
C/C++ Legacy Class Libraries Reference

SC09-7652-00

���

C/C++ Legacy Class Libraries Reference

SC09-7652-00

���

Note!
Before using this information and the product it supports, read the information in “Notices” on page 211.

First Edition (August 2003)

IBM® welcomes your comments. You can send them by either of the following methods:
v Internet: compinfo@ca.ibm.com

Be sure to include your e-mail address if you want a reply.
v By mail to the following address:

IBM Canada Ltd. Laboratory
Information Development
B3/KB7/8200/MKM
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

Include the title and order number of this book, and the page number or topic related to your comment.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2003. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface v

Chapter 1. USL I/O Streaming 1
The USL I/O Stream Class Hierarchy 1
USL I/O Stream Header Files. 3
The USL I/O Stream Classes and stdio.h 4
Use Predefined Streams. 4
Use Anonymous Streams 5
Stream Buffers 7
Format State Flags 9

Format Stream Output 9
Define Your Own Format State Flags 14

Manipulators 16
Create Manipulators 17
Define an APP Parameterized Manipulator . . . 18
Define a MANIP Parameterized Manipulator . . 19
Define Nonassociative Parameterized
Manipulators 19

Thread Safety and USL I/O Streaming 20
Basic USL I/O Stream Tasks 21

Receive Input from Standard Input 21
Display Output on Standard Output or Standard
Error 23
Flush Output Streams with endl and flush . . . 25
Parse Multiple Inputs 26
Open a File for Input and Read from the File . . 27
Open a File for Output and Write to the File . . 29
Combine Input and Output of Different Types. . 30

Advanced USL I/O Stream Tasks 30
Associate a File with a Standard Input or Output
Stream 30
Move through a file with filebuf Functions . . . 31
Define an Input Operator for a Class Type . . . 33
Define an Output Operator for a Class Type . . 35
Correct Input Stream Errors 37
Manipulate Strings with the strstream Classes . . 39

Chapter 2. USL Complex Mathematics
Library 41
Review of Complex Numbers 41
Header Files and Constants for the complex and
c_exception Classes 41

Construct complex Objects 42
Mathematical Operators for complex 42

Use Mathematical Operators for complex . . . 43
Friend Functions for complex 44

Use Friend Functions with complex 44
Input and Output Operators for complex 47

Use complex Input and Output Operators . . . 47
Error Functions 48

Handle complex Mathematics Errors 49
Example: Calculate Roots 50
Example: Use Equality and Inequality Operators . . 52

Chapter 3. Reference 55

_CCSID_T 55
_CCSID_T - Hierarchy List 55
_CCSID_T - Member Functions and Data by
Group 55
_CCSID_T - Inherited Member Functions and
Data 55

complex 55
complex - Hierarchy List 56
complex - Member Functions and Data by Group 56
complex - Associated Globals 58
complex - Inherited Member Functions and Data 66

filebuf 66
filebuf - Hierarchy List 67
filebuf - Member Functions and Data by Group 67
filebuf - Inherited Member Functions and Data 73

fstream 74
fstream - Hierarchy List 74
fstream - Member Functions and Data by Group 74
fstream - Inherited Member Functions and Data 78

fstreambase 80
fstreambase - Hierarchy List 80
fstreambase - Member Functions and Data by
Group 80
fstreambase - Inherited Member Functions and
Data 86

ifstream 87
ifstream - Hierarchy List 87
ifstream - Member Functions and Data by Group 87
ifstream - Inherited Member Functions and Data 91

ios 93
ios - Hierarchy List 93
ios - Member Functions and Data by Group . . 93
ios - Enumerations 103
ios - Inherited Member Functions and Data . . 107

iostream 108
iostream - Hierarchy List 108
iostream - Member Functions and Data by
Group 108
iostream - Inherited Member Functions and
Data 109

iostream_withassign 110
iostream_withassign - Hierarchy List 110
iostream_withassign - Member Functions and
Data by Group 110
iostream_withassign - Inherited Member
Functions and Data 111

istream 113
istream - Hierarchy List 114
istream - Member Functions and Data by Group 114
istream - Inherited Member Functions and Data 138

istream_withassign 139
istream_withassign - Hierarchy List 139
istream_withassign - Member Functions and
Data by Group 139
istream_withassign - Inherited Member
Functions and Data 140

© Copyright IBM Corp. 1996, 2003 iii

istrstream 141
istrstream - Hierarchy List 142
istrstream - Member Functions and Data by
Group 142
istrstream - Inherited Member Functions and
Data 146

ofstream 147
ofstream - Hierarchy List 147
ofstream - Member Functions and Data by
Group 147
ofstream - Inherited Member Functions and
Data 152

ostream 153
ostream - Hierarchy List 154
ostream - Member Functions and Data by
Group 154
ostream - Inherited Member Functions and Data 166

ostream_withassign 167
ostream_withassign - Hierarchy List 167
ostream_withassign - Member Functions and
Data by Group 168
ostream_withassign - Inherited Member
Functions and Data 169

ostrstream 170
ostrstream - Hierarchy List 170
ostrstream - Member Functions and Data by
Group 170
ostrstream - Inherited Member Functions and
Data 173

stdiobuf 175
stdiobuf - Hierarchy List 175
stdiobuf - Member Functions and Data by
Group 175
stdiobuf - Inherited Member Functions and Data 176

stdiostream 177

stdiostream - Hierarchy List 177
stdiostream - Member Functions and Data by
Group 177
stdiostream - Inherited Member Functions and
Data 178

streambuf 179
streambuf - Hierarchy List 180
streambuf - Member Functions and Data by
Group 180
streambuf - Inherited Member Functions and
Data 194

strstream 195
strstream - Hierarchy List 195
strstream - Member Functions and Data by
Group 195
strstream - Inherited Member Functions and
Data 198

strstreambase 199
strstreambase - Hierarchy List 199
strstreambase - Member Functions and Data by
Group 199
strstreambase - Inherited Member Functions and
Data 200

strstreambuf 201
strstreambuf - Hierarchy List 201
strstreambuf - Member Functions and Data by
Group 202
strstreambuf - Inherited Member Functions and
Data 208

Notices 211
Programming Interface Information 212
Trademarks and Service Marks 213

iv C/C++ Legacy Classes

Preface

Previous releases of the IBM C/C++ compiler on z/OS, AIX, and OS/400 included
support for the IBM Open Class (IOC) Library. This support has been removed
from the compiler or will be removed from the compiler.

The UNIX System Laboratories (USL) I/O Stream Library and Complex
Mathematics Library are still supported on z/OS, AIX, and OS/400. Although
support for these classes is not being removed at this time, it is recommended that
you migrate to the Standard C++ iostream and complex classes. This is especially
important if you are migrating other IOC streaming classes to Standard C++
Library streaming classes, because combining USL and Standard C++ Library
streams in one application is not recommended.

This manual provides information about the USL I/O Stream Library and the
Complex Mathematics Library. For information about how to migrate away from
these classes, see the IBM Open Class Library Transition Guide.

The following symbols indicate information that is specific to AIX, OS/400, or

z/OS: AIX 400 z/OS

© Copyright IBM Corp. 1996, 2003 v

vi C/C++ Legacy Classes

Chapter 1. USL I/O Streaming

This section refers to the USL I/O Stream Library.

We recommend that you use the standard C++ stream classes instead of the USL
I/O Stream Library to develop thread-safe applications. For more information
about the Standard C++ I/O Stream Library, see the Standard C++ Library Reference.

The USL I/O Stream Library provides the standard input and output capabilities
for C++. In C++, input and output are described in terms of streams. The
processing of these streams is done at two levels. The first level treats the data as
sequences of characters; the second level treats it as a series of values of a
particular type.

There are two primary base classes for the USL I/O Stream Library:
1. The streambuf class and the classes derived from it (strstreambuf, stdiobuf, and

filebuf) implement the stream buffers. Stream buffers act as temporary
repositories for characters that are coming from the ultimate producers of input
or are being sent to the ultimate consumers of output.

2. The ios class maintains formatting and error-state information for these streams.
The classes derived from ios implement the formatting of these streams. This
formatting involves converting sequences of characters from the stream buffer
into values of a particular type and converting values of a particular type into
their external display format.

The USL I/O Stream Library predefines streams for standard input, standard
output, and standard error. If you want to open your own streams for input or
output, you must create an object of an appropriate I/O Stream class. The iostream
constructor takes as an argument a pointer to a streambuf object. This object is
associated with the device, file, or array of bytes in memory that is going to be the
ultimate producer of input or the ultimate consumer of output.

Input and Output for User-Defined Classes

You can overload the input and output operators for the classes that you create
yourself. Once you have overloaded the input and output operators for a class,
you can perform input and output operations on objects of that class in the same
way that you would perform input and output on char, int, double, and the other
built-in types.

The USL I/O Stream Class Hierarchy
The USL I/O Stream Library has two base classes, streambuf and ios:

© Copyright IBM Corp. 1996, 2003 1

The streambuf class implements stream buffers. streambuf is the base class for the
following classes:
v filebuf
v stdiobuf
v strstreambuf

The ios class maintains formatting and error state information for streams. Streams
are implemented as objects of the following classes that are derived from ios:
v istream
v stdiostream
v ostream

The classes that are derived from ios are themselves base classes.

The istream class is the input stream class. It implements stream buffer input, or
input operations. The following classes are derived from istream:
v ifstream
v istream_withassign
v istrstream
v iostream

The ostream class is the output stream class. It implements stream buffer output,
or output operations. The following classes are derived from ostream:
v ofstream
v ostream_withassign
v ostrstream
v iostream

2 C/C++ Legacy Classes

The iostream class combines istream and ostream to implement input and output
to stream buffers. The following classes are derived from iostream:
v fstream
v iostream_withassign
v strstream

The USL I/O Stream Library also defines other classes, including fstreambase and
strstreambase. These classes are meant for the internal use of the USL I/O Stream
Library. Do not use them directly.

USL I/O Stream Header Files
To use a USL I/O Stream class, you must include the appropriate header files for
that class. The following lists USL I/O Stream header files and the classes that they
cover:

The header file iostream.h contains declarations for the basic classes:
v strstreambuf
v ios
v istream
v istream_withassign
v ostream
v ostream_withassign
v iostream
v iostream_withassign

The header file fstream.h contains declarations for the classes that deal with files:
v filebuf
v ifstream
v ofstream
v fstream

The header file stdiostream.h contains declarations for stdiobuf and stdiostream,
the classes that specialize streambuf and ios, respectively, to use the FILE
structures defined in the C header file stdio.h.

400 The 8.3 file naming convention compliant name of this file is stdiostr.h.
Under IFS, you can use either the short name or the long name (stdiostream.h).

The header file strstream.h contains declarations for the classes that deal with
character strings.

400 The 8.3 file naming convention compliant name of this file is strstrea.h.
Under IFS, you can use either the short name or the long name (strstream.h).

The first “str” in each of these names stands for “string”:
v istrstream
v ostrstream
v strstream
v strstreambuf

Chapter 1. USL I/O Streaming 3

The header file iomanip.h contains declarations for the parameterized
manipulators. Manipulators are values that you can insert into streams or extract
from streams to affect or query the behavior of the streams.

The header file stream.h is used for compatibility with earlier versions of the USL
I/O Stream Library. It includes iostream.h, fstream.h, stdiostream.h, and iomanip.h,
along with some definitions needed for compatibility with the AT&T C++
Language System Release 1.2. Only use this header file with existing code; do not
use it with new C++ code.

If you use the obsolete function form() declared in stream.h, there is a limit to the
size of the format specifier. If you call form() with a format specifier string longer
than this limit, a runtime message will be generated and the program will
terminate.

The USL I/O Stream Classes and stdio.h
In both C++ and C, input and output are described in terms of sequences of
characters, or streams. The USL I/O Stream Library provides the same facilities in
C++ that stdio.h provides in C, but it also has the following advantages over
stdio.h:
v The input or extraction (>>) operator and the output or insertion (<<) operator

are typesafe.
v You can define input and output for your own types or classes by overloading

the input and output operators. This gives you a uniform way of performing
input and output for different types of data.

v The input and output operators are more efficient than scanf() and printf(), the
analogous C functions defined in stdio.h. Both scanf() and printf() take format
strings as arguments, and these format strings have to be parsed at run time.
This parsing can be time-consuming. The bindings for the USL I/O Stream
output and input operators are performed at compile time, with no need for
format strings. This can improve the readability of input and output in your
programs, and potentially the performance as well.

Use Predefined Streams
In addition to giving you the facilities to define your own streams for input and
output, the USL I/O Stream Library also provides the following predefined
streams:
v cin is the standard input stream.

AIX z/OS file descriptor = 0.
v cout is the standard output stream.

AIX z/OS file descriptor = 1.
v cerr is the standard error stream. Output to this stream is unit-buffered.

Characters sent to this stream are flushed after each output operation.

AIX z/OS file descriptor = 2.
v clog is also an error stream, but unlike the output to cerr, the output to clog is

stream-buffered. Characters sent to this stream are flushed only when the stream
becomes full or when it is explicitly flushed.

AIX z/OS file descriptor = 2.

4 C/C++ Legacy Classes

The predefined streams are initialized before the constructors for any static objects
are called. You can use the predefined streams in the constructors for static objects.

The predefined streams cin, cerr, and clog are tied to cout. As a result, if you use
cin, cerr, or clog, cout is flushed. That is, the contents of cout are sent to their
ultimate consumer.

Use Anonymous Streams
An anonymous stream is a stream that is created as a temporary object. Because it is
a temporary object, an anonymous stream requires a const type modifier and is not
a modifiable lvalue. Unlike the ATT C++ Language System Release 2.1, the
compiler does not allow a non-const reference argument to be matched with a
temporary object. User-defined input and output operators usually accept a
non-const reference (such as a reference to an istream or ostream object) as an
argument. Such an argument cannot be initialized by an anonymous stream, and
thus an attempt to use an anonymous stream as an argument to a user-defined
input or output operator will usually result in a compile-time error.

In the following example, three ways of writing a character to and reading it from
a file are shown:
1. Function f() uses anonymous streams with the built-in char type. This

compiles and runs successfully.
2. Function g() uses anonymous streams with a class that has a char as its only

data member, and that has input and output operators defined for it. This
produces a compilation error if you define anon when you compile. Otherwise,
this part of the program is not compiled.

3. Function h()uses named streams to write a class object to and read it from a
file. This compiles and runs successfully:

// Using anonymous streams

#include <fstream.h>

class MyClass {
public:

char a;
};

istream& operator>>(istream& aStream, MyClass mc) {
return aStream >> mc.a;

}

ostream& operator<<(ostream& aStream, MyClass mc) {
return aStream << mc.a;

}

// 1. Use an anonymous stream with a built-in type; this works

void f() {
char a = ’a’;

// write to the file
fstream(“file1.abc”,ios::out) << a << endl;

// read from the file
fstream(“file1.abc”,ios::in) >> a;

// show what was in the file
cout << a << endl;

}

Chapter 1. USL I/O Streaming 5

#ifdef anon

// 2. Use an anonymous stream with a class type
// This produces compilation errors if “anon” is defined:

void g() {
MyClass b;
b.a =’b’;

// write to the file
fstream(“file1.abc”,ios::out) << b << endl;

// read from the file
fstream(“file1.abc”,ios::in) >> b;

// show what was in the file
cout << b << endl;

}

#endif

// 3. Use a named stream with a class type; this works

void h() {
MyClass c;
c.a =’c’;

// define and open the file
fstream File2(“file2.abc”,ios::out);

// write to the file
File2 << c << endl;

//close the file
File2.close();

// reopen for input
File2.open(“file2.abc”,ios::in);

// read from the file
File2 >> c;

// show what was in the file
cout << c << endl;

}

int main(int argc, char *argv[]) {
f();

#ifdef anon
g();

#endif
h();
return 0;

}

If you compile the above example with anon defined, compilation fails with
messages that resemble the following:
Call does not match any argument list for "ostream::operator<<".
Call does not match any argument list for "istream::operator>>".

If you compile without anon defined, the letters ’a’ and ’c’ are written to standard
output.

6 C/C++ Legacy Classes

Stream Buffers
One of the most important concepts in the USL I/O Stream Library is the stream
buffer. The streambuf class implements some of the member functions that define
stream buffers, but other specialized member functions are left to the classes that
are derived from streambuf: strstreambuf, stdiobuf, and filebuf.

The AT&T and UNIX System Laboratories C++ Language System documentation
use the terms reserve area and buffer instead of stream buffer.

What Does a Stream Buffer Do?

A stream buffer acts as a buffer between the ultimate producer (the source of data)
or ultimate consumer (the target of data) and the member functions of the classes
derived from ios that format this raw data. The ultimate producer can be input
from the user, a file, a device, or an array of bytes in memory. The ultimate
consumer can be a file, a device, or an array of bytes in memory.

Why Use a Stream Buffer?

In most operating systems, a system call to read data from the ultimate producer
or write it to the ultimate consumer is an expensive operation. If your applications
can reduce the number of system calls they have to make, performance may
improve. By acting as a buffer between the ultimate producer or ultimate
consumer and the formatting functions, a stream buffer can reduce the number of
system calls that are made.

Consider, for example, an application that is reading data from the ultimate
producer. If there is no buffer, the application has to make a system call for each
character that is read. However, if the application uses a stream buffer, system calls
will only be made when the buffer is empty. Each system call will read enough
characters from the ultimate producer (if they are available) to fill the buffer again.

z/OS The main reason to use stream buffers on z/OS is to ensure optimal
portability.

How is a stream buffer implemented?

A stream buffer is implemented as an array of bytes. For each stream buffer,
pointers are defined that point to elements in this array to define the get area (the
space that is available to accept bytes from the ultimate producer), and the put area
(the space that is available to store bytes that are on their way to the ultimate
consumer).

A stream buffer does not necessarily have separate get and put areas:
v A stream buffer that is used for input, such as one that is attached to an istream

object, has a get area.
v A stream buffer that is used for output, such as the one that is attached to an

ostream object, has a put area.
v A stream buffer that is used for both input and output, such as the one that is

attached to an iostream object, has both a get area and a put area.
v In stream buffers implemented by the filebuf class that are specialized to use

files as an ultimate producer or ultimate consumer, the get and put areas
overlap.

Chapter 1. USL I/O Streaming 7

The following member functions of the streambuf class return pointers to get and
put boundaries of areas in a stream buffer:

Member function Description

base Returns a pointer to the beginning of the stream buffer.

eback Returns a pointer to the beginning of the space available
for putback. Characters that are putback are returned to the
get area of the stream buffer.

gptr Returns the get pointer (a pointer to the beginning of the get
area). The space between gptr and egptr has been filled by
the ultimate producer.

egptr Returns a pointer to the end of the get area.

pbase Returns a pointer to the beginning of the space available
for the put area.

pptr Returns the put pointer (a pointer to the beginning of the
put area). The space between pbase and pptr is filled with
bytes that are waiting to be sent to the ultimate consumer.
The space between pptr and epptr is available to accept
characters from the application program that are on their
way to the ultimate consumer.

epptr Returns a pointer to the end of the put area.

ebuf Returns a pointer to the end of the stream buffer.

In the actual implementation of stream buffers, the pointers returned by these
functions point at char values. In the abstract concept of stream buffers, on the
other hand, these pointers point to the boundary between char values. To establish
a correspondence between the abstract concept and the actual implementation, you
should think of the pointers as pointing to the boundary just before the character
that they actually point at.

The following diagram is the structure of a stream buffer:

8 C/C++ Legacy Classes

Format State Flags
The ios class defines an enumeration of format state flags that you can use to affect
the formatting of data in USL I/O streams. The following list shows the formatting
features and the format flags that control them:
v Whitespace and padding: ios::skipws, ios::left, ios::right, ios::internal
v Base conversion: ios::dec, ios::hex, ios::oct, ios::showbase
v Integral formatting: ios::showpos
v Floating-point formatting: ios::fixed, ios::scientific, ios::showpoint
v Uppercase and lowercase: ios::uppercase
v Buffer flushing: ios::stdio, ios::unitbuf

Format Stream Output
The USL I/O Stream Library lets you define how output should be formatted on a
stream-by-stream basis within your program. Most formatting applies to numeric
data: what base integers should be written to the output stream in, how many
digits of precision floating-point numbers should have, whether they should
appear in scientific or fixed-point format. Other formatting applies to any of the
built-in types, and to your own types if you design your class output operators to
check the format state of a stream to determine what formatting action to take.

This section describes a number of techniques you can use to change the way data
is written to output streams. One common characteristic of most of the methods
described (other than the method of changing the output field’s width) is that each
format state setting applies to its output stream until it is explicitly cleared, or is
overridden by a mutually exclusive format state. This differs from the C printf()
family of output functions, in which each printf() statement must define its
formatting information individually.

ios Methods and Manipulators

For some of the format flags defined for the ios class, you can set or clear them
using an ios function and a flag name, or by using a manipulator. With
manipulators you can place the change to a stream’s state within a list of outputs
for that stream. The following example shows two ways of changing the base of an
output stream from decimal to octal. The first, which is more difficult to read, uses
the setf() function to set the basefield field in the format state to octal. The second
way uses a manipulator, oct, within the output statement, to accomplish the same
thing:
#include <iostream.h>
int main(int argc, char *argv[]) {

int a=9;
cout.setf(ios::oct,ios::basefield);
cout << a << endl;

// assume format state gets changed here, so we must change it back
cout << oct << a << endl;
return 0;
}

Note that you do not need to qualify a manipulator, provided you do not create a
variable or function of the same name as the manipulator. If a variable oct were
declared at the start of the above example, cout << oct ... would write the variable
oct to standard output. cout << ios::oct ... would change the format state.

Use setf, unsetf, and flags

Chapter 1. USL I/O Streaming 9

There are two versions of the setf() function of ios. One version takes a single long
value newset as argument; its effect is to set any flags set in newset, without
affecting other flags. This version is useful for setting flags that are not mutually
exclusive with other flags (for example, ios::uppercase). The other version takes
two long values as arguments. The first argument determines what flags to set,
and the second argument determines which groups of flags to clear before any flags
are set. The second argument lets you clear a group of flags before setting one of
that group. The second argument is useful for flags that are mutually exclusive. If
you try to change the base field of the cout output stream using cout.setf(ios::oct);,
setf() sets ios::oct but it does not clear ios::dec if it is set, so that integers continue
to be written to cout in decimal notation. However, if you use
cout.setf(ios::oct,ios::basefield);, all bits in basefield are cleared (oct, dec, and hex)
before oct is set, so that integers are then written to cout in octal notation.

To clear format state flags, you can use the unsetf() function, which takes a single
argument indicating which flags to clear.

To set the format state to a particular combination of flags (without regard for the
pre-existing format state), you can use the flags(long flagset) member function of
ios. The value of flagset determines the resulting values of all the flags of the
format state.

The following example demonstrates the use of flags(), setf(), and unsetf(). The
main() function changes the flags as follows:
1. The original settings of the format state flags are determined, using flags().

These settings are saved in the variable originalFlags.
2. ios::fixed is set, and all other flags are cleared, using flags(ios::fixed).
3. ios::adjustfield is set to ios::right, without affecting other fields, using

setf(ios::right).
4. ios::floatfield is set to ios::scientific, and ios::adjustfield is set to ios::left, without

affecting other fields. The call to setf() is setf(ios::scientific | ios::left,
ios::floatfield|ios::adjustfield).

5. The original format state is restored, by calling flags() with an argument of
originalFlags, which contains the format state determined in step 1.

The function showFlags() determines and displays the current flag settings. It
obtains the value of the settings using flags(), and then excludes ios::oct from the
result before displaying the result in octal. This exclusion is done to display the
result in octal without causing the octal setting for ios::basefield to show up in the
program’s output.
//Using flags(), flags(long), setf(long), and setf(long,long)

#include <iostream.h>

void showFlags() {
// save altered flag settings, but clear ios::oct from them

long flagSettings = cout.flags() & (~ios::oct) ;
// display those flag settings in octal

cout << oct << flagSettings << endl;
}

int main(int argc, char *argv[]) {
// get and display current flag settings using flags()

cout << “flags(): ”;
long originalFlags = cout.flags();
showFlags();

10 C/C++ Legacy Classes

// change format state using flags(long)
cout << “flags(ios::fixed): ”;
cout.flags(ios::fixed);
showFlags();

// change adjust field using setf(long)
cout << “setf(ios::right): ”;
cout.setf(ios::right);
showFlags();

// change floatfield using setf(long, long)
cout << “setf(ios::scientific | ios::left,\n”

<< “ios::floatfield | ios::adjustfield): ”;
cout.setf(ios::scientific | ios::left,ios::floatfield |ios::adjustfield);
showFlags();

// reset to original setting
cout << “flags(originalFlags): ”;
cout.flags(originalFlags);
showFlags();
return 0;

}

This example produces the following output:
flags(): 21
flags(ios::fixed): 10000
setf(ios::right): 10004
setf(ios::scientific | ios::left,
ios::floatfield | ios::adjustfield): 4002
flags(originalFlags): 21

Note that if you specify conflicting flags, the results are unpredictable. For
example, the results will be unpredictable if you set both ios::left and ios::right in
the format state of iosobj. You should set only one flag in each set of the following
three sets:

v ios::left, ios::right, ios::internal
v ios::dec, ios::oct, ios::hex
v ios::scientific, ios::fixed.

Change the Notation of Floating-Point Values

You can change the notation and precision of floating-point values to match your
program’s output requirements. To change the precision with which floating-point
values are written to output streams, use ios::precision(). By default, an output
stream writes float and double values using six significant digits. The following
example changes the precision for the cout predefined stream to 17:

cout.precision(17);

You can also change between scientific and fixed notations for floating-point
values. Use the two-parameter version of the setf() member function of ios to set
the appropriate notation. The first argument indicates the flag to be set; the second
argument indicates the field of flags the change applies to. For example, to change
the notation of an output stream called File6, use:

File6.setf(ios::scientific,ios::floatfield);

This statement clears the settings of the ios::floatfield field and then sets it to
ios::scientific.

Chapter 1. USL I/O Streaming 11

The ios::uppercase format state variable affects whether the “e” used in
scientific-notation floating-point values is in uppercase or lowercase. By default, it
is in lowercase. To change the setting to uppercase for an output stream called
TaskQueue, use:

TaskQueue.setf(ios::uppercase);

The following example shows the effect on floating-point output of changes made
to an output stream using ios format state flags and the precision member
function:
// How format state flags and precision() affect output

#include <iostream.h>

int main(int argc, char *argv[]) {
double a=3.14159265358979323846;
double b;
long originalFlags=cout.flags();
int originalPrecision=cout.precision();
for (double exp=1.;exp<1.0E+25;exp*=100000000.) {

cout << “Printing new value for b:\n”;
b=a*exp; // Initialize b to a larger magnitude of a

// Now print b in a number of ways:
// In fixed decimal notation
cout.setf(ios::fixed,ios::floatfield);
cout << “ ” << b << ’\n’;
// In scientific notation
cout.setf(ios::scientific,ios::floatfield);
cout << “ ” <<b << ’\n’;
// Change the exponent from lower to uppercase
cout.setf(ios::uppercase);
cout << “ ” <<b << ’\n’;
// With 12 digits of precision, scientific notation
cout.precision(12);
cout << “ ” <<b << ’\n’;
// Same precision, fixed notation
cout.setf(ios::fixed,ios::floatfield);
// Now set everything back to defaults
cout.flags(originalFlags);
cout.precision(originalPrecision);
}
return 0;

}

The output from this program is:
Printing new value for b:

3.141593
3.141593e+00
3.141593E+00
3.141592653590E+00

Printing new value for b:
314159265.358979
3.141593e+08
3.141593E+08
3.141592653590E+08

Printing new value for b:
31415926535897932.000000
3.141593e+16
3.141593E+16
3.141592653590E+16

Printing new value for b:
3141592653589792849657856.000000
3.141593e+24
3.141593E+24
3.141592653590E+24

12 C/C++ Legacy Classes

Change the Base of Integral Values

For output of integral values, you can choose decimal, hexadecimal, or octal
notation. You can either use setf() to set the appropriate ios flag, or you can place
the appropriate parameterized manipulator in the output stream. The following
example shows both methods:
//Showing the base of integer values

#include <iostream.h>
#include <iomanip.h>

int main(int argc, char *argv[]) {
int a=148;
cout.setf(ios::showbase); // show the base of all integral output:

// leading 0x means hexadecimal,
// leading 01 to 07 means octal,
// leading 1 to 9 means decimal

cout.setf(ios::oct,ios::basefield);
// change format state to octal

cout << a << ’\n’;
cout.setf(ios::dec,ios::basefield);

// change format state to decimal
cout << a << ’\n’;
cout.setf(ios::hex,ios::basefield);

// change format state to hexadecimal
cout << a << ’\n’;
cout << oct << a << ’\n’; // Parameterized manipulators clear the
cout << dec << a << ’\n’; // basefield, then set the appropriate
cout << hex << a << ’\n’; // flag within basefield.
return 0;

}

The ios::showbase flag determines whether numbers in octal or hexadecimal
notation are written to the output stream with a leading “0” or “0x”, respectively.
You can set ios::showbase where you intend to use the output as input to an I/O
Stream input stream later on. If you do not set ios::showbase and you try to use
the output as input to another stream, octal values and those hexadecimal values
that do not contain the digits a-f will be interpreted as decimal values; hexadecimal
values that do contain any of the digits a-f will cause an input stream error.

Set the Width and Justification of Output Fields

For built-in types, the output operator does not write any leading or trailing spaces
around values being written to an output stream, unless you explicitly set the field
width of the output stream, using the width() member function of ios or the setw()
parameterized manipulator. Both width() and setw() have only a short-term effect
on output. As soon as a value is written to the output stream, the field width is
reset, so that once again no leading or trailing spaces are inserted. If you want
leading or trailing blanks to appear on successively written values, you can use the
setw() manipulator within the output statement. For example:
#include <iostream.h>
#include <iomanip.h> // required for use of setw()
int main(int argc, char *argv[]) {

int i=-5,j=7,k=-9;
cout << setw(5) << i << setw(5) << j << setw(5) << k << endl;
return 0;

}

You can also specify how values should be formatted within their fields. If the
current width setting is greater than the number of characters required for the
output, you can choose between right justification (the default), left justification, or,

Chapter 1. USL I/O Streaming 13

for numeric values, internal justification (the sign, if any, is left-justified, while the
value is right-justified). For example, the output statement above could be replaced
with:
cout << setw(5) << i; // -5
cout.setf(ios::left,ios::adjustfield);
cout << setw(5) << j; // 7
cout.setf(ios::internal,ios::adjustfield);
cout << setw(5) << k << endl; // -9

The following shows two lines of output, the first from the original example, and
the second after the output statement has been modified to use the field
justification shown above:

-5 7 -9
-57 - 9

Define Your Own Format State Flags
If you have defined your own input or output operator for a class type, you may
want to offer some flexibility in how you handle input or output of instances of
that class. The USL I/O Stream Library lets you define stream-specific flags that
you can then use with the format state member functions such as setf() and
unsetf(). You can then code checks for these flags in the input and output operators
you write for your class types, and determine how to handle input and output
according to the settings of those flags.

For example, suppose you develop a program that processes customer names and
addresses. In the original program, the postal code for each customer is written to
the output file before the country name. However, because of postal regulations,
you are instructed to change the record order so that the postal code appears after
the country name. The following example shows a program that translates from
the old file format to the new file format, or from the new file format to the old.

The program checks the input file for an exclamation mark as the first byte. If one
is found, the input file is in the new format, and the output file should be in the
old format. Otherwise the reverse is true. Once the program knows which file
should be in which format, it requests a free flag from each file’s stream object. It
reads in and writes out each record, and closes the file. The input and output
operators for the class check the format state for the defined flag, and order their
output accordingly.
// Defining your own format flags

#include <fstream.h>
#include <stdlib.h>

long InFileFormat=0;
long OutFileFormat=0;

class CustRecord {
public:

int Number;
char Name[48];
char Phone[16];
char Street[128];
char City[64];
char Country[64];
char PostCode[10];

};

ostream& operator<<(ostream &os, CustRecord &cust) {
os << cust.Number << ’\n’

<< cust.Name << ’\n’
<< cust.Phone << ’\n’
<< cust.Street << ’\n’

14 C/C++ Legacy Classes

<< cust.City << ’\n’;
if (os.flags() & OutFileFormat) // New file format

os << cust.Country << ’\n’
<< cust.PostCode << endl;

else // Old file format
os << cust.PostCode << ’\n’

<< cust.Country << endl;
return os;
}

istream& operator>>(istream &is, CustRecord &cust) {
is >> cust.Number;
is.ignore(1000,’\n’); // Ignore anything up to and including new line
is.getline(cust.Name,48);
is.getline(cust.Phone,16);
is.getline(cust.Street,128);
is.getline(cust.City,64);
if (is.flags() & InFileFormat) { // New file format!

is.getline(cust.Country,64);
is.getline(cust.PostCode,10);
}

else {
is.getline(cust.PostCode,10);
is.getline(cust.Country,64);
}

return is;
}

int main(int argc, char* argv[]) {
if (argc!=3) { // Requires two parameters

cerr << “Specify an input file and an output file\n”;
exit(1);
}

ifstream InFile(argv[1]);
ofstream OutFile(argv[2],ios::out);

InFileFormat = InFile.bitalloc(); // Allocate flags for
OutFileFormat = OutFile.bitalloc(); // each fstream

if (InFileFormat==0 || // Exit if no flag could
OutFileFormat==0) { // be allocated
cerr << “Could not allocate a user-defined format flag.\n”;
exit(2);
}

if (InFile.peek()==’!’) { // ’!’ means new format
InFile.setf(InFileFormat); // Input file is in new format
OutFile.unsetf(OutFileFormat); // Output file is in old format
InFile.get(); // Clear that first byte
}

else { // Otherwise, write ’!’ to
OutFile << ’!’; // the output file, set the
OutFile.setf(OutFileFormat); // output stream’s flag, and
InFile.unsetf(InFileFormat); // clear the input stream’s
} // flag

CustRecord record;
while (InFile.peek()!=EOF) { // Now read the input file

InFile >> record; // records and write them
OutFile << record; // to the output file,
}

InFile.close(); // Close both files
OutFile.close();
return 0;

}

The following shows sample input and output for the program. If you take the
output from one run of the program and use it as input in a subsequent run, the
output from the later run is the same as the input from the preceding one.

Chapter 1. USL I/O Streaming 15

Input File Output File

3848
John Smith
4163341234
35 Baby Point Road
Toronto
M6S 2G2
Canada
1255
Jean Martin
0418375882
48 bis Ave. du Belloy
Le Vesinet
78110
France

!3848
John Smith
4163341234
35 Baby Point Road
Toronto
Canada
M6S 2G2
1255
Jean Martin
0418375882
48 bis Ave. du Belloy
Le Vesinet
France
78110

Note that, in this example, a simpler implementation could have been to define a
global variable that describes the desired form of output. The problem with such
an approach is that later on, if the program is enhanced to support input from or
output to a number of different streams simultaneously, all output streams would
have to be in the same state (as far as the user-defined format variable is
concerned), and all input streams would have to be in the same state. By making
the user-defined format flag part of the format state of a stream, you allow
formatting to be determined on a stream-by-stream basis.

Manipulators
Manipulators provide a convenient way of changing the characteristics of an input
or output stream, using the same syntax that is used to insert or extract values.
With manipulators, you can embed a function call in an expression that contains a
series of insertions or extractions. Manipulators usually provide shortcuts for
sequences of iostream library operations.

The iomanip.h header file contains a definition for a macro IOMANIPdeclare().
IOMANIPdeclare() takes a type name as an argument and creates a series of
classes you can use to define manipulators for a given kind of stream. Calling the
macro IOMANIPdeclare() with a type as an argument creates a series of classes
that let you define manipulators for your own classes. If you call
IOMANIPdeclare() with the same argument more than once in a file, you will get a
syntax error.

Simple Manipulators and Parameterized Manipulators

There are two kinds of manipulators: simple and parameterized.

Simple manipulators do not take any arguments. The following classes have
built-in simple manipulators:
v ios
v istream
v ostream

Parameterized manipulators require one or more arguments. setfill (near the
bottom of the iomanip.h header file) is an example of a parameterized manipulator.
You can create your own parameterized manipulators and your own simple
manipulators.

16 C/C++ Legacy Classes

ios Methods and Manipulators

For some of the format flags defined for the ios class, you can set or clear them
using an ios function and a flag name, or by using a manipulator. With
manipulators you can place the change to a stream’s state within a list of outputs
for that stream.

Create Manipulators
Create Simple Manipulators for Your Own Types

The USL I/O Stream Library gives you the facilities to create simple manipulators
for your own types. Simple manipulators that manipulate istream objects are
accepted by the following input operators:

istream istream::operator>> (istream&, istream& (*f) (istream&));
istream istream::operator>> (istream&, ios&(*f) (ios&));

Simple manipulators that manipulate ostream objects are accepted by the following
output operators:

ostream ostream::operator<< (ostream&, ostream&(*f) (ostream&));
ostream ostream::operator<< (ostream&, ios&(*f) (ios&));

The definition of a simple manipulator depends on the type of object that it
modifies. The following table shows sample function definitions to modify istream,
ostream, and ios objects.

Class of object Sample function definition

istream istream &fi(istream&){ /*...*/ }

ostream ostream &fo(ostream&){ /*...*/ }

ios ios &fios(ios&){ /*...*/ }

For example, if you want to define a simple manipulator line that inserts a line of
dashes into an ostream object, the definition could look like this:

ostream &line(ostream& os)
{

return os << “\n--------------------------------”
<< “--------------------------------\n”;

}

Thus defined, the line manipulator could be used like this:
cout << line << “WARNING! POWER-OUT IS IMMINENT!” << line << flush;

This statement produces the following output:
--
WARNING! POWER-OUT IS IMMINENT!
--

Create Parameterized Manipulators for Your Own Types

The USL I/O Stream Library gives you the facilities to create parameterized
manipulators for your own types. Follow these steps to create a parameterized
manipulator that takes an argument of a particular type tp:

Chapter 1. USL I/O Streaming 17

1. Call the macro IOMANIPdeclare(tp). Note that tp must be a single identifier.
For example, if you want tp to be a reference to a long double value, use
typedef to make a single identifier to replace the two identifiers that make up
the type label long double:

typedef long double& LONGDBLREF

2. Determine the class of your manipulator. If you want to define an APP
Parameterized manipulator, choose a class that has APP in its name (an APP
class, also known as an applicator). If you want to define a MANIP
Parameterized manipulator, choose a class that has MANIP in its name (a
MANIP class). Once you have determined which type of class to use, the
particular class that you choose depends on the type of object that the
manipulator is going to manipulate. The following table shows the class of
objects to be modified, and the corresponding manipulator classes.

Class to be modified Manipulator class

istream IMANIP(tp) or IAPP(tp)

ostream OMANIP(tp) or OAPP(tp)

iostream IOMANIP(tp) or IOAPP(tp)

The ios part of istream objects or ostream objects SMANIP(tp) or SAPP(tp)

3. Define a function f that takes an object of the class tp as an argument. The
definition of this function depends on the class you chose in step 2, and is
shown in the following table:

Class chosen Sample definition

IMANIP(tp) or IAPP(tp) istream &f(istream&, tp){/ *... */ }

OMANIP(tp) or OAPP(tp) ostream &f(ostream&, tp){/* ... */ }

IOMANIP(tp) or IOAPP(tp) iostream &f(iostream&, tp){/* ... */ }

SMANIP(tp) or SAPP(tp) ios &f(ios&, tp){/* ... */ }

4. Define the manipulator.
Parameterized manipulators defined with IOMANIP or IOAPP are not
associative. This means that you cannot use such manipulators more than once
in a single output statement.

Define an APP Parameterized Manipulator
In the following example, the macro IOMANIPdeclare is called with the
user-defined class my_class as an argument. One of the classes that is produced,
OAPP(my_class), is used to define the manipulator pre_print.
// Creating and using parameterized manipulators

#include <iomanip.h>

// declare class

class my_class {
public:

char * s1;
const char c;
unsigned short ctr;
my_class(char *theme, const char suffix,

unsigned short times):
s1(theme), c(suffix), ctr(times) {}

};

// print a character an indicated number of times
// followed by a string

18 C/C++ Legacy Classes

ostream& produce_prefix(ostream& o, my_class mc) {
for (register i=mc.ctr; i; --i) o << mc.c ;
o << mc.s1;
return o;

}

IOMANIPdeclare(my_class);

// define a manipulator for the class my_class
OAPP(my_class) pre_print=produce_prefix;

int main(int argc, char *argv[]) {
my_class obj(“Hello”,’-’,10);
cout << pre_print(obj) << endl;
return 0;

}

This program produces the following output:
----------Hello

Define a MANIP Parameterized Manipulator
In the following example, the macro IOMANIPdeclare is called with the
user-defined class my_class as an argument. One of the classes that is produced,
OMANIP(my_class), is used to define the manipulator pre_print().
#include <iostream.h>
#include <iomanip.h>

class my_class {
public: char * s1;
const char c;
unsigned short ctr;
my_class(char *theme, const char suffix,

unsigned short times):
s1(theme), c(suffix), ctr(times) {};

};

// print a character an indicated number of times
// followed by a string

ostream& produce_prefix(ostream& o, my_class mc) {
for (register int i=mc.ctr; i; --i) o << mc.c ;
o << mc.s1;
return o;

}

IOMANIPdeclare(my_class);

// define a manipulator for the class my_class

OMANIP(my_class) pre_print(my_class mc) {
return OMANIP(my_class) (produce_prefix,mc);

}

int main(int argc, char *argv[]) {
my_class obj(“Hello”,’-’,10);
cout << pre_print(obj) << “\0” << endl;
return 0;

}

This example produces the following output:
----------Hello

Define Nonassociative Parameterized Manipulators
The following example demonstrates that parameterized manipulators defined
with IOMANIP or IOAPP are not associative. The parameterized manipulator
mysetw() is defined with IOMANIP. mysetw() can be applied once in any
statement, but if it is applied more than once, it causes a compile-time error. To
avoid such an error, put each application of mysetw into a separate statement.

Chapter 1. USL I/O Streaming 19

// Nonassociative parameterized manipulators

#include <iomanip.h>

iostream& f(iostream & io, int i) {
io.width(i);
return io;

}

IOMANIP (int) mysetw(int i) {
return IOMANIP(int) (f,i);

}

iostream_withassign ioswa;

int main(int argc, char *argv[]) {
ioswa = cout;
int i1 = 8, i2 = 14;
//
// The following statement does not cause a compile-time
// error.
//
ioswa << mysetw(3) << i1 << endl;
//
// The following statement causes a compile-time error
// because the manipulator mysetw is applied twice.
//
ioswa << mysetw(3) << i1 << mysetw(5) << i2 << endl;
//
// The following statements are equivalent to the previous
// statement, but they do not cause a compile-time error.
//
ioswa << mysetw(3) << i1;
ioswa << mysetw(5) << i2 << endl;
return 0;

}

Thread Safety and USL I/O Streaming
z/OS The USL I/O Stream Library provides thread safety at the object level.

This means that it is safe to have multiple threads manipulate the same object. This
library provides streaming operators for the built in C++ types. With object level
thread safety, the output from one streaming operator will be streamed in entirety
before the next.

AIX 400 It is not safe to access a stream object in one thread while
modifying it in another thread.

In a multi-threaded environment, there is no guarantee that the output from one
streaming operator on the same thread will appear immediately after the output
from the preceding streaming operator. For example, given the following scenario,
either result may occur:

Scenario:

thread 1 cout << anInt1 << aString1;

thread 2 cout << anInt2 << aString2;

Result:

Desired anInt1 aString1 anInt2 aString2

Possible anInt1 anInt2 aString1 aString2

20 C/C++ Legacy Classes

If order of output from separate threads is important, then explicit programmer
serialization is required.

Basic USL I/O Stream Tasks

Receive Input from Standard Input
When you specify the iostream.h header file as a source file for your project, four
streams are automatically defined for I/O use: cin, cout, cerr, and clog. The cin
stream is the standard input stream. Input to cin comes from the C standard input
stream, stdin, unless cin has been redirected by the user. The remaining streams
can be used for output. You can receive standard input using the predefined input
stream and the input operator (operator>>) for the type being read. In the
following example, an integer is read from the input stream into a variable:

int i;
cin >> i;

An input operator must exist for the type being read in. The USL I/O Stream
Library defines input operators for all C++ built-in types. For types you define
yourself, you need to provide your own input operators. If you attempt to read
input into a variable and no input operator is defined for the type of that variable,
the compiler displays an error message with text similar to the following:
Call does not match any parameter list for “operator>>”.

Use Input Streams other than cin

You can use the same techniques for input from other input streams as for input
from cin. The only difference is that, for other input streams, your program must
define the stream. Suppose that you have defined a stream attached to a file
opened for input, and have called that stream myin. You can read into myin from
the file by specifying myin instead of cin:

// assume that the input file is associated
// with stream myin

int a, b;
myin >> a >> b;

Multiple Variables in an Input Statement

You can receive input from a stream into a succession of variables with a single
input statement, by repeating the input operator (>>) after each input, and then
specifying the next variable to read in. You can combine variables of multiple types
in an input statement, without having to specify the types of those variables in the
input statement. The following example demonstrates this:

int i, j, k;
float m, n;

cin >> i >> j >> k >> m >> n;

The above syntax provides identical results to the following multiple input
statements:

int i, j, k;
float m, n;
cin >> i;

Chapter 1. USL I/O Streaming 21

cin >> j;
cin >> k;
cin >> m;
cin >> n;

If you want to enhance the readability of your source code, break the single input
statement up with white space, instead of separating it into multiple input
statements:

int i, j, k;
float m, n;
cin >> i

>> j
>> k
>> m
>> n;

String Input

If you want to read input into a character array (a string), you should declare the
character array using array notation, with a length large enough to hold the largest
string being entered. If you declare the character array using pointer notation, you
must allocate storage to the pointer, for example by using new or malloc. The
following example shows a correct and an incorrect way of placing input in a
character array:
char goodText[40];
char* badText;
cin >> goodText; // works as long as input is less than 40 chars
cin >> badText; // may cause a runtime error because no storage

// is allocated to *badText

In the above example, the input to badText can be made to work by inserting the
following code before the input:
badText=new char[40];

This guideline applies to input to any pointer-to-type. Storage must be allocated to
the pointer before input occurs.

White Space in String Input

The input operator uses white space to delineate items in the input stream,
including strings. If you want an entire line of input to be read in as a single
string, you should use the getline() function of istream:
// String input using operator << and getline()

#include <iostream.h>

int main(int argc, char *argv[]) {
char text1[100], text2[100];

// prompt and get input for text arrays
cout << “Enter two words:\n”;
cin >> text1 >> text2;

// display the text arrays
cout << “<” << text1 << “>\n”

<< “<” << text2 << “>\n”
<< “Enter two lines of text:\n”;

// ignore the next character if it is a newline
if (cin.peek()==’\n’) cin.ignore(1,’\n’);

// get a line of text into array text1
cin.getline(text1, sizeof(text1), ’\n’);

22 C/C++ Legacy Classes

// get a line of text into array text2
cin.getline(text2, sizeof(text2), ’\n’);

// display the text arrays
cout << “<” << text1 << “>\n”

<< “<” << text2 << “>” << endl;
return 0;
}

The first argument of getline() is a pointer to the character array in which to store
the input. The second argument specifies the maximum number of bytes of input
to read and the third argument is the delimiter, which the library uses to
determine when the string input is complete. If you do not specify a delimiter, the
default is the new-line character.

Here are two samples of the input and output from this program. Input is shown
in bold type, and output is shown in regular type:
Enter two words:
Word1 Word2
<Word1>
<Word2>
Enter two lines of text:
First line of text
Second line of text
<First line of text>
<Second line of text>

For the above input, the program works as expected. For the input in the sample
below, the first input statement reads two white-space-delimited words from the
first line. The check for a new-line character does not find one at the next position
(because the next character in the input stream is the space following “happens”),
so the first getline() call reads in the remainder of the first line of input. The
second line of input is read by the second getline() call, and the program ends
before any further input can be read.
Enter two words:
What happens if I enter more words than it asks for?
<What>
<happens>
Enter two lines of text:
I suppose it will skip over the extra ones
<if I enter more words than it asks for?>
<I suppose it will skip over the extra ones>

Incorrect Input and the Error State of the Input Stream

When your program requests input through the input operator and the input
provided is incorrect or of the wrong type, the error state may be set in the input
stream and further input from that input stream may fail. One runtime symptom
of such a failure is that your program’s prompts for further input display without
pausing to wait for the input.

Display Output on Standard Output or Standard Error
The USL I/O Stream Library predefines three output streams, as well as the cin
input stream. The standard output stream is cout, and the remaining streams, cerr
and clog, are standard error streams. Output to cout goes to the C standard output
stream, stdout, unless cout has been redirected. Output to cerr and clog goes to the
C standard error stream, stderr, unless cerr or clog has been redirected.

Chapter 1. USL I/O Streaming 23

cerr and clog are really two streams that write to the same output device. The
difference between them is that cerr flushes its contents to the output device after
each output, while clog must be explicitly flushed.

You can print to one of the predefined output streams by using the predefined
stream’s name and the output operator (operator<<), followed by the value to
print:
#include <iostream.h>
int main(int argc, char* argv[]) {

if (argc==1) cout << “Good day!” << endl;
else cerr << “I don’t know what to do with ”

<< argv[1] << endl;
return 0;

}

If you name the compiled program myprog, the following inputs will produce the
following output to standard output or standard error:

Invocation Output

myprog Good day!
(to standard output)

myprog hello there I don’t know what to do with hello
(to standard error)

An output operator must exist for any type being output. The USL I/O Stream
Library defines output operators for all C++ built-in types. For types you define
yourself, you need to provide your own output operators. If you attempt to place
the contents of a variable into an output stream and no output operator is defined
for the type of that variable, the compiler displays an error message with text
similar to the following:
The call does not match any parameter list for “operator<<”.

Multiple Variables in an Output Statement

You can place a succession of variables into an output stream with a single output
statement, by repeating the output operator (<<) after each output, and then
specifying the next variable to output. You can combine variables of multiple types
in an output statement, without having to specify the types of those variables in
the output statement. For example:
int i,j,k;
float l,m;
// ...
cout << i << j << k << l << m;

The above syntax provides identical results to the following multiple output
statements:
int i,j,k;
float l,m;
cout << i;
cout << j;
cout << k;
cout << l;
cout << m;

24 C/C++ Legacy Classes

If you want to enhance the readability of your source code, break the single output
statement up with white space, instead of separating it into multiple output
statements:
int i,j,k;
float l,m;
cout << i

<< j
<< k
<< l
<< m;

Use Output Streams other than cout, cerr, and clog

You can use the same techniques for output to other output streams as for output
to the predefined output streams. The only difference is that, for other output
streams, your program must define the stream. Assuming you have defined a
stream attached to a file opened for output, and have called that stream myout,
you can write to that file through its stream, by specifying the stream’s name
instead of cout, cerr or clog:
// assume the output file is associated with stream myout

int a,b;
myout << a << b;

Flush Output Streams with endl and flush
Output streams must be flushed for their contents to be written to the output
device. Consider the following:
cout << “This first calculation may take a very long time\n”;
firstVeryLongCalc();
cout << “This second calculation may take even longer\n”;
secondVeryLongCalc();
cout << “All done!”;

If the functions called in this excerpt do not themselves perform input or output to
the standard I/O streams, the first message will be written to the cout buffer
before firstVeryLongCalc() is called. The second message will be written before
secondVeryLongCalc() is called, but the buffer may not be flushed (written out to
the physical output device) until an implicit or explicit flush operation occurs. As a
result, the above program displays its messages about expected delays after the
delays have already occurred. If you want the output to be displayed before each
function call, you must flush the output stream.

A stream is flushed implicitly in the following situations:
v The predefined streams cout and clog are flushed when input is requested from

the predefined input stream (cin).
v The predefined stream cerr is flushed after each output operation.
v An output stream that is unit-buffered is flushed after each output operation. A

unit-buffered stream is a stream that has ios::unitbuf set.
v An output stream is flushed whenever the flush() member function is applied to

it. This includes cases where the flush or endl manipulators are written to the
output stream.

v The program terminates.

The above example can be corrected so that output appears before each calculation
begins, as follows:

Chapter 1. USL I/O Streaming 25

cout << “This first calculation may take a very long time\n”;
cout.flush();
firstVeryLongCalc();
cout << “This second calculation may take even longer\n”;
cout.flush();
secondVeryLongCalc();
cout << “All done!”
cout.flush();

Placing endl or flush in an Output Stream

The endl and flush manipulators give you a simple way to flush an output stream:
cout << “This first calculation may take a very long time” << endl;
firstVeryLongCalc();
cout << “This second calculation may take even longer” << endl;
secondVeryLongCalc();
cout << “All done!” << flush;

Placing the flush manipulator in an output stream is equivalent to calling flush()
for that output stream. When you place endl in an output stream, it is equivalent
to placing a new-line character in the stream, and then calling flush().

Avoid using endl where the new-line character is required but buffer flushing is
not, because endl has a much higher overhead than using the new-line character.
For example:
cout << “Employee ID: ” << emp.id << endl

<< “Name: ” << emp.name << endl
<< “Job Category: ” << emp.jobc << endl
<< “Hire date: ” << emp.hire << endl;

is not as efficient as:
cout << “Employee ID: ” << emp.id

<< “\nName: ” << emp.name
<< “\nJob Category: ” << emp.jobc
<< “\nHire date: ” << emp.hire << endl;

You can include the new-line character as the start of the character string that
immediately follows the location where the endl manipulator would have been
placed, or as a separate character enclosed in single quotation marks:
cout << “Salary: ” << emp.pay << ’\n’

<< “Next raise: ” << emp.elig_raise << endl;

Flushing a stream generally involves a high overhead. If you are concerned about
performance, only flush a stream when necessary.

Parse Multiple Inputs
The USL I/O Stream Library input streams determine when to stop reading input
into a variable based on the type of variable being read and the contents of the
stream. The easiest way to understand how input is parsed is to write a simple
program such as the following, and run it several times with different inputs.
#include <iostream.h>
int main(int argc, char *argv[]) {

int a,b,c;
cin >> a >> b >> c;
cout << “a: <” << a << “>\n”

<< “b: <” << b << “>\n”
<< “c: <” << c << ’>’ << endl;

return 0;
}

26 C/C++ Legacy Classes

The following table shows sample inputs and outputs, and explains the outputs. In
the “Input” column, <\n> represents a new-line character in the input stream.

Input Output Remarks

123<\n> No output. a has been assigned the value 123,
but the program is still waiting on input for b
and c.

1<\n>
2<\n>
3<\n>

a: <1>
b: <2>
c: <3>

White space (in this case, new-line characters) is
used to delimit different input variables.

1 2 3<\n> a: <1>
b: <2>
c: <3>

White space (in this case, spaces) is used to
delimit different input variables. There can be
any amount of white space between inputs.

123,456,789<\n> a: <123>
b:
<-559038737>
c:
<- 559038737>

Characters are read into int a up to the first
character that is not acceptable input for an
integer (the comma). Characters are read into int
b where input for a left off (the comma). Because
a comma is not one of the allowable characters
for integer input, ios::failbit is set, and all further
input fails until ios::failbit is cleared.

1.2 2.3<\n>
3.4<\n>

a: <1>
b:
<-559038737>
c:
<-559038737>

As with the previous example, characters are
read into a until the first character is encountered
that is not acceptable input for an integer (in this
case, the period). The next input of an int causes
ios::failbit to be set, and so both it and the third
input result in errors.

Open a File for Input and Read from the File
Use the following steps to open a file for input and to read from the file.
1. Construct an fstream or ifstream object to be associated with the file. The file

can be opened during construction of the object, or later.

z/OS z/OS C/C++ provides overloads of the fstream and ifstream
constructors and their open() functions, which allow you to specify file
attributes such as lrecl and recfm.

400 ILE C++ provides overloads of the fstream and istream constructors
and their open functions, which allow you to specify the ccsid of a file.

2. Use the name of the fstream or ifstream object and the input operator or other
input functions of the istream class, to read the input.

3. Close the file by calling the close() member function or by implicitly or
explicitly destroying the fstream or ifstream object.

Construct an fstream or ifstream Object for Input

You can open a file for input in one of two ways:
v Construct an fstream or ifstream object for the file, and call open() on the object:

#include <fstream.h>
int main(int argc, char *argv[]) {

fstream infile1;
ifstream infile2;
infile1.open(“myfile.dat”,ios::in);
infile2.open(“myfile.dat”);
// ...

}

Chapter 1. USL I/O Streaming 27

v Specify the file during construction, so that open() is called automatically:
#include <fstream.h>
int main(int argc, char *argv[]) {

fstream infile1(“myfile.dat”,ios::in);
ifstream infile2(“myfile.dat”);
// ...

}

The only difference between opening the file as an fstream or ifstream object is
that, if you open the file as an fstream object, you must specify the input mode
(ios::in). If you open it as an ifstream object, it is implicitly opened in input mode.
The advantage of using ifstream rather than fstream to open an input file is that, if
you attempt to apply the output operator to an ifstream object, this error will be
caught during compilation. If you attempt to apply the output operator to an
fstream object, the error is not caught during compilation, and may pass unnoticed
at runtime.

The advantage of using fstream rather than ifstream is that you can use the same
object for both input and output. For example:
// Using fstream to read from and write to a file

#include <fstream.h>
int main(int argc, char *argv[]) {

char q[40];
fstream myfile(“test.txt”,ios::in); // open the file for input
myfile >> q; // input from myfile into q
myfile.close(); // close the file
myfile.open(“test.txt”,ios::app); // reopen the file for output
myfile << q << endl; // output from q to myfile
myfile.close(); // close the file
return 0;

}

This example opens the same file first for input and later for output. It reads in a
character string during input, and writes that character string to the end of the
same file during output. Let’s assume that the contents of the file test.txt before the
program is run are:
barbers often shave

In this case, the file contains the following after the program is run:
barbers often shave
barbers

Note that you can use the same fstream object to access different files in sequence.
In the above example, myfile.open(“test.txt”,ios::app) could have read
myfile.open(“test.out”,ios::app) and the program would still have compiled and
run, although the end result would be that the first string of test.txt would be
appended to test.out instead of to test.txt itself.

Read Input from a File

The statement myfile >> a reads input into a from the myfile stream. Input from
an fstream or ifstream object resembles input from the standard input stream cin,
in all respects except that the input is a file rather than standard input, and you
use the fstream object name instead of cin. The two following programs produce
the same output when provided with a given set of input. In the case of stdin.C,
the input comes from the standard input device. In the case of filein.C, the input
comes from the file file.in:

28 C/C++ Legacy Classes

stdin.C filein.C

#include <iostream.h>

int main(int argc, char *argv[]) {
int ia,ib,ic;
char ca[40],cb[40],cc[40];
// cin is predefined
cin >> ia >> ib >> ic

>> ca;
cin.getline(cb,sizeof(cb),’\n’);
cin >> cc;
// no need to close cin
cout << ia << ca

<< ib << cb
<< ic << cc << endl;

return 0;
}

#include <fstream.h>

int main(int argc, char *argv[]) {
int ia,ib,ic;
char ca[40],cb[40],cc[40];
fstream myfile(“file.in”,ios::in);
myfile >> ia >> ib >> ic

>> ca;
myfile.getline(cb,sizeof(cb),’\n’);
myfile >> cc;
myfile.close();
cout << ia << ca

<< ib << cb
<< ic << cc << endl;

return 0;
}

In both examples, the program reads the following, in sequence:
1. Three integers
2. A whitespace-delimited string
3. A string that is delimited either by a new-line character or by a maximum

length of 39 characters.
4. A whitespace-delimited string.

When you define an input operator for a class type, this input operator is available
both to the predefined input stream cin and to any input streams you define, such
as myfile in the above example.

All techniques for reading input from the standard input stream can also be used
to read input from a file, providing your code is changed so that the cin object is
replaced with the name of the fstream object associated with the input file.

Open a File for Output and Write to the File
To open a file for output, use the following steps:
1. Declare an fstream or ofstream object to associate with the file, and open it

either when the object is constructed, or later:
#include <fstream.h>
int main(int argc, char *argv[]) {

fstream file1(“file1.out”,ios::app);
ofstream file2(“file2.out”);
ofstream file3;
file3.open(“file3.out”);
return 0;

}

You must specify one or more open modes when you open the file, unless you
declare the object as an ofstream object. The advantage of accessing an output
file as an ofstream object rather than as an fstream object is that the compiler
can flag input operations to that object as errors.

z/OS z/OS C/C++ provides overloads of the fstream and ofstream
constructors and their open() functions, which allow you to specify file
attributes such as lrecl and recfm.

Chapter 1. USL I/O Streaming 29

2. Use the output operator or ostream member functions to perform output to the
file.

3. Close the file using the close() member function of fstream.

When you define an output operator for a class type, this output operator is
available both to the predefined output streams and to any output streams you
define.

Combine Input and Output of Different Types
The USL I/O Stream Library overloads the input (>>) and output (<<) operators for
the built-in types. As a result, you can combine input or output of values with
different types in a single statement without having to state the type of the values.
For example, you can code an output statement such as:

cout << aFloat << “ ” << aDouble << “\n” << aString << endl;

without needing to provide type or formatting information for each output.

Advanced USL I/O Stream Tasks

Associate a File with a Standard Input or Output Stream
The iostream_withassign class lets you associate a stream object with one of the
predefined streams cin, cout, cerr, and clog. You can do this, for example, to write
programs that accept input from a file if a file is specified, or from standard input
if no file is specified.

The following program is a simple filter that reads input from a file into a
character array, and writes the array out to a second file. If only one file is
specified on the command line, the output is sent to standard output. If no file is
specified, the input is taken from standard input. The program uses the
iostream_withassign assignment operator to assign an ifstream or ofstream object
to one of the predefined streams.
// Generic I/O Stream filter, invoked as follows:
// filter [infile [outfile]]

#include <iostream.h>
#include <fstream.h>

int main(int argc, char* argv[]) {
ifstream* infile;
ofstream* outfile;
char inputline[4096]; // used to read input lines
int sinl=sizeof(inputline); // used by getline() function
if (argc>1) { // if at least an input file was specified

infile = new ifstream(argv[1]); // try opening it
if (infile->good()) // if it opens successfully

cin = *infile; // assign input file to cin

if (argc>2) { // if an output file was also specified
outfile = new ofstream(argv[2]); // try opening it
if (outfile->good()) // if it opens successfully

cout = *outfile; // assign output file to cout
}

}

cin.getline(inputline,
sizeof(inputline),’\n’); // get first line
while (cin.good()) { // while input is good
//
// Insert any line-by-line filtering here
//
cout << inputline << endl; // write line

30 C/C++ Legacy Classes

cin.getline(inputline,sinl,’\n’); // get next line (sinl specifies
} // max chars to read)
if (argc>1) { // if input file was used

infile->close(); // then close it
if (argc>2) { // if output file was used

outfile->close(); // then close it
}

}
return 0;

}

You can use this example as a starting point for writing a text filter that scans a file
line by line, makes changes to certain lines, and writes all lines to an output file.

Move through a file with filebuf Functions
In a program that receives input from an fstream object (a file), you can associate
the fstream object with a filebuf object, and then use the filebuf object to move the
get or put pointer forward or backward in the file. You can also use filebuf
member functions to determine the length of the file.

To associate an fstream object with a filebuf object, you must first construct the
fstream object and open it. You then use the rdbuf() member function of the
fstream class to obtain the address of the file’s filebuf object. Using this filebuf
object, you can move through the file or determine the file’s length, with the
seekpos() and seekoff() functions. For example:
// Using the filebuf class to move through a file

#include <fstream.h> // for use of fstream classes
#include <iostream.h> // not really needed since fstream includes it
#include <stdlib.h> // for use of exit() function

int main(int argc, char *argv[]) {
// declare a streampos object to keep track of the position in filebuf
streampos Position;

// declare a streamoff object to set stream offsets
// (for use by seekoff and seekpos)
streamoff Offset=0;

// declare an fstream object and open its file for input
fstream InputFile(“algonq.uin”,ios::in);

// check that input was successful, exit if not
if (!InputFile) {

cerr << “Could not open algonq.uin! Exiting...\n”;
exit(-1);
}

// associate the fstream object with a filebuf pointer
filebuf *InputBuffer=InputFile.rdbuf();

// read the first line, and display it
char LineOfFile[128];
InputFile.getline(LineOfFile,sizeof(LineOfFile),’\n’);
cout << LineOfFile << endl;

// Now skip forward 100 bytes and display another line
Offset=100;
Position=InputBuffer->seekoff(Offset,ios::cur,ios::in);
InputFile.getline(LineOfFile,sizeof(LineOfFile),’\n’);
cout << “At position ” << Position << “:\n”

<< LineOfFile << endl;

// Now skip back 50 bytes and display another line
Offset=-50;
Position=InputBuffer->seekoff(Offset,ios::cur,ios::in);

Chapter 1. USL I/O Streaming 31

// ios::cur refers to current position in buffer
InputFile.getline(LineOfFile,sizeof(LineOfFile),’\n’);
cout << “At position ” << Position << “:\n”

<< LineOfFile << endl;

// Now go to position 137 and display to the end of its line
Position=137;
InputBuffer->seekpos(Position,ios::in);
InputFile.getline(LineOfFile,sizeof(LineOfFile),’\n’);
cout << “At position ” << Position << “:\n”

<< LineOfFile << endl;

// Now close the file and end the program
InputFile.close();
return 0;
}

If the file algonq.uin contains the following text:
The trip begins on Round Lake.
We proceed through a marshy portage,
and soon find ourselves in a river whose water is the color of ink.
A heron flies off in the distance.
Frogs croak cautiously alongside the canoes.
We can feel the sun’s heat glaring at us from grassy shores.

the output of the example program is:
The trip begins on Round Lake.
At position 131:
ink.
At position 86:
elves in a river whose water is the color of ink.
At position 137:
heron flies off in the distance.

Use Encoded and Relative Byte Offsets to Move through a File

The following example shows how you can use both encoded and relative byte
offsets to move through a file. Note that encoded offsets are specific to z/OS
C/C++ and programs that use them may not be portable.
// Example of using encoded and relative byte offsets
// in seeking through a file

#include <iomanip.h>
#include <fstream.h>

int main(int argc, char *argv[]) {
fstream fs(“tseek.data”, ios::out); // create tseek.data
filebuf* fb = fs.rdbuf();
streamoff off[5];
int pos[5] = {0, 30, 42, 197, 0};

for (int i = 0, j = 0; i < 200; ++i) {
if (i == pos[j])

off[j++] = (*fb).seekoff(0L, ios::cur, ios::out);
fs << setw(4) << i;
if (i % 13 == 0 || i % 17 == 0) fs << endl;

}
fs.close();

cout << “Open the file in text mode, reposition using encoded\n”
<< “offsets obtained from previous calls to seekoff()” << endl;

fs.open(“tseek.data”, ios::in);
fb = fs.rdbuf();

// Exchange off[2] and off[3] so last seek will be backwards
off[4] = off[2]; off[2] = off[3]; off[3] = off[4];
pos[4] = pos[2]; pos[2] = pos[3]; pos[3] = pos[4];

32 C/C++ Legacy Classes

for (j = 0; j < 4; ++j) {
(*fb).seekoff(off[j], ios::beg, ios::in);
fs >> i;
cout << “data at pos” << dec << setfill(’ ’) << setw(4) << pos[j]

<< “ is \”“ << setw(4) << i << ”\“ (encoded offset was 0x”
<< hex << setfill(’0’) << setw(8) << off[h] << “)” << endl;

if (i != pos[j]) return 37 + 10*j;
}
fs.close();
cout.fill(’ ’);
cout.setf(ios::dec, ios::basefield);

cout << “\nOpen the file in binary byteseek mode, reposition using\n”
<< “byte offsets calculated by the user program” << endl;

fs.open(“tseek.data”, “byteseek”, ios::in|ios::binary);
fb = fs.rdbuf();

for (j = 0, j < 4; ++j) {
off[j] = (*fb).seekoff(4*pos[j], ios::beg, ios::in);
fs >> i;
cout << “data at pos” << setw(4) << pos[j] << “is \”“ << setw(4) << i

<< ”\“ (byte offset was ” << setw(10) << off[j] << “)” << endl;
if (i != pos[j]) return 77 + 10*j;

}
return 0;

}

Define an Input Operator for a Class Type
An input operator is predefined for all built-in C++ types. If you create a class
type and want to read input from a file or the standard input device into objects of
that class type, you need to define an input operator for that class’s type. You
define an istream input operator that has the class type as its second argument.
For example:
myclass.h

#include <iostream.h>

class PhoneNumber {
public:

int AreaCode;
int Exchange;
int Local;

// Copy Constructor:
PhoneNumber(int ac, int ex, int lc) :

AreaCode(ac), Exchange(ex), Local(lc) {}
//... Other member functions
};

istream& operator>> (istream& aStream, PhoneNumber& aPhoneNum) {
int tmpAreaCode, tmpExchange, tmpLocal;
aStream >> tmpAreaCode >> tmpExchange >> tmpLocal;
aPhoneNum=PhoneNumber(tmpAreaCode, tmpExchange, tmpLocal);
return aStream;
}

The input operator must have the following characteristics:
v Its return type must be a reference to an istream.
v Its first argument must be a reference to an istream. This argument must be used

as the function’s return value.
v Its second argument must be a reference to the class type for which the operator

is being defined.

You can define the code performing the actual input any way you like. In the
above example, input is accomplished for the class type by requesting input from

Chapter 1. USL I/O Streaming 33

the istream object for all data members of the class type, and then invoking the
copy constructor for the class type. This is a typical format for a user-defined input
operator.

Use the cin Stream in a Class Input Operator

Be careful not to use the cin stream as the input stream when you define an input
operator for a class type, unless this is what you really want to do. In the example
above, if the line

aStream >> tmpAreaCode >> tmpExchange >> tmpLocal;

is rewritten as:
cin >> tmpAreaCode >> tmpExchange >> tmpLocal;

the input operator functions identically, when you use statements in your main
program such as cin >> myNumber. However, if the stream requesting input is not
the predefined stream cin, then redefining an input operator to read from cin will
produce unexpected results. Consider how the following code’s behavior changes
depending on whether cin or aStream is used as the stream in the input statement
within the input operator defined above:
#include <iostream.h>
#include <fstream.h>
#include “myclass.h”

int main(int argc, char *argv[]) {
PhoneNumber addressBook[40];
fstream infile(“address.txt”,ios::in);
for (int i=0;i<40;i++)

infile >> addressBook[i]; // does this read from “address.txt”
// or from standard input?

//...
}

In the original example, the definition of the input operator causes the program to
read input from the provided istream object (in this case, the fstream object infile).
The input is therefore read from a file. In the example that uses cin explicitly
within the input operator, the input that is supposedly coming from infile
according to the input statement infile >> addressBook[i] actually comes from the
predefined stream cin.

Display Prompts in Input Operator Code

You can display prompts for individual data members of a class type within the
input operator definition for that type. For example, you could redefine the
PhoneNumber input operator shown above as:
istream& operator>> (istream& aStream, PhoneNumber& aPhoneNum) {

int tmpAreaCode, tmpExchange, tmpLocal;
cout << “Enter area code: ”;
aStream >> tmpAreaCode;
cout << “Enter exchange: ”;
aStream >> tmpExchange;
cout << “Enter local: ”;
aStream >> tmpLocal;
aPhoneNum=PhoneNumber(tmpAreaCode, tmpExchange, tmpLocal);
return aStream;
}

You may be tempted to do this when you anticipate that the source of all input for
objects of a class will be the standard input stream cin. Avoid this practice

34 C/C++ Legacy Classes

wherever possible, because a program using your class may later attempt to read
input into an object of your class from a different stream (for example, an fstream
object attached to a file). In such cases, the prompts are still written to cout even
though input from cin is not consumed by the input operation. Such an interface
does not prevent programs from using your class, but the unnecessary prompts
may puzzle end users.

Use Output Streams Other than cout, cerr, and clog

You can use the same techniques for output to other output streams as for output
to the predefined output streams. The only difference is that, for other output
streams, your program must define the stream. Assuming you have defined a
stream attached to a file opened for output, and have called that stream myout,
you can write to that file through its stream, by specifying the stream’s name
instead of cout, cerr or clog:
// assume the output file is associated with stream myout

int a,b;
myout << a << b;

Define an Output Operator for a Class Type
An output operator is predefined for all built-in C++ types. If you create a class
type and want to write output of that class type to a file or to any of the
predefined output streams, you need to define an output operator for that class’s
type. You define an ostream output operator that has the class type as its second
argument. For example:
myclass.h

#include <iostream.h>

class PhoneNumber {
public:

int AreaCode;
int Exchange;
int Local;

// Copy Constructor:
PhoneNumber(int ac, int ex, int lc) :
AreaCode(ac), Exchange(ex), Local(lc) {}

//... Other member functions
};

ostream& operator<< (ostream& aStream, PhoneNumber aPhoneNum) {
aStream << “(” << aPhoneNum.AreaCode << “) ”

<< aPhoneNum.Exchange << “-”
<< aPhoneNum.Local << ’\n’;

return aStream;
}

The output operator must have the following characteristics:
v Its return type should be a reference to an ostream.
v Its first argument must be a reference to an ostream. This argument must be

used as the function’s return value.
v Its second argument must be of the class type for which the operator is being

defined.

You can define the code performing the actual output any way you like. In the
above example, output is accomplished for the class type by placing in the output
stream all data members of the class, along with parentheses around the area code,
a space before the exchange, and a hyphen between the exchange and the local.

Class Output Operators and the Format State

Chapter 1. USL I/O Streaming 35

You should consider checking the state of applicable format flags for any stream
you perform output to in a class output operator. At the very least, if you change
the format state in your class output operator, before your operator returns it
should reset the format state to what it was on entry to the operator. For example,
if you design an output operator to always write floating-point numbers at a given
precision, you should save the precision in a temporary on entry to your operator,
then change the precision and do your output, and reset the precision before
returning.

The ios::x_width setting determines the field width for output. Because
ios::x_width is reset after each insertion into an output stream (including insertions
within class output operators you define), you may want to check the setting of
ios::x_width and duplicate it for each output your operator performs. Consider the
following example, in which class Coord_3D defines a three-dimensional
co-ordinate system. If the function requesting output sets the stream’s width to a
given value before the output operator for Coord_3D is invoked, the output
operator applies that width to each of the three co-ordinates being output. (Note
that it lets the width reset after the third output so that, from the client code’s
perspective, ios::x_width is reset by the output operation, as it would be for
built-in types such as float).
//Setting the output width in a class output operator

#include <iostream.h>
#include <iomanip.h>

class Coord_3D {
public:

double X,Y,Z;
Coord_3D(double x, double y, double z) : X(x), Y(y), Z(z) {}
};

ostream& operator << (ostream& aStream, Coord_3D coord) {
int startingWidth=aStream.width();
aStream << coord.X

#ifndef NOSETW
<< setw(startingWidth) // set width again

#endif
<< coord.Y

#ifndef NOSETW
<< setw(startingWidth) // set width again

#endif
<< coord.Z;

return aStream;
}

int main(int argc, char *argv[]) {
Coord_3D MyCoord(38.162168,1773.59,17293.12);
cout << setw(17) << MyCoord << ’\n’

<< setw(11) << MyCoord << endl;
return 0;
}

If you add #define NOSETW to prevent the two lines containing setw() in the
output operator definition from being compiled, the program produces the output
shown below. Notice that only the first data member of class Coord_3D is
formatted to the desired width.

38.16221773.5917293.1
38.16221773.5917293.1

If you do not comment out the lines containing setw(), all three data members are
formatted to the desired width, as shown below:

38.1622 1773.59 17293.1
38.1622 1773.59 17293.1

36 C/C++ Legacy Classes

Correct Input Stream Errors
When an input statement is requesting input of one type, and erroneous input or
input of another type is provided, the error state of the input stream is set to
ios::badbit and ios::failbit, and further input operations may not work properly. For
example, the following code repeatedly displays the text: Enter an integer value: if
the first input provided is a string whose initial characters do not form an integer
value:
#include <iostream.h>
int main(int argc, char *argv[])

{
int i=-1;
while (i<=0)
{

cout << “Enter a positive integer: ” ;
cin >> i;

}
cout << “The value was ” << i << endl;
return 0;
}

This program loops indefinitely, given an input such as ABC12, because the
erroneous input causes the error state to be set in the stream, but does not clear the
error state or advance the get pointer in the stream beyond the erroneous
characters. Each time the input operator is called for an int (as in the while loop
above), the same characters are read in.

To clear an input stream and repeat an attempt at input you must add code to do
the following:
1. Clear the stream’s error state.
2. Remove the erroneous characters from the stream.
3. Attempt the input again.

You can determine whether the stream’s error state has been set in one of the
following ways:
v By calling fail() for the stream (shown in the example below)
v By calling bad(), eof(), good(), or rdstate().
v By using the void* type conversion operator (for example, if (cin)).
v By using the operator! operator (shown in the comment in the example below)

You can clear the error state by calling clear(), and you can remove the erroneous
characters using ignore(). The example above could be improved, using these
suggestions, as follows:
#include <iostream.h>

int main(int argc, char *argv[]) {
int i=-1;
while (i==-1) {

cout << “Enter an integer value: ”;
cin >> i;
while (cin.fail()) { // could also be “while (!cin) {”

cin.clear();
cin.ignore(1000,’\n’);
cerr << “Please try again: ”;
cin >> i;
}

Chapter 1. USL I/O Streaming 37

}
cout << “The value was ” << i << endl;
return 0;

}

The ignore() member function with the arguments shown above removes
characters from the input stream until the total number of characters removed
equals 1000, or until the new-line character is encountered, or until EOF is reached.
This example produces the output shown below in regular type, given the input
shown in bold:
Enter an integer value:
ABC12
Please try again:
12ABC
The value was 12

Note that, for the second attempt at input, the error state is set after the input of
12, so the call to cin.fail() after the corrected input returns false. If another integer
input were requested after the while loop ends, the error state would be set and
that input would fail.

When you define an input operator of class type, you can build error-checking
code into your definition. If you do so, you do not have to check for error-causing
input every time you use the input operator for objects of your class type.
Consider the class definition for the PhoneNumber data type shown in myclass.h,
and the following input operator definition:
istream& operator>> (istream& aStream, PhoneNumber& aPhoneNum)

{
int AreaCode, Exchange, Local;
aStream >> AreaCode;

while (aStream.fail()) eatNonInts(aStream,AreaCode);
aStream >> Exchange;

while (aStream.fail()) eatNonInts(aStream,Exchange);
aStream >> Local;

while (aStream.fail()) eatNonInts(aStream,Local);
aPhoneNum=PhoneNumber(AreaCode, Exchange, Local);
return aStream;
}

The eatNonInts() function in this example should be defined to ignore all
characters in the input stream until the next integer character is encountered, and
then to read the next integer value into the variable provided as its second
argument. The function could be defined as follows:
void eatNonInts(istream& aStream, int& anInt)

{
char someChar;
aStream.clear();
while (someChar=aStream.peek(), !isdigit(someChar))

aStream.get(someChar);
aStream >> anInt;
}

Now whenever input is requested for a PhoneNumber object and the provided
input contains nonnumeric data, this data is skipped over. Note that this is only a
primitive error-handling mechanism; if the input provided is 416 555 2p45 instead
of 416 555 2045, the characters p45 will be ignored and the local is set to 2 rather
than 2045. A more complete example would check each input for the correct
number of digits.

38 C/C++ Legacy Classes

Manipulate Strings with the strstream Classes
You can use the strstream classes to perform formatted input and output to arrays
of characters in memory. If you create formatted strings using these classes, your
code will be less error-prone than if you use the sprintf() function to create
formatted arrays of characters.

For new applications, you may want to consider using IString or IText rather than
strstream to handle strings. These classes provides a much broader range of
string-handling capabilities than strstream, including the ability to use
mathematical operators such as + (to concatenate two strings), = (to copy one
string to another), and == (to compare two strings for equality).

You can use the strstream classes to retrieve formatted data from strings and to
write formatted data out to strings. This capability can be useful in situations such
as the following:
v Your application needs to send formatted data to an external function that will

display, store, or print the formatted data. In such cases, your application, rather
than the external function, formats the data.

v Your application generates a sequence of formatted outputs, and requires the
ability to change earlier outputs as later outputs are determined and placed in
the stream, before all outputs are sent to an output device.

v Your application needs to parse the environment string or another string already
in memory, as if that string were formatted input.

You can read input from an strstream, or write output to it, using the same I/O
operators as for other streams. You can also write a string to a stream, then read
that string as a series of formatted inputs. In the following example, the function
add() is called with a string argument containing representations of a series of
numeric values. The add() function writes this string to a two-way strstream object,
then reads double values from that stream, and sums them, until the stream is
empty. add() then writes the result to an ostrstream, and returns
OutputStream.str(), which is a pointer to the character string contained in the
output stream. This character string is then sent to cout by main().
// Using the strstream classes to parse an argument list

#include <strstream.h>
char* add(char*);

int main(int argc, char *argv[])
{

cout << add(“1 27 32.12 518”) << endl;
return 0;

}

char* add(char* addString)
{

double value=0,sum=0;
strstream TwoWayStream;
ostrstream OutputStream;
TwoWayStream << addString << endl;
for (;;)
{

TwoWayStream >> value;
if (TwoWayStream) sum+=value;
else break;

}
OutputStream << “The sum is: ” << sum << “.” << ends;
return OutputStream.str();

}

Chapter 1. USL I/O Streaming 39

This program produces the following output:
The sum is: 578.12.

40 C/C++ Legacy Classes

Chapter 2. USL Complex Mathematics Library

The Complex Mathematics Library provides you with the facilities to manipulate
complex numbers and to perform standard mathematical operations on them. This
library is comprised of two classes:
v complex is the class that lets you manipulate complex numbers
v c_exception is the class that you use to handle errors created by the functions

and operations in the complex class.

The Complex Mathematics Library provides you with the following functionality:
v Mathematical operators with the same precedence as the corresponding real

operators. With these operators, you can code expressions on complex numbers.
v Mathematical, trigonometric, magnitude, and conversion functions as friend

functions of complex objects.
v Predefined mathematical constants.
v Input and output operators for USL I/O Stream Library input and output:

Complex numbers are written to the output stream in the format (real,imag).
Complex numbers are read from the input stream in one of two formats:
(real,imag) or real.

v The c_exception class to handle errors. You can also define your own version of
the error handling function.

Review of Complex Numbers
A complex number is made up of two parts: a real part and an imaginary part. A
complex number can be represented by an ordered pair (a, b), where a is the value
of the real part of the number and b is the value of the imaginary part. If (a, b) and
(c,d) are complex numbers, then the following statements are true:
v (a, b) + (c, d) = (a + c, b + d)
v (a, b) - (c, d) = (a - c, b - d)
v (a, b) * (c, d) = (ac - bd, ad + bc)
v (a, b) / (c, d) = ((ac + bd) / (c^2 + d^2), (bc - ad) / (c^2 + d^2))
v The conjugate of a complex number (a,b) is (a,-b)
v The absolute value or magnitude of a complex number (a,b) is the positive

square root of the value a^2 + b^2
v The polar representation of (a, b) is (r, theta), where r is the distance from the

origin to the point (a, b) in the complex plane, and theta is the angle from the
real axis to the vector (a, b) in the complex plane. The angle theta can be positive
or negative.

Header Files and Constants for the complex and c_exception Classes
To use the complex or c_exception classes, you must:
v Include the following statement in any file using these classes:

#include <complex.h>

Constants Defined in complex.h

© Copyright IBM Corp. 1996, 2003 41

The following table lists the mathematical constants that the Complex Mathematics
Library defines.

Constant Name Description

M_E The constant e

M_LOG2E The logarithm of e to the base 2

M_LOG10E The logarithm of e to the base 10

M_LN2 The natural logarithm of 2

M_LN10 The natural logarithm of 10

M_PI π (pi)

M_PI_2 π (pi) divided by two

M_PI_4 π (pi) divided by four

M_1_PI 1/ π (1/pi)

M_2_PI 2/ π (2/pi)

M_2_SQRTPI 2 divided by the square root of π (pi)

M_SQRT2 The square root of 2

M_SQRT1_2 The square root of 1/2

Construct complex Objects
You can use the complex constructor to construct initialized or uninitialized
complex objects or arrays of complex objects. The following example shows
different ways of creating and initializing complex objects:

complex comp1; // Initialized to (0, 0)
complex comp2(3.14); // Initialized to (3.14, 0)
complex comp3(3.14,2.72); // Initialized to (3.14, 2.72)
complex comparr1[3]={

1.0, // Initialized to (1.0, 0)
complex(2.0,-2.0), // (2.0, -2.0)
3.0 // (3.0, 0)
};

complex comparr2[3]={
complex(1.0,1.0), // Initialized to (1.0, 1.0)
2.0, // (2.0, 0)
complex(3.0,-3.0) // (3.0, -3.0)
};

complex comparr3[3]={
1.0, // Initialized to (1.0, 0)
complex(M_PI_4,M_SQRT2), // (0.785..., 1.414...)
M_SQRT1_2 // (0.707..., 0)
};

Mathematical Operators for complex
The complex class defines a set of mathematical operators with the same
precedence as the corresponding real operators. With the following operators, you
can code expressions on complex numbers:
v operator + (addition)
v operator * (multiplication)
v operator - (negation)
v operator - (subtraction)
v operator / (division)
v operator += (assignment)

42 C/C++ Legacy Classes

v operator -= (assignment)
v operator *= (assignment)
v operator /= (assignment)
v operator == (equality)
v operator != (inequality)

The complex mathematical assignment operators (+=, -=, *=, /=) do not produce a
value that can be used in an expression. The following code, for example, produces
a compile-time error:

complex x, y, z; // valid declaration
x = (y += z); // invalid assignment causes

// a compile-time error

The equality and inequality operators test for an exact equality between the real
parts of two numbers, and between their complex parts. Because both components
are double values, two numbers may be “equal” within a certain tolerance, but
unequal as far as these operators are concerned. If you want an equality or
inequality operator that can test for an absolute difference within a certain
tolerance between the two pairs of corresponding components, you should define
your own equality functions rather than use the equality and inequality operators
of the complex class.

Use Mathematical Operators for complex
With these operators, you can code expressions on complex numbers such as the
expressions shown in the example below. In the example, for each complex scalar
x, the comments showing the results of operations use xr to denote the scalar’s real
part and xi to denote the scalar’s imaginary part.

// Using the complex mathematical operators

#include <complex.h>
#include <iostream.h>

complex a,b,c,d,e,f,g;

int main(int argc, char *argv[])
{

cout << “Enter six complex numbers, separated by spaces:\n”;
cin >> b >> c >> d >> e >> f >> g;

// assignment, multiplication, addition
a=b*c+d; // a=((br*cr)-(bi*ci)+dr , (br*ci)+(bi*cr)+di)

// division
a=b/d; // a=((br*dr)+(bi*di) / ((br*br)+(bi*bi),

// (bi*dr)-(br*di) / ((br*br)+(bi*bi))

// subtraction
a=b-f; // a=((br-fr), (bi-fi))

// equality, multiplication assignment
if (a==f) c*=e; // same as c=c*e;

// inequality, addition assignment
if (b!=f) d+=g; // same as d=d+g;

cout << “Here are the seven numbers after calculations:\n”
<< “a=” << a << ’\n’
<< “b=” << b << ’\n’
<< “c=” << c << ’\n’
<< “d=” << d << ’\n’
<< “e=” << e << ’\n’

Chapter 2. USL Complex Mathematics Library 43

<< “f=” << f << ’\n’
<< “g=” << g << endl;

return 0;
}

This example produces the output shown below in regular type, given the input
shown in bold:

Enter six complex numbers, separated by spaces:
(1.14,2.28) (2.24,4.48) (1.17,12.18)
(4.4444444,5.12341) (12,7) 5
Here are the seven numbers after calculations:
a=(-10.86, -4.72)
b=(1.14, 2.28)
c=(2.24, 4.48)
d=(6.17, 12.18)
e=(4.44444, 5.12341)
f=(12, 7)
g=(5, 0)

Note that there are no increment or decrement operators for complex numbers.

Friend Functions for complex
The complex class defines a set of mathematical, trigonometric, magnitude, and
conversion functions as friend functions of complex objects. They are:

v exp (exponent)
v log (natural logarithm)
v pow (power)
v sqrt (square root)
v cos (cosine)
v cosh (hyperbolic cosine)
v sin (sine)
v sinh (hyperbolic sine)
v abs (absolute value or magnitude)
v norm (square of magnitude)
v arg (polar angle)
v conj (conjugate)
v polar (polar to complex)
v real (real part)
v imag (imaginary part)

Use Friend Functions with complex
The complex class defines a set of mathematical, trigonometric, magnitude and
conversion functions as friend functions of complex objects. Because these
functions are friend functions rather than member functions, you cannot use the
dot or arrow operators. For example:

complex a, b, *c;

a - exp(b); //correct - exp() is a friend function of complex
a = b.exp(); //error - exp() is not a member function of complex
a = c -> exp(); //error - exp() is not a member function of complex

Use Friend Functions for complex

44 C/C++ Legacy Classes

The complex class defines four mathematical functions as friend functions of
complex objects.
v exp - Exponent
v log - Logarithm
v pow - Power
v sqrt - Square Root

The following example shows uses of these mathematical functions:
// Using the complex mathematical functions

#include <complex.h>
#include <iostream.h>

int main(int argc, char *argv[])
{

complex a, b;
int i;
double f;
//
// prompt the user for an argument for calls to
// exp(), log(), and sqrt()
//
cout << “Enter a complex value\n”;
cin >> a;
cout << “The value of exp() for ” << a << “ is: ” << exp(a)

<< “\nThe natural logarithm of ” << a << “ is: ” << log(a)
<< “\nThe square root of ” << a << “ is: ” << sqrt(a) << “\n\n”;

//
// prompt the user for arguments for calls to pow()
//
cout << “Enter 2 complex values (a and b), an integer (i),”

<< “ and a floating point value (f)\n”;
cin >> a >> b >> i >> f;
cout << “a is ” << a << “, b is ” << b << “, i is ” << i

<< “, f is ” << f << ’\n’
<< “The value of f**a is: ” << pow(f, a) << ’\n’
<< “The value of a**i is: ” << pow(a, i) << ’\n’
<< “The value of a**f is: ” << pow(a, f) << ’\n’
<< “The value of a**b is: ” << pow(a, b) << endl;

return 0;
}

This example produces the output shown below in regular type, given the input
shown in bold:

Enter a complex value
(3.7,4.2)
The value of exp() for (3.7, 4.2) is: (-19.8297, -35.2529)
The natural logarithm of (3.7, 4.2) is: (1.72229, 0.848605)
The square root of (3.7, 4.2) is: (2.15608, 0.973992)

Enter 2 complex values (a and b), an integer (i), and a floating point value (f)
(2.6,9.39) (3.16,1.16) -7 33.16237
a is (2.6, 9.39), b is (3.16, 1.16), i is -7, f is 33.1624
The value of f**a is: (972.681, 8935.53)
The value of a**i is: (-1.13873e-07, -3.77441e-08)
The value of a**f is: (4.05451e+32, -4.60496e+32)
The value of a**b is: (262.846, 132.782)

Use Trigonometric Functions for complex

The complex class defines four trigonometric functions as friend functions of
complex objects.
v cos - Cosine

Chapter 2. USL Complex Mathematics Library 45

v cosh - Hyperbolic cosine
v sin - Sine
v sinh - Hyperbolic sine

The following example shows how you can use some of the complex trigonometric
functions:

// Complex Mathematics Library trigonometric functions

#include <complex.h>
#include <iostream.h>

int main(int argc, char *argv[])

{
complex a = (M_PI, M_PI_2); // a = (pi,pi/2)
// display the values of cos(), cosh(), sin(), and sinh()
// for (pi,pi/2)
cout << “The value of cos() for (pi,pi/2) is: ” << cos(a) << ’\n’

<< “The value of cosh() for (pi,pi/2) is: ” << cosh(a) << ’\n’
<< “The value of sin() for (pi,pi/2) is: ” << sin(a) << ’\n’
<< “The value of sinh() for (pi,pi/2) is: ” << sinh(a) << endl;

return 0;
}

This program produces the following output:
The value of cos() for (pi,pi/2) is: (6.12323e-17, 0)
The value of cosh() for (pi,pi/2) is: (2.50918, 0)
The value of sin() for (pi,pi/2) is: (1, -0)
The value of sinh() for (pi,pi/2) is: (2.3013, 0)

Use Magnitude Functions for complex

The magnitude functions for complex are:
v abs - Absolute value
v norm - Square magnitude

Use Conversion Functions for complex

The conversion functions in the Complex Mathematics Library allow you to
convert between the polar and standard complex representations of a value and to
extract the real and imaginary parts of a complex value.

The complex class provides the following conversion functions as friend functions
of complex objects:
v arg - angle in radians
v conj - conjugation
v polar - polar to complex
v real -extract to real part
v imag - extract imaginary part

The following program shows how to use complex conversion functions:
// Using the complex conversion functions

#include <complex.h>
#include <iostream.h>

int main(int argc, char *argv[])
{

complex a;

46 C/C++ Legacy Classes

//for a value supplied by the user, display the real part,
//the imaginary part, and the polar representation.

cout << “Enter a complex value” << endl;

cin >> a;

cout << “The real part of this value is ” << real(a) << endl;
cout << “The imaginary part of this value is ” << imag(a) << endl;
cout << “The polar representation of this value is ”

<< “(” <<abs(a) << “,” << arg(a) << “)” <<endl;
return 0;

}

This example produces the output shown below, given the input shown in bold:
Enter a complex value
(175,162)
The real part of this value is 175
The imaginary part of this value is 162
The polar representation of this value is (238.472,0.746842)

Input and Output Operators for complex
The complex class defines input and output operators for USL I/O Stream Library:

v operator >> (input)
v operator << (output)

Complex numbers are written to the output stream in the format (real,imag).
Complex numbers are read from the input stream in one of two formats:
(real,imag) or real.

Use complex Input and Output Operators
The following example demonstrates the use of complex input and output
operators:
// An example of complex input and output

#include <complex.h> // required for use of Complex Mathematics Library
#include <iostream.h> // required for use of I/O Stream input and output

int main(int argc, char *argv[]) {
complex a [3]={1.0,2.0,complex(3.0,-3.0)};
complex b [3];
complex c [3];
complex d;

// read input for all of arrays b and c
// (you must specify each element individually)

cout << “Enter three complex values separated by spaces:” << endl;
cin >> b[0] >> b[1] >> b[2];
cout << “Enter three more complex values:” << endl;
cin >> c[2] >> c[0] >> c[1];

// read input for scalar d
cout << “Enter one more complex value:” << endl;
cin >> d;

// Note that you cannot use the above notation for arrays.
// For example, cin >> a; is incorrect because a is a complex array.
// Display each array of three complex numbers, then the complex scalar

cout << “Here are some elements of arrays a,b,and c:\n”
<< a[2] << endl

Chapter 2. USL Complex Mathematics Library 47

<< b[0] << b[1] << b[2] << endl
<< c[1] << endl
<< “Here is scalar d: ”
<< d << endl

// cout << a produces an address, not a list of array elements:
<< “Here is the address of array a:” << endl
<< a
<< endl; //endl flushes the output stream

return 0;
}

This example produces the output shown below in regular type, given the input
shown in bold. Notice that you can insert white space within a complex number,
between the brackets, numbers, and comma. However, you cannot insert white
space within the real or imaginary part of the number. The address displayed may
be different, or in a different format, than the address shown, depending on the
operating system, hardware, and other factors:
Enter three complex values separated by spaces:
38 (12.2,3.14159) (1712,-33)
Enter three more complex values:
(17.1234 , 1234.17) (27, 12) (-33 ,0)
Enter one more complex value:
17
Here are some elements of arrays a,b,and c:
(3, -3)
(38, 0)(12.2, 3.14159)(1712, -33)
(-33, 0)
Here is scalar d:(17, 0)
Here is the address of array a:
0x2ff21cc0

Error Functions
There are three recommended methods to handle complex mathematics errors:
v use the c_exception class
v define a customized complex_error function
v handle errors outside of the complex mathematics library

Using the c_exception Class

The c_exception class lets you handle errors that are created by the functions and
operations in the complex class. When the Complex Mathematics Library detects
an error in a complex operation or function, it invokes complex_error(). This friend
function of c_exception has a c_exception object as its argument. When the
function is invoked, the c_exception object contains data members that define the
function name, arguments, and return value of the function that caused the error,
as well as the type of error that has occurred. If you do not define your own
complex_error function, complex_error sets the complex return value and the errno
error number.

Defining a Customized complex_error Function

You can either use the default version of complex_error() or define your own
version of the function. If you define your own complex_error() function, and this
function returns a nonzero value, no error message will be generated.

Handling Errors Outside of the Complex Mathematics Library

48 C/C++ Legacy Classes

There are some cases where member functions of the Complex Mathematics
Library call functions in the math library. These calls can cause underflow and
overflow conditions that are handled by the matherr() function that is declared in
the math.h header file. For example, the overflow conditions that are caused by the
following calls are handled by matherr():
v exp(complex(DBL_MAX, DBL_MAX))

v pow(complex(DBL_MAX, DBL_MAX), INT_MAX)

v norm(complex(DBL_MAX, DBL_MAX))

DBL_MAX is the maximum valid double value, and is defined in float.h.
INT_MAX is the maximum int value, and is defined in limits.h.

If you do not want the default error-handling defined by matherr(), you should
define your own version of matherr().

Handle complex Mathematics Errors
You can use one of the following methods to handle complex mathematics errors:
v use the c_exception class

v z/OS AIX define a customized complex_error function

v z/OS AIX compile a program that uses a customized complex_error
function

Use c_exception to Handle complex Mathematics Errors

The c_exception class is not related to the C++ exception handling mechanism that
uses the try, catch, and throw statements.

The c_exception class lets you handle errors that are created by the functions and
operations in the complex class. When the Complex Mathematics Library detects
an error in a complex operation or function, it invokes complex_error(). This friend
function of c_exception has a c_exception object as its argument. When the
function is invoked, the c_exception object contains data members that define the
function name, arguments, and return value of the function that caused the error,
as well as the type of error that has occurred. The data members are as follows:

complex arg1; // First argument of the
// error-causing function

complex arg2; // Second argument of the
// error-causing function

char* name; // Name of the error-causing function
complex retval; // Value returned by default

// definition of complex_error
int type; // The type of error that has occurred.

If you do not define your own complex_error function, complex_error sets the
complex return value and the errno error number.

z/OS AIX Define a Customized complex_error Function

You can either use the default version of complex_error() or define your own
version of the function. When defining your own version of the complex_error()
function, you must link your application to the static version of the complex
library.

In the following example, complex_error() is redefined:

Chapter 2. USL Complex Mathematics Library 49

// Redefinition of the complex_error function

#include <iostream.h>
#include <complex.h>
#include <float.h>

int complex_error(c_exception &c)
{

cout << “================” << endl;
cout << “ Exception ” << endl;
cout << “type = ” << c.type << endl;
cout << “name = ” << c.name << endl;
cout << “arg1 = ” << c.arg1 << endl;
cout << “arg2 = ” << c.arg2 << endl;
cout << “retval = ” << c.retval << endl;
cout << “================” << endl;
return 0;

}

int main(int argc, char *argv[])
{

complex c1(DBL_MAX,0);
complex result;
result = exp(c1);
cout << “exp” << c1 << “= ” << result << endl;
return 0;

}

This example produces the following output:
================

Exception
type = 3
name = exp
arg1 = (1.79769e+308, 0)
arg2 = (0, 0)
retval = (infinity, -infinity)
================
exp(1.79769e+308, 0)= (infinity, -infinity)

If the redefinition of complex_error() in the above code is commented out, the
default definition of complex_error() is used, and the program produces the
following output:

exp(7.23701e+75, 0) = (7.23701e+75, -7.23701e+75)

z/OS AIX Compile a Program that Uses a Customized complex_error
Function

If you define your own version of complex_error, you must ensure that the name
of the header file that contains your version of the complex_error is included in
your source file when you compile you program.

Example: Calculate Roots
The following example shows how you can use the complex Mathematics Library
to calculate the roots of a complex number. For every positive integer n, each
complex number z has exactly n distinct nth roots. Suppose that in the complex
plane the angle between the real axis and point z is theta, and the distance between
the origin and the point z is r. Then z has the polar form (r, theta), and the n roots
of z have the values:
sigma
sigma x omega
sigma x omega^2
sigma x omega^3

50 C/C++ Legacy Classes

.

.

.
sigma x omega^(n - 1)

where omega is a complex number with the value:
omega = (cos(2pi / n), sin(2pi / n))

and sigma is a complex number with the value:
sigma = r^(1/n) (cos(theta / n), sin(theta / n))

The following code includes two functions, get_omega() and get_sigma(), to
calculate the values of omega and sigma. The user is prompted for the complex
value z and the value of n. After the values of omega and sigma have been
calculated, the n roots of z are calculated and printed.

// Calculating the roots of a complex number

#include <iostream.h>
#include <complex.h>
#include <math.h>

// Function to calculate the value of omega for a given value of n

complex get_omega(double n)

{
complex omega = complex(cos((2.0*M_PI)/n), sin((2.0*M_PI)/n));
return omega;

}

// function to calculate the value of sigma for a given value of
// n and a given complex value

complex get_sigma(complex comp_val, double n)
{

double rn, r, theta;
complex sigma;
r = abs(comp_val);
theta = arg(comp_val);
rn = pow(r,(1.0/n));
sigma = rn * complex(cos(theta/n),sin(theta/n));
return sigma;

}

int main(int argc, char *argv[])
{

double n;
complex input, omega, sigma;
//
// prompt the user for a complex number
//
cout << “Please enter a complex number: ”;
cin >> input;
//
// prompt the user for the value of n
//
cout << “What root would you like of this number? ”;
cin >> n;
//
// calculate the value of omega
//
omega = get_omega(n);
cout << “Here is omega ” << omega << endl;
//
// calculate the value of sigma
//
sigma = get_sigma(input,n);

Chapter 2. USL Complex Mathematics Library 51

cout << “Here is sigma ” << sigma << ’\n’
<< “Here are the ” << n << “ roots of ” << input << endl;

for (int i = 0; i < n ; i++)
{

cout << sigma*(pow(omega,i)) << endl;
}
return 0

}

This example produces the output shown below in regular type, given the input
shown in bold:

Please enter a complex number: (-7, 24)
What root would you like of this number? 2
Here is omega (-1, 1.22465e-16)
Here is sigma (3, 4)
Here are the 2 roots of (-7, 24)
(3, 4)
(-3, -4)

Example: Use Equality and Inequality Operators
The functions is_equal and is_not_equal in the following example provide a
reliable comparison between two complex values:

// Testing complex values for equality within a certain tolerance

#include <complex.h>
#include <iostream.h> // for output
#include <iomanip.h> // for use of setw() manipulator

int is_equal(const complex &a, const complex &b,
const double tol=0.0001)

{
return (abs(real(a) - real(b)) < tol &&

abs(imag(a) - imag(b)) < tol);
}

int is_not_equal(const complex &a, const complex &b,
const double tol=0.0001)

{
return !is_equal(a, b, tol);

}

int main(int argc, char *argv[])
{

complex c[4] = { complex(1.0, 2.0),
complex(1.0, 2.0),
complex(3.0, 4.0),
complex(1.0000163,1.999903581)};

cout << “Comparison of array elements c[0] to c[3]\n”
<< “== means identical,\n!= means unequal,\n”
<< “ ~ means equal within tolerance of 0.0001.\n\n”
<< setw(10) << “Element”
<< setw(6) << 0
<< setw(6) << 1
<< setw(6) << 2
<< setw(6) << 3
<< endl;

for (int i=0;i<4;i++) {
cout << setw(10) << i;
for (int j=0;j<4;j++) {

if (c[i]==c[j]) cout << setw(6) << “==”;
else if (is_equal(c[i],c[j])) cout << setw(6) << “~”;

else if (is_not_equal(c[i],c[j])) cout << setw(6) << “!=”;
else cout << setw(6) << “???”;

}

52 C/C++ Legacy Classes

cout << endl;
}

return 0
}

This example produces the following output:
Comparison of array elements c[0] to c[3]
== means identical,
!= means unequal,
~ means equal within tolerance of 0.0001.

Element 0 1 2 3
0 == == != ~
1 == == != ~
2 != != == !=
3 ~ ~ != ==

Chapter 2. USL Complex Mathematics Library 53

54 C/C++ Legacy Classes

Chapter 3. Reference

_CCSID_T
400 This class is specific to the OS/400 implementation. Its use will lead to

nonportable code.

The C++ Standard Library and the USL Library use this class to pass Coded
Character Set ID (CCSID) information to the streaming functions. There are two
identical versions of this class, one for the C++ Standard Library in the std
namespace and the other for the USL Library in the global namespace.

Class header file: fstream.h

_CCSID_T - Hierarchy List
_CCSID_T

_CCSID_T - Member Functions and Data by Group

Constructors & Destructor
_CCSID_T

public:_CCSID_T(int ii)

This is supported on 400

Constructs an object of this class. The int parameter represents an OS/400
numeric CCSID.

Query Functions
value

public:int value() const

This is supported on 400

Returns the OS/400 numeric Coded Character Set IDentifier (CCSID).

_CCSID_T - Inherited Member Functions and Data
Inherited Public Functions

None
Inherited Public Data

None
Inherited Protected Functions

None
Inherited Protected Data

None

complex
This class provides you with facilities to manipulate complex numbers.

© Copyright IBM Corp. 1996, 2003 55

A complex number is made up of two parts: a real part and an imaginary part. A
complex number can be represented by an ordered pair (a, b), where a is the value
of the real part of the number and b is the value of the imaginary part.

Class header file: complex.h

complex - Hierarchy List
complex

complex - Member Functions and Data by Group

Constructors & Destructor
These constructors can be used to create complex objects.

There is no explicit complex destructor.

Arrays of Complex Numbers

You can use the complex constructor to initialize arrays of complex numbers. If the
list of initial values is made up of complex values, each array element is initialized
to the corresponding value in the list of initial vlaues. If the list of initial values is
not made up of complex values, the real parts of the array elements are initialized
to these initial values and the imaginary parts of the array elements are initialized
to 0.

In the following example, the elements of array b are initialized to the values in
the initial value list, but only the real parts of elements of array a are initialized to
the values in the initial value list.

#include < complex.h >

int main()
{

complex a[3] = {1.0, 2.0, 3.0};
complex b[3] = {complex(1.0, 1.0), complex(2.0, 2.0), complex(3.0, 3.0)};

cout << "Here is the first element of a: " << a[0] << endl;
cout << "Here is the first element of b: " << b[0] << endl;

}

This example produces the following output:
Here is the first element of a: (1, 0)
Here is the first element of b: (1, 1)

complex

Constructs a complex number.
Overload 1

public:complex(double r, double i = 0.0)

This is supported on AIX 400 z/OS

Constructs a complex number.

The first argument, r, is assigned to the real part of the complex
number. If you specify a second argument, it is assigned to the
imaginary part of the complex number. If the second parameter is
not specified, the imaginary part is initialized to 0.

Overload 2

56 C/C++ Legacy Classes

public:complex()

This is supported on AIX 400 z/OS

Constructs a complex number . The real and imaginary parts of the
complex number are initialized to (0, 0).

Assignment Operators
The assignment operators do not produce a value that can be used in an
expression. The following code, for example, produces a compile-time error:

complex x, y, z; // valid declaration

x = (y += z); // invalid assignment causes a compile-time error

y += z; // correct method involves splitting expression
x = y; // into separate statements.

operator *=

Assigns the value of x * y to x.
Overload 1

public:void operator *=(const complex&)

This is supported on AIX

Overload 2
public:inline void operator *=(complex)

This is supported on 400 z/OS

operator +=

Assigns the value of x + y to x.
Overload 1

public:inline void operator +=(complex)

This is supported on 400 z/OS

Overload 2
public:inline void operator +=(const complex&)

This is supported on AIX

operator -=

Assigns the value of x - y to x.
Overload 1

public:inline void operator -=(complex)

This is supported on 400 z/OS

Overload 2
public:inline void operator -=(const complex&)

This is supported on AIX

operator /=

Assigns the value of x / y to x.
Overload 1

public:inline void operator /=(complex)

Chapter 3. Reference 57

This is supported on 400 z/OS

Overload 2
public:void operator /=(const complex&)

This is supported on AIX

Internal Functions
These functions are internal to the complex class and should not be used by
application programs.
hexdiveq

public:void hexdiveq(complex)

This is supported on z/OS

An internal function called by operator/= when the application uses
hexadecimal floating point and double values.

hexmuteq
public:void hexmuteq(complex)

This is supported on z/OS

An internal function called by operator*= when the application uses
hexadecimal floating point and double values.

ieeediveq
public:void ieeediveq(complex)

This is supported on z/OS

An internal function called by operator/= when the application uses IEEE
floating point and double values.

ieeemuteq
public:void ieeemuteq(complex)

This is supported on z/OS

An internal function called by operator*= when the application uses IEEE
floating point and double values.

complex - Associated Globals
abs

double abs(complex)

Returns the absolute value or magnitude of its argument. The absolute
value of a complex value (a, b) is the positive square root of a2 + b2.

This is supported on 400 z/OS

abs
double abs(const complex&)

Returns the absolute value or magnitude of its argument. The absolute
value of a complex value (a, b) is the positive square root of a2 + b2.

58 C/C++ Legacy Classes

This is supported on AIX

arg
double arg(complex)

Returns the angle (in radians) of the polar representation of its argument.
If the argument is equal to the complex number (a, b), the angle returned
is the angle in radians on the complex plane between the real axis and the
vector (a, b). The return value has a range of -pi to pi.

This is supported on 400 z/OS

arg
double arg(const complex&)

Returns the angle (in radians) of the polar representation of its argument.
If the argument is equal to the complex number (a, b), the angle returned
is the angle in radians on the complex plane between the real axis and the
vector (a, b). The return value has a range of -pi to pi.

This is supported on AIX

conj
complex conj(complex)

Returns the complex value equal to (a, -b) if the input argument is equal to
(a, b).

This is supported on 400 z/OS

conj
inline complex conj(const complex&)

Returns the complex value equal to (a, -b) if the input argument is equal to
(a, b).

This is supported on AIX

cos
complex cos(complex)

Returns the cosine of the complex argument.

This is supported on 400 z/OS

cos
complex cos(const complex&)

Returns the cosine of the complex argument.

This is supported on AIX

cosh
complex cosh(complex)

Returns the hyperbolic cosine of the complex argument.

This is supported on 400 z/OS

cosh

Chapter 3. Reference 59

complex cosh(const complex&)

Returns the hyperbolic cosine of the complex argument.

This is supported on AIX

exp
complex exp(complex)

Returns the complex value equal to e to the power of x where x is the
argument.

This is supported on 400 z/OS

exp
complex exp(const complex&)

Returns the complex value equal to e to the power of x where x is the
argument.

This is supported on AIX

imag
double imag(const complex&)

Extracts the imaginary part of the complex number provided as the
argument.

This is supported on 400 z/OS

imag
inline double imag(const complex&)

Extracts the imaginary part of the complex number provided as the
argument.

This is supported on AIX

log
complex log(complex)

Returns the natural logarithm of the argument x.

This is supported on AIX

log
complex log(complex)

Returns the natural logarithm of the argument x.

This is supported on 400 z/OS

norm
double norm(complex)

Returns the square of the magnitude of its argument. If the argument x is
equal to the complex number (a, b), norm() returns the value a2 + b2.

norm() is faster than abs(), but it is more likely to cause overflow errors.

60 C/C++ Legacy Classes

This is supported on 400 z/OS

norm
double norm(const complex&)

Returns the square of the magnitude of its argument. If the argument x is
equal to the complex number (a, b), norm() returns the value a2 + b2.

norm() is faster than abs(), but it is more likely to cause overflow errors.

This is supported on AIX

operator !=
int operator !=(complex, complex)

The inequality operator ″!=″ returns a nonzero value if x does not equal y.
This operator tests for inequality by testing that the two real components
are not equal and that the two imaginary components are not equal.

Because both components are double values, the inequality operator
returns false only when both the real and imaginary components of the
two values are identical. If you want an inequality operator that can test
for an absolute difference within a certain tolerance between the two pairs
of corresponding components, you can use a function such as the
is_not_equal function.

This is supported on 400 z/OS

operator !=
inline int operator !=(const complex&, const complex&)

The inequality operator ″!=″ returns a nonzero value if x does not equal y.
This operator tests for inequality by testing that the two real components
are not equal and that the two imaginary components are not equal.

Because both components are double values, the inequality operator
returns false only when both the real and imaginary components of the
two values are identical. If you want an inequality operator that can test
for an absolute difference within a certain tolerance between the two pairs
of corresponding components, you can use a function such as the
is_not_equal function.

This is supported on AIX

operator *
complex operator *(complex, complex)

The multiplication operator returns the product of x and y.

This operator has the same precedence as the corresponding real operator.

This is supported on 400 z/OS

operator *
complex operator *(const complex&, double)

The multiplication operator returns the product of x and y.

Chapter 3. Reference 61

This operator has the same precedence as the corresponding real operator.

This is supported on AIX

operator *
complex operator *(const complex&, const complex&)

The multiplication operator returns the product of x and y.

This operator has the same precedence as the corresponding real operator.

This is supported on AIX

operator +
complex operator +(complex, complex)

The addition operator returns the sum of x and y.

This operator has the same precedence as the corresponding real operator.

This is supported on 400 z/OS

operator +
inline complex operator +(const complex&, const complex&)

The addition operator returns the sum of x and y.

This operator has the same precedence as the corresponding real operator.

This is supported on AIX

operator -
inline complex operator -(const complex&, const complex&)

The subtraction operator returns the difference between x and y.

This operator has the same precedence as the corresponding real operator.

This is supported on AIX

operator -
complex operator -(complex, complex)

The subtraction operator returns the difference between x and y.

This operator has the same precedence as the corresponding real operator.

This is supported on 400 z/OS

operator -
inline complex operator -(const complex&)

The negation operator returns (-a, -b) when its argument is (a, b).

This operator has the same precedence as the corresponding real operator.

This is supported on AIX

operator -

62 C/C++ Legacy Classes

complex operator -(complex)

The negation operator returns (-a, -b) when its argument is (a, b).

This operator has the same precedence as the corresponding real operator.

This is supported on 400 z/OS

operator /
complex operator /(const complex&, double)

The division operator returns the quotient of x divided by y.

This operator has the same precedence as the corresponding real operator.

This is supported on AIX

operator /
complex operator /(const complex&, const complex&)

The division operator returns the quotient of x divided by y.

This operator has the same precedence as the corresponding real operator.

This is supported on AIX

operator /
complex operator /(complex, complex)

The division operator returns the quotient of x divided by y.

This operator has the same precedence as the corresponding real operator.

This is supported on 400 z/OS

operator ==
int operator ==(complex, complex)

The equality operator ″==″ returns a nonzero value if x equals y. This
operator tests for equality by testing that the two real components are
equal and that the two imaginary components are equal.

Because both components are double values, the equality operator tests for
an exact match between the two sets of values. If you want an equality
operator that can test for an absolute difference within a certain tolerance
between the two pairs of corresponding components, you can use a
function such as the isequal function.

This is supported on 400 z/OS

operator ==
inline int operator ==(const complex&, const complex&)

The equality operator ″==″ returns a nonzero value if x equals y. This
operator tests for equality by testing that the two real components are
equal and that the two imaginary components are equal.

Chapter 3. Reference 63

Because both components are double values, the equality operator tests for
an exact match between the two sets of values. If you want an equality
operator that can test for an absolute difference within a certain tolerance
between the two pairs of corresponding components, you can use a
function such as the isequal function.

This is supported on AIX

polar
complex polar(double, double = 0)

Returns the standard complex representation of the complex number that
has a polar representation (a, b).

This is supported on AIX 400 z/OS

pow
complex pow(complex, double)

Returns the complex value xy, where x is the first argument and y is the
second argument.

This is supported on 400 z/OS

pow
complex pow(double, complex)

Returns the complex value xy, where x is the first argument and y is the
second argument.

This is supported on 400 z/OS

pow
complex pow(complex, complex)

Returns the complex value xy, where x is the first argument and y is the
second argument.

This is supported on 400 z/OS

pow
complex pow(complex, int)

Returns the complex value xy, where x is the first argument and y is the
second argument.

This is supported on 400 z/OS

pow
complex pow(const complex&, int)

Returns the complex value xy, where x is the first argument and y is the
second argument.

This is supported on AIX

pow
complex pow(const complex&, double)

64 C/C++ Legacy Classes

Returns the complex value xy, where x is the first argument and y is the
second argument.

This is supported on AIX

pow
complex pow(const complex&, const complex&)

Returns the complex value xy, where x is the first argument and y is the
second argument.

This is supported on AIX

pow
complex pow(double, const complex&)

Returns the complex value xy, where x is the first argument and y is the
second argument.

This is supported on AIX

real
double real(const complex&)

Extracts the real part of the complex number provided as the argument.

This is supported on 400 z/OS

real
inline double real(const complex&)

Extracts the real part of the complex number provided as the argument.

This is supported on AIX

sin
complex sin(const complex&)

Returns the sine of the complex argument.

This is supported on AIX

sin
complex sin(complex)

Returns the sine of the complex argument.

This is supported on 400 z/OS

sinh
complex sinh(const complex&)

Returns the hyperbolic sine of the complex argument.

This is supported on AIX

sinh
complex sinh(complex)

Returns the hyperbolic sine of the complex argument.

Chapter 3. Reference 65

This is supported on 400 z/OS

sqrt
complex sqrt(complex)

Returns the square root of its argument. If c and d are real values, then
every complex number (a, b), where:

a = c2 - d2

b = 2cd

has two square roots:
(c, d)
(-c, -d)

sqrt() returns the square root that has a positive real part, that is, the
square root that is contained in the first or fourth quadrants of the complex
plane.

This is supported on AIX 400 z/OS

complex - Inherited Member Functions and Data
Inherited Public Functions

None
Inherited Public Data

None
Inherited Protected Functions

None
Inherited Protected Data

None

filebuf
The filebuf class specializes streambuf for using files as the ultimate producer of
the ultimate consumer.

In a filebuf object, characters are cleared out of the put area by doing write
operations to the file, and characters are put into the get area by doing read
operations from that file. The filebuf class supports seek operations on files that
allow seek operations. A filebuf object that is attached to a file descriptor is said to
be open.

The stream buffer is allocated automatically if one is not specified explicitly with a
constructor or a call to setbuf(). You can also create an unbuffered filebuf object by
calling the constructor or setbuf() with the appropriate arguments. If the filebuf
object is unbuffered, a system call is made for each character that is read or
written.

The get and put pointers for a filebuf object behave as a single pointer. This single
pointer is referred to as the get/put pointer. The file that is attached to the filebuf
object also has a single pointer that indicates the current position where
information is being read or written. This pointer is called the file get/put pointer.

Class header file: fstream.h

66 C/C++ Legacy Classes

filebuf - Hierarchy List
streambuf
filebuf

filebuf - Member Functions and Data by Group

Constructors & Destructor
You can construct and destruct objects of the filebuf class.
~filebuf

public:~filebuf()

This is supported on AIX 400 z/OS

The filebuf destructor calls filebuf.close().
filebuf

Overload 1
public:filebuf(int fd, char* p, long l)

This is supported on AIX

Constructs a filebuf object that is attached to the file descriptor fd.
The object is initialized to use the stream buffer starting at the
position pointed to by p with length equal to l.
AIX Considerations

This function is available for 64-bit applications. The third
argument is a long value.

Overload 2
public:filebuf(int fd)

This is supported on AIX 400 z/OS

Constructs a filebuf object that is attached to the file descriptor fd.
Overload 3

public:filebuf(int fd, char* p, int l)

This is supported on AIX 400 z/OS

Constructs a filebuf object that is attached to the file descriptor fd.
The object is initialized to use the stream buffer starting at the
position pointed to by p with length equal to l.
AIX Considerations

This function is available for 32-bit applications. The third
argument is an int value.

Overload 4
public:filebuf()

This is supported on AIX 400 z/OS

Constructs an initially closed filebuf object.

Chapter 3. Reference 67

Attach Functions
attach

Attaches the filebuf object to the file descriptor or the file pointer.
Overload 1

public:filebuf* attach(FILE* fp)

This is supported on z/OS

Attaches the filebuf object to the file pointer fp. If the filebuf object
is already open, attach() returns 0. Otherwise, attach() returns a
pointer to the filebuf object.
z/OS Considerations

If you have a file pointer already opened, use this function
to do the attach instead of using the file descriptor.

Overload 2
public:filebuf* attach(int fd)

This is supported on AIX 400 z/OS

Attaches the filebuf object to the file descriptor fd. If the filebuf
object is already open or if fd is not open, attach() returns NULL.
Otherwise, attach() returns a pointer to the filebuf object.

is_open
public:int is_open()

This is supported on AIX 400 z/OS

Returns a nonzero value if the filebuf object is attached to a file descriptor.
Otherwise, is_open() returns zero.

Data members
openprot

public:static const int openprot

This is supported on AIX 400 z/OS

The default protection mode used when opening files.
in_start

protected:char* in_start

This is supported on AIX 400 z/OS

Data member.
lahead

protected:char lahead [2]

This is supported on AIX 400 z/OS

A variable used to store look-ahead characters during underflow
processing.

last_seek
protected:streampos last_seek

68 C/C++ Legacy Classes

This is supported on AIX 400 z/OS

Stream position last seeked to.
mode

protected:int mode

This is supported on AIX 400 z/OS

Open mode of the filebuf object.
opened

protected:char opened

This is supported on AIX 400 z/OS

A flag used to track whether the file is open. If the file is open, the value
of this variable is 1. Otherwise it is 0.

xfd
protected:int xfd

This is supported on AIX 400 z/OS

The file descriptor of the file attached to the filebuf object.

Detach Functions
close

public:filebuf* close()

This is supported on AIX 400 z/OS

close() does the following:
1. Flushes any output that is waiting in the filebuf object to be sent to the

file
2. Disconnects the filebuf object from the file
3. Closes the file that was attached to the filebuf object.

If an error occurs, close() returns 0. Otherwise, close() returns a pointer to
the filebuf object. Even if an error occurs, close() performs the second and
third steps listed above.

detach
public:int detach()

This is supported on AIX 400 z/OS

Disconnects the filebuf object from the file without closing the file. If the
filebuf object is not open, detach() returns -1. Otherwise, detach() flushes
any output that is waiting in the filebuf object to be sent to the file,
disconnects the filebuf object from the file, and returns the file descriptor.

File Pointer Functions
fp

public:FILE* fp()

This is supported on z/OS

Chapter 3. Reference 69

Returns the file pointer that is attached to the filebuf object. If the filebuf
object is not opened, fp() returns 0.

overflow
public:virtual int overflow(int = EOF)

This is supported on AIX 400 z/OS

Emptys an output buffer. Returns EOF when an error occurs. Returns 0
otherwise.

seekoff
public:virtual streampos seekoff(streamoff, ios::seek_dir, int)

This is supported on AIX 400 z/OS

Moves the file get/put pointer to the position specified by the ios::seek_dir
argument with the offset specified by the streamoff argument. ios::seek_dir
can have the following values:
v ios::beg - the beginning of the file
v ios::cur - the current position of the file get/put pointer
v ios::end - the end of the file

seekoff() changes the position of the file get/put pointer to the position
specified by the value ios::seek_dir + streamoff. The offset can be either
positive or negative. seekoff() ignores the third argument.

If the filebuf object is attached to a file that does not support seeking, or if
the value of ios::seek_dir + streamoff specifies a position before the
beginning of the file, seekoff() returns EOF and the position of the file
get/put pointer is undefined. Otherwise, seekoff() returns the new position
of the file get/put pointer.
z/OS Considerations

You can use relative byte offsets when seeking from ios::cur or
ios::end. You can use relative byte offsets when seeking from
ios::beg if either of the following conditions are true:
v The file is not a variable record format file, and is opened for

binary I/O.
v The file is a variable record format file, and is opened for binary

I/O with the byteseek option. The byteseek option is enabled for
a specific file if the byteseek fopen() option is passed when the
file is opened. The byteseek option can also be enabled for all
files if you set the _EDC_BYTESEEK environment variable.

When seeking from ios::beg in text files, encoded offsets are used.
You can only seek to an offset value returned by a previous call to
seekoff(), and attempting to calculate a new position based on an
encoded offset value results in undefined behaviour.

sync
public:virtual int sync()

This is supported on AIX 400 z/OS

Attempts to synchronize the get/put pointer and the file get/put pointer.
sync() may cause bytes that are waiting in the stream buffer to be written
to the file, or it may reposition the file get/put pointer if characters that

70 C/C++ Legacy Classes

have been read from the file are waiting in the stream buffer. If it is not
possible to synchronize the get/put pointer and the file get/put pointer,
sync() returns EOF. If they can be synchronized, sync() returns zero.

underflow
public:virtual int underflow()

This is supported on AIX 400 z/OS

Fills an input buffer. Returns EOF when an error occurs or the end of the
input is reached. Returns the next character otherwise.

Open Functions
z/OS Considerations

The prot parameter is ignored.
open

Opens the file with the name name and attaches the filebuf object to it. If
name does not already exist and the open mode om does not equal
ios::nocreate, open() tries to create it with protection mode equal to prot.
The default value of prot is filebuf::openprot. An error occurs if the filebuf
object is already open. If an error occurs, open() returns 0. Otherwise,
open() returns a pointer to the filebuf object.

The default protection mode for the filebuf class is S_IREAD|S_IWRITE. If
you create a file with both S_IREAD and S_IWRITE set, the file is created
with both read and write permission. If you create a file with only
S_IREAD set, the file is created with read-only permission, and cannot be
deleted later with the stdio.h library function remove(). S_IREAD and
S_IWRITE are defined in sys\stat.h.
Overload 1

public:filebuf*
open(const char* name,

int om,
int prot = openprot)

This is supported on AIX z/OS

Overload 2
public:filebuf*

open(const char* name,
int om,
int prot = openprot,
_CCSID_T ccsid = _CCSID_T (0))

This is supported on 400

Overload 3
public:filebuf*

open(const char* name,
const char* attr,
int om,
int prot = openprot)

This is supported on z/OS

You can use the attr parameter to specify additional file attributes,
such as lrecl or recfm. All the parameters documented for the
fopen() function are supported, with the exception of type=record.

Chapter 3. Reference 71

Overload 4
public:filebuf* open(const char* name, int om, _CCSID_T ccsid)

This is supported on 400

Query Functions
fd

public:int fd()

This is supported on AIX 400 z/OS

Returns the file descriptor that is attached to the filebuf object. If the
filebuf object is closed, fd() returns EOF.

last_op
protected:int last_op()

This is supported on AIX 400 z/OS

Indicates whether the last operation was a read(get) or a write(put)
operation.

Stream Buffer Functions
setbuf

Overload 1
public:virtual streambuf* setbuf(char* p, long len)

This is supported on AIX

Sets up a stream buffer with length in bytes equal to len, beginning
at the position pointed to by p. setbuf() does the following:
v If p is 0 or len is nonpositive, setbuf() makes the filebuf object

unbuffered.
v If the filebuf object is open and a stream buffer has been

allocated, no changes are made to this stream buffer, and setbuf()
returns NULL.

v If neither of these cases is true, setbuf() returns a pointer to the
filebuf object.

AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value

Overload 2
public:virtual streambuf* setbuf(char* p, int len)

This is supported on AIX 400 z/OS

Sets up a stream buffer with length in bytes equal to len, beginning
at the position pointed to by p. setbuf() does the following:
v If p is 0 or len is nonpositive, setbuf() makes the filebuf object

unbuffered.
v If the filebuf object is open and a stream buffer has been

allocated, no changes are made to this stream buffer, and setbuf()
returns NULL.

72 C/C++ Legacy Classes

v If neither of these cases is true, setbuf() returns a pointer to the
filebuf object.

AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value

filebuf - Inherited Member Functions and Data
Inherited Public Functions

streambuf

Definition
Page
Number Definition

Page
Number

~streambuf 180 dbp 184

in_avail 181 optim_in_avail 181

optim_sbumpc 182 out_waiting 188

overflow 189 pbackfail 189

pptr_non_null 184 sbumpc 182

seekoff 184 seekpos 185

setbuf 191 sgetc 182

sgetn 182 snextc 183

sputbackc 189 sputc 190

sputn 190 stossc 185

streambuf 180 streambuf_resource 191

xsgetn 183 xsputn 190

Inherited Public Data

None
Inherited Protected Functions

streambuf

Definition
Page
Number Definition

Page
Number

allocate 193 base 185

blen 193 doallocate 194

eback 186 ebuf 186

egptr 186 epptr 186

gbump 186 gptr 187

pbase 187 pbump 187

pptr 188 setb 188

setg 188 setp 188

unbuffered 194

Inherited Protected Data

None

Chapter 3. Reference 73

fstream
This class specializes the iostream class for use with files.

Class header file: fstream.h

fstream - Hierarchy List
ios
fstreambase
fstream

fstream - Member Functions and Data by Group

Constructors & Destructor
Objects of the fstream class can be constructed and destructed.
~fstream

public:~fstream()

This is supported on AIX 400 z/OS

Destructs an fstream object.
fstream

Constructs an object of this class.
Overload 1

public:fstream(int fd, char* p, int l)

This is supported on AIX 400 z/OS

Constructs an fstream object that is attached to the file descriptor
fd. If fd is not open, ios::failbit is set in the format state of the
fstream object. This constructor also sets up an associated filebuf
object with a stream buffer that has length l bytes and begins at the
position pointed to by p. If p is equal to 0 or l is equal to 0, the
associated filebuf object is unbuffered.
AIX Considerations

This function is available for 32-bit applications. The third
argument is an int value.

Overload 2
public:fstream(const char* name, int mode, _CCSID_T ccsid)

This is supported on 400

Constructs an fstream object and opens the file name with open
mode equal to mode and ccsid equal to ccsid.

If the file cannot be opened, the error state of the constructed
fstream object is set.

If the ccsid parameter is non-zero then it is treated as a CCSID
(coded character set identifier) and will correspond to the CCSID
of data written to and from the file. If the parameter value is zero
then the CCSID of the job will be used.

74 C/C++ Legacy Classes

Overload 3
public:fstream(int fd)

This is supported on AIX 400 z/OS

Constructs an fstream object that is attached to the file descriptor
fd. If fd is not open, ios::failbit is set in the format state of the
fstream object.

Overload 4
public:fstream(int fd, char* p, long l)

This is supported on AIX

Constructs an fstream object that is attached to the file descriptor
fd. If fd is not open, ios::failbit is set in the format state of the
fstream object. This constructor also sets up an associated filebuf
object with a stream buffer that has length l bytes and begins at the
position pointed to by p. If p is equal to 0 or l is equal to 0, the
associated filebuf object is unbuffered.
AIX Considerations

This function is available for 64-bit applications. The third
argument is a long value.

Overload 5
public:fstream(const char* name,

int mode,
int prot = filebuf::openprot,
_CCSID_T ccsid = _CCSID_T (0))

This is supported on 400

Constructs an fstream object and opens the file name with open
mode equal to mode and protection mode equal to prot, and ccsid
equal to ccsid.

The default value for the argument prot is filebuf::openprot. If the
file cannot be opened, the error state of the constructed fstream
object is set.

If the ccsid parameter is non-zero then it is treated as a CCSID
(coded character set identifier) and will correspond to the CCSID
of data written to and from the file. If the parameter value is zero
then the CCSID of the job will be used.

Overload 6
public:fstream(const char* name,

const char* attr,
int mode,
int prot = filebuf::openprot)

This is supported on z/OS

Constructs an fstream object and opens the file name with open
mode equal to mode, attributes equal to attr and protection mode
equal to prot.

Chapter 3. Reference 75

The default value for the argument prot is filebuf::openprot. If the
file cannot be opened, the error state of the constructed fstream
object is set.

You can use the attr parameter to specify additional file attributes
such as lrecl or recfm. All the parameters documented for the
fopen() functions are supported, with the exception of type=record.
z/OS Considerations

The prot attribute is ignored.
Overload 7

public:fstream(const char* name,
int mode,
int prot = filebuf::openprot)

This is supported on AIX z/OS

Constructs an fstream object and opens the file name with open
mode equal to mode and protection mode equal to prot.

The default value for the argument prot is filebuf::openprot. If the
file cannot be opened, the error state of the constructed fstream
object is set.
z/OS Considerations

The prot attribute is ignored.
Overload 8

public:fstream()

This is supported on AIX 400 z/OS

Constructs an unopened fstream object.

Filebuf Functions
Use these functions to work with the underlying filebuf object.
rdbuf

public:filebuf* rdbuf()

This is supported on AIX 400 z/OS

Returns a pointer to the filebuf object that is attached to the fstream object.

Open Functions
Opens the file.
z/OS Considerations

The prot parameter is ignored.
open

Opens the specified file.
Overload 1

public:void
open(const char* name,

int mode,
int prot = filebuf::openprot)

This is supported on AIX z/OS

76 C/C++ Legacy Classes

Opens the file with the name and attaches it to the fstream object.
If the file with the name, name does not already exist, open() tries
to create it with protection mode equal to prot, unless ios::nocreate
is set.

The default value for prot is filebuf::openprot. If the fstream object
is already attached to a file of if the call to fstream.rdbuf()->open()
fails, ios::failbit is set in the error state for the fstream object.

The members of the ios::open_mode enumeration are bits that can
be ORed together. The value of mode is the result of such an OR
operation. This result is an int value, and for this reason, mode has
type int rather than open_mode.

Overload 2
public:void

open(const char* name,
int mode,
int prot = filebuf::openprot,
_CCSID_T ccsid = _CCSID_T (0))

This is supported on 400

Opens the file with the specified name, mode, protection and
coded character set id and attaches it to the fstream object.

If the file with the name, name does not already exist, open() tries
to create it with protection mode equal to prot, unless ios::nocreate
is set.

The default value for prot is filebuf::openprot. If the fstream object
is already attached to a file or if the call to fstream.rdbuf()->open()
fails, ios::failbit is set in the error state for the fstream object.

The members of the ios::open_mode enumeration are bits that can
be ORed together. The value of mode is the result of such an OR
operation. This result is an int value, and for this reason, mode has
type int rather than open_mode.

If the ccsid parameter is non-zero then it is treated as a CCSID
(coded character set identifier) and will correspond to the CCSID
of data written to and from the file. If the parameter value is zero
then the CCSID of the job will be used.

Overload 3
public:void

open(const char* name,
const char* attr,
int mode,
int prot = filebuf::openprot)

This is supported on z/OS

Opens the file with the name and attaches it to the fstream object.
If the file with the name, name does not already exist, open() tries
to create it with protection mode equal to prot, unless ios::nocreate
is set.

Chapter 3. Reference 77

You can use the attr parameter to specify additional file attributes,
such as lrecl or recfm. All the parameters documented for the
fopen() function are supported, with the exception of type=record.

The members of the ios::open_mode enumeration are bits that can
be ORed together. The value of mode is the result of such an OR
operation. This result is an int value, and for this reason, mode has
type int rather than open_mode.

Overload 4
public:void open(const char* name, int mode, _CCSID_T ccsid)

This is supported on 400

Opens the file with the specified name, mode and coded character
set id and attaches it to the fstream object.

If the file with the name, name does not already exist, open() tries
to create it unless ios::nocreate is set.

The members of the ios::open_mode enumeration are bits that can
be ORed together. The value of mode is the result of such an OR
operation. This result is an int value, and for this reason, mode has
type int rather than open_mode.

If the ccsid parameter is non-zero then it is treated as a CCSID
(coded character set identifier) and will correspond to the CCSID
of data written to and from the file. If the parameter value is zero
then the CCSID of the job will be used.

fstream - Inherited Member Functions and Data
Inherited Public Functions

fstreambase

Definition
Page
Number Definition

Page
Number

~fstreambase 80 attach 82

close 83 detach 83

fstreambase 80 setbuf 85

ios

Definition
Page
Number Definition

Page
Number

~ios 93 bad 95

bitalloc 100 clear 95

eof 96 fail 96

fill 96 flags 97

good 96 ios 93

ios_resource 100 iword 101

operator ! 101 operator const void * 101

78 C/C++ Legacy Classes

ios

Definition
Page
Number Definition

Page
Number

operator void * 101 precision 97

pword 101 rdbuf 101

rdstate 96 setf 98

skip 99 sync_with_stdio 102

tie 102 unsetf 99

width 99 xalloc 103

Inherited Public Data

ios

Definition
Page
Number Definition

Page
Number

adjustfield 94 basefield 94

floatfield 94

Inherited Protected Functions

ios

Definition
Page
Number Definition

Page
Number

init 100 ios 93

setstate 96

fstreambase

Definition
Page
Number Definition

Page
Number

verify 83

Inherited Protected Data

ios

Definition
Page
Number Definition

Page
Number

(* stdioflush) () 103 assign_private 94

bp 94 delbuf 94

isfx_special 94 ispecial 95

osfx_special 95 ospecial 95

state 95 x_fill 100

x_flags 95 x_precision 100

x_tie 95 x_width 100

Chapter 3. Reference 79

fstreambase
The fstreambase class is an internal class that provides common functions for the
classes that are derived from it; fstream, ifstream and ofstream. The fstreambase
class inherits from the ios class. Do not use the fstreambase class directly.

Class header file: fstream.h

fstreambase - Hierarchy List
ios
fstreambase

ifstream
fstream
ofstream

fstreambase - Member Functions and Data by Group

Constructors & Destructor
Objects of the fstreambase class can be constructed and destructed by objects that
derive from it. These constructors and destructors should not be used directly.
~fstreambase

public:~fstreambase()

This is supported on AIX 400 z/OS

Destructs an fstreambase object.
fstreambase

Constructs an object of this class.
Overload 1

public:fstreambase(int fd, char* p, int l)

This is supported on AIX 400 z/OS

This constructor does the following:
v constructs an fstreambase object
v initializes the filebuf object to the file descriptor passed in
v initializes the streambuf object and sets the get and put pointers

based on the pointer p and the length l
v initializes the ios object.

If the file is already open, it clears the ios state. Otherwise, it sets
the ios::failbit in the format state of the object.
AIX Considerations

This function is available for 32-bit applications. The third
argument is an int value.

Overload 2
public:fstreambase(const char* name,

const char* attr,
int mode,
int prot = filebuf::openprot)

This is supported on z/OS

80 C/C++ Legacy Classes

Constructs an fstreambase object, initializes the ios object, and
opens the specified file with the specified mode, attributes and
protection.

You can use the attr parameter to specify additional file attributes
such as lrecl or recfm. All the parameters documented for the
fopen() functions are supported, with the exception of type=record.
z/OS Considerations

The prot parameter is ignored.
Overload 3

public:fstreambase(int fd)

This is supported on AIX 400 z/OS

This constructor does the following:
v constructs an fstreambase object
v initializes the filebuf object to the file descriptor passed in
v initializes the ios object.

If the file is already open, it clears the ios state. Otherwise, it sets
the ios::failbit in the format state of the object.

Overload 4
public:fstreambase(int fd, char* p, long l)

This is supported on AIX

This constructor does the following:
v constructs an fstreambase object
v initializes the filebuf object to the file descriptor passed in
v initializes the streambuf object and sets the get and put pointers

based on the pointer p and the length l
v initializes the ios object.

If the file is already open, it clears the ios state. Otherwise, it sets
the ios::failbit in the format state of the object.
AIX Considerations

This function is available for 64-bit applications. The third
argument is a long value.

Overload 5
public:fstreambase(const char* name,

int mode,
int prot = filebuf::openprot,
_CCSID_T ccsid = _CCSID_T (0))

This is supported on 400

Constructs an fstreambase object, initializes the ios object, and
opens the specified file with the specified mode, protection, and
ccsid.

If the ccsid parameter is non-zero then it is treated as a CCSID
(coded character set identifier) and will correspond to the CCSID
of data written to and from the file. If the parameter value is zero
then the CCSID of the job will be used.

Chapter 3. Reference 81

Overload 6
public:fstreambase(const char* name, int mode, _CCSID_T ccsid)

This is supported on 400

Constructs an fstreambase object, initializes the ios object, and
opens the specified file with the specified mode and ccsid.

If the ccsid parameter is non-zero then it is treated as a CCSID
(coded character set identifier) and will correspond to the CCSID
of data written to and from the file. If the parameter value is zero
then the CCSID of the job will be used.

Overload 7
public:fstreambase(const char* name,

int mode,
int prot = filebuf::openprot)

This is supported on AIX z/OS

Constructs an fstreambase object, initializes the ios object, and
opens the specified file with the specified mode and protection.
z/OS Considerations

The prot parameter is ignored.
Overload 8

public:fstreambase()

This is supported on AIX 400 z/OS

Default constructor. Constructs an fstreambase object and initializes
the ios object.

Filebuf Functions
Use these functions to work with the underlying filebuf object.
attach

Attaches the fstream, ifstream or ofstream object to the file descriptor or
file pointer.
Overload 1

public:void attach(FILE* fp)

This is supported on z/OS

Attaches the fstream, ifstream or ofstream object to the file pointer
fp. If the object is already attached to a file pointer, an error occurs
and ios::failbit is set in the format state of the object.

Overload 2
public:void attach(int fd)

This is supported on AIX 400 z/OS

Attaches the fstream, ifstream or ofstream object to the file
descriptor fd. If the object is already attached to a file descriptor,
an error occurs and ios::failbit is set in the format state of the
object.

82 C/C++ Legacy Classes

close
public:void close()

This is supported on AIX 400 z/OS

Closes the filebuf object, breaking the connection between the fstream,
ifstream or ofstream object and the file descriptor. close() calls
filebuf->close(). If this call fails, the error state of the fstream, ifstream or
ofstream object is not cleared.

detach
public:int detach()

This is supported on AIX 400 z/OS

Detaches the filebuf object, breaking the connection between the fstream,
ifstream or ofstream object and the file descriptor. detach() calls
filebuf->detach().

rdbuf
public:filebuf* rdbuf()

This is supported on AIX 400 z/OS

Returns a pointer to the filebuf object that is attached to the fstream,
ifstream or ofstream object.

Miscellaneous Functions
verify

protected:void verify(int)

This is supported on AIX 400 z/OS

Clears the format state of the object or sets the ios::failbit in the format
state of the object depending on the value of the argument. If the argument
value is 1, the format state is cleared, otherwise the ios::failbit is set.

Open Functions
open

Opens the specified file.
Overload 1

public:void
open(const char* name,

const char* attr,
int mode,
int prot = filebuf::openprot)

This is supported on z/OS

Opens the file with the name and attaches it to the fstream object.
If the file with the name, name does not already exist, open() tries
to create it with protection mode equal to prot, unless ios::nocreate
is set.

Chapter 3. Reference 83

You can use the attr parameter to specify additional file attributes,
such as lrecl or recfm. All the parameters documented for the
fopen() function are supported, with the exception of type=record.

The members of the ios::open_mode enumeration are bits that can
be ORed together. The value of mode is the result of such an OR
operation. This result is an int value, and for this reason, mode has
type int rather than open_mode.

Overload 2
public:void open(const char* name, int mode, _CCSID_T ccsid)

This is supported on 400

Opens the file with the specified name, mode and coded character
set id and attaches it to the fstream object.

If the file with the name, name does not already exist, open() tries
to create it unless ios::nocreate is set.

The members of the ios::open_mode enumeration are bits that can
be ORed together. The value of mode is the result of such an OR
operation. This result is an int value, and for this reason, mode has
type int rather than open_mode.

If the ccsid parameter is non-zero then it is treated as a CCSID
(coded character set identifier) and will correspond to the CCSID
of data written to and from the file. If the parameter value is zero
then the CCSID of the job will be used.

Overload 3
public:void

open(const char* name,
int mode,
int prot = filebuf::openprot,
_CCSID_T ccsid = _CCSID_T (0))

This is supported on 400

Opens the file with the specified name, mode, protection and
coded character set id and attaches it to the fstream object.

If the file with the name, name does not already exist, open() tries
to create it with protection mode equal to prot, unless ios::nocreate
is set.

The default value for prot is filebuf::openprot. If the fstream object
is already attached to a file or if the call to fstream.rdbuf()->open()
fails, ios::failbit is set in the error state for the fstream object.

The members of the ios::open_mode enumeration are bits that can
be ORed together. The value of mode is the result of such an OR
operation. This result is an int value, and for this reason, mode has
type int rather than open_mode.

If the ccsid parameter is non-zero then it is treated as a CCSID
(coded character set identifier) and will correspond to the CCSID

84 C/C++ Legacy Classes

of data written to and from the file. If the parameter value is zero
then the CCSID of the job will be used.

Overload 4
public:void

open(const char* name,
int mode,
int prot = filebuf::openprot)

This is supported on AIX z/OS

Opens the file with the name and attaches it to the fstream object.
If the file with the name, name does not already exist, open() tries
to create it with protection mode equal to prot, unless ios::nocreate
is set.

The default value for prot is filebuf::openprot. If the fstream object
is already attached to a file of if the call to fstream.rdbuf()->open()
fails, ios::failbit is set in the error state for the fstream object.

The members of the ios::open_mode enumeration are bits that can
be ORed together. The value of mode is the result of such an OR
operation. This result is an int value, and for this reason, mode has
type int rather than open_mode.

Stream Buffer Functions
Use these functions to work with the underlying streambuf object.
setbuf

Overload 1
public:void setbuf(char* p, long l)

This is supported on AIX

Sets up a stream buffer with length in bytes equal to l beginning at
the position pointed to by p. If p is equal to 0 or l is nonpositive,
the fstream, ifstream or ofstream object (fb) will be unbuffered. If
fb is open, or the call to fb->setbuf() fails, setbuf() sets ios::failbit in
the object’s state.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 2
public:void setbuf(char* p, int l)

This is supported on AIX 400 z/OS

Sets up a stream buffer with length in bytes equal to l beginning at
the position pointed to by p. If p is equal to 0 or l is nonpositive,
the fstream, ifstream or ofstream object (fb) will be unbuffered. If
fb is open, or the call to fb->setbuf() fails, setbuf() sets ios::failbit in
the object’s state.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Chapter 3. Reference 85

fstreambase - Inherited Member Functions and Data
Inherited Public Functions

ios

Definition
Page
Number Definition

Page
Number

~ios 93 bad 95

bitalloc 100 clear 95

eof 96 fail 96

fill 96 flags 97

good 96 ios 93

ios_resource 100 iword 101

operator ! 101 operator const void * 101

operator void * 101 precision 97

pword 101 rdbuf 101

rdstate 96 setf 98

skip 99 sync_with_stdio 102

tie 102 unsetf 99

width 99 xalloc 103

Inherited Public Data

ios

Definition
Page
Number Definition

Page
Number

adjustfield 94 basefield 94

floatfield 94

Inherited Protected Functions

ios

Definition
Page
Number Definition

Page
Number

init 100 ios 93

setstate 96

Inherited Protected Data

ios

Definition
Page
Number Definition

Page
Number

(* stdioflush) () 103 assign_private 94

bp 94 delbuf 94

isfx_special 94 ispecial 95

osfx_special 95 ospecial 95

86 C/C++ Legacy Classes

ios

Definition
Page
Number Definition

Page
Number

state 95 x_fill 100

x_flags 95 x_precision 100

x_tie 95 x_width 100

ifstream
This class specializes the istream class for use with files.

Class header file: fstream.h

ifstream - Hierarchy List
ios
fstreambase
ifstream

ifstream - Member Functions and Data by Group

Constructors & Destructor
Objects of the ifstream class can be constructed and destructed.
~ifstream

public:~ifstream()

This is supported on AIX 400 z/OS

Destructs an ifstream object.
ifstream

Constructs an object of this class.
Overload 1

public:ifstream(int fd, char* p, int l)

This is supported on AIX 400 z/OS

Constructs an ifstream object that is attached to the file descriptor
fd. If fd is not open, ios::failbit is set in the format state of the
ifstream object. This constructor also sets up an associated filebuf
object with a stream buffer that has length l bytes and begins at the
position pointed to by p. If p is equal to 0 or l is equal to 0, the
associated filebuf object is unbuffered.
AIX Considerations

This function is available for 32-bit applications. The third
argument is an int value.

Overload 2
public:ifstream(const char* name,

const char* attr,
int mode = ios::in,
int prot = filebuf::openprot)

Chapter 3. Reference 87

This is supported on z/OS

Constructs an ifstream object and opens the file name with open
mode equal to mode, attributes equal to attr and protection mode
equal to prot. The default value for the argument prot is
filebuf::openprot. If the file cannot be opened, the error state of the
constructed fstream object is set.

You can use the attr parameter to specify additional file attributes
such as lrecl or recfm. All the parameters documented for the
fopen() functions are supported, with the exception of type=record.
z/OS Considerations

The prot attribute is ignored.
Overload 3

public:ifstream(int fd)

This is supported on AIX 400 z/OS

Constructs an ifstream object that is attached to the file descriptor
fd. If fd is not open, ios::failbit is set in the format state of the
ifstream object.

Overload 4
public:ifstream(int fd, char* p, long l)

This is supported on AIX

Constructs an ifstream object that is attached to the file descriptor
fd. If fd is not open, ios::failbit is set in the format state of the
ifstream object. This constructor also sets up an associated filebuf
object with a stream buffer that has length l bytes and begins at the
position pointed to by p. If p is equal to 0 or l is equal to 0, the
associated filebuf object is unbuffered.
AIX Considerations

This function is available for 64-bit applications. The third
argument is a long value.

Overload 5
public:ifstream(const char* name,

int mode = ios::in,
int prot = filebuf::openprot,
_CCSID_T ccsid = _CCSID_T (0))

This is supported on 400

Constructs an ifstream object and opens the file name with open
mode equal to mode and protection mode equal to prot, and ccsid
equal to ccsid. The default value for the argument prot is
filebuf::openprot. If the file cannot be opened, the error state of the
constructed fstream object is set.

If the ccsid parameter is non-zero then it is treated as a CCSID
(coded character set identifier) and will correspond to the CCSID
of data written to and from the file. If the parameter value is zero
then the CCSID of the job will be used.

Overload 6

88 C/C++ Legacy Classes

public:ifstream(const char* name, int mode, _CCSID_T ccsid)

This is supported on 400

Constructs an ifstream object and opens the file name with open
mode equal to mode and ccsid equal to ccsid. If the file cannot be
opened, the error state of the constructed fstream object is set.

If the ccsid parameter is non-zero then it is treated as a CCSID
(coded character set identifier) and will correspond to the CCSID
of data written to and from the file. If the parameter value is zero
then the CCSID of the job will be used.

Overload 7
public:ifstream(const char* name,

int mode = ios::in,
int prot = filebuf::openprot)

This is supported on AIX z/OS

Constructs an ifstream object and opens the file name with open
mode equal to mode and protection mode equal to prot. The
default value for mode is ios::in and for prot is filebuf::openprot. If
the file cannot be opened, the error state of the constructed
ifstream object is set.
z/OS Considerations

The prot attribute is ignored.
Overload 8

public:ifstream()

This is supported on AIX 400 z/OS

Constructs an unopened ifstream object.

Filebuf Functions
rdbuf

public:filebuf* rdbuf()

This is supported on AIX 400 z/OS

Returns a pointer to the filebuf object that is attached to the ifstream object.

Open Functions
Opens the file.
z/OS Considerations

The prot attribute is ignored.
open

Opens the specified file.
Overload 1

public:void
open(const char* name,

int mode = ios::in,
int prot = filebuf::openprot,
_CCSID_T ccsid = _CCSID_T (0))

Chapter 3. Reference 89

This is supported on 400

Opens the file with the specified name, mode, protection and
coded character set id and attaches it to the fstream object.

If the file with the name, name does not already exist, open() tries
to create it with protection mode equal to prot, unless ios::nocreate
is set.

The default value for prot is filebuf::openprot. If the fstream object
is already attached to a file or if the call to fstream.rdbuf()->open()
fails, ios::failbit is set in the error state for the fstream object.

The members of the ios::open_mode enumeration are bits that can
be ORed together. The value of mode is the result of such an OR
operation. This result is an int value, and for this reason, mode has
type int rather than open_mode.

If the ccsid parameter is non-zero then it is treated as a CCSID
(coded character set identifier) and will correspond to the CCSID
of data written to and from the file. If the parameter value is zero
then the CCSID of the job will be used.

Overload 2
public:void

open(const char* name,
int mode = ios::in,
int prot = filebuf::openprot)

This is supported on AIX z/OS

Opens the file with the name and attaches it to the fstream object.
If the file with the name, name does not already exist, open() tries
to create it with protection mode equal to prot, unless ios::nocreate
is set.

The default value for prot is filebuf::openprot. If the fstream object
is already attached to a file of if the call to fstream.rdbuf()->open()
fails, ios::failbit is set in the error state for the fstream object.

The members of the ios::open_mode enumeration are bits that can
be ORed together. The value of mode is the result of such an OR
operation. This result is an int value, and for this reason, mode has
type int rather than open_mode.

Overload 3
public:void open(const char* name, int mode, _CCSID_T ccsid)

This is supported on 400

Opens the file with the specified name, mode and coded character
set id and attaches it to the fstream object.

If the file with the name, name does not already exist, open() tries
to create it unless ios::nocreate is set.

90 C/C++ Legacy Classes

The members of the ios::open_mode enumeration are bits that can
be ORed together. The value of mode is the result of such an OR
operation. This result is an int value, and for this reason, mode has
type int rather than open_mode.

If the ccsid parameter is non-zero then it is treated as a CCSID
(coded character set identifier) and will correspond to the CCSID
of data written to and from the file. If the parameter value is zero
then the CCSID of the job will be used.

Overload 4
public:void

open(const char* name,
const char* attr,
int mode = ios::in,
int prot = filebuf::openprot)

This is supported on z/OS

Opens the file with the name and attaches it to the fstream object.
If the file with the name, name does not already exist, open() tries
to create it with protection mode equal to prot, unless ios::nocreate
is set.

You can use the attr parameter to specify additional file attributes,
such as lrecl or recfm. All the parameters documented for the
fopen() function are supported, with the exception of type=record.

The members of the ios::open_mode enumeration are bits that can
be ORed together. The value of mode is the result of such an OR
operation. This result is an int value, and for this reason, mode has
type int rather than open_mode.

ifstream - Inherited Member Functions and Data
Inherited Public Functions

fstreambase

Definition
Page
Number Definition

Page
Number

~fstreambase 80 attach 82

close 83 detach 83

fstreambase 80 open 83

setbuf 85

ios

Definition
Page
Number Definition

Page
Number

~ios 93 bad 95

bitalloc 100 clear 95

eof 96 fail 96

fill 96 flags 97

Chapter 3. Reference 91

ios

Definition
Page
Number Definition

Page
Number

good 96 ios 93

ios_resource 100 iword 101

operator ! 101 operator const void * 101

operator void * 101 precision 97

pword 101 rdbuf 101

rdstate 96 setf 98

skip 99 sync_with_stdio 102

tie 102 unsetf 99

width 99 xalloc 103

Inherited Public Data

ios

Definition
Page
Number Definition

Page
Number

adjustfield 94 basefield 94

floatfield 94

Inherited Protected Functions

ios

Definition
Page
Number Definition

Page
Number

init 100 ios 93

setstate 96

fstreambase

Definition
Page
Number Definition

Page
Number

verify 83

Inherited Protected Data

ios

Definition
Page
Number Definition

Page
Number

(* stdioflush) () 103 assign_private 94

bp 94 delbuf 94

isfx_special 94 ispecial 95

osfx_special 95 ospecial 95

state 95 x_fill 100

92 C/C++ Legacy Classes

ios

Definition
Page
Number Definition

Page
Number

x_flags 95 x_precision 100

x_tie 95 x_width 100

ios
The ios class is the base class for the classes that format data that is extracted from
or inserted into the stream buffer. The derived classes support the movement of
formatted and unformatted data to and from the stream buffer.

The ios class maintains the format and error state information for the classes that
are derived from it. The format state is a collection of flags and variables that can
be set to control the details of formatting operations for input and output. The
error state is a collection of flags that records whether any errors have taken place
in the processing of the ios object. It also recoreds whether the end of an input
stream has been reached.

Class header file: iostream.h

ios - Hierarchy List
ios

ostream
fstreambase
stdiostream
strstreambase
istream

ios - Member Functions and Data by Group

Constructors & Destructor
Objects of the ios class can be constructed and destructed.
~ios

public:virtual ~ios()

This is supported on AIX 400 z/OS

Destructs an ios object.
ios

Creates an ios object.
Overload 1

public:ios(streambuf*)

This is supported on AIX 400 z/OS

The streambuf object is associated with the constructed ios object.
If this argument is equal to 0, the result is undefined.

Overload 2

Chapter 3. Reference 93

protected:ios()

This is supported on AIX 400 z/OS

This version of the ios constructor takes no arguments and is
declared as protected. The ios class is used as a virtual base class
for iostream, and therefore the ios class must have a constructor
that takes no arguments. If you use this constructor in a derived
class, you must use the init() function to associated the constructed
ios object with the streambuf object.

Data members
adjustfield

public:static const long adjustfield

This is supported on AIX 400 z/OS

Data member for the ios class.
basefield

public:static const long basefield

This is supported on AIX 400 z/OS

Data member for the ios class.
floatfield

public:static const long floatfield

This is supported on AIX 400 z/OS

Data member for the ios class.
assign_private

protected:int assign_private

This is supported on AIX 400 z/OS

Data member for the ios class.
bp

protected:streambuf* bp

This is supported on AIX 400 z/OS

Data member for the ios class. Pointer to the streambuf object.
delbuf

protected:int delbuf

This is supported on AIX 400 z/OS

Data member for the ios class.
isfx_special

protected:int isfx_special

This is supported on AIX 400 z/OS

94 C/C++ Legacy Classes

Data member for the ios class.
ispecial

protected:int ispecial

This is supported on AIX 400 z/OS

Data member for the ios class.
osfx_special

protected:int osfx_special

This is supported on AIX 400 z/OS

Data member for the ios class.
ospecial

protected:int ospecial

This is supported on AIX 400 z/OS

Data member for the ios class.
state

protected:int state

This is supported on AIX 400 z/OS

Data member for the ios class.
x_flags

protected:long x_flags

This is supported on AIX 400 z/OS

Data member for the ios class.
x_tie

protected:ostream* x_tie

This is supported on AIX 400 z/OS

Data member for the ios class.

Error State Functions
bad

public:int bad() const

This is supported on AIX 400 z/OS

Returns a nonzero value is ios::badbit is set in the error state of the ios
object. Otherwise, it returns 0.

ios::badbit is usually set when some operation on the streambuf object that
is associated with the ios object has failed. It will probably not be possible
to continue input and output operations on the ios object.

clear
public:void clear(int i = 0)

Chapter 3. Reference 95

This is supported on AIX 400 z/OS

Changes the error state of the ios object to the specified value. If the
argument equals 0 (its default), all of the bits in the error state are cleared.
If you want to set one of the bits without clearing or setting the other bits
in the error state, you can perform a bitwise OR between the bit you want
to set and the current error state. For example, the following statement sets
ios::badbit in the ios object and leaves all the other error state bits
unchanged:

iosobj.clear(ios::badbit | iosobj.rdstate());
eof

public:int eof() const

This is supported on AIX 400 z/OS

Returns a nonzero value if ios::eofbit is set in the error state of the ios
object. Otherwise, it returns 0.

ios::eofbit is usually set when an EOF has been encountered during an
extraction operation.

fail
public:int fail() const

This is supported on AIX 400 z/OS

Returns a nonzero value if either ios::badbit or ios::failbit is set in the error
state. Otherwise, it returns 0.

good
public:int good() const

This is supported on AIX 400 z/OS

Returns a nonzero value if no bits are set in the error state of the ios object.
Otherwise, it returns 0.

rdstate
public:int rdstate() const

This is supported on AIX 400 z/OS

Returns the current value of the error state of the ios object.
setstate

protected:void setstate(int b)

This is supported on AIX 400 z/OS

Format State Functions
fill

Overload 1
public:char fill() const

This is supported on AIX 400 z/OS

Returns the value of ios::x_fill of the ios object.

96 C/C++ Legacy Classes

ios::x_fill is the character used as padding if the field is wider than
the representation of a value. The default value for ios::x_fill is a
space. The ios::left, ios::right and ios::internal flags determine the
position of the fill character.

You can also use the parameterized manipulator setfill to set the
value of ios::x_fill.

Overload 2
public:char fill(char)

This is supported on AIX 400 z/OS

Sets the value of ios::x_fill of the ios object to the specified
character.

ios::x_fill is the character used as padding if the field is wider than
the representation of a value. The default value for ios::x_fill is a
space. The ios::left, ios::right and ios::internal flags determine the
position of the fill character.

You can also use the parameterized manipulator setfill to set the
value of ios::x_fill.

flags
Overload 1

public:long flags() const

This is supported on AIX 400 z/OS

Returns the value of the flags that make up the current format
state.

Overload 2
public:long flags(long f)

This is supported on AIX 400 z/OS

Sets the flags in the format state to the settings specified in the
argument and returns the value of the previous settings of the
format flags.

precision
Overload 1

public:int precision() const

This is supported on AIX 400 z/OS

Returns the value of ios::x_precision.

ios::x_precision controls the number of significant digits when
floating-point values are inserted.

The format state in effect when precision() is called affects the
behavior of precision(). If neither ios::scientific nor ios::fixed is set,
ios::x_precision specifies the number of significant digits in the
floating-point value that is being inserted. If, in addition,

Chapter 3. Reference 97

ios::showpoint is not set, all trailing zeros are removed and a
decimal point only appears if it is followed by digits.

If either ios::scientific or ios::fixed is set, ios::x_precision specifies
the number of digits following the decimal point.

Overload 2
public:int precision(int)

This is supported on AIX 400 z/OS

Sets the value of ios::x_precision to the specified value and returns
the previous value. The value must be greater than 0. If the value
is negative, the value of ios::x_precision is set to the default value,
6.

You can also use the parameterized manipulator setprecision to set
ios::x_precision.

The format state in effect when precision() is called affects the
behavior of precision(). If neither ios::scientific nor ios::fixed is set,
ios::x_precision specifies the number of significant digits in the
floating-point value that is being inserted. If, in addition,
ios::showpoint is not set, all trailing zeros are removed and a
decimal point only appears if it is followed by digits.

If either ios::scientific or ios::fixed is set, ios::x_precision specifies
the number of digits following the decimal point.

setf
Overload 1

public:long setf(long setbits, long field)

This is supported on AIX 400 z/OS

This function clears the format flags specified in field, sets the
format flags specified in setbits, and returns the previous value of
the format state.

For example, to change the conversion base in the format state to
ios::hex, you could use a statement like this:

s.setf(ios::hex, ios::basefield);

In this statement, ios::basefield specifies the conversion base as the
format flag that is going to be changed and ios::hex specifies the
new value for the conversion base. If setbits equals 0, all of the
format flags specified in field are cleared.

You can also use the parameterized manipulator resetiosflags to
clear format flags.

Note: If you set conflicting flags the results are unpredictable.
Overload 2

public:long setf(long)

This is supported on AIX 400 z/OS

98 C/C++ Legacy Classes

This function is accumulative. It sets the format flags that are
specified in the argument, without affecting format flags that are
not marked in the argument, and returns the previous value of the
format state.

You can also use the parameterized manipulator setiosflags to set
the format flags to a specific setting.

skip
public:int skip(int i)

This is supported on AIX 400 z/OS

Sets the format flag ios::skipws if the value of the argument i does not
equal 0. If i does equal 0, ios::skipws is cleared.

skip() returns a value of 1 if ios::skipws was set prior to the call to skip(),
and returns 0 otherwise.

unsetf
public:long unsetf(long)

This is supported on AIX 400 z/OS

Turns off the format flags specified in the argument and returns the
previous format state.

width
Overload 1

public:int width() const

This is supported on AIX 400 z/OS

Returns the value of the current setting of the format state field
width variable, ios::x_width.

If the value of ios::x_width is smaller than the space needed for the
representation of the value, the full value is still inserted.

Overload 2
public:int width(int w)

This is supported on AIX 400 z/OS

Sets ios::x_width to the value w and returns the previous value.

The default field width is 0. When the value of ios::x_width is 0,
the operations that insert values only insert the characters needed
to represent a value.

If the value of ios::x_width is greater than 0, the characters needed
to represent the value are inserted. Then fill characters are inserted,
if necessary, so that the representation of the value takes up the
entire field. ios::x_width only specifies a minimum width, not a
maximum width. If the number of characters needed to represent a
value is greater than the field width, none of the characters is
truncated. After every insertion of a value of a numeric or string
type (including char*, unsigned char *, signed char*, and wchar_t*,

Chapter 3. Reference 99

but excluding char, unsigned char, signed char, and wchar_t), the
value of ios::x_width is reset to 0. After every extraction of a value
of type char*, unsigned char*, signed char*, or wchar_t*, the value
of ios::x_width is reset to 0.

You can also use the parameterized manipulator setw to set the
field width.

Format State Variables
The format state is a collection of format flags and format variables that control the
details of formatting for input and output operations.
x_fill

protected:char x_fill

This is supported on AIX 400 z/OS

Represents the character that is used to pad values that do not require the
width of an entire field for their representation. Its default value is a space
character.

x_precision
protected:short x_precision

This is supported on AIX 400 z/OS

Represents the number of significant digits in the representation of
floating-point values. Its default value is 6.

x_width
protected:short x_width

This is supported on AIX 400 z/OS

Represents the minimum width of a field. Its default value is 0.

Initialization Functions
init

protected:void init(streambuf*)

This is supported on AIX 400 z/OS

Locking functions
ios_resource

public:IRTLResource& ios_resource() const

This is supported on z/OS

Miscellaneous Functions
bitalloc

public:static long bitalloc()

This is supported on AIX 400 z/OS

100 C/C++ Legacy Classes

A static function that returns a long value with a previously unallocated bit
set. You can use this long value as an additional flag, and pass it as an
argument to the format state member functions. When all the bits are
exhausted, bitalloc() returns 0.

iword
public:long& iword(int)

This is supported on AIX 400 z/OS

Returns a reference to the indexed user-defined flag, where the index used
in the argument to this function is returned by xalloc().

iword() allocates space for the user-defined flag. If the allocation fails,
iword() sets ios::failbit. You should check ios::failbit after calling iword().

operator !
public:int operator !() const

This is supported on AIX 400 z/OS

The ! operator returns a nonzero value if ios::failbit or ios::badbit is set in
the error state of the ios object.

For example, you could write:
if (!cin)

cout << "either ios::failbit or ios::badbit is set" << endl;
else

cout << "neither ios::failbit nor ios::badbit is set" << endl;
operator const void *

public:operator const void *() const

This is supported on AIX 400 z/OS

operator void *
public:operator void *()

This is supported on AIX 400 z/OS

pword
public:void *& pword(int)

This is supported on AIX 400 z/OS

Returns a reference to a pointer to the indexed user-defined flag where the
index used in the argument to this function is returned by xalloc().

pword() allocates space for the user-defined flag. If the allocation fails,
pword() sets ios::failbit. You should check ios::failbit after calling pword().

On platforms where long and pointer types are the same size, pword() is
the same as iword(), except that the two functions return different types.

rdbuf
public:streambuf* rdbuf()

This is supported on AIX 400 z/OS

Chapter 3. Reference 101

Returns a pointer to the streambuf object that is associated with the ios
object. This is the streambuf object that was passed as an argument to the
ios constructor.

sync_with_stdio
public:static void sync_with_stdio()

This is supported on AIX 400 z/OS

sync_with_stdio() is a static function that solves the problems that occur
when you call functions declared in stdio.h and I/O Stream Library
functions in the same program. The first time that you call
sync_with_stdio(), it attaches stdiobuf objects to the predefined streams cin,
cout and cerr. After that, input and output using these predefined streams
can be mixed with input and output using the corresponding FILE objects
(stdin, stdout, and stderr). This input and output are correctly
synchronized.

If you switch between the I/O Stream Library formatted extraction
functions and stdio.h functions, you may find that a byte is ″lost″. The
reason is that the formatted extraction functions for integers and
floating-point values keep extracting characters until a nondigit character is
encountered. This nondigit character acts as a delimiter for the value that
preceded it. Because it is not part of the value, putback() is called to return
it to the stream buffer. If a C stdio library function, such as getchar(),
performs the next input operation, it will begin input at the character after
this nondigit character. Thus, this nondigit character is not part of the
value extracted by the formatted extraction function, and it is not the
character extracted by the C stdio library function. It is ″lost″. Therefore,
you should avoid switching between the I/O Stream Library formatted
extraction functions and C stdio library functions whenever possible.

sync_with_stdio() makes cout and clog unit buffered. After you call
sync_with_stdio(), the performance of your program could diminish. The
performance of your program depends on the length of strings, with
performance diminishing most when the strings are shortest.

tie
Overload 1

public:ostream* tie()

This is supported on AIX 400 z/OS

Returns the value of ios::x_tie.

ios::x_tie is the tie variable that points to the ostream object that is
tied to the ios object.

You can use ios::x_tie to automatically flush the stream buffer
attached to an ios object. If ios::x_tie for an ios object is not equal
to 0 and the ios object needs more characters or has characters to
be consumed, the ostream object pointed to by ios::x_tie is flushed.

By default, the tie variables of the predefined streams cin, cerr and
clog all point to the predefined stream cout.

Overload 2
public:ostream* tie(ostream* s)

102 C/C++ Legacy Classes

This is supported on AIX 400 z/OS

Sets the tie variable, ios::x_tie, equal to the specified ostream and
returns the previous value.

You can use ios::x_tie to automatically flush the stream buffer
attached to an ios object. If ios::x_tie for an ios object is not equal
to 0 and the ios object needs more characters or has characters to
be consumed, the ostream object pointed to by ios::x_tie is flushed.

By default, the tie variables of the predefined streams cin, cerr and
clog all point to the predefined stream cout.

xalloc

A static function that returns an unused index into an array of words
available for use as format state variables by classes derived from ios.

xalloc() simply returns a new index; it does not do any allocation. iword()
and pword() do the allocation, and if the allocation fails, they set
ios::failbit. You should check ios::failbit after calling iword() or pword().
Overload 1

public:static int xalloc()

This is supported on AIX 400 z/OS

AIX Considerations

The value returned is an int for 32-bit applications. This
function is not available for 64-bit applications.

Overload 2
public:static long xalloc()

This is supported on AIX

AIX Considerations

The value returned is a long for 64-bit applications. This
function is not available for 32-bit applications.

(* stdioflush) ()
protected:static void (* stdioflush) ()

This is supported on AIX 400 z/OS

ios - Enumerations

White Space and Padding

The following values are set by default:
v skipws and right

skipws

If ios::skipws is set, white space will be skipped on input. If it is not set,
white space is not skipped. If ios::skipws is not set, the arithmetic
extractors will signal an error if you attempt to read an integer or
floating-point value that is preceded by white space. ios::failbit is set, and
extraction ceases until it is cleared. This is done to avoid looping problems.
If the following program is run with an input file that contains integer

Chapter 3. Reference 103

values separated by spaces, ios::failbit is set after the first integer value is
read, and the program halts. If the program did not fail() at the beginning
of the while loop to test if ios::failbit is set, it would loop indefinitely.

#include < fstream.h >
int main()
{

fstream f("spadina.dat", ios::in);
f.unsetf(ios::skipws);
int i;
while (!f.eof() && !f.fail()) {

f >> i;
cout << i;

}
}

left

If ios::left is set, the value is left-justified. Fill characters are added after the
value.

right

If ios::right is set, the value is right-justified. Fill characters are added
before the value.

internal

If ios::internal is set, the fill characters are added after any leading sign or
base notation, but before the value itself.

Base Conversion

The manipulators ios::dec, ios::oct, and ios::hex have the same effect as the
flags ios::dec, ios::oct, and ios::hex respectively. dec is set by default.

dec

If ios::dec is set, the conversion base is 10.

oct

If ios::oct is set, the conversion base is 8.

hex

If ios::hex is set, the conversion base is 16.

showbase

If ios::showbase is set, the operation that inserts values converts them to an
external form that can be read according to the C++ lexical conventions for
integral constants. By default, ios::showbase is unset.

Integral Formatting

The following manipulator affects integral formatting:

104 C/C++ Legacy Classes

showpos

If ios::showpos is set, the operation that inserts values places a positive
sign ″+″ into decimal conversions of positive integral values. By default,
showpos is not set.

Floating-Point Formatting

The following format flags control the formatting of floating-point values:

showpoint

If ios:showpoint is set, trailing zeros and a decimal point appear in the
result of a floating-point conversion. This flag has no effect if either
ios::scientific or ios::fixed is set.

scientific

If ios::scientific is set, the value is converted using scientific notation. In
scientific notation, there is one digit before the decimal point and the
number of digits following the decimal point depends on the value of
ios::x_precision. The default value for ios::x_precision is 6. If ios::uppercase
is set, an uppercase ″E″ precedes the exponent. Otherwise, a lowercase ″e″
precedes the exponent.

fixed

If ios::fixed is set, floating point values are converted to fixed notation with
the number of digits after the decimal point equal to the value of
ios::x_precision (or 6 by default).

If neither ios::fixed nor ios::scientific is set, the representation of
floating-point values depends on their values and the number of
significant digits in the representation equals ios::x_precision.
Floating-point values are converted to scientific notation if the exponent
resulting from a conversion to scientific notation is less an -4 or greater
than or equal to the value of ios::x_precision. Otherwise, floating-point
values are converted to fixed notation. If ios::showpoint is not set, trailing
zeros are removed from the result and a decimal point appears only if it is
followed by a digit. ios::scientific and ios::fixed are collectively identified
by the static member ios::floatfield.

Uppercase and Lowercase

uppercase

If ios::uppercase is set, the operation that inserts values uses an uppercase
″E″ for floating point values in scientific notation. In addition, the
operation that inserts values stores hexadecimal digits ″A″ to ″F″ in
uppercase and places an uppercase ″X″ before hexadecimal values when
ios::showbase is set. If ios::uppercase is not set, a lowercase ″e″ introduces
the exponent in floating-point values, hexadecimal digits ″a″ to ″f″ are
stored in lowercase, and a lowercase ″x″ is inserted before hexadecimal
values when ios::showbase is set.

Buffer Flushing

Chapter 3. Reference 105

unitbuf

If ios::unitbuf is set, ostream::osfx() performs a flush after each insertion.
The attached stream buffer is unit buffered.

stdio

This flag is used internally by sync_with_stdio(). You should not use
ios::stdio directly.
Variation 1

enum { skipws=01,
left=02,
right=04,
internal=010,
dec=020,
oct=040,
hex=0100,
showbase=0200,
showpoint=0400,
uppercase=01000,
showpos=02000,
scientific=04000,
fixed=010000,
unitbuf=020000,
stdio=040000 }

This is supported on AIX 400 z/OS

Variation 2
enum { skipping=01000,

tied=02000 }

This is supported on AIX 400 z/OS

io_state

The error state state is an enumeration that records the errors that take
place in the processing of ios objects.

Note: hardfail is a flag used internally by the I/O Stream Library. Do not
use it.

open_mode

The elements of the open_mode enumeration have the following meanings:
v ios::app - open() performs a seek to the end of the file. Data that is

written is appended to the end of the file. This value implies that the file
is open for output.

v ios::ate - open() performs a seek to the end of the file. Setting ios::ate
does not open the file for input or output. If you set ios::ate, you should
explicitly set ios::in, ios::out, or both.

v ios::bin - See ios::binary below.
v ios::binary - The file is opened in binary mode. In the default (text)

mode, carriage returns are discarded on input, as in an end-of-file (0x1a)
character if it is the last character in the file. This means that a carriage
return without an accompanying line feed causes the characters on
either side of the carriage return to become adjacent. On output, a line
feed is expanded to a carriage return and line feed. If you specify
ios::binary, carriage returns and terminating end-of-file characters are not
removed on input, and a line feed is not expanded to a carriage return
and line feed on output. ios::binary and ios::bin provide identical
functionality.

106 C/C++ Legacy Classes

v ios::in - The file is opened for input. If the file that is being opened for
input does not exist, the open operation will fail. ios::noreplace is
ignoredif ios::in is set.

v ios::out - The file is opened for output.
v ios::trunc - If the file already exists, its contents will be discarded. If you

specify ios::out and neither ios::ate nor ios::app, you are implicitly
specifying ios::trunc. If you set ios::trunc, you should explicitly set
ios::in, ios::out, or both.

v ios::nocreate - If the file does not exist, the call to open() fails.
v ios::noreplace - If the file already exists and ios::out is et, the call to

open() fails. If ios::out is not set, ios::noreplace is ignored.
Variation 1

enum open_mode { in=1,
out=2,
ate=4,
app=010,
trunc=020,
nocreate=040,
noreplace=0100,
bin=0200,
binary=bin }

This is supported on AIX z/OS

Variation 2
enum open_mode { in=1,

out=2,
ate=4,
app=010,
trunc=020,
nocreate=040,
noreplace=0100,
bin=0200,
binary=bin,
text=0400 }

This is supported on 400

seek_dir

The elements of the seek_dir enumeration have the following meanings:
v beg - the beginning of the ultimate producer or consumer
v cur - the current position in the ultimate producer or consumer
v end - the end of the ultimate producer or consumer

ios - Inherited Member Functions and Data
Inherited Public Functions

None
Inherited Public Data

None
Inherited Protected Functions

None
Inherited Protected Data

None

Chapter 3. Reference 107

iostream
This class combines the input capabilities of the istream class with the output
capabilities of the ostream class. It is the base class for three other classes that also
provide input and output capabilities:
v iostream_withassign - to assign another stream (such as an fstream for a file) to

an iostream object.
v strstream - a stream of characters stored in memory.
v fstream - a stream that supports input and output.

Class header file: iostream.h

iostream - Hierarchy List
ios
istream
iostream

iostream_withassign

iostream - Member Functions and Data by Group

Constructors & Destructor
Objects of the iostream class can be constructed and destructed.
~iostream

public:virtual ~iostream()

This is supported on AIX 400 z/OS

Destructs an iostream object.
iostream

Overload 1
public:iostream(streambuf*)

This is supported on AIX 400 z/OS

This constructor takes a single streambuf argument and creates an
iostream object that is attached to the streambuf object. The
constructor also initializes the format variables to their defaults.

Overload 2
protected:iostream()

This is supported on AIX 400 z/OS

Protected contructor.

108 C/C++ Legacy Classes

iostream - Inherited Member Functions and Data
Inherited Public Functions

ios

Definition
Page
Number Definition

Page
Number

~ios 93 bad 95

bitalloc 100 clear 95

eof 96 fail 96

fill 96 flags 97

good 96 ios 93

ios_resource 100 iword 101

operator ! 101 operator const void * 101

operator void * 101 precision 97

pword 101 rdbuf 101

rdstate 96 setf 98

skip 99 sync_with_stdio 102

tie 102 unsetf 99

width 99 xalloc 103

istream

Definition
Page
Number Definition

Page
Number

~istream 114 gcount 115

get 115 get_complicated 119

getline 119 ignore 122

ipfx 136 isfx 137

istream 114 operator >> 125

peek 122 putback 135

read 123 rs_complicated 124

seekg 136 sync 136

tellg 136

Inherited Public Data

ios

Definition
Page
Number Definition

Page
Number

adjustfield 94 basefield 94

floatfield 94

Chapter 3. Reference 109

Inherited Protected Functions

istream

Definition
Page
Number Definition

Page
Number

do_ipfx 137 eatwhite 125

istream 114

ios

Definition
Page
Number Definition

Page
Number

init 100 ios 93

setstate 96

Inherited Protected Data

ios

Definition
Page
Number Definition

Page
Number

(* stdioflush) () 103 assign_private 94

bp 94 delbuf 94

isfx_special 94 ispecial 95

osfx_special 95 ospecial 95

state 95 x_fill 100

x_flags 95 x_precision 100

x_tie 95 x_width 100

iostream_withassign
This class is derived from istream_withassign and ostream_withassign. Use this
class to assign another stream to an iostream object.

Class header file: iostream.h

iostream_withassign - Hierarchy List
ios
istream
iostream
iostream_withassign

iostream_withassign - Member Functions and Data by Group

Constructors & Destructor
~iostream_withassign

public:virtual ~iostream_withassign()

110 C/C++ Legacy Classes

This is supported on AIX 400 z/OS

Destructs an iostream_withassign object.
iostream_withassign

public:iostream_withassign()

This is supported on AIX 400 z/OS

Creates an iostream_withassign object. It does not do any initialization of
this object.

operator =
public:iostream_withassign& operator =(iostream_withassign& rhs)

This is supported on AIX

Copy constructor.

Assignment Operators
operator =

Overload 1
public:iostream_withassign& operator =(streambuf*)

This is supported on AIX 400 z/OS

This assignment operator takes a pointer to a streambuf object and
associates this streambuf object with the iostream_withassign object
that is on the left side of the assignment operator.

Overload 2
public:iostream_withassign& operator =(ios&)

This is supported on AIX 400 z/OS

This assignment operator takes a reference to an ios object and
associates the stream buffer attached to this ios object with the
iostream_withassign object that is on the left side of the assignment
operator.

iostream_withassign - Inherited Member Functions and Data
Inherited Public Functions

ios

Definition
Page
Number Definition

Page
Number

~ios 93 bad 95

bitalloc 100 clear 95

eof 96 fail 96

fill 96 flags 97

good 96 ios 93

ios_resource 100 iword 101

operator ! 101 operator const void * 101

Chapter 3. Reference 111

ios

Definition
Page
Number Definition

Page
Number

operator void * 101 precision 97

pword 101 rdbuf 101

rdstate 96 setf 98

skip 99 sync_with_stdio 102

tie 102 unsetf 99

width 99 xalloc 103

iostream

Definition
Page
Number Definition

Page
Number

~iostream 108 iostream 108

istream

Definition
Page
Number Definition

Page
Number

~istream 114 gcount 115

get 115 get_complicated 119

getline 119 ignore 122

ipfx 136 isfx 137

istream 114 operator >> 125

peek 122 putback 135

read 123 rs_complicated 124

seekg 136 sync 136

tellg 136

Inherited Public Data

ios

Definition
Page
Number Definition

Page
Number

adjustfield 94 basefield 94

floatfield 94

Inherited Protected Functions

istream

Definition
Page
Number Definition

Page
Number

do_ipfx 137 eatwhite 125

istream 114

112 C/C++ Legacy Classes

ios

Definition
Page
Number Definition

Page
Number

init 100 ios 93

setstate 96

iostream

Definition
Page
Number Definition

Page
Number

iostream 108

Inherited Protected Data

ios

Definition
Page
Number Definition

Page
Number

(* stdioflush) () 103 assign_private 94

bp 94 delbuf 94

isfx_special 94 ispecial 95

osfx_special 95 ospecial 95

state 95 x_fill 100

x_flags 95 x_precision 100

x_tie 95 x_width 100

istream
You can use the istream class to perform formatted input, or extraction, from a
stream buffer using the input operator >>. Consider the following statement,
where ins is a reference to an istream object and x is a variable of a built-in type:

ins >> x;

The input operator >> calls ipfx(0). If ipfx() returns a nonzero value, the input
operator extracts characters from the streambuf object that is associated with ins. It
converts these characters to the type of x and stores the result x. The input
operator sets ios::failbit if the characters extracted from the stream buffer cannot be
converted to the type of x. If the attempt to extract characters fails because EOF is
encountered, the input operator sets ios::eofbit and ios::failbit. If the attempt to
extract characters fails for another reason, the input operator sets ios::badbit. Even
if an error occurs, the input operator always returns ins.

The details of conversion depend on the format state of the istream object and the
type of the variable x. The input operator may set the width variable ios::x_width
to 0, but it does not change anything else in the format state.

The input operator is defined for the following types:
v Arrays of character values (including signed char and unsigned char)

Chapter 3. Reference 113

v Other integral values: short, int, long, float, double, long double, and long long
values.

In addition, the input operator is defined for streambuf objects.

You can also define input operators for your own types.

Class header file: iostream.h

istream - Hierarchy List
ios
istream

iostream
istream_withassign

istream - Member Functions and Data by Group

Constructors & Destructor
Objects of the istream class can be constructed and destructed.
~istream

public:virtual ~istream()

This is supported on AIX 400 z/OS

Destructs an istream object.
istream

Overload 1
public:istream(streambuf*, int sk, ostream* t = 0)

This is supported on AIX 400 z/OS

Obsolete. Do not use.
Overload 2

public:istream(streambuf*)

This is supported on AIX 400 z/OS

This constructor takes a single argument, a pointer to a streambuf,
and creates an istream object that is attached to the streambuf
object. The constructor also initializes the format variables to their
defaults.

Note: The other istream constructor declarations in iostream.h are
obsolete; do not use them.

Overload 3
public:istream(int size, char*, int sk = 1)

This is supported on AIX 400 z/OS

Obsolete. Do not use.
Overload 4

public:istream(int fd, int sk = 1, ostream* t = 0)

114 C/C++ Legacy Classes

This is supported on AIX 400 z/OS

Obsolete. Do not use.
Overload 5

protected:istream()

This is supported on AIX 400 z/OS

Obsolete. Do not use.

Extract Functions
You can use the extract functions to extract characters from a stream buffer as a
sequence of bytes. All of these functions call ipfx(1). They only proceed with their
processing if ipfx(1) returns a nonzero value.
gcount

Returns the number of characters extracted from the stream buffer by the
last call to an unformatted input function. The input operator >> may call
unformatted input functions, and thus formatted input may affect the
value returned by gcount().
Overload 1

public:int gcount()

This is supported on AIX 400 z/OS

AIX Considerations

This function returns an int value for 32-bit applications. It
is not available for 64-bit applications.

Overload 2
public:long gcount()

This is supported on AIX

AIX Considerations

This function returns a long value for 64-bit applications. It
is not available for 32-bit applications.

get
Overload 1

public:int get()

This is supported on AIX 400 z/OS

Extracts a single character from the stream buffer attached to the
istream object and returns it. Returns EOF if EOF is extracted.
ios::failbit is never set.

Overload 2
public:istream& get(char*, int lim, char delim = ’\n’)

This is supported on AIX 400 z/OS

Extracts characters from the stream buffer attached to the istream
object and stores them in the byte array beginning at the location
pointed to by the first argument and extending for lim bytes. The
default value of the delim argument is ’\n’. Extraction stops when
either of the following conditions is true:

Chapter 3. Reference 115

v delim or EOF is encountered before lim - 1 characters have been
stored in the array. delim is left in the stream buffer and not
stored in the array.

v lim - 1 characters are extracted without delim or EOF being
encountered.

get() always stores a terminating null character in the array, even if
it does not extract any characters from the stream buffer. ios::failbit
is set if EOF is encountered before any characters are stored.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 3
public:istream& get(unsigned char& c)

This is supported on AIX 400 z/OS

Extracts a single character from the stream buffer attached to the
istream object and stores this character in c.

Overload 4
public:istream& get(signed char* b, int lim, char delim = ’\n’)

This is supported on AIX 400 z/OS

Extracts characters from the stream buffer attached to the istream
object and stores them in the byte array beginning at the location
pointed to by the first argument and extending for lim bytes. The
default value of the delim argument is ’\n’. Extraction stops when
either of the following conditions is true:
v delim or EOF is encountered before lim - 1 characters have been

stored in the array. delim is left in the stream buffer and not
stored in the array.

v lim - 1 characters are extracted without delim or EOF being
encountered.

get() always stores a terminating null character in the array, even if
it does not extract any characters from the stream buffer. ios::failbit
is set if EOF is encountered before any characters are stored.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 5
public:istream& get(streambuf& sb, char delim = ’\n’)

This is supported on AIX 400 z/OS

Extracts characters from the stream buffer attached to the istream
object and stores them in the streambuf, sb. The default value of
the delim argument is ’\n’. Extraction stops when any of the
following conditions is true:
v an EOF character is encountered
v an attempt to store a character in sb fails
v ios::failbit is set in the error state of the istream object

116 C/C++ Legacy Classes

v delim is encountered. delim is left in the stream buffer attached
to the istream object.

Overload 6
public:istream& get(unsigned char* b, long lim, char delim = ’\n’)

This is supported on AIX

Extracts characters from the stream buffer attached to the istream
object and stores them in the byte array beginning at the location
pointed to by the first argument and extending for lim bytes. The
default value of the delim argument is ’\n’. Extraction stops when
either of the following conditions is true:
v delim or EOF is encountered before lim - 1 characters have been

stored in the array. delim is left in the stream buffer and not
stored in the array.

v lim - 1 characters are extracted without delim or EOF being
encountered.

get() always stores a terminating null character in the array, even if
it does not extract any characters from the stream buffer. ios::failbit
is set if EOF is encountered before any characters are stored.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 7
public:istream& get(char& c)

This is supported on AIX 400 z/OS

Extracts a single character from the stream buffer attached to the
istream object and stores this character in c.

Overload 8
public:istream& get(signed char& c)

This is supported on AIX 400 z/OS

Extracts a single character from the stream buffer attached to the
istream object and stores this character in c.

Overload 9
public:istream& get(wchar_t&)

This is supported on AIX 400 z/OS

Extracts a single wchar_t character from the stream buffer attached
to the istream object and stores this character in c.

Overload 10
public:istream& get(unsigned char* b, int lim, char delim = ’\n’)

This is supported on AIX 400 z/OS

Extracts characters from the stream buffer attached to the istream
object and stores them in the byte array beginning at the location
pointed to by the first argument and extending for lim bytes. The

Chapter 3. Reference 117

default value of the delim argument is ’\n’. Extraction stops when
either of the following conditions is true:
v delim or EOF is encountered before lim - 1 characters have been

stored in the array. delim is left in the stream buffer and not
stored in the array.

v lim - 1 characters are extracted without delim or EOF being
encountered.

get() always stores a terminating null character in the array, even if
it does not extract any characters from the stream buffer. ios::failbit
is set if EOF is encountered before any characters are stored.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 11
public:istream& get(signed char* b, long lim, char delim = ’\n’)

This is supported on AIX

Extracts characters from the stream buffer attached to the istream
object and stores them in the byte array beginning at the location
pointed to by the first argument and extending for lim bytes. The
default value of the delim argument is ’\n’. Extraction stops when
either of the following conditions is true:
v delim or EOF is encountered before lim - 1 characters have been

stored in the array. delim is left in the stream buffer and not
stored in the array.

v lim - 1 characters are extracted without delim or EOF being
encountered.

get() always stores a terminating null character in the array, even if
it does not extract any characters from the stream buffer. ios::failbit
is set if EOF is encountered before any characters are stored.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 12
public:istream& get(char*, long lim, char delim = ’\n’)

This is supported on AIX

Extracts characters from the stream buffer attached to the istream
object and stores them in the byte array beginning at the location
pointed to by the first argument and extending for lim bytes. The
default value of the delim argument is ’\n’. Extraction stops when
either of the following conditions is true:
v delim or EOF is encountered before lim - 1 characters have been

stored in the array. delim is left in the stream buffer and not
stored in the array.

v lim - 1 characters are extracted without delim or EOF being
encountered.

118 C/C++ Legacy Classes

get() always stores a terminating null character in the array, even if
it does not extract any characters from the stream buffer. ios::failbit
is set if EOF is encountered before any characters are stored.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

get_complicated
Overload 1

public:istream& get_complicated(signed char& c)

This is supported on AIX 400 z/OS

Internal function. Do not use.
Overload 2

public:istream& get_complicated(unsigned char& c)

This is supported on AIX 400 z/OS

Internal function. Do not use.
Overload 3

public:istream& get_complicated(char& c)

This is supported on AIX 400 z/OS

Internal function. Do not use.
getline

Overload 1
public:istream&

getline(unsigned char* b,
int lim,
char delim = ’\n’)

This is supported on AIX 400 z/OS

Extracts characters from the stream buffer attached to the istream
object and stores them in the byte array beginning at the location
pointed to by the first argument and extending for lim bytes. The
default value of the delim argument is ’\n’. Extraction stops when
either of the following conditions is true:
v delim or EOF is encountered before lim - 1 characters have been

stored in the array. getline() extracts delim from the stream
buffer, but it does not store delim in the array.

v lim - 1 characters are extracted before delim or EOF is
encountered.

getline() always stores a terminating null character in the array,
even if it does not extract any characters from the stream buffer.
ios::failbit is set if EOF is encountered before any characters are
stored.

getline() is like get() with three arguments, except that get() does
not extract the delim character from the stream buffer, while
getline() does.
AIX Considerations

Chapter 3. Reference 119

This function is available for 32-bit applications. The
second argument is an int value.

Overload 2
public:istream&

getline(unsigned char* b,
long lim,
char delim = ’\n’)

This is supported on AIX

Extracts characters from the stream buffer attached to the istream
object and stores them in the byte array beginning at the location
pointed to by the first argument and extending for lim bytes. The
default value of the delim argument is ’\n’. Extraction stops when
either of the following conditions is true:
v delim or EOF is encountered before lim - 1 characters have been

stored in the array. getline() extracts delim from the stream
buffer, but it does not store delim in the array.

v lim - 1 characters are extracted before delim or EOF is
encountered.

getline() always stores a terminating null character in the array,
even if it does not extract any characters from the stream buffer.
ios::failbit is set if EOF is encountered before any characters are
stored.

getline() is like get() with three arguments, except that get() does
not extract the delim character from the stream buffer, while
getline() does.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 3
public:istream& getline(char* b, int lim, char delim = ’\n’)

This is supported on AIX 400 z/OS

Extracts characters from the stream buffer attached to the istream
object and stores them in the byte array beginning at the location
pointed to by the first argument and extending for lim bytes. The
default value of the delim argument is ’\n’. Extraction stops when
either of the following conditions is true:
v delim or EOF is encountered before lim - 1 characters have been

stored in the array. getline() extracts delim from the stream
buffer, but it does not store delim in the array.

v lim - 1 characters are extracted before delim or EOF is
encountered.

getline() always stores a terminating null character in the array,
even if it does not extract any characters from the stream buffer.
ios::failbit is set if EOF is encountered before any characters are
stored.

120 C/C++ Legacy Classes

getline() is like get() with three arguments, except that get() does
not extract the delim character from the stream buffer, while
getline() does.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 4
public:istream& getline(char* b, long lim, char delim = ’\n’)

This is supported on AIX

Extracts characters from the stream buffer attached to the istream
object and stores them in the byte array beginning at the location
pointed to by the first argument and extending for lim bytes. The
default value of the delim argument is ’\n’. Extraction stops when
either of the following conditions is true:
v delim or EOF is encountered before lim - 1 characters have been

stored in the array. getline() extracts delim from the stream
buffer, but it does not store delim in the array.

v lim - 1 characters are extracted before delim or EOF is
encountered.

getline() always stores a terminating null character in the array,
even if it does not extract any characters from the stream buffer.
ios::failbit is set if EOF is encountered before any characters are
stored.

getline() is like get() with three arguments, except that get() does
not extract the delim character from the stream buffer, while
getline() does.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 5
public:istream&

getline(signed char* b,
int lim,
char delim = ’\n’)

This is supported on AIX 400 z/OS

Extracts characters from the stream buffer attached to the istream
object and stores them in the byte array beginning at the location
pointed to by the first argument and extending for lim bytes. The
default value of the delim argument is ’\n’. Extraction stops when
either of the following conditions is true:
v delim or EOF is encountered before lim - 1 characters have been

stored in the array. getline() extracts delim from the stream
buffer, but it does not store delim in the array.

v lim - 1 characters are extracted before delim or EOF is
encountered.

Chapter 3. Reference 121

getline() always stores a terminating null character in the array,
even if it does not extract any characters from the stream buffer.
ios::failbit is set if EOF is encountered before any characters are
stored.

getline() is like get() with three arguments, except that get() does
not extract the delim character from the stream buffer, while
getline() does.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 6
public:istream&

getline(signed char* b,
long lim,
char delim = ’\n’)

This is supported on AIX

Extracts characters from the stream buffer attached to the istream
object and stores them in the byte array beginning at the location
pointed to by the first argument and extending for lim bytes. The
default value of the delim argument is ’\n’. Extraction stops when
either of the following conditions is true:
v delim or EOF is encountered before lim - 1 characters have been

stored in the array. getline() extracts delim from the stream
buffer, but it does not store delim in the array.

v lim - 1 characters are extracted before delim or EOF is
encountered.

getline() always stores a terminating null character in the array,
even if it does not extract any characters from the stream buffer.
ios::failbit is set if EOF is encountered before any characters are
stored.

getline() is like get() with three arguments, except that get() does
not extract the delim character from the stream buffer, while
getline() does.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

ignore
public:istream& ignore(int n = 1, int delim = EOF)

This is supported on AIX 400 z/OS

Extracts up to n characters from the stream buffer attached to the istream
object and discards them. ignore() will extract fewer than n characters if it
encounters delim or EOF.

peek
public:int peek()

This is supported on AIX 400 z/OS

122 C/C++ Legacy Classes

peek() calls ipfx(1). If ipfx() returns 0, or if no more input is available from
the ultimate producer, peek() returns EOF. Otherwise, it returns the next
character in the stream buffer without extracting the character.

read
Overload 1

public:istream& read(char* s, long n)

This is supported on AIX

Extracts n characters from the stream buffer attached to the istream
object and stores them in an array beginning at the position
pointed to by s. If EOF is encountered before read() extracts n
characters, read() sets the ios::failbit in the error state of the istream
object. You can determine the number of characters that read()
extracted by calling gcount() immediately after the call to read().
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 2
public:istream& read(signed char* s, int n)

This is supported on AIX 400 z/OS

Extracts n characters from the stream buffer attached to the istream
object and stores them in an array beginning at the position
pointed to by s. If EOF is encountered before read() extracts n
characters, read() sets the ios::failbit in the error state of the istream
object. You can determine the number of characters that read()
extracted by calling gcount() immediately after the call to read().
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 3
public:istream& read(unsigned char* s, long n)

This is supported on AIX

Extracts n characters from the stream buffer attached to the istream
object and stores them in an array beginning at the position
pointed to by s. If EOF is encountered before read() extracts n
characters, read() sets the ios::failbit in the error state of the istream
object. You can determine the number of characters that read()
extracted by calling gcount() immediately after the call to read().
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 4
public:istream& read(unsigned char* s, int n)

This is supported on AIX 400 z/OS

Chapter 3. Reference 123

Extracts n characters from the stream buffer attached to the istream
object and stores them in an array beginning at the position
pointed to by s. If EOF is encountered before read() extracts n
characters, read() sets the ios::failbit in the error state of the istream
object. You can determine the number of characters that read()
extracted by calling gcount() immediately after the call to read().
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 5
public:istream& read(signed char* s, long n)

This is supported on AIX

Extracts n characters from the stream buffer attached to the istream
object and stores them in an array beginning at the position
pointed to by s. If EOF is encountered before read() extracts n
characters, read() sets the ios::failbit in the error state of the istream
object. You can determine the number of characters that read()
extracted by calling gcount() immediately after the call to read().
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 6
public:istream& read(char* s, int n)

This is supported on AIX 400 z/OS

Extracts n characters from the stream buffer attached to the istream
object and stores them in an array beginning at the position
pointed to by s. If EOF is encountered before read() extracts n
characters, read() sets the ios::failbit in the error state of the istream
object. You can determine the number of characters that read()
extracted by calling gcount() immediately after the call to read().
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

rs_complicated
Overload 1

public:istream& rs_complicated(signed char& c)

This is supported on AIX 400 z/OS

Internal function. Do not use.
Overload 2

public:istream& rs_complicated(char& c)

This is supported on AIX 400 z/OS

Internal function. Do not use.
Overload 3

public:istream& rs_complicated(unsigned char& c)

124 C/C++ Legacy Classes

This is supported on AIX 400 z/OS

Internal function. Do not use.
eatwhite

protected:void eatwhite()

This is supported on AIX 400 z/OS

Internal function. Do not use.

Input Operators
Input operators supported by istream objects.
operator >>

Overload 1
public:istream& operator >>(float&)

This is supported on AIX 400 z/OS

The input operator converts characters from the stream buffer
attached to the input stream according to the C++ lexical
conventions.

The following conversions occur for certain string values:
v If the value consists of the character strings ″inf″ or ″infinity″ in

any combination of uppercase and lowercase letters, the string is
converted to the approprate type’s representation of infinity.

v If the value consists of the character string ″nan″ in any
combination of uppercase and lowercase letters, the string is
converted to the appropriate type’s representation of a NaN.

Note that if you use thse string values as input in a program
compiled with z/OS C/C++, the input operator will not recognize
them as floating point numbers and will set ios::badbit in the
stream’s error state.

The resulting value is stored in the reference location provided.
The input operator sets ios::failbit if no digits are available in the
stream buffer or if the digits that are available do not begin a
floating-point number.

Overload 2
public:istream& operator >>(char*)

This is supported on AIX 400 z/OS

The input operator stores characters from the stream buffer
attached to the input stream in the array pointed to by the
argument. The input operator stores characters until a white-space
character is found. This white-space character is left in the stream
buffer, and the extraction stops. If ios::x_width does not equal 0, a
maximum of ios::x_width - 1 characters are extracted. The input
operator calls width(0) to reset the ios::x_width to 0.

The input operator always stores a terminating null character in
the array, even if an error occurs.

Chapter 3. Reference 125

Overload 3
public:istream& operator >>(int&)

This is supported on AIX 400 z/OS

The input operator extracts characters from the stream buffer
associated with the input stream and converts them according to
the format state of the input stream. The converted characters are
then store in the reference location provided. There is no overflow
detection on conversion of integral types.

The first character extracted from the stream buffer may be a sign
(+ or -). The subsequent characters are converted until a nondigit
character is encountered. This nondigit character is left in the
stream buffer. Which characters are treated as digits depends on
the setting of the following format flags:
v ios::oct - the characters are converted to an octal value.

Characters are extracted from the stream buffer until a character
that is not an octal digit (a digit from 0 to 7) is encountered. If
ios::oct is set and a signed value is encountered, the value is
converted into a decimal value.

v ios::dec - the characters are converted to a decimal value.
Characters are extracted from the stream buffer until a character
that is not a decimal digit (a digit from 0 to 9) is encountered.

v ios::hex - the characters are converted to an hexadecimal value.
Characters are extracted from the stream buffer until a character
that is not a hexadecimal digit (a digit from 0 to 0 or a letter
from ″A″ to ″F″, upper or lower case) is encountered. If ios::hex
is set and a signed value is encountered, the value is converted
into a decimal value.

If none of these format flags is set, the characters are converted
according to the C++ lexical conventions. This conversion depends
on the characters that follow the optional sign:
v If these characters are ″0x″ or ″0X″, the subsequent characters are

converted to a hexadecimal value.
v If the first character is ″0″ and the second character is not a ″x″

or ″X″, the subsequent characters are converted to an octal value.
v If neither of these cases is true, the characters are converted to a

decimal value.

If no digits are available in the stream buffer (other than the ″0″ in
″0X″ or ″0x″ preceding a hexadecimal value), the input operator
sets ios::failbit in the error state of the input stream.

Overload 4
public:istream& operator >>(long double&)

This is supported on AIX 400 z/OS

The input operator converts characters from the stream buffer
attached to the input stream according to the C++ lexical
conventions.

The following conversions occur for certain string values:

126 C/C++ Legacy Classes

v If the value consists of the character strings ″inf″ or ″infinity″ in
any combination of uppercase and lowercase letters, the string is
converted to the approprate type’s representation of infinity.

v If the value consists of the character string ″nan″ in any
combination of uppercase and lowercase letters, the string is
converted to the appropriate type’s representation of a NaN.

Note that if you use thse string values as input in a program
compiled with z/OS C/C++, the input operator will not recognize
them as floating point numbers and will set ios::badbit in the
stream’s error state.

The resulting value is stored in the reference location provided.
The input operator sets ios::failbit if no digits are available in the
stream buffer or if the digits that are available do not begin a
floating-point number.

Overload 5
public:istream& operator >>(ios & (* f) (ios &))

This is supported on AIX 400 z/OS

The following built-in manipulators are accepted by this input
operator:

ios& dec(ios&)
ios& hex(ios&)
ios& oct(ios &)

These manipulators have a specific effect on an istream object
beyond extracting their own values. For example, If ins is a
reference to an istream object, then this statement sets ios::dec:

ins >> dec;
Overload 6

public:istream& operator >>(long long&)

This is supported on AIX 400 z/OS

The input operator extracts characters from the stream buffer
associated with the input stream and converts them according to
the format state of the input stream. The converted characters are
then store in the reference location provided. There is no overflow
detection on conversion of integral types.

The first character extracted from the stream buffer may be a sign
(+ or -). The subsequent characters are converted until a nondigit
character is encountered. This nondigit character is left in the
stream buffer. Which characters are treated as digits depends on
the setting of the following format flags:
v ios::oct - the characters are converted to an octal value.

Characters are extracted from the stream buffer until a character
that is not an octal digit (a digit from 0 to 7) is encountered. If
ios::oct is set and a signed value is encountered, the value is
converted into a decimal value.

v ios::dec - the characters are converted to a decimal value.
Characters are extracted from the stream buffer until a character
that is not a decimal digit (a digit from 0 to 9) is encountered.

Chapter 3. Reference 127

v ios::hex - the characters are converted to an hexadecimal value.
Characters are extracted from the stream buffer until a character
that is not a hexadecimal digit (a digit from 0 to 0 or a letter
from ″A″ to ″F″, upper or lower case) is encountered. If ios::hex
is set and a signed value is encountered, the value is converted
into a decimal value.

If none of these format flags is set, the characters are converted
according to the C++ lexical conventions. This conversion depends
on the characters that follow the optional sign:
v If these characters are ″0x″ or ″0X″, the subsequent characters are

converted to a hexadecimal value.
v If the first character is ″0″ and the second character is not a ″x″

or ″X″, the subsequent characters are converted to an octal value.
v If neither of these cases is true, the characters are converted to a

decimal value.

If no digits are available in the stream buffer (other than the ″0″ in
″0X″ or ″0x″ preceding a hexadecimal value), the input operator
sets ios::failbit in the error state of the input stream.

Note: The support for long long is controlled by _LONG_LONG,
__EXTENDED__, or the -q(no)longlong option.

Overload 7
public:istream& operator >>(long&)

This is supported on AIX 400 z/OS

The input operator extracts characters from the stream buffer
associated with the input stream and converts them according to
the format state of the input stream. The converted characters are
then store in the reference location provided. There is no overflow
detection on conversion of integral types.

The first character extracted from the stream buffer may be a sign
(+ or -). The subsequent characters are converted until a nondigit
character is encountered. This nondigit character is left in the
stream buffer. Which characters are treated as digits depends on
the setting of the following format flags:
v ios::oct - the characters are converted to an octal value.

Characters are extracted from the stream buffer until a character
that is not an octal digit (a digit from 0 to 7) is encountered. If
ios::oct is set and a signed value is encountered, the value is
converted into a decimal value.

v ios::dec - the characters are converted to a decimal value.
Characters are extracted from the stream buffer until a character
that is not a decimal digit (a digit from 0 to 9) is encountered.

v ios::hex - the characters are converted to an hexadecimal value.
Characters are extracted from the stream buffer until a character
that is not a hexadecimal digit (a digit from 0 to 0 or a letter
from ″A″ to ″F″, upper or lower case) is encountered. If ios::hex
is set and a signed value is encountered, the value is converted
into a decimal value.

128 C/C++ Legacy Classes

If none of these format flags is set, the characters are converted
according to the C++ lexical conventions. This conversion depends
on the characters that follow the optional sign:
v If these characters are ″0x″ or ″0X″, the subsequent characters are

converted to a hexadecimal value.
v If the first character is ″0″ and the second character is not a ″x″

or ″X″, the subsequent characters are converted to an octal value.
v If neither of these cases is true, the characters are converted to a

decimal value.

If no digits are available in the stream buffer (other than the ″0″ in
″0X″ or ″0x″ preceding a hexadecimal value), the input operator
sets ios::failbit in the error state of the input stream.

Overload 8
public:istream& operator >>(short&)

This is supported on AIX 400 z/OS

The input operator extracts characters from the stream buffer
associated with the input stream and converts them according to
the format state of the input stream. The converted characters are
then store in the reference location provided. There is no overflow
detection on conversion of integral types.

The first character extracted from the stream buffer may be a sign
(+ or -). The subsequent characters are converted until a nondigit
character is encountered. This nondigit character is left in the
stream buffer. Which characters are treated as digits depends on
the setting of the following format flags:
v ios::oct - the characters are converted to an octal value.

Characters are extracted from the stream buffer until a character
that is not an octal digit (a digit from 0 to 7) is encountered. If
ios::oct is set and a signed value is encountered, the value is
converted into a decimal value.

v ios::dec - the characters are converted to a decimal value.
Characters are extracted from the stream buffer until a character
that is not a decimal digit (a digit from 0 to 9) is encountered.

v ios::hex - the characters are converted to an hexadecimal value.
Characters are extracted from the stream buffer until a character
that is not a hexadecimal digit (a digit from 0 to 0 or a letter
from ″A″ to ″F″, upper or lower case) is encountered. If ios::hex
is set and a signed value is encountered, the value is converted
into a decimal value.

If none of these format flags is set, the characters are converted
according to the C++ lexical conventions. This conversion depends
on the characters that follow the optional sign:
v If these characters are ″0x″ or ″0X″, the subsequent characters are

converted to a hexadecimal value.
v If the first character is ″0″ and the second character is not a ″x″

or ″X″, the subsequent characters are converted to an octal value.
v If neither of these cases is true, the characters are converted to a

decimal value.

Chapter 3. Reference 129

If no digits are available in the stream buffer (other than the ″0″ in
″0X″ or ″0x″ preceding a hexadecimal value), the input operator
sets ios::failbit in the error state of the input stream.

Overload 9
public:istream& operator >>(signed char& c)

This is supported on AIX 400 z/OS

The input operator extracts a character from the stream buffer
attached to the input stream and stores it in c.

Overload 10
public:istream& operator >>(signed char*)

This is supported on AIX 400 z/OS

The input operator stores characters from the stream buffer
attached to the input stream in the array pointed to by the
argument. The input operator stores characters until a white-space
character is found. This white-space character is left in the stream
buffer, and the extraction stops. If ios::x_width does not equal 0, a
maximum of ios::x_width - 1 characters are extracted. The input
operator calls width(0) to reset the ios::x_width to 0.

The input operator always stores a terminating null character in
the array, even if an error occurs.

Overload 11
public:istream& operator >>(unsigned char*)

This is supported on AIX 400 z/OS

The input operator stores characters from the stream buffer
attached to the input stream in the array pointed to by the
argument. The input operator stores characters until a white-space
character is found. This white-space character is left in the stream
buffer, and the extraction stops. If ios::x_width does not equal 0, a
maximum of ios::x_width - 1 characters are extracted. The input
operator calls width(0) to reset the ios::x_width to 0.

The input operator always stores a terminating null character in
the array, even if an error occurs.

Overload 12
public:istream& operator >>(streambuf*)

This is supported on AIX 400 z/OS

For pointers to streambuf objects, the input operator calls ipfx(0). If
ipfx(0) returns a nonzero value, the input operator extracts
characters from the stream buffer attached to the istream object and
inserts them in the streambuf. Extraction stops when an EOF
character is encountered.

The input operator always returns a reference to the istream object.
Overload 13

public:istream& operator >>(unsigned int&)

130 C/C++ Legacy Classes

This is supported on AIX 400 z/OS

The input operator extracts characters from the stream buffer
associated with the input stream and converts them according to
the format state of the input stream. The converted characters are
then store in the reference location provided. There is no overflow
detection on conversion of integral types.

The first character extracted from the stream buffer may be a sign
(+ or -). The subsequent characters are converted until a nondigit
character is encountered. This nondigit character is left in the
stream buffer. Which characters are treated as digits depends on
the setting of the following format flags:
v ios::oct - the characters are converted to an octal value.

Characters are extracted from the stream buffer until a character
that is not an octal digit (a digit from 0 to 7) is encountered. If
ios::oct is set and a signed value is encountered, the value is
converted into a decimal value.

v ios::dec - the characters are converted to a decimal value.
Characters are extracted from the stream buffer until a character
that is not a decimal digit (a digit from 0 to 9) is encountered.

v ios::hex - the characters are converted to an hexadecimal value.
Characters are extracted from the stream buffer until a character
that is not a hexadecimal digit (a digit from 0 to 0 or a letter
from ″A″ to ″F″, upper or lower case) is encountered. If ios::hex
is set and a signed value is encountered, the value is converted
into a decimal value.

If none of these format flags is set, the characters are converted
according to the C++ lexical conventions. This conversion depends
on the characters that follow the optional sign:
v If these characters are ″0x″ or ″0X″, the subsequent characters are

converted to a hexadecimal value.
v If the first character is ″0″ and the second character is not a ″x″

or ″X″, the subsequent characters are converted to an octal value.
v If neither of these cases is true, the characters are converted to a

decimal value.

If no digits are available in the stream buffer (other than the ″0″ in
″0X″ or ″0x″ preceding a hexadecimal value), the input operator
sets ios::failbit in the error state of the input stream.

Overload 14
public:istream& operator >>(unsigned long long&)

This is supported on AIX 400 z/OS

The input operator extracts characters from the stream buffer
associated with the input stream and converts them according to
the format state of the input stream. The converted characters are
then store in the reference location provided. There is no overflow
detection on conversion of integral types.

The first character extracted from the stream buffer may be a sign
(+ or -). The subsequent characters are converted until a nondigit
character is encountered. This nondigit character is left in the

Chapter 3. Reference 131

stream buffer. Which characters are treated as digits depends on
the setting of the following format flags:
v ios::oct - the characters are converted to an octal value.

Characters are extracted from the stream buffer until a character
that is not an octal digit (a digit from 0 to 7) is encountered. If
ios::oct is set and a signed value is encountered, the value is
converted into a decimal value.

v ios::dec - the characters are converted to a decimal value.
Characters are extracted from the stream buffer until a character
that is not a decimal digit (a digit from 0 to 9) is encountered.

v ios::hex - the characters are converted to an hexadecimal value.
Characters are extracted from the stream buffer until a character
that is not a hexadecimal digit (a digit from 0 to 0 or a letter
from ″A″ to ″F″, upper or lower case) is encountered. If ios::hex
is set and a signed value is encountered, the value is converted
into a decimal value.

If none of these format flags is set, the characters are converted
according to the C++ lexical conventions. This conversion depends
on the characters that follow the optional sign:
v If these characters are ″0x″ or ″0X″, the subsequent characters are

converted to a hexadecimal value.
v If the first character is ″0″ and the second character is not a ″x″

or ″X″, the subsequent characters are converted to an octal value.
v If neither of these cases is true, the characters are converted to a

decimal value.

If no digits are available in the stream buffer (other than the ″0″ in
″0X″ or ″0x″ preceding a hexadecimal value), the input operator
sets ios::failbit in the error state of the input stream.

Note: The support for long long is controlled by _LONG_LONG,
__EXTENDED__, or the -q(no)longlong option.

Overload 15
public:istream& operator >>(unsigned long&)

This is supported on AIX 400 z/OS

The input operator extracts characters from the stream buffer
associated with the input stream and converts them according to
the format state of the input stream. The converted characters are
then store in the reference location provided. There is no overflow
detection on conversion of integral types.

The first character extracted from the stream buffer may be a sign
(+ or -). The subsequent characters are converted until a nondigit
character is encountered. This nondigit character is left in the
stream buffer. Which characters are treated as digits depends on
the setting of the following format flags:
v ios::oct - the characters are converted to an octal value.

Characters are extracted from the stream buffer until a character
that is not an octal digit (a digit from 0 to 7) is encountered. If
ios::oct is set and a signed value is encountered, the value is
converted into a decimal value.

132 C/C++ Legacy Classes

v ios::dec - the characters are converted to a decimal value.
Characters are extracted from the stream buffer until a character
that is not a decimal digit (a digit from 0 to 9) is encountered.

v ios::hex - the characters are converted to an hexadecimal value.
Characters are extracted from the stream buffer until a character
that is not a hexadecimal digit (a digit from 0 to 0 or a letter
from ″A″ to ″F″, upper or lower case) is encountered. If ios::hex
is set and a signed value is encountered, the value is converted
into a decimal value.

If none of these format flags is set, the characters are converted
according to the C++ lexical conventions. This conversion depends
on the characters that follow the optional sign:
v If these characters are ″0x″ or ″0X″, the subsequent characters are

converted to a hexadecimal value.
v If the first character is ″0″ and the second character is not a ″x″

or ″X″, the subsequent characters are converted to an octal value.
v If neither of these cases is true, the characters are converted to a

decimal value.

If no digits are available in the stream buffer (other than the ″0″ in
″0X″ or ″0x″ preceding a hexadecimal value), the input operator
sets ios::failbit in the error state of the input stream.

Overload 16
public:istream& operator >>(unsigned short&)

This is supported on AIX 400 z/OS

The input operator extracts characters from the stream buffer
associated with the input stream and converts them according to
the format state of the input stream. The converted characters are
then store in the reference location provided. There is no overflow
detection on conversion of integral types.

The first character extracted from the stream buffer may be a sign
(+ or -). The subsequent characters are converted until a nondigit
character is encountered. This nondigit character is left in the
stream buffer. Which characters are treated as digits depends on
the setting of the following format flags:
v ios::oct - the characters are converted to an octal value.

Characters are extracted from the stream buffer until a character
that is not an octal digit (a digit from 0 to 7) is encountered. If
ios::oct is set and a signed value is encountered, the value is
converted into a decimal value.

v ios::dec - the characters are converted to a decimal value.
Characters are extracted from the stream buffer until a character
that is not a decimal digit (a digit from 0 to 9) is encountered.

v ios::hex - the characters are converted to an hexadecimal value.
Characters are extracted from the stream buffer until a character
that is not a hexadecimal digit (a digit from 0 to 0 or a letter
from ″A″ to ″F″, upper or lower case) is encountered. If ios::hex
is set and a signed value is encountered, the value is converted
into a decimal value.

Chapter 3. Reference 133

If none of these format flags is set, the characters are converted
according to the C++ lexical conventions. This conversion depends
on the characters that follow the optional sign:
v If these characters are ″0x″ or ″0X″, the subsequent characters are

converted to a hexadecimal value.
v If the first character is ″0″ and the second character is not a ″x″

or ″X″, the subsequent characters are converted to an octal value.
v If neither of these cases is true, the characters are converted to a

decimal value.

If no digits are available in the stream buffer (other than the ″0″ in
″0X″ or ″0x″ preceding a hexadecimal value), the input operator
sets ios::failbit in the error state of the input stream.

Overload 17
public:istream& operator >>(wchar_t&)

This is supported on AIX 400 z/OS

The input operator extracts a wchar_t character from the stream
buffer attached to the input stream and stores it in the reference
location provided. If ios::skipws is set, the input operator skips
leading wchar_t spaces as well as leading char white spaces.

Overload 18
public:istream& operator >>(wchar_t*)

This is supported on AIX 400 z/OS

The input operator stores characters from the stream buffer
attached to the input stream in the array pointed to by the
argument. The input operator stores characters until a white-space
character or a wchar_t blank is found. If the terminating character
is a white-space character, it is left in the stream buffer. If it is a
wchar_t blank, it is discarded to avoid returning two bytes to the
input stream.

For wchar_t* arrays, if ios::x_width does not equal 0, a maximum
of ios::x_width - 1 characters (at 2 bytes each) are extracted. A
2-character space is reserved for the wchar_t terminating null
character.

The input operator resets ios::x_width to 0.

The input operator always stores a terminating null character in
the array, even if an error occurs. For arrays of wchar_t*, this
terminating null character is a wchar_t terminating null character.

Overload 19
public:istream& operator >>(unsigned char& c)

This is supported on AIX 400 z/OS

The input operator extracts a character from the stream buffer
attached to the input stream and stores it in c.

Overload 20
public:istream& operator >>(istream & (* f) (istream &))

134 C/C++ Legacy Classes

This is supported on AIX 400 z/OS

The following built-in manipulators are accepted by this input
operator:

istream& ws(istream&)

These manipulators have a specific effect on an istream object
beyond extracting their own values. For example, If ins is a
reference to an istream object, then this statement extracts
white-space characters from the stream buffer attached to ins:

ins >> ws;
Overload 21

public:istream& operator >>(double&)

This is supported on AIX 400 z/OS

The input operator converts characters from the stream buffer
attached to the input stream according to the C++ lexical
conventions.

The following conversions occur for certain string values:
v If the value consists of the character strings ″inf″ or ″infinity″ in

any combination of uppercase and lowercase letters, the string is
converted to the approprate type’s representation of infinity.

v If the value consists of the character string ″nan″ in any
combination of uppercase and lowercase letters, the string is
converted to the appropriate type’s representation of a NaN.

Note that if you use thse string values as input in a program
compiled with z/OS C/C++, the input operator will not recognize
them as floating point numbers and will set ios::badbit in the
stream’s error state.

The resulting value is stored in the reference location provided.
The input operator sets ios::failbit if no digits are available in the
stream buffer or if the digits that are available do not begin a
floating-point number.

Overload 22
public:istream& operator >>(char& c)

This is supported on AIX 400 z/OS

The input operator extracts a character from the stream buffer
attached to the input stream and stores it in c.

Positioning Functions
Functions that work with the get pointer of the ultimate producer.
putback

public:istream& putback(char c)

This is supported on AIX 400 z/OS

putback() attempts to put an extracted character back into the stream
buffer. c must equal the character before the get pointer of the stream

Chapter 3. Reference 135

buffer. Unless some other activity is modifying the stream buffer, this is the
last character extracted from the stream buffer. If c is not equal to the
character before the get pointer, the result of putback() is undefined, and
the error state of the input stream may be set. putback() does not call
ipfx(), but if the error state of the input stream is nonzero, putback()
returns without putting back the character or setting the error state.

seekg
Overload 1

public:istream& seekg(streampos p)

This is supported on AIX 400 z/OS

Sets the get pointer to the position p.

If you attempt to set the get pointer to a position that is not valid,
seekg() sets ios::badbit.

Overload 2
public:istream& seekg(streamoff o, ios::seek_dir d)

This is supported on AIX 400 z/OS

Sets the get pointer to the position specified by d with the offset o.
The argument d can have the following values:
v ios::beg - the beginning of the stream
v ios::cur - the current position of the get pointer
v ios::end - the end of the stream

If you attempt to set the get pointer to a position that is not valid,
seekg() sets ios::badbit.

sync
public:int sync()

This is supported on AIX 400 z/OS

Establishes consistency between the ultimate producer and the stream
buffer attached to the input stream. sync() calls rdbuf()->sync(), which is a
virtual function, so the details of its operation depend on the way the
function is defined in a given derived class. If an error occurs, sync()
returns EOF.

tellg
public:streampos tellg()

This is supported on AIX 400 z/OS

Returns the current position of the get pointer of the ultimate producer.

Prefix and Suffix Functions
Functions that are called either before or after extracting characters from the
ultimate producer.
ipfx

Checks the stream buffer attached to an istream object to determine if it is
capable of satisfying requests for characters. It returns a nonzero value if
the stream buffer is ready, and 0 if it is not.

136 C/C++ Legacy Classes

The formatted input operator calls ipfx(0), while the unformatted input
functions call ipfx(1).

If the error state of the istream object is nonzero, ipfx() returns 0.
Otherwise, the stream buffer attached to the istream object is flushed if
either of the following conditions is true:
v noskipws has a value of 0. The number of characters available in the

stream buffer is fewer than the value of noskipws.

If ios::skipws is set in the format state of the istream object and noskipws
has a value of 0, leading white-space characters are extracted from the
stream buffer and discarded. If ios::hardfail is set or EOF is encountered,
ipfx() returns 0. Otherwise, it returns a nonzero value.
Overload 1

public:int ipfx(int noskipws = 0)

This is supported on AIX 400 z/OS

AIX Considerations

This function accepts an int value for 32-bit applications. It
is not available for 64-bit applications.

Overload 2
public:int ipfx(long noskipws = 0)

This is supported on AIX

AIX Considerations

This function accepts a long value for 64-bit applications. It
is not available for 32-bit applications.

isfx
public:void isfx()

This is supported on AIX 400 z/OS

Internal function. Do not use.
do_ipfx

Overload 1
protected:int do_ipfx(long noskipws)

This is supported on AIX

Internal function. Do not use.
AIX Considerations

This function is available for 64-bit applications. It accepts
a long argument.

Overload 2
protected:int do_ipfx(int noskipws)

This is supported on AIX 400 z/OS

Internal function. Do not use.
AIX Considerations

This function is available for 32-bit applications. It accepts
an int argument.

Chapter 3. Reference 137

istream - Inherited Member Functions and Data
Inherited Public Functions

ios

Definition
Page
Number Definition

Page
Number

~ios 93 bad 95

bitalloc 100 clear 95

eof 96 fail 96

fill 96 flags 97

good 96 ios 93

ios_resource 100 iword 101

operator ! 101 operator const void * 101

operator void * 101 precision 97

pword 101 rdbuf 101

rdstate 96 setf 98

skip 99 sync_with_stdio 102

tie 102 unsetf 99

width 99 xalloc 103

Inherited Public Data

ios

Definition
Page
Number Definition

Page
Number

adjustfield 94 basefield 94

floatfield 94

Inherited Protected Functions

ios

Definition
Page
Number Definition

Page
Number

init 100 ios 93

setstate 96

Inherited Protected Data

ios

Definition
Page
Number Definition

Page
Number

(* stdioflush) () 103 assign_private 94

bp 94 delbuf 94

isfx_special 94 ispecial 95

osfx_special 95 ospecial 95

138 C/C++ Legacy Classes

ios

Definition
Page
Number Definition

Page
Number

state 95 x_fill 100

x_flags 95 x_precision 100

x_tie 95 x_width 100

istream_withassign
Use this class to assign another stream to an istream object.

Class header file: iostream.h

istream_withassign - Hierarchy List
ios
istream
istream_withassign

istream_withassign - Member Functions and Data by Group

Constructors & Destructor
Objects of the istream_withassign class can be constructed and destructed. They
can also be copied.
~istream_withassign

public:virtual ~istream_withassign()

This is supported on AIX 400 z/OS

Destructs an ostream_withassign object.
istream_withassign

public:istream_withassign()

This is supported on AIX 400 z/OS

Creates an istream_withassign object. It does not do any initialization of
this object.

operator =
public:istream_withassign& operator =(istream_withassign& rhs)

This is supported on AIX

The copy constructor.

Assignment Operator
Assignment operators for istream_withassign.
operator =

Overload 1
public:istream_withassign& operator =(streambuf*)

This is supported on AIX 400 z/OS

Chapter 3. Reference 139

This assignment operator takes a pointer to a streambuf object as
its argument. It associates this streambuf object with the
istream_withassign object that is on the left side of the assignment
operator.

Overload 2
public:istream_withassign& operator =(istream&)

This is supported on AIX 400 z/OS

This assignment operator takes an istream objects as its argument.
It associates the stream buffer attached to the input stream with the
istream_withassign object that is on the left side of the assignment
operator.

istream_withassign - Inherited Member Functions and Data
Inherited Public Functions

ios

Definition
Page
Number Definition

Page
Number

~ios 93 bad 95

bitalloc 100 clear 95

eof 96 fail 96

fill 96 flags 97

good 96 ios 93

ios_resource 100 iword 101

operator ! 101 operator const void * 101

operator void * 101 precision 97

pword 101 rdbuf 101

rdstate 96 setf 98

skip 99 sync_with_stdio 102

tie 102 unsetf 99

width 99 xalloc 103

istream

Definition
Page
Number Definition

Page
Number

~istream 114 gcount 115

get 115 get_complicated 119

getline 119 ignore 122

ipfx 136 isfx 137

istream 114 operator >> 125

peek 122 putback 135

read 123 rs_complicated 124

seekg 136 sync 136

tellg 136

140 C/C++ Legacy Classes

Inherited Public Data

ios

Definition
Page
Number Definition

Page
Number

adjustfield 94 basefield 94

floatfield 94

Inherited Protected Functions

istream

Definition
Page
Number Definition

Page
Number

do_ipfx 137 eatwhite 125

istream 114

ios

Definition
Page
Number Definition

Page
Number

init 100 ios 93

setstate 96

Inherited Protected Data

ios

Definition
Page
Number Definition

Page
Number

(* stdioflush) () 103 assign_private 94

bp 94 delbuf 94

isfx_special 94 ispecial 95

osfx_special 95 ospecial 95

state 95 x_fill 100

x_flags 95 x_precision 100

x_tie 95 x_width 100

istrstream
istrstream is the class that specializes istream to use a strstreambuf for extraction
from arrays of characters in memory. You can create an istrstream object by
associating the object with a previously allocated array of characters. You can then
read input from it and apply other operations to it just as you would to another
type of stream.

Class header file: strstream.h

Chapter 3. Reference 141

istrstream - Hierarchy List
ios
strstreambase
istrstream

istrstream - Member Functions and Data by Group

Constructors & Destructor
Objects of the istrstream class can be constructed and destructed.
~istrstream

public:~istrstream()

This is supported on AIX 400 z/OS

The istrstream destructor frees space that was allocated by the istrstream
constructor.

istrstream
Overload 1

public:istrstream(const char* str)

This is supported on AIX 400 z/OS

This constructor specifies that characters should be extracted from
the null-terminated string that is pointed to by str. You can use the
istream::seekg() function to reposition the get pointer in this string.

Overload 2
public:istrstream(const signed char* str)

This is supported on AIX 400 z/OS

This constructor specifies that characters should be extracted from
the null-terminated string that is pointed to by str. You can use the
istream::seekg() function to reposition the get pointer in this string.

Overload 3
public:istrstream(char* str, long size)

This is supported on AIX

This constructor specifies that characters should be extracted from
the array of bytes that starts at the position pointed to by str and
has a length of size bytes. You can use the istream::seekg() function
to reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 4
public:istrstream(signed char* str, long size)

This is supported on AIX

This constructor specifies that characters should be extracted from
the array of bytes that starts at the position pointed to by str and

142 C/C++ Legacy Classes

has a length of size bytes. You can use the istream::seekg() function
to reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 5
public:istrstream(const signed char* str, int size)

This is supported on AIX 400 z/OS

This constructor specifies that characters should be extracted from
the array of bytes that starts at the position pointed to by str and
has a length of size bytes. You can use the istream::seekg() function
to reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 6
public:istrstream(const signed char* str, long size)

This is supported on AIX

This constructor specifies that characters should be extracted from
the array of bytes that starts at the position pointed to by str and
has a length of size bytes. You can use the istream::seekg() function
to reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 7
public:istrstream(const unsigned char* str)

This is supported on AIX 400 z/OS

This constructor specifies that characters should be extracted from
the null-terminated string that is pointed to by str. You can use the
istream::seekg() function to reposition the get pointer in this string.

Overload 8
public:istrstream(const unsigned char* str, long size)

This is supported on AIX

This constructor specifies that characters should be extracted from
the array of bytes that starts at the position pointed to by str and
has a length of size bytes. You can use the istream::seekg() function
to reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 9
public:istrstream(const unsigned char* str, int size)

Chapter 3. Reference 143

This is supported on AIX 400 z/OS

This constructor specifies that characters should be extracted from
the array of bytes that starts at the position pointed to by str and
has a length of size bytes. You can use the istream::seekg() function
to reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 10
public:istrstream(const char* str, int size)

This is supported on AIX 400 z/OS

This constructor specifies that characters should be extracted from
the array of bytes that starts at the position pointed to by str and
has a length of size bytes. You can use the istream::seekg() function
to reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 11
public:istrstream(signed char* str)

This is supported on AIX 400 z/OS

This constructor specifies that characters should be extracted from
the null-terminated string that is pointed to by str. You can use the
istream::seekg() function to reposition the get pointer in this string.

Overload 12
public:istrstream(unsigned char* str)

This is supported on AIX 400 z/OS

This constructor specifies that characters should be extracted from
the null-terminated string that is pointed to by str. You can use the
istream::seekg() function to reposition the get pointer in this string.

Overload 13
public:istrstream(unsigned char* str, int size)

This is supported on AIX 400 z/OS

This constructor specifies that characters should be extracted from
the array of bytes that starts at the position pointed to by str and
has a length of size bytes. You can use the istream::seekg() function
to reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 14
public:istrstream(unsigned char* str, long size)

144 C/C++ Legacy Classes

This is supported on AIX

This constructor specifies that characters should be extracted from
the array of bytes that starts at the position pointed to by str and
has a length of size bytes. You can use the istream::seekg() function
to reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 15
public:istrstream(signed char* str, int size)

This is supported on AIX 400 z/OS

This constructor specifies that characters should be extracted from
the array of bytes that starts at the position pointed to by str and
has a length of size bytes. You can use the istream::seekg() function
to reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 16
public:istrstream(const char* str, long size)

This is supported on AIX

This constructor specifies that characters should be extracted from
the array of bytes that starts at the position pointed to by str and
has a length of size bytes. You can use the istream::seekg() function
to reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 17
public:istrstream(char* str, int size)

This is supported on AIX 400 z/OS

This constructor specifies that characters should be extracted from
the array of bytes that starts at the position pointed to by str and
has a length of size bytes. You can use the istream::seekg() function
to reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 18
public:istrstream(char* str)

This is supported on AIX 400 z/OS

Chapter 3. Reference 145

This constructor specifies that characters should be extracted from
the null-terminated string that is pointed to by str. You can use the
istream::seekg() function to reposition the get pointer in this string.

istrstream - Inherited Member Functions and Data
Inherited Public Functions

ios

Definition
Page
Number Definition

Page
Number

~ios 93 bad 95

bitalloc 100 clear 95

eof 96 fail 96

fill 96 flags 97

good 96 ios 93

ios_resource 100 iword 101

operator ! 101 operator const void * 101

operator void * 101 precision 97

pword 101 rdbuf 101

rdstate 96 setf 98

skip 99 sync_with_stdio 102

tie 102 unsetf 99

width 99 xalloc 103

strstreambase

Definition
Page
Number Definition

Page
Number

rdbuf 200

Inherited Public Data

ios

Definition
Page
Number Definition

Page
Number

adjustfield 94 basefield 94

floatfield 94

Inherited Protected Functions

strstreambase

Definition
Page
Number Definition

Page
Number

~strstreambase 199 strstreambase 199

146 C/C++ Legacy Classes

ios

Definition
Page
Number Definition

Page
Number

init 100 ios 93

setstate 96

Inherited Protected Data

ios

Definition
Page
Number Definition

Page
Number

(* stdioflush) () 103 assign_private 94

bp 94 delbuf 94

isfx_special 94 ispecial 95

osfx_special 95 ospecial 95

state 95 x_fill 100

x_flags 95 x_precision 100

x_tie 95 x_width 100

ofstream
This class specializes the ostream class for use with files.

Class header file: fstream.h

ofstream - Hierarchy List
ios
fstreambase
ofstream

ofstream - Member Functions and Data by Group

Constructors & Destructor
Objects of the ofstream class can be constructed and destructed.
~ofstream

public:~ofstream()

This is supported on AIX 400 z/OS

Destructs an ofstream object.
ofstream

Constructs an object of this class.
Overload 1

public:ofstream(int fd, char* p, int l)

This is supported on AIX 400 z/OS

Chapter 3. Reference 147

Constructs an ofstream object that is attached to the file descriptor
fd. If fd is not open, ios::failbit is set in the format state of the
ofstream object. This constructor also sets up an associated filebuf
object with a stream buffer that has length l bytes and begins at the
position pointed to by p. If p is equal to 0 or l is equal to 0, the
associated filebuf object is unbuffered.
AIX Considerations

This function is available for 32-bit applications. The third
argument is an int value.

Overload 2
public:ofstream(const char* name,

const char* attr,
int mode = ios::out,
int prot = filebuf::openprot)

This is supported on z/OS

Constructs an ofstream object and opens the file name with open
mode equal to mode, attributes equal to attr and protection mode
equal to prot. The default value for the argument prot is
filebuf::openprot. If the file cannot be opened, the error state of the
constructed fstream object is set.

You can use the attr parameter to specify additional file attributes
such as lrecl or recfm. All the parameters documented for the
fopen() functions are supported, with the exception of type=record.
z/OS Considerations

The prot attribute is ignored.
Overload 3

public:ofstream(int fd)

This is supported on AIX 400 z/OS

Constructs an ofstream object that is attached to the file descriptor
fd. If fd is not open, ios::failbit is set in the format state of the
ofstream object.

Overload 4
public:ofstream(int fd, char* p, long l)

This is supported on AIX

Constructs an ofstream object that is attached to the file descriptor
fd. If fd is not open, ios::failbit is set in the format state of the
ofstream object. This constructor also sets up an associated filebuf
object with a stream buffer that has length l bytes and begins at the
position pointed to by p. If p is equal to 0 or l is equal to 0, the
associated filebuf object is unbuffered.
AIX Considerations

This function is available for 64-bit applications. The third
argument is a long value.

Overload 5

148 C/C++ Legacy Classes

public:ofstream(const char* name,
int mode = ios::out,
int prot = filebuf::openprot,
_CCSID_T ccsid = _CCSID_T (0))

This is supported on 400

Constructs an ifstream object and opens the file name with open
mode equal to mode and protection mode equal to prot, and ccsid
equal to ccsid. The default value for the argument prot is
filebuf::openprot. If the file cannot be opened, the error state of the
constructed fstream object is set.

If the ccsid parameter is non-zero then it is treated as a CCSID
(coded character set identifier) and will correspond to the CCSID
of data written to and from the file. If the parameter value is zero
then the CCSID of the job will be used.

Overload 6
public:ofstream(const char* name, int mode, _CCSID_T)

This is supported on 400

Constructs an ofstream object and opens the file name with open
mode equal to mode and ccsid equal to ccsid. If the file cannot be
opened, the error state of the constructed fstream object is set.

If the ccsid parameter is non-zero then it is treated as a CCSID
(coded character set identifier) and will correspond to the CCSID
of data written to and from the file. If the parameter value is zero
then the CCSID of the job will be used.

Overload 7
public:ofstream(const char* name,

int mode = ios::out,
int prot = filebuf::openprot)

This is supported on AIX z/OS

Constructs an ofstream object and opens the file name with open
mode equal to mode and protection mode equal to prot. The
default value for mode is ios::out and for prot is filebuf::openprot.
If the file cannot be opened, the error state of the constructed
ofstream object is set.
z/OS Considerations

The prot attribute is ignored.
Overload 8

public:ofstream()

This is supported on AIX 400 z/OS

Constructs an unopened ofstream object.

Filebuf Functions
rdbuf

public:filebuf* rdbuf()

Chapter 3. Reference 149

This is supported on AIX 400 z/OS

Returns a pointer to the filebuf object that is attached to the ofstream
object.

Open Functions
Opens the file.
z/OS Considerations

The prot attribute is ignored.
open

Opens the specified file.
Overload 1

public:void
open(const char* name,

int mode = ios::out,
int prot = filebuf::openprot,
_CCSID_T ccsid = _CCSID_T (0))

This is supported on 400

Opens the file with the specified name, mode, protection and
coded character set id and attaches it to the fstream object.

If the file with the name, name does not already exist, open() tries
to create it with protection mode equal to prot, unless ios::nocreate
is set.

The default value for prot is filebuf::openprot. If the fstream object
is already attached to a file or if the call to fstream.rdbuf()->open()
fails, ios::failbit is set in the error state for the fstream object.

The members of the ios::open_mode enumeration are bits that can
be ORed together. The value of mode is the result of such an OR
operation. This result is an int value, and for this reason, mode has
type int rather than open_mode.

If the ccsid parameter is non-zero then it is treated as a CCSID
(coded character set identifier) and will correspond to the CCSID
of data written to and from the file. If the parameter value is zero
then the CCSID of the job will be used.

Overload 2
public:void

open(const char* name,
int mode = ios::out,
int prot = filebuf::openprot)

This is supported on AIX z/OS

Opens the file with the name and attaches it to the fstream object.
If the file with the name, name does not already exist, open() tries
to create it with protection mode equal to prot, unless ios::nocreate
is set.

150 C/C++ Legacy Classes

The default value for prot is filebuf::openprot. If the fstream object
is already attached to a file of if the call to fstream.rdbuf()->open()
fails, ios::failbit is set in the error state for the fstream object.

The members of the ios::open_mode enumeration are bits that can
be ORed together. The value of mode is the result of such an OR
operation. This result is an int value, and for this reason, mode has
type int rather than open_mode.

Overload 3
public:void open(const char* name, int mode, _CCSID_T ccsid)

This is supported on 400

Opens the file with the specified name, mode and coded character
set id and attaches it to the fstream object.

If the file with the name, name does not already exist, open() tries
to create it unless ios::nocreate is set.

The members of the ios::open_mode enumeration are bits that can
be ORed together. The value of mode is the result of such an OR
operation. This result is an int value, and for this reason, mode has
type int rather than open_mode.

If the ccsid parameter is non-zero then it is treated as a CCSID
(coded character set identifier) and will correspond to the CCSID
of data written to and from the file. If the parameter value is zero
then the CCSID of the job will be used.

Overload 4
public:void

open(const char* name,
const char* attr,
int mode = ios::out,
int prot = filebuf::openprot)

This is supported on z/OS

Opens the file with the name and attaches it to the fstream object.
If the file with the name, name does not already exist, open() tries
to create it with protection mode equal to prot, unless ios::nocreate
is set.

You can use the attr parameter to specify additional file attributes,
such as lrecl or recfm. All the parameters documented for the
fopen() function are supported, with the exception of type=record.

The members of the ios::open_mode enumeration are bits that can
be ORed together. The value of mode is the result of such an OR
operation. This result is an int value, and for this reason, mode has
type int rather than open_mode.

Chapter 3. Reference 151

ofstream - Inherited Member Functions and Data
Inherited Public Functions

fstreambase

Definition
Page
Number Definition

Page
Number

~fstreambase 80 attach 82

close 83 detach 83

fstreambase 80 open 83

setbuf 85

ios

Definition
Page
Number Definition

Page
Number

~ios 93 bad 95

bitalloc 100 clear 95

eof 96 fail 96

fill 96 flags 97

good 96 ios 93

ios_resource 100 iword 101

operator ! 101 operator const void * 101

operator void * 101 precision 97

pword 101 rdbuf 101

rdstate 96 setf 98

skip 99 sync_with_stdio 102

tie 102 unsetf 99

width 99 xalloc 103

Inherited Public Data

ios

Definition
Page
Number Definition

Page
Number

adjustfield 94 basefield 94

floatfield 94

Inherited Protected Functions

ios

Definition
Page
Number Definition

Page
Number

init 100 ios 93

setstate 96

152 C/C++ Legacy Classes

fstreambase

Definition
Page
Number Definition

Page
Number

verify 83

Inherited Protected Data

ios

Definition
Page
Number Definition

Page
Number

(* stdioflush) () 103 assign_private 94

bp 94 delbuf 94

isfx_special 94 ispecial 95

osfx_special 95 ospecial 95

state 95 x_fill 100

x_flags 95 x_precision 100

x_tie 95 x_width 100

ostream
The ostream class lets you use the output operator << to perform formatted
output, or insertion, to a stream buffer. Consider the following statement, where
outs is a reference to an ostream object and x is a variable of a built-in type:

outs << x;

The output operator << calls opfx() before beginning insertion. If opfx() returns a
nonzero value, the output operator converts x into a series of characters and inserts
these characters into the stream buffer attached to outs. If an error occurs, the
output operator sets ios::failbit.

The details of the conversion of x depend on the format state of the ostream object
and the type of x. For numeric and string values, including the char* types and
wchar_t*, but excluding the char types and wchar_t, the output operator resets the
width variable ios::x_width of the format state of an ostream object to 0, but it does
not affect anything else in the format state.

The output operator is defined for the following types:
v Arrays of characters and char values, including arrays of wchar_t and wchar_t

values
v Other integral values: short, int, long, float, double, long double, and long long

values
v Pointers to void.

You can also define output operators for your own types.

Class header file: iostream.h

Chapter 3. Reference 153

ostream - Hierarchy List
ios
ostream

ostream_withassign

ostream - Member Functions and Data by Group

Constructors & Destructor
Objects of the ostream class can be constructed and destructed.
~ostream

public:virtual ~ostream()

This is supported on AIX 400 z/OS

Destructs an ostream object.
ostream

Overload 1
public:ostream(streambuf*)

This is supported on AIX 400 z/OS

This constructor takes a single argument which is a pointer to a
streambuf object. This constructor creates an ostream object that is
attached to the streambuf object pointed to by the argument. The
format variables are initialized to their defaults.

Overload 2
public:ostream(int fd)

This is supported on AIX 400 z/OS

This constructor is obsolete; do not use it.
Overload 3

public:ostream(int size, char*)

This is supported on AIX 400 z/OS

This constructor is obsolete; do not use it.
Overload 4

protected:ostream()

This is supported on AIX 400 z/OS

This constructor is obsolete; do not use it.

Insertion Functions
You can use the insertion functions to insert characters into a stream buffer as a
sequence of bytes.
complicated_put

public:ostream& complicated_put(char c)

This is supported on AIX 400 z/OS

flush

154 C/C++ Legacy Classes

public:ostream& flush()

This is supported on AIX 400 z/OS

The ultimate consumer of characters that are stored in a stream buffer may
not necessarily consume them immediately. flush() causes any characters
that are stored in the stream buffer attached to the output stream to be
consumed.

When ostream::flush() is called, one of the following occurs:
v if the stream buffer’s put area is not empty and there are characters

waiting to be consumed, flush will call the stream buffer’s overflow()
function to flush out all the content in the put area.

v if the stream buffer’s get area is not empty and there are characters
waiting to be extracted, flush will call the stream buffer’s sync() function.
The sync() function will clean up both the put area and the get area by
sending any characters that are stored in the put area to the ultimate
consumer, and sending any characters that are waiting in the get area
back to the ultimate producer.

ls_complicated
Overload 1

public:ostream& ls_complicated(char)

This is supported on AIX 400 z/OS

Internal function. Do not use.
Overload 2

public:ostream& ls_complicated(signed char)

This is supported on AIX 400 z/OS

Internal function. Do not use.
Overload 3

public:ostream& ls_complicated(unsigned char)

This is supported on AIX 400 z/OS

Internal function. Do not use.
put

public:ostream& put(char c)

This is supported on AIX 400 z/OS

Inserts c into the stream buffer attached to the output stream. put() sets the
error state of the output stream if the insertion fails.

write
Overload 1

public:ostream& write(const signed char* s, int n)

This is supported on AIX 400 z/OS

Inserts n characters that begin at the position pointed to by s. This
array of characters does not need to end with a null character.

Chapter 3. Reference 155

Overload 2
public:ostream& write(const char* s, int n)

This is supported on AIX 400 z/OS

Inserts n characters that begin at the position pointed to by s. This
array of characters does not need to end with a null character.

Overload 3
public:ostream& write(const unsigned char* s, int n)

This is supported on AIX 400 z/OS

Inserts n characters that begin at the position pointed to by s. This
array of characters does not need to end with a null character.

Output operators
The output operator calls the output prefix function opfx() before inserting
characters into a stream buffer, and calls the output suffix function osfx() after
inserting characters.
operator <<

Overload 1
public:ostream& operator <<(const unsigned char*)

This is supported on AIX 400 z/OS

The output operator inserts all the characters in the string into the
stream buffer with the exception of the null character that
terminates the string.

If ios::x_width is greater than zero and the representation of the
value to be inserted is less than ios::x_width, the output operator
inserts enough fill characters to ensure that the representation
occupies an entire field in the stream buffer.

Overload 2
public:ostream& operator <<(const char*)

This is supported on AIX 400 z/OS

The output operator inserts all the characters in the string into the
stream buffer with the exception of the null character that
terminates the string.

If ios::x_width is greater than zero and the representation of the
value to be inserted is less that ios::x_width, the output operator
inserts enough fill characters to ensure that the representation
occupies an entire field in the stream buffer.

Overload 3
public:ostream& operator <<(const void*)

This is supported on AIX 400 z/OS

156 C/C++ Legacy Classes

The output operator converts pointers to void to integral values
and then converts them to hexadecimal values as if ios::showbase
were set. This version of the output operator is used to print out
the values of pointers.

Overload 4
public:ostream& operator <<(ios & (* f) (ios &))

This is supported on AIX 400 z/OS

The following built-in manipulators are accepted by this output
operator:

ios& dec(ios&)
ios& hex(ios&)
ios& oct(ios&)

These manipulators have a specific effect on an ostream object
beyond inserting their own values. For example, If outs is a
reference to an ostream object, then this statement sets ios::dec:

outs << dec;
Overload 5

public:ostream& operator <<(unsigned char c)

This is supported on AIX 400 z/OS

The output operator inserts the character into the stream buffer
without performing any conversion on it.

Overload 6
public:ostream& operator <<(unsigned long)

This is supported on AIX 400 z/OS

The output operator converts the integral value according to the
format state of the output stream and inserts characters into the
stream buffer associated with the output stream. There is no
overflow detection on conversion of integral types.

The conversion that takes place depends, in part, on the settings of
the following format flags:
v If ios::oct is set, the integral type is converted to a series of octal

digits. If ios::showbase is set, ″0″ is inserted into the stream
buffer before the octal digits. If the value being inserted is equal
to 0, a single ″0″ is inserted, not ″00″.

v If ios::dec is set, the integral type is converted to a series of
decimal digits.

v If ios::hex is set, the integral type is converted to a series of
hexadecimal digits. If ios::showbase is set, ″0x″ (or ″0X″ if
ios::uppercase is set) is inserted into the stream buffer before the
hexadecimal digits.

If none of these format flags is set, the integral type is converted to
a series of decimal digits. Then its sign also affects the conversion:
v If the integral type is negative, a negative sign ″-″ is inserted

before the decimal digits
v If the integral type is equal to 0, the single digit 0 is inserted

Chapter 3. Reference 157

v If the integral type is positive and ios::showpos is set, a positive
sign ″+″ is inserted before the decimal digits.

Overload 7
public:ostream& operator <<(long long)

This is supported on AIX 400 z/OS

The output operator converts the integral value according to the
format state of the output stream and inserts characters into the
stream buffer associated with the output stream. There is no
overflow detection on conversion of integral types.

The conversion that takes place depends, in part, on the settings of
the following format flags:
v If ios::oct is set, the integral type is converted to a series of octal

digits. If ios::showbase is set, ″0″ is inserted into the stream
buffer before the octal digits. If the value being inserted is equal
to 0, a single ″0″ is inserted, not ″00″.

v If ios::dec is set, the integral type is converted to a series of
decimal digits.

v If ios::hex is set, the integral type is converted to a series of
hexadecimal digits. If ios::showbase is set, ″0x″ (or ″0X″ if
ios::uppercase is set) is inserted into the stream buffer before the
hexadecimal digits.

If none of these format flags is set, the integral type is converted to
a series of decimal digits. Then its sign also affects the conversion:
v If the integral type is negative, a negative sign ″-″ is inserted

before the decimal digits
v If the integral type is equal to 0, the single digit 0 is inserted
v If the integral type is positive and ios::showpos is set, a positive

sign ″+″ is inserted before the decimal digits.

Note: The support for long long is controlled by _LONG_LONG,
__EXTENDED__, or the -q(no)longlong option.

Overload 8
public:ostream& operator <<(unsigned int a)

This is supported on AIX 400 z/OS

The output operator converts the integral value according to the
format state of the output stream and inserts characters into the
stream buffer associated with the output stream. There is no
overflow detection on conversion of integral types.

The conversion that takes place depends, in part, on the settings of
the following format flags:
v If ios::oct is set, the integral type is converted to a series of octal

digits. If ios::showbase is set, ″0″ is inserted into the stream
buffer before the octal digits. If the value being inserted is equal
to 0, a single ″0″ is inserted, not ″00″.

v If ios::dec is set, the integral type is converted to a series of
decimal digits.

158 C/C++ Legacy Classes

v If ios::hex is set, the integral type is converted to a series of
hexadecimal digits. If ios::showbase is set, ″0x″ (or ″0X″ if
ios::uppercase is set) is inserted into the stream buffer before the
hexadecimal digits.

If none of these format flags is set, the integral type is converted to
a series of decimal digits. Then its sign also affects the conversion:
v If the integral type is negative, a negative sign ″-″ is inserted

before the decimal digits
v If the integral type is equal to 0, the single digit 0 is inserted
v If the integral type is positive and ios::showpos is set, a positive

sign ″+″ is inserted before the decimal digits.
Overload 9

public:ostream& operator <<(double)

This is supported on AIX 400 z/OS

The output operator performs a conversion operation on the
argument and inserts it into the stream buffer attached to the
output stream. The conversion depends on the values returned by
the following functions:
v precision() - returns the number of significant digits that appear

after the decimal. The default value is 6.
v width() - if this returns 0, the argument is inserted without any

fill characters. If the return value is greater than the number of
characters needed to represent the argument, extra fill characters
are inserted so that the total number of characters inserted is
equal to the return value.

The conversion also depends on the values of the following format
flags:
v If ios::scientific is set, the argument is converted to scientific

notation with one digit before the decimal, and the number of
digits after the decimal equal to the value returned by
precision(). The exponent begins with a lowercase ″e″ unless
ios::uppercase is set, in which case the exponent begins with an
uppercase ″E″.

v If ios::fixed is set, the argument is converted to fixed notation,
with the number of digits after the decimal point equal to the
value returned by precision().

v If neither ios::fixed nor ios::scientific is set, the conversion
depends upon the value of the argument. If ios::uppercase is set,
the exponents of values in scientific notation begin with an
uppercase ″E″.

Overload 10
public:ostream& operator <<(short i)

This is supported on AIX 400 z/OS

The output operator converts the integral value according to the
format state of the output stream and inserts characters into the
stream buffer associated with the output stream. There is no
overflow detection on conversion of integral types.

Chapter 3. Reference 159

The conversion that takes place depends, in part, on the settings of
the following format flags:
v If ios::oct is set, the integral type is converted to a series of octal

digits. If ios::showbase is set, ″0″ is inserted into the stream
buffer before the octal digits. If the value being inserted is equal
to 0, a single ″0″ is inserted, not ″00″.

v If ios::dec is set, the integral type is converted to a series of
decimal digits.

v If ios::hex is set, the integral type is converted to a series of
hexadecimal digits. If ios::showbase is set, ″0x″ (or ″0X″ if
ios::uppercase is set) is inserted into the stream buffer before the
hexadecimal digits.

If none of these format flags is set, the integral type is converted to
a series of decimal digits. Then its sign also affects the conversion:
v If the integral type is negative, a negative sign ″-″ is inserted

before the decimal digits
v If the integral type is equal to 0, the single digit 0 is inserted
v If the integral type is positive and ios::showpos is set, a positive

sign ″+″ is inserted before the decimal digits.
Overload 11

public:ostream& operator <<(long double)

This is supported on AIX 400 z/OS

The output operator performs a conversion operation on the
argument and inserts it into the stream buffer attached to the
output stream. The conversion depends on the values returned by
the following functions:
v precision() - returns the number of significant digits that appear

after the decimal. The default value is 6.
v width() - if this returns 0, the argument is inserted without any

fill characters. If the return value is greater than the number of
characters needed to represent the argument, extra fill characters
are inserted so that the total number of characters inserted is
equal to the return value.

The conversion also depends on the values of the following format
flags:
v If ios::scientific is set, the argument is converted to scientific

notation with one digit before the decimal, and the number of
digits after the decimal equal to the value returned by
precision(). The exponent begins with a lowercase ″e″ unless
ios::uppercase is set, in which case the exponent begins with an
uppercase ″E″.

v If ios::fixed is set, the argument is converted to fixed notation,
with the number of digits after the decimal point equal to the
value returned by precision().

v If neither ios::fixed nor ios::scientific is set, the conversion
depends upon the value of the argument. If ios::uppercase is set,
the exponents of values in scientific notation begin with an
uppercase ″E″.

Overload 12
public:ostream& operator <<(int a)

160 C/C++ Legacy Classes

This is supported on AIX 400 z/OS

The output operator converts the integral value according to the
format state of the output stream and inserts characters into the
stream buffer associated with the output stream. There is no
overflow detection on conversion of integral types.

The conversion that takes place depends, in part, on the settings of
the following format flags:
v If ios::oct is set, the integral type is converted to a series of octal

digits. If ios::showbase is set, ″0″ is inserted into the stream
buffer before the octal digits. If the value being inserted is equal
to 0, a single ″0″ is inserted, not ″00″.

v If ios::dec is set, the integral type is converted to a series of
decimal digits.

v If ios::hex is set, the integral type is converted to a series of
hexadecimal digits. If ios::showbase is set, ″0x″ (or ″0X″ if
ios::uppercase is set) is inserted into the stream buffer before the
hexadecimal digits.

If none of these format flags is set, the integral type is converted to
a series of decimal digits. Then its sign also affects the conversion:
v If the integral type is negative, a negative sign ″-″ is inserted

before the decimal digits
v If the integral type is equal to 0, the single digit 0 is inserted
v If the integral type is positive and ios::showpos is set, a positive

sign ″+″ is inserted before the decimal digits.
Overload 13

public:ostream& operator <<(long)

This is supported on AIX 400 z/OS

The output operator converts the integral value according to the
format state of the output stream and inserts characters into the
stream buffer associated with the output stream. There is no
overflow detection on conversion of integral types.

The conversion that takes place depends, in part, on the settings of
the following format flags:
v If ios::oct is set, the integral type is converted to a series of octal

digits. If ios::showbase is set, ″0″ is inserted into the stream
buffer before the octal digits. If the value being inserted is equal
to 0, a single ″0″ is inserted, not ″00″.

v If ios::dec is set, the integral type is converted to a series of
decimal digits.

v If ios::hex is set, the integral type is converted to a series of
hexadecimal digits. If ios::showbase is set, ″0x″ (or ″0X″ if
ios::uppercase is set) is inserted into the stream buffer before the
hexadecimal digits.

If none of these format flags is set, the integral type is converted to
a series of decimal digits. Then its sign also affects the conversion:
v If the integral type is negative, a negative sign ″-″ is inserted

before the decimal digits
v If the integral type is equal to 0, the single digit 0 is inserted

Chapter 3. Reference 161

v If the integral type is positive and ios::showpos is set, a positive
sign ″+″ is inserted before the decimal digits.

Overload 14
public:ostream& operator <<(unsigned long long)

This is supported on AIX 400 z/OS

The output operator converts the integral value according to the
format state of the output stream and inserts characters into the
stream buffer associated with the output stream. There is no
overflow detection on conversion of integral types.

The conversion that takes place depends, in part, on the settings of
the following format flags:
v If ios::oct is set, the integral type is converted to a series of octal

digits. If ios::showbase is set, ″0″ is inserted into the stream
buffer before the octal digits. If the value being inserted is equal
to 0, a single ″0″ is inserted, not ″00″.

v If ios::dec is set, the integral type is converted to a series of
decimal digits

v If ios::hex is set, the integral type is converted to a series of
hexadecimal digits. If ios::showbase is set, ″0x″ (or ″0X″ if
ios::uppercase is set) is inserted into the stream buffer before the
hexadecimal digits.

If none of these format flags is set, the integral type is converted to
a series of decimal digits. Then its sign also affects the conversion:
v If the integral type is negative, a negative sign ″-″ is inserted

before the decimal digits
v If the integral type is equal to 0, the single digit 0 is inserted
v If the integral type is positive and ios::showpos is set, a positive

sign ″+″ is inserted before the decimal digits.

Note: The support for long long is controlled by _LONG_LONG,
__EXTENDED__, or the -q(no)longlong option.

Overload 15
public:ostream& operator <<(unsigned short i)

This is supported on AIX 400 z/OS

The output operator converts the integral value according to the
format state of the output stream and inserts characters into the
stream buffer associated with the output stream. There is no
overflow detection on conversion of integral types.

The conversion that takes place depends, in part, on the settings of
the following format flags:
v If ios::oct is set, the integral type is converted to a series of octal

digits. If ios::showbase is set, ″0″ is inserted into the stream
buffer before the octal digits. If the value being inserted is equal
to 0, a single ″0″ is inserted, not ″00″.

v If ios::dec is set, the integral type is converted to a series of
decimal digits.

162 C/C++ Legacy Classes

v If ios::hex is set, the integral type is converted to a series of
hexadecimal digits. If ios::showbase is set, ″0x″ (or ″0X″ if
ios::uppercase is set) is inserted into the stream buffer before the
hexadecimal digits.

If none of these format flags is set, the integral type is converted to
a series of decimal digits. Then its sign also affects the conversion:
v If the integral type is negative, a negative sign ″-″ is inserted

before the decimal digits
v If the integral type is equal to 0, the single digit 0 is inserted
v If the integral type is positive and ios::showpos is set, a positive

sign ″+″ is inserted before the decimal digits.
Overload 16

public:ostream& operator <<(const wchar_t*)

This is supported on AIX 400 z/OS

The output operator converts the wchar_t string to its equivalent
multibyte character string, and then inserts it into the stream buffer
with the exception of the null character that terminates the string.

If ios::x_width is greater than zero and the representation of the
value to be inserted is less than ios::x_width, the output operator
inserts enough fill characters to ensure that the representation
occupies an entire field in the stream buffer.

Overload 17
public:ostream& operator <<(signed char c)

This is supported on AIX 400 z/OS

The output operator inserts the character into the stream buffer
without performing any conversion on it.

Overload 18
public:ostream& operator <<(float)

This is supported on AIX 400 z/OS

The output operator performs a conversion operation on the
argument and inserts it into the stream buffer attached to the
output stream. The conversion depends on the values returned by
the following functions:
v precision() - returns the number of significant digits that appear

after the decimal. The default value is 6.
v width() - if this returns 0, the argument is inserted without any

fill characters. If the return value is greater than the number of
characters needed to represent the argument, extra fill characters
are inserted so that the total number of characters inserted is
equal to the return value.

The conversion also depends on the values of the following format
flags:
v If ios::scientific is set, the argument is converted to scientific

notation with one digit before the decimal, and the number of
digits after the decimal equal to the value returned by

Chapter 3. Reference 163

precision(). The exponent begins with a lowercase ″e″ unless
ios::uppercase is set, in which case the exponent begins with an
uppercase ″E″.

v If ios::fixed is set, the argument is converted to fixed notation,
with the number of digits after the decimal point equal to the
value returned by precision().

v If neither ios::fixed nor ios::scientific is set, the conversion
depends upon the value of the argument. If ios::uppercase is set,
the exponents of values in scientific notation begin with an
uppercase ″E″.

Overload 19
public:ostream& operator <<(ostream & (* f) (ostream &))

This is supported on AIX 400 z/OS

The following built-in manipulators are accepted by this output
operator:

ostream& endl(ostream&)
ostream& ends(ostream&)
ostream& flush(ostream&)

These manipulators have a specific effect on an ostream object
beyond inserting their own values. For example, If outs is a
reference to an ostream object, then this statement inserts a newline
character and calls flush():

outs << endl;

This statement inserts a null character:
outs << ends;

This statement flushes the stream buffer attached to outs. It is
equivalent to flush():

outs << flush;
Overload 20

public:ostream& operator <<(wchar_t)

This is supported on AIX 400 z/OS

The output operator inserts the character into the stream buffer
without performing any conversion on it.

Overload 21
public:ostream& operator <<(streambuf*)

This is supported on AIX 400 z/OS

If opfx() returns a nonzero value, the output operator inserts all of
the characters that can be taken from the streambuf pointer into
the stream buffer attached to the output stream. Insertion stops
when no more characters can be fetched from the streambuf. No
padding is performed.

Overload 22
public:ostream& operator <<(const signed char*)

This is supported on AIX 400 z/OS

164 C/C++ Legacy Classes

The output operator inserts all the characters in the string into the
stream buffer with the exception of the null character that
terminates the string.

If ios::x_width is greater than zero and the representation of the
value to be inserted is less than ios::x_width, the output operator
inserts enough fill characters to ensure that the representation
occupies an entire field in the stream buffer.

Overload 23
public:ostream& operator <<(char c)

This is supported on AIX 400 z/OS

The output operator inserts the character into the stream buffer
without performing any conversion on it.

Positioning Functions
seekp

Functions that work with the put pointer of the ultimate consumer.
Overload 1

public:ostream& seekp(streampos p)

This is supported on AIX 400 z/OS

Repositions the put pointer of the ultimate consumer. Sets the put
pointer to the position p.

Overload 2
public:ostream& seekp(streamoff o, ios::seek_dir d)

This is supported on AIX 400 z/OS

Repositions the put pointer of the ultimate consumer. Sets the put
pointer to the position specified by d with the offset of o. The seek
dir, d, can have the following values:
v ios::beg - the beginning of the stream
v ios::cur - the current position of the put pointer
v ios::end - the end of the stream

The new position of the put pointer is equal to the position
specified by d offset by the value o. If you attempt to move the put
pointer to a position that is not valid, seekp() sets ios::badbit.

tellp
public:streampos tellp()

This is supported on AIX 400 z/OS

Returns the current position of the put pointer of the stream buffer that is
attached to the output stream.

Prefix and Suffix Functions
Functions that are called either before or after inserting characters into the ultimate
consumer.
opfx

public:int opfx()

Chapter 3. Reference 165

This is supported on AIX 400 z/OS

opfx() is called by the output operator before inserting characters into a
stream buffer. opfx() checks the error state of the output stream. If the
internal flag ios::hardfail is set, opfx() returns 0. Otherwise, opfx() flushes
the stream buffer attached to the ios object pointed to by tie(), if one exists,
and returns the value returned by ios::good(). ios::good() returns 0 if
ios::failbit, ios::badbit, or ios:eofbit is set. Otherwise, ios::good() returns a
nonzero value.

osfx
public:void osfx()

This is supported on AIX 400 z/OS

osfx() is called before a formatted output function returns. osfx() flushes
the streambuf object attached to the output stream if ios::unitbuf is set.

osfx() is called by the output operator. If you overload the output operator
to handle your own classes, you should ensure that osfx() is called after
any direct manipulation of a streambuf object. Binary output functions do
not call osfx().

do_opfx
protected:int do_opfx()

This is supported on AIX 400 z/OS

Internal function. Do not use.
do_osfx

protected:void do_osfx()

This is supported on AIX 400 z/OS

Internal function. Do not use.

ostream - Inherited Member Functions and Data
Inherited Public Functions

ios

Definition
Page
Number Definition

Page
Number

~ios 93 bad 95

bitalloc 100 clear 95

eof 96 fail 96

fill 96 flags 97

good 96 ios 93

ios_resource 100 iword 101

operator ! 101 operator const void * 101

operator void * 101 precision 97

pword 101 rdbuf 101

rdstate 96 setf 98

166 C/C++ Legacy Classes

ios

Definition
Page
Number Definition

Page
Number

skip 99 sync_with_stdio 102

tie 102 unsetf 99

width 99 xalloc 103

Inherited Public Data

ios

Definition
Page
Number Definition

Page
Number

adjustfield 94 basefield 94

floatfield 94

Inherited Protected Functions

ios

Definition
Page
Number Definition

Page
Number

init 100 ios 93

setstate 96

Inherited Protected Data

ios

Definition
Page
Number Definition

Page
Number

(* stdioflush) () 103 assign_private 94

bp 94 delbuf 94

isfx_special 94 ispecial 95

osfx_special 95 ospecial 95

state 95 x_fill 100

x_flags 95 x_precision 100

x_tie 95 x_width 100

ostream_withassign
Use this class to assign another stream to an ostream object.

Class header file: iostream.h

ostream_withassign - Hierarchy List
ios
ostream
ostream_withassign

Chapter 3. Reference 167

ostream_withassign - Member Functions and Data by Group

Constructors & Destructor
Objects of the ostream_withassign class can be constructed and destructed. They
can also be copied.
~ostream_withassign

public:virtual ~ostream_withassign()

This is supported on AIX 400 z/OS

Destructs an ostream_withassign object.
operator =

public:ostream_withassign& operator =(ostream_withassign& rhs)

This is supported on AIX

Copy constructor.
ostream_withassign

public:ostream_withassign()

This is supported on AIX 400 z/OS

Constructs an ostream_withassign object. It does not do any initialization
on the object.

Assignment Operator
Assignment operators for ostream_withassign.
operator =

Overload 1
public:ostream_withassign& operator =(streambuf*)

This is supported on AIX 400 z/OS

This assignment operator takes a pointer to a streambuf object as
its argument. It associates the streambuf with the
ostream_withassign object that is on the left side of the assignment
operator.

Overload 2
public:ostream_withassign& operator =(ostream&)

This is supported on AIX 400 z/OS

This assignment operator takes a reference to an ostream object as
its argument. It associates the streambuf attached to the output
stream with the ostream_withassign object that is on the left side of
the assignment operator.

168 C/C++ Legacy Classes

ostream_withassign - Inherited Member Functions and Data
Inherited Public Functions

ios

Definition
Page
Number Definition

Page
Number

~ios 93 bad 95

bitalloc 100 clear 95

eof 96 fail 96

fill 96 flags 97

good 96 ios 93

ios_resource 100 iword 101

operator ! 101 operator const void * 101

operator void * 101 precision 97

pword 101 rdbuf 101

rdstate 96 setf 98

skip 99 sync_with_stdio 102

tie 102 unsetf 99

width 99 xalloc 103

ostream

Definition
Page
Number Definition

Page
Number

~ostream 154 complicated_put 154

flush 154 ls_complicated 155

operator << 156 opfx 165

osfx 166 ostream 154

put 155 seekp 165

tellp 165 write 155

Inherited Public Data

ios

Definition
Page
Number Definition

Page
Number

adjustfield 94 basefield 94

floatfield 94

Inherited Protected Functions

ostream

Definition
Page
Number Definition

Page
Number

do_opfx 166 do_osfx 166

Chapter 3. Reference 169

ostream

Definition
Page
Number Definition

Page
Number

ostream 154

ios

Definition
Page
Number Definition

Page
Number

init 100 ios 93

setstate 96

Inherited Protected Data

ios

Definition
Page
Number Definition

Page
Number

(* stdioflush) () 103 assign_private 94

bp 94 delbuf 94

isfx_special 94 ispecial 95

osfx_special 95 ospecial 95

state 95 x_fill 100

x_flags 95 x_precision 100

x_tie 95 x_width 100

ostrstream
ostrstream is the class that specializes ostream to use a strstreambuf for insertion
into arrays of characters in memory. You can create an ostrstream object by
associating the object with a previously allocated array of characters. You can then
write to it and apply other operations to it just as you would to another type of
stream.

Class header file: strstream.h

ostrstream - Hierarchy List
ios
strstreambase
ostrstream

ostrstream - Member Functions and Data by Group

Constructors & Destructor
Objects of the ostrstream class can be constructed and destructed.
~ostrstream

public:~ostrstream()

170 C/C++ Legacy Classes

This is supported on AIX 400 z/OS

The ostrstream destructor frees space allocated by the ostrstream
constructor. The destructor also writes a null byte to the stream buffer to
terminate the stream.

ostrstream
Overload 1

public:ostrstream(signed char* str, int size, int = ios::out)

This is supported on AIX 400 z/OS

This constructor specifies that the stream buffer that is attached to
the ostrstream object consists of an array that starts at the position
pointed to by str with a length of size bytes. If ios::ate or ios::app is
set, str points to a null-terminated string and insertions begin at
the null character. Otherwise, insertions begin at the position
pointed to by str. You can use the ostream::seekp() function to
reposition the put pointer.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 2
public:ostrstream(unsigned char* str, long size, int = ios::out)

This is supported on AIX

This constructor specifies that the stream buffer that is attached to
the ostrstream object consists of an array that starts at the position
pointed to by str with a length of size bytes. If ios::ate or ios::app is
set, str points to a null-terminated string and insertions begin at
the null character. Otherwise, insertions begin at the position
pointed to by str. You can use the ostream::seekp() function to
reposition the put pointer.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 3
public:ostrstream(char* str, long size, int = ios::out)

This is supported on AIX

This constructor specifies that the stream buffer that is attached to
the ostrstream object consists of an array that starts at the position
pointed to by str with a length of size bytes. If ios::ate or ios::app is
set, str points to a null-terminated string and insertions begin at
the null character. Otherwise, insertions begin at the position
pointed to by str. You can use the ostream::seekp() function to
reposition the put pointer.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 4

Chapter 3. Reference 171

public:ostrstream(signed char* str, long size, int = ios::out)

This is supported on AIX

This constructor specifies that the stream buffer that is attached to
the ostrstream object consists of an array that starts at the position
pointed to by str with a length of size bytes. If ios::ate or ios::app is
set, str points to a null-terminated string and insertions begin at
the null character. Otherwise, insertions begin at the position
pointed to by str. You can use the ostream::seekp() function to
reposition the put pointer.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 5
public:ostrstream(unsigned char* str, int size, int = ios::out)

This is supported on AIX 400 z/OS

This constructor specifies that the stream buffer that is attached to
the ostrstream object consists of an array that starts at the position
pointed to by str with a length of size bytes. If ios::ate or ios::app is
set, str points to a null-terminated string and insertions begin at
the null character. Otherwise, insertions begin at the position
pointed to by str. You can use the ostream::seekp() function to
reposition the put pointer.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 6
public:ostrstream(char* str, int size, int = ios::out)

This is supported on AIX 400 z/OS

This constructor specifies that the stream buffer that is attached to
the ostrstream object consists of an array that starts at the position
pointed to by str with a length of size bytes. If ios::ate or ios::app is
set, str points to a null-terminated string and insertions begin at
the null character. Otherwise, insertions begin at the position
pointed to by str. You can use the ostream::seekp() function to
reposition the put pointer.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 7
public:ostrstream()

This is supported on AIX 400 z/OS

This constructor specifies that space is allocated dynamically for
the stream buffer that is attached to the ostrstream object.

172 C/C++ Legacy Classes

Stream Buffer Functions
Use these functions to work with the stream buffer.
pcount

Returns the number of bytes that have been stored in the stream buffer.
pcount() is mainly useful when binary data has been stored and the stream
buffer attached to the ostrstream object is not a null-terminated string.
pcount() returns the total number of bytes, not just the number of bytes up
to the first null character.
Overload 1

public:int pcount()

This is supported on AIX 400 z/OS

AIX Considerations

This function returns an int value for 32-bit applications. It
is not available for 64-bit applications.

Overload 2
public:long pcount()

This is supported on AIX

AIX Considerations

This function returns a long value for 64-bit applications. It
is not available for 32-bit applications.

str
public:char* str()

This is supported on AIX 400 z/OS

Returns a pointer to the stream buffer attached to the ostrstream and calls
freeze() with a nonzero value to prevent the stream buffer from being
deleted. If the stream buffer was constructed with an explicit array, the
value returned is a pointer to that array. If the stream buffer was
constructed in dynamic mode, str points to the dynamically allocated area.

Until you call str(), deleting the dynamically allocated stream buffer is the
responsibility of the ostrstream object. After str() has been called, the
calling application has responsibility for the dynamically allocated stream
buffer.

ostrstream - Inherited Member Functions and Data
Inherited Public Functions

ios

Definition
Page
Number Definition

Page
Number

~ios 93 bad 95

bitalloc 100 clear 95

eof 96 fail 96

fill 96 flags 97

good 96 ios 93

ios_resource 100 iword 101

Chapter 3. Reference 173

ios

Definition
Page
Number Definition

Page
Number

operator ! 101 operator const void * 101

operator void * 101 precision 97

pword 101 rdbuf 101

rdstate 96 setf 98

skip 99 sync_with_stdio 102

tie 102 unsetf 99

width 99 xalloc 103

strstreambase

Definition
Page
Number Definition

Page
Number

rdbuf 200

Inherited Public Data

ios

Definition
Page
Number Definition

Page
Number

adjustfield 94 basefield 94

floatfield 94

Inherited Protected Functions

strstreambase

Definition
Page
Number Definition

Page
Number

~strstreambase 199 strstreambase 199

ios

Definition
Page
Number Definition

Page
Number

init 100 ios 93

setstate 96

Inherited Protected Data

ios

Definition
Page
Number Definition

Page
Number

(* stdioflush) () 103 assign_private 94

174 C/C++ Legacy Classes

ios

Definition
Page
Number Definition

Page
Number

bp 94 delbuf 94

isfx_special 94 ispecial 95

osfx_special 95 ospecial 95

state 95 x_fill 100

x_flags 95 x_precision 100

x_tie 95 x_width 100

stdiobuf
This class is used to mix standard C input and output functions with C++ I/O
Stream Library functions. This class is obsolete. New programs should avoid using
this class.

Class header file: stdiostream.h

stdiobuf - Hierarchy List
streambuf
stdiobuf

stdiobuf - Member Functions and Data by Group

Constructors & Destructor
Objects of the stdiobuf class can be constructed and destructed.
~stdiobuf

public:virtual ~stdiobuf()

This is supported on AIX 400 z/OS

Destructor for stdiobuf. Frees the spaces allocated by the stdiobuf
constructor and flushes the file that this stdiobuf object is associated with.

stdiobuf
public:stdiobuf(FILE* f)

This is supported on AIX 400 z/OS

Creates an stdiobuf object that is associated with the FILE pointed to by f.
Changes that are made to the stream buffer in an stdiobuf object are also
made to the associated FILE pointed to by f.

Note: If ios::stdio is set in the format state of an ostream object, a call to
osfx() flushes stdout and stderr.

Positioning Functions
overflow

public:virtual int overflow(int = EOF)

This is supported on AIX 400 z/OS

Chapter 3. Reference 175

Emptys an output buffer. Returns EOF on error, 0 otherwise.
pbackfail

public:virtual int pbackfail(int c)

This is supported on AIX 400 z/OS

Attempts to put back a character.
seekoff

public:virtual streampos seekoff(streamoff, ios::seek_dir, int)

This is supported on AIX 400 z/OS

sync
public:virtual int sync()

This is supported on AIX 400 z/OS

underflow
public:virtual int underflow()

This is supported on AIX 400 z/OS

Fills an input buffer. Returns EOF on error or end of input, 0 otherwise.

Query Functions
stdiofile

public:FILE* stdiofile()

This is supported on AIX 400 z/OS

Returns a pointer to the FILE object that the stdiobuf object is associated
with.

stdiobuf - Inherited Member Functions and Data
Inherited Public Functions

streambuf

Definition
Page
Number Definition

Page
Number

~streambuf 180 dbp 184

in_avail 181 optim_in_avail 181

optim_sbumpc 182 out_waiting 188

overflow 189 pptr_non_null 184

sbumpc 182 seekoff 184

seekpos 185 setbuf 191

sgetc 182 sgetn 182

snextc 183 sputbackc 189

sputc 190 sputn 190

stossc 185 streambuf 180

streambuf_resource 191 xsgetn 183

xsputn 190

176 C/C++ Legacy Classes

Inherited Public Data

None
Inherited Protected Functions

streambuf

Definition
Page
Number Definition

Page
Number

allocate 193 base 185

blen 193 doallocate 194

eback 186 ebuf 186

egptr 186 epptr 186

gbump 186 gptr 187

pbase 187 pbump 187

pptr 188 setb 188

setg 188 setp 188

unbuffered 194

Inherited Protected Data

None

stdiostream
This class uses stdiobuf objects as stream buffers.

Class header file: stdiostream.h

stdiostream - Hierarchy List
ios
stdiostream

stdiostream - Member Functions and Data by Group

Constructors & Destructor
Objects of the stdiostream class can be constructed and destructed.
~stdiostream

public:~stdiostream()

This is supported on AIX 400 z/OS

Destructs a stdiostream object.
stdiostream

public:stdiostream(FILE*)

This is supported on AIX 400 z/OS

Creates a stdiostream object that is attached to the FILE pointed to by the
argument.

Chapter 3. Reference 177

Miscellaneous
rdbuf

public:stdiobuf* rdbuf()

This is supported on AIX 400 z/OS

Returns a pointer to the stdiobuf object that is attached to the stdiostream
object.

stdiostream - Inherited Member Functions and Data
Inherited Public Functions

ios

Definition
Page
Number Definition

Page
Number

~ios 93 bad 95

bitalloc 100 clear 95

eof 96 fail 96

fill 96 flags 97

good 96 ios 93

ios_resource 100 iword 101

operator ! 101 operator const void * 101

operator void * 101 precision 97

pword 101 rdbuf 101

rdstate 96 setf 98

skip 99 sync_with_stdio 102

tie 102 unsetf 99

width 99 xalloc 103

Inherited Public Data

ios

Definition
Page
Number Definition

Page
Number

adjustfield 94 basefield 94

floatfield 94

Inherited Protected Functions

ios

Definition
Page
Number Definition

Page
Number

init 100 ios 93

setstate 96

178 C/C++ Legacy Classes

Inherited Protected Data

ios

Definition
Page
Number Definition

Page
Number

(* stdioflush) () 103 assign_private 94

bp 94 delbuf 94

isfx_special 94 ispecial 95

osfx_special 95 ospecial 95

state 95 x_fill 100

x_flags 95 x_precision 100

x_tie 95 x_width 100

streambuf
You can use the streambuf class to manipulate objects of its derived classes filebuf,
stdiobuf, and strstreambuf, or to derive other classes from it.

streambuf has both a public interface and a protected interface. You should think
of these two interfaces as being two separate classes, because the interfaces are
used for different purposes. You should also treat streambuf as if it were defined
as a virtual base class. Do not create objects of the streambuf class itself.

Although most virtual functions are declared public, you should overload them in
the classes that you derive from streambuf, and consider them part of the
protected interface.

Public interface

You should not create objects of the streambuf public interface directly. Instead,
you should use streambuf through one of the predefined classes derived from
streambuf. You can use objects of filebuf, strstreambuf and stdiobuf directly as
implementations of stream buffers. The public interface consists of the streambuf
public member functions that can be called on objects of these predefined classes.
streambuf itself does not have any facilities for taking characters from the ultimate
producer or sending them to the ultimate consumer. The specialized member
functions that handle the interface with the ultimate producer and the ultimate
consumer are defined in filebuf, strstreambuf and stdiobuf.

Except for the destructor of the streambuf class, the virtual functions are described
as part of the protected interface.

Protected interface

Use the streambuf protected interface in the following ways:
v As a base class to implement your own specialized stream buffers. In this sense

you can think of streambuf as a virtual base class. The streambuf class only
provides the basic functions needed to manipulate characters in a stream buffer.
The filebuf, strstreambuf and stdiobuf classes contain functions that handle the
interface with the standard ultimate consumers and producers. If you want to
perform more sophisticated operations, or if you want to use other ultimate

Chapter 3. Reference 179

consumers and producers, you will have to create your own class derived from
streambuf. You need to know about the protected interface if you want to create
a class derived from streambuf.

v Through a predefined class derived from streambuf.

There are two kinds of functions in the protected interface:
v Nonvirtual member functions, which manipulate streambuf objects at a level of

detail that would be inappropriate in the public interface.
v Virtual member functions, which permit classes that you derive from streambuf

to customize their operations depending on the ultimate producer or ultimate
consumer. When you define the virtual functions in your derived classes, you
must ensure that these definitions fulfill the conditions stated in the descriptions
of the virtual functions. If your definitions of the virtual functions do not fulfill
these conditions, objects of the derived class may have unspecified behavior.
Although most virtual functions are declared as public members, they are
described with the protected interface (with the exception of the destructor for
the streambuf class) because they are meant to be overridden in the classes that
you derive from streambuf.

Class header file: iostream.h

streambuf - Hierarchy List
streambuf

stdiobuf
filebuf
strstreambuf

streambuf - Member Functions and Data by Group

Constructors & Destructor
Objects of the streambuf class can be constructed and destructed.
~streambuf

public:virtual ~streambuf()

This is supported on AIX 400 z/OS

The destructor for streambuf calls sync(). If a stream buffer has been set up
and ios::alloc is set, sync() deletes the stream buffer.

streambuf
Overload 1

public:streambuf(char* p, long l)

This is supported on AIX

Constructs an empty stream buffer of length l starting at the
position pointed to by p.
AIX Considerations

This constructor is available for 64-bit applications. The
second argument is a long value.

Overload 2
public:streambuf(char* p, int l)

180 C/C++ Legacy Classes

This is supported on AIX 400 z/OS

Constructs an empty stream buffer of length l starting at the
position pointed to by p.
AIX Considerations

This constructor is available for 32-bit applications. The
second argument is an int value.

Overload 3
public:streambuf(char* p, int l, int c)

This is supported on AIX 400 z/OS

This constructor is obsolete. It is included for compatibility with
the AT&T C++ Language System Release 1.2. Use strstreambuf.

Overload 4
public:streambuf()

This is supported on AIX 400 z/OS

Constructs an empty stream buffer corresponding to an empty
sequence. The values returned by base(), eback(), ebuf(), egptr(),
epptr(), pptr(), gptr(), and pbase() are initially all zero for this
stream buffer.

Extraction Functions
Functions that extract characters from the ultimate producer, determine if
characters are waiting to be extracted and handle underflow situations.
in_avail

Returns the number of characters that are available to be extracted from
the get area of the stream buffer object. You can extract the number of
characters equal to the value that in_avail() returns without causing an
error.
Overload 1

public:int in_avail()

This is supported on AIX 400 z/OS

AIX Considerations

This function returns an int value for 32-bit applications. It
is not available for 64-bit applications.

Overload 2
public:long in_avail()

This is supported on AIX

AIX Considerations

This function returns a long value for 64-bit applications. It
is not available for 32-bit applications.

optim_in_avail
public:int optim_in_avail()

This is supported on AIX 400 z/OS

Chapter 3. Reference 181

Returns true if the current get pointer is less then the end of the get area.
optim_sbumpc

public:int optim_sbumpc()

This is supported on AIX 400 z/OS

Moves the get pointer past one character and returns the character that it
moved past.

sbumpc
public:int sbumpc()

This is supported on AIX 400 z/OS

Moves the get pointer past one character and returns the character that it
moved past. sbumpc() returns EOF if the get pointer is already at the end
of the get area.

sgetc
public:int sgetc()

This is supported on AIX 400 z/OS

Returns the character after the get pointer without moving the get pointer
itself. If no character is available, sgetc() returns EOF.

Note: sgetc() does not change the position of the get pointer.
sgetn

Overload 1
public:long sgetn(char* s, long n)

This is supported on AIX

Extracts the n characters following the get pointer, and copies them
to the area starting at the position pointed to by s. If there are
fewer than n characters following the get pointer, sgetn() takes the
characters that are available and stores them in the position
pointed to by s. sgetn() repositions the get pointer following the
extracted characters and returns the number of extracted
characters.
AIX Considerations

This function is available for 64-bit applications. It accepts
a long argument.

Overload 2
public:int sgetn(char* s, int n)

This is supported on AIX 400 z/OS

Extracts the n characters following the get pointer, and copies them
to the area starting at the position pointed to by s. If there are
fewer than n characters following the get pointer, sgetn() takes the
characters that are available and stores them in the position
pointed to by s. sgetn() repositions the get pointer following the
extracted characters and returns the number of extracted
characters.

182 C/C++ Legacy Classes

AIX Considerations

This function is available for 32-bit applications. It accepts
an int argument.

snextc
public:int snextc()

This is supported on AIX 400 z/OS

Moves the get pointer forward one character and returns the character
following the new position of the get pointer. snextc() returns EOF if the
get pointer is at the end of the get area either before or after it is moved
forward.

underflow
public:virtual int underflow()

This is supported on AIX 400 z/OS

Takes characters from the ultimate producer and puts them in the get area.

The default definition of underflow() is compatible with the AT&T C++
Language System Release 1.2 version of the stream package, but it is not
considered part of the current I/O Stream Library. Thus the default
definition of underflow() should not be used, and every class derived from
streambuf should define underflow() itself.

If you derive underflow() in a class derived from streambuf, it should
return the first character in the get area if the get area is not empty. If the
get area is empty, underflow() should create a get area that is not empty
and return the next character. If no more characters are available in the
ultimate producer, underflow() should return EOF and leave the get area
empty.

xsgetn
Overload 1

public:virtual int xsgetn(char* s, int n)

This is supported on AIX 400 z/OS

Similar to sputn.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 2
public:virtual long xsgetn(char* s, long n)

This is supported on AIX

Similar to sgetn.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Chapter 3. Reference 183

Get/Put Pointer Functions
dbp

public:void dbp()

This is supported on AIX 400 z/OS

Writes to standard output the values returned by the following functions:
v base()
v eback()
v ebuf()
v egptr()
v epptr()
v gptr()
v pptr()

dbp() is intended for debugging. streambuf does not specify anything
about the form of the output. dbp() is considered part of the protected
interface because the information that it prints can only be understood in
relation to that interface. It is declared as a public function so that it can be
called anywhere during debugging.

The following example shows the output produced by dbp() when it is
called as part of a filebuf object:

#include < iostream.h >
int main()
{

cout << "Here is some sample output." << endl;
cout.rdbuf()->dbp();

}

If you compile and run this example, your output will look like this:
Here is some sample output.
buf at 0x90210, base=0x91010, ebuf=0x91410,
pptr=0x91010, epptr=0x91410, eback=0, gptr=0, egptr=0

pptr_non_null
public:int pptr_non_null()

This is supported on AIX

Returns true if the put pointer is not null.
seekoff

public:virtual streampos
seekoff(streamoff,

ios::seek_dir,
int = ios::in|ios::out)

This is supported on AIX 400 z/OS

Repositions the get or put pointer of the ultimate producer or ultimate
consumer. seekoff() does not change the values returned by gptr() or pptr().

The default definition of seekoff() returns EOF.

184 C/C++ Legacy Classes

If you define your own seekoff() function, it should return EOF if the
derived class does not support repositioning. If the class does support
repositioning, seekoff() should return the new position of the affected
pointer, or EOF if an error occurs.

The first argument is an offset from a position in the ultimate producer or
ultimate consumer. The second argument is a position in the ultimate
produce or ultimate consumer. It can have the following values:
v ios::beg - the beginning of the ultimate producer or consumer
v ios::cur - the current position in the ultimate producer or consumer
v ios::end - the end of the ultimate producer or consumer

The new position of the affected pointer is the position specified by the
seek dir offset by the value of the stream offset. If you derive your own
classes from streambuf, certain values of the seek dir may not be valid
depending on the nature of the ultimate consumer or producer.

If ios::in is set in the third argument, the seekoff() should modify the get
pointer. If ios::out is set, the put pointer should be modified. If both ios::in
and ios::out are set, both the get pointer and the put pointer should be
modified.

seekpos
public:virtual streampos

seekpos(streampos,
int = ios::in|ios::out)

This is supported on AIX 400 z/OS

Repositions the get or put pointer of the ultimate producer or consumer to
the streampos position. If ios::in is set, the get pointer is repositioned. If
ios::out is set, the put pointer is repositioned. If both ios::in and ios::out are
set, both the get pointer and the put pointer are affected. seekpos() does
not change the values returned by gptr() or pptr().

The default definition of seekpos() returns the return value of the function
seekoff(streamoff(pos), ios::beg, mode). Thus, if you want to define seeking
operations in a class derived from streambuf, you can define seekoff() and
use the default definition of seekpos().

If you define seekpos() in a class derived from streambuf, seekpos() should
return EOF if the class does not support repositioning or if the streampos
points to a position equal to or greater than the end of the stream. If not,
seekpos() should return the streampos.

stossc
public:void stossc()

This is supported on AIX 400 z/OS

Moves the get pointer forward one character. If the get pointer is already at
the end of the get area, stossc() does not move it.

base
protected:char* base()

This is supported on AIX 400 z/OS

Chapter 3. Reference 185

Returns a pointer to the first byte of the stream buffer. The stream buffer
consists of the space between the pointer returned by base() and the
pointer returned by ebuf().

eback
protected:char* eback()

This is supported on AIX 400 z/OS

Returns a pointer to the lower bound of the space available for the get area
of the streambuf. The space between the pointer returned by eback() and
the pointer returned by gptr() is available for putback.

ebuf
protected:char* ebuf()

This is supported on AIX 400 z/OS

Returns a pointer to the byte after the last byte of the stream buffer.
egptr

protected:char* egptr()

This is supported on AIX 400 z/OS

Returns a pointer to the byte after the last byte of the get area of the
streambuf.

epptr
protected:char* epptr()

This is supported on AIX 400 z/OS

Returns a pointer to the byte after the last byte of the put area of the
streambuf.

gbump
Overload 1

protected:void gbump(long n)

This is supported on AIX

Offsets the beginning of the get area by the value of n. The value
of n can be positive or negative. gbump() does not check to see if
the new value returned by gptr() is valid.

The beginning of the get area is equal to the value returned by
gptr().
AIX Considerations

This function is available for 64-bit applications. It accepts
a long argument.

Overload 2
protected:void gbump(int n)

This is supported on AIX 400 z/OS

186 C/C++ Legacy Classes

Offsets the beginning of the get area by the value of n. The value
of n can be positive or negative. gbump() does not check to see if
the new value returned by gptr() is valid.

The beginning of the get area is equal to the value returned by
gptr().
AIX Considerations

This function is available for 32-bit applications. It accepts
an int argument.

gptr
protected:char* gptr()

This is supported on AIX 400 z/OS

Returns a pointer to the first byte of the get area of the streambuf. The get
area consists of the space between the pointer returned by gptr() and the
pointer returned by egptr(). Characters are extracted from the stream buffer
beginning at the character pointed to be gptr().

pbase
protected:char* pbase()

This is supported on AIX 400 z/OS

Returns a pointer to the beginning of the space available for the put area of
the streambuf. Characters between the pointer returned by pbase() and the
pointer returned by pptr() have been stored in the stream buffer, but they
have not been consumed by the ultimate consumer.

pbump
Overload 1

protected:void pbump(long n)

This is supported on AIX

Offsets the beginning of the put area by the value of n. The value
of n can be positive or negative. pbump() does not check to see if
the new value returned by pptr() is valid.

The beginning of the put area is equal to the value returned by
pptr().
AIX Considerations

This function is available for 64-bit applications. It accepts
a long argument.

Overload 2
protected:void pbump(int n)

This is supported on AIX 400 z/OS

Offsets the beginning of the put area by the value of n. The value
of n can be positive or negative. pbump() does not check to see if
the new value returned by pptr() is valid.

The beginning of the put area is equal to the value returned by
pptr().

Chapter 3. Reference 187

AIX Considerations

This function is available for 32-bit applications. It accepts
an int argument.

pptr
protected:char* pptr()

This is supported on AIX 400 z/OS

Returns a pointer to the beginning of the put area of the streambuf. The
put area consists of the space between the pointer returned by pptr() and
the pointer returned by epptr().

setb
protected:void setb(char* b, char* eb, int a = 0)

This is supported on AIX 400 z/OS

Sets the beginning of the existing stream buffer (the pointer returned by
base()) to the position pointed to by b, and sets the end of the stream
buffer (the pointer returned by ebuf()) to the position pointed to by eb.

If a is a nonzero value, the stream buffer will be deleted when setb() is
called again. If b and eb are both equal to 0, no stream buffer is
established. If b is not equal to 0, a stream buffer is established, even if eb
is less than b. If this is the case, the stream buffer has length zero.

setg
protected:void setg(char* eb, char* g, char* eg)

This is supported on AIX 400 z/OS

Sets the beginning of the get area of streambuf (the pointer returned by
gptr()) to g, and sets the end of the get area (the pointer returned by
egptr()) to eg. setg() also sets the beginning of the area available for
putback (the pointer returned by eback()) to eb.

setp
protected:void setp(char* p, char* ep)

This is supported on AIX 400 z/OS

Sets the spaces available for the put area. Both the start (pbase()) and the
beginning (pptr()) of the put area are set to the value p.

Sets the beginning of the put area of the streambuf (the pointer returned
by pptr()) to the position pointed to by p, and sets the end of the put area
(the pointer returned by epptr()) to the position pointed to by ep.

Insertion Functions
Functions that insert characters into the ultimate consumer, determine if characters
are waiting to be inserted and handle overflow situations.
out_waiting

Returns the number of characters that are in the put area waiting to be
sent to the ultimate consumer.
Overload 1

public:int out_waiting()

188 C/C++ Legacy Classes

This is supported on AIX 400 z/OS

AIX Considerations

This function returns an int value for 32-bit applications. It
is not available for 64-bit applications.

Overload 2
public:long out_waiting()

This is supported on AIX

AIX Considerations

This function returns a long value for 64-bit applications. It
is not available for 32-bit applications.

overflow
public:virtual int overflow(int c = EOF)

This is supported on AIX 400 z/OS

Called when the put area is full, and an attempt is made to store another
character in it. overflow() may be called at other times.

The default definition of overflow() is compatible with the AT&T C++
Language System Release 1.2 version of the stream package, but it is not
considered part of the current I/O Stream Library. Thus, the default
definition of overflow() should not be used, and every class derived from
streambuf should define overflow() itself.

The definition of overflow() in your classes derived from streambuf should
cause the ultimate consumer to consume the characters in the put area, call
setp() to establish a new put area, and store the argument c in the put area
if c does not equal EOF. overflow() should return EOF if an error occurs,
and it should return a value not equal to EOF otherwise.

pbackfail
public:virtual int pbackfail(int c)

This is supported on AIX 400 z/OS

Called when both of the following conditions are true:
v An attempt has been made to put back a character.
v There is no room in the putback area. The pointer returned by eback()

equals the pointer returned by gptr().

The default definition of pbackfail() returns EOF.

If you define pbackfail() in your own classes, your definition of pbackfail()
should attempt to deal with the full putback area by, for instance,
repositioning the get pointer of the ultimate producer. If this is possible,
pbackfail() should return the argument c. If not, pbackfail() should return
EOF.

sputbackc
public:int sputbackc(char c)

This is supported on AIX 400 z/OS

Chapter 3. Reference 189

Moves the get pointer back one character. The get pointer may simply
move, or the ultimate producer may rearrange the internal data structures
so that the character c is saved. The argument c must equal the character
that precedes the get pointer in the stream buffer. The effect of sputbackc()
is undefined if c is not equal to the character before the get pointer.
sputbackc() returns EOF if an error occurs. The conditions that cause errors
depend on the derived class.

sputc
public:int sputc(int c)

This is supported on AIX 400 z/OS

Stores the argument c after the put pointer and moves the put pointer past
the stored character. If there is enough space in the stream buffer, this will
extend the size of the put area. sputc() returns EOF if an error occurs. The
conditions that cause errors depend on the derived class.

sputn
Overload 1

public:int sputn(const char* s, int n)

This is supported on AIX 400 z/OS

Stores the n characters starting at s after the put pointer and moves
the put pointer to the end of the series. sputn() returns the number
of characters successfully stored. If an error occurs, sputn() returns
a value less than n.
AIX Considerations

This function is available for 32-bit applications. It accepts
an int argument.

Overload 2
public:long sputn(const char* s, long n)

This is supported on AIX

Stores the n characters starting at s after the put pointer and moves
the put pointer to the end of the series. sputn() returns the number
of characters successfully stored. If an error occurs, sputn() returns
a value less than n.
AIX Considerations

This function is available for 64-bit applications. It accepts
a long argument.

xsputn
Overload 1

public:virtual int xsputn(const char* s, int n)

This is supported on AIX 400 z/OS

Similar to sputn.
AIX Considerations

This function is available for use when building 32-bit
applications. The second argument is an int value.

Overload 2

190 C/C++ Legacy Classes

public:virtual long xsputn(const char* s, long n)

This is supported on AIX

Similar to sputn.
AIX Considerations

This function is available for use when building 64-bit
applications. The second argument is a long value.

Locking functions
streambuf_resource

public:IRTLResource& streambuf_resource() const

This is supported on z/OS

Stream Buffer Functions
Functions that work with the underlying streambuf object.
setbuf

Overload 1
public:streambuf* setbuf(unsigned char* p, long len)

This is supported on AIX

Sets up a stream buffer consisting of the array of bytes starting at p
with length len.

This function is different from setb(). setb() sets pointers to an
existing stream buffer. setbuf(), however, creates the stream buffer.

The default definition of setbuf() sets up the stream buffer if the
streambuf object does not already have a stream buffer.

If you define setbuf() in a class derived from streambuf, setbuf()
can either accept or ignore a request for an unbuffered streambuf
object. The call to setbuf() is a request for an unbuffered streambuf
object if p equals 0 or len equals 0. setbuf() should return a pointer
to the streambuf if it accepts the request, and 0 otherwise.
AIX Considerations

This function is available for 64-bit applications. It accepts
an long argument.

Overload 2
public:virtual streambuf* setbuf(char* p, long len)

This is supported on AIX

Sets up a stream buffer consisting of the array of bytes starting at p
with length len.

This function is different from setb(). setb() sets pointers to an
existing stream buffer. setbuf(), however, creates the stream buffer.

The default definition of setbuf() sets up the stream buffer if the
streambuf object does not already have a stream buffer.

Chapter 3. Reference 191

If you define setbuf() in a class derived from streambuf, setbuf()
can either accept or ignore a request for an unbuffered streambuf
object. The call to setbuf() is a request for an unbuffered streambuf
object if p equals 0 or len equals 0. setbuf() should return a pointer
to the streambuf if it accepts the request, and 0 otherwise.
AIX Considerations

This function is available for 64-bit applications. It accepts
an long argument.

Overload 3
public:streambuf* setbuf(char* p, int len, int count)

This is supported on AIX 400 z/OS

This function is obsolete. The I/O Stream Library includes it to be
compatible with AT&T C++ Language System Release 1.2
AIX Considerations

This function is available for 32-bit applications. It accepts
an int argument.

Overload 4
public:virtual streambuf* setbuf(char* p, int len)

This is supported on AIX 400 z/OS

Sets up a stream buffer consisting of the array of bytes starting at p
with length len.

This function is different from setb(). setb() sets pointers to an
existing stream buffer. setbuf(), however, creates the stream buffer.

The default definition of setbuf() sets up the stream buffer if the
streambuf object does not already have a stream buffer.

If you define setbuf() in a class derived from streambuf, setbuf()
can either accept or ignore a request for an unbuffered streambuf
object. The call to setbuf() is a request for an unbuffered streambuf
object if p equals 0 or len equals 0. setbuf() should return a pointer
to the streambuf if it accepts the request, and 0 otherwise.
AIX Considerations

This function is available for 32-bit applications. It accepts
an int argument.

Overload 5
public:streambuf* setbuf(unsigned char* p, int len)

This is supported on AIX 400 z/OS

Sets up a stream buffer consisting of the array of bytes starting at p
with length len.

This function is different from setb(). setb() sets pointers to an
existing stream buffer. setbuf(), however, creates the stream buffer.

The default definition of setbuf() sets up the stream buffer if the
streambuf object does not already have a stream buffer.

192 C/C++ Legacy Classes

If you define setbuf() in a class derived from streambuf, setbuf()
can either accept or ignore a request for an unbuffered streambuf
object. The call to setbuf() is a request for an unbuffered streambuf
object if p equals 0 or len equals 0. setbuf() should return a pointer
to the streambuf if it accepts the request, and 0 otherwise.
AIX Considerations

This function is available for 32-bit applications. It accepts
an int argument.

sync
public:virtual int sync()

This is supported on AIX 400 z/OS

Synchronizes the stream buffer with the ultimate producer or the ultimate
consumer.

The default definition of sync() returns 0 if either of the following
conditions is true:
v The get area is empty and there are no characters waiting to go to the

ultimate consumer.
v No stream buffer has been allocated for the streambuf.

Otherwise, sync() returns EOF.

If you define sync() in a class derived from streambuf, it should send any
characters that are stored in the put area to the ultimate consumer, and (if
possible) send any characters that are waiting in the get area back to the
ultimate producer. When sync() returns, both the put area and the get area
should be empty. sync() should return EOF if an error occurs.

allocate
protected:int allocate()

This is supported on AIX 400 z/OS

Attempts to set up a stream buffer. allocate() returns the following values:
v 0, if the streambuf has a stream buffer set up (that is, base() returns a

nonzero value), or if unbuffered() returns a nonzero value. allocate()
does not do any further processing if it returns 0.

v 1, if allocate() does set up a stream buffer.
v EOF, if the attempt to allocate space for the stream buffer fails.

allocate() is not called by any other nonvirtual member function of
streambuf.

blen

Returns the length (in bytes) of the stream buffer.
Overload 1

protected:long blen() const

This is supported on AIX

AIX Considerations

The value returned is a long when building 64-bit
aplications. This function is not available for 32-bit
applications.

Chapter 3. Reference 193

Overload 2
protected:int blen() const

This is supported on AIX 400 z/OS

AIX Considerations

The value returned is an int when building 32-bit
applications. This function is not available for 64-bit
applications.

doallocate
protected:virtual int doallocate()

This is supported on AIX 400 z/OS

Called when allocate() determines that space is needed for a stream buffer.

The default definition of doallocate() attempts to allocate space for a
stream buffer using the operator new.

If you define your own version of doallocate(), it must call setb() to
provide space for a stream buffer or return EOF if it cannot allocate space.
doallocate() should only be called if unbuffered() and base() return zero.

In your own version of doallocate(), you provide the size of the buffer for
your constructor. Assign the buffer size you want to a variable using a
#define statement. This variable can then be used in the constructor for
your doallocate() function to define the size of the buffer.

unbuffered
Overload 1

protected:void unbuffered(int unb)

This is supported on AIX 400 z/OS

Manipulates the private streambuf variable called the buffering
state. If the buffering state is nonzero, a call to allocate() does not
set up a stream buffer.

Changes the value of the buffering state to unb.
Overload 2

protected:int unbuffered() const

This is supported on AIX 400 z/OS

Manipulates the private streambuf variable called the buffering
state. If the buffering state is nonzero, a call to allocate() does not
set up a stream buffer.

Returns the current value of the buffering state.

streambuf - Inherited Member Functions and Data
Inherited Public Functions

None
Inherited Public Data

194 C/C++ Legacy Classes

None
Inherited Protected Functions

None
Inherited Protected Data

None

strstream
strstream is the class that specializes iostream to use a strstreambuf for input and
output with arrays of characters in memory. You can create an strstream object by
associating the object with a previously allocated array of characters. You can then
write output to it, read input from it, and apply other operations to it just as you
would to another type of stream.

Class header file: strstream.h

strstream - Hierarchy List
ios
strstreambase
strstream

strstream - Member Functions and Data by Group

Constructors & Destructor
Objects of the strstream class can be constructed and destructed.
~strstream

public:~strstream()

This is supported on AIX 400 z/OS

The strstream destructor frees the space allocated by the strstream
constructor.

strstream
Overload 1

public:strstream(char* str, long size, int mode)

This is supported on AIX

This constructor specifies that characters should be extracted and
inserted into the array of bytes that starts at the position pointed to
by str with a length of size bytes. If ios::ate or ios::app is set in
mode, str points to a null-terminated string and insertions begin at
the null character. Otherwise, insertions begin at the position
pointed to by str. You can use the istream::seekg() function to
reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 2
public:strstream(char* str, int size, int mode)

This is supported on AIX 400 z/OS

Chapter 3. Reference 195

This constructor specifies that characters should be extracted and
inserted into the array of bytes that starts at the position pointed to
by str with a length of size bytes. If ios::ate or ios::app is set in
mode, str points to a null-terminated string and insertions begin at
the null character. Otherwise, insertions begin at the position
pointed to by str. You can use the istream::seekg() function to
reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 3
public:strstream(signed char* str, long size, int mode)

This is supported on AIX

This constructor specifies that characters should be extracted and
inserted into the array of bytes that starts at the position pointed to
by str with a length of size bytes. If ios::ate or ios::app is set in
mode, str points to a null-terminated string and insertions begin at
the null character. Otherwise, insertions begin at the position
pointed to by str. You can use the istream::seekg() function to
reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 4
public:strstream(unsigned char* str, int size, int mode)

This is supported on AIX 400 z/OS

This constructor specifies that characters should be extracted and
inserted into the array of bytes that starts at the position pointed to
by str with a length of size bytes. If ios::ate or ios::app is set in
mode, str points to a null-terminated string and insertions begin at
the null character. Otherwise, insertions begin at the position
pointed to by str. You can use the istream::seekg() function to
reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 5
public:strstream(signed char* str, int size, int mode)

This is supported on AIX 400 z/OS

This constructor specifies that characters should be extracted and
inserted into the array of bytes that starts at the position pointed to
by str with a length of size bytes. If ios::ate or ios::app is set in
mode, str points to a null-terminated string and insertions begin at
the null character. Otherwise, insertions begin at the position
pointed to by str. You can use the istream::seekg() function to
reposition the get pointer anywhere in this array.
AIX Considerations

196 C/C++ Legacy Classes

This function is available for 32-bit applications. The
second argument is an int value.

Overload 6
public:strstream(unsigned char* str, long size, int mode)

This is supported on AIX

This constructor specifies that characters should be extracted and
inserted into the array of bytes that starts at the position pointed to
by str with a length of size bytes. If ios::ate or ios::app is set in
mode, str points to a null-terminated string and insertions begin at
the null character. Otherwise, insertions begin at the position
pointed to by str. You can use the istream::seekg() function to
reposition the get pointer anywhere in this array.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 7
public:strstream()

This is supported on AIX 400 z/OS

This constructor takes no arguments and specifies that space is
allocated dynamically for the stream buffer that is attached to the
strstream object.

Stream Buffer Functions
str

public:char* str()

This is supported on AIX 400 z/OS

Returns a pointer to the stream buffer attached to the strstream and calls
freeze() with a nonzero value to prevent the stream buffer from being
deleted. If the stream buffer was constructed with an explicit array, the
value returned is a pointer to that array. If the stream buffer was
constructed in dynamic mode, str points to the dynamically allocated area.

Until you call str(), deleting the dynamically allocated stream buffer is the
responsibility of the strstream object. After str() has been called, the calling
application has responsibility for the dynamically allocated stream buffer.

Note: If your application calls str() without calling freeze() with a nonzero
argument (to unfreeze the strstream), or without explicitly deleting the
array of characters returned by the call to str(), the array of characters will
not be deallocated by the strstream when it is destroyed. This situation is a
potential source of a memory leak.

Chapter 3. Reference 197

strstream - Inherited Member Functions and Data
Inherited Public Functions

ios

Definition
Page
Number Definition

Page
Number

~ios 93 bad 95

bitalloc 100 clear 95

eof 96 fail 96

fill 96 flags 97

good 96 ios 93

ios_resource 100 iword 101

operator ! 101 operator const void * 101

operator void * 101 precision 97

pword 101 rdbuf 101

rdstate 96 setf 98

skip 99 sync_with_stdio 102

tie 102 unsetf 99

width 99 xalloc 103

strstreambase

Definition
Page
Number Definition

Page
Number

rdbuf 200

Inherited Public Data

ios

Definition
Page
Number Definition

Page
Number

adjustfield 94 basefield 94

floatfield 94

Inherited Protected Functions

strstreambase

Definition
Page
Number Definition

Page
Number

~strstreambase 199 strstreambase 199

198 C/C++ Legacy Classes

ios

Definition
Page
Number Definition

Page
Number

init 100 ios 93

setstate 96

Inherited Protected Data

ios

Definition
Page
Number Definition

Page
Number

(* stdioflush) () 103 assign_private 94

bp 94 delbuf 94

isfx_special 94 ispecial 95

osfx_special 95 ospecial 95

state 95 x_fill 100

x_flags 95 x_precision 100

x_tie 95 x_width 100

strstreambase
The strstreambase class is an internal class that provides common functions for the
classes that are derived from it; strstream, istrstream, and ostrstream. Do not use
the strstreambase class directly.

Class header file: strstream.h

strstreambase - Hierarchy List
ios
strstreambase

istrstream
ostrstream
strstream

strstreambase - Member Functions and Data by Group

Constructors & Destructor
Objects of the strstreambase class can be constructed and destructed by objects
derived from it. Do not use these functions directly.
~strstreambase

protected:~strstreambase()

This is supported on AIX 400 z/OS

Destructs a strstreambase object.
strstreambase

Overload 1
protected:strstreambase(char*, long, char*)

Chapter 3. Reference 199

This is supported on AIX

Constructs a strstreambase object.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 2
protected:strstreambase(char*, int, char*)

This is supported on AIX 400 z/OS

Constructs a strstreambase object.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

Overload 3
protected:strstreambase()

This is supported on AIX 400 z/OS

Constructs a strstreambase object.

Misc
rdbuf

public:strstreambuf* rdbuf()

This is supported on AIX 400 z/OS

Returns a pointer to the stream buffer that the strstreambase object is
attached to.

strstreambase - Inherited Member Functions and Data
Inherited Public Functions

ios

Definition
Page
Number Definition

Page
Number

~ios 93 bad 95

bitalloc 100 clear 95

eof 96 fail 96

fill 96 flags 97

good 96 ios 93

ios_resource 100 iword 101

operator ! 101 operator const void * 101

operator void * 101 precision 97

pword 101 rdbuf 101

rdstate 96 setf 98

skip 99 sync_with_stdio 102

200 C/C++ Legacy Classes

ios

Definition
Page
Number Definition

Page
Number

tie 102 unsetf 99

width 99 xalloc 103

Inherited Public Data

ios

Definition
Page
Number Definition

Page
Number

adjustfield 94 basefield 94

floatfield 94

Inherited Protected Functions

ios

Definition
Page
Number Definition

Page
Number

init 100 ios 93

setstate 96

Inherited Protected Data

ios

Definition
Page
Number Definition

Page
Number

(* stdioflush) () 103 assign_private 94

bp 94 delbuf 94

isfx_special 94 ispecial 95

osfx_special 95 ospecial 95

state 95 x_fill 100

x_flags 95 x_precision 100

x_tie 95 x_width 100

strstreambuf
This class specializes streambuf to use an array of bytes in memory as the source
or target of data.

Class header file: strstream.h

strstreambuf - Hierarchy List
streambuf
strstreambuf

Chapter 3. Reference 201

strstreambuf - Member Functions and Data by Group

Constructors & Destructor
Objects of the strstreambuf class can be constructed and destructed.
~strstreambuf

public:~strstreambuf()

This is supported on AIX 400 z/OS

If freeze() has not been called for the strstreambuf object and a stream
buffer is associated with the strstreambuf object, the strstreambuf
destructor frees the space allocated by the strstreambuf constructor. The
effect of the destructor depends on the constructor used to create the
strstreambuf object:
v If you created the strstreambuf object using the constructor that takes

two pointers to functions as arguments, the destructor frees the space
allocated by the destructor by calling the function pointed to by the
second argument to the constructor.

v If you created the strstreambuf object using any of the other
constructors, the destructor calls the delete operator to free the space
allocated by the constructor.

strstreambuf
Overload 1

public:strstreambuf(long)

This is supported on AIX

This constructor takes one argument and constructs an empty
strstreambuf object in dynamic mode. The initial size of the stream
buffer will be at least as long as the argument in bytes.
AIX Considerations

This constructor is available for 64-bit applications. It
accepts a long argument.

Overload 2
public:strstreambuf(int)

This is supported on AIX 400 z/OS

This constructor takes one argument and constructs an empty
strstreambuf object in dynamic mode. The initial size of the stream
buffer will be at least as long as the argument in bytes.
AIX Considerations

This constructor is available for 32-bit applications. It
accepts an int argument.

Overload 3
public:strstreambuf(char* b, int size, char* pstart = 0)

This is supported on AIX 400 z/OS

Constructs a strstreambuf object with a stream buffer that begins at
the position pointed to by b. The nature of the stream buffer
depends on the value of size.

202 C/C++ Legacy Classes

v If size is positive, the size bytes following the position pointed to
by b make up the stream buffer.

v If size equals 0, b points to the beginning of a null-terminated
string, and the bytes of that string, excluding the terminating
null character, will make up the stream buffer.

v If size is negative, the stream buffer has an indefinite length. The
get pointer of the stream buffer is initialized to b, and the put
pointer is initialized to pstart.

Regardless of the values of size, if the value of pstart is 0, the get
area will include the entire stream buffer, and insertions will caues
errors.
AIX Considerations

This constructor is available for 32-bit applications. The
second argument is an int value.

Overload 4
public:strstreambuf(unsigned char* b,

int size,
unsigned char* pstart = 0)

This is supported on AIX 400 z/OS

Constructs a strstreambuf object with a stream buffer that begins at
the position pointed to by b. The nature of the stream buffer
depends on the value of size.
v If size is positive, the size bytes following the position pointed to

by b make up the stream buffer.
v If size equals 0, b points to the beginning of a null-terminated

string, and the bytes of that string, excluding the terminating
null character, will make up the stream buffer.

v If size is negative, the stream buffer has an indefinite length. The
get pointer of the stream buffer is initialized to b, and the put
pointer is initialized to pstart.

Regardless of the values of size, if the value of pstart is 0, the get
area will include the entire stream buffer, and insertions will caues
errors.
AIX Considerations

This constructor is available for 32-bit applications. The
second argument is an int value.

Overload 5
public:strstreambuf(unsigned char* b,

long size,
unsigned char* pstart = 0)

This is supported on AIX

Constructs a strstreambuf object with a stream buffer that begins at
the position pointed to by b. The nature of the stream buffer
depends on the value of size.
v If size is positive, the size bytes following the position pointed to

by b make up the stream buffer.
v If size equals 0, b points to the beginning of a null-terminated

string, and the bytes of that string, excluding the terminating
null character, will make up the stream buffer.

Chapter 3. Reference 203

v If size is negative, the stream buffer has an indefinite length. The
get pointer of the stream buffer is initialized to b, and the put
pointer is initialized to pstart.

Regardless of the values of size, if the value of pstart is 0, the get
area will include the entire stream buffer, and insertions will caues
errors.
AIX Considerations

This constructor is available for 64-bit applications. The
second argument is a long value.

Overload 6
public:strstreambuf(void * (* a) (long),

void (* f) (void *))

This is supported on AIX 400 z/OS

This constructor takes two arguments and creates an empty
strstreambuf object in dynamic mode. a is a pointer to the function
that is used to allocate space. a is passed a long value that equals
the number of bytes that it is supposed to allocate. If the value of a
is 0, the operator new is used to allocate space. f is a pointer to the
function that is used to free space. f is passed an argument that is a
pointer to the array of bytes that a allocated. If f has a value of 0,
the operator delete is used to free space.

Overload 7
public:strstreambuf(signed char* b,

int size,
signed char* pstart = 0)

This is supported on AIX 400 z/OS

Constructs a strstreambuf object with a stream buffer that begins at
the position pointed to by b. The nature of the stream buffer
depends on the value of size.
v If size is positive, the size bytes following the position pointed to

by b make up the stream buffer.
v If size equals 0, b points to the beginning of a null-terminated

string, and the bytes of that string, excluding the terminating
null character, will make up the stream buffer.

v If size is negative, the stream buffer has an indefinite length. The
get pointer of the stream buffer is initialized to b, and the put
pointer is initialized to pstart.

Regardless of the values of size, if the value of pstart is 0, the get
area will include the entire stream buffer, and insertions will caues
errors.
AIX Considerations

This constructor is available for 32-bit applications. The
second argument is an int value.

Overload 8
public:strstreambuf(signed char* b,

long size,
signed char* pstart = 0)

204 C/C++ Legacy Classes

This is supported on AIX

Constructs a strstreambuf object with a stream buffer that begins at
the position pointed to by b. The nature of the stream buffer
depends on the value of size.
v If size is positive, the size bytes following the position pointed to

by b make up the stream buffer.
v If size equals 0, b points to the beginning of a null-terminated

string, and the bytes of that string, excluding the terminating
null character, will make up the stream buffer.

v If size is negative, the stream buffer has an indefinite length. The
get pointer of the stream buffer is initialized to b, and the put
pointer is initialized to pstart.

Regardless of the values of size, if the value of pstart is 0, the get
area will include the entire stream buffer, and insertions will caues
errors.
AIX Considerations

This constructor is available for 64-bit applications. The
second argument is a long value.

Overload 9
public:strstreambuf(char* b, long size, char* pstart = 0)

This is supported on AIX

Constructs a strstreambuf object with a stream buffer that begins at
the position pointed to by b. The nature of the stream buffer
depends on the value of size.
v If size is positive, the size bytes following the position pointed to

by b make up the stream buffer.
v If size equals 0, b points to the beginning of a null-terminated

string, and the bytes of that string, excluding the terminating
null character, will make up the stream buffer.

v If size is negative, the stream buffer has an indefinite length. The
get pointer of the stream buffer is initialized to b, and the put
pointer is initialized to pstart.

Regardless of the values of size, if the value of pstart is 0, the get
area will include the entire stream buffer, and insertions will caues
errors.
AIX Considerations

This constructor is available for 64-bit applications. The
second argument is a long value.

Overload 10
public:strstreambuf()

This is supported on AIX 400 z/OS

This constructor takes no arguments and constructs an empty
strstreambuf object in dynamic mode. Space will be allocated
automatically to accommodate the characters that are put into the
strstreambuf objet. This space will be allocated using the operator
new and deallocated using the operator delete. The characters that
are already stored by the strstreambuf object may have to be

Chapter 3. Reference 205

copied when new space is allocated. If you know you are going to
insert many characters into an strstreambuf object, you can give
the I/O Stream Library an estimate of the size of the object before
you create it by calling strstreambuf::setbuf().

Get/Put Pointer Functions
seekoff

public:virtual streampos seekoff(streamoff, ios::seek_dir, int)

This is supported on AIX 400 z/OS

Repositions the get or put pointer in the array of bytes in memory that
serves as the ultimate producer or consumer.

If you constructed the strstreambuf in dynamic mode, the results of
seekoff() are unpredictable. Therefore, do not use seekoff() with an
strstreambuf object that you created in dynamic mode.

If you did not construct the strstreambuf object in dynamic mode, seekoff()
attempts to reposition the get pointer or the put pointer, depending on the
value of the third argument, the mode. If ios::in is set, seekoff() repositions
the get pointer. If ios::out is set, seekoff() repositions the put pointer. If
both ios::in and ios::out are set, seekoff() repositions both pointers.

seekoff() attempts to reposition the affected pointer to the value of
ios::seek_dir + streamoff. ios::seek_dir can have the following values:
ios::beg, ios::cur, or ios::end.

If the value of ios::seek_dir + streamoff is equal to or greater than the end
of the array, the value is not valid and seekoff() returns EOF. Otherwise,
seekoff() sets the affected pointer to this value and returns this value.

Insertion & Extraction Functions
overflow

public:virtual int overflow(int)

This is supported on AIX 400 z/OS

Causes the ultimate consumer to consume the characters in the put area
and calls setp() to establish a new put area. The argument is stored in the
new put area if its value is not equal to EOF.

pcount

This function is internal and should not be used.
Overload 1

public:long pcount()

This is supported on AIX

AIX Considerations

This function returns a long for 64-bit applications. It is not
available for 32-bit applications.

Overload 2
public:int pcount()

206 C/C++ Legacy Classes

This is supported on AIX 400 z/OS

AIX Considerations

This function returns an int for 32-bit applications. It is not
available for 64-bit applications.

underflow
public:virtual int underflow()

This is supported on AIX 400 z/OS

If the get area is not empty, underflow() returns the first character in the
get area. If the get area is empty, underflow() creates a new get area that is
not empty and returns the first character. If no more characters are
available in the ultimate producer, underflow() returns EOF and leaves the
get area empty.

Stream Buffer Functions
doallocate

public:virtual int doallocate()

This is supported on AIX 400 z/OS

Attempts to allocate space for a stream buffer. If you created the
strstreambuf object using the constructor that takes two pointers to
functions as arguments, doallocate() allocates space for the stream buffer
by calling the function pointed to by the first argument to the constructor.
Otherwise, doallocate() calls the operator new to allocate space for the
stream buffer.

freeze
public:void freeze(int n = 1)

This is supported on AIX 400 z/OS

Controls whether the array that makes up a stream buffer can be deleted
automatically. If n has a nonzero value, the array is not deleted
automatically. If n equals 0, the array is deleted automatically when more
space is needed or when the strstreambuf object is deleted. If you call
freeze() with a nonzero argument for a strstreambuf object that was
allocated in dynamic mode, any attempts to put characters in the stream
buffer may result in errors. Therefore, you should avoid insertions to such
stream buffers because the results are unpredictable. However, if you have
a ″frozen″ stream buffer and you call freeze() with an argument equal to 0,
you can put characters in the stream buffer again.

Only space that is acquired through dynamic allocation is ever freed.
isfrozen

public:int isfrozen()

This is supported on AIX 400 z/OS

Returns true if the stream buffer is frozen.
setbuf

Overload 1
public:virtual streambuf* setbuf(char* p, long l)

Chapter 3. Reference 207

This is supported on AIX

setbuf() records the buffer size. The next time that the strstreambuf
object dynamically allocates a stream buffer, the stream buffer is at
least l bytes long.

Note: If you call setbuf() for an strstreambuf object, you must call
it with the first argument equal to 0.
AIX Considerations

This function is available for 64-bit applications. The
second argument is a long value.

Overload 2
public:virtual streambuf* setbuf(char* p, int l)

This is supported on AIX 400 z/OS

setbuf() records the buffer size. The next time that the strstreambuf
object dynamically allocates a stream buffer, the stream buffer is at
least l bytes long.

Note: If you call setbuf() for an strstreambuf object, you must call
it with the first argument equal to 0.
AIX Considerations

This function is available for 32-bit applications. The
second argument is an int value.

str
public:char* str()

This is supported on AIX 400 z/OS

Returns a pointer to the first character in the stream buffer and calls
freeze() with a nonzero argument. Any attempts to put characters in the
stream buffer may result in errors. If the strstreambuf object was created
with an explicit array (that is, the strstreambuf constructor with three
arguments was used), str() returns a pointer to that array. If the
strstreambuf object was created in dynamic mode and nothing is stored in
the array, str() may return 0.

strstreambuf - Inherited Member Functions and Data
Inherited Public Functions

streambuf

Definition
Page
Number Definition

Page
Number

~streambuf 180 dbp 184

in_avail 181 optim_in_avail 181

optim_sbumpc 182 out_waiting 188

overflow 189 pbackfail 189

pptr_non_null 184 sbumpc 182

seekoff 184 seekpos 185

208 C/C++ Legacy Classes

streambuf

Definition
Page
Number Definition

Page
Number

setbuf 191 sgetc 182

sgetn 182 snextc 183

sputbackc 189 sputc 190

sputn 190 stossc 185

streambuf 180 streambuf_resource 191

sync 193 xsgetn 183

xsputn 190

Inherited Public Data

None
Inherited Protected Functions

streambuf

Definition
Page
Number Definition

Page
Number

allocate 193 base 185

blen 193 eback 186

ebuf 186 egptr 186

epptr 186 gbump 186

gptr 187 pbase 187

pbump 187 pptr 188

setb 188 setg 188

setp 188 unbuffered 194

Inherited Protected Data

None

Chapter 3. Reference 209

210 C/C++ Legacy Classes

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2003 211

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd. Laboratory
B3/KB7/8200/MKM
8200 Warden Avenue
Markham, Ontario L6G 1C7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Programming Interface Information
Programming interface information is intended to help you create application
software using this program.

General-use programming interface allow the customer to write application
software that obtain the services of this program’s tools.

212 C/C++ Legacy Classes

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification, and tuning information is provided to help
you debug your application software.

Note: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and Service Marks
The following terms are trademarks of the International Business Machines
Corporation in the United States, or other countries, or both:
v AIX
v IBM
v OS/390
v OS/400
v VisualAge
v z/OS

UNIX is a registered trademarks of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 213

214 C/C++ Legacy Classes

����

SC09-7652-00

	Contents
	Preface
	Chapter 1. USL I/O Streaming
	The USL I/O Stream Class Hierarchy
	USL I/O Stream Header Files
	The USL I/O Stream Classes and stdio.h
	Use Predefined Streams
	Use Anonymous Streams
	Stream Buffers
	Format State Flags
	Format Stream Output
	Define Your Own Format State Flags

	Manipulators
	Create Manipulators
	Define an APP Parameterized Manipulator
	Define a MANIP Parameterized Manipulator
	Define Nonassociative Parameterized Manipulators

	Thread Safety and USL I/O Streaming
	Basic USL I/O Stream Tasks
	Receive Input from Standard Input
	Display Output on Standard Output or Standard Error
	Flush Output Streams with endl and flush
	Parse Multiple Inputs
	Open a File for Input and Read from the File
	Open a File for Output and Write to the File
	Combine Input and Output of Different Types

	Advanced USL I/O Stream Tasks
	Associate a File with a Standard Input or Output Stream
	Move through a file with filebuf Functions
	Define an Input Operator for a Class Type
	Define an Output Operator for a Class Type
	Correct Input Stream Errors
	Manipulate Strings with the strstream Classes

	Chapter 2. USL Complex Mathematics Library
	Review of Complex Numbers
	Header Files and Constants for the complex and c_exception Classes
	Construct complex Objects

	Mathematical Operators for complex
	Use Mathematical Operators for complex

	Friend Functions for complex
	Use Friend Functions with complex

	Input and Output Operators for complex
	Use complex Input and Output Operators

	Error Functions
	Handle complex Mathematics Errors

	Example: Calculate Roots
	Example: Use Equality and Inequality Operators

	Chapter 3. Reference
	_CCSID_T
	_CCSID_T - Hierarchy List
	_CCSID_T - Member Functions and Data by Group
	Constructors & Destructor
	Query Functions

	_CCSID_T - Inherited Member Functions and Data

	complex
	complex - Hierarchy List
	complex - Member Functions and Data by Group
	Constructors & Destructor
	Assignment Operators
	Internal Functions

	complex - Associated Globals
	complex - Inherited Member Functions and Data

	filebuf
	filebuf - Hierarchy List
	filebuf - Member Functions and Data by Group
	Constructors & Destructor
	Attach Functions
	Data members
	Detach Functions
	File Pointer Functions
	Open Functions
	Query Functions
	Stream Buffer Functions

	filebuf - Inherited Member Functions and Data

	fstream
	fstream - Hierarchy List
	fstream - Member Functions and Data by Group
	Constructors & Destructor
	Filebuf Functions
	Open Functions

	fstream - Inherited Member Functions and Data

	fstreambase
	fstreambase - Hierarchy List
	fstreambase - Member Functions and Data by Group
	Constructors & Destructor
	Filebuf Functions
	Miscellaneous Functions
	Open Functions
	Stream Buffer Functions

	fstreambase - Inherited Member Functions and Data

	ifstream
	ifstream - Hierarchy List
	ifstream - Member Functions and Data by Group
	Constructors & Destructor
	Filebuf Functions
	Open Functions

	ifstream - Inherited Member Functions and Data

	ios
	ios - Hierarchy List
	ios - Member Functions and Data by Group
	Constructors & Destructor
	Data members
	Error State Functions
	Format State Functions
	Format State Variables
	Initialization Functions
	Locking functions
	Miscellaneous Functions

	ios - Enumerations
	ios - Inherited Member Functions and Data

	iostream
	iostream - Hierarchy List
	iostream - Member Functions and Data by Group
	Constructors & Destructor

	iostream - Inherited Member Functions and Data

	iostream_withassign
	iostream_withassign - Hierarchy List
	iostream_withassign - Member Functions and Data by Group
	Constructors & Destructor
	Assignment Operators

	iostream_withassign - Inherited Member Functions and Data

	istream
	istream - Hierarchy List
	istream - Member Functions and Data by Group
	Constructors & Destructor
	Extract Functions
	Input Operators
	Positioning Functions
	Prefix and Suffix Functions

	istream - Inherited Member Functions and Data

	istream_withassign
	istream_withassign - Hierarchy List
	istream_withassign - Member Functions and Data by Group
	Constructors & Destructor
	Assignment Operator

	istream_withassign - Inherited Member Functions and Data

	istrstream
	istrstream - Hierarchy List
	istrstream - Member Functions and Data by Group
	Constructors & Destructor

	istrstream - Inherited Member Functions and Data

	ofstream
	ofstream - Hierarchy List
	ofstream - Member Functions and Data by Group
	Constructors & Destructor
	Filebuf Functions
	Open Functions

	ofstream - Inherited Member Functions and Data

	ostream
	ostream - Hierarchy List
	ostream - Member Functions and Data by Group
	Constructors & Destructor
	Insertion Functions
	Output operators
	Positioning Functions
	Prefix and Suffix Functions

	ostream - Inherited Member Functions and Data

	ostream_withassign
	ostream_withassign - Hierarchy List
	ostream_withassign - Member Functions and Data by Group
	Constructors & Destructor
	Assignment Operator

	ostream_withassign - Inherited Member Functions and Data

	ostrstream
	ostrstream - Hierarchy List
	ostrstream - Member Functions and Data by Group
	Constructors & Destructor
	Stream Buffer Functions

	ostrstream - Inherited Member Functions and Data

	stdiobuf
	stdiobuf - Hierarchy List
	stdiobuf - Member Functions and Data by Group
	Constructors & Destructor
	Positioning Functions
	Query Functions

	stdiobuf - Inherited Member Functions and Data

	stdiostream
	stdiostream - Hierarchy List
	stdiostream - Member Functions and Data by Group
	Constructors & Destructor
	Miscellaneous

	stdiostream - Inherited Member Functions and Data

	streambuf
	streambuf - Hierarchy List
	streambuf - Member Functions and Data by Group
	Constructors & Destructor
	Extraction Functions
	Get/Put Pointer Functions
	Insertion Functions
	Locking functions
	Stream Buffer Functions

	streambuf - Inherited Member Functions and Data

	strstream
	strstream - Hierarchy List
	strstream - Member Functions and Data by Group
	Constructors & Destructor
	Stream Buffer Functions

	strstream - Inherited Member Functions and Data

	strstreambase
	strstreambase - Hierarchy List
	strstreambase - Member Functions and Data by Group
	Constructors & Destructor
	Misc

	strstreambase - Inherited Member Functions and Data

	strstreambuf
	strstreambuf - Hierarchy List
	strstreambuf - Member Functions and Data by Group
	Constructors & Destructor
	Get/Put Pointer Functions
	Insertion & Extraction Functions
	Stream Buffer Functions

	strstreambuf - Inherited Member Functions and Data

	Notices
	Programming Interface Information
	Trademarks and Service Marks

