i

<<

endl;

}

};

struct

B

:

A

{

int

j;

int

f()

{

return

i;

}

B();

};

B::B()

:

A(f()),

j(1234)

{

cout

<<

"Value

of

j:

"

<<

j

<<

endl;

}

int

main()

{

B

obj;

}

The

output

of

the

above

example

would

be

similar

to

the

following:

Value

of

i:

8

Value

of

j:

1234

The

behavior

of

the

initializer

A(f())

in

the

constructor

of

B

is

undefined.

The

run

time

will

call

B::f()

and

try

to

access

A::i

even

though

the

base

A

has

not

been

initialized.

278

ILE

C/C++

Language

Reference

The

following

example

is

the

same

as

the

previous

example

except

that

the

initializers

of

B::B()

have

different

arguments:

#include

<iostream>

using

namespace

std;

struct

A

{

int

i;

A(int

arg)

:

i(arg)

{

cout

<<

"Value

of

i:

"

<<

i

<<

endl;

}

};

struct

B

:

A

{

int

j;

int

f()

{

return

i;

}

B();

};

B::B()

:

A(5678),

j(f())

{

cout

<<

"Value

of

j:

"

<<

j

<<

endl;

}

int

main()

{

B

obj;

}

The

following

is

the

output

of

the

above

example:

Value

of

i:

5678

Value

of

j:

5678

The

behavior

of

the

initializer

j(f())

in

the

constructor

of

B

is

well-defined.

The

base

class

A

is

already

initialized

when

B::j

is

initialized.

Related

References

v

“Default

Constructors”

on

page

273

v

“The

typeid

Operator”

on

page

92

v

“dynamic_cast

Operator”

on

page

96

Construction

Order

of

Derived

Class

Objects

2000C++

When

a

derived

class

object

is

created

using

constructors,

it

is

created

in

the

following

order:

1.

Virtual

base

classes

are

initialized,

in

the

order

they

appear

in

the

base

list.

2.

Nonvirtual

base

classes

are

initialized,

in

declaration

order.

3.

Class

members

are

initialized

in

declaration

order

(regardless

of

their

order

in

the

initialization

list).

4.

The

body

of

the

constructor

is

executed.

The

following

example

demonstrates

this:

#include

<iostream>

using

namespace

std;

struct

V

{

V()

{

cout

<<

"V()"

<<

endl;

}

};

struct

V2

{

V2()

{

cout

<<

"V2()"

<<

endl;

}

};

struct

A

{

A()

{

cout

<<

"A()"

<<

endl;

}

};

Chapter

15.

Special

Member

Functions

279

struct

B

:

virtual

V

{

B()

{

cout

<<

"B()"

<<

endl;

}

};

struct

C

:

B,

virtual

V2

{

C()

{

cout

<<

"C()"

<<

endl;

}

};

struct

D

:

C,

virtual

V

{

A

obj_A;

D()

{

cout

<<

"D()"

<<

endl;

}

};

int

main()

{

D

c;

}

The

following

is

the

output

of

the

above

example:

V()

V2()

B()

C()

A()

D()

The

above

output

lists

the

order

in

which

the

C++

run

time

calls

the

constructors

to

create

an

object

of

type

D.

Related

References

v

“Virtual

Base

Classes”

on

page

257

Destructors

2000C++

Destructors

are

usually

used

to

deallocate

memory

and

do

other

cleanup

for

a

class

object

and

its

class

members

when

the

object

is

destroyed.

A

destructor

is

called

for

a

class

object

when

that

object

passes

out

of

scope

or

is

explicitly

deleted.

A

destructor

is

a

member

function

with

the

same

name

as

its

class

prefixed

by

a

~

(tilde).

For

example:

class

X

{

public:

//

Constructor

for

class

X

X();

//

Destructor

for

class

X

~X();

};

A

destructor

takes

no

arguments

and

has

no

return

type.

Its

address

cannot

be

taken.

Destructors

cannot

be

declared

const,

volatile,

const

volatile

or

static.

A

destructor

can

be

declared

virtual

or

pure

virtual.

If

no

user-defined

destructor

exists

for

a

class

and

one

is

needed,

the

compiler

implicitly

declares

a

destructor.

This

implicitly

declared

destructor

is

an

inline

public

member

of

its

class.

The

compiler

will

implicitly

define

an

implicitly

declared

destructor

when

the

compiler

uses

the

destructor

to

destroy

an

object

of

the

destructor’s

class

type.

Suppose

a

class

A

has

an

implicitly

declared

destructor.

The

following

is

equivalent

to

the

function

the

compiler

would

implicitly

define

for

A:

~A::A()

{

}

280

ILE

C/C++

Language

Reference

The

compiler

first

implicitly

defines

the

implicitly

declared

destructors

of

the

base

classes

and

nonstatic

data

members

of

a

class

A

before

defining

the

implicitly

declared

destructor

of

A

A

destructor

of

a

class

A

is

trivial

if

all

the

following

are

true:

v

It

is

implicitly

defined

v

All

the

direct

base

classes

of

A

have

trivial

destructors

v

The

classes

of

all

the

nonstatic

data

members

of

A

have

trivial

destructors

If

any

of

the

above

are

false,

then

the

destructor

is

nontrivial.

A

union

member

cannot

be

of

a

class

type

that

has

a

nontrivial

destructor.

Class

members

that

are

class

types

can

have

their

own

destructors.

Both

base

and

derived

classes

can

have

destructors,

although

destructors

are

not

inherited.

If

a

base

class

A

or

a

member

of

A

has

a

destructor,

and

a

class

derived

from

A

does

not

declare

a

destructor,

a

default

destructor

is

generated.

The

default

destructor

calls

the

destructors

of

the

base

class

and

members

of

the

derived

class.

The

destructors

of

base

classes

and

members

are

called

in

the

reverse

order

of

the

completion

of

their

constructor:

1.

The

destructor

for

a

class

object

is

called

before

destructors

for

members

and

bases

are

called.

2.

Destructors

for

nonstatic

members

are

called

before

destructors

for

base

classes

are

called.

3.

Destructors

for

nonvirtual

base

classes

are

called

before

destructors

for

virtual

base

classes

are

called.

When

an

exception

is

thrown

for

a

class

object

with

a

destructor,

the

destructor

for

the

temporary

object

thrown

is

not

called

until

control

passes

out

of

the

catch

block.

Destructors

are

implicitly

called

when

an

automatic

object

(a

local

object

that

has

been

declared

auto

or

register,

or

not

declared

as

static

or

extern)

or

temporary

object

passes

out

of

scope.

They

are

implicitly

called

at

program

termination

for

constructed

external

and

static

objects.

Destructors

are

invoked

when

you

use

the

delete

operator

for

objects

created

with

the

new

operator.

For

example:

#include

<string>

class

Y

{

private:

char

*

string;

int

number;

public:

//

Constructor

Y(const

char*,

int);

//

Destructor

~Y()

{

delete[]

string;

}

};

//

Define

class

Y

constructor

Y::Y(const

char*

n,

int

a)

{

string

=

strcpy(new

char[strlen(n)

+

1

],

n);

number

=

a;

Chapter

15.

Special

Member

Functions

281

}

int

main

()

{

//

Create

and

initialize

//

object

of

class

Y

Y

yobj

=

Y("somestring",

10);

//

...

//

Destructor

~Y

is

called

before

//

control

returns

from

main()

}

You

can

use

a

destructor

explicitly

to

destroy

objects,

although

this

practice

is

not

recommended.

However

to

destroy

an

object

created

with

the

placement

new

operator,

you

can

explicitly

call

the

object’s

destructor.

The

following

example

demonstrates

this:

#include

<new>

#include

<iostream>

using

namespace

std;

class

A

{

public:

A()

{

cout

<<

"A::A()"

<<

endl;

}

~A()

{

cout

<<

"A::~A()"

<<

endl;

}

};

int

main

()

{

char*

p

=

new

char[sizeof(A)];

A*

ap

=

new

(p)

A;

ap->A::~A();

delete

[]

p;

}

The

statement

A*

ap

=

new

(p)

A

dynamically

creates

a

new

object

of

type

A

not

in

the

free

store

but

in

the

memory

allocated

by

p.

The

statement

delete

[]

p

will

delete

the

storage

allocated

by

p,

but

the

run

time

will

still

believe

that

the

object

pointed

to

by

ap

still

exists

until

you

explicitly

call

the

destructor

of

A

(with

the

statement

ap->A::~A()).

Nonclass

types

have

a

pseudo

destructor.

The

following

example

calls

the

pseudo

destructor

for

an

integer

type:

typedef

int

I;

int

main()

{

I

x

=

10;

x.I::~I();

x

=

20;

}

The

call

to

the

pseudo

destructor,

x.I::~I(),

has

no

effect

at

all.

Object

x

has

not

been

destroyed;

the

assignment

x

=

20

is

still

valid.

Because

pseudo

destructors

require

the

syntax

for

explicitly

calling

a

destructor

for

a

nonclass

type

to

be

valid,

you

can

write

code

without

having

to

know

whether

or

not

a

destructor

exists

for

a

given

type.

Related

References

v

“Temporary

Objects”

on

page

287

282

ILE

C/C++

Language

Reference

Free

Store

2000C++

Free

store

is

a

pool

of

memory

available

for

you

to

allocate

(and

deallocate)

storage

for

objects

during

the

execution

of

your

program.

The

new

and

delete

operators

are

used

to

allocate

and

deallocate

free

store,

respectively.

You

can

define

your

own

versions

of

new

and

delete

for

a

class

by

overloading

them.

You

can

declare

the

new

and

delete

operators

with

additional

parameters.

When

new

and

delete

operate

on

class

objects,

the

class

member

operator

functions

new

and

delete

are

called,

if

they

have

been

declared.

If

you

create

a

class

object

with

the

new

operator,

one

of

the

operator

functions

operator

new()

or

operator

new[]()

(if

they

have

been

declared)

is

called

to

create

the

object.

An

operator

new()

or

operator

new[]()

for

a

class

is

always

a

static

class

member,

even

if

it

is

not

declared

with

the

keyword

static.

It

has

a

return

type

void*

and

its

first

parameter

must

be

the

size

of

the

object

type

and

have

type

std::size_t.

It

cannot

be

virtual.

Type

std::size_t

is

an

implementation-dependent

unsigned

integral

type

defined

in

the

standard

library

header

<cstddef>.

When

you

overload

the

new

operator,

you

must

declare

it

as

a

class

member,

returning

type

void*,

with

its

first

parameter

of

type

std::size_t.

You

can

declare

additional

parameters

in

the

declaration

of

operator

new()

or

operator

new[]().

Use

the

placement

syntax

to

specify

values

for

these

parameters

in

an

allocation

expression.

The

following

example

overloads

two

operator

new

functions:

v

X::operator

new(size_t

sz):

This

overloads

the

default

new

operator

by

allocating

memory

with

the

C

function

malloc(),

and

throwing

a

string

(instead

of

std::bad_alloc)

if

malloc()

fails.

v

X::operator

new(size_t

sz,

int

location):

This

function

takes

an

additional

integer

parameter,

location.

This

function

implements

a

very

simplistic

″memory

manager″

that

manages

the

storage

of

up

to

three

X

objects.

Static

array

X::buffer

holds

three

Node

objects.

Each

Node

object

contains

a

pointer

to

an

X

object

named

data

and

a

boolean

variable

named

filled.

Each

X

object

stores

an

integer

called

number.

When

you

use

this

new

operator,

you

pass

the

argument

location

which

indicates

the

array

location

of

buffer

where

you

want

to

″create″

your

new

X

object.

If

the

array

location

is

not

″filled″

(the

data

member

of

filled

is

equal

to

false

at

that

array

location),

the

new

operator

returns

a

pointer

pointing

to

the

X

object

located

at

buffer[location].

#include

<new>

#include

<iostream>

using

namespace

std;

class

X;

struct

Node

{

X*

data;

bool

filled;

Node()

:

filled(false)

{

}

};

class

X

{

static

Node

buffer[];

public:

Chapter

15.

Special

Member

Functions

283

int

number;

enum

{

size

=

3};

void*

operator

new(size_t

sz)

throw

(const

char*)

{

void*

p

=

malloc(sz);

if

(sz

==

0)

throw

"Error:

malloc()

failed";

cout

<<

"X::operator

new(size_t)"

<<

endl;

return

p;

}

void

*operator

new(size_t

sz,

int

location)

throw

(const

char*)

{

cout

<<

"X::operator

new(size_t,

"

<<

location

<<

")"

<<

endl;

void*

p

=

0;

if

(location

<

0

||

location

>=

size

||

buffer[location].filled

==

true)

{

throw

"Error:

buffer

location

occupied";

}

else

{

p

=

malloc(sizeof(X));

if

(p

==

0)

throw

"Error:

Creating

X

object

failed";

buffer[location].filled

=

true;

buffer[location].data

=

(X*)

p;

}

return

p;

}

static

void

printbuffer()

{

for

(int

i

=

0;

i

<

size;

i++)

{

cout

<<

buffer[i].data->number

<<

endl;

}

}

};

Node

X::buffer[size];

int

main()

{

try

{

X*

ptr1

=

new

X;

X*

ptr2

=

new(0)

X;

X*

ptr3

=

new(1)

X;

X*

ptr4

=

new(2)

X;

ptr2->number

=

10000;

ptr3->number

=

10001;

ptr4->number

=

10002;

X::printbuffer();

X*

ptr5

=

new(0)

X;

}

catch

(const

char*

message)

{

cout

<<

message

<<

endl;

}

}

The

following

is

the

output

of

the

above

example:

X::operator

new(size_t)

X::operator

new(size_t,

0)

X::operator

new(size_t,

1)

X::operator

new(size_t,

2)

10000

10001

10002

X::operator

new(size_t,

0)

Error:

buffer

location

occupied

The

statement

X*

ptr1

=

new

X

calls

X::operator

new(sizeof(X)).

The

statement

X*

ptr2

=

new(0)

X

calls

X::operator

new(sizeof(X),0).

284

ILE

C/C++

Language

Reference

The

delete

operator

destroys

an

object

created

by

the

new

operator.

The

operand

of

delete

must

be

a

pointer

returned

by

new.

If

delete

is

called

for

an

object

with

a

destructor,

the

destructor

is

invoked

before

the

object

is

deallocated.

If

you

destroy

a

class

object

with

the

delete

operator,

the

operator

function

operator

delete()

or

operator

delete[]()

(if

they

have

been

declared)

is

called

to

destroy

the

object.

An

operator

delete()

or

operator

delete[]()

for

a

class

is

always

a

static

member,

even

if

it

is

not

declared

with

the

keyword

static.

Its

first

parameter

must

have

type

void*.

Because

operator

delete()

and

operator

delete[]()

have

a

return

type

void,

they

cannot

return

a

value.

The

following

example

shows

the

declaration

and

use

of

the

operator

functions

operator

new()

and

operator

delete():

#include

<cstdlib>

#include

<iostream>

using

namespace

std;

class

X

{

public:

void*

operator

new(size_t

sz)

throw

(const

char*)

{

void*

p

=

malloc(sz);

if

(p

==

0)

throw

"malloc()

failed";

return

p;

}

//

single

argument

void

operator

delete(void*

p)

{

cout

<<

"X::operator

delete(void*)"

<<

endl;

free(p);

}

};

class

Y

{

int

filler[100];

public:

//

two

arguments

void

operator

delete(void*

p,

size_t

sz)

throw

(const

char*)

{

cout

<<

"Freeing

"

<<

sz

<<

"

byte(s)"

<<

endl;

free(p);

};

};

int

main()

{

X*

ptr

=

new

X;

//

call

X::operator

delete(void*)

delete

ptr;

Y*

yptr

=

new

Y;

//

call

Y::operator

delete(void*,

size_t)

//

with

size

of

Y

as

second

argument

delete

yptr;

}

The

above

example

will

generate

output

similar

to

the

following:

X::operator

delete(void*)

Freeing

400

byte(s)

Chapter

15.

Special

Member

Functions

285

The

statement

delete

ptr

calls

X::operator

delete(void*).

The

statement

delete

yptr

calls

Y::operator

delete(void*,

size_t).

The

result

of

trying

to

access

a

deleted

object

is

undefined

because

the

value

of

the

object

can

change

after

deletion.

If

new

and

delete

are

called

for

a

class

object

that

does

not

declare

the

operator

functions

new

and

delete,

or

they

are

called

for

a

nonclass

object,

the

global

operators

new

and

delete

are

used.

The

global

operators

new

and

delete

are

provided

in

the

C++

library.

The

C++

operators

for

allocating

and

deallocating

arrays

of

class

objects

are

operator

new[

]()

and

operator

delete[

]().

You

cannot

declare

the

delete

operator

as

virtual.

However

you

can

add

polymorphic

behavior

to

your

delete

operators

by

declaring

the

destructor

of

a

base

class

as

virtual.

The

following

example

demonstrates

this:

#include

<iostream>

using

namespace

std;

struct

A

{

virtual

~A()

{

cout

<<

"~A()"

<<

endl;

};

void

operator

delete(void*

p)

{

cout

<<

"A::operator

delete"

<<

endl;

free(p);

}

};

struct

B

:

A

{

void

operator

delete(void*

p)

{

cout

<<

"B::operator

delete"

<<

endl;

free(p);

}

};

int

main()

{

A*

ap

=

new

B;

delete

ap;

}

The

following

is

the

output

of

the

above

example:

~A()

B::operator

delete

The

statement

delete

ap

uses

the

delete

operator

from

class

B

instead

of

class

A

because

the

destructor

of

A

has

been

declared

as

virtual.

Although

you

can

get

polymorphic

behavior

from

the

delete

operator,

the

delete

operator

that

is

statically

visible

must

still

be

accessible

even

though

another

delete

operator

might

be

called.

For

example,

in

the

above

example,

the

function

A::operator

delete(void*)

must

be

accessible

even

though

the

example

calls

B::operator

delete(void*)

instead.

Virtual

destructors

do

not

have

any

affect

on

deallocation

operators

for

arrays

(operator

delete[]()).

The

following

example

demonstrates

this:

#include

<iostream>

using

namespace

std;

struct

A

{

virtual

~A()

{

cout

<<

"~A()"

<<

endl;

}

286

ILE

C/C++

Language

Reference

void

operator

delete[](void*

p,

size_t)

{

cout

<<

"A::operator

delete[]"

<<

endl;

::delete

[]

p;

}

};

struct

B

:

A

{

void

operator

delete[](void*

p,

size_t)

{

cout

<<

"B::operator

delete[]"

<<

endl;

::delete

[]

p;

}

};

int

main()

{

A*

bp

=

new

B[3];

delete[]

bp;

};

The

behavior

of

the

statement

delete[]

bp

is

undefined.

When

you

overload

the

delete

operator,

you

must

declare

it

as

class

member,

returning

type

void,

with

the

first

parameter

having

type

void*,

as

described

above.

You

can

add

a

second

parameter

of

type

size_t

to

the

declaration.

You

can

only

have

one

operator

delete()

or

operator

delete[]()

for

a

single

class.

Related

References

v

“C++

new

Operator”

on

page

103

v

“C++

delete

Operator”

on

page

107

v

“Placement

Syntax”

on

page

104

v

“Allocation

and

Deallocation

Functions”

on

page

154

Temporary

Objects

2000C++

It

is

sometimes

necessary

for

the

compiler

to

create

temporary

objects.

They

are

used

during

reference

initialization

and

during

evaluation

of

expressions

including

standard

type

conversions,

argument

passing,

function

returns,

and

evaluation

of

the

throw

expression.

When

a

temporary

object

is

created

to

initialize

a

reference

variable,

the

name

of

the

temporary

object

has

the

same

scope

as

that

of

the

reference

variable.

When

a

temporary

object

is

created

during

the

evaluation

of

a

full-expression

(an

expression

that

is

not

a

subexpression

of

another

expression),

it

is

destroyed

as

the

last

step

in

its

evaluation

that

lexically

contains

the

point

where

it

was

created.

There

are

two

exceptions

in

the

destruction

of

full-expressions:

v

The

expression

appears

as

an

initializer

for

a

declaration

defining

an

object:

the

temporary

object

is

destroyed

when

the

initialization

is

complete.

v

A

reference

is

bound

to

a

temporary

object:

the

temporary

object

is

destroyed

at

the

end

of

the

reference’s

lifetime.

If

a

temporary

object

is

created

for

a

class

with

constructors,

the

compiler

calls

the

appropriate

(matching)

constructor

to

create

the

temporary

object.

When

a

temporary

object

is

destroyed

and

a

destructor

exists,

the

compiler

calls

the

destructor

to

destroy

the

temporary

object.

When

you

exit

from

the

scope

in

which

the

temporary

object

was

created,

it

is

destroyed.

If

a

reference

is

bound

to

a

temporary

object,

the

temporary

object

is

destroyed

when

the

reference

passes

out

of

scope

unless

it

is

destroyed

earlier

by

a

break

in

the

flow

of

control.

For

Chapter

15.

Special

Member

Functions

287

example,

a

temporary

object

created

by

a

constructor

initializer

for

a

reference

member

is

destroyed

on

leaving

the

constructor.

In

cases

where

such

temporary

objects

are

redundant,

the

compiler

does

not

construct

them,

in

order

to

create

more

efficient

optimized

code.

This

behavior

could

be

a

consideration

when

you

are

debugging

your

programs,

especially

for

memory

problems.

Related

References

v

“Arguments

of

catch

Blocks”

on

page

333

v

“Initializing

References”

on

page

76

v

“Cast

Expressions”

on

page

108

v

“Function

Return

Values”

on

page

153

User-Defined

Conversions

2000C++

User-defined

conversions

allow

you

to

specify

object

conversions

with

constructors

or

with

conversion

functions.

User-defined

conversions

are

implicitly

used

in

addition

to

standard

conversions

for

conversion

of

initializers,

functions

arguments,

function

return

values,

expression

operands,

expressions

controlling

iteration,

selection

statements,

and

explicit

type

conversions.

There

are

two

types

of

user-defined

conversions:

v

Conversion

by

constructor

v

Conversion

functions

The

compiler

can

use

only

one

user-defined

conversion

(either

a

conversion

constructor

or

a

conversion

function)

when

implicitly

converting

a

single

value.

The

following

example

demonstrates

this:

class

A

{

int

x;

public:

operator

int()

{

return

x;

};

};

class

B

{

A

y;

public:

operator

A()

{

return

y;

};

};

int

main

()

{

B

b_obj;

//

int

i

=

b_obj;

int

j

=

A(b_obj);

}

The

compiler

would

not

allow

the

statement

int

i

=

b_obj.

The

compiler

would

have

to

implicitly

convert

b_obj

into

an

object

of

type

A

(with

B::operator

A()),

then

implicitly

convert

that

object

to

an

integer

(with

A::operator

int()).

The

statement

int

j

=

A(b_obj)

explicitly

converts

b_obj

into

an

object

of

type

A,

then

implicitly

converts

that

object

to

an

integer.

User-defined

conversions

must

be

unambiguous,

or

they

are

not

called.

A

conversion

function

in

a

derived

class

does

not

hide

another

conversion

function

in

a

base

class

unless

both

conversion

functions

convert

to

the

same

type.

Function

overload

resolution

selects

the

most

appropriate

conversion

function.

The

following

example

demonstrates

this:

288

ILE

C/C++

Language

Reference

class

A

{

int

a_int;

char*

a_carp;

public:

operator

int()

{

return

a_int;

}

operator

char*()

{

return

a_carp;

}

};

class

B

:

public

A

{

float

b_float;

char*

b_carp;

public:

operator

float()

{

return

b_float;

}

operator

char*()

{

return

b_carp;

}

};

int

main

()

{

B

b_obj;

//

long

a

=

b_obj;

char*

c_p

=

b_obj;

}

The

compiler

would

not

allow

the

statement

long

a

=

b_obj.

The

compiler

could

either

use

A::operator

int()

or

B::operator

float()

to

convert

b_obj

into

a

long.

The

statement

char*

c_p

=

b_obj

uses

B::operator

char*()

to

convert

b_obj

into

a

char*

because

B::operator

char*()

hides

A::operator

char*().

When

you

call

a

constructor

with

an

argument

and

you

have

not

defined

a

constructor

accepting

that

argument

type,

only

standard

conversions

are

used

to

convert

the

argument

to

another

argument

type

acceptable

to

a

constructor

for

that

class.

No

other

constructors

or

conversions

functions

are

called

to

convert

the

argument

to

a

type

acceptable

to

a

constructor

defined

for

that

class.

The

following

example

demonstrates

this:

class

A

{

public:

A()

{

}

A(int)

{

}

};

int

main()

{

A

a1

=

1.234;

//

A

moocow

=

"text

string";

}

The

compiler

allows

the

statement

A

a1

=

1.234.

The

compiler

uses

the

standard

conversion

of

converting

1.234

into

an

int,

then

implicitly

calls

the

converting

constructor

A(int).

The

compiler

would

not

allow

the

statement

A

moocow

=

"text

string";

converting

a

text

string

to

an

integer

is

not

a

standard

conversion.

Related

References

v

“Standard

Type

Conversions”

on

page

126

Conversion

by

Constructor

2000C++

A

converting

constructor

is

a

single-parameter

constructor

that

is

declared

without

the

function

specifier

explicit.

The

compiler

uses

converting

constructors

to

convert

objects

from

the

type

of

the

first

parameter

to

the

type

of

the

converting

constructor’s

class.

The

following

example

demonstrates

this:

class

Y

{

int

a,

b;

char*

name;

Chapter

15.

Special

Member

Functions

289

public:

Y(int

i)

{

};

Y(const

char*

n,

int

j

=

0)

{

};

};

void

add(Y)

{

};

int

main()

{

//

equivalent

to

//

obj1

=

Y(2)

Y

obj1

=

2;

//

equivalent

to

//

obj2

=

Y("somestring",0)

Y

obj2

=

"somestring";

//

equivalent

to

//

obj1

=

Y(10)

obj1

=

10;

//

equivalent

to

//

add(Y(5))

add(5);

}

The

above

example

has

the

following

two

converting

constructors:

v

Y(int

i)which

is

used

to

convert

integers

to

objects

of

class

Y.

v

Y(const

char*

n,

int

j

=

0)

which

is

used

to

convert

pointers

to

strings

to

objects

of

class

Y.

The

compiler

will

not

implicitly

convert

types

as

demonstrated

above

with

constructors

declared

with

the

explicit

keyword.

The

compiler

will

only

use

explicitly

declared

constructors

in

new

expressions,

the

static_cast

expressions

and

explicit

casts,

and

the

initialization

of

bases

and

members.

The

following

example

demonstrates

this:

class

A

{

public:

explicit

A()

{

};

explicit

A(int)

{

};

};

int

main()

{

A

z;

//

A

y

=

1;

A

x

=

A(1);

A

w(1);

A*

v

=

new

A(1);

A

u

=

(A)1;

A

t

=

static_cast<A>(1);

}

The

compiler

would

not

allow

the

statement

A

y

=

1

because

this

is

an

implicit

conversion;

class

A

has

no

conversion

constructors.

A

copy

constructor

is

a

converting

constructor.

Related

References

v

“The

explicit

Keyword”

on

page

132

v

“C++

new

Operator”

on

page

103

v

“static_cast

Operator”

on

page

93

290

ILE

C/C++

Language

Reference

Conversion

Functions

2000C++

You

can

define

a

member

function

of

a

class,

called

a

conversion

function,

that

converts

from

the

type

of

its

class

to

another

specified

type.

��

class

::

operator

const

volatile

conversion_type

�

�

�

pointer_operator

(

)

{

function_body

}

��

A

conversion

function

that

belongs

to

a

class

X

specifies

a

conversion

from

the

class

type

X

to

the

type

specified

by

the

conversion_type.

The

following

code

fragment

shows

a

conversion

function

called

operator

int():

class

Y

{

int

b;

public:

operator

int();

};

Y::operator

int()

{

return

b;

}

void

f(Y

obj)

{

int

i

=

int(obj);

int

j

=

(int)obj;

int

k

=

i

+

obj;

}

All

three

statements

in

function

f(Y)

use

the

conversion

function

Y::operator

int().

Classes,

enumerations,

typedef

names,

function

types,

or

array

types

cannot

be

declared

or

defined

in

the

conversion_type.

You

cannot

use

a

conversion

function

to

convert

an

object

of

type

A

to

type

A,

to

a

base

class

of

A,

or

to

void.

Conversion

functions

have

no

arguments,

and

the

return

type

is

implicitly

the

conversion

type.

Conversion

functions

can

be

inherited.

You

can

have

virtual

conversion

functions

but

not

static

ones.

Related

References

v

“Standard

Type

Conversions”

on

page

126

v

“User-Defined

Conversions”

on

page

288

v

“Conversion

by

Constructor”

on

page

289

v

Chapter

6,

“Implicit

Type

Conversions,”

on

page

125

Copy

Constructors

2000C++

The

copy

constructor

lets

you

create

a

new

object

from

an

existing

one

by

initialization.

A

copy

constructor

of

a

class

A

is

a

nontemplate

constructor

in

which

the

first

parameter

is

of

type

A&,

const

A&,

volatile

A&,

or

const

volatile

A&,

and

the

rest

of

its

parameters

(if

there

are

any)

have

default

values.

If

you

do

not

declare

a

copy

constructor

for

a

class

A,

the

compiler

will

implicitly

declare

one

for

you,

which

will

be

an

inline

public

member.

Chapter

15.

Special

Member

Functions

291

The

following

example

demonstrates

implicitly

defined

and

user-defined

copy

constructors:

#include

<iostream>

using

namespace

std;

struct

A

{

int

i;

A()

:

i(10)

{

}

};

struct

B

{

int

j;

B()

:

j(20)

{

cout

<<

"Constructor

B(),

j

=

"

<<

j

<<

endl;

}

B(B&

arg)

:

j(arg.j)

{

cout

<<

"Copy

constructor

B(B&),

j

=

"

<<

j

<<

endl;

}

B(const

B&,

int

val

=

30)

:

j(val)

{

cout

<<

"Copy

constructor

B(const

B&,

int),

j

=

"

<<

j

<<

endl;

}

};

struct

C

{

C()

{

}

C(C&)

{

}

};

int

main()

{

A

a;

A

a1(a);

B

b;

const

B

b_const;

B

b1(b);

B

b2(b_const);

const

C

c_const;

//

C

c1(c_const);

}

The

following

is

the

output

of

the

above

example:

Constructor

B(),

j

=

20

Constructor

B(),

j

=

20

Copy

constructor

B(B&),

j

=

20

Copy

constructor

B(const

B&,

int),

j

=

30

The

statement

A

a1(a)

creates

a

new

object

from

a

with

an

implicitly

defined

copy

constructor.

The

statement

B

b1(b)

creates

a

new

object

from

b

with

the

user-defined

copy

constructor

B::B(B&).

The

statement

B

b2(b_const)

creates

a

new

object

with

the

copy

constructor

B::B(const

B&,

int).

The

compiler

would

not

allow

the

statement

C

c1(c_const)

because

a

copy

constructor

that

takes

as

its

first

parameter

an

object

of

type

const

C&

has

not

been

defined.

The

implicitly

declared

copy

constructor

of

a

class

A

will

have

the

form

A::A(const

A&)

if

the

following

are

true:

v

The

direct

and

virtual

bases

of

A

have

copy

constructors

whose

first

parameters

have

been

qualified

with

const

or

const

volatile

v

The

nonstatic

class

type

or

array

of

class

type

data

members

of

A

have

copy

constructors

whose

first

parameters

have

been

qualified

with

const

or

const

volatile

292

ILE

C/C++

Language

Reference

If

the

above

are

not

true

for

a

class

A,

the

compiler

will

implicitly

declare

a

copy

constructor

with

the

form

A::A(A&).

The

compiler

cannot

allow

a

program

in

which

the

compiler

must

implicitly

define

a

copy

constructor

for

a

class

A

and

one

or

more

of

the

following

are

true:

v

Class

A

has

a

nonstatic

data

member

of

a

type

which

has

an

inaccessible

or

ambiguous

copy

constructor.

v

Class

A

is

derived

from

a

class

which

has

an

inaccessible

or

ambiguous

copy

constructor.

The

compiler

will

implicitly

define

an

implicitly

declared

constructor

of

a

class

A

if

you

initialize

an

object

of

type

A

or

an

object

derived

from

class

A.

An

implicitly

defined

copy

constructor

will

copy

the

bases

and

members

of

an

object

in

the

same

order

that

a

constructor

would

initialize

the

bases

and

members

of

the

object.

Related

References

v

“Constructors

and

Destructors

Overview”

on

page

271

Copy

Assignment

Operators

2000C++

The

copy

assignment

operator

lets

you

create

a

new

object

from

an

existing

one

by

initialization.

A

copy

assignment

operator

of

a

class

A

is

a

nonstatic

nontemplate

member

function

that

has

one

of

the

following

forms:

v

A::operator=(A)

v

A::operator=(A&)

v

A::operator=(const

A&)

v

A::operator=(volatile

A&)

v

A::operator=(const

volatile

A&)

If

you

do

not

declare

a

copy

assignment

operator

for

a

class

A,

the

compiler

will

implicitly

declare

one

for

you

which

will

be

inline

public.

The

following

example

demonstrates

implicitly

defined

and

user-defined

copy

assignment

operators:

#include

<iostream>

using

namespace

std;

struct

A

{

A&

operator=(const

A&)

{

cout

<<

"A::operator=(const

A&)"

<<

endl;

return

*this;

}

A&

operator=(A&)

{

cout

<<

"A::operator=(A&)"

<<

endl;

return

*this;

}

};

class

B

{

A

a;

};

struct

C

{

C&

operator=(C&)

{

cout

<<

"C::operator=(C&)"

<<

endl;

return

*this;

Chapter

15.

Special

Member

Functions

293

}

C()

{

}

};

int

main()

{

B

x,

y;

x

=

y;

A

w,

z;

w

=

z;

C

i;

const

C

j();

//

i

=

j;

}

The

following

is

the

output

of

the

above

example:

A::operator=(const

A&)

A::operator=(A&)

The

assignment

x

=

y

calls

the

implicitly

defined

copy

assignment

operator

of

B,

which

calls

the

user-defined

copy

assignment

operator

A::operator=(const

A&).

The

assignment

w

=

z

calls

the

user-defined

operator

A::operator=(A&).

The

compiler

will

not

allow

the

assignment

i

=

j

because

an

operator

C::operator=(const

C&)

has

not

been

defined.

The

implicitly

declared

copy

assignment

operator

of

a

class

A

will

have

the

form

A&

A::operator=(const

A&)

if

the

following

are

true:

v

A

direct

or

virtual

base

B

of

class

A

has

a

copy

assignment

operator

whose

parameter

is

of

type

const

B&,

const

volatile

B&,

or

B.

v

A

non-static

class

type

data

member

of

type

X

that

belongs

to

class

A

has

a

copy

constructor

whose

parameter

is

of

type

const

X&,

const

volatile

X&,

or

X.

If

the

above

are

not

true

for

a

class

A,

the

compiler

will

implicitly

declare

a

copy

assignment

operator

with

the

form

A&

A::operator=(A&).

The

implicitly

declared

copy

assignment

operator

returns

a

reference

to

the

operator’s

argument.

The

copy

assignment

operator

of

a

derived

class

hides

the

copy

assignment

operator

of

its

base

class.

The

compiler

cannot

allow

a

program

in

which

the

compiler

must

implicitly

define

a

copy

assignment

operator

for

a

class

A

and

one

or

more

of

the

following

are

true:

v

Class

A

has

a

nonstatic

data

member

of

a

const

type

or

a

reference

type

v

Class

A

has

a

nonstatic

data

member

of

a

type

which

has

an

inaccessible

copy

assignment

operator

v

Class

A

is

derived

from

a

base

class

with

an

inaccessible

copy

assignment

operator.

An

implicitly

defined

copy

assignment

operator

of

a

class

A

will

first

assign

the

direct

base

classes

of

A

in

the

order

that

they

appear

in

the

definition

of

A.

Next,

the

implicitly

defined

copy

assignment

operator

will

assign

the

nonstatic

data

members

of

A

in

the

order

of

their

declaration

in

the

definition

of

A.

Related

References

v

“Assignment

Expressions”

on

page

120

294

ILE

C/C++

Language

Reference

Chapter

16.

Templates

2000C++

A

template

describes

a

set

of

related

classes

or

set

of

related

functions

in

which

a

list

of

parameters

in

the

declaration

describe

how

the

members

of

the

set

vary.

The

compiler

generates

new

classes

or

functions

when

you

supply

arguments

for

these

parameters;

this

process

is

called

template

instantiation.

This

class

or

function

definition

generated

from

a

template

and

a

set

of

template

parameters

is

called

a

specialization.

2000400

For

iSeries-specific

usage

information,

see

″Using

Templates

in

C++

Programs,″

chapter

27

in

ILE

C/C++

Programmer’s

Guide.

Syntax

–

Template

Declaration

��

export

template

<

template_parameter_list

>

declaration

��

The

compiler

accepts

and

silently

ignores

the

export

keyword

on

a

template.

The

template_parameter_list

is

a

comma-separated

list

of

the

following

kinds

of

template

parameters:

v

non-type

v

type

v

template

The

declaration

is

one

of

the

following::

v

a

declaration

or

definition

of

a

function

or

a

class

v

a

definition

of

a

member

function

or

a

member

class

of

a

class

template

v

a

definition

of

a

static

data

member

of

a

class

template

v

a

definition

of

a

static

data

member

of

a

class

nested

within

a

class

template

v

a

definition

of

a

member

template

of

a

class

or

class

template

The

identifier

of

a

type

is

defined

to

be

a

type_name

in

the

scope

of

the

template

declaration.

A

template

declaration

can

appear

as

a

namespace

scope

or

class

scope

declaration.

The

following

example

demonstrates

the

use

of

a

class

template:

template<class

L>

class

Key

{

L

k;

L*

kptr;

int

length;

public:

Key(L);

//

...

};

Suppose

the

following

declarations

appear

later:

Key<int>

i;

Key<char*>

c;

Key<mytype>

m;

The

compiler

would

create

three

objects.

The

following

table

shows

the

definitions

of

these

three

objects

if

they

were

written

out

in

source

form

as

regular

classes,

not

©

Copyright

IBM

Corp.

1998,

2003

295

as

templates:

class

Key<int>

i;

class

Key<char*>

c;

class

Key<mytype>

m;

class

Key

{

int

k;

int

*

kptr;

int

length;

public:

Key(int);

//

...

};

class

Key

{

char*

k;

char**

kptr;

int

length;

public:

Key(char*);

//

...

};

class

Key

{

mytype

k;

mytype*

kptr;

int

length;

public:

Key(mytype);

//

...

};

Note

that

these

three

classes

have

different

names.

The

arguments

contained

within

the

angle

braces

are

not

just

the

arguments

to

the

class

names,

but

part

of

the

class

names

themselves.

Key<int>

and

Key<char*>

are

class

names.

Template

Parameters

2000C++

There

are

three

kinds

of

template

parameters:

v

type

v

non-type

v

template

You

can

interchange

the

keywords

class

and

typename

in

a

template

parameter

declaration.

You

cannot

use

storage

class

specifiers

(static

and

auto)

in

a

template

parameter

declaration.

Type

Template

Parameters

2000C++

The

following

is

the

syntax

of

a

type

template

parameter

declaration:

Syntax

–

Type

Template

Parameter

Declaration

��

class

typename

identifier

=

type

��

The

identifier

is

the

name

of

a

type.

Non-Type

Template

Parameters

2000C++

The

syntax

of

a

non-type

template

parameter

is

the

same

as

a

declaration

of

one

of

the

following

types:

v

integral

or

enumeration

v

pointer

to

object

or

pointer

to

function

v

reference

to

object

or

reference

to

function

v

pointer

to

member

Non-type

template

parameters

that

are

declared

as

arrays

or

functions

are

converted

to

pointers

or

pointer

to

functions,

respectively.

The

following

example

demonstrates

this:

template<int

a[4]>

struct

A

{

};

template<int

f(int)>

struct

B

{

};

int

i;

296

ILE

C/C++

Language

Reference

int

g(int)

{

return

0;}

A<&i>

x;

B<&g>

y;

The

type

of

&i

is

int

*,

and

the

type

of

&g

is

int

(*)(int).

You

may

qualify

a

non-type

template

parameter

with

const

or

volatile.

You

cannot

declare

a

non-type

template

parameter

as

a

floating

point,

class,

or

void

type.

Non-type

template

parameters

are

not

lvalues.

Template

Template

Parameters

2000C++

The

following

is

the

syntax

of

a

template

template

parameter

declaration:

Syntax

–

Template

Template

Parameter

Declaration

��

template

<

template-parameter-list

>

class

identifier

=

id-expression

��

The

following

example

demonstrates

a

declaration

and

use

of

a

template

template

parameter:

template<template

<class

T>

class

X>

class

A

{

};

template<class

T>

class

B

{

};

A

a;

Default

Arguments

for

Template

Parameters

2000C++

Template

parameters

may

have

default

arguments.

The

set

of

default

template

arguments

accumulates

over

all

declarations

of

a

given

template.

The

following

example

demonstrates

this:

template<class

T,

class

U

=

int>

class

A;

template<class

T

=

float,

class

U>

class

A;

template<class

T,

class

U>

class

A

{

public:

T

x;

U

y;

};

A<>

a;

The

type

of

member

a.x

is

float,

and

the

type

of

a.y

is

int.

You

cannot

give

default

arguments

to

the

same

template

parameters

in

different

declarations

in

the

same

scope.

For

example,

the

compiler

will

not

allow

the

following:

template<class

T

=

char>

class

X;

template<class

T

=

char>

class

X

{

};

If

one

template

parameter

has

a

default

argument,

then

all

template

parameters

following

it

must

also

have

default

arguments.

For

example,

the

compiler

will

not

allow

the

following:

template<class

T

=

char,

class

U,

class

V

=

int>

class

X

{

};

Chapter

16.

Templates

297

Template

parameter

U

needs

a

default

argument

or

the

default

for

T

must

be

removed.

The

scope

of

a

template

parameter

starts

from

the

point

of

its

declaration

to

the

end

of

its

template

definition.

This

implies

that

you

may

use

the

name

of

a

template

parameter

in

other

template

parameter

declarations

and

their

default

arguments.

The

following

example

demonstrates

this:

template<class

T

=

int>

class

A;

template<class

T

=

float>

class

B;

template<class

V,

V

obj>

class

A;

//

a

template

parameter

(T)

used

as

the

default

argument

//

to

another

template

parameter

(U)

template<class

T,

class

U

=

T>

class

C

{

};

Template

Arguments

2000C++

There

are

three

kinds

of

template

arguments

corresponding

to

the

three

types

of

template

parameters:

v

type

v

non-type

v

template

A

template

argument

must

match

the

type

and

form

specified

by

the

corresponding

parameter

declared

in

the

template.

To

use

the

default

value

of

a

template

parameter,

you

omit

the

corresponding

template

argument.

However,

even

if

all

template

parameters

have

defaults,

you

still

must

use

the

<>

brackets.

For

example,

the

following

will

yield

a

syntax

error:

template<class

T

=

int>

class

X

{

};

X<>

a;

X

b;

The

last

declaration,

X

b,

will

yield

an

error.

Template

Type

Arguments

2000C++

You

cannot

use

one

of

the

following

as

a

template

argument

for

a

type

template

parameter:

v

a

local

type

v

a

type

with

no

linkage

v

an

unnamed

type

v

a

type

compounded

from

any

of

the

above

types

If

it

is

ambiguous

whether

a

template

argument

is

a

type

or

an

expression,

the

template

argument

is

considered

to

be

a

type.

The

following

example

demonstrates

this:

template<class

T>

void

f()

{

};

template<int

i>

void

f()

{

};

int

main()

{

f<int()>();

}

The

function

call

f<int()>()

calls

the

function

with

T

as

a

template

argument

–

the

compiler

considers

int()

as

a

type

–

and

therefore

implicitly

instantiates

and

calls

the

first

f().

298

ILE

C/C++

Language

Reference

Template

Non-Type

Arguments

2000C++

A

non-type

template

argument

provided

within

a

template

argument

list

is

an

expression

whose

value

can

be

determined

at

compile

time.

Such

arguments

must

be

constant

expressions,

addresses

of

functions

or

objects

with

external

linkage,

or

addresses

of

static

class

members.

Non-type

template

arguments

are

normally

used

to

initialize

a

class

or

to

specify

the

sizes

of

class

members.

For

non-type

integral

arguments,

the

instance

argument

matches

the

corresponding

template

argument

as

long

as

the

instance

argument

has

a

value

and

sign

appropriate

to

the

argument

type.

For

non-type

address

arguments,

the

type

of

the

instance

argument

must

be

of

the

form

identifier

or

&identifier,

and

the

type

of

the

instance

argument

must

match

the

template

argument

exactly,

except

that

a

function

name

is

changed

to

a

pointer

to

function

type

before

matching.

The

resulting

values

of

non-type

template

arguments

within

a

template

argument

list

form

part

of

the

template

class

type.

If

two

template

class

names

have

the

same

template

name

and

if

their

arguments

have

identical

values,

they

are

the

same

class.

In

the

following

example,

a

class

template

is

defined

that

requires

a

non-type

template

int

argument

as

well

as

the

type

argument:

template<class

T,

int

size>

class

myfilebuf

{

T*

filepos;

static

int

array[size];

public:

myfilebuf()

{

/*

...

*/

}

~myfilebuf();

advance();

//

function

defined

elsewhere

in

program

};

In

this

example,

the

template

argument

size

becomes

a

part

of

the

template

class

name.

An

object

of

such

a

template

class

is

created

with

both

the

type

argument

T

of

the

class

and

the

value

of

the

non-type

template

argument

size.

An

object

x,

and

its

corresponding

template

class

with

arguments

double

and

size=200,

can

be

created

from

this

template

with

a

value

as

its

second

template

argument:

myfilebuf<double,200>

x;

x

can

also

be

created

using

an

arithmetic

expression:

myfilebuf<double,10*20>

x;

The

objects

created

by

these

expressions

are

identical

because

the

template

arguments

evaluate

identically.

The

value

200

in

the

first

expression

could

have

been

represented

by

an

expression

whose

result

at

compile

time

is

known

to

be

equal

to

200,

as

shown

in

the

second

construction.

Note:

Arguments

that

contain

the

<

symbol

or

the

>

symbol

must

be

enclosed

in

parentheses

to

prevent

it

from

being

parsed

as

a

template

argument

list

delimiter

when

it

is

being

used

as

a

relational

operator

or

a

nested

template

delimiter.

For

example,

the

arguments

in

the

following

definition

are

valid:

myfilebuf<double,

(75>25)>

x;

//

valid

Chapter

16.

Templates

299

The

following

definition,

however,

is

not

valid

because

the

greater

than

operator

(>)

is

interpreted

as

the

closing

delimiter

of

the

template

argument

list:

myfilebuf<double,

75>25>

x;

//

error

If

the

template

arguments

do

not

evaluate

identically,

the

objects

created

are

of

different

types:

myfilebuf<double,200>

x;

//

create

object

x

of

class

//

myfilebuf<double,200>

myfilebuf<double,200.0>

y;

//

error,

200.0

is

a

double,

//

not

an

int

The

instantiation

of

y

fails

because

the

value

200.0

is

of

type

double,

and

the

template

argument

is

of

type

int.

The

following

two

objects:

myfilebuf<double,

128>

x

myfilebuf<double,

512>

y

are

objects

of

separate

template

specializations.

Referring

either

of

these

objects

later

with

myfilebuf<double>

is

an

error.

A

class

template

does

not

need

to

have

a

type

argument

if

it

has

non-type

arguments.

For

example,

the

following

template

is

a

valid

class

template:

template<int

i>

class

C

{

public:

int

k;

C()

{

k

=

i;

}

};

This

class

template

can

be

instantiated

by

declarations

such

as:

class

C<100>;

class

C<200>;

Again,

these

two

declarations

refer

to

distinct

classes

because

the

values

of

their

non-type

arguments

differ.

Template

Template

Arguments

2000C++

A

template

argument

for

a

template

template

parameter

is

the

name

of

a

class

template.

When

the

compiler

tries

to

find

a

template

to

match

the

template

template

argument,

it

only

considers

primary

class

templates.

(A

primary

template

is

the

template

that

is

being

specialized.)

The

compiler

will

not

consider

any

partial

specialization

even

if

their

parameter

lists

match

that

of

the

template

template

parameter.

For

example,

the

compiler

will

not

allow

the

following

code:

template<class

T,

int

i>

class

A

{

int

x;

};

template<class

T>

class

A<T,

5>

{

short

x;

};

template<template<class

T>

class

U>

class

B1

{

};

B1<A>

c;

300

ILE

C/C++

Language

Reference

The

compiler

will

not

allow

the

declaration

B1<A>

c.

Although

the

partial

specialization

of

A

seems

to

match

the

template

template

parameter

U

of

B1,

the

compiler

considers

only

the

primary

template

of

A,

which

has

different

template

parameters

than

U.

The

compiler

considers

the

partial

specializations

based

on

a

template

template

argument

once

you

have

instantiated

a

specialization

based

on

the

corresponding

template

template

parameter.

The

following

example

demonstrates

this:

#include

<iostream>

using

namespace

std;

template<class

T,

class

U>

class

A

{

int

x;

};

template<class

U>

class

A<int,

U>

{

short

x;

};

template<template<class

T,

class

U>

class

V>

class

B

{

V<int,

char>

i;

V<char,

char>

j;

};

B<A>

c;

int

main()

{

cout

<<

typeid(c.i.x).name()

<<

endl;

cout

<<

typeid(c.j.x).name()

<<

endl;

}

The

following

is

the

output

of

the

above

example:

short

int

The

declaration

V<int,

char>

i

uses

the

partial

specialization

while

the

declaration

V<char,

char>

j

uses

the

primary

template.

Class

Templates

2000C++

The

relationship

between

a

class

template

and

an

individual

class

is

like

the

relationship

between

a

class

and

an

individual

object.

An

individual

class

defines

how

a

group

of

objects

can

be

constructed,

while

a

class

template

defines

how

a

group

of

classes

can

be

generated.

Note

the

distinction

between

the

terms

class

template

and

template

class:

Class

template

is

a

template

used

to

generate

template

classes.

You

cannot

declare

an

object

of

a

class

template.

Template

class

is

an

instance

of

a

class

template.

A

template

definition

is

identical

to

any

valid

class

definition

that

the

template

might

generate,

except

for

the

following:

v

The

class

template

definition

is

preceded

by

template

<

template-parameter-list

>

where

template-parameter-list

is

a

comma-separated

list

of

one

or

more

of

the

following

kinds

of

template

parameters:

Chapter

16.

Templates

301

–

type

–

non-type

–

template
v

Types,

variables,

constants

and

objects

within

the

class

template

can

be

declared

using

the

template

parameters

as

well

as

explicit

types

(for

example,

int

or

char).

A

class

template

can

be

declared

without

being

defined

by

using

an

elaborated

type

specifier.

For

example:

template

<class

L,class

T>

class

key;

This

reserves

the

name

as

a

class

template

name.

All

template

declarations

for

a

class

template

must

have

the

same

types

and

number

of

template

arguments.

Only

one

template

declaration

containing

the

class

definition

is

allowed.

Note:

When

you

have

nested

template

argument

lists,

you

must

have

a

separating

space

between

the

>

at

the

end

of

the

inner

list

and

the

>

at

the

end

of

the

outer

list.

Otherwise,

there

is

an

ambiguity

between

the

output

operator

>>

and

two

template

list

delimiters

>.

template

<class

L,class

T>

class

key

{

/*

...

*/

};

template

<class

L>

class

vector

{

/*

...

*/

};;

int

main

()

{

class

key

<int,

vector<int>

>;

//

implicitly

instantiates

template

}

Objects

and

function

members

of

individual

template

classes

can

be

accessed

by

any

of

the

techniques

used

to

access

ordinary

class

member

objects

and

functions.

Given

a

class

template:

template<class

T>

class

vehicle

{

public:

vehicle()

{

/*

...

*/

}

//

constructor

~vehicle()

{};

//

destructor

T

kind[16];

T*

drive();

static

void

roadmap();

//

...

};

and

the

declaration:

vehicle<char>

bicycle;

//

instantiates

the

template

the

constructor,

the

constructed

object,

and

the

member

function

drive()

can

be

accessed

with

any

of

the

following

(assuming

the

standard

header

file

<string.h>

is

included

in

the

program

file):

constructor

vehicle<char>

bicycle;

//

constructor

called

automatically,

//

object

bicycle

created

object

bicycle

strcpy

(bicycle.kind,

"10

speed");

bicycle.kind[0]

=

’2’;

function

drive()

char*

n

=

bicycle.drive();

302

ILE

C/C++

Language

Reference

function

roadmap()

vehicle<char>::roadmap();

Class

Template

Declarations

and

Definitions

2000C++

A

class

template

must

be

declared

before

any

declaration

of

a

corresponding

template

class.

A

class

template

definition

can

only

appear

once

in

any

single

translation

unit.

A

class

template

must

be

defined

before

any

use

of

a

template

class

that

requires

the

size

of

the

class

or

refers

to

members

of

the

class.

In

the

following

example,

the

class

template

key

is

declared

before

it

is

defined.

The

declaration

of

the

pointer

keyiptr

is

valid

because

the

size

of

the

class

is

not

needed.

The

declaration

of

keyi,

however,

causes

an

error.

template

<class

L>

class

key;

//

class

template

declared,

//

not

defined

yet

//

class

key<int>

*keyiptr;

//

declaration

of

pointer

//

class

key<int>

keyi;

//

error,

cannot

declare

keyi

//

without

knowing

size

//

template

<class

L>

class

key

//

now

class

template

defined

{

/*

...

*/

};

If

a

template

class

is

used

before

the

corresponding

class

template

is

defined,

the

compiler

issues

an

error.

A

class

name

with

the

appearance

of

a

template

class

name

is

considered

to

be

a

template

class.

In

other

words,

angle

brackets

are

valid

in

a

class

name

only

if

that

class

is

a

template

class.

The

definition

of

a

class

template

is

not

compiled

until

the

definition

of

a

template

class

is

required.

At

that

point,

the

class

template

definition

is

compiled

using

the

argument

list

of

the

template

class

to

instantiate

the

template

arguments.

Any

errors

in

the

class

definition

are

flagged

at

this

time.

Static

Data

Members

and

Templates

2000C++

Each

class

template

instantiation

has

its

own

copy

of

any

static

data

members.

The

static

declaration

can

be

of

template

argument

type

or

of

any

defined

type.

You

must

separately

define

static

members.

The

following

example

demonstrates

this:

template

<class

T>

class

K

{

public:

static

T

x;

};

template

<class

T>

T

K<T>

::x;

int

main()

{

K<int>::x

=

0;

}

The

statement

template<class

T>

T

K<T>::x

defines

the

static

member

of

class

T,

while

the

statement

in

the

main()

function

initializes

the

data

member

for

K.

Chapter

16.

Templates

303

Member

Functions

of

Class

Templates

2000C++

You

may

define

a

template

member

function

outside

of

its

class

template

definition.

When

you

call

a

member

function

of

a

class

template

specialization,

the

compiler

will

use

the

template

arguments

that

you

used

to

generate

the

class

template.

The

following

example

demonstrates

this:

template<class

T>

class

X

{

public:

T

operator+(T);

};

template<class

T>

T

X<T>::operator+(T

arg1)

{

return

arg1;

};

int

main()

{

X<char>

a;

X<int>

b;

a

+’z’;

b

+

4;

}

The

overloaded

addition

operator

has

been

defined

outside

of

class

X.

The

statement

a

+

’z’

is

equivalent

to

a.operator+(’z’).

The

statement

b

+

4

is

equivalent

to

b.operator+(4).

Friends

and

Templates

2000C++

There

are

four

kinds

of

relationships

between

classes

and

their

friends

when

templates

are

involved:

v

One-to-many:

A

non-template

function

may

be

a

friend

to

all

template

class

instantiations.

v

Many-to-one:

All

instantiations

of

a

template

function

may

be

friends

to

a

regular

non-template

class.

v

One-to-one:

A

template

function

instantiated

with

one

set

of

template

arguments

may

be

a

friend

to

one

template

class

instantiated

with

the

same

set

of

template

arguments.

This

is

also

the

relationship

between

a

regular

non-template

class

and

a

regular

non-template

friend

function.

v

Many-to-many:

All

instantiations

of

a

template

function

may

be

a

friend

to

all

instantiations

of

the

template

class.

The

following

example

demonstrates

these

relationships:

class

B{

template<class

V>

friend

int

j();

}

template<class

S>

g();

template<class

T>

class

A

{

friend

int

e();

friend

int

f(T);

friend

int

g<T>();

template<class

U>

friend

int

h();

};

v

Function

e()

has

a

one-to-many

relationship

with

class

A.

Function

e()

is

a

friend

to

all

instantiations

of

class

A.

v

Function

f()

has

a

one-to-one

relationship

with

class

A.

The

compiler

will

give

you

a

warning

for

this

kind

of

declaration

similar

to

the

following:

304

ILE

C/C++

Language

Reference

The

friend

function

declaration

"f"

will

cause

an

error

when

the

enclosing

template

class

is

instantiated

with

arguments

that

declare

a

friend

function

that

does

not

match

an

existing

definition.

The

function

declares

only

one

function

because

it

is

not

a

template

but

the

function

type

depends

on

one

or

more

template

parameters.

v

Function

g()

has

a

one-to-one

relationship

with

class

A.

Function

g()

is

a

function

template.

It

must

be

declared

before

here

or

else

the

compiler

will

not

recognize

g<T>

as

a

template

name.

For

each

instantiation

of

A

there

is

one

matching

instantiation

of

g().

For

example,

g<int>

is

a

friend

of

A<int>.

v

Function

h()

has

a

many-to-many

relationship

with

class

A.

Function

h()

is

a

function

template.

For

all

instantiations

of

A

all

instantiations

of

h()

are

friends.

v

Function

j()

has

a

many-to-one

relationship

with

class

B.

These

relationships

also

apply

to

friend

classes.

Function

Templates

2000C++

A

function

template

defines

how

a

group

of

functions

can

be

generated.

A

non-template

function

is

not

related

to

a

function

template,

even

though

the

non-template

function

may

have

the

same

name

and

parameter

profile

as

those

of

a

specialization

generated

from

a

template.

A

non-template

function

is

never

considered

to

be

a

specialization

of

a

function

template.

The

following

example

implements

the

QuickSort

algorithm

with

a

function

template

named

quicksort:

#include

<iostream>

#include

<cstdlib>

using

namespace

std;

template<class

T>

void

quicksort(T

a[],

const

int&

leftarg,

const

int&

rightarg)

{

if

(leftarg

<

rightarg)

{

T

pivotvalue

=

a[leftarg];

int

left

=

leftarg

-

1;

int

right

=

rightarg

+

1;

for(;;)

{

while

(a[--right]

>

pivotvalue);

while

(a[++left]

<

pivotvalue);

if

(left

>=

right)

break;

T

temp

=

a[right];

a[right]

=

a[left];

a[left]

=

temp;

}

int

pivot

=

right;

quicksort(a,

leftarg,

pivot);

quicksort(a,

pivot

+

1,

rightarg);

}

}

int

main(void)

{

int

sortme[10];

for

(int

i

=

0;

i

<

10;

i++)

{

sortme[i]

=

rand();

cout

<<

sortme[i]

<<

"

";

};

Chapter

16.

Templates

305

cout

<<

endl;

quicksort<int>(sortme,

0,

10

-

1);

for

(int

i

=

0;

i

<

10;

i++)

cout

<<

sortme[i]

<<

"

";

cout

<<

endl;

return

0;

}

The

above

example

will

have

output

similar

to

the

following:

16838

5758

10113

17515

31051

5627

23010

7419

16212

4086

4086

5627

5758

7419

10113

16212

16838

17515

23010

31051

This

QuickSort

algorithm

will

sort

an

array

of

type

T

(whose

relational

and

assignment

operators

have

been

defined).

The

template

function

takes

one

template

argument

and

three

function

arguments:

v

the

type

of

the

array

to

be

sorted,

T

v

the

name

of

the

array

to

be

sorted,

a

v

the

lower

bound

of

the

array,

leftarg

v

the

upper

bound

of

the

array,

rightarg

In

the

above

example,

you

can

also

call

the

quicksort()

template

function

with

the

following

statement:

quicksort(sortme,

0,

10

-

1);

You

may

omit

any

template

argument

if

the

compiler

can

deduce

it

by

the

usage

and

context

of

the

template

function

call.

In

this

case,

the

compiler

deduces

that

sortme

is

an

array

of

type

int.

Template

Argument

Deduction

2000C++

When

you

call

a

template

function,

you

may

omit

any

template

argument

that

the

compiler

can

determine

or

deduce

by

the

usage

and

context

of

that

template

function

call.

The

compiler

tries

to

deduce

a

template

argument

by

comparing

the

type

of

the

corresponding

template

parameter

with

the

type

of

the

argument

used

in

the

function

call.

The

two

types

that

the

compiler

compares

(the

template

parameter

and

the

argument

used

in

the

function

call)

must

be

of

a

certain

structure

in

order

for

template

argument

deduction

to

work.

The

following

lists

these

type

structures:

T

const

T

volatile

T

T&

T*

T[10]

A<T>

C(*)(T)

T(*)()

T(*)(U)

T

C::*

C

T::*

T

U::*

T

(C::*)()

C

(T::*)()

D

(C::*)(T)

C

(T::*)(U)

T

(C::*)(U)

T

(U::*)()

306

ILE

C/C++

Language

Reference

T

(U::*)(V)

E[10][i]

B<i>

TT<T>

TT<i>

TT<C>

v

T,

U,

and

V

represent

a

template

type

argument

v

10

represents

any

integer

constant

v

i

represents

a

template

non-type

argument

v

[i]

represents

an

array

bound

of

a

reference

or

pointer

type,

or

a

non-major

array

bound

of

a

normal

array.

v

TT

represents

a

template

template

argument

v

(T),

(U),

and

(V)

represents

an

argument

list

that

has

at

least

one

template

type

argument

v

()

represents

an

argument

list

that

has

no

template

arguments

v

<T>

represents

a

template

argument

list

that

has

at

least

one

template

type

argument

v

<i>

represents

a

template

argument

list

that

has

at

least

one

template

non-type

argument

v

<C>

represents

a

template

argument

list

that

has

no

template

arguments

dependent

on

a

template

parameter

The

following

example

demonstrates

the

use

of

each

of

these

type

structures.

The

example

declares

a

template

function

using

each

of

the

above

structures

as

an

argument.

These

functions

are

then

called

(without

template

arguments)

in

order

of

declaration.

The

example

outputs

the

same

list

of

type

structures:

#include

<iostream>

using

namespace

std;

template<class

T>

class

A

{

};

template<int

i>

class

B

{

};

class

C

{

public:

int

x;

};

class

D

{

public:

C

y;

int

z;

};

template<class

T>

void

f

(T)

{

cout

<<

"T"

<<

endl;

};

template<class

T>

void

f1(const

T)

{

cout

<<

"const

T"

<<

endl;

};

template<class

T>

void

f2(volatile

T)

{

cout

<<

"volatile

T"

<<

endl;

};

template<class

T>

void

g

(T*)

{

cout

<<

"T*"

<<

endl;

};

template<class

T>

void

g

(T&)

{

cout

<<

"T&"

<<

endl;

};

template<class

T>

void

g1(T[10])

{

cout

<<

"T[10]"

<<

endl;};

template<class

T>

void

h1(A<T>)

{

cout

<<

"A<T>"

<<

endl;

};

void

test_1()

{

A<char>

a;

C

c;

f(c);

f1(c);

f2(c);

g(c);

g(&c);

g1(&c);

h1(a);

}

template<class

T>

void

j(C(*)(T))

{

cout

<<

"C(*)

(T)"

<<

endl;

};

template<class

T>

void

j(T(*)())

{

cout

<<

"T(*)

()"

<<

endl;

}

template<class

T,

class

U>

void

j(T(*)(U))

{

cout

<<

"T(*)

(U)"

<<

endl;

};

Chapter

16.

Templates

307

void

test_2()

{

C

(*c_pfunct1)(int);

C

(*c_pfunct2)(void);

int

(*c_pfunct3)(int);

j(c_pfunct1);

j(c_pfunct2);

j(c_pfunct3);

}

template<class

T>

void

k(T

C::*)

{

cout

<<

"T

C::*"

<<

endl;

};

template<class

T>

void

k(C

T::*)

{

cout

<<

"C

T::*"

<<

endl;

};

template<class

T,

class

U>

void

k(T

U::*)

{

cout

<<

"T

U::*"

<<

endl;

};

void

test_3()

{

k(&C::x);

k(&D::y);

k(&D::z);

}

template<class

T>

void

m(T

(C::*)()

)

{

cout

<<

"T

(C::*)()"

<<

endl;

};

template<class

T>

void

m(C

(T::*)()

)

{

cout

<<

"C

(T::*)()"

<<

endl;

};

template<class

T>

void

m(D

(C::*)(T))

{

cout

<<

"D

(C::*)(T)"

<<

endl;

};

template<class

T,

class

U>

void

m(C

(T::*)(U))

{

cout

<<

"C

(T::*)(U)"

<<

endl;

};

template<class

T,

class

U>

void

m(T

(C::*)(U))

{

cout

<<

"T

(C::*)(U)"

<<

endl;

};

template<class

T,

class

U>

void

m(T

(U::*)()

)

{

cout

<<

"T

(U::*)()"

<<

endl;

};

template<class

T,

class

U,

class

V>

void

m(T

(U::*)(V))

{

cout

<<

"T

(U::*)(V)"

<<

endl;

};

void

test_4()

{

int

(C::*f_membp1)(void);

C

(D::*f_membp2)(void);

D

(C::*f_membp3)(int);

m(f_membp1);

m(f_membp2);

m(f_membp3);

C

(D::*f_membp4)(int);

int

(C::*f_membp5)(int);

int

(D::*f_membp6)(void);

m(f_membp4);

m(f_membp5);

m(f_membp6);

int

(D::*f_membp7)(int);

m(f_membp7);

}

template<int

i>

void

n(C[10][i])

{

cout

<<

"E[10][i]"

<<

endl;

};

template<int

i>

void

n(B<i>)

{

cout

<<

"B<i>"

<<

endl;

};

void

test_5()

{

C

array[10][20];

n(array);

B<20>

b;

n(b);

}

template<template<class>

class

TT,

class

T>

void

p1(TT<T>)

{

cout

<<

"TT<T>"

<<

endl;

};

template<template<int>

class

TT,

int

i>

void

p2(TT<i>)

308

ILE

C/C++

Language

Reference

{

cout

<<

"TT<i>"

<<

endl;

};

template<template<class>

class

TT>

void

p3(TT<C>)

{

cout

<<

"TT<C>"

<<

endl;

};

void

test_6()

{

A<char>

a;

B<20>

b;

A<C>

c;

p1(a);

p2(b);

p3(c);

}

int

main()

{

test_1();

test_2();

test_3();

test_4();

test_5();

test_6();

}

Deducing

Type

Template

Arguments

2000C++

The

compiler

can

deduce

template

arguments

from

a

type

composed

of

several

of

the

listed

type

structures.

The

following

example

demonstrates

template

argument

deduction

for

a

type

composed

of

several

type

structures:

template<class

T>

class

Y

{

};

template<class

T,

int

i>

class

X

{

public:

Y<T>

f(char[20][i])

{

return

x;

};

Y<T>

x;

};

template<template<class>

class

T,

class

U,

class

V,

class

W,

int

i>

void

g(

T<U>

(V::*)(W[20][i])

)

{

};

int

main()

{

Y<int>

(X<int,

20>::*p)(char[20][20])

=

&X<int,

20>::f;

g(p);

}

The

type

Y<int>

(X<int,

20>::*p)(char[20][20])T<U>

(V::*)(W[20][i])

is

based

on

the

type

structure

T

(U::*)(V):

v

T

is

Y<int>

v

U

is

X<int,

20>

v

V

is

char[20][20]

If

you

qualify

a

type

with

the

class

to

which

that

type

belongs,

and

that

class

(a

nested

name

specifier)

depends

on

a

template

parameter,

the

compiler

will

not

deduce

a

template

argument

for

that

parameter.

If

a

type

contains

a

template

argument

that

cannot

be

deduced

for

this

reason,

all

template

arguments

in

that

type

will

not

be

deduced.

The

following

example

demonstrates

this:

template<class

T,

class

U,

class

V>

void

h(typename

Y<T>::template

Z<U>,

Y<T>,

Y<V>)

{

};

int

main()

{

Y<int>::Z<char>

a;

Y<int>

b;

Y<float>

c;

h<int,

char,

float>(a,

b,

c);

h<int,

char>(a,

b,

c);

//

h<int>(a,

b,

c);

}

Chapter

16.

Templates

309

The

compiler

will

not

deduce

the

template

arguments

T

and

U

in

typename

Y<T>::template

Z<U>

(but

it

will

deduce

the

T

in

Y<T>).

The

compiler

would

not

allow

the

template

function

call

h<int>(a,

b,

c)

because

U

is

not

deduced

by

the

compiler.

The

compiler

can

deduce

a

function

template

argument

from

a

pointer

to

function

or

pointer

to

member

function

argument

given

several

overloaded

function

names.

However,

none

of

the

overloaded

functions

may

be

function

templates,

nor

can

more

than

one

overloaded

function

match

the

required

type.

The

following

example

demonstrates

this:

template<class

T>

void

f(void(*)

(T,int))

{

};

template<class

T>

void

g1(T,

int)

{

};

void

g2(int,

int)

{

};

void

g2(char,

int)

{

};

void

g3(int,

int,

int)

{

};

void

g3(float,

int)

{

};

int

main()

{

//

f(&g1);

//

f(&g2);

f(&g3);

}

The

compiler

would

not

allow

the

call

f(&g1)

because

g1()

is

a

function

template.

The

compiler

would

not

allow

the

call

f(&g2)

because

both

functions

named

g2()

match

the

type

required

by

f().

The

compiler

cannot

deduce

a

template

argument

from

the

type

of

a

default

argument.

The

following

example

demonstrates

this:

template<class

T>

void

f(T

=

2,

T

=

3)

{

};

int

main()

{

f(6);

//

f();

f<int>();

}

The

compiler

allows

the

call

f(6)

because

the

compiler

deduces

the

template

argument

(int)

by

the

value

of

the

function

call’s

argument.

The

compiler

would

not

allow

the

call

f()

because

the

compiler

cannot

deduce

template

argument

from

the

default

arguments

of

f().

The

compiler

cannot

deduce

a

template

type

argument

from

the

type

of

a

non-type

template

argument.

For

example,

the

compiler

will

not

allow

the

following:

template<class

T,

T

i>

void

f(int[20][i])

{

};

int

main()

{

int

a[20][30];

f(a);

}

The

compiler

cannot

deduce

the

type

of

template

parameter

T.

Deducing

Non-Type

Template

Arguments

2000C++

The

compiler

cannot

deduce

the

value

of

a

major

array

bound

unless

the

bound

refers

to

a

reference

or

pointer

type.

Major

array

bounds

are

not

part

of

function

parameter

types.

The

following

code

demonstrates

this:

310

ILE

C/C++

Language

Reference

template<int

i>

void

f(int

a[10][i])

{

};

template<int

i>

void

g(int

a[i])

{

};

template<int

i>

void

h(int

(&a)[i])

{

};

int

main

()

{

int

b[10][20];

int

c[10];

f(b);

//

g(c);

h(c);

}

The

compiler

would

not

allow

the

call

g(c);

the

compiler

cannot

deduce

template

argument

i.

The

compiler

cannot

deduce

the

value

of

a

non-type

template

argument

used

in

an

expression

in

the

template

function’s

parameter

list.

The

following

example

demonstrates

this:

template<int

i>

class

X

{

};

template<int

i>

void

f(X<i

-

1>)

{

};

int

main

()

{

X<0>

a;

f<1>(a);

//

f(a);

}

In

order

to

call

function

f()

with

object

a,

the

function

must

accept

an

argument

of

type

X<0>.

However,

the

compiler

cannot

deduce

that

the

template

argument

i

must

be

equal

to

1

in

order

for

the

function

template

argument

type

X<i

-

1>

to

be

equivalent

to

X<0>.

Therefore

the

compiler

would

not

allow

the

function

call

f(a).

If

you

want

the

compiler

to

deduce

a

non-type

template

argument,

the

type

of

the

parameter

must

match

exactly

the

type

of

value

used

in

the

function

call.

For

example,

the

compiler

will

not

allow

the

following:

template<int

i>

class

A

{

};

template<short

d>

void

f(A<d>)

{

};

int

main()

{

A<1>

a;

f(a);

}

The

compiler

will

not

convert

int

to

short

when

the

example

calls

f().

However,

deduced

array

bounds

may

be

of

any

integral

type.

Overloading

Function

Templates

2000C++

You

may

overload

a

function

template

either

by

a

non-template

function

or

by

another

function

template.

If

you

call

the

name

of

an

overloaded

function

template,

the

compiler

will

try

to

deduce

its

template

arguments

and

check

its

explicitly

declared

template

arguments.

If

successful,

it

will

instantiate

a

function

template

specialization,

then

add

this

specialization

to

the

set

of

candidate

functions

used

in

overload

resolution.

The

compiler

proceeds

with

overload

resolution,

choosing

the

most

appropriate

function

from

the

set

of

candidate

functions.

Non-template

functions

take

precedence

over

template

functions.

The

following

example

describes

this:

Chapter

16.

Templates

311

#include

<iostream>

using

namespace

std;

template<class

T>

void

f(T

x,

T

y)

{

cout

<<

"Template"

<<

endl;

}

void

f(int

w,

int

z)

{

cout

<<

"Non-template"

<<

endl;

}

int

main()

{

f(

1

,

2

);

f(’a’,

’b’);

f(

1

,

’b’);

}

The

following

is

the

output

of

the

above

example:

Non-template

Template

Non-template

The

function

call

f(1,

2)

could

match

the

argument

types

of

both

the

template

function

and

the

non-template

function.

The

non-template

function

is

called

because

a

non-template

function

takes

precedence

in

overload

resolution.

The

function

call

f(’a’,

’b’)

can

only

match

the

argument

types

of

the

template

function.

The

template

function

is

called.

Argument

deduction

fails

for

the

function

call

f(1,

’b’);

the

compiler

does

not

generate

any

template

function

specialization

and

overload

resolution

does

not

take

place.

The

non-template

function

resolves

this

function

call

after

using

the

standard

conversion

from

char

to

int

for

the

function

argument

’b’.

Partial

Ordering

of

Function

Templates

2000C++

A

function

template

specialization

might

be

ambiguous

because

template

argument

deduction

might

associate

the

specialization

with

more

than

one

of

the

overloaded

definitions.

The

compiler

will

then

choose

the

definition

that

is

the

most

specialized.

This

process

of

selecting

a

function

template

definition

is

called

partial

ordering.

A

template

X

is

more

specialized

than

a

template

Y

if

every

argument

list

that

matches

the

one

specified

by

X

also

matches

the

one

specified

by

Y,

but

not

the

other

way

around.

The

following

example

demonstrates

partial

ordering:

template<class

T>

void

f(T)

{

}

template<class

T>

void

f(T*)

{

}

template<class

T>

void

f(const

T*)

{

}

template<class

T>

void

g(T)

{

}

template<class

T>

void

g(T&)

{

}

template<class

T>

void

h(T)

{

}

template<class

T>

void

h(T,

...)

{

}

int

main()

{

const

int

*p;

f(p);

int

q;

//

g(q);

//

h(q);

}

312

ILE

C/C++

Language

Reference

The

declaration

template<class

T>

void

f(const

T*)

is

more

specialized

than

template<class

T>

void

f(T*).

Therefore,

the

function

call

f(p)

calls

template<class

T>

void

f(const

T*).

However,

neither

void

g(T)

nor

void

g(T&)

is

more

specialized

than

the

other.

Therefore,

the

function

call

g(q)

would

be

ambiguous.

Ellipses

do

not

affect

partial

ordering.

Therefore,

the

function

call

h(q)

would

also

be

ambiguous.

The

compiler

uses

partial

ordering

in

the

following

cases:

v

Calling

a

function

template

specialization

that

requires

overload

resolution.

v

Taking

the

address

of

a

function

template

specialization.

v

When

a

friend

function

declaration,

an

explicit

instantiation,

or

explicit

specialization

refers

to

a

function

template

specialization.

v

Determining

the

appropriate

deallocation

function

that

is

also

a

function

template

for

a

given

placement

operator

new.

Template

Instantiation

2000C++

The

act

of

creating

a

new

definition

of

a

function,

class,

or

member

of

a

class

from

a

template

declaration

and

one

or

more

template

arguments

is

called

template

instantiation.

The

definition

created

from

a

template

instantiation

is

called

a

specialization.

Implicit

Instantiation

2000C++

Unless

a

template

specialization

has

been

explicitly

instantiated

or

explicitly

specialized,

the

compiler

will

generate

a

specialization

for

the

template

only

when

it

needs

the

definition.

This

is

called

implicit

instantiation.

If

the

compiler

must

instantiate

a

class

template

specialization

and

the

template

is

declared,

you

must

also

define

the

template.

For

example,

if

you

declare

a

pointer

to

a

class,

the

definition

of

that

class

is

not

needed

and

the

class

will

not

be

implicitly

instantiated.

The

following

example

demonstrates

when

the

compiler

instantiates

a

template

class:

template<class

T>

class

X

{

public:

X*

p;

void

f();

void

g();

};

X<int>*

q;

X<int>

r;

X<float>*

s;

r.f();

s->g();

The

compiler

requires

the

instantiation

of

the

following

classes

and

functions:

v

X<int>

when

the

object

r

is

declared

v

X<int>::f()

at

the

member

function

call

r.f()

v

X<float>

and

X<float>::g()

at

the

class

member

access

function

call

s->g()

Therefore,

the

functions

X<T>::f()

and

X<T>::g()

must

be

defined

in

order

for

the

above

example

to

compile.

(The

compiler

will

use

the

default

constructor

of

class

X

when

it

creates

object

r.)

The

compiler

does

not

require

the

instantiation

of

the

following

definitions:

Chapter

16.

Templates

313

v

class

X

when

the

pointer

p

is

declared

v

X<int>

when

the

pointer

q

is

declared

v

X<float>

when

the

pointer

s

is

declared

The

compiler

will

implicitly

instantiate

a

class

template

specialization

if

it

is

involved

in

pointer

conversion

or

pointer

to

member

conversion.

The

following

example

demonstrates

this:

template<class

T>

class

B

{

};

template<class

T>

class

D

:

public

B<T>

{

};

void

g(D<double>*

p,

D<int>*

q)

{

B<double>*

r

=

p;

delete

q;

}

The

assignment

B<double>*

r

=

p

converts

p

of

type

D<double>*

to

a

type

of

B<double>*;

the

compiler

must

instantiate

D<double>.

The

compiler

must

instantiate

D<int>

when

it

tries

to

delete

q.

If

the

compiler

implicitly

instantiates

a

class

template

that

contains

static

members,

those

static

members

are

not

implicitly

instantiated.

The

compiler

will

instantiate

a

static

member

only

when

the

compiler

needs

the

static

member’s

definition.

Every

instantiated

class

template

specialization

has

its

own

copy

of

static

members.

The

following

example

demonstrates

this:

template<class

T>

class

X

{

public:

static

T

v;

};

template<class

T>

T

X<T>::v

=

0;

X<char*>

a;

X<float>

b;

X<float>

c;

Object

a

has

a

static

member

variable

v

of

type

char*.

Object

b

has

a

static

variable

v

of

type

float.

Objects

b

and

c

share

the

single

static

data

member

v.

An

implicitly

instantiated

template

is

in

the

same

namespace

where

you

defined

the

template.

If

a

function

template

or

a

member

function

template

specialization

is

involved

with

overload

resolution,

the

compiler

implicitly

instantiates

a

declaration

of

the

specialization.

Explicit

Instantiation

2000C++

You

can

explicitly

tell

the

compiler

when

it

should

generate

a

definition

from

a

template.

This

is

called

explicit

instantiation.

Syntax

–

Explicit

Instantiation

Declaration

��

template

template_declaration

��

The

following

are

examples

of

explicit

instantiations:

template<class

T>

class

Array

{

void

mf();

};

template

class

Array<char>;

//

explicit

instantiation

template

void

Array<int>::mf();

//

explicit

instantiation

314

ILE

C/C++

Language

Reference

template<class

T>

void

sort(Array<T>&

v)

{

}

template

void

sort(Array<char>&);

//

explicit

instantiation

namespace

N

{

template<class

T>

void

f(T&)

{

}

}

template

void

N::f<int>(int&);

//

The

explicit

instantiation

is

in

namespace

N.

int*

p

=

0;

template<class

T>

T

g(T

=

&p);

template

char

g(char);

//

explicit

instantiation

template

<class

T>

class

X

{

private:

T

v(T

arg)

{

return

arg;

};

};

template

int

X<int>::v(int);

//

explicit

instantiation

template<class

T>

T

g(T

val)

{

return

val;}

template<class

T>

void

Array<T>::mf()

{

}

A

template

declaration

must

be

in

scope

at

the

point

of

instantiation

of

the

template’s

explicit

instantiation.

An

explicit

instantiation

of

a

template

specialization

is

in

the

same

namespace

where

you

defined

the

template.

Access

checking

rules

do

not

apply

to

names

in

explicit

instantiations.

Template

arguments

and

names

in

a

declaration

of

an

explicit

instantiation

may

be

private

types

or

objects.

In

the

above

example,

the

compiler

allows

the

explicit

instantiation

template

int

X<int>::v(int)

even

though

the

member

function

is

declared

private.

The

compiler

does

not

use

default

arguments

when

you

explicitly

instantiate

a

template.

In

the

above

example

the

compiler

allows

the

explicit

instantiation

template

char

g(char)

even

though

the

default

argument

is

an

address

of

type

int.

The

following

examples

show

template

instantiation

using

extern:

template<class

T>class

C

{

static

int

i;

void

f(T)

{

}

};

template<class

U>int

C<U>::i

=

0;

extern

template

C<int>;

//

extern

explicit

template

instantiation

C<int>c;

//

does

not

cause

instantiation

of

C<int>::i

//

or

C<int>::f(int)

in

this

file,

//

but

the

class

is

instantiated

for

mapping

C<char>d;

//

normal

instantiations

template<class

C>

C

foo(C

c)

{

return

c;

}

extern

template

int

foo<int>(int);

//

extern

explicit

template

instantiation

int

i

=

foo(1);

//

does

not

cause

instantiation

of

the

body

of

foo<int>

Template

Specialization

2000C++

The

act

of

creating

a

new

definition

of

a

function,

class,

or

member

of

a

class

from

a

template

declaration

and

one

or

more

template

arguments

is

called

template

instantiation.

The

definition

created

from

a

template

instantiation

is

called

a

specialization.

A

primary

template

is

the

template

that

is

being

specialized.

Chapter

16.

Templates

315

Explicit

Specialization

2000C++

When

you

instantiate

a

template

with

a

given

set

of

template

arguments

the

compiler

generates

a

new

definition

based

on

those

template

arguments.

You

can

override

this

behavior

of

definition

generation.

You

can

instead

specify

the

definition

the

compiler

uses

for

a

given

set

of

template

arguments.

This

is

called

explicit

specialization.

You

can

explicitly

specialize

any

of

the

following:

v

Function

or

class

template

v

Member

function

of

a

class

template

v

Static

data

member

of

a

class

template

v

Member

class

of

a

class

template

v

Member

function

template

of

a

class

template

v

Member

class

template

of

a

class

template

Syntax

–

Explicit

Specialization

Declaration

��

template

<

>

declaration_name

declaration_body

<

template_argument_list

>

��

The

template<>

prefix

indicates

that

the

following

template

declaration

takes

no

template

parameters.

The

declaration_name

is

the

name

of

a

previously

declared

template.

Note

that

you

can

forward-declare

an

explicit

specialization

so

the

declaration_body

is

optional,

at

least

until

the

specialization

is

referenced.

The

following

example

demonstrates

explicit

specialization:

using

namespace

std;

template<class

T

=

float,

int

i

=

5>

class

A

{

public:

A();

int

value;

};

template<>

class

A<>

{

public:

A();

};

template<>

class

A<double,

10>

{

public:

A();

};

template<class

T,

int

i>

A<T,

i>::A()

:

value(i)

{

cout

<<

"Primary

template,

"

<<

"non-type

argument

is

"

<<

value

<<

endl;

}

A<>::A()

{

cout

<<

"Explicit

specialization

"

<<

"default

arguments"

<<

endl;

}

A<double,

10>::A()

{

cout

<<

"Explicit

specialization

"

<<

"<double,

10>"

<<

endl;

}

int

main()

{

A<int,6>

x;

A<>

y;

A<double,

10>

z;

}

The

following

is

the

output

of

the

above

example:

316

ILE

C/C++

Language

Reference

Primary

template

non-type

argument

is:

6

Explicit

specialization

default

arguments

Explicit

specialization

<double,

10>

This

example

declared

two

explicit

specializations

for

the

primary

template

(the

template

which

is

being

specialized)

class

A.

Object

x

uses

the

constructor

of

the

primary

template.

Object

y

uses

the

explicit

specialization

A<>::A().

Object

z

uses

the

explicit

specialization

A<double,

10>::A().

Definition

and

Declaration

of

Explicit

Specializations

2000C++

The

definition

of

an

explicitly

specialized

class

is

unrelated

to

the

definition

of

the

primary

template.

You

do

not

have

to

define

the

primary

template

in

order

to

define

the

specialization

(nor

do

you

have

to

define

the

specialization

in

order

to

define

the

primary

template).

For

example,

the

compiler

will

allow

the

following:

template<class

T>

class

A;

template<>

class

A<int>;

template<>

class

A<int>

{

/*

...

*/

};

The

primary

template

is

not

defined,

but

the

explicit

specialization

is.

You

can

use

the

name

of

an

explicit

specialization

that

has

been

declared

but

not

defined

the

same

way

as

an

incompletely

defined

class.

The

following

example

demonstrates

this:

template<class

T>

class

X

{

};

template<>

class

X<char>;

X<char>*

p;

X<int>

i;

//

X<char>

j;

The

compiler

does

not

allow

the

declaration

X<char>

j

because

the

explicit

specialization

of

X<char>

is

not

defined.

Explicit

Specialization

and

Scope

2000C++

A

declaration

of

a

primary

template

must

be

in

scope

at

the

point

of

declaration

of

the

explicit

specialization.

In

other

words,

an

explicit

specialization

declaration

must

appear

after

the

declaration

of

the

primary

template.

For

example,

the

compiler

will

not

allow

the

following:

template<>

class

A<int>;

template<class

T>

class

A;

An

explicit

specialization

is

in

the

same

namespace

as

the

definition

of

the

primary

template.

Class

Members

of

Explicit

Specializations

2000C++

A

member

of

an

explicitly

specialized

class

is

not

implicitly

instantiated

from

the

member

declaration

of

the

primary

template.

You

have

to

explicitly

define

members

of

a

class

template

specialization.

You

define

members

of

an

explicitly

specialized

template

class

as

you

would

normal

classes,

without

the

template<>

prefix.

In

addition,

you

can

define

the

members

of

an

explicit

specialization

inline;

no

special

template

syntax

is

used

in

this

case.

The

following

example

demonstrates

a

class

template

specialization:

template<class

T>

class

A

{

public:

void

f(T);

};

Chapter

16.

Templates

317

template<>

class

A<int>

{

public:

int

g(int);

};

int

A<int>::g(int

arg)

{

return

0;

}

int

main()

{

A<int>

a;

a.g(1234);

}

The

explicit

specialization

A<int>

contains

the

member

function

g(),

which

the

primary

template

does

not.

If

you

explicitly

specialize

a

template,

a

member

template,

or

the

member

of

a

class

template,

then

you

must

declare

this

specialization

before

that

specialization

is

implicitly

instantiated.

For

example,

the

compiler

will

not

allow

the

following

code:

template<class

T>

class

A

{

};

void

f()

{

A<int>

x;

}

template<>

class

A<int>

{

};

int

main()

{

f();

}

The

compiler

will

not

allow

the

explicit

specialization

template<>

class

A<int>

{

};

because

function

f()

uses

this

specialization

(in

the

construction

of

x)

before

the

specialization.

Explicit

Specialization

of

Function

Templates

2000C++

In

a

function

template

specialization,

a

template

argument

is

optional

if

the

compiler

can

deduce

it

from

the

type

of

the

function

arguments.

The

following

example

demonstrates

this:

template<class

T>

class

X

{

};

template<class

T>

void

f(X<T>);

template<>

void

f(X<int>);

The

explicit

specialization

template<>

void

f(X<int>)

is

equivalent

to

template<>

void

f<int>(X<int>).

You

cannot

specify

default

function

arguments

in

a

declaration

or

a

definition

for

any

of

the

following:

v

Explicit

specialization

of

a

function

template

v

Explicit

specialization

of

a

member

function

template

For

example,

the

compiler

will

not

allow

the

following

code:

template<class

T>

void

f(T

a)

{

};

template<>

void

f<int>(int

a

=

5)

{

};

template<class

T>

class

X

{

void

f(T

a)

{

}

};

template<>

void

X<int>::f(int

a

=

10)

{

};

Explicit

Specialization

of

Members

of

Class

Templates

2000C++

Each

instantiated

class

template

specialization

has

its

own

copy

of

any

static

members.

You

may

explicitly

specialize

static

members.

The

following

example

demonstrates

this:

318

ILE

C/C++

Language

Reference

template<class

T>

class

X

{

public:

static

T

v;

static

void

f(T);

};

template<class

T>

T

X<T>::v

=

0;

template<class

T>

void

X<T>::f(T

arg)

{

v

=

arg;

}

template<>

char*

X<char*>::v

=

"Hello";

template<>

void

X<float>::f(float

arg)

{

v

=

arg

*

2;

}

int

main()

{

X<char*>

a,

b;

X<float>

c;

c.f(10);

}

This

code

explicitly

specializes

the

initialization

of

static

data

member

X::v

to

point

to

the

string

"Hello"

for

the

template

argument

char*.

The

function

X::f()

is

explicitly

specialized

for

the

template

argument

float.

The

static

data

member

v

in

objects

a

and

b

point

to

the

same

string,

"Hello".

The

value

of

c.v

is

equal

to

20

after

the

call

function

call

c.f(10).

You

can

nest

member

templates

within

many

enclosing

class

templates.

If

you

explicitly

specialize

a

template

nested

within

several

enclosing

class

templates,

you

must

prefix

the

declaration

with

template<>

for

every

enclosing

class

template

you

specialize.

You

may

leave

some

enclosing

class

templates

unspecialized,

however

you

cannot

explicitly

specialize

a

class

template

unless

its

enclosing

class

templates

are

also

explicitly

specialized.

The

following

example

demonstrates

explicit

specialization

of

nested

member

templates:

#include

<iostream>

using

namespace

std;

template<class

T>

class

X

{

public:

template<class

U>

class

Y

{

public:

template<class

V>

void

f(U,V);

void

g(U);

};

};

template<class

T>

template<class

U>

template<class

V>

void

X<T>::Y<U>::f(U,

V)

{

cout

<<

"Template

1"

<<

endl;

}

template<class

T>

template<class

U>

void

X<T>::Y<U>::g(U)

{

cout

<<

"Template

2"

<<

endl;

}

template<>

template<>

void

X<int>::Y<int>::g(int)

{

cout

<<

"Template

3"

<<

endl;

}

template<>

template<>

template<class

V>

void

X<int>::Y<int>::f(int,

V)

{

cout

<<

"Template

4"

<<

endl;

}

template<>

template<>

template<>

void

X<int>::Y<int>::f<int>(int,

int)

{

cout

<<

"Template

5"

<<

endl;

}

//

template<>

template<class

U>

template<class

V>

//

void

X<char>::Y<U>::f(U,

V)

{

cout

<<

"Template

6"

<<

endl;

}

//

template<class

T>

template<>

//

void

X<T>::Y<float>::g(float)

{

cout

<<

"Template

7"

<<

endl;

}

Chapter

16.

Templates

319

int

main()

{

X<int>::Y<int>

a;

X<char>::Y<char>

b;

a.f(1,

2);

a.f(3,

’x’);

a.g(3);

b.f(’x’,

’y’);

b.g(’z’);

}

The

following

is

the

output

of

the

above

program:

Template

5

Template

4

Template

3

Template

1

Template

2

v

The

compiler

would

not

allow

the

template

specialization

definition

that

would

output

"Template

6"

because

it

is

attempting

to

specialize

a

member

(function

f())

without

specialization

its

containing

class

(Y).

v

The

compiler

would

not

allow

the

template

specialization

definition

that

would

output

"Template

7"

because

the

enclosing

class

of

class

Y

(which

is

class

X)

is

not

explicitly

specialized.

A

friend

declaration

cannot

declare

an

explicit

specialization.

Partial

Specialization

2000C++

When

you

instantiate

a

class

template,

the

compiler

creates

a

definition

based

on

the

template

arguments

you

have

passed.

Alternatively,

if

all

those

template

arguments

match

those

of

an

explicit

specialization,

the

compiler

uses

the

definition

defined

by

the

explicit

specialization.

A

partial

specialization

is

a

generalization

of

explicit

specialization.

An

explicit

specialization

only

has

a

template

argument

list.

A

partial

specialization

has

both

a

template

argument

list

and

a

template

parameter

list.

The

compiler

uses

the

partial

specialization

if

its

template

argument

list

matches

a

subset

of

the

template

arguments

of

a

template

instantiation.

The

compiler

will

then

generate

a

new

definition

from

the

partial

specialization

with

the

rest

of

the

unmatched

template

arguments

of

the

template

instantiation.

You

cannot

partially

specialize

function

templates.

Syntax

–

Partial

Specialization

��

template

<template_parameter_list>

declaration_name

�

�

<template_argument_list>

declaration_body

��

The

declaration_name

is

a

name

of

a

previously

declared

template.

Note

that

you

can

forward-declare

a

partial

specialization

so

that

the

declaration_body

is

optional.

The

following

demonstrates

the

use

of

partial

specializations:

#include

<iostream>

using

namespace

std;

template<class

T,

class

U,

int

I>

struct

X

{

void

f()

{

cout

<<

"Primary

template"

<<

endl;

}

};

template<class

T,

int

I>

struct

X<T,

T*,

I>

320

ILE

C/C++

Language

Reference

{

void

f()

{

cout

<<

"Partial

specialization

1"

<<

endl;

}

};

template<class

T,

class

U,

int

I>

struct

X<T*,

U,

I>

{

void

f()

{

cout

<<

"Partial

specialization

2"

<<

endl;

}

};

template<class

T>

struct

X<int,

T*,

10>

{

void

f()

{

cout

<<

"Partial

specialization

3"

<<

endl;

}

};

template<class

T,

class

U,

int

I>

struct

X<T,

U*,

I>

{

void

f()

{

cout

<<

"Partial

specialization

4"

<<

endl;

}

};

int

main()

{

X<int,

int,

10>

a;

X<int,

int*,

5>

b;

X<int*,

float,

10>

c;

X<int,

char*,

10>

d;

X<float,

int*,

10>

e;

//

X<int,

int*,

10>

f;

a.f();

b.f();

c.f();

d.f();

e.f();

}

The

following

is

the

output

of

the

above

example:

Primary

template

Partial

specialization

1

Partial

specialization

2

Partial

specialization

3

Partial

specialization

4

The

compiler

would

not

allow

the

declaration

X<int,

int*,

10>

f

because

it

can

match

template

struct

X<T,

T*,

I>,

template

struct

X<int,

T*,

10>,

or

template

struct

X<T,

U*,

I>,

and

none

of

these

declarations

are

a

better

match

than

the

others.

Each

class

template

partial

specialization

is

a

separate

template.

You

must

provide

definitions

for

each

member

of

a

class

template

partial

specialization.

Template

Parameter

and

Argument

Lists

of

Partial

Specializations

2000C++

Primary

templates

do

not

have

template

argument

lists;

this

list

is

implied

in

the

template

parameter

list.

Template

parameters

specified

in

a

primary

template

but

not

used

in

a

partial

specialization

are

omitted

from

the

template

parameter

list

of

the

partial

specialization.

The

order

of

a

partial

specialization’s

argument

list

is

the

same

as

the

order

of

the

primary

template’s

implied

argument

list.

In

a

template

argument

list

of

a

partial

template

parameter,

you

cannot

have

an

expression

that

involves

non-type

arguments

unless

that

expression

is

only

an

identifier.

In

the

following

example,

the

compiler

will

not

allow

the

first

partial

specialization,

but

will

allow

the

second

one:

template<int

I,

int

J>

class

X

{

};

//

Invalid

partial

specialization

template<int

I>

class

<I

*

4,

I

+

3>

{

};

//

Valid

partial

specialization

template

<int

I>

class

<I,

I>

{

};

Chapter

16.

Templates

321

The

type

of

a

non-type

template

argument

cannot

depend

on

a

template

parameter

of

a

partial

specialization.

The

compiler

will

not

allow

the

following

partial

specialization:

template<class

T,

T

i>

class

X

{

};

//

Invalid

partial

specialization

template<class

T>

class

X<T,

25>

{

};

A

partial

specialization’s

template

argument

list

cannot

be

the

same

as

the

list

implied

by

the

primary

template.

You

cannot

have

default

values

in

the

template

parameter

list

of

a

partial

specialization.

Matching

of

Class

Template

Partial

Specializations

2000C++

The

compiler

determines

whether

to

use

the

primary

template

or

one

of

its

partial

specializations

by

matching

the

template

arguments

of

the

class

template

specialization

with

the

template

argument

lists

of

the

primary

template

and

the

partial

specializations:

v

If

the

compiler

finds

only

one

specialization,

then

the

compiler

generates

a

definition

from

that

specialization.

v

If

the

compiler

finds

more

than

one

specialization,

then

the

compiler

tries

to

determine

which

of

the

specializations

is

the

most

specialized.

A

template

X

is

more

specialized

than

a

template

Y

if

every

argument

list

that

matches

the

one

specified

by

X

also

matches

the

one

specified

by

Y,

but

not

the

other

way

around.

If

the

compiler

cannot

find

the

most

specialized

specialization,

then

the

use

of

the

class

template

is

ambiguous;

the

compiler

will

not

allow

the

program.

v

If

the

compiler

does

not

find

any

matches,

then

the

compiler

generates

a

definition

from

the

primary

template.

Name

Binding

and

Dependent

Names

2000C++

Name

binding

is

the

process

of

finding

the

declaration

for

each

name

that

is

explicitly

or

implicitly

used

in

a

template.

The

compiler

may

bind

a

name

in

the

definition

of

a

template,

or

it

may

bind

a

name

at

the

instantiation

of

a

template.

A

dependent

name

is

a

name

that

depends

on

the

type

or

the

value

of

a

template

parameter.

For

example:

template<class

T>

class

U

:

A<T>

{

typename

T::B

x;

void

f(A<T>&

y)

{

*y++;

}

};

The

dependent

names

in

this

example

are

the

base

class

A<T>,

the

type

name

T::B,

and

the

variable

y.

The

compiler

binds

dependent

names

when

a

template

is

instantiated.

The

compiler

binds

non-dependent

names

when

a

template

is

defined.

For

example:

void

f(double)

{

cout

<<

"Function

f(double)"

<<

endl;

}

template<class

T>

void

g(T

a)

{

f(123);

h(a);

}

322

ILE

C/C++

Language

Reference

void

f(int)

{

cout

<<

"Function

f(int)"

<<

endl;

}

void

h(double)

{

cout

<<

"Function

h(double)"

<<

endl;

}

void

i()

{

extern

void

h(int);

g<int>(234);

}

void

h(int)

{

cout

<<

"Function

h(int)"

<<

endl;

}

The

following

is

the

output

if

you

call

function

i():

Function

f(double)

Function

h(double)

The

point

of

definition

of

a

template

is

located

immediately

before

its

definition.

In

this

example,

the

point

of

definition

of

the

function

template

g(T)

is

located

immediately

before

the

keyword

template.

Because

the

function

call

f(123)

does

not

depend

on

a

template

argument,

the

compiler

will

consider

names

declared

before

the

definition

of

function

template

g(T).

Therefore,

the

call

f(123)

will

call

f(double).

Although

f(int)

is

a

better

match,

it

is

not

in

scope

at

the

point

of

definition

of

g(T).

The

point

of

instantiation

of

a

template

is

located

immediately

before

the

declaration

that

encloses

its

use.

In

this

example,

the

point

of

instantiation

of

the

call

to

g<int>(234)

is

located

immediately

before

i().

Because

the

function

call

h(a)

depends

on

a

template

argument,

the

compiler

will

consider

names

declared

before

the

instantiation

of

function

template

g(T).

Therefore,

the

call

h(a)

will

call

h(double).

It

will

not

consider

h(int),

because

this

function

was

not

in

scope

at

the

point

of

instantiation

of

g<int>(234).

Point

of

instantiation

binding

implies

the

following:

v

A

template

parameter

cannot

depend

on

any

local

name

or

class

member.

v

An

unqualified

name

in

a

template

cannot

depend

on

a

local

name

or

class

member.

The

typename

Keyword

2000C++

Use

the

keyword

typename

if

you

have

a

qualified

name

that

refers

to

a

type

and

depends

on

a

template

parameter.

Only

use

the

keyword

typename

in

template

declarations

and

definitions.

The

following

example

illustrates

the

use

of

the

keyword

typename:

template<class

T>

class

A

{

T::x(y);

typedef

char

C;

A::C

d;

}

The

statement

T::x(y)

is

ambiguous.

It

could

be

a

call

to

function

x()

with

a

nonlocal

argument

y,

or

it

could

be

a

declaration

of

variable

y

with

type

T::x.

C++

will

interpret

this

statement

as

a

function

call.

In

order

for

the

compiler

to

interpret

this

statement

as

a

declaration,

you

would

add

the

keyword

typename

to

the

beginning

of

it.

The

statement

A::C

d;

is

ill-formed.

The

class

A

also

refers

to

A<T>

and

thus

depends

on

a

template

parameter.

You

must

add

the

keyword

typename

to

the

beginning

of

this

declaration:

typename

A::C

d;

Chapter

16.

Templates

323

You

can

also

use

the

keyword

typename

in

place

of

the

keyword

class

in

template

parameter

declarations.

The

Keyword

template

as

Qualifier

2000C++

Use

the

keyword

template

as

a

qualifier

to

distinguish

member

templates

from

other

names.

The

following

example

illustrates

when

you

must

use

template

as

a

qualifier:

class

A

{

public:

template<class

T>

T

function_m()

{

};

};

template<class

U>

void

function_n(U

argument)

{

char

object_x

=

argument.function_m<char>();

}

The

declaration

char

object_x

=

argument.function_m<char>();

is

ill-formed.

The

compiler

assumes

that

the

<

is

a

less-than

operator.

In

order

for

the

compiler

to

recognize

the

function

template

call,

you

must

add

the

template

quantifier:

char

object_x

=

argument.template

function_m<char>();

If

the

name

of

a

member

template

specialization

appears

after

a

.,

->,

or

::

operator,

and

that

name

has

explicitly

qualified

template

parameters,

prefix

the

member

template

name

with

the

keyword

template.

The

following

example

demonstrates

this

use

of

the

keyword

template:

#include

<iostream>

using

namespace

std;

class

X

{

public:

template

<int

j>

struct

S

{

void

h()

{

cout

<<

"member

template’s

member

function:

"

<<

j

<<

endl;

}

};

template

<int

i>

void

f()

{

cout

<<

"Primary:

"

<<

i

<<

endl;

}

};

template<>

void

X::f<20>()

{

cout

<<

"Specialized,

non-type

argument

=

20"

<<

endl;

}

template<class

T>

void

g(T*

p)

{

p->template

f<100>();

p->template

f<20>();

typename

T::template

S<40>

s;

//

use

of

scope

operator

on

a

member

template

s.h();

}

int

main()

{

X

temp;

g(&temp);

}

The

following

is

the

output

of

the

above

example:

324

ILE

C/C++

Language

Reference

Primary:

100

Specialized,

non-type

argument

=

20

member

template’s

member

function:

40

If

you

do

not

use

the

keyword

template

in

these

cases,

the

compiler

will

interpret

the

<

as

a

less-than

operator.

For

example,

the

following

line

of

code

is

ill-formed:

p->f<100>();

The

compiler

interprets

f

as

a

non-template

member,

and

the

<

as

a

less-than

operator.

Chapter

16.

Templates

325

326

ILE

C/C++

Language

Reference

Chapter

17.

Exception

Handling

2000C++

Exception

handling

is

a

mechanism

that

separates

code

that

detects

and

handles

exceptional

circumstances

from

the

rest

of

your

program.

Note

that

an

exceptional

circumstance

is

not

necessarily

an

error.

When

a

function

detects

an

exceptional

situation,

you

represent

this

with

an

object.

This

object

is

called

an

exception

object.

In

order

to

deal

with

the

exceptional

situation

you

throw

the

exception.

This

passes

control,

as

well

as

the

exception,

to

a

designated

block

of

code

in

a

direct

or

indirect

caller

of

the

function

that

threw

the

exception.

This

block

of

code

is

called

a

handler.

In

a

handler,

you

specify

the

types

of

exceptions

that

it

may

process.

The

C++

run

time,

together

with

the

generated

code,

will

pass

control

to

the

first

appropriate

handler

that

is

able

to

process

the

exception

thrown.

When

this

happens,

an

exception

is

caught.

A

handler

may

rethrow

an

exception

so

it

can

be

caught

by

another

handler.

2000400

For

iSeries-specific

usage

information,

see

″Handling

Exceptions

in

a

Program,″

chapter

22

in

ILE

C/C++

Programmer’s

Guide.

The

exception

handling

mechanism

is

made

up

of

the

following

elements:

v

try

blocks:

a

block

of

code

that

may

throw

an

exception

that

you

want

to

handle

with

special

processing

v

catch

blocks

or

handlers:

a

block

of

code

that

is

executed

when

a

try

block

encounters

an

exception

v

throw

expression:

indicates

when

your

program

encounters

an

exception

v

exception

specifications:

specify

which

exceptions

(if

any)

a

function

may

throw

v

unexpected()

function:

called

when

a

function

throws

an

exception

not

specified

by

an

exception

specification

v

terminate()

function:

called

for

exceptions

that

are

not

caught

Related

References

v

“The

try

Keyword”

v

“catch

Blocks”

on

page

329

v

“The

throw

Expression”

on

page

335

v

“Exception

Specifications”

on

page

338

v

“unexpected()”

on

page

341

v

“terminate()”

on

page

342

The

try

Keyword

2000C++

You

use

a

try

block

to

indicate

which

areas

in

your

program

that

might

throw

exceptions

you

want

to

handle

immediately.

You

use

a

function

try

block

to

indicate

that

you

want

to

detect

exceptions

in

the

entire

body

of

a

function.

Syntax

–

try

Block

��

�

try

{

statements

}

handler

��

©

Copyright

IBM

Corp.

1998,

2003

327

Syntax

—

Function

try

Block

��

�

try

function_body

handler

:

member_initializer_list

��

The

following

is

an

example

of

a

function

try

block

with

a

member

initializer,

a

function

try

block

and

a

try

block:

#include

<iostream>

using

namespace

std;

class

E

{

public:

const

char*

error;

E(const

char*

arg)

:

error(arg)

{

}

};

class

A

{

public:

int

i;

//

A

function

try

block

with

a

member

//

initializer

A()

try

:

i(0)

{

throw

E("Exception

thrown

in

A()");

}

catch

(E&

e)

{

cout

<<

e.error

<<

endl;

}

};

//

A

function

try

block

void

f()

try

{

throw

E("Exception

thrown

in

f()");

}

catch

(E&

e)

{

cout

<<

e.error

<<

endl;

}

void

g()

{

throw

E("Exception

thrown

in

g()");

}

int

main()

{

f();

//

A

try

block

try

{

g();

}

catch

(E&

e)

{

cout

<<

e.error

<<

endl;

}

A

x;

}

The

following

is

the

output

of

the

above

example:

Exception

thrown

in

f()

Exception

thrown

in

g()

Exception

thrown

in

A()

328

ILE

C/C++

Language

Reference

The

constructor

of

class

A

has

a

function

try

block

with

a

member

initializer.

Function

f()

has

a

function

try

block.

The

main()

function

contains

a

try

block.

Related

References

v

“Initializing

Base

Classes

and

Members”

on

page

276

Nested

Try

Blocks

2000C++

When

try

blocks

are

nested

and

a

throw

occurs

in

a

function

called

by

an

inner

try

block,

control

is

transferred

outward

through

the

nested

try

blocks

until

the

first

catch

block

is

found

whose

argument

matches

the

argument

of

the

throw

expression.

For

example:

try

{

func1();

try

{

func2();

}

catch

(spec_err)

{

/*

...

*/

}

func3();

}

catch

(type_err)

{

/*

...

*/

}

//

if

no

throw

is

issued,

control

resumes

here.

In

the

above

example,

if

spec_err

is

thrown

within

the

inner

try

block

(in

this

case,

from

func2()),

the

exception

is

caught

by

the

inner

catch

block,

and,

assuming

this

catch

block

does

not

transfer

control,

func3()

is

called.

If

spec_err

is

thrown

after

the

inner

try

block

(for

instance,

by

func3()),

it

is

not

caught

and

the

function

terminate()

is

called.

If

the

exception

thrown

from

func2()

in

the

inner

try

block

is

type_err,

the

program

skips

out

of

both

try

blocks

to

the

second

catch

block

without

invoking

func3(),

because

no

appropriate

catch

block

exists

following

the

inner

try

block.

You

can

also

nest

a

try

block

within

a

catch

block.

Related

References

v

“terminate()”

on

page

342

v

“unexpected()”

on

page

341

v

“Special

Exception

Handling

Functions”

on

page

341

catch

Blocks

2000C++

The

following

is

the

syntax

for

an

exception

handler

or

a

catch

block:

��

catch

(

exception_declaration

)

{

statements

}

��

You

can

declare

a

handler

to

catch

many

types

of

exceptions.

The

allowable

objects

that

a

function

can

catch

are

declared

in

the

parentheses

following

the

catch

keyword

(the

exception_declaration).

You

can

catch

objects

of

the

fundamental

types,

base

and

derived

class

objects,

references,

and

pointers

to

all

of

these

types.

You

can

also

catch

const

and

volatile

types.

The

exception_declaration

cannot

be

an

incomplete

type,

or

a

reference

or

pointer

to

an

incomplete

type

other

than

one

of

the

following:

Chapter

17.

Exception

Handling

329

v

void*

v

const

void*

v

volatile

void*

v

const

volatile

void*

You

cannot

define

a

type

in

an

exception_declaration.

You

can

also

use

the

catch(...)

form

of

the

handler

to

catch

all

thrown

exceptions

that

have

not

been

caught

by

a

previous

catch

block.

The

ellipsis

in

the

catch

argument

indicates

that

any

exception

thrown

can

be

handled

by

this

handler.

If

an

exception

is

caught

by

a

catch(...)

block,

there

is

no

direct

way

to

access

the

object

thrown.

Information

about

an

exception

caught

by

catch(...)

is

very

limited.

You

can

declare

an

optional

variable

name

if

you

want

to

access

the

thrown

object

in

the

catch

block.

A

catch

block

can

only

catch

accessible

objects.

The

object

caught

must

have

an

accessible

copy

constructor.

Related

References

v

“Type

Qualifiers”

on

page

57

v

“Member

Access”

on

page

236

Function

try

block

Handlers

2000C++

The

scope

and

lifetime

of

the

parameters

of

a

function

or

constructor

extend

into

the

handlers

of

a

function

try

block.

The

following

example

demonstrates

this:

void

f(int

&x)

try

{

throw

10;

}

catch

(const

int

&i)

{

x

=

i;

}

int

main()

{

int

v

=

0;

f(v);

}

The

value

of

v

after

f()

is

called

is

10.

A

function

try

block

on

main()

does

not

catch

exceptions

thrown

in

destructors

of

objects

with

static

storage

duration,

or

constructors

of

namespace

scope

objects.

The

following

example

throws

an

exception

from

a

destructor

of

a

static

object:

#include

<iostream>

using

namespace

std;

class

E

{

public:

const

char*

error;

E(const

char*

arg)

:

error(arg)

{

}

};

class

A

{

public:

~A()

{

throw

E("Exception

in

~A()");

}

};

330

ILE

C/C++

Language

Reference

class

B

{

public:

~B()

{

throw

E("Exception

in

~B()");

}

};

int

main()

try

{

cout

<<

"In

main"

<<

endl;

static

A

cow;

B

bull;

}

catch

(E&

e)

{

cout

<<

e.error

<<

endl;

}

The

following

is

the

output

of

the

above

example:

In

main

Exception

in

~B()

The

run

time

will

not

catch

the

exception

thrown

when

object

cow

is

destroyed

at

the

end

of

the

program.

The

following

example

throws

an

exception

from

a

constructor

of

a

namespace

scope

object:

#include

<iostream>

using

namespace

std;

class

E

{

public:

const

char*

error;

E(const

char*

arg)

:

error(arg)

{

}

};

namespace

N

{

class

C

{

public:

C()

{

cout

<<

"In

C()"

<<

endl;

throw

E("Exception

in

C()");

}

};

C

calf;

};

int

main()

try

{

cout

<<

"In

main"

<<

endl;

}

catch

(E&

e)

{

cout

<<

e.error

<<

endl;

}

The

following

is

the

output

of

the

above

example:

In

C()

The

compiler

will

not

catch

the

exception

thrown

when

object

calf

is

created.

In

a

function

try

block’s

handler,

you

cannot

have

a

jump

into

the

body

of

a

constructor

or

destructor.

A

return

statement

cannot

appear

in

a

function

try

block’s

handler

of

a

constructor.

Chapter

17.

Exception

Handling

331

When

the

function

try

block’s

handler

of

an

object’s

constructor

or

destructor

is

entered,

fully

constructed

base

classes

and

members

of

that

object

are

destroyed.

The

following

example

demonstrates

this:

#include

<iostream>

using

namespace

std;

class

E

{

public:

const

char*

error;

E(const

char*

arg)

:

error(arg)

{

};

};

class

B

{

public:

B()

{

};

~B()

{

cout

<<

"~B()

called"

<<

endl;

};

};

class

D

:

public

B

{

public:

D();

~D()

{

cout

<<

"~D()

called"

<<

endl;

};

};

D::D()

try

:

B()

{

throw

E("Exception

in

D()");

}

catch(E&

e)

{

cout

<<

"Handler

of

function

try

block

of

D():

"

<<

e.error

<<

endl;

};

int

main()

{

D

val;

};

The

following

is

the

output

of

the

above

example:

~B()

called

Handler

of

function

try

block

of

D():

Exception

in

D()

When

the

function

try

block’s

handler

of

D()

is

entered,

the

run

time

first

calls

the

destructor

of

the

base

class

of

D,

which

is

B.

The

destructor

of

D

is

not

called

because

val

is

not

fully

constructed.

The

run

time

will

rethrow

an

exception

at

the

end

of

a

function

try

block’s

handler

of

a

constructor

or

destructor.

All

other

functions

will

return

once

they

have

reached

the

end

of

their

function

try

block’s

handler.

The

following

example

demonstrates

this:

#include

<iostream>

using

namespace

std;

class

E

{

public:

const

char*

error;

E(const

char*

arg)

:

error(arg)

{

};

};

class

A

{

public:

A()

try

{

throw

E("Exception

in

A()");

}

catch(E&

e)

{

cout

<<

"Handler

in

A():

"

<<

e.error

<<

endl;

}

};

332

ILE

C/C++

Language

Reference

int

f()

try

{

throw

E("Exception

in

f()");

return

0;

}

catch(E&

e)

{

cout

<<

"Handler

in

f():

"

<<

e.error

<<

endl;

return

1;

}

int

main()

{

int

i

=

0;

try

{

A

cow;

}

catch(E&

e)

{

cout

<<

"Handler

in

main():

"

<<

e.error

<<

endl;

}

try

{

i

=

f();

}

catch(E&

e)

{

cout

<<

"Another

handler

in

main():

"

<<

e.error

<<

endl;

}

cout

<<

"Returned

value

of

f():

"

<<

i

<<

endl;

}

The

following

is

the

output

of

the

above

example:

Handler

in

A():

Exception

in

A()

Handler

in

main():

Exception

in

A()

Handler

in

f():

Exception

in

f()

Returned

value

of

f():

1

Related

References

v

“The

main()

Function”

on

page

146

v

“static

Storage

Class

Specifier”

on

page

34

v

Chapter

10,

“Namespaces,”

on

page

191

v

“Destructors”

on

page

280

Arguments

of

catch

Blocks

2000C++

If

you

specify

a

class

type

for

the

argument

of

a

catch

block

(the

exception_declaration),

the

compiler

uses

a

copy

constructor

to

initialize

that

argument.

If

that

argument

does

not

have

a

name,

the

compiler

initializes

a

temporary

object

and

destroys

it

when

the

handler

exits.

The

ISO

C++

specification

does

not

require

the

compiler

to

construct

temporary

objects

in

cases

where

they

are

redundant.

Related

References

v

“Temporary

Objects”

on

page

287

Matching

between

Exceptions

Thrown

and

Caught

2000C++

An

argument

in

the

catch

argument

of

a

handler

matches

an

argument

in

the

assignment_expression

of

the

throw

expression

(throw

argument)

if

any

of

the

following

conditions

is

met:

v

The

catch

argument

type

matches

the

type

of

the

thrown

object.

v

The

catch

argument

is

a

public

base

class

of

the

thrown

class

object.

v

The

catch

specifies

a

pointer

type,

and

the

thrown

object

is

a

pointer

type

that

can

be

converted

to

the

pointer

type

of

the

catch

argument

by

standard

pointer

conversion.

Chapter

17.

Exception

Handling

333

Note:

If

the

type

of

the

thrown

object

is

const

or

volatile,

the

catch

argument

must

also

be

a

const

or

volatile

for

a

match

to

occur.

However,

a

const,

volatile,

or

reference

type

catch

argument

can

match

a

nonconstant,

nonvolatile,

or

nonreference

object

type.

A

nonreference

catch

argument

type

matches

a

reference

to

an

object

of

the

same

type.

Related

References

v

“Pointer

Conversions”

on

page

128

v

“Type

Qualifiers”

on

page

57

v

“References”

on

page

75

v

“Special

Exception

Handling

Functions”

on

page

341

Order

of

Catching

2000C++

If

the

compiler

encounters

an

exception

in

a

try

block,

it

will

try

each

handler

in

order

of

appearance.

If

a

catch

block

for

objects

of

a

base

class

precedes

a

catch

block

for

objects

of

a

class

derived

from

that

base

class,

the

compiler

issues

a

warning

and

continues

to

compile

the

program

despite

the

unreachable

code

in

the

derived

class

handler.

A

catch

block

of

the

form

catch(...)

must

be

the

last

catch

block

following

a

try

block

or

an

error

occurs.

This

placement

ensures

that

the

catch(...)

block

does

not

prevent

more

specific

catch

blocks

from

catching

exceptions

intended

for

them.

If

the

run

time

cannot

find

a

matching

handler

in

the

current

scope,

the

run

time

will

continue

to

find

a

matching

handler

in

a

dynamically

surrounding

try

block.

The

following

example

demonstrates

this:

#include

<iostream>

using

namespace

std;

class

E

{

public:

const

char*

error;

E(const

char*

arg)

:

error(arg)

{

};

};

class

F

:

public

E

{

public:

F(const

char*

arg)

:

E(arg)

{

};

};

void

f()

{

try

{

cout

<<

"In

try

block

of

f()"

<<

endl;

throw

E("Class

E

exception");

}

catch

(F&

e)

{

cout

<<

"In

handler

of

f()";

cout

<<

e.error

<<

endl;

}

};

int

main()

{

try

{

cout

<<

"In

main"

<<

endl;

f();

}

catch

(E&

e)

{

cout

<<

"In

handler

of

main:

";

334

ILE

C/C++

Language

Reference

cout

<<

e.error

<<

endl;

};

cout

<<

"Resume

execution

in

main"

<<

endl;

}

The

following

is

the

output

of

the

above

example:

In

main

In

try

block

of

f()

In

handler

of

main:

Class

E

exception

Resume

execution

in

main

In

function

f(),

the

run

time

could

not

find

a

handler

to

handle

the

exception

of

type

E

thrown.

The

run

time

finds

a

matching

handler

in

a

dynamically

surrounding

try

block:

the

try

block

in

the

main()

function.

If

the

run

time

cannot

find

a

matching

handler

in

the

program,

it

calls

the

terminate()

function.

Related

References

v

“The

try

Keyword”

on

page

327

v

“terminate()”

on

page

342

The

throw

Expression

2000C++

You

use

a

throw

expression

to

indicate

that

your

program

has

encountered

an

exception.

Syntax

–

throw

Expression

��

throw

assignment_expression

��

The

type

of

assignment_expression

cannot

be

an

incomplete

type,

or

a

pointer

to

an

incomplete

type

other

than

one

of

the

following:

v

void*

v

const

void*

v

volatile

void*

v

const

volatile

void*

The

assignment_expression

is

treated

the

same

way

as

a

function

argument

in

a

call

or

the

operand

of

a

return

statement.

If

the

assignment_expression

is

a

class

object,

the

copy

constructor

and

destructor

of

that

object

must

be

accessible.

For

example,

you

cannot

throw

a

class

object

that

has

its

copy

constructor

declared

as

private.

Related

References

v

“Incomplete

Types”

on

page

61

Rethrowing

an

Exception

2000C++

If

a

catch

block

cannot

handle

the

particular

exception

it

has

caught,

you

can

rethrow

the

exception.

The

rethrow

expression

(throw

without

assignment_expression)

causes

the

originally

thrown

object

to

be

rethrown.

Because

the

exception

has

already

been

caught

at

the

scope

in

which

the

rethrow

expression

occurs,

it

is

rethrown

out

to

the

next

dynamically

enclosing

try

block.

Chapter

17.

Exception

Handling

335

Therefore,

it

cannot

be

handled

by

catch

blocks

at

the

scope

in

which

the

rethrow

expression

occurred.

Any

catch

blocks

for

the

dynamically

enclosing

try

block

have

an

opportunity

to

catch

the

exception.

The

following

example

demonstrates

rethrowing

an

exception:

#include

<iostream>

using

namespace

std;

struct

E

{

const

char*

message;

E()

:

message("Class

E")

{

}

};

struct

E1

:

E

{

const

char*

message;

E1()

:

message("Class

E1")

{

}

};

struct

E2

:

E

{

const

char*

message;

E2()

:

message("Class

E2")

{

}

};

void

f()

{

try

{

cout

<<

"In

try

block

of

f()"

<<

endl;

cout

<<

"Throwing

exception

of

type

E1"

<<

endl;

E1

myException;

throw

myException;

}

catch

(E2&

e)

{

cout

<<

"In

handler

of

f(),

catch

(E2&

e)"

<<

endl;

cout

<<

"Exception:

"

<<

e.message

<<

endl;

throw;

}

catch

(E1&

e)

{

cout

<<

"In

handler

of

f(),

catch

(E1&

e)"

<<

endl;

cout

<<

"Exception:

"

<<

e.message

<<

endl;

throw;

}

catch

(E&

e)

{

cout

<<

"In

handler

of

f(),

catch

(E&

e)"

<<

endl;

cout

<<

"Exception:

"

<<

e.message

<<

endl;

throw;

}

}

int

main()

{

try

{

cout

<<

"In

try

block

of

main()"

<<

endl;

f();

}

catch

(E2&

e)

{

cout

<<

"In

handler

of

main(),

catch

(E2&

e)"

<<

endl;

cout

<<

"Exception:

"

<<

e.message

<<

endl;

}

catch

(...)

{

cout

<<

"In

handler

of

main(),

catch

(...)"

<<

endl;

}

}

The

following

is

the

output

of

the

above

example:

336

ILE

C/C++

Language

Reference

In

try

block

of

main()

In

try

block

of

f()

Throwing

exception

of

type

E1

In

handler

of

f(),

catch

(E1&

e)

Exception:

Class

E1

In

handler

of

main(),

catch

(...)

The

try

block

in

the

main()

function

calls

function

f().

The

try

block

in

function

f()

throws

an

object

of

type

E1

named

myException.

The

handler

catch

(E1

&e)

catches

myException.

The

handler

then

rethrows

myException

with

the

statement

throw

to

the

next

dynamically

enclosing

try

block:

the

try

block

in

the

main()

function.

The

handler

catch(...)

catches

myException.

Related

References

v

“The

throw

Expression”

on

page

335

Stack

Unwinding

2000C++

When

an

exception

is

thrown

and

control

passes

from

a

try

block

to

a

handler,

the

C++

run

time

calls

destructors

for

all

automatic

objects

constructed

since

the

beginning

of

the

try

block.

This

process

is

called

stack

unwinding.

The

automatic

objects

are

destroyed

in

reverse

order

of

their

construction.

(Automatic

objects

are

local

objects

that

have

been

declared

auto

or

register,

or

not

declared

static

or

extern.

An

automatic

object

x

is

deleted

whenever

the

program

exits

the

block

in

which

x

is

declared.)

If

an

exception

is

thrown

during

construction

of

an

object

consisting

of

subobjects

or

array

elements,

destructors

are

only

called

for

those

subobjects

or

array

elements

successfully

constructed

before

the

exception

was

thrown.

A

destructor

for

a

local

static

object

will

only

be

called

if

the

object

was

successfully

constructed.

If

during

stack

unwinding

a

destructor

throws

an

exception

and

that

exception

is

not

handled,

the

terminate()

function

is

called.

The

following

example

demonstrates

this:

#include

<iostream>

using

namespace

std;

struct

E

{

const

char*

message;

E(const

char*

arg)

:

message(arg)

{

}

};

void

my_terminate()

{

cout

<<

"Call

to

my_terminate"

<<

endl;

};

struct

A

{

A()

{

cout

<<

"In

constructor

of

A"

<<

endl;

}

~A()

{

cout

<<

"In

destructor

of

A"

<<

endl;

throw

E("Exception

thrown

in

~A()");

}

};

struct

B

{

B()

{

cout

<<

"In

constructor

of

B"

<<

endl;

}

~B()

{

cout

<<

"In

destructor

of

B"

<<

endl;

}

};

int

main()

{

Chapter

17.

Exception

Handling

337

set_terminate(my_terminate);

try

{

cout

<<

"In

try

block"

<<

endl;

A

a;

B

b;

throw("Exception

thrown

in

try

block

of

main()");

}

catch

(const

char*

e)

{

cout

<<

"Exception:

"

<<

e

<<

endl;

}

catch

(...)

{

cout

<<

"Some

exception

caught

in

main()"

<<

endl;

}

cout

<<

"Resume

execution

of

main()"

<<

endl;

}

The

following

is

the

output

of

the

above

example:

In

try

block

In

constructor

of

A

In

constructor

of

B

In

destructor

of

B

In

destructor

of

A

Call

to

my_terminate

In

the

try

block,

two

automatic

objects

are

created:

a

and

b.

The

try

block

throws

an

exception

of

type

const

char*.

The

handler

catch

(const

char*

e)

catches

this

exception.

The

C++

run

time

unwinds

the

stack,

calling

the

destructors

for

a

and

b

in

reverse

order

of

their

construction.

The

destructor

for

a

throws

an

exception.

Since

there

is

no

handler

in

the

program

that

can

handle

this

exception,

the

C++

run

time

calls

terminate().

(The

function

terminate()

calls

the

function

specified

as

the

argument

to

set_terminate().

In

this

example,

terminate()

has

been

specified

to

call

my_terminate().)

Related

References

v

“terminate()”

on

page

342

v

“set_unexpected()

and

set_terminate()”

on

page

343

Exception

Specifications

2000C++

C++

provides

a

mechanism

to

ensure

that

a

given

function

is

limited

to

throwing

only

a

specified

list

of

exceptions.

An

exception

specification

at

the

beginning

of

any

function

acts

as

a

guarantee

to

the

function’s

caller

that

the

function

will

throw

only

the

exceptions

contained

in

the

exception

specification.

For

example,

a

function:

void

translate()

throw(unknown_word,bad_grammar)

{

/*

...

*/

}

explicitly

states

that

it

will

only

throw

exception

objects

whose

types

are

unknown_word

or

bad_grammar,

or

any

type

derived

from

unknown_word

or

bad_grammar.

Syntax

–

Exception

Specification

��

throw

(

)

type_id_list

��

The

type_id_list

is

a

comma-separated

list

of

types.

In

this

list

you

cannot

specify

Stack

Unwinding

338

ILE

C/C++

Language

Reference

an

incomplete

type,

a

pointer

or

a

reference

to

an

incomplete

type,

other

than

a

pointer

to

void,

optionally

qualified

with

const

and/or

volatile.

You

cannot

define

a

type

in

an

exception

specification.

A

function

with

no

exception

specification

allows

all

exceptions.

A

function

with

an

exception

specification

that

has

an

empty

type_id_list,

throw(),

does

not

allow

any

exceptions

to

be

thrown.

An

exception

specification

is

not

part

of

a

function’s

type.

An

exception

specification

may

only

appear

at

the

end

of

a

function

declarator

of

a

function,

pointer

to

function,

reference

to

function,

pointer

to

member

function

declaration,

or

pointer

to

member

function

definition.

An

exception

specification

cannot

appear

in

a

typedef

declaration.

The

following

declarations

demonstrate

this:

void

f()

throw(int);

void

(*g)()

throw(int);

void

h(void

i()

throw(int));

//

typedef

int

(*j)()

throw(int);

This

is

an

error.

The

compiler

would

not

allow

the

last

declaration,

typedef

int

(*j)()

throw(int).

Suppose

that

class

A

is

one

of

the

types

in

the

type_id_list

of

an

exception

specification

of

a

function.

That

function

may

throw

exception

objects

of

class

A,

or

any

class

publicly

derived

from

class

A.

The

following

example

demonstrates

this:

class

A

{

};

class

B

:

public

A

{

};

class

C

{

};

void

f(int

i)

throw

(A)

{

switch

(i)

{

case

0:

throw

A();

case

1:

throw

B();

default:

throw

C();

}

}

void

g(int

i)

throw

(A*)

{

A*

a

=

new

A();

B*

b

=

new

B();

C*

c

=

new

C();

switch

(i)

{

case

0:

throw

a;

case

1:

throw

b;

default:

throw

c;

}

}

Function

f()

can

throw

objects

of

types

A

or

B.

If

the

function

tries

to

throw

an

object

of

type

C,

the

compiler

will

call

unexpected()

because

type

C

has

not

been

specified

in

the

function’s

exception

specification,

nor

does

it

derive

publicly

from

A.

Similarly,

function

g()

cannot

throw

pointers

to

objects

of

type

C;

the

function

may

throw

pointers

of

type

A

or

pointers

of

objects

that

derive

publicly

from

A.

A

function

that

overrides

a

virtual

function

can

only

throw

exceptions

specified

by

the

virtual

function.

The

following

example

demonstrates

this:

class

A

{

public:

virtual

void

f()

throw

(int,

char);

Exception

Specifications

Chapter

17.

Exception

Handling

339

};

class

B

:

public

A{

public:

void

f()

throw

(int)

{

}

};

/*

The

following

is

not

allowed.

*/

/*

class

C

:

public

A

{

public:

void

f()

{

}

};

class

D

:

public

A

{

public:

void

f()

throw

(int,

char,

double)

{

}

};

*/

The

compiler

allows

B::f()

because

the

member

function

may

throw

only

exceptions

of

type

int.

The

compiler

would

not

allow

C::f()

because

the

member

function

may

throw

any

kind

of

exception.

The

compiler

would

not

allow

D::f()

because

the

member

function

can

throw

more

types

of

exceptions

(int,

char,

and

double)

than

A::f().

Suppose

that

you

assign

or

initialize

a

pointer

to

function

named

x

with

a

function

or

pointer

to

function

named

y.

The

pointer

to

function

x

can

only

throw

exceptions

specified

by

the

exception

specifications

of

y.

The

following

example

demonstrates

this:

void

(*f)();

void

(*g)();

void

(*h)()

throw

(int);

void

i()

{

f

=

h;

//

h

=

g;

This

is

an

error.

}

The

compiler

allows

the

assignment

f

=

h

because

f

can

throw

any

kind

of

exception.

The

compiler

would

not

allow

the

assignment

h

=

g

because

h

can

only

throw

objects

of

type

int,

while

g

can

throw

any

kind

of

exception.

Implicitly

declared

special

member

functions

(default

constructors,

copy

constructors,

destructors,

and

copy

assignment

operators)

have

exception

specifications.

An

implicitly

declared

special

member

function

will

have

in

its

exception

specification

the

types

declared

in

the

functions’

exception

specifications

that

the

special

function

invokes.

If

any

function

that

a

special

function

invokes

allows

all

exceptions,

then

that

special

function

allows

all

exceptions.

If

all

the

functions

that

a

special

function

invokes

allow

no

exceptions,

then

that

special

function

will

allow

no

exceptions.

The

following

example

demonstrates

this:

class

A

{

public:

A()

throw

(int);

A(const

A&)

throw

(float);

~A()

throw();

};

class

B

{

public:

B()

throw

(char);

B(const

A&);

Exception

Specifications

340

ILE

C/C++

Language

Reference

~B()

throw();

};

class

C

:

public

B,

public

A

{

};

The

following

special

functions

in

the

above

example

have

been

implicitly

declared:

C::C()

throw

(int,

char);

C::C(const

C&);

//

Can

throw

any

type

of

exception,

including

float

C::~C()

throw();

The

default

constructor

of

C

can

throw

exceptions

of

type

int

or

char.

The

copy

constructor

of

C

can

throw

any

kind

of

exception.

The

destructor

of

C

cannot

throw

any

exceptions.

Related

References

v

“Incomplete

Types”

on

page

61

v

“Function

Declarations”

on

page

136

v

“Pointers

to

Functions”

on

page

155

v

Chapter

15,

“Special

Member

Functions,”

on

page

271

v

“unexpected()”

Special

Exception

Handling

Functions

2000C++

Not

all

thrown

errors

can

be

caught

and

successfully

dealt

with

by

a

catch

block.

In

some

situations,

the

best

way

to

handle

an

exception

is

to

terminate

the

program.

Two

special

library

functions

are

implemented

in

C++

to

process

exceptions

not

properly

handled

by

catch

blocks

or

exceptions

thrown

outside

of

a

valid

try

block.

These

functions

are

unexpected()

and

terminate().

unexpected()

2000C++

When

a

function

with

an

exception

specification

throws

an

exception

that

is

not

listed

in

its

exception

specification,

the

C++

run

time

does

the

following:

1.

The

unexpected()

function

is

called.

2.

The

unexpected()

function

calls

the

function

pointed

to

by

unexpected_handler.

By

default,

unexpected_handler

points

to

the

function

terminate().

You

can

replace

the

default

value

of

unexpected_handler

with

the

function

set_unexpected().

Although

unexpected()

cannot

return,

it

may

throw

(or

rethrow)

an

exception.

Suppose

the

exception

specification

of

a

function

f()

has

been

violated.

If

unexpected()

throws

an

exception

allowed

by

the

exception

specification

of

f(),

then

the

C++

run

time

will

search

for

another

handler

at

the

call

of

f().

The

following

example

demonstrates

this:

#include

<iostream>

using

namespace

std;

struct

E

{

const

char*

message;

E(const

char*

arg)

:

message(arg)

{

}

};

void

my_unexpected()

{

cout

<<

"Call

to

my_unexpected"

<<

endl;

throw

E("Exception

thrown

from

my_unexpected");

}

Exception

Specifications

Chapter

17.

Exception

Handling

341

void

f()

throw(E)

{

cout

<<

"In

function

f(),

throw

const

char*

object"

<<

endl;

throw("Exception,

type

const

char*,

thrown

from

f()");

}

int

main()

{

set_unexpected(my_unexpected);

try

{

f();

}

catch

(E&

e)

{

cout

<<

"Exception

in

main():

"

<<

e.message

<<

endl;

}

}

The

following

is

the

output

of

the

above

example:

In

function

f(),

throw

const

char*

object

Call

to

my_unexpected

Exception

in

main():

Exception

thrown

from

my_unexpected

The

main()

function’s

try

block

calls

function

f().

Function

f()

throws

an

object

of

type

const

char*.

However

the

exception

specification

of

f()

allows

only

objects

of

type

E

to

be

thrown.

The

function

unexpected()

is

called.

The

function

unexpected()

calls

my_unexpected().

The

function

my_unexpected()

throws

an

object

of

type

E.

Since

unexpected()

throws

an

object

allowed

by

the

exception

specification

of

f(),

the

handler

in

the

main()

function

may

handle

the

exception.

If

unexpected()

did

not

throw

(or

rethrow)

an

object

allowed

by

the

exception

specification

of

f(),

then

the

C++

run

time

does

one

of

two

things:

v

If

the

exception

specification

of

f()

included

the

class

std::bad_exception,

unexpected()

will

throw

an

object

of

type

std::bad_exception,

and

the

C++

run

time

will

search

for

another

handler

at

the

call

of

f().

v

If

the

exception

specification

of

f()

did

not

include

the

class

std::bad_exception,

the

function

terminate()

is

called.

terminate()

2000C++

In

some

cases,

the

exception

handling

mechanism

fails

and

a

call

to

void

terminate()

is

made.

This

terminate()

call

occurs

in

any

of

the

following

situations:

v

The

exception

handling

mechanism

cannot

find

a

handler

for

a

thrown

exception.

The

following

are

more

specific

cases

of

this:

–

During

stack

unwinding,

a

destructor

throws

an

exception

and

that

exception

is

not

handled.

–

The

expression

that

is

thrown

also

throws

an

exception,

and

that

exception

is

not

handled.

–

The

constructor

or

destructor

of

a

non-local

static

object

throws

an

exception,

and

the

exception

is

not

handled.

–

A

function

registered

with

atexit()

throws

an

exception,

and

the

exception

is

not

handled.

The

following

demonstrates

this:

extern

"C"

printf(char*

...);

#include

<exception>

#include

<cstdlib>

using

namespace

std;

void

f()

{

printf("Function

f()\n");

throw

"Exception

thrown

from

f()";

}

Special

Exception

Handling

Functions

342

ILE

C/C++

Language

Reference

void

g()

{

printf("Function

g()\n");

}

void

h()

{

printf("Function

h()\n");

}

void

my_terminate()

{

printf("Call

to

my_terminate\n");

abort();

}

int

main()

{

set_terminate(my_terminate);

atexit(f);

atexit(g);

atexit(h);

printf("In

main\n");

}

The

following

is

the

output

of

the

above

example:

In

main

Function

h()

Function

g()

Function

f()

Call

to

my_terminate

To

register

a

function

with

atexit(),

you

pass

a

parameter

to

atexit()

a

pointer

to

the

function

you

want

to

register.

At

normal

program

termination,

atexit()

calls

the

functions

you

have

registered

with

no

arguments

in

reverse

order.

The

atexit()

function

is

in

the

<cstdlib>

library.
v

A

throw

expression

without

an

operand

tries

to

rethrow

an

exception,

and

no

exception

is

presently

being

handled.

v

A

function

f()

throws

an

exception

that

violates

its

exception

specification.

The

unexpected()

function

then

throws

an

exception

which

violates

the

exception

specification

of

f(),

and

the

exception

specification

of

f()

did

not

include

the

class

std::bad_exception.

v

The

default

value

of

unexpected_handler

is

called.

The

terminate()

function

calls

the

function

pointed

to

by

terminate_handler.

By

default,

terminate_handler

points

to

the

function

abort(),

which

exits

from

the

program.

You

can

replace

the

default

value

of

terminate_handler

with

the

function

set_terminate().

A

terminate

function

cannot

return

to

its

caller,

either

by

using

return

or

by

throwing

an

exception.

set_unexpected()

and

set_terminate()

2000C++

The

function

unexpected(),

when

invoked,

calls

the

function

most

recently

supplied

as

an

argument

to

set_unexpected().

If

set_unexpected()

has

not

yet

been

called,

unexpected()

calls

terminate().

The

function

terminate(),

when

invoked,

calls

the

function

most

recently

supplied

as

an

argument

to

set_terminate().

If

set_terminate()

has

not

yet

been

called,

terminate()

calls

abort(),

which

ends

the

program.

You

can

use

set_unexpected()

and

set_terminate()

to

register

functions

you

define

to

be

called

by

unexpected()

and

terminate().

The

functions

set_unexpected()

and

set_terminate()

are

included

in

the

standard

header

files.

Each

of

these

functions

has

as

its

return

type

and

its

argument

type

a

pointer

to

function

with

a

void

return

type

and

no

arguments.

The

pointer

to

function

you

Special

Exception

Handling

Functions

Chapter

17.

Exception

Handling

343

supply

as

the

argument

becomes

the

function

called

by

the

corresponding

special

function:

the

argument

to

set_unexpected()

becomes

the

function

called

by

unexpected(),

and

the

argument

to

set_terminate()

becomes

the

function

called

by

terminate().

Both

set_unexpected()

and

set_terminate()

return

a

pointer

to

the

function

that

was

previously

called

by

their

respective

special

functions

(unexpected()

and

terminate()).

By

saving

the

return

values,

you

can

restore

the

original

special

functions

later

so

that

unexpected()

and

terminate()

will

once

again

call

terminate()

and

abort().

If

you

use

set_terminate()

to

register

your

own

function,

the

function

should

no

return

to

its

caller

but

terminate

execution

of

the

program.

Example

Using

the

Exception

Handling

Functions

2000C++

The

following

example

shows

the

flow

of

control

and

special

functions

used

in

exception

handling:

#include

<iostream>

#include

<exception>

using

namespace

std;

class

X

{

};

class

Y

{

};

class

A

{

};

//

pfv

type

is

pointer

to

function

returning

void

typedef

void

(*pfv)();

void

my_terminate()

{

cout

<<

"Call

to

my

terminate"

<<

endl;

abort();

}

void

my_unexpected()

{

cout

<<

"Call

to

my_unexpected()"

<<

endl;

throw;

}

void

f()

throw(X,Y,

bad_exception)

{

throw

A();

}

void

g()

throw(X,Y)

{

throw

A();

}

int

main()

{

pfv

old_term

=

set_terminate(my_terminate);

pfv

old_unex

=

set_unexpected(my_unexpected);

try

{

cout

<<

"In

first

try

block"

<<

endl;

f();

}

catch(X)

{

cout

<<

"Caught

X"

<<

endl;

}

catch(Y)

{

cout

<<

"Caught

Y"

<<

endl;

}

catch

(bad_exception&

e1)

{

cout

<<

"Caught

bad_exception"

<<

endl;

}

Special

Exception

Handling

Functions

344

ILE

C/C++

Language

Reference

catch

(...)

{

cout

<<

"Caught

some

exception"

<<

endl;

}

cout

<<

endl;

try

{

cout

<<

"In

second

try

block"

<<

endl;

g();

}

catch(X)

{

cout

<<

"Caught

X"

<<

endl;

}

catch(Y)

{

cout

<<

"Caught

Y"

<<

endl;

}

catch

(bad_exception&

e2)

{

cout

<<

"Caught

bad_exception"

<<

endl;

}

catch

(...)

{

cout

<<

"Caught

some

exception"

<<

endl;

}

}

The

following

is

the

output

of

the

above

example:

In

first

try

block

Call

to

my_unexpected()

Caught

bad_exception

In

second

try

block

Call

to

my_unexpected()

Call

to

my

terminate

At

run

time,

this

program

behaves

as

follows:

1.

The

call

to

set_terminate()

assigns

to

old_term

the

address

of

the

function

last

passed

to

set_terminate()

when

set_terminate()

was

previously

called.

2.

The

call

to

set_unexpected()

assigns

to

old_unex

the

address

of

the

function

last

passed

to

set_unexpected()

when

set_unexpected()

was

previously

called.

3.

Within

the

first

try

block,

function

f()

is

called.

Because

f()

throws

an

unexpected

exception,

a

call

to

unexpected()

is

made.

unexpected()

in

turn

calls

my_unexpected(),

which

prints

a

message

to

standard

output.

The

function

my_unexpected()

tries

to

rethrow

the

exception

of

type

A.

Because

class

A

has

not

been

specified

in

the

exception

specification

of

function

f(),

my_unexpected()

throws

an

exception

of

type

bad_exception.

4.

Because

bad_exception

has

been

specified

in

the

exception

specification

of

function

f(),

the

handler

catch

(bad_exception&

e1)

is

able

to

handle

the

exception.

5.

Within

the

second

try

block,

function

g()

is

called.

Because

g()

throws

an

unexpected

exception,

a

call

to

unexpected()

is

made.

The

unexpected()

throws

an

exception

of

type

bad_exception.

Because

bad_exception

has

not

been

specified

in

the

exception

specification

of

g(),

unexpected()

calls

terminate(),

which

calls

the

function

my_terminate().

6.

my_terminate()

displays

a

message

then

calls

abort(),

which

terminates

the

program.

Note

that

the

catch

blocks

following

the

second

try

block

are

not

entered,

because

the

exception

was

handled

by

my_unexpected()

as

an

unexpected

throw,

not

as

a

valid

exception.

Special

Exception

Handling

Functions

Chapter

17.

Exception

Handling

345

Special

Exception

Handling

Functions

346

ILE

C/C++

Language

Reference

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

″AS

IS″

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

1998,

2003

347

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

Lab

Director

IBM

Canada

Ltd.

Laboratory

B3/KB7/8200/MKM

8200

Warden

Avenue

Markham,

Ontario,

Canada

L6G

1C7

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

may

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work,

must

include

a

copyright

notice

as

follows:

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

1998,

2003.

All

rights

reserved.

If

you

are

viewing

this

information

softcopy,

the

photographs

and

color

illustrations

may

not

appear.

348

ILE

C/C++

Language

Reference

Programming

Interface

Information

Programming

interface

information

is

intended

to

help

you

create

application

software

using

this

program.

General-use

programming

interfaces

allow

the

customer

to

write

application

software

that

obtains

the

services

of

this

program’s

tools.

However,

this

information

may

also

contain

diagnosis,

modification,

and

tuning

information.

Diagnosis,

modification,

and

tuning

information

is

provided

to

help

you

debug

your

application

software.

Warning:

Do

not

use

this

diagnosis,

modification,

and

tuning

information

as

a

programming

interface

because

it

is

subject

to

change.

Trademarks

and

Service

Marks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

or

other

countries,

or

both:

IBM

Integrated

Language

Environment

iSeries

OS/400

WebSphere

Eserver

Other

company,

product,

and

service

names,

may

be

trademarks

or

service

marks

of

others.

Industry

Standards

The

following

standards

are

supported:

v

The

C

language

is

consistent

with

the

International

Standard

C

(ANSI/ISO-IEC

9899–1990

[1992]).

This

standard

has

officially

replaced

American

National

Standard

for

Information

Systems-Programming

Language

C

(X3.159–1989)

and

is

technically

equivalent

to

the

ANSI

C

standard.

The

compiler

supports

the

changes

adopted

into

the

C

Standard

by

ISO/IEC

9899:1990/Amendment

1:1994.

v

The

C++

language

is

consistent

with

the

International

Standard

for

Information

Systems-Programming

Language

C++

(ISO/IEC

14882:1998).

Notices

349

350

ILE

C/C++

Language

Reference

Index

Special

characters
__align

19,

28

__alignof

19

__cdecl

155

__ptr128

19,

60

__ptr64

19,

61

__VA_ARGS__

identifier

177

_Decimal

19,

41

_Packed

19

-

(subtraction

operator)

111

-

(unary

minus

operator)

100

--

(decrement

operator)

99

->

(arrow

operator)

91

,

(comma

operator)

122

::

(scope

resolution

operator)

87

!

(logical

negation

operator)

100

!=

(not

equal

to

operator)

114

?

:

(conditional

operators)

118

/

(division

operator)

111

/=

(compound

assignment

operator)

121

.

(dot

operator)

91

$

13

*

(indirection

operator)

101

*

(multiplication

operator)

110

*=

(compound

assignment

operator)

121

\

continuation

character

25,

176

\

escape

character

13

[

]

(array

subscript

operator)

90

%

(remainder)

111

>

(greater

than

operator)

112

>>

(right-shift

operator)

112

>>=

(compound

assignment

operator)

121

>=

(greater

than

or

equal

to

operator)

112

<

(less

than

operator)

112

<<

(left-shift

operator)

112

<<=

(compound

assignment

operator)

121

<=

(less

than

or

equal

to

operator)

112

|

(bitwise

inclusive

OR

operator)

116

||

(logical

OR

operator)

117

&

(address

operator)

101

&

(bitwise

AND

operator)

115

&

(reference

declarator)

75

&&

(logical

AND

operator)

116

&=

(compound

assignment

operator)

121

#

preprocessor

directive

character

176

#

preprocessor

operator

180

##

(macro

concatenation)

181

+

(addition

operator)

111

+

(unary

plus

operator)

100

++

(increment

operator)

99

+=

(compound

assignment

operator)

121

=

(simple

assignment

operator)

120

==

(equal

to

operator)

114

^

(bitwise

exclusive

OR

operator)

115

^=

(compound

assignment

operator)

121

~

(bitwise

negation

operator)

100

A
aborting

functions

343

abstract

classes

266,

268

access

rules
base

classes

251

class

types

213,

237

friends

243

members

236

multiple

access

258

protected

members

250

virtual

functions

267

access

specifiers

224,

236,

247,

255

in

class

derivations

251

accessibility

236,

258

addition

operator

(+)

111

address

operator

(&)

67,

101

lvalue

cast

108

aggregate

types

37,

274

initialization

46,

274

alias

75

alignment
bit

fields

48

structure

members

46

structures

and

unions

28

allocation
expressions

103

functions

154

ambiguities
base

and

derived

member

names

259

base

classes

257

resolving

158,

260

virtual

function

calls

266

AND

operator,

bitwise

(&)

115

AND

operator,

logical

(&&)

116

argc

(argument

count)

146

example

146

arguments
default

150

evaluation

152

macro

177

main

function

146

of

catch

blocks

333

passing

135,

147

passing

by

reference

149

passing

by

value

148

trailing

177

argv

(argument

vector)

146

example

146

arithmetic

conversions

131

arithmetic

types

39

type

compatibility

38

arrays
array-to-pointer

conversions

129

as

function

parameter

70

declaration

70,

224

description

69

arrays

(continued)
initializing

71

multidimensional

71

subscripting

operator

90

type

compatibility

70

ASCII

character

codes

13

asm

18,

61

assignment

operator

(=)
compound

121

pointers

66

simple

120

associativity

of

operators

79

atexit

function

342

auto

storage

class

specifier

30

B
base

classes
abstract

268

access

rules

251

ambiguities

257,

259

direct

256

indirect

246,

257

initialization

276

multiple

access

258

pointers

to

249

virtual

257,

261

base

list

256

best

viable

function

210

binary

expressions

and

operators

109

binding

76

direct

77

dynamic

262

static

262

virtual

functions

262

bit

fields

48

as

structure

member

45

bitwise

negation

operator

(~)

100

block

statement

159

block

visibility

3

boolean
conversions

127

literals

19

variables

39

break

statement

169

C
candidate

functions

199,

209

case

label

162

cast

expressions

108

catch

blocks

142,

327,

329

argument

matching

333

order

of

catching

334

char

type

specifier

40

character
data

types

40

literals

23

multibyte

15

©

Copyright

IBM

Corp.

1998,

2003

351

character

set
extended

15

source

12

class

members
access

operators

91

access

rules

236

class

member

list

223

declaration

224

initialization

276

order

of

allocation

224

class

templates
declaration

and

definition

303

distinction

from

template

class

301

explicit

specialization

318

member

functions

304

static

data

members

303

classes

215

abstract

268

access

rules

236

aggregate

214

base

247

base

list

247

class

objects

29

class

specifiers

213

class

templates

301

declarations

213

incomplete

217,

224

derived

247

friends

238

inheritance

245

keywords

213

local

220

member

functions

224

member

lists

223

member

scope

226

nested

218,

241

overview

213

polymorphic

213

scope

of

names

216

static

members

232

this

pointer

229

using

declaration

252

virtual

257,

262

Classic

C

vii

comma

122

comments

15

compatible

types
across

source

files

38

arithmetic

types

38

arrays

70

in

conditional

expressions

118

composite

types

38

across

source

files

38

compound
assignment

121

expression

122

statement

159

types

43

concatenation
macros

181

conditional

compilation

directives

185

elif

preprocessor

directive

186

else

preprocessor

directive

188

endif

preprocessor

directive

188

examples

188

if

preprocessor

directive

186

ifdef

preprocessor

directive

187

conditional

compilation

directives

(continued)
ifndef

preprocessor

directive

187

conditional

expression

(?

:)

118,

122

const

59

casting

away

constness

150

member

functions

226

object

83

placement

in

type

name

37

qualifier

57

vs.

#define

176

const_cast

95,

150

constant

expressions

54,

85

constant

initializers

223

constructors

272

converting

132,

289

copy

291

default

273

exception

handling

337

initialization
explicit

274

initializer

list

142

nontrivial

273,

281

overview

271

trivial

273,

281

continuation

character

25,

176

continue

statement

169

conversion
constructors

289

function

291

implicit

conversion

sequences

210

conversion

sequence
ellipsis

211

implicit

210

standard

210

user-defined

211

conversions
argument

expressions

147

arithmetic

131

array-to-pointer

129

boolean

127

cast

108

derived-to-base

129

explicit

keyword

132

floating-point

128

function

arguments

130

function-to-pointer

129

integral

127

lvalue-to-rvalue

83,

126,

210

pointer

128

pointer

to

derived

class

261

pointer

to

member

130

qualification

130

references

129

standard

126

user-defined

288

void

pointer

128

copy

assignment

operators

293

copy

constructors

291

covariant

virtual

functions

264

CPLUSPLUS

macro

185

cv-qualifier

46,

57,

64

in

function

definition

142

syntax

57

D
data

members
description

224

scope

226

static

233

DATE

macro

184

deallocation
expressions

107

functions

154

decimal

integer

literals

20

declarations
classes

213,

217

description

27

friend

specifier

in

member

list

238

friends

243

pointers

to

members

228

resolving

ambiguous

statements

158

syntax

27,

37

unsubscripted

arrays

71

declarative

region

1

declarators
description

63

reference

75

decrement

operator

(−−)

99

default
clause

162,

163

constructors

273

label

163

define

preprocessor

directive

176

defined

unary

operator

186

definitions
description

27

macro

176

member

function

225

delete

operator

107

dependent

names

322

dereferencing

operator

101

derivation

247

array

type

70

public,

protected,

private

251

derived

classes
catch

block

334

construction

order

279

pointers

to

249

destructors

280

exception

handling

337

overview

271

pseudo

91,

282

digraph

19

direct

base

class

256

division

operator

(/)

111

do

statement

166

dollar

sign

13

dot

operator

91

double

type

specifier

40

downcast

97

dynamic

binding

262

dynamic_cast

96

E
EBCDIC

character

codes

13

elaborated

type

specifier

216

elif

preprocessor

directive

186

ellipsis
conversion

sequence

211

352

ILE

C/C++

Language

Reference

ellipsis

(continued)
in

function

declaration

137

in

function

definition

144

in

macro

argument

list

178

else
preprocessor

directive

188

statement

160

enclosing

class

224,

240

endif

preprocessor

directive

188

entry

point
program

146

enum
keyword

54,

56

enumerations

54

compatibility

38,

54

declaration

54

initialization

56

enumerator

54

equal

to

operator

(==)

114

error

preprocessor

directive

182

escape

character

\

13

escape

sequence

13

alarm

\a

13

backslash

\\

13

backspace

\b

13

carriage

return

\r

13

double

quotation

mark

\″

13

form

feed

\f

13

horizontal

tab

\t

13

new-line

\n

13

question

mark

\?

13

single

quotation

mark

\’

13

vertical

tab

\v

13

exception

handling

327

argument

matching

333

catch

blocks

329

arguments

333

constructors

337

destructors

337

example,

C++

344

exception

objects

327

function

try

blocks

327

handlers

327,

329

order

of

catching

334

rethrowing

exceptions

335

set_terminate

343

set_unexpected

343

special

functions

341

stack

unwinding

337

terminate

function

342

throw

expressions

329,

335

try

blocks

327

try

exceptions

330

unexpected

function

341

exceptions
declaration

329

function

try

block

handlers

330

specification

142,

338

exclusive

OR

operator,

bitwise

(^)

115

explicit
function

specifier

75

instantiation,

templates

314

keyword

132,

289

specializations,

templates

316,

317

type

conversions

108

exponent

22

expressions
allocation

103

assignment

120

binary

109

cast

108

comma

122

conditional

118

deallocation

107

description

79

full

79

integer

constant

85

new

initializer

106

parenthesized

86

pointer

to

member

118

primary

84

resolving

ambiguous

statements

158

statement

158

throw

123,

335

unary

98

extern

storage

class

specifier

7,

9,

31

implicit

declaration

89

with

function

pointers

155

F
file

inclusion

183

FILE

macro

184

file

scope

data

declarations
unsubscripted

arrays

71

float

type

specifier

40

floating-point
conversion

128

literal

21

promotion

125

for

statement

167

free

store

283

delete

operator

107

new

operator

103

friend
access

rules

243

implicit

conversion

of

pointers

252

member

functions

224

nested

classes

241

relationships

with

classes

when

templates

are

involved

304

scope

240

specifier

238

virtual

functions

265

function

designator

83

function

specifier
explicit

132,

289

function

templates
explicit

specialization

318

function

try

blocks

142,

327

handlers

330

function-like

macro

177

functions

135

allocation

154

arguments

89,

135,

136

conversions

130

block

135

body

135

C++

enhancements

135

calling

147

calls

88

as

lvalue

83

class

templates

304

functions

(continued)
conversion

function

291

deallocation

154

declaration

135,

136

C++

138

examples

139

exception

specification

137

multiple

138

parameter

names

139

default

arguments

150

evaluation

152

restrictions

151

definition

135,

136,

140

constructor

initializer

list

142

declarator

142

examples

145

exception

specification

142

return

type

142

scope

142

storage

class

specifier

142

try

block

142

type

specifiers

142

exception

handling

341

exception

specification

338

friends

238

function

call

operator

135

function

templates

305

function-to-pointer

conversions

129

inline

156,

225

library

functions

135

main

146

name

136,

142

overloading

199

parameters

89,

136,

147

pointers

to

155

polymorphic

246

prototype

135,

137

return

statements

171

return

type

135,

142,

153,

154

return

value

135,

153

signature

135

specifiers

75,

156

template

function
template

argument

deduction

306

type

name

37

virtual

226,

262,

266

fundamental

type

39

G
global

variable

3,

7

uninitialized

31

goto

statement

172

restrictions

172

greater

than

operator

(>)

112

greater

than

or

equal

to

operator

(>=)

112

H
handlers

329

hexadecimal

integer

literals

21

hidden

names

214,

216

Index

353

I
identifiers

17,

84

case

sensitivity

18

id-expression

64,

85

labels

157

linkage

7

name

space

4

reserved

18,

19

special

characters

13,

18

if
preprocessor

directive

186

statement

160

ifdef

preprocessor

directive

187

ifndef

preprocessor

directive

187

implementation

dependency
allocation

of

floating-point

types

40

allocation

of

integral

types

42

implicit

conversion

125

boolean

127

lvalue

83

pointer

to

derived

class

249,

252

pointers

to

base

class

250

types

125

implicit

instantiation
templates

313

include

preprocessor

directive

183

inclusive

OR

operator,

bitwise

(|)

116

incomplete

type

61,

70

as

structure

member

45

class

declaration

217

increment

operator

(++)

99

indentation

of

code

176

indirect

base

class

246,

257

indirection

operator

(*)

67,

101

information

hiding

1,

3,

223,

250

inheritance
multiple

246,

256

overview

245

initialization
aggregate

types

46

auto

object

30

base

classes

276

class

members

276

extern

object

31

references

129

register

object

33

static

data

members

235

static

object

34

union

member

50

initializer

lists

142

initializers

64

aggregate

types

46

enumerations

56

initializer

list

64,

276

unions

50

inline
function

specifier

75

functions

156,

225

integer
constant

expressions

54,

85

conversion

127

conversions

127

data

types

42

implicit

int

142

literals

20

promotion

125

K
K&R

C

vii

keywords

18

exception

handling

327

language

extension

19

template

295,

323,

324

underscore

characters

19

L
label

implicit

declaration

3

in

switch

statement

162

statement

157

language

extension

19

iSeries

60

left-shift

operator

(<<)

112

less

than

operator

(<)

112

less

than

or

equal

to

operator

(<=)

112

LINE

macro

184

line

preprocessor

directive

189

linkage

1,

6

auto

storage

class

specifier

31

const

cv-qualifier

59

extern

storage

class

specifier

9,

32

external

7,

89

in

function

definition

142

inline

member

functions

225

internal

7,

34

language

8

multiple

function

declarations

138

none

8

register

storage

class

specifier

33

specifications

8

static

storage

class

specifier

35

with

function

pointers

155

linking

to

non-C++

programs

8

literals

19

boolean

19

character

23

floating-point

21

integer

20

data

types

20

decimal

20

hexadecimal

21

octal

21

string

24

local
classes

220

type

names

221

logical

operators
!

(logical

negation)

100

||

(logical

OR)

117

&&

(logical

AND)

116

long

double

type

specifier

40

long

long

type

specifier

42

long

type

specifier

42

lvalues

57,

83,

84

casting

108

conversions

83,

126,

210

M
macro

definition

176

function-like

177

macro

(continued)
invocation

177

object-like

177

variable

argument

177

main

function

146

arguments

146

example

146

member

functions
const

and

volatile

226

definition

225

friend

224

special

226

static

235

this

pointer

229,

267

member

lists

214,

223

members
access

236

access

control

255

class

member

access

operators

91

data

224

pointers

to

118,

228

protected

250

scope

226

static

219,

232

virtual

functions

226

modifiable

lvalue

83,

120

modulo

operator

(%)

111

multibyte

character

15

multicharacter

literal

23

multidimensional

arrays

71

multiple
access

258

inheritance

246,

256

multiplication

operator

(*)

110

mutable

storage

class

specifier

32

N
name

binding

322

name

hiding

5,

87

accessible

base

class

261

ambiguities

259

name

space
class

names

216

context

5

of

identifiers

4

names
conflicts

4

hidden

87,

214,

216

local

type

221

mangling

9

resolution

3,

252,

260

namespaces

191

alias

191,

192

declaring

191

defining

191

explicit

access

197

extending

192

friends

195

member

definitions

195

overloading

193

unnamed

193

user-defined

2

using

declaration

196

using

directive

196

narrow

character

literal

23

354

ILE

C/C++

Language

Reference

nested

classes
friend

scope

241

scope

218

new

operator
default

arguments

151

description

103

initializer

expression

106

placement

syntax

104,

283,

284

set_new_handler

function

106

not

equal

to

operator

(!=)

114

null
character

\0

24

pointer

67

pointer

constants

129

preprocessor

directive

190

statement

173

number

sign

(#)
preprocessor

directive

character

176

preprocessor

operator

180

O
object-like

macro

177

objects

83

class
declarations

214

description

29

lifetime

1

octal

integer

literals

21

one’s

complement

operator

(~)

100

operator

functions

201

operators

11

-

(subtraction)

111

--

(decrement)

99

->

(arrow)

91

->*

(pointer

to

member)

118

,

(comma)

122

::

(scope

resolution)

87

!

(logical

negation)

100

!=

(not

equal

to)

114

?

:

(conditional)

118

/

(division)

111

.

(dot)

91

.*

(pointer

to

member)

118

()

(function

call)

88,

135

*

(indirection)

101

*

(multiplication)

110

−

(unary

minus)

100

[]

(array

subscripting)

90

%

(remainder)

111

>

(greater

than)

112

>>

(right-

shift)

112

>=

(greater

than

or

equal

to)

112

<

(less

than)

112

<<

(left-

shift)

112

<=

(less

than

or

equal

to)

112

|

(bitwise

inclusive

OR)

116

||

(logical

OR)

117

&

(address)

101

&

(bitwise

AND)

115

&&

(logical

AND)

116

+

(addition)

111

++

(increment)

99

=

(simple

assignment)

120

==

(equal

to)

114

^

(bitwise

exclusive

OR)

115

alignof

19

operators

(continued)
alternative

representations

12,

19

assignment

120

copy

assignment

293

associativity

79

binary

109

bitwise

negation

operator

(~)

100

compound

assignment

121

const_cast

95

defined

186

delete

107,

285

dynamic_cast

96

equality

114

expressions

88

new

103,

283

operators

88

overloading

201,

224

binary

205

unary

202

pointer

to

member

118,

229

precedence

79

examples

82

type

names

37

preprocessor
#

180

##

181

reinterpret_cast

94

relational

112

scope

resolution

248,

259,

265

sizeof

102

static_cast

93

typeid

92

unary

98

unary

plus

operator

(+)

100

OR

operator,

logical

(||)

117

overload

resolution

209,

262

resolving

addresses

of

overloaded

functions

211

overloading
delete

operator

285

description

199

function

templates

311

functions

199,

253

restrictions

200

new

operator

283

operators

201,

213

assignment

205

binary

205

class

member

access

209

decrement

203

function

call

207

increment

203

subscripting

208

unary

202

overriding

virtual

functions

266

covariant

virtual

function

264

P
packed

structure

member

48

packed

decimal
data

type

19,

41

literal

23

parenthesized

expressions

37,

86

pass

by

reference

75,

149

pass

by

value

148

placement

syntax

104,

284

pointer

to

member
conversions

130

declarations

228

operators

118,

229

pointers
compatible

66

const

59

conversions

128,

261

cv-qualified

66

description

65

generic

128

iSeries

128,

130

null

67

pointer

arithmetic

68

this

229

to

functions

155

to

members

118,

228

type-qualified

66

void*

128

polymorphism
polymorphic

classes

213,

263

polymorphic

functions

246

postfix
++

and

--

99

expression

88

operator

88

pound

sign

(#)
preprocessor

directive

character

176

preprocessor

operator

180

pragmas
preprocessor

directive

190

precedence

of

operators

79

predefined

macros
__IBMC__

185

__IBMCPP__

185

CPLUSPLUS

185

DATE

184

FILE

184

LINE

184

STDC

184

STDC_VERSION

184

TIME

184

prefix
++

and

--

99

hexadecimal

integer

literals

21

octal

integer

literals

21

preprocessor

directives

175

conditional

compilation

185

preprocessing

overview

175

special

character

176

preprocessor

operator
#

180

##

181

primary

expressions

84

promotions
function

argument

values

147

integral

and

floating-point

125

prototype

137

pseudo-destructors

91

punctuators

11

alternative

representations

12,

19

pure

specifier

223,

226,

265,

268

pure

virtual

functions

268

Index

355

Q
qualification

conversions

130

qualified

name

87,

219

qualifiers
const

57,

142

iSeries

19,

60,

61

volatile

57,

60,

142

R
references

as

return

types

154

binding

76

conversions

129

declarator

101

description

75

initialization

76

register

storage

class

specifier

33

reinterpret_cast

94

remainder

operator

(%)

111

return

statement

153,

171

value

172

return

type
reference

as

154

size_t

102

right-shift

operator

(>>)

112

RTTI

support

92

rvalues

83

S
scalar

types

37,

65

scope

1

class

4

class

names

216

description

1

enclosing

and

nested

3

friends

240

function

3

function

prototype

3

global

3

global

namespace

4

identifiers

4

local

(block)

3

local

classes

220

macro

names

180

member

226

nested

classes

218

scope

resolution

operator
ambiguous

base

classes

259

description

87

inheritance

248

virtual

functions

265

sequence

point

79,

122

set_new_handler

function

106

set_terminate

function

343

set_unexpected

function

341,

343

shift

operators

<<

and

>>

112

short

type

specifier

42

side

effect

60,

79

signed

type

specifiers
char

40

int

42

long

42

long

long

42

simple

type

specifiers

39

simple

type

specifiers

(continued)
char

40

wchar_t

40

size_t

102

sizeof

operator

102

space

character

176

special

characters

13

special

member

functions

226

specifiers
access

control

251

inline

156

pure

226

storage

class

29

splice

preprocessor

directive

##

181

stack

unwinding

337

Standard

C

vii

Standard

C++

vii

standard

type

conversions

125,

126

statements

157

block

159

break

169

continue

169

do

166

expressions

158

for

167

goto

172

if

160

labels

157

null

173

resolving

ambiguities

158

return

153,

171

selection

160,

162

switch

162

while

165

static
binding

262

data

members

233

initialization

of

data

members

235

member

functions

235

members

219,

232

storage

class

specifier

34

linkage

35

static

storage

class

specifier

7

static_cast

93

STDC

macro

184

STDC_VERSION

macro

184

storage

class

specifiers

29,

142

auto

30

extern

31

mutable

32

register

33

static

34

storage

duration

1

auto

storage

class

specifier

30

extern

storage

class

specifier

32

register

storage

class

specifier

33

static

34

string
literal

24

terminator

24

stringize

preprocessor

directive

#

180

struct

type

specifier

45

structures

44,

215

alignment

28

as

base

class

251

as

class

type

213,

214

compatibility

38,

45

structures

(continued)
identifier

(tag)

45

initialization

46

members

45

alignment

46

layout

in

memory

46

packed

48

padding

46

name

spaces

within

5

packed

46

subscript

declarator
in

arrays

70

subscripting

operator

69,

90

in

type

name

37

subtraction

operator

(−)

111

suffix
floating-point

literals

21

integer

literal

constants

20

switch

statement

162

T
tags

enumeration

54

structure

45

union

51

template

arguments

298

deduction

306

deduction,

non-type

310

deduction,

type

309

non-type

299

template

300

type

298

template

keyword

324

templates
arguments

non-type

299

type

298

class
declaration

and

definition

303

distinction

from

template

class

301

explicit

specialization

318

member

functions

304

static

data

members

303

declaration

295

dependent

names

322

explicit

specializations

316,

317

class

members

317

declaration

316

definition

and

declaration

317

function

templates

318

function
argument

deduction

310

overloading

311

partial

ordering

312

function

templates

305

type

template

argument

deduction

309

instantiation

295,

313,

315

explicit

314

implicit

313

name

binding

322

parameters

296

default

arguments

297

non-type

296

template

297

type

296

356

ILE

C/C++

Language

Reference

templates

(continued)
partial

specialization

320

matching

322

parameter

and

argument

lists

321

point

of

definition

323

point

of

instantiation

323

relationship

between

classes

and

their

friends

304

scope

317

specialization

295,

313,

315

temporary

objects

287,

333

terminate

function

327,

329,

334,

337,

341,

342

set_terminate

343

this

pointer

59,

229,

267

throw

expressions

123,

327,

335

argument

matching

333

rethrowing

exceptions

335

within

nested

try

blocks

329

TIME

macro

184

tokens

11,

175

alternative

representations

for

operators

and

punctuators

12

translation

unit

1

trigraph

sequences

14

truncation
integer

division

111

try

blocks

327

in

function

definition

142

nested

329

try

keyword

327

type

name

37

local

221

qualified

87,

219

typename

keyword

323

type

qualifiers
const

57,

59

const

and

volatile

64

in

structure

member

definition

46

volatile

57

type

specifier

36

(long)

double

40

char

40

class

types

213

elaborated

216

enumeration

54

float

40

in

function

definition

142

int

42

long

42

long

long

42

short

42

simple

39

unsigned

42

wchar_t

40,

42

typedef

specifier

35

and

type

compatibility

38

class

declaration

221

local

type

names

221

pointers

to

members

229

qualified

type

name

219

typeid

operator

92

typename

keyword

323

types
aggregates

37

class

213

compatible

38

types

(continued)
composite

38

compound

43

conversions

108

enumerated

54

packed

decimal

41

scalar

37

U
unary

expressions

98

unary

operators

98

minus

(−)

100

plus

(+)

100

undef

preprocessor

directive

180

underscore

character

18,

19

unexpected

function

327,

341,

342

set_unexpected

343

Unicode

14

unions

50

as

class

type

213,

214

compatibility

38,

51

initialization

50

specifier

51

universal

character

name

14,

17,

23

unnamed

namespaces

193

unsigned

type

specifiers
char

40

int

42

long

42

long

long

42

short

42

unsubscripted

arrays
description

70,

71

user-defined

conversions

288

using

declarations

196,

252,

260

changing

member

access

255

overloading

member

functions

253

using

directive

196

V
variable

length

array
sizeof

102

variably

modified

types
size

evaluation

147

virtual
base

classes

247,

257,

261

function

specifier

75

virtual

functions

226,

262

access

267

ambiguous

calls

266

overriding

266

pure

specifier

268

visibility

1,

5

block

3

class

members

238

void

43

argument

type

144

in

function

definition

142,

144

pointer

128

volatile
member

functions

226

qualifier

57,

60

W
wchar_t

type

specifier

23,

40,

42

while

statement

165

white

space

11,

15,

175,

176,

181

wide

characters
literals

23

Index

357

358

ILE

C/C++

Language

Reference

����

Program

Number:

5722–WDS

SC09-7852-00

	Contents
	About This Reference
	Highlighting Conventions
	How to Read the Syntax Diagrams

	Chapter 1. Scope and Linkage
	Scope
	Local Scope
	Function Scope
	Function Prototype Scope
	Global Scope
	Class Scope
	Name Spaces of Identifiers
	Name Hiding

	Program Linkage
	Internal Linkage
	External Linkage
	No Linkage

	Linkage Specifications — Linking to Non-C++ Programs
	Name Mangling

	Chapter 2. Lexical Elements
	Tokens
	Punctuators
	Alternative Tokens

	Source Program Character Set
	Escape Sequences
	The Unicode Standard
	Trigraph Sequences
	Multibyte Characters

	Comments
	Identifiers
	Reserved Identifiers
	Case Sensitivity and Special Characters in Identifiers
	Keywords
	Keywords for language extensions
	Alternative Representations of Operators and Punctuators

	Literals
	Boolean Literals
	Integer Literals
	Decimal Integer Literals
	Hexadecimal Integer Literals
	Octal Integer Literals

	Floating-Point Literals
	Packed Decimal Literals

	Character Literals
	String Literals

	Chapter 3. Declarations
	Declaration Overview
	The __align Specifier

	Objects
	Storage Class Specifiers
	auto Storage Class Specifier
	extern Storage Class Specifier
	mutable Storage Class Specifier
	register Storage Class Specifier
	static Storage Class Specifier
	typedef

	Type Specifiers
	Type Names
	Compatible Types
	Simple Type Specifiers
	Boolean Variables
	char and wchar_t Type Specifiers
	The wchar_t Type Specifier

	Floating-Point Variables
	Packed Decimal Variables
	Integer Variables
	void Type

	Compound Types
	Structures
	Declaring and Defining a Structure
	Defining a Structure Variable
	Initializing Structures
	Declaring Structure Types and Variables in the Same Statement
	Declaring and Using Bit Fields in Structures

	Unions
	Declaring a Union
	Defining a Union Variable
	Anonymous Unions

	Enumerations
	Declaring an Enumeration Data Type
	Enumeration Constants
	Defining Enumeration Variables
	Defining an Enumeration Type and Enumeration Objects

	Type Qualifiers
	The const Type Qualifier
	The volatile Type Qualifier
	ILE Type Qualifiers
	The __ptr128 Qualifier
	The __ptr64 Qualifier

	The asm Declaration
	Incomplete Types

	Chapter 4. Declarators
	Initializers
	Pointers
	Declaring Pointers
	Assigning Pointers
	Initializing Pointers
	Using Pointers
	Pointer Arithmetic

	Arrays
	Declaring Arrays
	Initializing Arrays

	Function Specifiers
	References
	Initializing References

	Chapter 5. Expressions and Operators
	Operator Precedence and Associativity
	Lvalues and Rvalues
	Primary Expressions
	Identifier Expressions
	Integer Constant Expressions
	Parenthesized Expressions ()
	C++ Scope Resolution Operator ::

	Postfix Expressions
	Function Call Operator ()
	Array Subscripting Operator []
	Dot Operator .
	Arrow Operator −>
	The typeid Operator
	static_cast Operator
	reinterpret_cast Operator
	const_cast Operator
	dynamic_cast Operator

	Unary Expressions
	Increment ++
	Decrement −−
	Unary Plus +
	Unary Minus −
	Logical Negation !
	Bitwise Negation ~
	Address &
	Indirection *
	sizeof Operator
	C++ new Operator
	Initializing Objects Created with the new Operator
	set_new_handler() — Set Behavior for new Failure

	C++ delete Operator

	Cast Expressions
	Binary Expressions
	Multiplication *
	Division /
	Remainder %
	Addition +
	Subtraction −
	Bitwise Left and Right Shift << >>
	Relational < > <= >=
	Equality == !=
	Bitwise AND &
	Bitwise Exclusive OR ^
	Bitwise Inclusive OR |
	Logical AND &&
	Logical OR ||
	C++ Pointer to Member Operators .* −>*

	Conditional Expressions
	Type of Conditional C Expressions
	Type of Conditional C++ Expressions
	Examples of Conditional Expressions

	Assignment Expressions
	Simple Assignment =
	Compound Assignment

	Comma Expressions
	C++ throw Expressions

	Chapter 6. Implicit Type Conversions
	Integral and Floating-Point Promotions
	Standard Type Conversions
	Lvalue-to-Rvalue Conversions
	Boolean Conversions
	Integral Conversions
	Floating-Point Conversions
	Pointer Conversions
	Reference Conversions
	Pointer-to-Member Conversions
	Qualification Conversions
	Function Argument Conversions
	Other Conversions

	Arithmetic Conversions
	The explicit Keyword

	Chapter 7. Functions
	C++ Enhancements to C Functions
	Function Declarations
	C++ Function Declarations
	Multiple Function Declarations
	Parameter Names in Function Declarations

	Examples of Function Declarations

	Function Definitions
	Ellipsis and void
	Examples of Function Definitions

	The main() Function
	Arguments to main
	Example of Arguments to main

	Calling Functions and Passing Arguments
	Passing Arguments by Value
	Passing Arguments by Reference

	Default Arguments in C++ Functions
	Restrictions on Default Arguments
	Evaluating Default Arguments

	Function Return Values
	Using References as Return Types

	Allocation and Deallocation Functions
	Pointers to Functions
	Inline Functions

	Chapter 8. Statements
	Labels
	Expression Statements
	Resolving Ambiguous Statements in C++

	Block Statement
	if Statement
	switch Statement
	while Statement
	do Statement
	for Statement
	break Statement
	continue Statement
	return Statement
	Value of a return Expression and Function Value

	goto Statement
	Null Statement

	Chapter 9. Preprocessor Directives
	Preprocessor Overview
	Preprocessor Directive Format
	Macro Definition and Expansion (#define)
	Object-Like Macros
	Function-Like Macros

	Scope of Macro Names (#undef)
	# Operator
	Macro Concatenation with the ## Operator
	Preprocessor Error Directive (#error)
	File Inclusion (#include)
	ISO Standard Predefined Macro Names
	Conditional Compilation Directives
	#if, #elif
	#ifdef
	#ifndef
	#else
	#endif

	Line Control (#line)
	Null Directive (#)
	Pragma Directives (#pragma)

	Chapter 10. Namespaces
	Defining Namespaces
	Declaring Namespaces
	Creating a Namespace Alias
	Creating an Alias for a Nested Namespace
	Extending Namespaces
	Namespaces and Overloading
	Unnamed Namespaces
	Namespace Member Definitions
	Namespaces and Friends
	Using Directive
	The using Declaration and Namespaces
	Explicit Access

	Chapter 11. Overloading
	Overloading Functions
	Restrictions on Overloaded Functions

	Overloading Operators
	Overloading Unary Operators
	Overloading Increment and Decrement
	Overloading Binary Operators
	Overloading Assignments
	Overloading Function Calls
	Overloading Subscripting
	Overloading Class Member Access

	Overload Resolution
	Implicit Conversion Sequences
	Resolving Addresses of Overloaded Functions

	Chapter 12. Classes
	Declaring Class Types
	Using Class Objects

	Classes and Structures
	Scope of Class Names
	Incomplete Class Declarations
	Nested Classes
	Local Classes
	Local Type Names

	Chapter 13. Class Members and Friends
	Class Member Lists
	Data Members
	Member Functions
	const and volatile Member Functions
	Virtual Member Functions
	Special Member Functions

	Member Scope
	Pointers to Members
	The this Pointer
	Static Members
	Using the Class Access Operators with Static Members
	Static Data Members
	Static Member Functions

	Member Access
	Friends
	Friend Scope
	Friend Access

	Chapter 14. Inheritance
	Derivation
	Inherited Member Access
	Protected Members
	Access Control of Base Class Members

	The using Declaration and Class Members
	Overloading Member Functions from Base and Derived Classes
	Changing the Access of a Class Member

	Multiple Inheritance
	Virtual Base Classes
	Multiple Access
	Ambiguous Base Classes

	Virtual Functions
	Ambiguous Virtual Function Calls
	Virtual Function Access

	Abstract Classes

	Chapter 15. Special Member Functions
	Constructors and Destructors Overview
	Constructors
	Default Constructors
	Explicit Initialization with Constructors
	Initializing Base Classes and Members
	Construction Order of Derived Class Objects

	Destructors
	Free Store
	Temporary Objects
	User-Defined Conversions
	Conversion by Constructor
	Conversion Functions

	Copy Constructors
	Copy Assignment Operators

	Chapter 16. Templates
	Template Parameters
	Type Template Parameters
	Non-Type Template Parameters
	Template Template Parameters
	Default Arguments for Template Parameters

	Template Arguments
	Template Type Arguments
	Template Non-Type Arguments
	Template Template Arguments

	Class Templates
	Class Template Declarations and Definitions
	Static Data Members and Templates
	Member Functions of Class Templates
	Friends and Templates

	Function Templates
	Template Argument Deduction
	Deducing Type Template Arguments
	Deducing Non-Type Template Arguments

	Overloading Function Templates
	Partial Ordering of Function Templates

	Template Instantiation
	Implicit Instantiation
	Explicit Instantiation

	Template Specialization
	Explicit Specialization
	Definition and Declaration of Explicit Specializations
	Explicit Specialization and Scope
	Class Members of Explicit Specializations
	Explicit Specialization of Function Templates
	Explicit Specialization of Members of Class Templates

	Partial Specialization
	Template Parameter and Argument Lists of Partial Specializations
	Matching of Class Template Partial Specializations

	Name Binding and Dependent Names
	The typename Keyword
	The Keyword template as Qualifier

	Chapter 17. Exception Handling
	The try Keyword
	Nested Try Blocks

	catch Blocks
	Function try block Handlers
	Arguments of catch Blocks
	Matching between Exceptions Thrown and Caught
	Order of Catching

	The throw Expression
	Rethrowing an Exception

	Stack Unwinding
	Exception Specifications
	Special Exception Handling Functions
	unexpected()
	terminate()
	set_unexpected() and set_terminate()
	Example Using the Exception Handling Functions

	Notices
	Programming Interface Information
	Trademarks and Service Marks
	Industry Standards

	Index

