System i Storage solutions Version 5 Release 4 # System i Storage solutions Version 5 Release 4 # Note Before using this information and the product it supports, read the information in "Notices," on page 155. # Fourth Edition (February 2006) This edition applies to version 5, release 4, modification 0 of IBM i5/OS (product number 5722-SSI) and to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC) models nor does it run on CISC models. © Copyright International Business Machines Corporation 2004, 2006. All rights reserved. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. # Contents 1 | Storage solutions 1 | Using optical volumes | |---|---| | What's new for V5R4 | Optical volume backup 93 | | Printable PDF 2 | Managing performance in optical media | | How storage is viewed 2 | libraries | | Disk | Managing optical security and auditing 110 | | Tape | Reclaiming the optical index database 113 | | Types of tape solutions 5 | Recovering held optical files | | Comparing offline storage | Saving and restoring optical media 121 | | Planning for a tape solution | Troubleshooting optical storage 127 | | Installing stand-alone tape devices 23 | Output file support structures | | Installing tape libraries | Virtual storage | | Configuring tape libraries | Concepts for virtual storage | | Using tape devices | Virtual tape | | Maintaining tape resources 45 | Virtual optical storage 144 | | Troubleshooting tape resources 60 | Storage area networks | | Optical storage | Related information for storage solutions 154 | | Supported hardware for optical storage 63 | | | Optical devices | Appendix. Notices 155 | | Concepts for optical storage | Programming Interface Information 156 | | Optical media formats 70 | Trademarks | | Configuring optical devices | Terms and conditions | | Using optical devices 82 | | # **Storage solutions** The purpose of this topic is to step you through the world of iSeries $^{\text{\tiny TM}}$ storage and help you make choices about which storage technologies are right for your company now, and which may be useful in the future. As your company produces a greater volume of information, and as the value of that information grows, the methods you use to protect and preserve it become vital corporate strategies. Storage has gone from being a feature of a system to being an entity unto itself. It performs several valuable functions within your enterprise, including the following: # Availability Your storage solution must enable you to access your data when you need it, without exception. In some settings, such as a hospital, access to data can mean the difference between life and death. # Integrity Your data must be in exactly the same condition when it returns to you as it was when it was stored. That means it must be safe from corruption, loss, and outside attack. # Recoverability Your storage solution should ensure that you can recover your data in the event of a natural disaster, such as a fire, flood, or tornado. # Related tasks Getting your media ready to save your system # Related information IBM System Storage # What's new for V5R4 This topic highlights the changes made to this topic collection for V5R4. # Addition of virtual tape The Tape topic has been expanded to include virtual tape functions that allow you to create virtual tape images that exist on your system disk units. Virtual Tape # **Enhanced optical support information** The Optical storage topic now includes the information previously found in the *Optical Support* book. All of the information formerly in the *Optical Support* book is now available in this topic. Optical Storage # How to see what's new or changed To help you see where technical changes have been made, this information uses: - The >> image to mark where new or changed information begins. - The **«** image to mark where new or changed information ends. To find other information about what's new or changed this release, see the Memo to Users. # **Printable PDF** Use this to view and print a PDF of this information. To view or download the PDF version of this document, select Storage solutions. # Saving PDF files To save a PDF on your workstation for viewing or printing: - 1. Right-click the PDF in your browser (right-click the Storage solutions link above). - 2. Click the option that saves the PDF locally. - 3. Navigate to the directory in which you would like to save the PDF. - 4. Click Save. # **Downloading Adobe Reader** - You need Adobe Reader installed on your system to view or print these PDFs. You can download a free - copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html) . # How storage is viewed This topic describes how objects are stored on your system and lays the groundwork for the other topics in this section. The system has a unique way of addressing storage. It views the disk space on your system and your system's main memory as one large storage area. This way of addressing storage is known as single-level storage. The following figure shows how single-level storage works: Figure 1. Single-level storage When you save a file, you do not assign it to a storage location. Instead, the system places the file in the location that ensures the best performance. One option is the data is spread in the file across multiple disk units. When you add more records to the file, the system assigns additional space on one or more disk units. # Disk This topic describes how disk storage on the System $i^{\text{\tiny TM}}$ works and describes how it can be configured and used for different storage purposes. Disk storage is the storage that is usually internal to your system. However, it can also be attached externally to it. You can group your disk drives into logical subsets called *disk pools* (also known as auxiliary storage pools or ASPs). One reason to do this is to provide a level of protection for your data. If one disk unit fails, you only have to recover the data stored in the disk pool that the failed disk unit was a part of. Disk pools also enable you to set disk space aside for a particular purpose, application, or data type. For example, you may create a disk pool for backups done to save files. You can then move these save files to tape or other media when it is convenient for you. The following figure shows a disk pool that is composed of disk units 1, 4, 5, 7, and 11. Figure 2. Disk pool with disk units For detailed information about disk pools, disk pool types, and examples of how to use disk pools for different purposes, see Disk pools. For information about how to configure disk units and disk pools, see Manage disk pools. *Independent disk pools* are disk pools that can be brought online or taken offline without any dependencies on the rest of the storage on a system. This is possible because all of the necessary system information associated with the independent disk pool is contained within the independent disk pool. Independent disk pools offer a number of availability and performance advantages in both single and multiple system environments. For detailed information, see Using independent disk pools. Besides disk pools, there are a few other ways to protect your disk units and the data on them. *Mirrored protection* protects your data by keeping a copy of the data on two separate disk units. When a disk-related component fails, the system may continue to operate without interruption by using the mirrored copy of the data until the failed component is repaired. *Device parity protection* is a hardware function that enables your system to reconstruct data in the event of a disk failure. It is important to remember that these disk protection methods are not a guarantee against failure or data loss. You still need to have a good backup and recovery strategy in place in order to truly protect your data. For detailed information about the disk protection methods described here, see Plan for disk protection. Compared to tape or optical, disk is a more expensive storage option. However, the data on disk is more quickly accessible than on tape or optical. It is important to balance the cost of storing data on disk with the speed and convenience with which you can access that data. For example, if you have older data that you access infrequently, you may want to consider storing it on tape or optical, rather than on disk. Likewise, current information that you access frequently might be worth the cost of disk storage because you can access it quickly. This type of storage strategy is called *hierarchical storage management*. The following figure shows the different layers of hierarchical storage management: Figure 3. Storage management hierarchy It is not always the same data that resides in the high performance storage components. Data is moved among the different layers according to the current system needs. The key to successful and seamless hierarchical storage management lies in the management and distribution of data across the different layers. For detailed information, see Hierarchical Storage Management. # Related concepts Disk pools Independent disk pool examples Disk protection # Tape This topic describes the advantages and limitations of using tape for storage. It makes some recommendations about when tape is a good choice and when you should consider other media. It also provides planning, setup, management, and troubleshooting information for stand-alone tape devices and tape libraries. Tape is probably the most common form of removable storage media. It has been around for some time, so it has been widely adopted and continues to be popular. Tape provides several advantages over other storage methods, including the following: Tape is cost effective, when
compared to disk. While the cost of disk storage is falling, the cost of tape is also falling on a per-GB basis. # Security It is easy to keep your data secure by securely storing backups or copies at an off-site location. This also guards against on-site data corruption from viruses, fire, natural disasters, accidental deletions, and other data-loss incidents. ### Reusable You can rotate your tapes for backups, which means that you have more than one set of tapes. When one set expires, you can write over the data on it and use the media again. # Capacity As the amount of data you create grows, you can increase your capacity by simply adding additional tape volumes. While there are many advantages to using tape, there are also some drawbacks: ### **Durability** Tape is reusable, but tapes do wear out over time and require replacement. If they are not replaced when needed, your data can be compromised. # Sequential access to data Tapes give you access to the data on them in the order in which that data was recorded. If you are looking for a particular item on a tape, it might take some time to locate it. # Types of tape solutions You can group types of tape solutions into two broad categories: single tape devices and automated tape devices. # Single tape devices Single tape devices enable you to enjoy the benefits of tape media with your system. They are excellent for smaller companies that may not have much data to back up or to retrieve. If a full backup of your system fits on a single tape, you can perform unattended backups with a single tape device. However, after your backup exceeds one tape, someone needs to be present to switch the tapes in the drive as the backup runs. Many tape devices support data compression, which increases the apparent capacity of your media by encoding the data to use less space. The data is compressed and decompressed by the hardware each time it is read or written on your tape device and is not apparent to applications. # Automated tape devices These topics contain information about what tape automation is and how it can help you manage your data and more efficiently carry out your backup strategy. The two types of tape automation are: ### Related information # **Automatic cartridge loaders** Automatic cartridge loaders provide automation solutions for small- to medium-sized environments. Automatic cartridge loaders can hold multiple cartridges and perform unattended backups. Though they have fewer automation capabilities than tape libraries, you can use tape management software to support automated, centrally scheduled, and policy-managed backup and storage operations. There are two ways that you can use tape cartridges with an automatic cartridge loader: ### Manual mode You insert tape cartridges one at a time. # Auto mode You can preload multiple tape cartridges. A tape cartridge automatically loads when the previous cartridge is unloaded. # Related information Tapes Supported on iSeries # Tape libraries Tape libraries can help you perform unattended save and restore operations, archival and retrieval operations, spool archiving, and other tape-related tasks. Tape libraries are often used with some form of automation software, and are capable of supporting multiple systems across different platforms and large quantities of cartridges. In these environments, a media management application often maintains the cartridge inventory and handles most of the tape library tasks. However, you can also use tape libraries without a media management application. In these environments the tape library can still support some automated tape functions. The following topics introduce the major elements of a tape library and the related information required for implementing a tape library solution. # Tape library types and major components: This topic describes the major components of a typical tape library configuration, and how they relate to i5/OS®. The following figure illustrates the parts of a tape library. The figure represents some typical tape libraries, but does not describe all possible configurations. Figure 4. Illustration of tape library parts # Tape library operating modes: Most tape library devices support three basic modes of operation. The terminology that is used to describe these operational modes varies with the type of tape library, but the concepts are the same. The operating modes are the following: # Manual mode When a tape library is in manual mode it behaves like a stand-alone tape device. You must load all cartridges manually. See Setting up a tape library as a stand-alone device for more information about using a tape library as a stand-alone device. # Automatic cartridge loader mode When a tape library is in this mode it behaves like a stand-alone tape device with an automatic cartridge loader. When a cartridge is unloaded, the next cartridge is loaded until all cartridges have been used. # Library mode In library mode, a tape library provides full tape automation. See the operator's manual for your tape library about specific information for configuring these modes on your tape library. # Related tasks "Setting up a tape library as a stand-alone device" on page 38 Occasionally, it might be necessary to use the tape resources in a tape library without the benefit of the automation. An example of this is when you perform an alternate IPL or when the tape library automation is disabled. # Common configuration types for tape libraries: This topic provides a description of several common configurations for tape libraries. The system is connected to the tape drive through a parallel channel, SCSI, or fiber channel interface. A 3494 tape library requires a separate connection, either through an EIA-232 line or through a local area network (LAN), to communicate with the library manager. When more than one drive with the same capability is within a tape library that is connected to the same i5/OS partition, the drives are pooled together to form a single logical library. Drives with different capabilities within the same tape library must either be connected to separate IOAs or the tape library must be partitioned so that each kind of drive is in a separate logical partition. The System i commonly support the following tape library configurations: # Single system connected to a dedicated tape library A system can connect to one or more drives within a tape library. # Multiple systems or logical partitions connected to the same tape library For a tape library with multiple drives, it is possible to attach multiple systems or logical partitions to the same tape library. # Multiple system types connected to the same tape library Different types of host systems can share automated tape libraries. When more than one system or logical partition is connected to the same tape library it is recommended that you use a tape management application, such as Backup, Recovery and Media Services (BRMS), to manage and secure the tape cartridges. # Related concepts Backup, Recovery, and Media Services (BRMS) # Cartridge concepts for tape libraries: Working with tape cartridges is an important and routine part of operating your tape library. *Cartridge status:* Here are the possible types of status for a tape cartridge in relation to a tape library. # Inserted The cartridge has been moved into the media library device and has been placed in the inserted category. The cartridge is not available until you add it to a usable cartridge category. # Available The cartridge exists in a usable category and is available for use. The cartridge exists in a usable cartridge category and is currently in a tape resource. The tape resource might not be attached to this system. This situation is common for large 3494 configurations. If a cartridge is mounted in a device that is not attached to this system, the system returns an error when the cartridge is requested. # **Duplicate** The cartridge identifier exists more than once in the inventory. Only one entry is established for the cartridge identifier. This error should not occur on the 3494 because the Library Manager software does not allow duplicate cartridge identifiers in the device. When a 3590 with an automated cartridge loader is operating in random mode and has the GENCTGID(*VOLID) parameter in the device description, this error can happen often. You must remove one of the duplicate cartridge identifiers before the tape library can use the other cartridge. # Not Available The 3494 Library Manager software has determined that the cartridge is not available for use. A possible reason can be that it has been lost or misplaced in the inventory. The cartridge is in error. See the QSYSOPR message queue to determine why the cartridge is in **Error** # **Ejected** The cartridge has been removed or is in the process of being removed. # Related concepts "Cartridge categories" A category is a logical grouping of cartridges. A category allows you to refer to a group of cartridges by category name instead of the individual cartridge identifiers. ### Related tasks "Making cartridges available to the tape library inventory" on page 41 Before you can use the tape library, you must have media loaded and available. # Cartridge categories: A category is a logical grouping of cartridges. A category allows you to refer to a group of cartridges by category name instead of the individual cartridge identifiers. Categories are intended for tape libraries like the 3494 where there is a library manager function that uses categories to provide security and special functions. Categories are as follows: ### Inserted The cartridge has been moved into the tape library device and has been placed in the Inserted category. The cartridge is not available until you add it to a usable category. # Not shared The cartridge has been assigned to a category that is only available to the system defined as the primary owner. Only tape library devices with Library Manager software that
contains category information (3494, for example) and has access to multiple systems can ensure that the cartridge is used only by the primary owning system. # Shared The cartridge has been assigned to a category that is available to all iSeries servers attached to the tape library device. # **Ejected** The cartridge has been removed from the inventory and is waiting for physical removal or waiting for the convenience station or high capacity output area to be cleared. ### Convenience The convenience category is designed for the user who just needs to use a tape quickly and get it out of the tape library device. A tape in the convenience category is ejected (removed) after it has been mounted and then unloaded. The ejecting process takes place when a user specifies the end option (ENDOPT) parameter of *UNLOAD. The cartridge is not ejected when i5/OS unloads the tape resource for another request. ### Alternate restart This category is provided by i5/OS for tape cartridges that can be used for a load source (D-mode) IPL. The tapes in this category must be maintained by the user. i5/OS does not guarantee or verify that the tape cartridges have the appropriate data on them. # Non-labeled Tapes in this category must be non-labeled tapes. A non-labeled tape is a tape volume with no logical volume identifier. # System generated All cartridge identifiers are assigned to this category when the tape library device description has the GENCTGID parameter set to *SYSGEN. This function allows tape library devices with no bar code reader to bypass all system category checks on the cartridge for fast use of cartridges. Cartridges cannot be added or changed to this category. ### **User-defined** Note: If you are using BRMS, you should not attempt to use user-defined categories. User-defined categories can be created and deleted. These categories allow users to create their own logical groupings of tape cartridges. The Create Tape Category (CRTTAPCGY) and Delete Tape Category (DLTTAPCGY) commands are used for this function. The Display Tape Category (DSPTAPCGY) command displays a list of user-defined and system-defined categories on a given system. # Categories and the system name Category names are of the form *name sysname*, where the *name* is the category name and *sysname* is the name of the system that owns the category. If you change the system name, the cartridges in the associated categories and the not-shared category are unavailable until you create a category with the previous system name. Remove all cartridges from the tape library or change them to the shared category prior to changing the system name. See Cartridge assignment when the system name changes for more information about changing the system name. # Categories for tape libraries without a library manager For tape libraries without a library manager, categories have a limited purpose. The security that the tape library manager provides does not exist. Cartridges that are added to a category on one system are not necessarily in the same category on other attached systems. Therefore, when you operate tape libraries that do not have a library manager, only the following categories apply: - Inserted - Ejected - Convenience - Shared The not-shared category does not prevent other systems from accessing the cartridges. The remaining categories do not apply for tape libraries without library managers. Categories that are created for nonlibrary-manager tape libraries are only known to the system where they are created and not across all attaching systems. For these types of tape libraries, the cartridges must be added to each system and then managed across all the systems by the tape management software. # Related concepts "Cartridge status" on page 8 Here are the possible types of status for a tape cartridge in relation to a tape library. ### Related tasks "Reassigning cartridges when the system name changes" on page 37 When the system name is changed, you should reassign cartridges. "Making cartridges available to the tape library inventory" on page 41 Before you can use the tape library, you must have media loaded and available. # Related reference Create Tape Category (CRTTAPCGY) Delete Tape Category (DLTTAPCGY) Delete Tape Category (DLTTAPCGY) Cartridge identifiers and volume identifiers: Cartridge and volume identifiers are used to label each cartridge so they can be tracked and located in the tape library. Every cartridge and volume ID can contain the characters A through Z, 0 through 9, \$, @, and #. Only the first 6 characters are recognized by i5/OS. Therefore, the uniqueness of the cartridge identifier must be within the first 6 characters of the name. The first 6 characters of the cartridge identifier must match the volume identifier for the tape. Special generated cartridge identifiers exist for the tape libraries that do not have a bar code reader, that are missing the bar code label, or that cannot read the label by the bar code reader. These identifiers are as follows: # **NLT**xxx Non-Labeled Tape: This cartridge contains data written in non-Standard Tape Label format. # CLNxxx Cleaning: This cartridge has been identified as a cleaning tape. ### **BLK***xxx* Blank: This cartridge contains no data. # **UNK**xxx Unknown: This cartridge was not identifiable. ### IMPxxx Import: Refers to a cartridge that is in an input/output station of the tape library. # SLTxxx Slot: Refers to the cartridge by slot number. If the device description is created with the GENCTGID parameter set to the *SYSGEN mode, then the cartridges in the tape library inventory appear as SLT *xxx* where *xxx* is the slot number. # Comparing offline storage Offline storage is data that you save on media that is separate from the system. The most common forms of offline storage are tape media and optical media. Although optical media is becoming more prevalent, tape media is the most common media. Another option that you can use is virtual optical media. You can use virtual optical media to save to a virtual image, which is stored on your disk units. You can then copy that image to a CD or DVD, or distribute it over your network. It is important that you understand the differences among these different forms of media when you decide which one is right for you. The following table describes some of the differences: | Characteristic | Comparison | |----------------------------------|---| | Access to data | Optical and virtual optical storage provide random access, whereas tape provides access to data sequentially. | | Capacity | The lowest capacity tape has a similar capacity to DVD-RAM, but medium range and high-capacity tapes typically have 10 to 25 times the capacity of optical. | | Compression | The system uses <i>software</i> compression to save compressed data to your optical media. This process takes considerable processing unit resources and may increase your save and restore time. Most tape media devices use <i>hardware</i> compression, which is typically faster. | | Cost | Because you can store a larger amount of data on tape, tape has a lower cost per GB. | | Data transfer rates | Data transfer rates for tape tend to be higher than for optical media, particularly if you use tape drive compression. | | Number of media passes or mounts | Optical media can be mounted anywhere from 50000 to 1 million times, depending on the type of media used. The number of media passes supported by tape varies, but is typically lower than optical media. | | Reusability | Not all optical media is rewritable. Some optical media are write-once media, which means that after they are written to, they cannot be reused. Tape is reusable. | # Related concepts "Optical storage" on page 62 This topic provides an overview and reference guide for IBM® optical support to a system with the i5/OS operating system. # Planning for a tape solution Read about the many considerations necessary for providing a tape solution. # Related information Tapes Supported on iSeries # Tape resource management with BRMS The combination of Backup, Recovery and Media Services (BRMS) with a tape library provides a total solution for all your tape automation requirements. Backup, Recovery and Media Services (BRMS) is a licensed program that helps you implement a disciplined approach to managing your backups, and provides you with an orderly way to retrieve lost or damaged data. Using tape automation and BRMS, you can design and carry out a solution that shows the results in the following ways: ### Reduce operational costs Less manual intervention is required to operate tape units because most of your tape operation is automated and unattended. # Improve system availability BRMS enables you to streamline your backups by reducing the time that is required for tape mounting and backup operations. # Reduce capital cost Archiving and retrieving functions enable you to increase the quantity of online (on-disk) data that can be moved to less expensive tape media. # Improve service You can experience faster and more accurate responses to your tape-related requests. You can gain more control of your tape management operation. # Reduce management cost Day-to-day operations, such as tape and disk capacity management, are more automated and simplified. # Related concepts Backup, Recovery and Media Services # **Comparing tape solutions** The system supports several different single tape devices, autoloaders, and tape libraries. Compare the various devices for a tape solution. | Product name | Description | Media | Storage | Data transfer | Drives | |---
--|--------------|--|---|--------| | Single tape device | s | | | | | | IBM Magstar [®]
3570 Tape
Subsystem Model
C00 | The 3570 Model C00 is a compact, high-capacity storage device. | 1 cartridge | 7 GB (21 GB compressed) per cartridge | 7 MB per second
(mbps) (15 mbps
compressed) | 1 | | IBM 3580 Ultrium
External Tape
Drive | The 3580 is an external tape device that complies with Linear Tape-Open (LTO) specifications. | 1 cartridge | Ultrium 1: Up to 100 GB (200 GB compressed) Ultrium 2: Up to 200 GB (400® GB compressed) Ultrium 3: Up to 400 GB (800 GB compressed) | Ultrium 1: Up to
15 mbps (30 mbps
compressed)
Ultrium 2: Up to
35 mbps (70 mbps
compressed)
Ultrium 2: Up to
80 mbps (160
mbps
compressed) | 1 | | IBM System
Storage®
Enterprise Tape
Drive 3592 | The 3592 is a tape device that provides both fast access to storage and high-capacity storage. | 4 cartridges | j1a: 300 GB (900
GB compressed)
per cartridge
e05: 500 GB (1500
GB compressed)
per cartridge | j1a: 40 mbps
(1000 mbps
compressed) per
cartridge
e05: 100 mbps
(250 mpbs
compressed) | 1 | | IBM 7206 Model
VX2 External
VXA-2 Tape Drive | The 7206 Model VX2 is a higher capacity, cost-effective alternative to DDS tape technology. | 1 cartridge | 1 to 80 GB (160
GB compressed)
per cartridge | 6 mbps (12 mbps compressed) | 1 | | IBM 7207 Model
122 4 GB External
SLR5 QIC Tape
Drive | The 7207 Model 122 is a quarter inch tape device. | 1 cartridge | 4 GB (8 GB
compressed) per
cartridge | 1 to 380 KB per
second (kbps)
(760 kbps
compressed) | 1 | | Product name | Description | Media | Storage | Data transfer | Drives | |--|--|---|--|---|----------------------------------| | IBM 7208 Model
342 External 8
mm Tape Drive | The 7208 Model 342 is an external tape device. It is backward compatible with ability to read 7 GB, 5 GB, and 2.3 GB 8 mm tape formats. | 1 cartridge | 20 GB (40 GB compressed) per cartridge | Up to 3.0 mbps (6 mbps compressed) | 1 | | IBM 7208 Model 345 External 8 mm Tape Drive The 7208 Mod 345 is an exter tape device. It backward compatible wi ability to read GB, 5 GB, and GB 8 mm tape formats. | | 1 cartridge | 60 GB (150 GB
compressed) per
cartridge | Up to 12.0 mbps
(20 mbps
compressed) | 1 | | Tape libraries | | | | | | | IBM 3490E Model
F xx Tape
Subsystem | The 3490E F series is a family of high-performance, high reliability streaming tape devices. | 1 to 10 cartridges | Up to 800 MB
(2.4 GB
compressed) per
cartridge | Sustained rate of
up to 6.8 mbps
with a maximum
SCSI burst rate of
20 mbps. | 1 to 4 | | IBM System
Storage Enterprise
Tape Library 3494 | The 3494 is a modular, flexible storage solution. It is expandable from 1 to 16 library frames and can handle from 160 up to 6240 tapes. | 1 to 6240
cartridges | Varies according
to drives | Varies according
to drives | 1 to 76 | | IBM Magstar 3570
Tape Subsystem | The 3570 models
C01, C02, C11,
and C12 provide
a medium range
tape storage
solution. | 20 cartridges | 7 GB (21 GB compresses) | 7 mbps (15 mbps compressed) | C01 and C11: 1
C02 and C12: 2 | | Magstar 3575
Tape Library
Dataserver | The 3575 models are compact, high-capacity, integrated storage devices that are available as stand-alone units. | 1 to 324
cartridges
(depending on
model) | 7 GB | Up to 324 GB per
hour | 1 to 6 (depending
on model) | | IBM System
Storage LTO
Ultrium Tape
Autoloader 3581 | The 3581 is an automation solution that complies with LTO specifications. | 1 to 7 cartridges | Up to 100 GB
(200 GB
compressed) per
cartridge. Total
storage of 700 GB
(1.4 TB
compressed). | Up to 15 mbps
(30 mbps
compressed) | 1 | | Product name | Description | Media | Storage | Data transfer | Drives | |---|---|--|---|-------------------------------|-------------------------------------| | IBM System
Storage LTO
Ultrium Tape
Autoloader
35812U | The 35812U is an automation solution that complies with LTO specifications. | 1 to 8 cartridges | Varies according
to drives | Varies according
to drives | 1 | | IBM System
Storage LTO
Ultrium Tape
Library 3582 | The 3582 is an ideal automation solution for handling the storage needs of small-to-medium sized environments. | 1 to 34 cartridges | Varies according
to drives | Varies according
to drives | 1 to 2 | | IBM System
Storage Ultrium
3583 Scalable Tape
Library | The 3583 provides for a wide range of backup, archival, and disaster-recovery data storage needs. It complies with Linear Tape-Open (LTO) specifications. | 18, 36, 54, or 72
cartridges | Varies according
to drives | Varies according
to drives | 1 to 6 | | IBM System
Storage Ultrium
3584 UltraScalable
Tape Library | The 3584 provides for a wide range of backup, archive, and disaster recovery data storage needs. It complies with Linear Tape-Open (LTO) specifications. | 1 to 6881
cartridges
(depending on
model) | Varies according
to drives | Varies according
to drives | 1 to 192
(depending on
model) | | IBM System
Storage Enterprise
Tape System 3590 | The 3590 is an enterprise-class tape solution that provides the highest levels of performance and reliability of any IBM tape subsystem. | 1 to 10 cartridges | Up to 60 GB (180
GB compressed)
per cartridge | Up to 14 mbps | 1 | | IBM 7329 SLR100
Autoloader | The 7329 is a high-capacity tape autoloader with the ability to provide unattended backups. | 1 to 8 cartridges | Up to 50 GB (100
GB compressed)
per cartridge | 5 mbps (10 mbps) | 1 | # Related information Tapes Supported on iSeries Tape Offerings # | Eight-millimeter cartridge and tape unit compatibility I The capacity and read/write capabilities for your media type are provided. # Table 1. Media type, capacity, format chart | 1 | Media type | Cartridge part number | Capacity | Format | |------|------------------------------|-----------------------|----------|---------| | I | X6 62m | 24R2134 | 20 GB | VXA3 | | 1 | X10 124m | 24R2136 | 40 GB | VXA3 | | 1 | X23 230m | 24R2137 | 80 GB | VXA3 | | Ι | X6 62m test cartridge | 24R2135 | 20 GB | VXA3 | | I | X6 62m | 24R2134 | 20 GB | VXA2 | | Ι | X10 124m | 24R2136 | 40 GB | VXA2 | | Ι | X23 230m | 24R2137 | 80 GB | VXA2 | | Ι | X6 62m test cartridge | 24R2135 | 20 GB | VXA2 | | Ι | X cleaning cartridge | 24R2138 | 80 GB | | | I | V6 62m | 19P4878 | 20 GB | VXA2 | | 1 | V17 170m | 19P4877 | 59 GB | VXA2 | | I | V23 230m | 19P4876 | 80 GB | VXA2 | | 1 | V6 62m test cartridge | 19P4879 | 20 GB | VXA2 | | Ι | V cleaning cartridge | 19P4880 | 20 GB | | |
 | 225m AME with Smart
Clean | 09L5321 | 60 GB | FMT60GB | |
 | 150m AME with Smart
Clean | 09L5323 | 40 GB | FMT60GB | | I | 75m AME with Smart Clean | 35L1044 | 20 GB | FMT60GB | | 1 | 170m AME | 59H2678 | 45 GB | FMT60GB | | 1 | 22m AME | 59H2671 | 2.6 GB | FMT20GB | | I | 170m AME | 59H2678 | 20 GB | FMT20GB | | I | 22m AME test cartridge | 59H2677 | 2.5 GB | FMT20GB | | I | 160m | 87G1603 | 7 GB | FMT7GB | | I | 112m | 21F8575 | 5 GB | FMT5GB | | I | 112m | 21F8575 | 2.3 GB | FMT2GB | | 1 | M1/M2 Cleaning Cartridge | 35L1409 | | | | Ţ | Cleaning Cart | 16G8467 | | | # Table 2. Read/write capabilities | • | | oup and man | | | | | | | | | | |------|---------------------------------|-------------|-------|-------|-------|----------|-------|-------|------|----------|-------| | 1 | | VXA- | VXA-2 | 7208- | 7208- | | 7208- | 7208- | | | 7208- | | I | Media type | 320 7206 | 7206 | 345 | 342 | 7208-234 | 232 | 222 | 6390 | 7208-012 | 002 | | I | X6 62m (VXA3) | R/W | | | | | | | | | | | I | X10 124m (VXA3) | R/W | | | | | | | | | | | I | X23 230m (VXA3) | R/W | | | | | | | | | | |
 | X6 62m test
cartridge (VXA3) | R/W | | | | | | | | | | | I | X6 62m (VXA2) | R/W | R/W | | | | | | | | | | I | X10 124m (VXA2) | R/W | R/W | | | | | | | | | | ı | 10 124m (VAA2) | K/VV | K/VV | | | | | | | | | Table 2. Read/write capabilities (continued) | I Media type | VXA-
320 7206 | VXA-2
7206 | 7208-
345 | 7208-
342 | 7208-234 | 7208-
232 | 7208-
222 | 6390 | 7208-012 | 7208-
002 | |---------------------------------|------------------|---------------|--------------|--------------|----------|--------------|--------------|------|----------|--------------| | X23 230m (VXA2) | R/W | R/W | | | | | | | | | | X6 62m test
cartridge (VXA2) | R/W | R/W | | | | | | | | | | X cleaning cartridge | Х | Х | | | | | | | | | | V6 62m | | R/W | | | | | | | | | | V17 170m | | R/W | | | | | | | | | | V23 230m | R/W | R/W | | | | | | |
| | | V6 62m test
cartridge | | R/W | | | | | | | | | | V cleaning cartridge | | Х | | | | | | | | | | 225m AME with
Smart Clean | | | R/W | | | | | | | | | 150m AME with
Smart Clean | | | R/W | | | | | | | | | 75m AME with
Smart Clean | | | R/W | | | | | | | | | 170m AME
(FMT60GB) | | | R/W | | | | | | | | | 22m AME
(FMT60GB) | | | R/W | | | | | | | | | 170m AME
(FMT20GB) | | | R | R/W | | | | | | | | 22m AME
(FMT20GB) | | | R | R/W | | | | | | | | 22m AME test
cartridge | | | R | R/W | | | | | | | | 160m | | | | R | R/W | | R/W | R/W | | | | 112m (FMT5GB) | | | | R | R/W | R/W | R/W | R/W | R/W | | | 112m (FMT2GB) | | | | R | R/W | R/W | R/W | R/W | R/W | R/W | | M1/M2 Cleaning
Cartridge | | | X | Х | | | | | | | | Cleaning Cart | | | | | Х | Х | Х | Х | Х | Χ | # Related concepts - "Cleaning eight-millimeter tape drives" on page 49 - The eight-millimeter tape drives count the number of hours of tape motion and indicate when it is - time to clean the tape drive by displaying a message to clean soon and by turning on the Fault status light. # Four-millimeter cartridge and tape unit compatibility The capacity and read/write capabilities for your media type are shown in this table. # Table 3. Media type, capacity, read/write capabilities | | Data Ca | artridge | MEDIA 5 | Media
Storage | Drive Storage Capability | | | | | | | |---|-------------------|----------|----------|------------------|--------------------------|------|------|------|-------|--|--| | | Media type | IBM P/N | pack P/N | Capacity | DDS1 | DDS2 | DDS3 | DDS4 | DAT72 | | | | I | DDS1 90m | 21F8754 | | 2 GB | R/W | R/W | R/W | | | | | | I | DDS2 120m | 8191151 | | 4 GB | | R/W | R/W | R/W | | | | | I | DDS3 125m | 59H3465 | | 12 GB | | | R/W | R/W | R/W | | | | I | DDS4 150m | 59H4456 | 71P9155 | 20 GB | | | | R/W | R/W | | | | | DAT72
170m | 18P7912 | 71P9158 | 36 GB | | | | | R/W | | | | | Test
Cartridge | 59H4457 | | | | | | R/W | R/W | | | | | DAT72
Clean | 21F8763 | | 50 GB | | | | Х | Х | | | # Quarter-inch cartridge and tape unit compatibility The capacity and read/write capabilities for your media type are provided. # Table 4. Media type, capacity, format chart | I | Media type | Cartridge part number | Capacity | Data Transfer Rate | |---|-------------------------|-----------------------|----------|--------------------| | I | SLR100-50GB (35L0968) | 35L0968 | 50 GB | 5 MB/sec | | I | SLR60 Enhanced Capacity | 24R0146 | 37.5 GB | 4-5 MB/sec | | I | SLR60-30GB | 19P4209 | | 4-5 MB/sec | | I | SLR100-5GB | 35L0661 | | 4-5 MB/sec | | I | MLR3-25GB | 59H4128 | 25 GB | 2 MB/sec | | I | MLR1-16GB | 59H4175 | 16 GB | 1.5 MB/sec | | I | MLR1-13GB | No longer available. | 13 GB | 1.5 MB/sec | | I | MLR1-2GB | 35L0589 | 2 GB | 1.5 MB/sec | | I | SLR5-4GB | 59H3660 | 4 GB | 0.4 MB/sec | | I | DC9250 | 16G8436 | 2.5 GB | 0.3 MB/sec | | I | DC9120 | 21F8730 | 1.2 GB | 0.3 MB/sec | | I | DC6525 | 21F8697 | 0.5 GB | 0.2 MB/sec | | I | DC6150 | 21F8578 | 0.1 GB | 0.1 MB/sec | If the quarter-inch cartridge (QIC) format and the tape cartridge are not compatible, an error message is displayed. Errors can occur for the following conditions: - While selecting a QIC format that cannot be written on the tape. For example, you insert a DC6150 tape cartridge and specify a QIC1000 format. - While attempting to process a high-density tape cartridge in a low-density tape unit. For example, you try to process an SLR5-4 GB cartridge in a 6381 tape unit. - While attempting to add a file and selecting a QIC format different from the format previously recorded on the tape. For example, you insert a tape cartridge recorded in QIC525 format and specify a QIC120 format. Table 5. Read/Write and Read/Only capabilities | Media
type | QIC-
120 | QIC-
525 | QIC-100 | QIC-
2GB | QIC-
2GB
(DC) | 4/8GB
SLR5
QIC-
4GB-DC | MLR1
QIC-
5010-DC | MLR1-S
QIC-
5010-DC | | SLR60 | SLR100 | |--|-------------|-------------|---------|-------------|---------------------|---------------------------------|-------------------------|---------------------------|-----|-------|--------| | SLR100-
50GB
(35L0968) | | | | | | | | | | | R/W | | SLR60
Enhanced
Capacity | | | | | | | | | | R/W | R/W | | SLR60-
30GB | | | | | | | | | | R/W | R/W | | SLR100-
5GB | | | | | | | | | | R/W | R/W | | MLR3-
25GB | | | | | | | | | R/W | R/W | R/W | | MLR1-
16GB | | | | | | | R/W | R/W | R/W | R/W | R/O | | MLR1-
13GB | | | | | | | R/W | R/W | R/W | R/W | R/O | | MLR1-
2GB | | | | | | | R/W | R/W | R/W | R/W | R/O | | SLR5-
4GB | | | | | | R/W | | R/O | R/O | R/O | R/O | | DC9250
(QIC-
2DC tape
format) | | | | | R/W | R/W | | R/O | R/O | R/O | | | DC9250
(QIC-
2GB tape
format) | | | | R/W | R/W | R/W | R/W | R/O | R/O | R/O | | | DC9120 | | | R/W | R/W | R/W | R/W | R/W | | | | | | DC6525 | | R/W | R/W | R/W | R/W | R/W | R/W | | | | | | DC6150 | R/W | | | | # Related concepts - "Cleaning quarter-inch tape drives" on page 48 - This topic provides information about keeping your quarter-inch tape drives clean. # Half-inch and Magstar MP cartridges and tape unit compatibility The tape units and half-inch and Magstar MP cartridges compatibility are provided. | Tape unit | Cartridge part number | Capacity | Compression | Length | |-----------|-------------------------|-------------------|---------------------|------------------| | 3592 | Data 18P7534 | 300 GB | 900 GB | 610 m (2001 ft) | | | Economy Data
24R0316 | 60 GB | 180 GB | 122 m (396.5 ft) | | | WORM 18P7538 | 300 GB | 900 GB | 610 m (2001 ft) | | | Economy WORM
24R0317 | 60 GB | 180 GB | 122 m (396.5 ft) | | 3590 | 05H4434 | 10 GB 20 GB 30 GB | 30 GB 60 GB 90 GB | 320 m (1050 ft) | | | 05H3188 | 20 GB 40 GB 60 GB | 60 GB 120 GB 180 GB | 634 m (2070 ft) | | | 05H3302 | | | | | | 0816091 | | | | | 3490E | 09G4494 | 800 MB | 2.4 GB | 335 m (1000 ft) | | 3480 | 4479753 | 200 MB | | 175 m (575 ft) | | 3570 | 05H2462 | 5 GB | 15 GB | 547 ft (167 m) | | | 08L6187 | | | | | | 08L6663 | 7 GB | 21 GB | 227 m (745 ft) | # Related concepts "Cleaning half-inch tape drives" on page 50 This topic provides information specific to cleaning half-inch tape drives. # LTO cartridges and tape unit compatibility This topic shows which Linear Tape Open (LTO) Ultrium tape units and cartridges are compatible. # Table 6. Read/Write and Read/Only capabilities | I | Cartridge type | Part number | Part number | Part number | | |---|--|------------------|------------------|------------------|--| | 1 | LTO Ultrium Tape Drive | Ultrium 3 400 GB | Ultrium 2 200 GB | Ultrium 1 100 GB | | | 1 | Ultrium 3 | R/W | R/W | R/O | | | 1 | Ultrium 2 | | R/W | R/W | | | 1 | Ultrium 1 | | | R/W | | | 1 | The part number for Ultrium Universal cleaning cartridge is 35L2087. | | | | | # Related concepts "Cleaning LTO Ultrium tape drives" on page 51 All IBM Ultrium tape drives have an integrated cleaning device which brushes the head when loading and unloading a cartridge. Along with this, each drive has a cleaning procedure using a special cleaning cartridge. # Multiple System i products sharing a tape library Multiple systems can share a tape library. The IBM System Storage Enterprise Tape Library 3494 can be shared by as many as 32 systems. Each system requires one communication line and one tape drive attachment. With BRMS controlling the 3494 tape library, the cartridges within the library can be shared among any of the attached systems when you use the common media inventory function of BRMS. Figure 5. Servers sharing a 3494 tape library # Multiple tape libraries to a system A system can support attachment to multiple 3494 IBM System Storage Enterprise Tape Libraries. - Each 3494 must have at least one communications line and at least one tape drive connection to the system. The number of 3494 tape libraries that can be attached to a system depends on the number of - tape IOA features that can be installed and supported. BRMS provides support for multiple 3494s - I attached to a single system. # Multiple tape drives in a 3494 Tape Library Dataserver Larger systems can reduce backup times by breaking the operation into multiple concurrent save operations to multiple devices. Not all connections between a system and the 3494 Automated Tape Library Dataserver are valid. A single system can be connected to multiple tape drive controllers. However, a single partition in the system cannot be connected twice to the same tape drive controller, because this creates a serial number conflict and results in nonfunctional drives. This scenario might be evident during an IPL. Figure 6. Supported configuration Figure 7. Unsupported configuration # Configuring of different platforms with the 3494 Enterprise Tape Library The IBM System Storage Enterprise Tape Library 3494 can be shared by System i, System p and ES/9000® systems for a total of 16 systems. System i products can share cartridges in the library. The other systems can share the library by partitioning the 3494 tape library, and individual cartridges can be assigned to a particular processor. This is done by assigning each cartridge to a category. # Installing stand-alone tape devices The instructions for installing and configuring your tape device vary based on which model of System i you have and which type of tape device you are installing. # Related tasks Installing System i features # Related information Tape Storage Publications # Sharing systems with external drives You can assign a stand-alone tape device to a system, leave a tape device unassigned, and share a tape device between two systems. You can choose whether you want your stand-alone tape device assigned to a system when the tape device is varied on. Assigning a tape device reserves the tape device specifically for one system. You can attach the 3480,
3490, 3490E, 3590, or 3592 tape device to any of the following units: - One input/output processors on the same system - Two systems - A system and a different system To assign a tape device to a system, do the following steps. - 1. Use the Work with Device Description (WRKDEVD *TAP) command to work with a tape device description. - 2. Select 2 (Change) for the tape device you want to use. - 3. For the Assign device at vary on prompt, specify *YES and press Enter to assign the tape device to the system. - 4. Type VRYCFG (the Vary Configuration command) to vary off the tape device. - 5. The Vary Configuration (VRYCFG) command can be run by using the VRYCFG command or by using the Work with Configuration Status (WRKCFGSTS) command. To use the Work with Configuration Status command, type WRKCFGSTS *DEV *TAP and press Enter. - 6. Type VRYCFG to vary on the tape device and assign it to a system. If the tape device is being used by another system, a message is displayed that indicates the tape device is assigned elsewhere. The tape device must be varied off at the other system before it can be varied on at a new system. To leave a tape device unassigned, do the following steps. - 1. Type WRKDEVD *TAP (the Work with Device Description command) to work with a tape device description. For the Assign device at vary on prompt, specify *NO and press Enter to leave the tape device unassigned. - 2. A tape device that is unassigned can be varied on to both systems. You must control the tape application programs so that the two systems do not interfere with each other. The results of failing to control the tape application programs can be unpredictable. - 3. Type the following command and press Enter to vary off the tape device: VRYCFG CFGOBJ(TAPxx) CFGTYPE(*DEV) STATUS(*OFF) - 4. Type the following command and press Enter to vary on the tape device: VRYCFG CFGOBJ(TAPxx) CFGTYPE(*DEV) STATUS(*ON) When a tape device is being shared by two systems, the tape device is only available on one system at a time. To use a drive, vary it on by using the following command and pressing Enter: VRYCFG CFGOBJ(TAPxx) CFGTYPE(*DEV) STATUS(*ON) If you do not want to vary on tape devices during future initial program loads (IPLs), type the following command and press Enter: CHGCTLTAP CTLD(TAPCTLxx) ONLINE(*NO) After doing an IPL, to vary on only the controller, type the following command and press Enter: VRYCFG CFGOBJ(TAPCTLxx) CFGTYPE(*CTL) STATUS(*ON) RANGE(*OBJ) # Configuring the SCSI address for half-inch and Magstar MP tape units Configure the SCSI address for half-inch and Magstar MP tape units. For a 34xx or 35xx tape device attached to a SCSI IOA, you must set the SCSI address to 0 when the device is used for an initial program load (IPL). The SCSI address can be set to any address except 7 when the device is not being used for an IPL. For a 34xx tape device attached to a type 2644 IOP, you must set the controller address to address 7. The device address must be set to address 0 when the device is used for an IPL. You can use address 8 when there is no device at address 0. You can set the controller and device to any value when the device is not being used for an IPL. # Installing tape libraries When you install tape libraries the system automatically configures and varies on an attached tape library. # Related concepts "Setting up a tape library as an alternate IPL device" on page 39 Use the devices in a tape library for alternate initial program load (IPL) when they are attached to an IOP and IOA in a position that supports an alternate IPL. # Related information - IBM System Storage and TotalStorage products Support - ☐ 3494 Tape Library - Magstar 3570 Tape Subsystem - Magstar 3575 Tape Library Dataserver - IBM 3581 Ultrium Tape Autoloader - IBM 3583 Ultrium Scalable Tape Library - ➡ IBM 3584 UltraScalable Tape Library - □ 3590 Enterprise Tape System # Configuring tape libraries After you have set up the tape library and connected it to your system, the system automatically configures it. The system creates a device description named TAPMLB xx, where xx is the next available device description number, and configures any associated tape resources (MLBRSC) and tape device descriptions (TAP xx). The system creates tape device descriptions for each tape resource. These tape device descriptions are used for stand-alone operations for service and when the tape library is in stand-alone, auto, or manual mode. # **Notes:** - 1. A tape device description is required for each device resource for the tape library device to operate properly. - 2. Drives with different capabilities within the same tape library must either be connected to separate IOAs, or the tape library must be partitioned so that each kind of drive is in a separate logical partition. There will be a separate tape library device description created for each kind of tape device within the tape library. To prepare a tape library, other than a 3494 tape library, for use, take the following steps. - 1. Ensure that the tape library is set to random mode. If it is not, use the device panel to set it to random mode. - 2. At the character-based interface, type WRKMLBSTS and press Enter. This command allows you to work with the status of the device. - 3. In the option field next to each resource, select option 4 (ALLOCATE) or option 5 (UNPROTECTED) and press Enter. This step makes the resource available to the tape library. - 4. Add cartridges to the tape library. See the documentation for your media management application, or the topic Make cartridges available to the tape library inventory for more information. The 3494 tape library supports connections to multiple 3490, 3590, and 3592 tape devices within the same physical unit. When the system configures these devices, it creates a unique device description for each kind of tape device in the physical 3494 tape library. When any of these device descriptions is varied on, all devices of that type within that 3494 tape library will be associated with it. To prepare a 3494 tape library for use, take the following steps. - 1. Ensure that the tape library is set to automated mode. If it is not, use the device panel to set it to automated mode. - 2. Create a data link for a 3494 tape library. Creating a data link defines the communication line associated with the tape library. - 3. At a command line, type WRKMLBSTS and press Enter. This allows you to work with the status of the device. - 4. In the option field next to each resource, enter option 4 (ALLOCATE) or option 5 (UNPROTECTED) and press Enter. These options make the resource available to the tape library. - 5. Add cartridges to the tape library. # Related concepts "Creating a data link" on page 27 A communication line must be created between the tape library and the library manager. "Making cartridges available to the tape library inventory" on page 41 Before you can use the tape library, you must have media loaded and available. "Reassigning cartridges when the system name changes" on page 37 When the system name is changed, you should reassign cartridges. # Adding a tape library to a LAN Follow these steps to add a LAN to your library. To add the LAN host to the 3494 tape library, you need the LAN connection information from the system. To receive that information, use the following command: DSPLANMLB LIND(TRNLINE) OUTPUT(*) The command displays the following information. | Field | Description | | |-------------------------------|----------------|--| | Communication protocol | APPC | | | Host transaction program name | QMLD/QMLDSTRCC | | | Host network identifier | APPN | | | Host location name | SYSNAME | | | Host adapter address | 0123456789AB | | Add the LAN host to the 3494 tape library using the communication protocol given by the Display LAN Media Library (DSPLANMLB) command. If you rename the Default local location name or the Local control point name on your system, the communication protocol type you use changes. You need to restart the 3494 tape library for these changes to take effect. # Related concepts "Creating a data link" A communication line must be created between the tape library and the library manager. # Creating a data link A communication line must be created between the tape library and the library manager. The 3494 tape library requires a communication line for the library manager functions. The communication line can be RS-232 asynchronous (ASYNC), LAN, or TCP/IP. Before the 3494 tape library can be varied on, the communication line needs to be specified in the ROBOTDEV or ROBOTHOST parameter in the tape library device description. To create the data link between the tape library and the library manager, use the Configure Device MLB (CFGDEVMLB) command. This command uses the required input parameters to configure and connect the communications line to the tape library device description and attempts to vary on the tape library. # Notes: - 1. To use the LAN connection, you must also add the LAN host to the 3494 Library Manager. For complete instructions, see the 3494 documentation. - 2. If your 3494 tape library has the high-availability option installed so that your 3494 tape library uses two Library Manager personal computers, you need to configure two communication lines, one for each Library Manager personal computer. Use one of the following procedures to create a data link. # Create an RS-232 ASYNC connection To configure an RS-232 ASYNC connection to communicate with the 3494 Library Manager, use the following command: CFGDEVMLB DEV(TAPMLB01) ADPTTYPE(*RS232) RSRCNAME(CMN02) The following list explains the details of this command: # **DEV(TAPMLB01)** Specifies the name of the tape library device description. # ADPTTYPE(*RS232) Indicates that this tape library is attached through an RS-232 ASYNC line. # RSRCNAME(CMN02) Specifies the resource name of the RS-232 port. Use Work with Hardware Resources (WRKHDWRSC) TYPE(*CMN) to determine what resource
name is used. **Note:** The RS-232 ASYNC line, controller, and device descriptions will be created as ONLINE(*NO). Do not vary them on. They will be varied on as needed by the operating system when the tape library is varied on. # Create a LAN connection using APPC To configure a LAN connection to communicate using APPC, use the following command: CFGDEVMLB DEV(TAPMLB01) ADPTTYPE(*LAN) PROTOCOL(*APPC) LIND(TRNLINE) RMTLOCNAME(APPN.MLD01) ADPTADR(0123456789AB) The following parameter list explains the details of this command: # **DEV(TAPMLB01)** Specifies the name of the media library (MLB) device description. # ADPTTYPE(*LAN) Indicates that this MLB is attached through a LAN line. ### PROTOCOL(*APPC) Specifies that APPC will be used as the communications protocol for the LAN connection to the 3494 tape library. ### LIND(TRNLINE) Specifies the line description name for the LAN line being used. Use Work with Configuration Status (WRKCFGSTS) CFGTYPE(*LIN) to display the list of valid LAN line descriptions. The line description for the LAN must be created before using the Configure Device Media Library (CFGDEVMLB) command. # RMTLOCNAME(APPN.MLD01) Refers to the name of the Library Manager that is connected through the LAN line. It is of the form nnnnnnn.ccccccc where nnnnnnn is the network identifier and ccccccc is the remote location name. If no network identifier is specified, use Display Network Attributes (DSPNETA) to determine the default value. Obtain this parameter from the 3494 Library Manager console using the menu options, LAN options, and LM LAN information. # ADPTADR(0123456789AB) Specifies the LAN adapter address of the Library Manager. You can obtain the parameter from the 3494 library manager console by selecting the following: - Commands - LAN options - LM LAN information # **Notes:** - 1. The LAN transaction program remains as QMLD/QMLDSTRCC and is contained in the Licensed Internal Code. - 2. For APPC, any routers between the system and the 3494 tape library need to allow SNA traffic. To configure a LAN connection using APPC to communicate to the 3494 Library Manager, use the following command: DSPLANMLB LIND(TRNLINE) OUTPUT(*) For detailed information about working with this information, see Adding a tape library to a LAN. # Create a TCP/IP connection To configure a LAN connection using TCP/IP to communicate to the 3494 Library Manager, use the following command: CFGDEVMLB DEV(TAPMLB01) ADPTTYPE(*LAN) PROTOCOL(*TCP) ROBOTHOST(MLD01) LCLINTNETA(192.168.5.10) The following parameter list explains the details of this command: # DEV(TAPMLB01) Specifies the name of the media library description. # ADPTTYPE(*LAN) Indicates that this media library is attached through a LAN line. ### PROTOCOL(*TCP) Specifies that TCP/IP is used as the communications protocol for the LAN connection to the 3494 tape library. # ROBOTHOST(MLD01) Specifies the TCP/IP host name for the 3494 tape library. The host name can be a fully qualified domain and host name. # LCLINTNETA(192.168.5.10) Specifies the local Internet address of the interface that is connecting to the 3494 Library Manager. When TCP/IP needs to be started to use the 3494 tape library, the system will start the interface address. **Note:** For TCP/IP only, after the media library device description is configured, use the Change Device Description-Media Library (CHGDEVMLB) command to set the Online at IPL parameter to *NO. # Related concepts "Adding a tape library to a LAN" on page 26 Follow these steps to add a LAN to your library. # Related tasks "Configuring tape libraries" on page 25 After you have set up the tape library and connected it to your system, the system automatically configures it. # Related reference Configure Device Media Library (CFGDEVMLB) # Sharing tape library resources You can get the details on tape library properties, and share tape library resources between systems. Because library devices can be shared among multiple systems and users, it is possible to run more jobs that use a tape library than there are resources in the library. As users send commands to the tape library, requests to use a resource are sent to a tape resource manager. The request waits until a resource becomes available. When a resource is available, the job is assigned the resource to complete that step. How the system handles the requests depends on the **Properties** that you specify for the tape library in iSeries Navigator, or by using the Change Job Media Library Attributes (CHGJOBMLBA) command. To specify the **Properties** for your tape library, do the following steps. - 1. In iSeries Navigator expand My Connections → your System i → Configuration and Service → Tape Devices → Hardware → Tape Libraries. - 2. Right-click the library you want to work with and select **Properties**. - 3. Select Options. - 4. Specify the options that you want: - Tape resource selection priority - · Initial mount wait time - · End of volume mount wait time The order in which requests are given a resource is determined by the option you specify for Tape resource selection priority. The length of time a request waits for a resource to become available is controlled by the length of time you specify for the request in Initial mount wait time and End of volume mount wait time. The time you specify in these properties can also be set in the tape library device description. The character-based interface equivalent to the properties are the following parameters of the CHGJOBMLBA command: - Resource allocation priority (RSCALCPTY) - Initial mount wait time (INLMNTWAIT) - End of volume mount wait time (EOVMNTWAIT) You can use these parameters as a default or for a particular job using the CHGJOBMLBA command or the Change Job Media Library Attributes (QTACJMA) API. These values are used when a request is first sent to the resource manager. After a request has been sent to the resource manager and is waiting to be processed, it can be monitored and changed using the Work with Media Library Resource Queue (WRKMLBRSCQ) command. The system can automate how multiple library resources are shared. For example, assume ten save operations (SAVLIBs) are issued, with ten different cartridges, to a tape library device description (TAPMLB01). If TAPMLB01 has only four tape resources available to it, the first four requests are issued, one to each tape resource. The remaining six are placed on a queue and are issued as tape resources become available. The order in which they are placed on the queue is based on the RSCALCPTY parameter in the tape library device description. The resource manager eliminates any idle time between jobs due to early completion, from either changing data or job failure. You can use the initial mount wait time (INLMNTWAIT) value to alert you of a problem. In the previous example, the ten save operations are started at a given time and known, through estimates or benchmarking, to complete in six hours. Set the INLMNTWAIT time limit to six hours. If any of the save operations do not complete in six hours, an escape message is signaled to the jobs. A pager system can monitor for this message and page an operator to determine the necessary recovery actions. You can share tape library resources between more than one system. Tape resources can be set to ALLOCATED, UNPROTECTED, or DEALLOCATED. To better facilitate sharing between systems, the UNPROTECTED status was added. When the tape resource is set to UNPROTECTED status, the tape resource is not assigned until it is needed. This prevents a tape resource from being assigned to a system that is not presently using it. When sharing tape resources between systems and on the same system, each system has a resource manager with its queue controlled by the priority and time-out values. Between the systems, the tape resources are set to UNPROTECTED status. While sharing between systems does not have a priority concept, the UNPROTECTED status and the fact that tape resources are only assigned when they are in use allows the systems to effectively share the tape resources. The resource manager tries to get a resource by attempting to assign it. If another system has the resource, the job is placed back in the queue and waits. In a few seconds another attempt is made to assign the job. If the job now gets the resource, the tape operation continues. # Using tape devices This topic provides general information about how to use your stand-alone tape device and tape libraries. Related information Tape and Optical Storage Publications # Using tape cartridges This topic provides information for using tape cartridges in both stand-alone tape devices and tape libraries. To work with cartridges in stand-alone devices, take the following steps. 1. In iSeries Navigator, expand My Connections → your System i → Configuration and Service → Hardware → Tape Devices → Stand-Alone Devices. 2. Select the your stand-alone device. To work with cartridges in tape libraries, take the following steps. - 1. In iSeries Navigator, expand My Connections → your System i → Configuration and Service → Hardware → Tape Devices → Tape Libraries. - 2. Expand the your library. - 3. Select Cartridges. For a detailed description of how to work with cartridges, see the iSeries Navigator online help information. You can also work with cartridges by using the Work with Tape Cartridges (WRKTAPCTG) command from the character-based interface. ### **Duplicating tape cartridges:** You can duplicate tape cartridges in both stand-alone tape devices and tape libraries. For stand-alone devices to duplicate a tape, you must have two tape devices and do the following steps. - 1. Make sure that the tape devices are available (varied on). - 2. Load the tape to be copied into one tape device. - 3. Load the tape receiving the information in the other tape device. For stand-alone devices to duplicate a tape, the stand-alone devices have a status of **Available**. Then you take the following steps.
- 1. In iSeries Navigator, expand your system → Configuration and Service → Hardware → Tape Devices → Stand-Alone Devices. - 2. Right-click the tape device that contains the cartridge you want to duplicate and select **Duplicate**. For tape library devices to duplicate a tape, you must have a library device with two or more tape resources or two devices, and do the following steps before you duplicate a tape. - 1. Make sure the tape library devices are available. - 2. Make sure that the cartridges you want to duplicate are available for use by the tape library device. If the tape that receives the information is new, you must format it before continuing. For tape library devices to duplicate tape cartridges, the cartridge must have a status of **Available** or **Mounted**. Then you take the following steps. - 1. In iSeries Navigator, expand your system → Configuration and Service → Hardware → Tape Devices → Tape Libraries. - 2. Expand the tape library that contains the tapes you want to duplicate. - 3. Select Cartridges. - 4. Right-click the tape that you want to duplicate and select **Duplicate**. You can select multiple cartridges to duplicate. ### Related tasks "Formatting tape cartridges" Use iSeries Navigator to format a tape cartridge. # Formatting tape cartridges: Use iSeries Navigator to format a tape cartridge. When you format a tape cartridge, a standard volume label is recorded at the beginning of the magnetic tape medium. When you format a tape, any information previously recorded on the tape medium is erased and written over with new information. Information is also written over when new data files are appended to the newly recorded volume label. Note: Do not reuse an old tape volume if permanent read or write errors have been detected more than two times. Also do not reuse an old tape volume if temporary read or write errors for that volume are excessive. To determine if temporary errors are excessive, see Ensure tapes are in good condition. To format a tape in a stand-alone device, the stand-alone device must have a status of **Available**. Then you take the following steps to format the tape. - 1. In iSeries Navigator, expand your system → Configuration and Service → Hardware → Tape Devices → Stand-Alone Devices. - 2. Right-click your tape device and select Format. To format a tape in a tape library device, the tape cartridge must have a status of **Available** or **Mounted**. Then you take the following steps to format the tape. - 1. In iSeries Navigator, expand your system → Configuration and Service → Hardware → Tape Devices → **Tape Libraries** → your tape library. - 2. Select Cartridges. - 3. Right-click the cartridge that you want to format and select Format. You can select multiple cartridges to format. The most commonly used options for formatting a tape cartridge are: - Volume label - · Check for active files - Tape density The online help in iSeries Navigator has more detailed information about these options. ### Related tasks "Duplicating tape cartridges" on page 31 You can duplicate tape cartridges in both stand-alone tape devices and tape libraries. "Ensuring tapes are in good condition" on page 47 This topic describes how to ensure that the tape cartridges are in good condition using the Work with Lifetime Statistics display. ### Using stand-alone devices This topic provides usage and management information for stand-alone tape devices. There are several types of tape cartridges and stand-alone tape devices that are commonly used on the System i. See the operator's manual for your tape device for specific operating instructions. This topic provides information that is common for most stand-alone devices. ### **Status lights:** You can use the status lights to know the status of the tape unit. Quarter-inch tape status lights: This topic shows the status lights for the SLR60 and SLR100 tape units and provides information for interpreting the display. The symbols that are located next to the status lights are the International Organization for Standardization (ISO) symbols that define the general function of the status lights as follows. Table 7. Interpreting the status lights | Operation | LED 1 Ready (green) | LED 2 Activity (green) | LED 3 Cleaning (amber) | LED 4 Fault (orange) | |---|---------------------|------------------------|------------------------|-----------------------| | Power-on self-test ¹ | Flashing | Off | Off | Off | | Power-on LED test | On for 2.0 seconds | | No tape loaded | Off | Off | On ² /Off | Off | | Tape loaded, no activity | On | Off | On ² /Off | Off | | Data or cleaning cartridge loaded, activity | On | Flashing | On²/Off | Off | | Cleaning cartridge loaded, cleaning failed ² | Off | Off | On ² | Off | | Tape loading or unloading ² | Off | Flashing | On ² /Off | Off | | Unrecoverable drive failure ³ | On/Off | Off | On ² /Off | Flashing ³ | | Firmware download | Flashing | Off | On ² /Off | Off | | Firmware update | Flashing | Flashing | On ² /Off | Off | | Microcode download failure ⁴ | Off | Off | On ² /Off | Flashing ³ | | Over temperature ⁵ | Off | Off | On ² /Off | On | Table 7. Interpreting the status lights (continued) | | | LED 2 Activity | LED 3 Cleaning | | |-----------|---------------------|----------------|----------------|----------------------| | Operation | LED 1 Ready (green) | (green) | (amber) | LED 4 Fault (orange) | #### Note: - 1. If the drive completes the Power-on self test (POST) within the 2.0 seconds Power-on LED test time, the POST indicator sequence is eliminated. - 2. A solid amber LED indicates that the drive needs cleaning. The drive will continue to function, but needs cleaning as soon as possible. A power cycle does not turn off this indicator. - 3. The Fault LED will flash to indicate an unrecoverable error. An unrecoverable error is an error condition that results in the drive not being able to function unless initiator, operator, or service intervention is applied. An unrecoverable drive failure is usually the result of a hardware error condition. One of the following actions will be needed to clear the flashing fault LED - · Hard SCSI reset - · Cartridge eject - · Power cycle - · Retry microcode download An unrecoverable cartridge (media) failure is usually the result of a defective cartridge, media, or cartridge state and will require the drive to eject the cartridge (if possible) to clear the flashing LED. - 4. The firmware download failed and the drive is not functional. The drive boot code is in control and the microcode download should be retried. The drive can be identified using the Inquiry command and is bootable while in this state. - 5. The Fault LED will be on solid to indicate an over-temperature condition. - Eight-millimeter tape status lights: - This topic shows the status lights for the VXA2 and VXA320 tape unit and provides information for interpreting the display. ### Table 8. Interpreting the status lights | I | Operation | LED 1 Ready (green) | LED 2 Activity (green) | LED 3 Fault (amber) | |---------------------|--|---------------------|------------------------|---------------------| |

 | Power-on LED test (The
LEDs are turned on one by
one. The power-on self test
starts in parallel with this
test.) | | | | | I | Diagnostic activity | Flashing | Off | Off | ### Table 8. Interpreting the status lights (continued) | I | Operation | LED 1 Ready (green) | LED 2 Activity (green) | LED 3 Fault (amber) | |-----------|--|---------------------|------------------------|---------------------| |
 | Cartridge not inserted or tape not loaded | Off | Off | Off | |

 | Cartridge not inserted or tape not loaded, cleaning required | Off | Off | On | |
 | Tape loaded, no tape movement | On | Off | Off | |
 | Tape loaded, tape movement | On | Flashing | Off | |

 | Tape loaded, no tape
movement, cleaning
required | On | Off | On | |
 | Tape loaded, tape
movement, cleaning
required | On | Flashing | On | |
 | Tape loading or unloading, or cartridge ejecting | On | Flashing | Off | |

 | Tape loading or unloading, or cartridge ejecting. cleaning required | On | Flashing | On | | I | Cleaning | Off | Flashing | On | |

 | Unrecoverable drive failure, cartridge failure or microcode download failure | Off | Off | Flashing | #### Note: I - 1. Some of the LED indication states are difficult to see due to the short duration of the illumination. - 2. The LED indicator lights are also used to indicate serious errors during the power-on stage. Serious errors are communicated during power-on by illuminating a single LED. - 3. The Fault LED will flash to indicate an unrecoverable error. An unrecoverable error is an error condition that results in the drive not being able to function unless initiator, operator, or service intervention is applied. An unrecoverable drive failure is usually the result of a hardware error condition. One of the following actions is needed to clear the flashing Fault LED: - · Hard SCSI reset - · Cartridge eject - · Power cycle - · Retry microcode download An unrecoverable cartridge (media) failure is usually the result of a defective cartridge, media, or cartridge state and requires the drive to eject the cartridge (if possible) to clear the flashing LED. 4. The Fault LED steady On indicates that a head cleaning operation is recommended (the drive is still fully operational with this LED steady On) - the LED is triggered after 50 hours of tape running time has elapsed or if a hard read error has occurred - the LED is reset by operating the cleaning cartridge in the drive. ### Viewing the capabilities of a stand-alone device: Use iSeries Navigator to view
some of the capabilities for each stand-alone device. - Assign capability - · Hardware data compression - Whether the device is self-configured - The highest instantaneous performance that is reported by the tape device. - Densities supported by the tape device - · Capabilities associated with each density To view the capabilities of a stand-alone tape device, do the following steps: - 1. In iSeries Navigator expand My Connections → your System i → Configuration and Service → Hardware → Tape Devices. - 2. Select Stand-Alone Devices. - 3. Right-click the tape device with the capabilities you want to view, and select **Properties**. - 4. Select the **Capabilities** page. ## Using tape libraries This topic provides use and management information for tape libraries. You can use tape libraries to manage large amounts of data, either as part of a backup, archival and recovery system, or as part of typical IT operations. Media management software, such as BRMS, automates many tape library functions. However, operating the tape library still requires that you manage both how the tape library resources are utilized and how it uses resources on the system. Moreover, maintaining cartridges is an integral part of tape library automation. ### Tape library use without a media management application: While a media management application greatly simplifies and extends a tape library's capabilities, you can perform many tape functions in an System i environment with Control language (CL) commands included in the i5/OS. The following table shows the typical setup and operational tasks and associated CL commands for the tape library. Note: You need to use these commands if you do not use a media management application such as BRMS. | Task | Command | |---|---| | Creating a tape library device description | Auto-configured or use Create Device Description (Media Library) (CRTDEVMLB) | | Displaying RS-232/LAN resource and description | Display Hardware Resources (DSPHDWRSC) | | Configuring the 3494 communication (RS232/LAN/TCP) | Configure Device Media Library (CFGDEVMLB) | | Display LAN information for 3494 add LAN host | Display LAN Media Library (DSPLANMLB) | | Removing a tape library device description | Delete Device Description (DLTDEVD) | | Changing the tape library device description | Change Device Description (Media Library) (CHGDEVMLB) | | Changing the tape library device attributes for a job | Change Job MLB Attributes (CHGJOBMLBA) command or Change Job MLB Attributes (QTACJMA) API | | Displaying the tape library device attributes for a job | Display Job (DSPJOB) OPTION(*MLBA) or Work with Job (WRKJOB) OPTION(*MLBA) | | Retrieving the tape library device attributes for a job | Retrieve Job MLB Attributes (QTARJMA) API | | Displaying tape library information | Display Tape Status (DSPTAPSTS) | | Checking the status of the tape library | Work with Media Library Status (WRKMLBSTS) | | Creating user categories | Create Tape Category (CRTTAPCGY) | | Mounting a category | Set Tape Category (SETTAPCGY) OPTION(*MOUNTED) | | Task | Command | |---|--| | Demounting a category | Set Tape Category (SETTAPCGY) OPTION(*DEMOUNTED) | | Assigning a mounted category to a different job | Set Tape Category (SETTAPCGY) OPTION(*ASSIGN) | | Releasing a mounted category from a job | Set Tape Category (SETTAPCGY) OPTION(*RELEASE) | | Deleting a user category. | Remove all the cartridges from the category. Use the Delete Tape Category (DLTTAPCGY) command | | Listing all user or system categories | Display Tape Category (DSPTAPCGY) | | Changing the category for cartridges | Change Tape Cartridge (CHGTAPCTG) or Work with Tape Cartridges (WRKTAPCTG) | | Inserting cartridges | Add Tape Cartridge (ADDTAPCTG) or Work with Tape Cartridges (WRKTAPCTG) | | Ejecting cartridges | Remove Tape Cartridge (RMVTAPCTG) or Work with Tape Cartridges (WRKTAPCTG) | | Mounting cartridges for input or output commands | Specify the tape library device and cartridge identifier with the commands | | Demounting a cartridge | Demounting is implicit with ENDOPT(*UNLOAD), a demount of a category, or a new mount request | | Working with a list (or subset) of cartridges within a tape library | Work with Tape Cartridges (WRKTAPCTG) | | Displaying information about a cartridge | Display Tape Cartridge (DSPTAPCTG) or Work with Tape Cartridges (WRKTAPCTG) | | Working with the tape library resource manager queue | Work with MLB Resource Queue (WRKMLBRSCQ) | | Retrieving the capabilities for a tape library device or resource | Retrieve Device Capabilities (QTARDCAP) API | | Retrieve the status for a tape library device or resource | Retrieve Device Status (QTARDSTS) API | | Retrieving the information for a tape library | Retrieve Device Information (QTARDINF) API | **Note:** An end-of-tape option of *UNLOAD for any of the tape commands causes the cartridge to be returned to a storage cell when the tape operation has completed processing. It might not be returned to its original storage cell. When using the *REWIND parameter the cartridge remains in the drive after the tape operation has completed. However, this cartridge is unloaded if another cartridge has been requested. When using *LEAVE the cartridge remains in the drive after the tape operation has completed. ### Related information Control language (CL) ### Reassigning cartridges when the system name changes: When the system name is changed, you should reassign cartridges. If you change your system name, you must move the cartridges from the categories that were owned by the old system name to categories that are owned by the new system name. If you do not do this, the cartridges will not appear in the inventory for the new system name. For some library types, the cartridges may appear when you use the parameter CGY(*ALL *ALL) for the Work with Tape Cartridges (WRKTAPCTG) or the Display Tape Cartridge (DSPTAPCTG) command, but you will not be able to use the cartridges. If you have already changed the system name and need to recover the cartridges, perform the following steps: - 1. Type DSPTAPCGY (the Display Tape Category command) to display all of the tape categories. Record the names of the user-defined categories for use in step 3, and then exit. - 2. Temporarily change the system name back to the previous name by using the Change Network Attributes (CHGNETA) command. **Important:** Do not restart the system. - 3. If you were using user-defined categories with the old system name, type CRTTAPCGY (the Create Tape Category command) to create the same user-defined categories from step 1, for the new system name. - 4. Type WRKTAPCTG (the Work with Tape Cartridge command) to work with all of the categories that are associated with the old system name. ``` WRKTAPCTG DEV(mlb-name) CGY(*ALL old system name) ``` - 5. Change the category system name to the new system name by selecting 2 **Change** with the parameter CGY(*SAME *new system name*). - 6. Type CHGNETA (Change Network Attributes) to return the system name to the new system name. **Important:** Do not restart the system. ### Related concepts "Cartridge categories" on page 9 A *category* is a logical grouping of cartridges. A category allows you to refer to a group of cartridges by category name instead of the individual cartridge identifiers. ### Related tasks "Configuring tape libraries" on page 25 After you have set up the tape library and connected it to your system, the system automatically configures it. ### Setting up a tape library as a stand-alone device: Occasionally, it might be necessary to use the tape resources in a tape library without the benefit of the automation. An example of this is when you perform an alternate IPL or when the tape library automation is disabled. Using the tape resource in this fashion is referred to as stand-alone mode. In stand-alone mode, the tape resource operates like other tape devices that are not in a tape library. Most tape libraries provide modes or commands to move media to a tape resource. See the operator information for your tape library for the different operating modes available. When automation is not used, the tape library operates as an automatic cartridge loader for the tape device and loads cartridges individually or sequentially in the device. Tape library devices are configured with tape library device descriptions for the tape library. There are also separate tape device descriptions for the tape resources. These tape device descriptions are the devices that are used for stand-alone operation. **Restriction:** To use the tape resources in stand-alone mode, the resource must be available to the tape device description. Do the following steps: - 1. Either deallocate the tape resource from the tape library or vary off the tape library device. - 2. Vary on the tape device description, and send commands to this device. The tape resource in iSeries Navigator shows a status of **Unavailable**. No tape library functions operate for this tape resource. 3. Mount the cartridges manually, by a device mode, or by device operator panel commands. ### Related concepts "Tape library operating modes" on page 7 Most tape library devices support three basic modes of operation. ### Setting up a tape library as an alternate IPL device: Use the devices in a tape library for alternate initial program load (IPL) when they are attached to an IOP and IOA in a position that supports an alternate IPL. To be used for alternate IPL, the devices must be set to the correct address. You can use alternate installation for tape libraries that are attached to an IOP and IOA that is not in a position that supports alternate IPL. For more information
about using an alternate installation device, see Backup, Recovery and Media Services and Backup and Recovery. ### Related concepts "Installing tape libraries" on page 25 When you install tape libraries the system automatically configures and varies on an attached tape library. Backup, Recovery, and Media Services (BRMS) ### Related information ### Controlling tape library resources using tape library attributes: Depending on your business environment you might want to control the use of tape resources to allow important jobs to finish quickly. i5/OS provides several features for this. You can use the Change Job Media Library Attributes (CHGJOBMLBA) command to change the priority of tape resource requests for a particular job, and the Work with MLB Resource Queue (WRKMLBRSCQ) command to work with the tape resource manager queue. ### Changing tape library job attributes The CHGJOBMLBA command allows you to change the resource allocation attributes for your own job or another user's job if you have *JOBCTL special authority. You can use the resource allocation priority to change the priority of requests to use a tape resource within a tape library. You can assign a higher priority to certain jobs to allow them to get a tape resource as soon as one becomes available. You can assign a lower priority to jobs that can wait until all other higher priority jobs finish using the tape resources. Typically, very short-running tape operations such as the dynamic retrieval of an object that was saved storage free should be assigned a high resource allocation priority. Long-running jobs that are not required to finish quickly, such as Duplicate Tape (DUPTAP) or Display Tape (DSPTAP), can be assigned a lower resource allocation priority. You can also add *MLBA to either the Work with Job (WRKJOB) or Display Job (DSPJOB) command in order to view or adjust your tape library attributes. ### Changing access to a tape resource within a library The WRKMLBRSCQ command allows you to manipulate the requests to use a tape resource within a tape media library. The WRKMLBRSCQ command shows the resources that are currently processing a request that have a category mounted, or the requests that are waiting to be assigned a tape resource. You can change the resource allocation attributes for requests that are waiting to use a tape resource by using the (Change Request MLB) attributes on the Work with MLB Resource Queue (WRKMLBRSCQ) display. The attributes for the next request can be changed by using the CHGJOBMLBA command to change the resource allocation attributes for the job that is currently using the tape resource. You can do this by using the (Work with job) attributes on the Work with MLB Resource Queue (WRKMLBRSCQ) display, and then selecting (Work with media library) attributes. There are times when a request shows a priority of 0. These requests occur when a tape resource is being used by the system for a tape operation. An example is when a tape command using ENDOPT(*UNLOAD) is completed and the system is still unloading the cartridge. ### Related information Control language (CL) Controlling tape library resources with APIs: Use the QTARJMA and QTACJMA APIs to retrieve and to change the tape library attributes for a specific For more information about the fields for the APIs, see: - Retrieve Job Media Library Attributes (QTARJMA) API - Change Job Media Library Attributes (QTACJMA) API Special attention to authority requirements is required when retrieving and changing the resource allocation attributes. The following provides examples of using both APIs. 1. An application using the QTARJMA API retrieves information about the tape library attributes for the current job where the user running the job does not have *JOBCTL special authority. | Current library attributes | | | | | |----------------------------|-----------|------------|------------|--| | MLB name | RSCALCPTY | INLMNTWAIT | EOVMNTWAIT | | | *DEFAULT | *DEV | *DEV | *DEV | | 2. The application then uses the QTACJMA API to change the initial mount wait time (INLMNTWAIT) and the end of volume mount wait time (EOVMNTWAIT). | The application changes the library attributes | | | | |--|------|--------|--------| | MLB name RSCALCPTY INLMNTWAIT EOVMNTWAIT | | | | | *DEFAULT | *DEV | *IMMED | *NOMAX | 3. A system administrator with *JOBCTL special authority uses the CHGJOBMLBA command to change the resource allocation priority (RSCALCPTY), initial mount wait time, and the end of volume mount wait time. | System administrator changes attributes | | | | |--|----|--------|-----| | MLB name RSCALCPTY INLMNTWAIT EOVMNTWAIT | | | | | *DEFAULT | 50 | *IMMED | 500 | 4. The application tries to use the QTACJMA API to restore the tape library attributes it retrieved earlier by using the QTACJMA API *REPLACE option. However, this function fails with an error message of CPF67B4 because the user does not have *JOBCTL special authority. None of the attributes are changed. | Original application fails to restore attributes | | | | |--|----|--------|-----| | MLB name RSCALCPTY INLMNTWAIT EOVMNTWAIT | | | | | *DEFAULT | 50 | *IMMED | 500 | #### Related reference Retrieve Job Media Library Attributes (QTARJMA) API Change Job Media Library Attributes (QTACJMA) API ### Making cartridges available to the tape library inventory: Before you can use the tape library, you must have media loaded and available. If a tape library is empty, open the door and insert all available media into the empty slots. This can be done to save time rather than inserting only a small number at a time through the convent input/output (I/O) station. When the door is closed, the tape library inventories the contents. Each cartridge ID is noted and recorded in the operating system and the Library Manager (if present). Most tape libraries provide an I/O station for adding cartridges without interrupting any automatic operations. An I/O station can have multiple slots or just a single slot. Some tape libraries have no I/O station. For these tape libraries, cartridges are added by stopping the automation and opening the door to access the storage slots. Tape cartridges that are placed in the 3494 I/O station are moved to a storage slot by the 3494 Library Manager software. For other tape libraries, the tape cartridges remain in the I/O station until you make them available using iSeries Navigator. When you make a cartridge available you must specify a category of media. Also, making a cartridge available changes the cartridge status. To make a cartridge available, do the following steps: - 1. In iSeries Navigator, expand My Connections → your System i → Configuration and Service → Hardware → Tape Devices → Tape Libraries → your tape library. - 2. Select Cartridges. - 3. Right-click a cartridge that has a status of Inserted and select **Make Available**. You can select multiple cartridges to add to a category. You can also use the Add Tape Cartridge (ADDTAPCTG) command to make a cartridge available. ### Related concepts "Cartridge categories" on page 9 A *category* is a logical grouping of cartridges. A category allows you to refer to a group of cartridges by category name instead of the individual cartridge identifiers. "Cartridge status" on page 8 Here are the possible types of status for a tape cartridge in relation to a tape library. ### Related tasks "Configuring tape libraries" on page 25 After you have set up the tape library and connected it to your system, the system automatically configures it. ### Related reference Add Tape Cartridge (ADDTAPCTG) #### Ejecting cartridges from the tape library inventory: You can eject a cartridge from the tape library inventory. All tape library devices use iSeries Navigator to eject cartridges. You can also use the Remove Tape Cartridge (RMVTAPCTG) command to change media to the *EJECT category. When you eject a cartridge, you can eject it to one of three locations: - Tape library default - Convenience station - High capacity output station See the iSeries Navigator help for more detailed information about these locations. To select tapes to eject from the Cartridge folder, take the following steps. - 1. In iSeries Navigator, expand My Connections → your System i → Configuration and Service → Hardware → Tape Devices → Tape Libraries → your tape library. - 2. Select Cartridges. - 3. Right-click the cartridge you want to eject and select Eject Cartridge. You can select multiple cartridges to eject. **Note:** If you are using the character-based interface, cartridges that are in the convenience (*CNV) category are exported when they are unloaded from a tape resource for a tape command that is using ENDOPT(*UNLOAD). If a cartridge in the *CNV category is unloaded from a tape resource by the system to load another cartridge, the cartridge that was in the tape resource will not be ejected from the tape library. #### Related reference Remove Tape Cartridge (RMVTAPCTG) ### Using the mounted category to load groups of tapes into a tape device: The mounted category allows a group of tapes to automatically be loaded into a tape device. The media is mounted in the order in which it was placed into the category. It is similar in function to an Automatic Cartridge Loader (ACL) on the stand-alone 3490 devices. This function is available with the Set Tape Category (SETTAPCGY) command. The mounted category is provided for all tape library devices. To load groups of tapes into a tape device for 3494 devices, use the Library Manager software. To load groups of tapes into a tape device for libraries other than the 3494, use i5/OS (the SETTAPCGY command). Because of this difference, the 3494 Library Manager software loads the next tape as soon as the previous tape is unloaded. For all other libraries, the tape resource is not loaded until a tape command requiring media
is issued to the tape library device. With a category mounted, a tape resource is dedicated for category mount operations until a SETTAPCGY (*DEMOUNTED) command is issued. When the SETTAPCGY has been issued, any i5/OS command to the tape library device with VOL(*MOUNTED) will be directed to the tape resource that is set up for the mounted category. One category of cartridge can be mounted per available tape resource. To mount more than one category for a tape library, the MNTID parameter must be used with the SETTAPCGY command to identify the mounted category operations. A job can only have one mounted category session active at a time. The mounted category session can be released from the job that mounted the category of cartridges and can be assigned to another job by using the *RELEASE and *ASSIGN options on the SETTAPCGY command. #### **Notes:** - 1. Tape management systems are notified when a category of cartridges is mounted and demounted. When a command comes from a user to VOL(*MOUNTED), the tape management system has the ability to accept or reject the operation. - 2. Backup and Recovery Media Services (BRMS) does not use the category of mounted to perform its processing. Using the mounted category in combination with BRMS functions is not recommended. Mounting a category of cartridges while concurrently using BRMS to perform tape operations can have unpredictable results. ### Related reference Set Tape Category (SETTAPCGY) ### Sharing cartridges: You can share the cartridges in a tape library between multiple platforms and systems. When the system is using a cartridge in a 3494 tape library, the cartridge must be in a category accessible to the system. This can be the *SHARE400 category or a user-defined category. ### Volume protection between platforms When initializing a tape, the system cannot write a 1-character security flag to the tape label. This is to restrict users who might read data from tapes initialized this way. Even though writing this security flag is not available in i5/OS, it can read tapes written with this security flag in the tape label. When i5/OS detects the security flag, it decides whether that user can read the data, depending on the user's special authorities. When the tape contains EBCDIC data, all users can read the tape when the security flag contains a space (hexadecimal 40), a zero (hexadecimal F0) or a hexadecimal 00. If it contains any other value, the user needs *ALLOBJ and *SECADM authority to read data from the tape. If the tape contains ASCII data, all users can read the tape if the security flag contains an ASCII space (hexadecimal 20). If it contains any other value, the user requires *ALLOBJ and *SECADM authority to read data from the tape. You cannot specify this security flag when a tape is initialized on the system and is to be read on another platform. ### End of volume: If your system runs out of tape cartridges specified in the volume list, a CPA6798 inquiry message appears. To be a fully automated solution without a tape management system, each volume that is needed must be specified on the command in the VOL parameter. If the system runs out of tape cartridges specified in the volume list, a CPA6798 inquiry message is issued, allowing the user to supply an additional cartridge allowing the tape operation to continue. If the cartridge supplied is not found or not available, a CPA6797 inquiry message is sent allowing the user to supply an alternate cartridge to continue the tape operation. Tape management systems have the ability to provide more volumes through exit points in the i5/OS tape functions. ### Related concepts "Avoiding deadlocked files during save and restore operations with tape libraries" Tape automation uses special files located in the QUSRSYS library. If these files do not exist on the system, i5/OS supports a limited set of automation functions. ### Avoiding deadlocked files during save and restore operations with tape libraries: Tape automation uses special files located in the QUSRSYS library. If these files do not exist on the system, i5/OS supports a limited set of automation functions. For automation in the early stages of recovery scenarios, you can mount cartridges by specifying the cartridge identifiers in the VOL parameter of the i5/OS commands. However, this subset of automation does not support the use of the cartridge commands, such as Work with Tape Cartridges (WRKTAPCTG) or Display Tape Cartridge (DSPTAPCTG). When the QUSRSYS library is being saved, the files that allow use of the WRKTAPCTG or DSPTAPCTG commands might be put in a restricted state and made unavailable for use. This can result in a deadlock and eventually end the save operation. To avoid this situation, when the QUSRSYS library is being saved, it must not cross a volume boundary. It must fit on the mounted volume. Alternatively, you can save the QUSRSYS library by using the save-while-active function. ### Related concepts "End of volume" on page 43 If your system runs out of tape cartridges specified in the volume list, a CPA6798 inquiry message appears. ### Optimizing tape library performance: Optimize the performance of your tape library by using work management and load balancing techniques. You can also attempt to improve the performance by using different connection configurations. Note: If you attach a library containing high-speed tape drive resources (such as 3590, 358x) to a 6501 or 6534 IOP, you should not attach any other high-speed tape drive resources to IOPs on the same bus, or performance will be affected. For more detailed information about performance, see the Resource Library section of the Performance Management Web site. ### Related information Performance Management ### Viewing the capabilities of a tape library: You can use iSeries Navigator to view the capabilities for each tape library. - Assign capability - · Hardware data compression - Whether the device is self-configured - The highest instantaneous performance that is reported by the tape device - Densities supported by the tape device - Capabilities associated with each density To view the capabilities for a tape library, do the following steps: - 1. In iSeries Navigator, expand My Connections. - 2. Expand the System i that you want to work with. - 3. Expand Configuration and Service → Hardware → Tape Devices → Tape Libraries. - 4. Expand the tape library for which you want to format a tape. - 5. Select **Tape Resources**. - 6. Right-click the tape resource that has the capabilities you want to view, and select **Properties**. - 7. Select the **Capabilities** page. # Maintaining tape resources This information discusses how to keep your tape resources in good condition. # Storage and handling of tape cartridges This topic describes how to handle your tape cartridges and describes the best environment in which to store your tape cartridges. Tape drives require specific maintenance and environmental conditions to operate well over time. To avoid problems with your IBM tape drive you should: - · Use high quality, data grade media - Handle and store this media properly - Operate the tape drive in a clean environment - · Keep the tape drive properly cleaned ### Media grades IBM uses two different grades of media. IBM supplies program temporary fixes (PTFs) on a tape that is designed to be written to only once and read from a few times. This tape is designed for limited use, not as a backup medium. IBM also sells media that is designed for storage use. If analysis by IBM service personnel indicates a problem with non IBM media, it may be necessary for you to replace the media. ### Tape environment: Tape drives are designed to operate in a clean environment. Problem factors are dirt, dust, fibers, and airborne particles. Airborne particles are the most difficult to address. When you install a tape in the tape drive, the clearance between the heads and the tape is measured in microns. Particles can damage the tape or the head if they come in contact with either. IBM offers a tape drive filter enclosure for some systems to solve this problem. The enclosure draws air in through a filter and supplies the tape drive with clean air. You are responsible to provide a clean operating environment for the tape drive and system. For specific requirements for environmental conditions such as temperature and humidity, see the operator's manual for your tape cartridge. ### Tape handling and storage: Most tapes arrive in sealed cartridges so that the tape will remain in a clean environment. Opening the cartridge allows dirt and airborne particles to enter and then become a source of contamination. Only the tape drive should open the cartridge, not an operator. Inside the cartridge, the tape is under correct tension. If the cartridge is dropped, this tension will be relaxed. Inserting a dropped cartridge into a tape drive can cause incorrect loading and result in a jam. This will ruin the tape and can cause physical damage if the cartridge is not removed properly. To store the tapes properly, put them in their protective containers and store them on their ends. The storage area must be clean, dry, at room temperature, and away from any magnetic fields. ### Protecting data on tape cartridges: This topic has general instructions for protecting data on a tape cartridge. Tape cartridges have a switch that you can use to write-protect the data on the tape. The switch typically has a label that indicates that it is write-protected such as: - A padlock icon - · A dot on the switch - A label such as SAFE or SAVE. The following instructions are an example of protecting data from being overwritten on a quarter-inch tape. See the operator's guide for your tape device instructions that are specific to your tape cartridge. Do one of the following: - Set the pointer toward SAFE for older-style tape cartridges, as shown in the first figure below. - Set the pointer toward the locked padlock icon for the newer style
tape cartridges, as shown in the second figure below. To not protect the data do one of the following: - Set the pointer away from SAFE for the older style tape cartridges, as shown in the first figure below. - Set the pointer toward the unlocked padlock icon, for the newer-style tape cartridges, as shown in the second figure below. Figure 9. Write-protect positions for an older-style tape cartridge Figure 10. Write-protect positions for a newer-style quarter-inch tape cartridge For information about your tape device, see Tapes Supported on iSeries. If your tape device is an LTO tape device, see IBM LTO Ultrium Tape Libraries Guide (SG24-5946). For specific instructions about protecting data on a tape cartridge, see the manual for your tape drive. ### Related information - Tapes Supported on iSeries - IBM System Storage Tape Libraries Guide for Open Systems ### Ensuring tapes are in good condition: This topic describes how to ensure that the tape cartridges are in good condition using the Work with Lifetime Statistics display. To ensure that your tapes are in good condition, keep track of the tape volume statistics on your system. - 1. Type STRSST (the Start System Service Tools command). - 2. Select **Start a service tool** on the *System Service Tools* menu. - 3. Select **Product Activity Log** on the *Start a Service Tool* menu. - 4. Select Work with removable media lifetime statistics on the *Product Activity Log* menu. - 5. Select the type of removable media for which you want data on the Select Media Option display. - 6. If you see the >> or > symbols preceding the volume ID on the Work with Lifetime Statistics display, take the appropriate action as is described in the table following the image of the Work with Lifetime Statistics display. Table 9. Symbols in the Work with Lifetime Statistics display | Symbol | Explanation | Action to take | |--------|--|--| | >> | Media replacement recommended | Copy the contents of the media to a new tape and discard the old tape. | | > | Media approaching replacement criteria | Replace the tape if the tape format is: - QIC-120 - 7208 2.3 GB - 6250 bpi density If the tape format does not fulfill the previous conditions, continue to keep track of this tape to ensure that media replacement is not necessary. | Note: To ensure accurate statistics, each tape cartridge or reel must have a unique volume ID. After media has been replaced, remove the lifetime statistics entry by using option 4 (delete entry). Also, you can use the Print Error Log (PRTERRLOG) command to print and delete the entry by typing the following command. PRTERRLOG TYPE(*VOLSTAT) VOLTYPE(xxxx) VOL(xxxxxx) VOLSTAT(*DLT) #### Related tasks "Formatting tape cartridges" on page 31 Use iSeries Navigator to format a tape cartridge. ## Cleaning your tape drives This topic provides information about keeping your tape drives clean. Dirt can build up on the heads of any tape drive, no matter how clean the environment. Every time tape motion occurs, some of the media surface comes off on the heads. Over time, this builds up and causes errors in reading and writing. Cleaning the read/write head prevents a build up of debris that can cause irrecoverable errors when writing or reading data. You can only use cleaning cartridges a limited number of times. When a cleaning cartridge has been used to its maximum number of times, the usefulness of the cartridge expires. When cartridges expire, replace them. Never reuse an expired cleaning cartridge. An expired cleaning cartridge introduces previously removed dirt to the tape drive. When you have cleaned the tape drive, mark the usage on the cartridge in order to best determine when your IBM cleaning cartridge has expired. When you use cleaning cartridges you should not use a grease pencil on the label of the cleaning cartridge. Also, the cleaning cartridge should be undamaged and clean when it is inserted into a tape unit. ### Cleaning quarter-inch tape drives: This topic provides information about keeping your quarter-inch tape drives clean. For quarter-inch tape drives, you should clean the head after every 8 hours of tape movement when using IBM tape cartridges. Other tape media might require cleaning more frequently. When you use a new tape cartridge, it is advisable to clean the head after 2 hours of tape movement, or before loading each new tape cartridge. System messages are posted when the tape unit determines that cleaning is required. The MLR1, MLR1-S, and MLR3 tape units also have a cleaning status light that indicates that cleaning is required. It is important to respond to these cleaning indicators and clean the head using a recommended cleaning method. Table 10. Recommended IBM cleaning cartridges | Tape unit identification | Tape unit identification | | Cleaning cartridge part number | | |--------------------------|--|---------|--------------------------------|--| | Front bezel label | Feature code numbers | 35L0844 | 16G8572 | | | SLR100 | 4487
4587
4687 | Best | Do not use | | | MLR3 | 4486
4586
6386
6486 | Best | Do not use | | | SLR60 | 4584
4684
6384
6484 | Best | Do not use | | | MLR1-S QIC-5010-DC | 4483
4583
6383
6483 | Best | Do not use | | | QIC-4GB-DC | 4482
4582
6382
6482
7201-122 | Best | Acceptable | | | QIC-2GB (DC) | 6381
6481 | Best | Acceptable | | | QIC-2GB | 6380
6480 | Best | Acceptable | | ### Related concepts "Quarter-inch cartridge and tape unit compatibility" on page 18 The capacity and read/write capabilities for your media type are provided. ### Cleaning eight-millimeter tape drives: The eight-millimeter tape drives count the number of hours of tape motion and indicate when it is time to clean the tape drive by displaying a message to clean soon and by turning on the Fault status light. | Tape unit | Cleaning cartridge part number | |--------------------------|--------------------------------| | 4585
4685
7206-VX2 | 19P4880 | | 7208-002 | 16G8467 | | 6390
7208-012 | 16G8467 | | 7208-222 | 16G8467 | | 7208-232 | 16G8467 | | 7208-234 | 16G8467 | | Tape unit | Cleaning cartridge part number | |----------------------|--------------------------------| | 7208-342 | 35L1409 | | 7208-345 | 35L1409 | | 9427-210
9427-211 | 16G8467 | ### Related concepts "Eight-millimeter cartridge and tape unit compatibility" on page 16 The capacity and read/write capabilities for your media type are provided. ### Cleaning half-inch tape drives: This topic provides information specific to cleaning half-inch tape drives. On the average, clean the tape path on each drive every seven days. If you use an unusually large amount of tape, clean the tape path more often. If the tape unit displays a *CLEAN message, clean the tape drive path as soon as possible. You should also clean the tape path after each initial program load (IPL), after a drive is reset, or whenever the power on the tape unit has been interrupted. To clean the tape path, insert the special cleaning cartridge as you would a typical tape cartridge. Keep track of the number of uses on the label provided with each cleaning cartridge. - 3490 cleaning cartridges need to be replaced after 500 uses. - 3570 and 3590 cleaning cartridges need to be replaced after 100 uses. - 3592 cleaning cartridges need to be replaced after 50 uses. If your tape drive has the automatic cartridge loader feature, put the cartridge into the feed position and press the start button. The cleaning cartridge can also be put into the input stack, and the cleaning procedure takes place whenever the cleaning cartridge is loaded into the drive. If you start cleaning during a job, an inquiry message is displayed. After responding to the message, the drive threads the cleaning tape, cleans the read/write head, and then rewinds and unloads the cleaning cartridge. When the cartridge has been unloaded, remove it and mark the usage label. ### | Cleaning the 3490 and 35xx tape drives These tape drives provide random access to the tape cartridges. When the device detects that cleaning is needed and if the cleaning cartridge is in the internal cell known only to the Random Access Cartridge Loader, the tape drive performs the cleaning operation. The tape drive keeps track of the number of cleaning operations performed by the cleaning cartridge and ejects the cleaning cartridge through the priority cell when the cleaning cycles that are allowed for the cleaning cartridge have been used up. The cleaning cartridges for half-inch tape drives are specified in the following table: | Tape drive | Cleaning cartridge part number | |------------|--------------------------------| | 3490 | 4780527 | | 3570 | 05H2463 | | 3590 | 05H4435 | | 3592 | 05H3929 | ### Related concepts "Half-inch and Magstar MP cartridges and tape unit compatibility" on page 19 The tape units and half-inch and Magstar MP cartridges compatibility are provided. ### Cleaning LTO Ultrium tape drives: All IBM Ultrium tape drives have an integrated cleaning device which brushes the head when loading and unloading a cartridge. Along with this, each drive has a cleaning procedure using a special cleaning cartridge. The only time you must clean your Ultrium tape drive is when the tape drive alerts you to clean it. The following table shows cleaning cartridges for Ultrium tape devices. | Туре | Cleaning cartridge part number | |-----------|--------------------------------| | Ultrium 1 | 08L9124 | | Ultrium 2 | 35L2086 | | Ultrium 3 | 35L2086 | ### Related concepts "LTO cartridges and tape unit compatibility" on page 20 This topic shows which Linear Tape Open (LTO) Ultrium tape units and cartridges are compatible. ###
Related information IBM System Storage Tape Libraries Guide for Open Systems ## **Licensed Internal Code updates** IBM occasionally releases updated Licensed Internal Code for the tape drives. When a Licensed Internal Code update is developed, IBM makes it available to you through the service organization or by electronic delivery. Licensed Internal Code updates are also available by downloading and installing fixes using electronic customer support, or by ordering and installing cumulative fix packages from IBM Global Services. ### Running retention operations for tape cartridges This topic explains the importance of retention operations for tape cartridges. For older tape cartridge types, the quarter-inch tape units run a retention operation whenever a tape cartridge is loaded. *Retention* means that the tape unit moves the tape to the end-of-tape position and rewinds it to the beginning-of-tape position. The retention operation is part of the load sequence. The tape unit also runs a retention operation if a tape cartridge is in the tape unit when the door is closed. When using MLR3-25GB, DC5010, MLR1-16GB, SLR100, and SLR60 tape cartridges, the tape units run the retention operation only when necessary (as determined by the tape unit) to maintain correct tape tension. The approximate retention times are as follows. Table 11. Retention times for quarter-inch tape cartridges | Tape cartridge | Approximate retention time | |----------------|----------------------------| | DC5010 | Fewer than 6 minutes | | DC6150 | Fewer than 3 minutes | | DC6320 | Fewer than 3 minutes | | DC6525 | Fewer than 4 minutes | | DC9120 | Fewer than 4 minutes | | DC9250 | Fewer than 4 minutes | | MLR1-16GB | Fewer than 8 minutes | | MLR3-25GB | Fewer than 8 minutes | Table 11. Retention times for quarter-inch tape cartridges (continued) | Tape cartridge | Approximate retention time | |----------------|----------------------------| | SLR5-4GB | Fewer than 8 minutes | | SLR60 | Fewer than 8 minutes | | SLR100 | Fewer than 8 minutes | ## **Example: Managing tape resources** This topic provides an example of how to manage tape resources. Each system in the following example reports two tape subsystems, or resources. These tape resources are connected to the tape library resource. In this example, the tape library resource is the 3494 Data Server. The 3494 Data Server then generates an automatic configuration of a device description for a media library device (MLD). In this situation, any request to the tape library device (the 3494 Data Server) results in the tape library resource manager allocating which tape resource to use. This simplifies tape management tasks for most users because the system is responsible for the majority of those tasks. Note: Users with multiple systems and limited attachment capabilities might still need to force the use of specific resources. The Work with Media Library Status (WRKMBLSTS) command allows you to view the tape libraries and associated tape resources from a configuration standpoint. Using this command on each of the three systems in the example results in the following displays. Figure 11. View of tape library TAPMLB01 from System A Figure 12. View of tape library TAPMLB01 from System B Figure 13. View of tape library TAPMLB01 from System C Here are three possible values for the allocation of each resource. Each value assumes that the tape library is varied on. #### **ALLOCATED** An allocated resource is assigned to a particular system and no other system can access it. The allocated state is analogous to a stand-alone device that is varied on with the value ASSIGN(*YES). ### **UNPROTECTED** An unprotected tape resource is not assigned to a particular system and is available to respond to requests to its tape library device. This unprotected state is analogous to a stand-alone device that is varied on with the value ASSIGN(*NO). If a request is made to the tape library device and the tape resource is selected by the tape library device resource manager, the tape resource is assigned while it is being used. #### **DEALLOCATED** A deallocated tape resource is not assigned to a particular system and is unavailable to respond to requests to its tape library device. If the tape library is varied off, all of its tape resources are deallocated. The deallocated state allows the use of a tape resource in stand-alone mode. It also allows temporary use of a tape resource if a malfunction occurs with the robotic components of the tape library. When a tape resource that is shared between systems is not in use, it should remain in an unprotected state with the tape library device varied on. If the tape resource is left in an allocated or deallocated state, a command request to use the resource might result in an error stating that no resources are available. If you are using backup and recovery media services (BRMS), you should not use SHARED *YES for media libraries. Use UNPROTECTED to share your resources. You can also use a combination of UNPROTECTED and ALLOCATED on the network to ensure that each system has the correct device that is required for backup operations. Leave the tape libraries varied on at all times, and use the allocation status to control use. One problem to consider in the example is the problem of cable limitations. One system can potentially prevent another from accessing tape resources even when one is available. The difference is in how a user can force a system to use a specific resource. One method of resolving this problem is to manipulate the start times of save operations on each system. In the example, system A and system B are contending for tape resource TAP01. Start the save operation on system B to ensure that system B has access to a tape resource. The following table shows how the strategy chart appears if this method is used in the example. | Table 12. Schedule | to | meet | sy | stem | and | device | constraints | using time | managei | ment | |--------------------|----|------|----|------|-----|--------|-------------|------------|---------|------| | | | | | | - 1 | | | | | | | Start time | Approximate complete time | Backup group | System | Device | Tape resource forced | |------------|---------------------------|--------------|--------|----------|---| | 10:05 p.m. | 1:00 a.m. | 2 | A | TAPMLB01 | TAP01 (TAP02 is busy on system C) | | 10:00 p.m. | 11:00 p.m. | 5 | С | TAPMLB01 | TAP02 | | 11:00 p.m. | 1:00 a.m. | 6 | С | TAPMLB01 | TAP02 | | 1:05 a.m. | 6:00 a.m. | 1 | A | TAPMLB01 | TAP02 (TAP01 is
busy on system
B) | | 1:00 a.m. | 4:00 a.m. | 3 | В | TAPMLB01 | TAP01 | | 4:00 a.m. | 6:00 a.m. | 4 | В | TAPMLB01 | TAP01 | Because ALLOCATED resources are selected for use before UNPROTECTED resources, you can use this aspect to your advantage. A user exit (the *EXIT special value) is a user-defined CL command that permits automatic processing of predefined user routines. On system A in the example, you can use the *EXIT special value in the BRMS control group to change TAP02 from UNPROTECTED to ALLOCATED. The next save request then attempts to access TAP02 first. When the save operation is completed, you use the *EXIT special value at the end of the control group to change the resource back from ALLOCATED to UNPROTECTED. For more information about the *EXIT special value, see Backup Recovery and Media Services. In order to accomplish this in the example, keep all the resources in UNPROTECTED status and change two backup groups. In this situation, you are only concerned about systems that are attached to more than one resource. Only systems that are attached to more than one resource can produce a resource access conflict. In this example, the system that is attached to more than one resource is system A. System A belongs to backup group 1 and backup group 2. - 1. Change Save backup group 2: - a. Change TAP01 from *UNPROTECTED to *ALLOCATED by specify the following command for the *EXIT special value: - VRYCFG CFGOBJ(TAPMLB01) CFGTYPE(*MLBRSC) STATUS(*ALLOCATE) RSRCNAME(TAP01) - b. Perform the save operation. - c. Change TAP01 from *ALLOCATED to *UNPROTECTED by specifying the following command for the *EXIT special value: - VRYCFG CFGOBJ(TAPMLB01) CFGTYPE(*MLBRSC) STATUS(*UNPROTECTED) RSRCNAME(TAP01) - 2. Change Save backup group 1: - a. Change TAP02 from *UNPROTECTED to *ALLOCATED by specifying the following command for the *EXIT special value: - VRYCFG CFGOBJ(TAPMLB01) CFGTYPE(*MLBRSC) STATUS(*ALLOCATE) RSRCNAME(TAP02) - b. Perform the save operation. - c. Change TAP02 from *ALLOCATED to *UNPROTECTED by specifying the following command for the *EXIT special value: - VRYCFG CFGOBJ(TAPMLB01) CFGTYPE(*MLBRSC) STATUS(*UNPROTECTED) RSRCNAME(TAP02) The following table shows how the strategy table appears if this method is used in the example. Table 13. Schedule to meet system and device constraints using ALLOCATE before UNPROTECT | Start time | Approximate complete time | Backup group | System | Device | Tape resource forced | |------------|---------------------------|--------------|--------|----------|---| | 10:00 p.m. | 1:00 a.m. | 2 | A | TAPMLB01 | TAP01 | | 10:00 p.m. | 11:00 p.m. | 5 | С | TAPMLB01 | TAP02 | | 11:00 p.m. | 1:00 a.m. | 6 | С | TAPMLB01 | TAP02 | | 1:00 a.m. | 6:00 a.m. | 1 | A | TAPMLB01 | TAP02 (TAP01 is
busy on system
B) | | 1:00 a.m. | 4:00 a.m. | 3 | В | TAPMLB01 | TAP01 | | 4:00 a.m. | 6:00 a.m. | 4 | В | TAPMLB01 | TAP01 | You can also use the multiple tape library device descriptions that are created when a tape library is configured. As each tape resource in a tape library reports to a system, a separate tape library description might be created. Typically, you should use one TAPMLB xx and assign all the tape resources to it. However, system A in the example differs from this. The following display shows the configuration that is generated on system A. Figure 14.
Work with Media Library Status window After the command CFGDEVMLB(TAPMLB01) is completed, you can see both resources under TAPMLB01, even though TAP02 actually generated TAPMLB02. Both resources are set to UNPROTECTED. Figure 15. Work with Media Library Status window If you varied on TAPMLB02, it also recognizes TAP01 and TAP02. However, because only one tape library can use a resource, TAP01 and TAP02 must to be set to DEALLOCATED in TAPMLB02, as is shown on the following display. Figure 16. Work with Media Library Status window In order to use the TAPMLB02 device description, you set TAP01 to UNPROTECTED in TAPMLB01 and you set TAP02 to UNPROTECTED in TAPMLB02, as is shown in the following display. Figure 17. Work with Media Library Status window The following table shows how the strategy chart appears if you use this method in the example. Table 14. Schedule to meet system and device constraints using multiple tape library descriptions | Start time | Approximate complete time | Backup group | System | Device | Tape resource forced | |------------|---------------------------|--------------|--------|----------|----------------------| | 10:00 p.m. | 1:00 a.m. | 2 | A | TAPMLB01 | TAP01 | | 10:00 p.m. | 11:00 p.m. | 5 | С | TAPMLB02 | TAP02 | | 11:00 p.m. | 1:00 a.m. | 6 | С | TAPMLB02 | TAP02 | | 1:00 a.m. | 6:00 a.m. | 1 | A | TAPMLB02 | TAP02 | | 1:00 a.m. | 4:00 a.m. | 3 | В | TAPMLB01 | TAP01 | | 4:00 a.m. | 6:00 a.m. | 4 | В | TAPMLB01 | TAP01 | ### Related reference Work with Media Library Status (WRKMBLSTS) ### Related information Backup Recovery and Media Services for iSeries # **Troubleshooting tape resources** These topics provide information for troubleshooting your tape resources. # Verifying that your tape unit works correctly This topic provides initial troubleshooting steps and explains how to verify that the tape unit is working correctly. To clean the tape cartridge and verify that your tape unit is working correctly, do the following: - 1. Remove the cartridge from the tape unit. - 2. Type WRKCFGSTS *DEV *TAP on a command line and make the tape unit unavailable to the system (vary off). - 3. Clean the tape unit. See the cleaning instructions for the tape unit you are using. - 4. Type the Verify Tape (VFYTAP) command on a command line and press Enter. ## Collecting library information for problem analysis This topic provides information to collect the library data that a service technician needs to repair your tape library. When problem analysis or problem isolation is required, collect and send the following information to the appropriate service support personnel: - The "Tape flight recorder" information. - The "BRMS flight recorder" information. - The "Library manager transaction logs" for a 3494 tape library. ### Tape flight recorder Use the following command to collect the tape flight recorder information for your tape library: CALL QTADMPDV TAPMLBxx Substitute the name of your tape library for TAPMLBxx. ### **BRMS flight recorder** Use the Dump BRMS (DMPBRM) command to collect the BRMS flight recorder information. ### Library manager transaction logs Copy the transaction logs, the time and date of the failure, and information about the volumes in question: - Insert a blank diskette in drive A of the personal computer. - Select Service → Copy files. - Select the transaction logs to be copied → OK. - Select **drive A**. Type the file name and description of the problem. - Select Copy files. ### **Problem handling for tape libraries** This topic provides information for handling problems for certain tape libraries. The following are instructions for problem handling for the IBM System Storage Enterprise Tape Library 3494. Under typical operational conditions, the operator does not use the Library Manager often. The software manages the 3494 from requests sent from a system. For most purposes, the best function to have active on the display of the Library Manager is the System Summary window. The system summary gives you indications of the 3494 status, including whether operator intervention is required in case of errors. If the Intervention Required LED on the front operator panel is flashing, check the System Summary window. If intervention is required, the Intervention field on the lower right side of the display shows Required instead of None. To check and respond to errors, do the following: 1. To check for errors and problems, click **Commands** and select the Operator Intervention command. Problems are likely when a condition occurs from which the 3494 cannot recover on its own. Depending on the type of error or exception condition experienced, some or all of the 3494 operations are suspended until the problem is corrected. - 2. To respond to an error, select the condition from the list on the Operator Intervention window and select the items. - 3. Select **OK** after the problem has been resolved (often by manual intervention that may require you to open the front door of the 3494). - 4. Repeat these steps until all error conditions are resolved. # Optical storage This topic provides an overview and reference guide for IBM optical support to a system with the i5/OS operating system. These functions are unique to optical support: - CD-ROM devices - DVD devices directly attached optical media library devices - LAN-attached optical media library devices - Virtual optical devices The information contained in this topic is intended for the following users: - System operators and end users system operators and end users can use this information as their primary reference for CD-ROM, DVD, optical media libraries, and virtual optical support. - Service representatives can use this information to perform activities as directed by the appropriate optical device service guides. Optical storage on the system provides an economical and efficient way to store and retrieve large amounts of information at a high performance level. Optical storage devices offer significant advantages over other high-capacity storages devices, such as tape and microfilm, with faster access times and a hierarchical-type file organization. i5/OS optical storage uses files that are stored in directories and files that are stored in subdirectories similar to UNIX® or PC-based file systems. The capacity, price, and performance of optical storage continually improve, and IBM remains committed to providing its customers with these improvements over time. Even as new devices are introduced, the basic methods of accessing optical information remain consistent, as these new storage devices are being added under the current file system interfaces that optical storage programs have used for years. Optical storage is any storage method that uses a laser to store and retrieve data from media. Examples of this media are compact disk read-only memory (CD-ROM), digital versatile disk read-only memory (DVD-ROM), digital versatile disk random access memory (DVD-RAM), write-once read-many (WORM) cartridges, and erasable optical cartridges. These are some considerations in the use of optical storage media: Table 15. Optical media considerations | Consideration | Reason for use | |---------------|--| | Durability | Optical media can have a shelf life in excess of 50 years. | Table 15. Optical media considerations (continued) | Consideration | Reason for use | |------------------|--| | Archive storage | Write-once read-many (WORM) optical media can be used to archive large amounts of data. Each sector on the media is only written once when creating and updating files and directories. When a file is changed or deleted, a new version of the file gets written, but the old version still exists on the media. All previous versions of the file remain recorded on the media. This capability also exists on erasable media, but the entire disk may be erased and reused. | | Transportability | Universal Disk Format (UDF) optical media can be read with any other industry operating system platform that supports UDF, which is an industry standard file system. Optical Media written with High Performance Optical File System (HPOFS) format can be interchanged with other optical media libraries attached to a system. | | Random access | Optical devices are random access devices. This facilitates the retrieval of relevant data on demand. File access is independent of the order in which the data was stored. Also, multiple users can access the same volume at the same time. | When you use virtual optical storage, you create and use optical images that are stored on your disk units. These optical images are treated as if they were real optical disk media by the internal file system functions. The term virtual applies to the emulation of the optical media sectors when used by read and write functions. Virtual optical media appear as *DVDRAM media in the volume information attributes. ### Related concepts "Comparing offline storage" on page 11 Offline storage is data that you save on media that is separate from the system. ### Related information Tape and Optical Storage # Supported hardware for optical storage Various stand-alone optical devices are available as optical storage. A variety of hardware configurations for CD-ROM, DVD-ROM, and DVD-RAM are supported on a system. The table lists the stand-alone optical devices available as well as the media supported in each. Table 16. Supported stand-alone optical devices | Device type | Hardware resource type
and model | Device | Supported media | |-----------------|----------------------------------|-------------------------------------|--| | 6320/6321 | 6320-002/6321-002 | CD-ROM | CD-ROM
CD-R | | 7210-020 | 6321-002 | CD-ROM Bridgebox
External device | CD-ROM
CD-R | | 6330 HH DVD-RAM | 6330-002 | DVD-RAM | CD-ROM
CD-R ¹
CD-RW ^{1,2}
DVD-ROM
DVD-RAM ⁴ | Table 16. Supported stand-alone optical devices (continued) | Device type | Hardware resource type and model | Device | Supported media | |------------------------|----------------------------------|--------------------------------------|---| | 7210-025 | 6330-002 | DVD-RAM Bridgebox
External device | CD-ROM
CD-R ¹
CD-RW ^{1, 2}
DVD-ROM
DVD-RAM | | 6336 HH DVD-ROM | 6336-002 | DVD-ROM | CD-ROM CD-R CD-RW ² DVD-ROM DVD-R DVD-RAM ³ | | 6331 Slim DVD RAM | 6331-002 | Slim Multi-Recorder ⁶ | CD-ROM CD-R CD-RW ² DVD-ROM DVD-R DVD-RAM ³ | | 6333 HH DVD RAM | 6333-002 | HH Multi-Recorder ⁶ | CD-ROM
CD-R
CD-RW ²
DVD-ROM
DVD-R
DVD-RAM ^{5, 7} | | 7210-030 | 6333-002 | External device | CD-ROM
CD-R
CD-RW ²
DVD-ROM
DVD-R
DVD-RAM ³ | | 7212-102 Sam Bass | 6330 6333 6336 | | CD-ROM CD-R CD-RW ² DVD-ROM DVD-R DVD-RAM ³ | | 6337 Slim Line DVD-ROM | | DVD-ROM | CD-ROM
CD-R
CD-RW ²
DVD-ROM
DVD-R
DVD-RAM ³ | ^{1.} Read support in DVD-RAM drive only. Optical media libraries come in a variety of configurations that are designed around the different forms of media and different connection options. Optical media libraries range from the single cartridge ^{2.} Read support available at V5R2 and later. Read support for Type II DVD-RAM 4.7GB media with the media removed only. ^{4.} Prior to V5R3, writes media in cartridge only. V5R3 and later writes media in or removed from cartridge. Write support for Type II DVD-RAM 4.7 GB media with the media removed only. The i5/OS is only capable of writing DVD-RAM from a slim multi-recorder. The 6333 HH DVD-RAM does not read 2.6/5.2 GB DVD-RAM media. stand-alone model through models capable of holding 638 optical cartridges and twelve disk drives. Optical media libraries may be directly connected to the system for best functionality and performance, or may be connected through a LAN to allow independent access by PCs or other systems. Verify which adapter is appropriate for your model system and device interface. Table 17. Currently Supported Optical Storage Devices | Model | Drive Type | Connection | Cartridge Capacity | Number of Drives | |----------|----------------|------------|--------------------|------------------| | 3431-705 | Multi-Function | LAN | 1 | 1 | | 3995-A23 | Multi-Function | LAN | 16 | 1 | | 3995-022 | WORM | LAN | 32 | 2 | | 3995-023 | Multi-Function | LAN | 32 | 2 | | 3995-122 | WORM | LAN | 144 | 4 | | 3995-123 | Multi-Function | LAN | 144 | 4 | | 3995-C20 | Multi-Function | LAN | 20 | 1 or 2 | | 3995-C22 | Multi-Function | LAN | 52 | 2 | | 3995-C24 | Multi-Function | LAN | 104 | 2 or 4 | | 3995-C26 | Multi-Function | LAN | 156 | 4 or 6 | | 3995-C28 | Multi-Function | LAN | 258 | 4 or 6 | | 3995-C40 | Multi-Function | Direct | 20 | 1 or 2 | | 3995-C42 | Multi-Function | Direct | 52 | 2 | | 3995-C44 | Multi-Function | Direct | 104 | 2 or 4 | | 3995-C46 | Multi-Function | Direct | 156 | 4 or 6 | | 3995-C48 | Multi-Function | Direct | 258 | 4 or 6 | | 3996-032 | Multi-Function | Direct | 32 | 2 | | 3996-080 | Multi-Function | Direct | 72 or 80 | 2 or 4 | | 3996-174 | Multi-Function | Direct | 166 or 174 | 2 or 4 | | 399F-100 | Multi-Function | Direct | 24-80 | 1-4 | | 399F-200 | Multi-Function | Direct | 104-638 | 2-12 | The following table lists all the input/output attachment adapters that you can use to attach direct and LAN optical libraries to your system. You need to verify which adapter is appropriate for your model system. Table 18. | Library Connection Type | System i Feature Code | Description/Comments | |-------------------------|-----------------------|----------------------| | Token Ring | 2724 | 4/16 Mbps | | Ethernet | 2723/4723 | 10 Mbps | | Ethernet | 2838/4838 | 100/10 Mbps | | Direct | 2621 | No longer supported | | Direct | 2729 | Supported | | Direct | 2749 | Supported | | Direct | 5702, 5712 | Supported | | Direct | 6534 | Supported | | Direct | 5736 | Supported | # **Optical devices** Your system comes with a rack-mounted CD-ROM or DVD-ROM drive. As an option, you can order a DVD-RAM drive as a feature to replace your internal drive or to have it in addition to your internal drive. All optical drives are devices that multiple users can access concurrently. Note: Optical drives on the system are not enabled for the digital audio disk. To load and unload an optical disk, take the following steps. 1. Look at the following figure and remove the disk from the protective case. 2. Slide the disk into the tray with the label side showing. If your optical device is vertically positioned, make sure that the disk is secured by the two tabs at the bottom of the tray as shown on the left in the following figure. 3. When you have properly positioned the disk in the tray, press the Eject button or push the tray into the drive as shown in the following figure. 4. To remove the disk from the drive, look at the following figure and press the Eject button. No preventive maintenance is necessary for the optical drive. Always handle optical disks by the edges to avoid finger prints. Optical disks can be wiped with a soft lint-free cloth or lens tissue. Always wipe in a straight line from the inner hub to the outer rim. The system supports both directly attached small computer system interface (SCSI) and LAN-attached optical media library devices. These devices are an excellent alternative to storing data traditionally kept on paper, diskette, microfilm, microfiche, and tape. Optical libraries are high capacity, random access devices that provide fast access to a large amount of data. In addition, optical storage provides permanent, long-term archive characteristics unmatched by other storage mediums. The system supports attachment of the IBM 3995 and 3996 Optical libraries as well as non-IBM optical library devices. #### Related information # Optical media types Five categories of optical media are available to meet most storage requirements: CD-ROM, DVD-ROM, DVD-RAM, write-once read-many (WORM) optical cartridges, and erasable optical cartridges. - CD-ROM is a read-only format that is optimized for read performance. CD-ROMs are ideal for wide-scale distribution of programs and data. The CD-ROM data format is identical to the one that is used with personal computers. This makes it possible to develop CD-ROMs for use in both personal computers and the system. You can read CD-ROMs in either a CD-ROM or DVD drive. - DVD-ROM is a read-only format that provides a higher capacity than CD-ROM. Like CD-ROM, DVD-ROMs are excellent for wide-scale distribution of programs and data. You can only read DVD-ROMs in a DVD drive. - DVD-RAM is writable optical media that is available in both double-sided (Type I) and single-sided (Type II) formats, ranging from 2.6 GB per cartridge to 9.4 GB per cartridge. Both types can be accessed in a DVD-RAM drive, and Type II media can be read in a DVD-ROM drive when the media is removed from the cartridge. - WORM storage is an economical way to archive data, yet still have it quickly and easily accessible. WORM media is available in 1x (650 MB), 2x (1.3 GB), 4x (2.6 GB), 8x (5.2 GB), and 14x (9.1 GB or 8.6 GB) capacities. It is also available in 30 GB Ultra Density Optical (UDO). - An erasable cartridge offers the most flexibility with similar capabilities as magnetic storage. Erasable media is available in 1x (650 MB), 2x (1.3 GB), 4x (2.6 GB), 8x (5.2 GB), and 14x (9.1 GB or 8.6 GB) capacities. It is also available in 30 GB Ultra Density Optical (UDO). Both WORM and erasable cartridges must have a sector size of 1024 bytes per sector for 1x, 2x, and 4x media. For 8x media, permanent WORM must have a sector size of 2048. Continuous composite write-once (CCW), WORM, and erasable media can either be 1024 or 2048 bytes per sector. 14x media is available in CCW and erasable in 2048 or 4096 bytes per sector. UDO media is available in 8192 bytes per sector. ### Directly attached optical media libraries: One method of connecting optical media libraries is to directly connect the optical media library to your system. A multiwire cable connects the library to an IOP or I/O adaptor card. Directly attached optical media libraries support the following functions: - Hierarchical file system (HFS) application programming interfaces (APIs). - Most integrated file system commands. - Many i5/OS save and restore commands. - Other LAN-connected systems can access the optical media libraries by using the integrated file system. ## | Optical system configurations: - All systems include a rack-mounted CD-ROM or DVD-ROM drive that is ideal for program and data - I distribution. - I The CD-ROM or DVD-ROM drive is primarily intended as a program and data delivery device and, even - I though many users can potentially access it simultaneously, it can access only one media at a time. - A DVD-RAM drive is available to replace the existing read-only drive or to be added as another internal - I drive. This drive can read CD-ROM or DVD-ROM media, and can read or write DVD-RAM media. The - CD and DVD drives supported on the system cannot be used to write to CD-R, CD-RW, DVD-R, - I DVD-RW, or DVD+RW media. - An optical media library is a device that contains at least one optical disk drive and may contain many - l optical cartridges. Optical media libraries can manage large numbers of optical cartridges and users. - Optical media libraries connect directly to your system. A multiwire cable
connects the library to an IOP - or I/O adaptor card. Optical media libraries support all of the following functions: - Hierarchical File System (HFS) application programming interfaces (APIs). - Most integrated file system commands. - Many i5/OS save and restore commands. - Other LAN-connected systems can access the optical media libraries by using the integrated file - l system. # Concepts for optical storage - I This section discusses optical volumes, optical directories and files, and volume identifiers. - You can display the primary menu for optical support by entering GO OPTICAL on the i5/OS command - l line. System administrators and programmers can access most optical commands through this menu. It is - l also convenient to enter many of the optical commands directly on the command line. These commands offer the following functions: - Display optical volumes in an optical media library device (MLD), CD device, or DVD device. - Display files and directories that are contained in any directory in any optical volume. - Display the file attributes of any optical file. - Import or export media in a directly attached optical media library, CD-ROM device, or DVD device. - Make backup copies of volumes, directories, or files that are contained in a directly attached optical device. - Initialize a volume that is contained in a DVD-RAM drive or in a directly attached optical media library. - Work with devices that represent optical media libraries, optical systems, CD drives, and DVD drives. - Add, remove, or check the status of any LAN-attached optical system. - Display active LAN-attached system conversations. - Duplicate one optical volume to another. - Copy files and directories from one optical volume to another. - Check a volume for damaged directories and files. - When you enter GO CMDOPT on the command line, a complete list of optical commands appears. Many - of these commands are accessible through the previous GO OPTICAL menu. # Optical volumes - All optical data is stored on a unit that is called a volume. This is true regardless of the type of media, the - I type of optical media library that is used, and the way the storage device connects to your system. - A single CD-ROM or DVD-ROM disk contains one volume. WORM and erasable optical cartridges are - I two sided and contain two volumes per cartridge (one per side). DVD-RAM can be either one sided or - I two sided. - Each volume has its own name that is chosen by the person who initializes the volume. The name chosen - I must be unique from the names of all other volumes on the system. Two volumes with the same name - I cannot be active at the same time. The volume name usually never changes after the volume is generated, - l although volume renaming is supported. The creator of the CD-ROMs and DVD-ROMs chooses the - I names, and the names cannot be changed. - I HFS, the integrated file system, and the save and restore functions all use volume names to access or - I create data on the volume. - You can display and manage the optical volumes from the i5/OS operating system by using the Work - with Optical Volumes (WRKOPTVOL) command. The hierarchical file system and integrated file system - I include the volume name in their path name to select which volume to use. A typical optical path looks - l like this: - /QOPT/VOLUMENAME/MYDIR/MYFILE.EXT - Where: - /QOPT is the name of the optical file system. - /VOLUMENAME is the volume name that is chosen for the volume. - /MYDIR is the name of a directory on the volume. - /MYFILE.EXT is the name of a file in the directory. # Optical directories and files - Information on an optical volume is organized into units called directories and the basic element of - optical storage is the optical file. - A directory is a logical partition that can contain files and other directories called subdirectories. Every - I volume contains at least one directory called the root directory. You are not required to have other - I directories below the root directory. Directories are a convenient way to keep files organized. - Any data that is available to application programs can be stored in or retrieved from optical files in the form of a data stream. Optical files have the following characteristics: - Data is stored in a stream-file format. - Data is independent of format and record structures. - Data is accessed through byte offsets and lengths. - Data is recognized and managed by the application that creates the file. ### Volume identifiers - Loading CD-ROM or DVD media into a drive causes automatic reading of the information from the - media. Part of this information is the volume identifier. - The volume identifier is a name that is given to the CD-ROM or DVD-ROM when it is created. The - I identifier is also the name that is given to the DVD-RAM media when it was initialized. Depending on - I the media format, the volume identifier can be up to 32 characters in length. On the system, applications - I accessing data from the CD-ROM or DVD often refer to it by its volume identifier. For example, a - CD-ROM volume identifier might be V0LID01. - Applications that need to access file data from any optical media need to refer to the volume identifier. - For example, you could write a C program to use the integrated file system APIs to read file /DIR1/FILE - on the optical volume VOLID01. In this case, the application would specify path /QOPT/VOLID01/DIR1/FILE - on the open request. # Optical media formats - There are several optical media types and media formats used for the i5/OS operating system. - The media format is the file system architecture that exists on the media to manage file, directory, and - volume information. - Writable optical media (such as WORM, erasable, DVD-RAM) is initialized on i5/OS using the Initialize - Optical (INZOPT) command. WORM media must use the High Performance Optical File System (HPOFS) - I format. DVD-RAM media must use Universal Disk Format (UDF). Erasable media can use either HPOFS - or UDF depending on the requirements of the user. You can specify the format by using the MEDFMT - keyword on the Initialize the optical volume (INZOPT) command. The following topics provide - I information about the different media formats and a comparison so you can select the media format that - best meets your requirements. ### Related concepts - "Initializing optical volumes" on page 85 - You must initialize the writable optical media before the system can create directories and files. - "Managing directory- and file-level security" on page 113 - Directory- and file-level security is available for Universal Disk Format (UDF) volumes. - "Saving and restoring optical media" on page 121 - The i5/OS Save and Restore commands support directly attached optical media library devices, - CD-ROM, DVD-ROM, and DVD-RAM stand-alone devices. ### **ISO 9660** - This industry standard media format was originally designed to specify the volume and file structures of - compact-disk read-only memory (CD-ROM) optical disks, and is a read-only media format. - The ISO 9660 format is used currently on CD and DVD read-only media. ISO 9660 media that is created - using the primary volume descriptor (PVD) is supported. ISO 9660 extensions that use the supplementary - volume descriptor (SVD) is not supported. - In addition, there is some support for ISO 9660 extensions defined as the IEEE P1281 (System Use - Sharing Protocol) and P1282 (Rock Ridge Interchange Protocol) specifications. These extensions are also - I known as Rock Ridge. The Rock Ridge alternate name structures through the PVD are supported. This - I support provides recognition and handling of mixed case and long file names, similar to a UNIX system. - Other structures defined by Rock Ridge are not supported in the i5/OS operating system. To enable - support to read Rock Ridge alternate name structure (if it exists), enter CHGOPTA EXTMEDFMT(*YES) - prior to importing the media. If the Rock Ridge alternate name structures do not exist, entering this - command will have no effect. ## | Volume, directory, and file names: - The volume identifier for the primary volume descriptor can be a maximum of 32 characters. The volume - identifier must contain only alphabetic characters (A through Z), numeric characters (0 through 9), or the - underscore (_). - Although not required, you can include one or more directories in the path name. Each element of the - 1 path can be a maximum of 32 characters with the total maximum path length of 256 characters. A path - name can consist of any alphabetic characters (A through Z), numeric characters (0 through 9), or the - underscore (_). - For ISO 9660 media containing Rock Ridge extensions, the length of each element name is not restricted, - but the total maximum path length is still 256 characters. The path name characters are not restricted, but - are recommended to consist of the POSIX portable file name character set (A through Z, a through z, 0 - through 9, period (.), underscore (_), or hyphen (-)). - For ISO 9660 media containing Rock Ridge extensions, file searches are case-sensitive. If no case-sensitive - I match is found, a mixed case match is returned if it exists. If multiple mixed case matches exist on the - volume, an error will be returned indicating that ambiguous names exist on the media. Some optical - I commands, such as Copy Optical (CPYOPT), are not supported when duplicate, ambiguous file names - l exist. For example Rock Ridge allows files ABC.ext and abc.EXT to exist in the same directory. This is not - I supported by CPYOPT and may produce unpredictable results. - I File name searches are not case sensitive, meaning that you can use either uppercase or lowercase - I characters to access existing files. # Directory and file security - There is no direcotry- and file-level security for ISO 9660 media. Volume-level security is available - I through authorization lists. # | Programming interfaces for ISO 9660:
- I The system can read files on ISO 9660 media by using either the hierarchical file system (HFS) application - programming interface (API) or the integrated file system application programming interface (API). ## High performance optical file system - I High Performance Optical File System (HPOFS) is an IBM-developed media format architecture available to - I use when initializing optical media. - Use the WORM-based version of HPOFS. This media format is designed (and required) for WORM - I media, but you can use it (and it is the default) when initializing erasable optical media. HPOFS is a - WORM media format. You can write each sector of the media only once when creating and updating files - I and directories. This unique characteristic of never rewriting the same sector allows all previous versions - I of every file to remain on the media. One drawback of this is that media consumption continues to grow - I as you update and even delete files. - This section contains detailed information on the implementation of HPOFS for directly attached optical - I media libraries. This section does not address HPOFS characteristics for LAN-attached optical media - l libraries. - Detailed information on the implementation of HPOFS for directly attached optical media libraries is - I available in the command support for media formats. ### Related concepts - "CL command support for media formats" on page 76 - This topic provides information on using i5/OS commands to save and restore data and some of the - restrictions for the ISO 9660, High Performance Optical File System (HPOFS), and Universal Disk - Format (UDF) media. # Volume, directory, and file names for HPOFS: - High Performance Optical File System (HPOFS) volume identifiers can be a maximum of 32 characters - I and must contain only alphabetic characters (A through Z), numeric characters (0 through 9), a hyphen - (-), or a period (.). - The first character of the volume identifier must be alphabetic or numeric and the identifier cannot - contain imbedded blanks. Although not required, you can include one or more directories in the path - I name. Each element of the path can be a maximum of 255 characters with the total maximum path length - I of 256 characters. A path name can consist of any of the EBCDIC characters except hex 00-3F, hex FF, - quotation marks ("), apostrophe ('), greater than symbol (<), less than symbol (>), question mark (?), and - backward slash (\). - The system stores all alphabetic characters for directory and file names to the media in uppercase. File - name searches are not case sensitive. # Directory and file security - There is no directory and file-level security for High Performance Optical File System (HPOFS) media. - Volume level security is available through authorization lists. ## Space reclamation: - You can update or delete files even though High Performance Optical File System (HPOFS) is a - write-once read-many (WORM) media format. - When a file is changed or deleted, a new version of the file is written, and the old version still exists on - I the media. This is true for both WORM and erasable media. The old file versions will always exist on - WORM and will exist on erasable media until the entire volume is reinitialized. When you change or - I delete a file, the system does not reclaim the space that was used by the old file. Media consumption - continues to increase on HPOFS media until you reinitialize the volume (for erasable media). You can - never reclaim deleted space for WORM media. ### | Programming interfaces (HPOFS): - You can create or read files on High Performance Optical File System (HPOFS) media by using either the - hierarchical file system (HFS) application programming interface (API) or the integrated file system - application programming interface (API). - The following are items specific to the implementation of the HPOFS media format that application developers need to know. ## **National Language Support** The integrated file system interfaces assume that the coded character set identifier (CCSID) represents the path in effect for the job. The system then converts the path from the job CCSID to an internally used CCSID. The HFS interface makes no assumption about the CCSID of the path; therefore, the system performs no character set conversion on the path. This could produce undesirable side effects if an application used the two API sets interchangeably or if the application changed from using one API set to the other. A program should not create files through HFS and then try to read them by using the integrated file system APIs. Depending on the characters that are used in the path name, this could result in a File not found error. This type of problem can be avoided if the application uses only invariant characters (for example letters (A-Z), numbers (0-9), plus sign (+), equal sign (=), percent sign (%), ampersand (&), blank space(), comma (,), underscore (_), period (.), colon (:), and a semicolon (;) for path names. Invariant characters are graphic characters that map to the same code point in all character sets. ## Held optical files When the system writes an optical file that it cannot close normally, the system may create a held optical file. The held file exists on i5/OS internal disk storage and contains the data written to the file. You can then save or release the held file through an API or command interface. The system creates held files only when files fail to archive on HPOFS media. # Synchronous write operations You can open files on HPOFS through HFS by specifying that all write operations be synchronous. When specified, write operations will be synchronous to i5/OS internal disk storage, not to the optical media. In the event of a power failure, the data is recoverable from a held optical file. Similarly for the HFS Force Buffered Data API and the integrated file system fsync() API, data is forced to i5/OS internal disk storage, not to optical media. Again, in the event of a power failure, the data is recoverable from a held optical file. ## File sharing I ı Multiple jobs or threads can share files. The system fully recognizes files that share modes as specified on the open request. For example, assume that a job opens a file that specifies it to share only with readers. This means that you can perform other open operations only as long as the access requested remains read only. #### Extended file attributes The system supports extended file attributes for files on HPOFS media. Extended attributes can be written to files using the HFS Change Directory Entry Attributes API as well as through some integrated file system interfaces. ## Directory structure and performance (HPOFS): - High Performance Optical File System (HPOFS) volumes have a dual directory structure to access files. - Both a hash and hierarchical structure exist to provide a primary and secondary path to the file data. If - I the primary directory structure becomes damaged, the secondary path is used. - I The hash directory structure is designed to reduce the amount of media I/O required, which improves - I performance for file access. Because of this hash directory structure, directory depth has less effect on - I performance than if the directory were searched hierarchically. For example, if /DIRECTORY1 contains - 1 1000 files and /DIRECTORY2 contains 100 files, file search times for files in /DIRECTORY1 will generally - take no longer than file searches in /DIRECTORY2. This is because the system performs the searches by - I using the hash structure, not the hierarchical structure. - l Directory depth has less effect on performance for a hash search than for a hierarchical search. However, - I the overall directory depths and total number of files on a volume will affect performance. In general, a - I volume with fewer files on it will result in better file performance than a volume with more files. ## Media interchange between LAN and directly attached libraries: - 1 This topic lists how High Performance Optical File System (HPOFS) optical media created in a - LAN-attached optical library can be accessed. - I HPOFS formatted optical media created in a directly attached optical library can be accessed in a - LAN-attached optical library assuming that the media type is supported. Conversely, optical media - I created in a LAN-attached optical library can be accessed in a directly attached optical library if the - I media type is WORM or rewritable. Rewritable optical volumes initialized as rewritable media are not - I interchangeable between LAN and directly attached libraries. Universal Disk Format (UDF) media created - I in a directly attached optical library cannot be accessed in a LAN-attached optical library device. ## Universal disk format - Universal Disk Format (UDF) is the Optical Storage Technology Association (OSTA) supported subset of - ISO/IEC 13346. UDF also addresses ECMA-167, which is equivalent to ISO 13346. UDF is a writable file format that provides true space reclamation capabilities as well as file and directory-level security. This section contains detailed information on the implementation of UDF for directly attached (C4x) 3995 optical media libraries as well as for a DVD-RAM device. Note: Although not accessible through i5/OS operating system, CD and DVD media that are created using the supplementary volume descriptor of ISO 9660 may be accessible in a system. You can access them through an integrated system. For more information, see the *Windows® environment on System i* and *Linux® on an Integrated xSeries® Solution* topics. # Volume, directory, and file names: - Volume identifiers can be a maximum of 30 characters and must contain only alphabetic characters (A - through Z), numeric characters (0 through 9), a hyphen (-), or a period (.). The first character must be - I alphabetic or numeric, and the identifier cannot contain imbedded blanks. - Although not required, you can include one
or more directories in the path name. Each element of the - path can be a maximum of 254 characters with the total maximum path length of 256 characters. A path - name can consist of any of the EBCDIC characters except x00-x3F, xFF, quotation marks ("), asterick (*), - less than (<), greater than (>), question mark (?), and backward slash (\). - The system stores all alphabetic characters for directory and file names to the media in uppercase when - l created through HFS or the i5/OS save interfaces. The system stores all alphabetic characters for directory - and file names to the media in mixed case when created through the integrated file system interfaces. File - I name searches are not case sensitive, meaning that you can use either uppercase or lowercase characters - I to access existing files. - I File searches on Universal Disk Format (UDF) volumes created by i5/OS are not case-sensitive. For UDF - I media created or updated by another operating system platform, a case sensitive search is performed. If - I no case-sensitive match is found, a non case-sensitive match is returned if it exists. If multiple matches - lexist on the UDF volume that are not sensitive, an error is returned indicating that ambiguous names - l exist on the media. Some optical commands, such as Copy Optical (CPYOPT), are not supported when - duplicate, ambiguous file names exist. For example, a UDF that is created on another operating system - I may allow files ABC.ext and abc.EXT to exist in the same directory. This is not supported by the CPYOPT - I command and may produce unpredictable results. ### Programming interfaces (UDF): You can create files or read files on Universal Disk Format (UDF) media by using either the Hierarchical File System (HFS) application programming interface (API) or the integrated file system API. There are things specific to the i5/OS implementation of the UDF that application developers need to know. # National language support The integrated file system interfaces assume that the coded character set identifier (CCSID) represents the path in effect for the job. The system then converts the path from the job CCSID to an internally used CCSID. The HFS API makes no assumption about the CCSID of the path; therefore, the system performs no character set conversion on the path. This could produce undesirable side effects if an application used the two API sets interchangeably or if the application changed from using one API set to the other. Do not create files through HFS and then try to read them by using the integrated file system APIs. Depending on the characters that are used in the path name, a File not found error could result. This type of problem can be avoided if the application uses only invariant characters (for example, A-Z 0-9 + = % & (), ...:;) for path names. *Invariant characters* are graphic characters that map to the same code point in all character sets. Since UDF is an industry-standard media format, NLS compliance could be important because of the increased opportunity for media interchange across different operating system platforms. This causes the system to limit HFS interfaces to UDF media. Additionally, the system uses invariant characters to reduce the chance of media interchange problems that are related to file names. Assume that an HFS-based application absolutely requires the use of variant characters. You can use the Change Optical Attributes (CHGOPTA) CL command to allow variant characters through the HFS interface by specifying CHGOPTA ALWVRNT(*YES). After the system allows variant characters through HFS, there is no guarantee that path names will interchange correctly if accessed from another operating system. There is also no guarantee that path names will be consistent between the HFS and integrated file system interfaces. ### Held optical files ı I The system does not create held files for UDF media. When a file fails to close on UDF, the system signals an error to the application. This error then closes the file without writing the data to optical disk. The application must rewrite the file (open, write, close) to ensure that the data is on optical disk. The exception to this is if the application did a Force Buffered Data or fsync() API (QHFFRCSF) prior to the close operation. These APIs will force the writing of the data to the optical disk. ## File sharing Multiple jobs or threads can share files for a read operation, but writers are always exclusive. If one job or thread is writing to a file on UDF, you cannot use any other jobs or threads to open that file. Therefore, when using the integrated file system open() or open64() API, the sharing modes O_SHARE_RDONLY, O_SHARE_WRONLY, and O_SHARE_RDWR do not provide the requested level of sharing when the access mode is O_RDWR or O_WRONLY. When the access method is O_RDWR or O_WRONLY, the resulting sharing mode will be equivalent to O_SHARE_NONE. When using the HFS Open Stream File API, the lock modes deny none, deny write, and deny read do not provide the requested level of sharing when the access mode is write only or read/write. When the access method is write only or read/write, the resulting lock mode is deny read/write. ## Mixed-case file name When created through the integrated file system interfaces, files and directories created on UDF volumes preserve the case specified on the create operation. For example, if file Abc is specified on the open() API, Abc will be created on the media in the mixed-case form. Even though the system preserves file case, file searches are not case-sensitive meaning that the system can read the file that uses any case such as ABC or abc. When created through the HFS or save and restore interfaces, the system stores files and directories that are created on the UDF volumes in uppercase. For example, if you specify file Abc on the Open Stream File API, the system creates ABC on the media. Again, file searches are not case sensitive, so you can specify any case to read the file. File searches on UDF volumes created by i5/OS are not case-sensitive. For UDF media created or updated by another operating system platform, a case sensitive search is performed. If no case-sensitive match is found, a not case-sensitive match is returned if it exists. If multiple not case-sensitive matches exist on the UDF volume, an error is returned indicating that ambiguous names exist on the media. ### Directory and file security: - Directory- and file-level security is available for Universal Disk Format (UDF) volumes. The system - I maintains the data authorities of optical directories and files for three groups of users: owner, group, and - I public. Volume-level security is also available through authorization lists. - Directory- and file-level security is not guaranteed when volumes are removed and transported to and - I from other systems. Security information recorded in the UDF structures on the media may not have the - I same meaning on another system as it does on the system where it was written. ### Related concepts - "Managing optical security and auditing" on page 110 - You can secure information on optical media by using i5/OS security functions. - "CL command support for media formats" - This topic provides information on using i5/OS commands to save and restore data and some of the - restrictions for the ISO 9660, High Performance Optical File System (HPOFS), and Universal Disk - Format (UDF) media. # Media interchange: - Universal Disk Format (UDF) media created on the i5/OS operating system is UDF Version 2.01. This - media can be interchanged to other operating systems that support this version of UDF. - UDF-compliant media that is created with UDF Version 1.5 or earlier is accessible as read only. Media - created with UDF Version 2.0 and UDF 2.01 is accessible for read and write. ### Directory structure and performance (UDF): - Universal Disk Format (UDF) volumes have a single (hierarchical) directory structure to access files. - Because of this hierarchical directory structure, the depth of a directory tree has a direct impact on file - performance. For example, if /DIRECTORY1 contains 1000 files and /DIRECTORY2 contains 100 files, file - search times for files in /DIRECTORY1, in general, take longer than file searches in /DIRECTORY2. This - is because the system performs file searches hierarchically, which may require looking at every entry in - the directory. - In general, file performance is better for UDF if you evenly distribute files across several directories and subdirectories. # CL command support for media formats This topic provides information on using i5/OS commands to save and restore data and some of the restrictions for the ISO 9660, High Performance Optical File System (HPOFS), and Universal Disk Format (UDF) media. ### ISO 9660 You can use i5/OS restore commands to restore data from ISO 9660 media. This is true only when the media was correctly mastered from a save image on tape. There are some restrictions on which optical commands are supported for ISO 9660 media. #### **HPOFS** i5/OS save and restore commands can be used to save and restore data on HPOFS optical media. Refer to Optical Save and restore for more information about save and restore to HPOFS volumes. There are no restrictions on which optical commands the system supports for HPOFS media. **UDF** i5/OS save and restore commands can be used to save and restore data on UDF optical media. There are some restrictions on which optical commands are supported for UDF volumes. For example, the system does not support Work with Optical Directories (WRKOPTDIR) and Work with Optical Files (WRKOPTF) commands. The Display Optical (DSPOPT) command has some restrictions when used for UDF volumes. You should use the integrated file system commands Work with Object Links (WRKLNK) and Display Object Links (DSPLNK) instead of the optical commands. - Some optical commands have no meaning when used with certain optical
media formats. No support - exists for other commands with certain optical media formats. This table lists all of the volume-related - optical commands and the media formats to which they apply. | | Command | ISO 9660 | UDF | HPOFS-attached device | HPOFS in LAN-attached Device | |---|---|----------------------------------|---------------------|-----------------------|------------------------------| | I | CHGOPTVOL | Partially supported ¹ | Partially supported | Supported | Partially supported | | I | CHKOPTVOL | Supported | Supported | Supported | Not supported | | I | СРҮОРТ | Supported | Supported | Supported | Not supported | | Ι | CVTOPTBKU | | Supported | | | | Ι | DSPOPT | Supported | Partially supported | Partially supported | Partially supported | | I | DSPOPTLCK | Supported | Supported | Supported | Partially supported | | Ι | DUPOPT | Not supported | Supported | Supported | Partially supported | | Ι | INZOPT | | Supported | Supported | Not supported | | I | WRKHLDOPTF | | Supported | | Not supported | | Ι | WRKOPTDIR | Supported | Supported | Not supported | | | I | WRKOPTF | Supported | Supported | Not supported | Partially supported | | Ι | WRKOPTVOL | Supported | Supported | Supported | Partially supported | | I | Partially supported indicates that some command parameters might not apply when used with the indicated device. | | | | | ## Related concepts - "High performance optical file system" on page 71 - High Performance Optical File System (HPOFS) is an IBM-developed media format architecture available to use when initializing optical media. - "Directory and file security" on page 75 - Directory- and file-level security is available for Universal Disk Format (UDF) volumes. The system - maintains the data authorities of optical directories and files for three groups of users: owner, group, - and public. Volume-level security is also available through authorization lists. - "Saving and restoring optical media" on page 121 - The i5/OS Save and Restore commands support directly attached optical media library devices, - CD-ROM, DVD-ROM, and DVD-RAM stand-alone devices. # Configuring optical devices - This topic provides information on configuring your CD-ROM, DVD-ROM, DVD-RAM devices, and - optical medial libraries. The systems come with a rack-mounted CD-ROM or DVD-ROM drive. - As an option, you can order a DVD-RAM drive as a feature to replace your internal drive or to have it in - addition to your internal drive. All optical drives are multi-user devices that multiple users can access - I concurrently. - Directly attached optical media libraries are attached to the system through the small computer system - I interface (SCSI). On i5/OS, multiple users can access data on optical media libraries concurrently. These - I interfaces are available to access the data on the CD and DVD devices and optical media libraries: - Save and restore interface - Hierarchical file system (HFS) - Application programming interface (API) - Integrated file system interfaces - Optical commands and utility displays - Note: The CD-ROM and DVD-ROM drives on the system are not enabled for the digital audio disk format. # Connectivity of non-IBM library devices - In addition to IBM optical libraries, you can now attach some non-IBM optical library devices to the - system. For more information on which devices are supported and system configuration requirements, - see the Optical Storage web site. ### Related information Optical Storage web site # Configuring your optical drive - Depending on the model of your system, you can position the CD-ROM or DVD drive either horizontally - or vertically in the system. - Before you use the CD-ROM or DVD drive, you must have a device description for it. The system can - create the device description automatically during an IPL if auto-configuration is on. Alternatively, you - I create it manually by using the Create Device Description Optical (CRTDEVOPT) command. Either - I method is acceptable. After you create the device description, you can vary the configuration by using the - Vary Configuration (VRYCFG) command. The configuration description for the CD-ROM or DVD device - is *OPT. When the device description is varied on, it displays a status of ACTIVE. # Configuring directly attached optical media libraries - To create a device description for an optical media library device, use the Create Device Description - (Media Library) (CRTDEVMLB) command. - Specify the device class as *OPT. For example: - CRTDEVMLB DEVD(OPTMLB01) DEVCLS(*OPT) RSRCNAME(OPTMLB01) - The configuration description for an optical media library device (MLD) is *OPTMLB. In addition, you - can use the following commands to work with device descriptions: - To change the device description, use the Change Device Description (Media Library) (CHGDEVMLB) - command. - To vary the device description, use the Vary Configuration (VRYCFG) command. - To delete the device description, use the Delete Device Description (DLTDEVD) command. - To work with the configuration status, use the Work with Configuration Status (WRKCFGSTS) - command. ## Labeling optical cartridges - Each optical disk cartridge contains two sides. Each side corresponds to an optical volume. There are two - techniques to associate a volume ID label with the correct side of the optical cartridge. This is important - to know when you set the write-protect switch. - The optical cartridge should be labeled the first time the cartridge is added to an optical media library. - This prevents any confusion in the future when you are attempting to determine which volume goes with which side. ### Related concepts - "Example: Adding optical cartridges to an optical media library" on page 79 - This example provides information about adding optical cartridges to an optical media library. # Labeling a new optical cartridge with uninitialized volumes: - Several steps are necessary to label a cartridge that is new (both volumes are uninitialized). The options - are selected from the Work with Optical Volumes display. - 1. Label sides A and B with the volume names you will use when initializing them. - 2. Place the cartridge in the input/output station with side A facing up. - 3. Select option 1 Add. After you have added the cartridge, the volume names appear on the Work with - Optical Volumes display as system-generated IDs that consist of the system date and time. The earlier time corresponds to the side that was facing up in the input/output station. Therefore, if side A was - facing up in the input/output station, then side A will have the earlier date and time of the two - volumes. - 4. Initialize the volume that corresponds to side A by choosing option 10 (Initialize) next to the system-generated volume ID. Use the labeled name. Repeat this step for side B. ### Labeling an optical cartridge with an initialized volume: - To label a cartridge that has at least one initialized volume on it, follow these steps. The options are selected from the Work with Optical Volumes display. - 1. If the cartridge resides in an optical media library, remove it by selecting **Remove** next to the volume ID. - 2. After the cartridge is removed, set one side of the cartridge to write-protected and the other side to write-enable. - 3. Add the cartridge to an optical media library by selecting **Add**. - 4. Press F11 (View 2) to see the write-protected status of the newly added volumes. - 5. Determine which volume is write-protected and make a record of this volume ID. - 6. Remove the optical cartridge by typing selecting **Remove** next to the volume ID. - 7. Label the write-protected side of the cartridge to the volume ID you previously recorded. ## Related tasks I - "Setting write protection" on page 92 - The write-protect function prevents writing onto the disk. # Getting started with optical cartridges and volumes - This topic introduces you to some of the optical support functions and familiarizes you with using optical cartridges and volumes. - I Through these examples you can perform the following tasks: - Work with optical volumes - Add optical cartridges to an optical media library - Initialize optical volumes - Remove optical cartridges from an optical media library - Note: The device, volume, and directory names that are used in these examples are for illustrative - l purposes only. Your applications may require different volume names or different directory names. - Additionally, your optical devices might have different names. - I Only some of the available optical commands are discussed here. Do not use these topics as the primary - I reference for these commands because they do not describe all of the functions that are available. These - I topics provide a tutorial on getting started by using the optical utilities. - The following examples assume that you have a new optical disk cartridge available to use and that your optical media library is empty. - Example: Adding optical cartridges to an optical media library: - This example provides information about adding optical cartridges to an optical media library. - To add an optical cartridge to the optical media library that you have attached to your system, place the - optical cartridge with side A up in the input/output station of the optical library dataserver. Make sure - I the cartridge is seated properly. Use a new optical cartridge if one is available. - 1. Type 1 **Add** in the options field and press the Enter key. The Add Optical Cartridge display appears. - 2. Type the name of the optical media library to which you want to add the cartridge. This is the name of the library description that was created during installation. If you have more than one library attached, you need to know the optical media library association and configuration. To view your - optical configurations, type WRKMLBSTS MLB(*OPTMLB). -
3. When all parameters are entered, press the Enter key. ### Related concepts - "Labeling optical cartridges" on page 78 - Each optical disk cartridge contains two sides. Each side corresponds to an optical volume. There are - two techniques to associate a volume ID label with the correct side of the optical cartridge. This is - important to know when you set the write-protect switch. ## **Example: Initializing optical volumes:** - This example provides information about initializing optical volumes in an optical media library. - If the cartridge you added is a new cartridge, the optical cartridge has two uninitialized volumes on it. - An uninitialized volume is an optical volume that has never been formatted or initialized. It is similar to - a new diskette that needs to be formatted. If a volume has not been initialized, it has a volume type of - *UNFORMATTED (uninitialized). - An uninitialized volume does not have a volume name written to it. When an uninitialized volume is - added to an optical media library, a volume name that consists of a date and time (YYMMDDHHMMSS) - I is assigned to it. Optical volumes cannot be written to or read from until they are initialized. - I On the Work with Optical Volumes display, you see that two volumes were added, one for each side of - the optical disk cartridge. If either of the volumes was initialized, the volume type would indicate - *PRIMARY or *BACKUP, and most likely the volume ID would be different from the ones in the - example. An optical disk can contain one volume that is initialized and one volume that is uninitialized. - The volumes are treated independently even though they exist on the same cartridge. - If both volumes are uninitialized, the earlier date and time for the volume names indicate the volume - that was facing up in the input/output station. In this example, because side A was facing up when the - add operation was performed. This is important to know so the volume can be properly labeled when - removed from the library. - To initialize the volume you determined to be side A, enter option 10 (Initialize) in the Opt field beside - that volume. Press the Enter key. - Note: Initializing a previously initialized volume makes all existing data on that volume inaccessible. If you typed 10 next to a volume that is already initialized and you do not want to lose the data on that volume, do not continue with this function. Use a volume that is uninitialized. - Complete the following fields on the Initialize Optical Volume display: #### Volume identifier This is the existing volume ID of the volume that you are going to initialize. For uninitialized volumes, this name is a system-generated name that consists of the date and time. This is only a temporary name until the volume initializes. #### Volume identifier Type the new name for the specified volume. This is the name that users and applications will use when referring to the volume. #### Volume-full threshold Leave this set to the default value. Use this value to give the volume a logical volume-full threshold. #### Check for active volume Leave this set to *YES to verify that the optical volume was previously initialized. Leave this set to *NO. This specifies whether or not existing data on the volume will be cleared during the initiating process. This parameter only applies when the volume media type is *DVD-RAM. Specifying CLEAR(*YES) can cause this operation to take up to one hour. ### Text description Enter a short description of the volume. Fifty characters are available for this field. Press the Enter key to initialize the volume. **Note:** Initializing an erasable optical volume can take up to 30 minutes. After the volume is initialized, the Work with Optical Volumes display reappears and the previously uninitialized volume is now initialized. The type has changed from *UNFORMATTED to *PRIMARY, and I the volume is now available for reading and writing files and directories. From this display, you can select the following options: - 1. Add an optical cartridge - 2. Change the volume attributes - 1 3. Copy a volume - 4. Remove an optical cartridge - 5. Display volume information - 6. Print volume information - 7. Rename a volume - 8. Work with directories on the volume - 9. Delete volume information for a previously removed volume - 1 10. Initialize or reinitialize a volume - 1 11. Work with directories and files on the volume - 12. Duplicate a volume to another optical media - 13. Check the volume for damaged files and return a count of the directories and files ### Example: Removing an optical disk cartridge: - I This example shows how to remove the optical disk cartridge from the optical media library. - Because there are two volumes on a cartridge, removing a cartridge actually removes two volumes. - Therefore, specifying **Remove** on any of the volumes shown in the example produces the same result. Before removing a cartridge, make sure that the input/output station is empty. The optical media library cannot remove a cartridge if the input/output station is occupied by another cartridge. 1. Type 4 **Remove** in the Opt field next to the cartridge you want to remove and press the Enter key. The Remove Optical Cartridge display appears. Complete the fields of the Remove Optical Cartridge display as follows: #### Volume identifier This is the volume you selected on the Work with Optical Volume display. ### Volume description option Specify *REMOVE for this field to remove the volume descriptions from the optical index database files after the cartridge has been removed. - Specify *KEEP for this field to save the volume descriptions for initialized volumes in the optical index database files. This causes the system to consider the volumes as *REMOVED. - 2. Press the Enter key to remove the optical disk cartridge. The optical disk cartridge has now been moved to the input/output station of the optical library dataserver. - 3. Press F3 (Exit) to return to the optical support main menu. The resulting display shows that the optical disk cartridge is no longer available. - 4. Press F3 again to return to the i5/OS command line. # Using optical devices - You can display the primary menu for optical support by entering GO OPTICAL on the i5/OS command - line. System administrators and programmers can access most optical commands through this menu. It is - also convenient to enter many of the optical commands directly on the command line. - These commands offer the following functions: - · Display optical volumes in a directly attached or LAN-attached optical media library device (MLD), CD device, or DVD device. - Display files and directories that are contained in any directory in any optical volume. - Display the file attributes of any optical file. - Import or export media in a directly attached optical media library, CD-ROM device, or DVD device. - Make backup copies of volumes, directories, or files that are contained in directly attached optical devices. - Initialize a volume that is contained in a DVD-RAM drive or in a directly attached optical media library. - Work with devices that represent optical media libraries, optical systems, CD drives, and DVD drives. - Add, remove, or change the status of any LAN-attached optical system. - Duplicate one optical volume to another. - Copy files and directories from one optical volume to another. - Check a volume for damaged directories and files. - When you enter GO CMDOPT on the command line, a complete list of optical commands appears. Many - of these commands are accessible through the previous GO OPTICAL menu. - The following topics provide information about configuring your CD-ROM, DVD-ROM, or DVD-RAM - device as well as tips for loading and unloading media. # Loading and unloading CD-ROM and DVD media - Loading a CD-ROM or DVD media into a drive causes the system to read the media to retrieve the - volume identifier. - The system stores this volume identifier in an optical index database file to expedite future access to the - I media. After the volume identifier is in the optical index, you can access the media through save and - restore options, as well as the application programming interfaces. Unloading the media from the drive - removes the volume identifier from the optical index. The system adds the volume identifier to the - optical index database in one of two ways: - When the CD-ROM or DVD is loaded into a varied-on device, a CD-ROM or DVD can be loaded into a varied-off device. However, the optical index is not updated until you vary on the device description. - When the user varies on a CD-ROM or DVD device description with media in it. - Additional processing could take several seconds after the tray slides in before the CD-ROM or DVD is - I usable. This is true for varying on as well. Even if the vary-on operations completed successfully, the - CD-ROM or DVD is not usable until the system reads and stores the media information in the optical - index. This may take several seconds after the vary-on operation is completed. - When the user successfully loads a CD-ROM or DVD into a drive, the system sends the following - I message to the QSYSOPR message queue: - I Volume VOLID01 added to optical device. - When a CD-ROM or DVD is successfully removed from a drive, the system sends the following message - I to the QSYSOPR message queue: - I Volume VOLID01 removed from optical device. - You can use the Work with Optical Volumes (WRKOPTVOL) command to verify the successful adding or - removing of the CD-ROM or DVD. - You can also use the Display Optical (DSPOPT) command to display optical volume information. - Occasionally media may fail to load successfully into the drive. Some of the possible causes for an - I unsuccessful load are listed below: - Media or drive error occurred. - The media format is not supported (digital audio CD-ROM). - The system encountered a duplicate volume identifier. - Depending on the error, the tray may or may
not eject if a CD-ROM or DVD fails to load. A failure to - I load the CD-ROM or DVD might not be obvious. Your first indication may be that you received one of - I the following messages when trying to access the CD-ROM: - I Optical volume format not recognized. - I Optical volume not found. - I If an error does occur when loading media or varying on the drive, the system signals an error message - to the QSYSOPR message queue. This message describes the reason for the failure. - The processing for the load, unload, and vary-on operations runs in job QIOBSCD. If errors occur during - I these operations, view the job log of QJOBSCD to see the detailed messages. ### Allocating the device description - I The process of loading the CD-ROM or DVD media requires shared update (*SHRUPD) use of the device - description. - The QJOBSCD must be able to obtain a *SHRUPD lock on the device description for the load to complete - I successfully. If another job is holding a conflicting lock on the device description, the load processing will - I fail with the following errors in the QJOBSCD job log. - I Optical device xxxxx in use. - I Add optical disk cartridge failed to complete successfully. - As an example, assume that some job allocates OPT01 with an Exclusive Allow Read lock as follows: - I ALCOBJ OBJ((OPT01 *DEVD *EXCLRD)) - As long as the system holds this lock, CD-ROM and DVD loads will fail in QJOBSCD. # Allocating/Deallocating an optical drive - You can allocate or deallocate a drive within a media library. - Optical media libraries range from a model that has a single drive to a model that has twelve drives. Use - I the Work with Media Library Status (WRKMLBSTS) command to see the allocation status of each drive - I within a media library. The allocation status for a drive can be ALLOCATED, DEALLOCATED or - I *UNKNOWN. - The default allocation status for an optical drive is ALLOCATED, which means that the drive is available - I for use by the optical media library. The system sets this default value at IPL time. You can only change it - I using the Work with Media Library Status (WRKMLBSTS) command. DEALLOCATED means that the - I drive becomes unavailable for use by the optical media library. The allocation status for drives in an - optical media library that is varied off is *UNKNOWN. - There are times when a drive should be removed from serving the optical media library such as when it - is suspected of needing repair. To do this, you need to change the drive allocation status to - DEALLOCATED. This will make the drive unavailable for use by the optical media library. - To deallocate a drive, select option 6 (Deallocate resource) on the desired device or resource. - The device allocation status of deallocated remains in effect until the drive is allocated again or an IPL of - the system occurs. # Using optical volumes - These topics describe the Work with Optical Volumes options on the Optical Support Utilities main menu. - I These options are organized hierarchically, with volumes as the highest in the order and files as the - l lowest in the order. You can use the appropriate "Work with..." command to access these panels directly - I without having to go through the Optical Support Utilities main menu. Each display presents the selected - information and the options that are available. Some options might not apply to all optical devices or - volumes. - I The primary menu for working with optical volumes is the Work with Optical Volumes display. There are - several variations of the display to accommodate alternative formats and extended attribute information. - You can select the Work with Optical Volumes display by choosing Work with optical volumes on the - Optical Support Utilities menu. You can also run the Work with Optical Volumes (WRKOPTVOL) - command on the command line. - The Work with Optical Volumes (WRKOPTVOL) command applies to the following volumes: - Volumes in CD-ROM or DVD devices - Volumes in optical media library devices - Volumes in virtual optical devices - Volumes in LAN-attached optical library devices # Displaying optical volumes - When the Work with Optical Volumes display first appears, it includes a list of all volumes in all - CD-ROM devices, DVD devices, optical media libraries, and LAN-attached devices. - The volume names that are displayed are determined by what you type in the device (DEV) and CSI - parameters. The following options are valid for the DEV parameter: - **Name** The name of a specific device. This lists all volumes in the specified device. - *ALL The list of all volumes in all devices. The volumes are displayed in alphabetical order regardless of the device they are in. You can press F11 (View 2) on the Work with Optical Volumes display to view the text variation of the display. - Press F11 (View 1) to return to the status variation. - A third variation of the Work with Optical Volumes display is the extended information display. To view - this display, press F14 (Show extended information) on the Work with Optical Volumes display, or use - the WRKOPTVOL command and set the extended information parameter to *YES. - Unlike the status and text variations, this display requires that the optical device be varied on. If an - I optical device is not varied on, message OPT1520, Data displayed may not be current, is returned. # Initializing optical volumes - I You must initialize the writable optical media before the system can create directories and files. - When you initialize a volume, a new volume identifier must be given, which is then written to the - I media. - You initialize an optical volume using the Initialize Optical (INZOPT) command. To select this command - I from the Work with Optical Volumes display, select option 10 (Initialize) in the Opt (Option) column next - to the volume you want to initialize. The Initialize Optical Volume display appears and prompts you for - required information. - I The Media format parameter determines the media format of the volume. *MEDTYPE is the default, - I which means that the media type determines the media format. The two media formats available are - Universal Disk Format (UDF) and High Performance Optical File System (HPOFS). - Attention: When you initialize an optical volume, all information previously written on the volume - l becomes inaccessible. - The INZOPT command applies to the following volumes: - Volumes in directly attached optical media libraries - Volumes on writable media in DVD devices - Volumes in virtual optical devices. # Renaming optical volumes - You can rename an optical volume without losing the information on the volume. - I To rename a volume, select **Rename** in the Opt (Option) column on the Work with Optical Volumes - I display. The fields on this display show the following information for renaming optical volumes: - Volume: The current name of the optical volume for renaming appears in this field. - *New Name:* Specify the new name of the optical volume. The new name automatically becomes the current volume name. - Note: You can rename unformatted (uninitialized and unknown) volumes. When an unformatted volume - is renamed, the new name acts as an alias to the unformatted volume. The new name will not be - written to the media and will not be preserved if the volume is exported from the device. The - name is only a temporary volume identifier used to refer to this volume. # Adding optical disk cartridges - Use this procedure to add an optical disk cartridge to an optical volume. - To add an optical disk cartridge, perform the following steps: - 1. On the Work with Optical Volumes display, select **Add** in the Opt column next to the blank volume - 2. On the Add Optical Cartridge display, enter: - Optical media library device (required) - Authorization list - Rebuild directory index - Media location - Note: ı I - Specifying *NO for the Rebuild directory index prompt can improve the performance of the Add Optical Cartridge (ADDOPTCTG) command by deferring the rebuilding of the optical directory index until a later time. - Some 399F models support adding multiple media through the bulk magazine. *MAGAZINE can be specified to use this feature if available for the device. - You do not need to provide a volume identifier. The system supplies a date and time stamp as the - volume identifier. The date and time stamp is used to track each volume until it is read. If the volume is - not initialized, the date and time stamp serves as its identifier until the volume is initialized with a - user-supplied name. - Note: The Add Optical Cartridge (ADDOPTCTG) command applies to: - · Directly attached optical media libraries - · CD and DVD devices # Copying optical volume data - Optical files can be copied from one or more volumes or directories to other volumes or directories. - To copy optical files in one or all of the directories on a volume to another volume or directory, select - Copy in the Opt column on the Work with Optical Volumes display next to the volume with the - directory you want copied. - This command is not allowed for LAN-attached optical devices. If you attempt to use a LAN-attached - optical device, and error message is issued. - The name of the volume appears on the display. You must specify the name of the directory to be copied - from and the volume to receive the copy. - Note: The volume must be initialized before copying. - If you are copying a full volume, specify an unused volume to receive the copied files to be sure that - enough space is available. - This command does not delete files for you. Therefore, if you use this command to make additional - copies, you must delete files from the target volume that have been deleted from the source volume. - When the copy request is completed, a message is added to the job log stating the number of files that - I were copied successfully and the number of files that were not copied. For each file that is not copied, a - I message
stating the full file name is added to the job log. For each directory that is processed, a message - I is added to the job log stating the number of files that were copied successfully and the number of files - that were not copied successfully. # Select files to copy (SLTFILE) parameter - The Select files to copy (SLTFILE) parameter indicates how files are to be selected for copying. You can - I select whether to replace files that already exist on the volume to which you are copying. A value of - *CHANGED specifies that a file is copied if it does not exist on the target volume, or if the file is more - I current than the one on the target volume. A value of *NEW specifies that only files that do not already - exist in the To volume identifier field are copied. A value of *ALL specifies that all files are copied, even - if they exist with the same creation date. # Copy option (COPYTYPE) parameter - The Copy option (COPYTYPE) parameter indicates which resources are used to perform the copy - I operation. A value of *IOP specifies that the copy operation will have better performance but will slow - down other requests to the optical media library. A value of *SYSTEM specifies that the copy request will share the optical media library resources with other requests but will cause the copy request to take longer. # Starting date and time (FROMTIME) parameter - The Starting date and time (FROMTIME) parameter is optional and can be used to further restrict the - I number of files that are copied. Files from the source volume that have a creation or modification date - I and time greater than or equal to the date and time entered on this parameter are selected to be copied. # Example: Copying optical volume data - To make a complete copy of VOLA on VOLB, use the following command: - | CPYOPT FROMVOL(VOLA) FROMDIR('/') TOVOL(VOLB) TODIR(*FROMDIR) SLTFILE(*CHANGED) - CPYSUBDIR(*YES) CRTDIR(*YES) ALWCPYOPP(*NO) COPYTYPE(*IOP) - The Copy Optical (CPYOPT) command applies to: - Volumes in directly attached optical media libraries - Volumes in CD-ROM or DVD devices - Volumes in virtual optical devices # Changing optical volume attributes - You can change the optical volume attributes with the Change Optical Volume (CHGOPTVOL) command. - You can also change the attributes of a volume by typing a 2 (Change) in the Opt (Option) column of the Work with Optical Volumes display. - You can change the following attributes with this command: - · Volume-full threshold percentage for volumes in directly attached media libraries - Authorization list that is used to secure the volume - Note: If the volume is in a stand-alone device (CD-ROM or DVD drive), the authorization list secures the volume for the duration that the media is in the device. Ejecting the media from the device and immediately reinserting it again resets the authorization list to the QOPTSEC default. The system does not maintain the authorization list for volumes that are removed from a stand-alone optical device. For volumes in an optical media library device (MLD), you can only maintain the authorization list when removing the media by specifying VOLOPT(*KEEP) on the Remove Optical Cartridge (RMVOPTCTG) command. The authorization list is not written to the optical disk but instead is maintained internally on the system. - Volume description of the volume for DVD-RAM volumes and volumes in directly attached media libraries # Displaying and printing optical volume attributes These topics provide information about viewing and printing the attributes of a volume. ### Optical volume attributes Figure 18. Display Optical Volume Attributes (window 1) Figure 19. Display Optical Volume Attributes (window 2) ph2 Command Option Control Help Print Display Optical Volume Attributes Usage Information: Last reference date 08/01/05 Volume on opposite side VOL001 Block size Volume capacity (bytes) 1024 1303563264 Space available on volume (bytes) 1285948416 Percentage used 1.32 Status Information: Volume location . OPT03 Volume access Writeable Double volume Yes Double sided . Yes IPL capable . No Volume held by . *SYSTEM Bottom Press Enter to continue. F14=Additional volume attributes F12=Cancel Bracket - You cannot change any information on either of these displays. - A third display is possible if the optical volume type is *BACKUP. If the display indicates More... in the - bottom right corner, press the Page Down key to view the third display. - Note: This display shows information that is unique to optical backup volumes. - Press F14 to see the Additional Volume Attribute displays. ## Printing optical volume attributes - You can print volume attributes by typing a 6 (Print) in the Opt column next to a volume listed on the - Work with Optical Volumes display. - The output is written to a spooled file, which can be found in the output queue for the job. - The Display Optical (DSPOPT) command applies to: - Volumes in optical CD-ROM or DVD media devices - Volumes in directly attached optical media libraries - Volumes in virtual optical devices - Volumes in LAN-attached optical media libraries # Duplicating optical volumes I This topic explains how to create a backup of an optical volume. - An efficient method to create a backup of an optical volume is to use the Duplicate Optical (DUPOPT) - I command. This command performs sector copies to create a volume that is identical to the source except - I for the volume identifier and creation date and time. - You can enter the information for the following fields on the Duplicate Optical display: - From volume identifier - To volume identifier - Volume identifier - Clear - The DUPOPT command applies to the volumes in directly attached optical media library devices and - I DVD devices. # Viewing directory and file information - I There are two commands that you can use to view directory and file information through the optical - support panels: the Work with Object Links (WRKLNK) command and the Work with Optical Directories - | (WRKOPTDIR) command. ### WRKLNK - The Work with Object Links (WRKLNK) command works with directories and files. This command gives - l a PC-like hierarchical view of the directories and files on the volume. Both directories and files at the - I given level in the path hierarchy are shown in the Work with Object Links display. The system shows - I directories as type DIR and files as type DSTMF. - 1 The Work with Object Links (WRKLNK) command applies to the following conditions: - Volumes in CD-ROM or DVD devices - · Volumes in directly attached optical media library devices - Volumes in virtual optical devices ## WRKOPTDIR - 1 The Work with Optical Directories (WRKOPTDIR) command works only with directories. You can display - all directories and subdirectories, or just display certain levels if desired. This command requires creating - the optical directory index if it was not created while adding an optical cartridge. The Work with Optical - Files (WRKOPTF) command works with optical files. - The WRKOPTDIR command and WRKOPTF command apply to the following conditions: - Volumes in directly attached optical media library devices - CD-ROM volumes in either CD-ROM or DVD devices - Volumes in LAN-attached optical media library devices - Note: Volumes that are created in Universal Disk Format (UDF) do not support the WRKOPTDIR and WRKOPTF commands. ## Removing optical volumes - I You can remove optical volumes from an optical disk cartridge. - To remove a volume, select (Remove) in the Opt (Option) column next to the volume you want to - remove on the Work with Optical Volumes display. - You can then remove an optical volume by physically removing the optical disk cartridge from the - I optical library dataserver. The Remove Optical Cartridge display appears and prompts you for additional - I information. - Enter the information for the following fields: - Volume identifier - Volume description option - Removed cartridge location - **Note:** If the *KEEP option is specified when the volume is removed, the record is kept. - Media location: Some 399F models support removing media to the bulk magazine. *MAGAZINE can - be specified to use this feature if it is available for the device. The magazine can be removed by - specifying VOL(*MAGAZINE) on this command. - Because there are two volumes on each optical disk, the options selected on the Remove Optical - Cartridge display apply to both volumes. - The Remove Cartridge (RMVOPTCTG) command applies to: - Volumes in directly attached optical media libraries - Volumes in CD-ROM and DVD devices - Volumes in virtual optical devices # Deleting removed volumes from the optical index database - If you removed (*REMOVED) the volume but saved the volume description information, you can later - I delete that information by selecting option 9 (Delete). The delete option can also be used if a volume has - been marked as being in an offline device. The delete option removes a single volume, and not both - I volumes of an optical cartridge. - I The delete option applies to: - Removed volumes from optical media libraries - Volumes in offline optical media libraries - Volumes in offline optical LAN devices # Checking optical volume - You can use the Check Optical Volume (CHKOPTVOL) command to validate the integrity of the - directories and files on a volume. - I The Check Optical Volume (CHKOPTVOL) command can be used to verify that all files can be read and - I will print a list of damaged files if any exist. In addition, a count of damaged and undamaged files can - I be displayed depending on the value of the OUTPUT parameter. - Enter information for the following fields on the Check Optical Volume display: - Volume identifier - Optical device: Required only if the Volume identifier parameter is *MOUNTED - Note: The Check Optical Volume (CHKOPTVOL) command applies to: - Volumes in directly attached optical media libraries - Volumes in CD-ROM and DVD devices - Volumes
in virtual optical devices ## Changing optical environment parameters - 1 The Change Optical Attributes (CHGOPTA) command can be used to change specific optical - configuration parameters that affect all jobs using the optical file system. - The following parameters can be set according to your desired configuration. # Copy attributes Specifies whether to copy the file attributes of the source file when copying or moving files between the QDLS and the QOPT file systems using the HFS Copy or Move Stream File APIs. This parameter is ignored when copying or moving files within the optical file system and is not valid for LAN-attached optical libraries. This value should be set to *NO when applications do not require the file attributes to be maintained when copying between the QOPT and QDLS file systems. Using this option improves the performance of move and copy operations and reduces the optical storage requirements when writing to an optical disk. #### Held file attribute Specifies whether held optical file support is enabled or disabled, for the /QOPT file system. When held optical file support is disabled it is up to the user to ensure that correct recovery procedures are followed when there is a close file error condition. ### Allow variant characters Indicates whether or not variant characters can be specified for path names when accessing files on optical volumes in Universal Disk Format (UDF) through the hierarchical file system (HFS) interfaces. This parameter does not affect access to optical volumes formatted in High Performance Optical File System (HPOFS) or ISO 9660 formats. It also has no effect on integrated file system interfaces for all optical media formats. ## Support extended media formats Indicates which media format to use when media is added to an optical device. Some media have both a primary and extended media format. For instance, a UDF-Bridge Disk has ISO 9660 as the basic format and UDF as the extended format. Rock Ridge alternate name structures is another format that is supported. With this parameter, you can choose which format is to be used when media is added to a device. ### Related concepts "Recovering held optical files" on page 117 A held optical file is an optical file that could not be closed normally. This topic provides information on recovering held optical files. ## Setting write protection The write-protect function prevents writing onto the disk. A write-protect window shows when write protection is either onto or off. To use the write-protect function, do the following: - 1. Locate the write-protect switch on the cartridge. - 2. Set the disk to read/write or read-only. - To make the disk read/write, move the write-protect switch to the off position. The write-protect window will be closed. You can write data onto the disk. - To make the disk read-only, move the write-protect switch to the on position. The write-protect window will be open and data cannot be written on the disk. A separate Write-Protect switch exists for each volume (side) on the cartridge. ### Related tasks "Labeling an optical cartridge with an initialized volume" on page 79 To label a cartridge that has at least one initialized volume on it, follow these steps. The options are selected from the Work with Optical Volumes display. # Creating a master CD-ROM See the Optical Storage page for instructions about CD premastering. # Related information Optical Storage # Optical volume backup This concept describes the methods that you can use to back up optical data from one optical volume to another optical volume or tape. Included in this topic is information on defining your backup strategy, your backup options, and using the backup commands. # Defining a backup strategy This topic describes the step necessary to define a backup strategy. There is no one perfect backup strategy that meets everyone's needs. Therefore, it is important to define your backup requirements before you decide on a backup strategy. Use the following questions to help you determine your backup requirements: - · Do I need backups? - Could information be recreated easily? - If I do not have backups, how will that affect my business? - Am I legally required to have backups? - · How frequently should my backups be done? - Daily - Weekly - Monthly - Only when a volume is full - How will backups be done? - Incremental backup - Partial or selective backups - Complete backups - When do I want the system to perform the backups? - During first, second, or third shift - On the weekend - Will there be other contentions for the optical drives? - Will the target volume contain backups for one or multiple volumes? - How long do I retain source information after a backup has been completed? - What type of availability is needed for volumes? - In optical media library - Out of optical media library, but on-site - Out of optical media library, and off-site This is not a complete list of items to consider when deciding on a backup strategy, but rather a foundation on which you can build. # **Duplicate Optical (DUPOPT) command** The Duplicate Optical (DUPOPT) command creates a duplicate optical volume. The created duplicate volume is identical to the original volume except for the volume identifier and the time created. Performance improves significantly when you use DUPOPT instead of CPYOPT to back up an entire volume from scratch. The DUPOPT command has the following requirements: • Two optical drives are required. - The source and target volumes must have the same sector size. - The source and target volumes cannot be on opposite sides of the same cartridge. - · The source and target device types must be the same type (for example, optical library to optical library or optical stand-alone device to optical stand-alone device). - If the source media type is *WORM, the target media type can be either *WORM or *ERASE. - If the source media type is *ERASE, the target media type must be *ERASE. - If the source media type is *DVD-RAM, the target media type must be *DVD-RAM. - If the target media type is *WORM, it must be uninitialized. - · If the target media type is *ERASE, all data currently on the target volume will be lost. - Once the DUPOPT command begins operation, the system will not interrupt the process. The system will not schedule any other work in the drives until the command completes. Use the DUPOPT command when you want to copy the entire volume or for incremental backups of your source volume. For an entire backup, wait until your source volume is full before you use the DUPOPT command. DUPOPT always makes a complete copy of your source volume. However, you could use it to make incremental backups of your optical volumes in the following manner: - 1. Determine how often you wish to backup your source and how many backup copies you wish to keep. - 2. Use DUPOPT to duplicate your source media to a target media that has a media type of *ERASE. This will give you an exact copy of the source media. - 3. Continue making duplicates of your source volume as often as you wish until your source volume becomes full. - 4. Once the source media is full and you have a successful final copy, you can reuse all previous target media for backups of other source media. - 5. If your source media type is *WORM, prior to your final backup determine whether or not your final target media type needs to be media type *WORM or *ERASE. Attention: If the DUPOPT command does not complete successfully or it ends for any reason while processing, the backup is unsuccessful. In addition, if the target media type is *WORM, the target volume may no longer be usable. ## Related concepts "Performance consideration for copying and duplicating optical volumes" on page 108 There are several performance considerations to be aware of when copying and duplicating optical volumes. # **Enhancements:** Several enhancements have been made since the introduction of DUPOPT command. - DUPOPT no longer requires the source and target volume to be in the same optical library. - · For target media with the *HPOFS media format, the target media capacity no longer has to be identical to the source media capacity. It can now be equal to or larger than the source media. - For *WORM media the target media type no longer has to be *WORM. You can use either *WORM or *ERASE media. - Improved device error recovery. - Improved performance. - The addition of the cross device support (library to library, stand-alone to stand-alone). - The addition of the unload support for stand-alone devices. • When duplicating a volume in a stand-alone or virtual device, you can create an exact copy with the same volume identifier as the source. In the following example, the system duplicates the volume in optical device OPT01 to the volume in optical device OPT02. Upon completion, the target volume identifier will be MYBACKUP, and the system unloads the media from the device. Note: Note: The system only supports the unload option for stand-alone devices. > DUPOPT FROMVOL(*MOUNTED) TOVOL(*MOUNTED) NEWVOL(MYBACKUP) FROMDEV(OPT01) TODEV(OPT02) FROMENDOPT(*LEAVE) TOENDOPT(*UNLOAD) # Copy Optical (CPYOPT) command Use the Copy Optical (CPYOPT) command to copy optical files and directories between optical volumes. You can use CPYOPT command to copy any of the following: - · All files and directories for an entire volume - All files and subdirectories for a directory - All files for a directory - A single file The two optical volumes types are *PRIMARY and *BACKUP. *PRIMARY is the normal volume type, which can be written to by user applications. *BACKUP is a special volume type, which only can be written to by special optical commands. You can use CPYOPT to copy files between the following volume types: | From volume | To volume | |-------------|-----------| | *PRIMARY | *PRIMARY | | *PRIMARY | *BACKUP | | *BACKUP | *PRIMARY | ## Related concepts "Performance consideration for copying and duplicating optical volumes" on
page 108 There are several performance considerations to be aware of when copying and duplicating optical volumes. # Key parameters of the Copy Optical (CPYOPT) command: - Several parameters must be specified to help you select the files that you want copied. - I The parameters include: - Select files to copy (SLTFILE) - Copy subdirectories (CPYSUBDIR) - Starting date and time (FROMTIME) - You can use CPYOPT to perform a backup of your optical volumes, but it is not the suggested way of - I doing so. Remember that CPYOPT works on a file basis; therefore, if you are copying a large number of - I files, your CPYOPT request could take hours to complete. What options you specify can also affect how - long your copy request could run. Review the examples later in this topic for a comparison of your - options and how they may affect your copy request. - You can use the Select files to copy (SLTFILE) parameter to choose which files you want to copy. Your - I options are as follows: - *CHANGED is the default option. The system determines if the source file already exists on the target volume. If so, the system copies the source file only if the source file has changed since performing the last copy operation. Two sets of dates and times determine if a file has changed: Either the date and time the file was last changed, or the date and time the file attributes were last changed. Specifying DATA(*FILATR) on the Display Optical (DSPOPT) command can display these dates and times. - · *ALL indicates that the system copies all files on the source volume. The system will replace any files that may already exist on the target media by a new copy from the source volume. - *NEW indicates that the system copies only files that are not currently on the target volume. - If the target volume already contains files, choosing the *CHANGED or *NEW option may result in a longer running CPYOPT request. This is because the system has to make a list of files for both the source and target volume, and then compare them. The time required to do this can become excessive when the volumes contain thousands of files. - You can also use the Copy subdirectories (CPYSUBDIR) parameter to indicate whether or not to process files in the subdirectories of the specified From path. Your options are as follows: - *NO indicates that only files in the specified From path are eligible to be copied. This is the default option. - *YES indicates that files in all subdirectories of the specified From path are eligible to be copied. The system creates subdirectories on the target volume if they do not already exist. The newly created subdirectories have the same name as they did on the source volume, even though the parent directory name can be different. A system makes a check prior to the copy operation to ensure that any resulting new path name does not exceed the maximum path name length. The system prevents you from copying the subdirectories of one directory to a subdirectory of that directory on the same volume. - The system uses the FROMTIME parameter to determine if a file is eligible for copying based on its creation or modification date. All files that were created, changed, or whose attributes have changed, on or after the starting date and time are eligible for copying. You can determine when a file was last created or changed by specifying DATA(*FILATR) on the Display Optical (DSPOPT) command. The default values *BEGIN for Starting date and *AVAIL for Starting time, indicate that all files meet the starting date and time requirement. Specifying a starting date and time identifies only files that were created or changed since that date and time as eligible for copying. You can use this parameter to greatly limit the number of files that require processing by CPYOPT. This decreases the time that is required to process the files. You could combine this parameter and the SLTFILE parameter to limit the number of files that - specified starting date and time. Here is an example showing how to copy all files from the source volume VOL001 to a volume that need to be checked before copying. You could select only files that were *CHANGED or *NEW after a - currently does not contain any files or directories. The system processes all subdirectories of the source volume, creates the subdirectories on the target volume, and copies all files. - Copy all files form the source volume since the last copy request: CPYOPT FROMVOL(VOLOO1) FROMPATH(/) TOVOL(CPYVOLOO1) + - SLTFILE(*ALL) CPYSUBDIR(*YES) CRTDIR(*YES) - I For this example you have options that may take different lengths of time. - The first option is to issue the same request as the first examples but with a different target volume. The system copies all the files and directories to the new target volume. - The second option is to use the *CHANGED option on the SLTFILE parameter. - CPYOPT FROMVOL(VOL001) FROMPATH(/) TOVOL(CPYVOL001) + SLTFILE(*CHANGED) CPYSUBDIR(*YES) CRTDIR(*YES) - Note: Depending on how many files are currently on the source and target media, this request may take a long time to process. First, you must obtain a list of all files on the source media and the - target media. Then compare the files to determine if any file has changed since the last CPYOPT request. Once that is done, the system copies only the files that have changed. - The third option is to use the *NEW option on the SLTFILE parameter, provided that no existing files changed but were simply added to the source volume. - CPYOPT FROMVOL(VOL001) FROMPATH(/) TOVOL(CPYVOL001) + SLTFILE(*NEW) CPYSUBDIR(*YES) CRTDIR(*YES) - Note: You must first build a list of all files that are on both the source and the target volume, and then compare the files before copying any new files. - The fourth option is to use one of the SLTFILE options in combination with specifying a starting date and time. - CPYOPT FROMVOL(VOL001) FROMPATH(/) TOVOL(CPYVOL001) + SLTFILE(*CHANGED) CPYSUBDIR(*YES) CRTDIR(*YES) FROMTIME('04/01/99' '00:00:00') - By specifying a starting time, the system copies only files that were created or changed after 1 April 1999 to the target volume. # Using the Copy Optical (CPYOPT) command to back up a volume: - You can use the Copy Optical (CPYOPT) command to make a complete or partial copy of your volume. - The following describes the special processing of the CPYOPT command when the target is a *PRIMARY or *BACKUP volume. Refer to the following list to decide how to best use the command. - Copy completely or partially. You can copy a file, a directory, a directory with all of its subdirectories, or an entire volume. - Copy incrementally. You can copy only what has changed since the previous CPYOPT request. - Copy by specifying a starting date for selecting files. Only files that are created or changed on or after the specified date are eligible for copying. - Replicate the hierarchical structure of the source volume on the target volume. ### | CPYOPT requirements to volume type *PRIMARY - When the target volume is type *PRIMARY, the CPYOPT command has the following unique requirements: - The source volume can be either type *PRIMARY or *BACKUP. - Because the target volume is *PRIMARY, all API requests and most optical commands and utilities can access the volume. - Because utilities and user programs can update the volume, you need to determine how to protect directories and files from unauthorized change or deletion. - The target volume could contain information for one or multiple optical *PRIMARY volumes. An easy way to manage multiple volumes on a single target volume would be to have a new first-level directory. That directory name could be the name of the source primary volume. - You need a way of keeping track of when a volume or directory was last backed up. Use the CPYOPT command to do it automatically. - The hierarchical structure on the target volume does not need to be identical to that of the optical volume. - The creation date and time and change date and time of the file on the target volume will be different from their counterparts on the optical primary volume. The file creation data and time on the target volume is the date that the file was written. - You can use directories and files on the target volume directly. You do not have to copy applications back to a optical volume. - You can request that the system copy only new files on the source volume to the target volume. This might be useful if you never change files on your source volume but only create new ones. - Copy Optical CPYOPT requirements to volume type *BACKUP: When the target volume is type *BACKUP, the CPYOPT command has the following unique requirements: - The source volume must be type *PRIMARY. - Only the CPYOPT and Convert Optical Backup (CVTOPTBKU) commands can write to the target backup volume. APIs, utilities, and user programs cannot write to an optical backup volume. - An optical back up volume can contain information for only one optical primary volume. This prevents two primary volumes from sharing the same optical backup volume. - · You cannot delete directories or files from an optical backup volume. This ensures data integrity of the optical backup volume. - The system maintains the file creation date and time and the change date and time for the primary volume on the optical backup volume. - A user application cannot directly use a file or directory on a backup volume. First, you must copy the file or directory to an optical primary volume by using the CPYOPT command. - · If the optical primary volume is damaged or lost, you can convert the optical backup volume to an optical primary volume. You can do this by using the CVTOPTBKU command. - To maintain control information about the status of backup requests, optical backup volumes require additional media usage. Because of this, a primary volume that is 100% used may not fit on an optical backup volume. - The system always initializes backup volumes with a 99% volume
threshold. - Suggestions on which volume type to use with the CPYOPT command: Here is a list of items that you can use to determine if you should use a target volume type of *PRIMARY or *BACKUP. - In general, using the CPYOPT command type *PRIMARY volume gives you more flexibility, but it requires more management of your backup volumes. - The CPYOPT command for a type *BACKUP volume provides more management and security for your optical backup volumes, but it is less flexible. - · Use the CPYOPT command and specify a type *PRIMARY volume if you want to copy data from several volumes to a single volume. - Use the CPYOPT command and specify a type *BACKUP volume if you want better security for your backup volumes. The system cannot write volumes with type *BACKUP to with normal optical commands or user programs. - Use the CPYOPT command and specify a type *BACKUP volume to save information, such as when the system copies directories and volumes and the success status of those copies. - The biggest advantage of using the CPYOPT command for a type *BACKUP volume is that the system stores the backup control information on the backup volume. This information includes the relationship between files on the backup volume and the files on the primary volume. This information can be useful if you ever need to recover the lost source data from the backup volume. - Use the CPYOPT command and specify a type *BACKUP volume if you want the source and target file dates (creation and change) to be identical. - One disadvantage in using the CPYOPT command to a type *BACKUP volume is that the system uses extra space on the backup volume to store control information. The amount that is used is - approximately three times the sector size for each directory. Therefore, if the CPYOPT command copies - 100 directories from a primary volume to a backup volume where the sector size on the backup - volume is 2 KB, the backup volume uses an additional 600 KB of space. In this example 600 KB of space is used every time the command is run. ### Volume type *BACKUP: This section discusses the *BACKUP volume type and the unique backup process that are associated with a *BACKUP volume. - Remember that using Copy Optical (CPYOPT) command to a *BACKUP volume is no longer the - I suggested way of backing up your volumes because of the time required. Duplicate Optical (DUPOPT) - I command is the recommended way of backing up your volumes. - The *BACKUP volume type supports the backing up and protection of information from optical primary - volumes. The system does not allow user programs or APIs to write to optical backup volumes. Only a - l limited set of optical commands can update backup volumes. After the system creates a directory or file - I on an optical backup volume, the only way to delete it is to reinitialize the volume. Doing this prevents - l either accidental or intentional deletion. - l Backup volumes and directories contain a Complete Backup Range file, which contains date information - I about prior copy requests to the optical backup volume. These dates are helpful in determining the - l contents of backup directories and volumes with respect to the contents of their primary counterparts. - I These control dates make it easier to recover by providing a time checkpoint. Each backup directory has - its own control dates. Each backup volume also has its own control dates, which include: - Complete starting date and time - Complete ending date and time - Last changed date and time - I The system writes these dates to the backup volumes in a reserved file within each backup directory. - I Since the system writes the dates to the media, the backup volumes are self-contained. Not only is the - backup data on the media, but the recovery information is there as well. - | Completing backup range: - When an optical primary volume is copied to an optical backup volume, a special file called a Complete - Backup Range is written to the backup volume. - I This file indicates the last time a backup was done. The system keeps backup control information for the - I volume as well as each directory on the volume. If the volume or directory was successfully backed up - I the Complete Backup Range file contains both a starting and ending date and time. When a range exists - for an optical backup volume or directory, it has a specific meaning: The backup directory or volume has - I a copy of all the created or changed files within the date range that corresponds to the primary directory - I or volume. - For example, volume BVOL1 is an optical backup volume for primary volume PVOL1. BVOL1 contains - I directory /DIR1 that has a complete backup range as follows: - Start date: 1/1/99 - Start time: 09:00:00 - End date: 1/30/99 - End time: 22:00:00 - This means that the system backed up all the changed or created files in /DIR1 on PVOL1 since 9:00 a.m. - on 1 January 1999. The system backed up files to /DIR1 on BVOL1 at 10:00 p.m. on 30 January 1999. Any - I files that were created or changed on primary volume PVOL1 in directory /DIR1 after 10:00 p.m. on - 1/30/99 would not yet have been backed up. ### Completing backup range for directories - I The complete backup range for a directory does not encompass all subdirectories of the directory. In - other words, each directory has its own unique complete backup range. For example, assume that - I directory /A has a complete backup range of 1 March 1999 through 1 May 1999. This does not - I necessarily mean that directory /A/B has the same complete range. In fact, /A/B might have no - I complete backup range at all. The complete range does not reflect a hierarchical range over all directories - I within that subtree. - I The system updates the complete backup range for a backup directory after it copies all eligible files in - I the primary directory. - Note: Use the SLTFILE parameter on the CPYOPT command to determine if a file is eligible. If you use - *ALL, all files are eligible to copy. If you use *CHANGED, only those files that were created or - changed since the last CPYOPT command are eligible. If you specified *NEW, the system copies - files only if they do not exist on the target volume. - For example, FILE.001 gets copied on 1 March 1999 as a result of a complete backup of directory /DIR1. - At this time /DIR1 is given an ending range of 1 March 1999. On 1 April 1999, the user has the system - back up directory /DIR1 again by specifying SLTFILE(*CHANGED). However, the back up affects only - the files that have changed. If FILE.001 has not changed since the previous CPYOPT command, this file is - I not eligible to copy. However, the system updates the ending range for /DIR1 to 1 April 1999 if none of - I the eligible files fail to copy. # Complete backup range for optical volumes - The complete backup range for an optical volume is similar to that of an optical directory. The complete - I range for a directory represents the relationship between the files in a backup directory and those in the - I primary directory. Likewise, the complete range for an optical backup volume represents the relationship - I between the files on an optical backup volume and those on the primary volume. You must back up all - I eligible files on a volume to update the complete range of the volume. - You can update the complete range for a volume only if the CPYOPT command specifies the - FROMPATH(/) and CPYSUBDIR(*YES) variables. This ensures that the system processes all files on the - I primary volume. - I Completing backup range: Starting date and time: - You can specify a starting date and time on the Copy Optical (CPYOPT) command. - I The starting date and time of a complete backup range for an optical backup volume or directory is the - l earliest time that is specified on a CPYOPT command when all eligible files on the volume or directory - I were successfully copied. - The system uses time to select the files from the primary volume to be copied to the optical backup - I volume. The system copies any files that are created or changed on or after this time. First, the system - I must successfully copy all eligible files for a directory or volume. Then the system sets the starting date - I and time for the corresponding optical backup volume or directory to the specified time. The definition - I indicates that this value is the earliest time that is specified on a CPYOPT command. Consider the - I following example. ### | Scenario: Starting date and time - A user issues the CPYOPT command for directory /DIR1 by specifying 1 May 1999 as the starting date. If - I all eligible files are successfully copied, then the system sets the complete starting date for the backup - I directory /DIR1 to 1 May 1999. - Now assume that the user issues the CPYOPT command again for /DIR1. This time the system sets the - I starting date to 1 April 1999. This request copies any files that have changed since the last CPYOPT - command. Additionally, it copies any files that were created between 1 April 1999 and 1 May 1999 that - I were not selected on the previous request. If all eligible files are copied successfully, then the starting date - I for backup directory /DIR1 changes to 1 April 1999. Future copies specifying earlier starting dates would - produce similar results. - Use *BEGIN and *AVAIL for the starting date and time on the CPYOPT command. This will copy all the - I files from a primary directory or volume, regardless of the create or change time for the file. - Completing backup range: Ending date and time: - The CPYOPT command does not allow you to specify an ending date and time. The system always uses the date and time of the copy request as the ending date and time. - I Therefore, the system uses the date and time of the request for the complete ending date and time for a - I backup directory or volume. - The ending date and time of a complete backup range for an optical backup volume or directory is one of the following
conditions: - The last time a CPYOPT command was completed - When the system successfully copies all eligible files in that volume or directory - When the starting date and time of the request is not after the existing complete range - I The definition of the ending date and time field has two parts. First, this date is the last time a CPYOPT - I command was completed for the directory or volume with no failures. Second, the complete ending date - I and time is not updated if the range of the request does not overlap the existing range. This is true even - I if all eligible files are copied successfully. ## Scenario: Ending date and time - On 1 July 1999, the user issued the CPYOPT command for directory /DIR1 that specifies 1 February 1999 - I as the starting date. If all eligible files are successfully copied, the system sets the complete starting date - of the backup directory /DIR1 to 1 February 1999. The system sets the complete ending date to 1 July - I 1999. - Now, the system issues a second CPYOPT command for directory /DIR1 on 15 September 1999, - specifying 1 June 1999 as the starting date. If all eligible files are successfully copied, the complete - starting date for backup directory /DIR1 remains 1 February 1999. The complete ending date is moved - I out to 15 September 1999. This is the normal situation that takes into account only the first part of the - I definition above. - On 1 December 1999, the user issues the CPYOPT command again for the /DIR1 directory. This time the - I use specifies 1 October 1999 as the starting date. Even if all eligible files are copied successfully, the - I complete range does not change. The complete range cannot be expanded to include the new ending - date. This is because the files that were created or changed between 15 September 1999 and 1 October - 1999 are not accounted for. - I Completing Backup Range: Last changed date and time: - Using the CPYOPT command causes the system to write the last changed date and time of an optical - l backup volume or directory. - This includes any time that the system wrote files or directory attributes to the directory or volume. - I The last changed date and time for that directory and volume always reflects the date and time of the - I request. This remains true even if the system writes a file to a backup directory. ### | Scenario 1: Last changed date and time - On 1 July 1999, the user issues the CPYOPT command for directory /DIR1 by specifying *BEGIN as the starting date. If the system successfully copies all the eligible files, then the dates are as follows: - The system sets the complete starting date for backup directory /DIR1 to *BEGIN. - The system sets the complete ending date to 1 July 1999. - If the system copies at least one file to /DIR1 as a result of this request, the last changed date is also 1 | July 1999. - The system does not necessarily update the last changed date and time as the result of a successful copy. - If the system did not write any files to the backup directory, the system may update the complete range, - but not the last changed date. ## | Scenario 2: Last changed date and time - In "Scenario 1: Last changed date and time," the backup directory /DIR1 has the following dates after I the request: - A starting date of *BEGIN - An ending date of 1 July 1999 - The last changed date of 1 July 1999 - On 1 October 1999, the user issues the CPYOPT command again for directory /DIR1. This time the - command specifies SLTFILE(*CHANGED) to copy only the files that have changed since the last CPYOPT - I request. Assume that no files have changed since the last backup on 1 July 1999. Since no files are eligible - I to copy, the system writes no files to the backup directory /DIR1. Therefore, the last changed date - I remains 1 July 1999. However, since no eligible files failed, the complete range for /DIR1 expands to have - I an ending date of 1 October 1999. The last changed date and time becomes most important when it is set - beyond the complete range. This would happen if some files were actually copied but other eligible files - failed to copy for some reason. ## | Scenario 3: Last changed date and time - In "Last Changed Date and Time Scenario Two," the backup directory /DIR1 has the following dates after the request: - A starting date of *BEGIN - An ending date of 1 October 1999 - A last changed date of 1 July 1999 - On 1 December 1999, the user issues the CPYOPT command again for directory /DIR1. Assume that 10 - files were changed or added to primary directory /DIR1 since the last CPYOPT request on 1 October - 1 1999. Assume that only eight files are successfully copied to /DIR1 and that two of the eligible files - I failed. Since the system did not copy all eligible files, the complete range stays the same with a starting - date of *BEGIN and an ending date of 1 October 1999. However, since /DIR1 changed, the last changed - I date gets updated to 1 December 1999. Since the last changed date is outside the complete range, a - complete copy of /DIR1 from *BEGIN to 1 October 1999 may not exist. A more recent copy by the change - on 1 December 1999 might have replaced one of those files. - Example: Copying to optical type *BACKUP volue: - This example shows the system that backs up the primary volume VOL01 to the backup volume - BKP-VOL01. - This will copy all the files in all the subdirectories. After the system writes to volume BKP-VOL01, the - system will use the volume in one of the following ways: - For further backups of volume VOL01 - For converting from backup volume BKP-VOL to *PRIMARY volume VOL01. - CPYOPT FROMVOL(VOLO1) FROMPATH(/) TOVOL('BKP-VOLO1' + - *BACKUP) SLTFILE(*ALL) CPYSUBDIR(*YES) - Converting an optical type *BACKUP Volume: - Use the Convert Optical Backup (CVTOPTBKU) command to convert an optical *BACKUP volume to an optical *PRIMARY volume. - You would typically use this function when the primary optical volume is either damaged or missing. - The conversion eliminates the necessity of copying all information from the optical backup volume to a - I new primary volume. After the system converts the volume to a primary volume, it will allow all write - requests to the volume. - After the system converts an optical backup volume to a primary volume, there is no way to convert it - back to an optical backup volume. To convert backup volumes, select option 6 (Convert optical backup - volume) from the Optical Backup/Recovery display or use the CVTOPTBKU command. - Before you attempt to convert, you should verify the name of the primary volume for which this volume - is a backup. You can do this by displaying the volume attributes of the optical backup volume. You can - do this by using the Display Optical Volume Attributes (DSPOPT) command or by selecting (Display) - from the Work with Volumes display. - There may be previously deleted primary volume directories and files on the optical backup volume. - Therefore, when converting the optical backup volume to a primary volume, it might be necessary to - manually delete directories and files from the volume. You perform this function in order to accurately - reflect what was on the primary volume. If you never delete directories and files from a primary volume, - this should not be a concern. #### Copy Optical (CPYOPT) command performance: - Performance is a complex subject with many interdependent components. - By changing one component, you may adversely affect another. This interdependence and the other - factors that affect performance prohibit providing a formula for computing the time required to copy a - given number of files. It is simply a guideline to help you estimate how long your CPYOPT command - might take. - You may need to estimate how long it takes to copy an entire optical volume when using the CPYOPT - command. You can start by copying a single directory that contains a known number of average sized - I files. Then take the difference between the ending time and starting time to determine an elapsed time. - Take the elapsed time and divide by the number of files that are copied to figure the average seconds per - file. You can use this number as a basis to determine the amount of time that is required to copy the - entire volume of average size files. - To maximize copy performance, use the following set of guidelines as a starting point: - Having too few directories with too many files can affect performance. Having too many directories with too few files can affect performance also. Try to keep the number of files in a directory to less - than 6000 files. - Consider performance when determining file size. - Avoid the use of extended attributes on files. When a file has extended attributes, they are stored - separately from the data. When copying the data, the system must copy the attributes also. It is similar - to copying a second file for each user file copied. - Keep the source and target volumes in the same library. - Avoid copying to the opposite side of an optical cartridge. - If the copy processes can have dedicated use of the optical drives, use the COPYTYPE *IOP parameter on the CPYOPT command. - Avoid optical drive contention from other optical processes. - Dedicate the use of two optical drives for copy activity. - The following conditions can severely affect copy performance: - Having only one drive available for use. - Copying from one side of an optical cartridge to the opposite side. - Having other optical processes that are running that attempt to use the available drives. - A large number of files on the source volume. - The process of removing a volume, storing it in a slot, retrieving a new volume, and mounting it requires - I from 8 to 15 seconds. You should try to do your copy requests when the process can have dedicated use - of the optical drives. - Do not try to copy a large number of files from one side of an optical cartridge to the other side. Optical - I drives have only one read/write
head. The following conditions occur when copying from one side of an optical cartridge to another: - The system mounts the source volume. - A limited number of files that are to be copied are read and stored on i5/OS temporary storage. - The source volume is removed, and the system mounts the target volume by turning over the optical cartridge. - Files are read from i5/OS temporary storage and written to the target volume. - If there are more files to copy, the system removes the target volume and mounts the source volume again by turning over the optical cartridge. - The system repeats this process until it copies all the files. You may need to turn the optical cartridge over many times to copy all the files. - Copy performance is always better when both the source and target volumes are in the same library and - when setting the COPYTYPE parameter for that library controller to *IOP. Two conditions exist that - I require an extra processing step. The first one is that the source and target volumes are in different - libraries. The second involves setting the COPYTYPE parameter to *SYSTEM and having the volumes - l exist in the same library. This extra step requires moving the files you want to copy to temporary storage - I on the system before writing them to the target volume. You do not need to use temporary storage when - the system meets both of the following conditions: - Both optical volumes are in the same library. - You set the COPYTYPE parameter on the CPYOPT command to *IOP. - This allows for the direct transfer of data between the two optical drives. #### Save and restore commands - I The save (SAV) command can be used to create a backup of an optical volume image. The volume image - is restored using the restore (RST) command. - An optical volume image is a copy of the entire optical volume in *SAVRST format. Using SAV, the - I volume image can be saved to any supported save/restore device including tape, diskette, optical, or - I save file. - Subsequently, when the volume image is restored using the RST command, the entire image must be - I restored to an existing optical volume either in a stand-alone device or an optical media library. - An optical volume image has unique properties that require the entire volume image to be saved or - I restored in a single operation. Once saved you cannot restore individual files or directories. - Once an optical volume image is saved, it can be viewed with the Display Tape (DSPTAP), DSPDKT, - I Display Optical (DSPOPT), or Display Save File (DSPSAVF), depending on the save/restore device used. - When the volume save/restore entry is displayed, option 8 can be used to display the additional - I information panel, which includes media specific information such as media type, volume capacity, sector - I size, and security attribute information. You cannot see the individual files and directories that make up - I the volume image. - Use of the generic SAV command to save optical data can be easily incorporated into an existing system - backup strategy without requiring a separate command, such as DUPOPT, to perform the save operation. - I SAV provides a good alternative to DUPOPT because it allows a volume to be saved from a one-drive - I optical media library or from a stand-alone device without requiring the allocation of a second optical - I device. SAV provides a viable incremental backup solution by periodically backing up volumes not yet at - capacity to a save/restore device such as tape. When the volume is full it can be duplicated for archival - I purposes by either restoring the full volume to create a copy or by issuing the DUPOPT command to - I duplicate the volume. - I Saving and then restoring an optical volume, image creates an exact copy of the saved volume including - the volume name. DUPOPT creates a copy of the source volume but the volume name is changed. - To save and restore an optical volume, the following authority is required: - *USE authority to the optical device. - *SAVSYS special authority or *OBJEXIST authority through the optical volumes authorization list. - If the media format is Universal Disk Format (UDF) *RWX authority is also required to the root directory of the volume. The device will be locked shared (LSRD) read while a SAV or RST is active. - Auditing records created during a SAV or RST request. - I OR Object restored - RZ Change primary group during restore. Saved value different from target. Value on target remains unchanged. (UDF only) - RO Change owner during restore. Saved value different from target. Value on target media remains unchanged. (UDF only) - Successful open for save (S/R/S) Storage/Read/Save. Successful open for restore (S/U/R) Storage/Update/Restore. #### | Save (SAV) command support: - I The SAV command can be used to save High Performance Optical File System (HPOFS) formatted - volumes or Universal Disk Format (UDF) volumes. - This function does not support the backup of ISO 9660 formatted media. - I Select a volume or volumes to save. The SAV command prevents the implicit saving of all optical volume - images in the QOPT file system when the OBJ parameter includes the entry '/*'. The file system QOPT - cannot be saved; however, volumes below the file system can be saved. If you want to save all volumes - within the QOPT file system, '/QOPT/*' must be explicitly specified on the OBJ parameter. If all volumes - I are selected, be aware that this SAV operation could take a long time to complete depending on the - I number of volumes being saved. - In order to specify that a volume image is to be saved, you must specify a value of *STG on the - | SUBTREE parameter. - I Saving an optical volume image to another optical volume is allowed; however, the target volume cannot - be the opposite side of the saved volume. - I The performance of the SAV command is comparable to the DUPOPT command, although it depends on - I the target device chosen. #### **Parameters** Specify a single or multiple path names. The path name cannot be extended beyond the volume level. Examples of invalid path names include '/QOPT/VOL/*' or '/QOPT/VOL/DIR/FILE'. #### SUBTREE This must be *STG when saving optical volume images. #### CHGPRIOD The Start date, Start time, End date, and End time parameter must all be *ALL. #### UPDHST This must be *NO. #### | SAVACT This parameter is ignored when attempting to save optical volume images. #### PRECHK This must be *NO. #### TGTRLS The value cannot precede V5R2M0. #### Examples • Save all volumes within the QOPT file system to a save file. ``` SAV DEV('/qsys.lib/xyz.lib/xzysavfile.file') + OBJ(('/qopt/*')) SUBTREE(*STG) ``` • Save all volumes beginning with vola and volb to a save file. ``` SAV DEV('/qsys.lib/xyz.lib/xzysavfile.file') + OBJ(('qopt/vola*') ('/qopt/volb*')) SUBTREE(*STG) ``` - Save one volume vol1 to a tape device. - SAV DEV('/qsys.lib/tap01.devd') OBJ(('/qopt/vol1')) SUBTREE(*STG) #### Restore (RST) command support: - The RST command can be used to select a volume or volumes to restore. - The RST command protocol requires that all physical file systems adhere to a certain set of predefined - I rules governing how restoring is handled, depending on whether or not the object exists on the system. - For purposes of restoring an optical volume image, the target media must exist on the system, either - I mounted in a stand-alone device or imported into an optical media library. Also, it must be accessible by - I the name specified on the OBJ-New Path Name parameter. The OBJ-New Path Name must either match - the name of the OBJ-Name parameter or be *SAME. This restriction will require that unformatted - I volumes be renamed before processing the RST command. Unformatted volumes can be renamed using - option 7 from either the WRKOPTOL, WRKLNK display or by issuing the generic RNM command. - When an unformatted volume is renamed, the new name acts as an alias to the unformatted volume. The - I new name will not be written to the media and will not be preserved if the volume is removed from the - I device. The name is only a temporary volume identifier used to refer to this volume until the volume is - I restored. - I Saved volumes can be restored to both unformatted and formatted volumes. If restoring to a formatted - volume that contains active files and directories, an inquiry message is sent. If you proceed with the - I restore, all data on the target media will be lost. - I Saved High Performance Optical File System (HPOFS) volumes can be restored to erasable media with - I matching sector sizes and a capacity equal to or greater than the saved volume. - I Saved Universal Disk Format (UDF) volumes on DVD and erasable media can be restored onto DVD or - I erasable media, but media capacity and sector size must be identical to the saved volume. - WORM volumes can be restored to either WORM or Erasable media as long as the capacity of the target - I media is greater than or equal to the saved volume capacity and the sector size is identical to the saved - I volume. When restoring to WORM, the target volume must be unformatted. - The performance of the RST command is comparable to the DUPOPT command, although it depends on the target device chosen. #### | Parameters #### OBJ name The name of the optical volume image or images to be restored from a save/restore device. #### OBJ New path name Specify a single or multiple path names. The path name cannot be extended beyond the volume level. Examples of invalid path names include, '/QOPT/VOL/*' or '/QOPT/VOL/DIR/FILE'. Specify the names of existing volumes or *SAME. #### SUBTREE This must be *STG when restoring optical volume images. #### OPTION This must be *ALL or *OLD. ### | ALOWOBJDIF Select *OWNER, *PGP, *AUTL, *NONE, *ALL. The selected value determines what differences will be tolerated between the saved volume and the formatted target volume. If changes are allowed, an attempt will made to preserve the security attributes UID,
GID and PERMS of a the UDF target volume root directory. The *OWNER and *PGP values are not checked when restoring to an uninitialized volume or when restoring to an initialized HPOFS volume. ### | Examples I - Restore all volumes within the QOPT file system from a save file. - RST DEV('/qsys.lib/xzylib.lib/xzysavefile.file') OBJ((* *INCLUDE *SAME)) SUBTREE(*STG) - Restore all volumes beginning with vola and volb from a save file. ``` RST DEV('/qsys.lib/xzylib.lib/xzysavefile.file') + OBJ(('/qopt/vola*' *INCLUDE *same) ('/qopt/volb*' *INCLUDE *same)) SUBTREE(*STG) ``` • Restore one volume, vol1 to vol1. RST DEV('/qsys.lib/tap01.devd') OBJ(('/qopt/voll' *INCLUDE *same)) SUBTREE(*STG) **Note:** The OBJ-New Path Name must either match the name of the OBJ-Name parameter or be *SAME. This restriction will require that unformatted volumes be renamed prior to processing the RST command. ## Managing performance in optical media libraries - I Several factors can affect the optical performance of both LAN-attached and directly attached optical - I media libraries. ### Volume mounting and dismounting - Volume mounting and dismounting are important factors that affect optical performance. It takes - I approximately 8 to 15 seconds to remove a volume, store it in a slot, retrieve a new volume, and mount - l it. If you can minimize the number of volume mounts and dismounts that your application requires, - I optical performance will improve. ### **Drive contention** - Performance can be severely affected by drive contention. The following conditions increase drive - I contention and should be avoided: - Only one drive is available for use by applications libraries. - Many optical processes are running that attempt to use different optical volumes at the same time. ### Number of directories and files - Performance can be affected by having too few directories with too many files. Directories group related - I information to provide a means of quicker access. Typically, you get better performance from more - I directories with fewer files. Although there is no enforced limit on how many files there can be in a - I directory, you probably should not have more than 6000 for performance reasons. ### - I The size of a file has a direct effect on the amount of time it takes to read, write, or copy the file. In - general, the larger the file, the longer the operation can be expected to take. ### Add optical cartridge performance - I Specifying *NO for the Rebuild Directory Index can improve the performance of Add Optical Cartridge - (ADDOPTCTG) by deferring the build of the optical directory index until a later time. - Related concepts - Volume, directory, and file considerations - Expanding buffer I/O through HFS - Related information - Performance considerations ### Performance considerations for directly attached optical media libraries - 1 This topic discusses performance considerations that are specific to directly attached optical libraries. - When a file has extended attributes, they are stored separately from the data. When the data is written or - I copied, the attributes must also be written or copied. If file attributes are not required, attribute copying - I can be suppressed when copying between the QOPT and QDLS files systems by using the Change - Optical (CHGOPTA) command. Setting the copy attributes (CPYATR) value on the CHGOPTA command - I to *NO suppresses the copying of attributes between the QOPT and QDLS file systems. #### | Expanding buffer I/O with the HFS API: - Users of the HFS APIs can improve performance by taking advantage of the expanding buffer I/O - l option. Expanding the buffer I/O settings lets you control the amount of data that is read from the - optical media when only parts of the entire file need to be read. - | Related concepts - Expanding buffer I/O through HFS ### Performance consideration for copying and duplicating optical volumes: - I There are several performance considerations to be aware of when copying and duplicating optical - volumes. - Performance of the Copy Optical (CPYOPT) and Duplicate Optical (DUPOPT) commands is a complex - subject with many interdependent components. By changing one component, you may adversely affect - another. - Because of this interdependence and the other factors that affect copy and backup performance, refer to Optical Volume Backup, for additional information. - Related concepts - "Copy Optical (CPYOPT) command" on page 95 - Use the Copy Optical (CPYOPT) command to copy optical files and directories between optical - volumes. - "Duplicate Optical (DUPOPT) command" on page 93 - The Duplicate Optical (DUPOPT) command creates a duplicate optical volume. #### Volume mounting and dismounting schedule timers: - This topic provides information on how a system manages work requests to the directly attached optical - library devices. It is a high-level view and does not include all program logic. - You can use the Change Device Description (CHGDEVMLB) command to change the queuing and - scheduling logic used by a system for directly attached optical media libraries. - I Two timer values are associated with optical media libraries that affect the scheduling of volume - mounting and preemptive dismounts. You can change both timer values by using the CHGDEVMLB - command. The first timer value (UNLOADWAIT) is the unload wait time. This value determines how - long the system waits for a new request for a mounted volume before removing it. The second timer - value (MAXDEVTIME) is the maximum device wait time. This value determines how long a volume with - active requests remains in a drive while other queued requests are waiting to use the drive. - By using these two timer values, you can adjust the volume mount scheduling that is used by the optical - media library to match your application's use of optical volumes. - You can change these timer values at any time; however, the new timer values will not become effective - until the next time the device is varied on. - System job priority and limit timers are used to schedule volume mounting. The maximum number of - volumes that can be mounted is equal to the number of drives in the optical media library. Keep the - I following points in mind as you schedule volume mounting: - A volume can remain mounted in an optical drive for the maximum device wait time if work requests with the same or lower job priority for a different volume have been received. An exception to this is I - when you are initializing a rewritable volume or using DUPOPT; the volume remains in the drive until П - the operation is completed. - Work requests for mounted volumes are serviced before requests of the same or lower job priority for volumes not mounted. - For a multiple job environment, volumes are mounted based on the job priority for the work request. A work request from a job with a higher system job priority causes the required volume to be mounted - to handle that request. The volume remains mounted for the maximum device wait time if work - requests continue, dismounts after unload wait time inactivity, or is overridden by a work request from - a job with higher system priority. If you are initializing a rewritable volume or using DUPOPT, the - volume remains mounted until the operation is completed. - If the work on a drive is interrupted because of a higher priority request, the maximum device wait - time timer for the currently mounted volume is canceled. All future requests for that volume are queued for normal processing by priority. - If the volume needed for a work request is not mounted within the system timeout (typically 30 minutes), the job fails due to a timeout. ### Change job priority on active jobs - Due to the work management method used by i5/OS optical support, changing run priorities of an active - I optical job at the user level can result in loss of time allocation and, in some cases, causes jobs to time - out. ## Managing optical security and auditing - You can secure information on optical media by using i5/OS security functions. - The level of security available depends on the optical media format of the volume. You can use an - authorization list to secure all optical volumes. This includes all volumes in CD-ROM, DVD, - LAN-attached, directly-attached, and virtual optical devices. Universal Disk Format (UDF) volumes - I provide directory- and file-level security in addition to authorization list security. Optical support - I provides ways to prevent unauthorized access and processing of data that is stored on optical volumes. - I Optical support does this by verifying a requester's rights to specific optical volumes before attempting - I the following requests: - Open file or directory - Create directory - Delete file or directory - Rename file - Initialize or rename volume - Remove cartridge - Change or retrieve attributes - Copy - Backup or convert backup - Save or release held files - Read sectors - Save optical volume storage - Restore optical volume storage - Check optical volume for damaged files - Along with security for optical volumes, directories, and files, auditing of access to optical objects is also available. #### Related concepts - "Directory and file security" on page 75 - Directory- and file-level security is available for Universal Disk Format (UDF) volumes. The system - maintains the data authorities of optical directories and files for three groups of users: owner, group, - and public. Volume-level security is also available through authorization lists. #### Using authorities required for optical functions - This topic describes the various levels of user authority and the types of access associated with them. - You must have *USE authority to an optical volume to use the following optical functions: - Open file for read - Open directory - Retrieve file or directory attributes - Read sector - List paths or files - Check optical volume for damaged files - You must have *CHANGE authority
to an optical volume to use the following optical functions: - Open for write or read write - Create or delete directory - Create, delete, or rename file - Change file or directory attributes - Save or release held optical file - You must have *ALL authority to an optical volume to use the following optical functions: - Initialize volume (requires *CHANGE for DVD-RAM media) - Rename volume (requires *CHANGE for DVD-RAM media) - Convert backup volume to primary - Duplicate optical volume (requires *CHANGE for DVD-RAM media) - You must have *USE authority to the source optical volume and *CHANGE authority to the target optical volume to use the following optical functions: - Copy file - Copy directory - You must have *CHANGE authority to the source optical volume and *CHANGE authority to the target optical volume to use the move file function: - You must have *AUTLMGT authority to an optical volume to use the following optical functions: - Change authorization list used to secure the volume - Add optical cartridge (if overriding an existing authorization list) - You must have *OBJEXIST authority to the source volume to use save optical volume optical function. - You must have *OBJEXIST authority to the target volume to use the restore optical volume function. - Note: All programs are shipped with PUBLIC(*EXCLUDE) authority, and most of the commands are shipped with PUBLIC(*USE) authority. The following commands are shipped with - PUBLIC(*EXCLUDE) authority. - Add Optical Cartridge (ADDOPTCTG) - Remove Optical Cartridge (RMVOPTCTG) - Add Optical Server (ADDOPTSVR) - Remove Optical Server (RMVOPTSVR) - Reclaim Optical (RCLOPT) - Change Optical Attributes (CHGOPTA) ### Specifying an authorization list - This topic explains how to secure volumes with an authorization list during the import process. - The authorization list (AUTL) parameter on the Add Optical Cartridge (ADDOPTCTG) command allows - I the volumes being imported into an optical media library to be automatically secured with an - authorization list as part of the import processing. - If no authorization list is specified for a new optical volume (one that has not been removed with the - VOLOPT(*KEEP) option), the default optical authorization list (QOPTSEC) is used to secure the volume. - If the volume was removed with the VOLOPT(*KEEP) option, the authorization list that previously - I secured the volume is used to secure the volume. - The user that adds the optical cartridge does not need to have any authority to the data on the volume - being secured by the authorization list, as long as the user is not overriding the authorization list that - previously secured a volume that was removed with the VOLOPT(*KEEP) option. - This method is different from the way authorization lists are used to secure system objects. For example, - a system operator should be able to add the PAYROLL optical disk to the optical media library and - secure it with the PAYROLL authorization list, but not be able to access the data on the PAYROLL optical - disk. - To change the authorization list used to secure an optical volume that was previously removed with the - VOLOPT(*KEEP) option, the user issuing the ADDOPTCTG command must have either *AUTLMGT - authority to the authorization list that previously secured the volume or *ALLOBI special authority. ### Using the authorization list assignment and the Add Optical Server (ADDOPTSRV) #### command - The Add Optical Server (ADDOPTSRV) command secures all volumes in the system with the default - optical authorization list (QOPTSEC). The default optical authorization list is used unless a volume was - previously secured with a different authorization list and then removed using the VOLOPT(*KEEP) - option on the Remove Optical Server (RMVOPTSVR) command. ### Changing the authorization list to secure an optical volume - You can change the authorization list that is used to secure an optical volume in a CD-ROM device or an - optical media library. - You can change the authorization list for an optical volume by using the Change Optical Volume - (CHGOPTVOL) command. The user attempting to change the authorization list that is used to secure an - optical volume must have either *AUTLMGT authority in the authorization list that is currently securing - I the volume or *ALLOBJ special authority. Specifying *NONE as the authorization list name causes access - I verification processing for the volume to be bypassed on the future access requests for the volume. If the - I new authorization list does not exist, the CHGOPTVOL command is rejected and a message is issued - I indicating that the new authorization list does not exist. Whenever the authorization list used to secure a - volume is changed to a different authorization list or to *NONE, an audit entry is logged if optical - auditing is active. ### Retaining the authorization list when removing optical volumes - The relationship between an optical volume and an authorization list is maintained in the optical index - database. - This relationship is lost when a volume is exported with the *REMOVE option because the record is - deleted. If the *KEEP option is specified when the volume is removed, the record is kept. By specifying - *PREV on the Add Optical Cartridge (ADDOPTCTG) command, the authorization list that secured the - optical volume before it was removed with the *KEEP option is used to secure the volume when it is - re-added. The relationship between a CD-ROM volume and the authorization list securing it is lost when - the CD-ROM is removed from the drive. ### Mapping the authorization list to an optical volume - The name of the authorization list used to secure an optical volume is kept in an optical index database - file. - If an authorization list used to secure an optical volume cannot be found when attempting to access the - I volume, the access is denied and a message is issued indicating that the authorization list for the volume - I could not be found. IF *NONE is specified as the authorization list used to secure an optical volume, no - I access verification is performed. The authorization list that secures an optical volume can be determined - by using the Work with Optical Volumes (WRKOPTVOL) command. ### Managing directory- and file-level security - Directory- and file-level security is available for Universal Disk Format (UDF) volumes. - The system maintains the data authorities of optical directories and files for three groups of users: owner, - I group, and public. You can display, change, and manage these authorities by using the integrated file - I system authority commands Display Authority (DSPAUT), Change Authority (CHGAUT), and Work with - Authority (WRKAUT). To change the owner and primary group for files and directories, use the - integrated file system commands Change Owner (CHGOWN) and Change Primary Group (CHGPGP). - You can also access these commands through the Work with Optical Volumes display by selecting option - 1 11 (Work with object links) on the desired volume. #### | Related concepts - "Optical media formats" on page 70 - There are several optical media types and media formats used for the i5/OS operating system. ### Optical auditing - Many optical operations can be audited. - To enable optical auditing, the system value QAUDCTL must be set to *AUDLVL, and *OPTICAL must - be specified in the QAUDLVL system value. - Use the *SEC value on the SYSVAL parameter of the Work with System Values (WRKSYSVAL) command - I to change these system values. *AUDIT special authority is required to change these values. - The following optical operations can be audited: - Create, copy, or delete a directory - Open file, including access mode (read only, write only, read and write) - Copy, move, rename, or delete file - Change or retrieve directory attributes - Control file system (save or release held file, sector read) options - Open a directory - Back up optical volumes - Initialize or rename an optical volume - Convert a backup optical volume to a primary volume - Add or remove an optical cartridge - Change the authorization list, securing an optical volume - Save an optical volume - Restore an optical volume - Check optical volume for damaged files - Related reference - l 🔼 iSeries Security Reference # Reclaiming the optical index database - I A system-level index, called the optical index database, keeps track of all optical volumes and directories - I known to the system. - The optical index database includes the optical volume index (QAMOVAR) and the optical directory - I index (QAMOPVR) physical files. You can use the Reclaim Optical (RCLOPT) command to recreate the - I optical index database if it is ever damaged or destroyed or whenever volumes that you know are in an - optical media library, CD-ROM, or DVD device are reported as not found. To run the RCLOPT command, - either select option 2 (Reclaim optical index) on the Optical Backup/Recovery display or enter the - RCLOPT command. Doing either causes the Reclaim Optical (RCLOPT) display to appear. - Note: The RCLOPT command (shipped with a public authority of *EXCLUDE) applies to directly - attached optical media libraries, CD-ROM, and DVD optical devices. You cannot issue the RCLOPT - command to LAN-attached optical media libraries. To recreate the Optical Index Database for - LAN-attached optical media libraries, use the Add Optical Server (ADDOPTSVR) command. ### Reclaiming the optical index for a stand-alone optical device - The optical index database recreates entries for CD-ROM and DVD devices each time the device is varied - on with media in the device. - The easiest way to reclaim the optical index for a stand-alone optical device is to vary the device - I description off and on again using the Vary Configuration (VRYCFG) command. Ejecting and reinserting - I the media has the same effect. You can issue the Reclaim Optical (RCLOPT) command for stand-alone - optical devices if you choose to
do so. ### Reclaiming types - There are three possible types to select: *SYNC, *UPDATE, and *RESET. - Each successive reclaim type described in these topics is more extensive and takes longer to run. The - *UPDATE and *RESET reclaim types allow you to optionally reclaim the optical directory index. The type - of index problem that you are experiencing determines which reclaim option should be run. #### Related concepts - "Choosing the reclaim type to use" on page 117 - This topic provides information about choosing which reclaim type to use and when the different - options should be used. #### Synchronizing volume index with internal library index (*SYNC): - The synchronize option verifies that the entries in the optical index database are also in the internal - library index. - Entries that are in both indexes are left unchanged. Only those optical volumes that are in the internal - library index but not in the optical index database are mounted in an optical drive. If an entry is in the - I internal library index but not in the optical volume index, an entry is created for the volume in the - optical volume index. Message OPT2105 Optical index entries created for volume &2; is issued, - indicating that an optical volume index entry was created for the volume. If the volume is initialized, - optical directory index entries are also created for each directory on the volume. If an entry is in the - optical volume index but not in the internal library index, message OPT2115 Optical volume &1; is - marked removed is issued. This indicates that the volume status for that volume has been changed to - *REMOVED. #### Updating volume index from an optical volume (*UPDATE): - The update option recreates the optical volume index entries for all volumes in a media library or a - specific volume by reading the volume data from the media. - In addition, you can optionally rebuild the optical directory index by using the DIR parameter. If *ALL is - I specified in the Volume identifier field, the optical volume index is reclaimed for all volumes in the - optical media library. If a specific volume name is entered in the Volume identifier field, the optical - volume index is reclaimed for that volume only. The optical volume index is updated only for those - I volumes and libraries that are selected. Index information for other volumes and libraries remains - I unchanged. Each optical volume whose index is reclaimed will be mounted in an optical drive. - If all of the volumes in an optical media library are specified and an entry is in the internal library index - but not in the optical volume index, an entry is created for the volume in the optical volume index and - I message OPT2105 is issued. If the volume is initialized, optical directory index entries are also created for - I each directory on the volume. - If an entry is in the optical volume index but not in the internal library index, message OPT2115 is - I issued. This message indicates that the volume status for that volume has been changed to *REMOVED. #### Resetting internal library index and reclaim volume index (*RESET): - I The reset option performs basically the same processing as the update option, except that the internal - l library index is reclaimed before the optical volume index is reclaimed. - You can request that the internal library index and optical index database be recreated or updated either - for a specific optical media library or for all optical media libraries. The optical volume index is updated - I only for those libraries that are selected. Index information for other libraries remains unchanged. - I Specifying the *RESET option will always reclaim the optical directory index. Each cartridge in the optical - I media library must be mounted at least once for you to use the *RESET option. The system does this to - I verify that the internal library index is correct. - If an entry is in the internal library index but not in the optical volume index, the system mounts and - I reads the volume again. The system creates an entry for the volume in the optical volume index and - l issues message OPT2105. - If an entry is in the optical volume index but not in the internal library index, the system issues message - OPT2115. This message indicates that the volume was not located after rebuilding the internal library - I index, and that the volume status for that volume is changed to *REMOVED. ### Using the reclaim optical directory index option - The reset option lets you reclaim the optical directory index (QAMOPVR) file. The following values are available for parameter DIR: - *YES indicates that the optical directory index is reclaimed for each volume in the specified library. - *NO indicates that the system does not reclaim the optical directory index for the volume. - The *RESET type requires exclusive use of all libraries that are being reclaimed. Also, when you use the *RESET type, the Volume identifier field is not used. #### Time required to complete reclaiming the optical index: - When either *RESET and VOLUME(*ALL) or *UPDATE and VOLUME(*ALL) together are selected, it - I may require several hours for the Reclaim Optical (RCLOPT) command to complete. - The time requirement is necessary because every volume in the optical media library that is specified - I must be mounted and then read. The requested databases are then updated before the next volume is - I mounted. The following factors affect how long it takes the command to complete: - The number of libraries being reclaimed - The number of volumes in each library - Which type of reclaim is requested - The number of directories on each volume - After a reclaim command has started, it should not be canceled before it has completed. If a reclaim - command is canceled before it completes, it might be necessary to run the RCLOPT again before the - I optical media library is in a usable state. ### Optical index information - Optical index information regarding which volumes are in a particular optical media library and which - I directories are on each volume is kept at different levels within the system. - I Optical index files are used to enhance performance by eliminating the need to access the optical media - library or physical media each time the location of a volume or directory is needed. - Failures, system upgrades, and physically moving optical library devices from one system to another can - cause these index files to become out of synchronization with the actual contents of a particular optical - I media library or volume. When this happens, messages are sent indicating that the optical index needs to - l be reclaimed, such as OPT1245, OPT1825, or OPT1330. These messages direct you to run the Reclaim - Optical (RCLOPT) command. The following topics describe the optical index files that are kept at the - I different levels of the system. An understanding of the different optical indexes is helpful when deciding - which type of reclaim optical index to run. #### Optical index database files: - The optical indexes reside in the physical files QAMOVAR and QAMOPVR. - The QAMOVAR file is the optical volume index. It contains information about all optical volumes known - I to the system. This includes volumes that were previously removed from the optical media library with - the volume description option of *KEEP. The QAMOPVR file is the optical directory index. It contains - I information about the directories on the volumes in directly attached optical media libraries or CD-ROM - devices. This includes those volumes that were previously removed from directly attached libraries with - the volume description option of *KEEP. - Information for volumes that are *OFFLINE or *REMOVED is retained by reclaim optical processing, but - I it cannot be rebuilt or verified because the physical volumes are no longer accessible. If the optical index - I database is ever destroyed, information about *REMOVED volumes can be recovered by adding the - I cartridge that contains the volumes to an optical media library using the Add Optical Cartridge - (ADDOPTCTG) command. #### | Internal library index: - I Each optical media library keeps an internal library index of each volume that it contains. - The internal library index for each optical media library is controlled by the Licensed Internal Code. The - I information in this index is generally not accessible to users or application programs. However, this index - I must be kept synchronized with the optical index database. This index is recreated when the *RESET - rebuild type is specified. - To select the optical media library or libraries that require rebuilding, enter the optical media library - I name in the Optical media library field on the Reclaim Optical (RCLOPT) display. The name that you - enter must correspond to an optical media library that is currently configured on the system. - To reclaim more than one optical media library, issue separate RCLOPT commands for each device rather - than using MLB(*ALL). Sequentially using the MLB(*ALL) command reclaims all of the optical media - l libraries one at a time. Issuing separate RCLOPT commands will allow the reclaiming operations to run - I in parallel, which will run faster. ### Choosing the reclaim type to use - This topic provides information about choosing which reclaim type to use and when the different options should be used. - Most optical support error messages that direct you to run the Reclaim Optical (RCLOPT) command - specify the rebuild type you should use to recover from the error. However, occasionally you might - suspect that the optical index needs to be reclaimed even though no error message has been issued. In - this case, you need to determine which reclaim type should be run. If you are unsure which reclaim type - you should use, run the RCLOPT command with the *SYNC option and then try the failing request - again. If the request still fails, run the RCLOPT command with
the *RESET option. #### *SYNC I I Use this option when you are getting messages indicating that a volume is not found (OPT1331 or OPT1330 - reason code 2) or that a volume is removed (OPT1460) when you feel that the volume is indeed in the optical media library. Use this option after you upgrade to a new release of i5/OS or when you move a directly attached optical library device from one system to another. #### *UPDATE Use this option first if you see a message indicating that the optical tables are incorrect (OPT1825). You can also use this option if you are having problems with a particular volume not displaying all the directories when you use the Work with Optical Directories (WRKOPTDIR) command. #### *RESET Use this option when you get message OPT1330 with reason code 01. Unless otherwise instructed through an optical message, use this option as a last resort. It will generally take much longer to complete than either of the two previous options, but it will ensure that both the optical index database and the internal library index are correct. Specify DIR(*NO) unless you have a specific need to create the optical directory index. The only operations that require the directory index are Work with Optical Directories (WRKOPTDIR) and Display Optical (DSPOPT) when DATA(*DIRATR) is used. If you specify DIR(*NO), the directory index is built on demand when one of these functions is issued. ## Recovering held optical files - A held optical file is an optical file that could not be closed normally. This topic provides information on recovering held optical files. - The file contains buffered data that cannot be written to the optical disk. If the open file handle is still valid, the file is still open; otherwise, it is considered closed. - Held optical files are only created for media format *HPOFS when the Change Optical Attributes - (CHGOPTA) Held file attribute field is *YES. Held optical files are not created for media format *UDF or when the Held file attribute field for the CHGOPTA command is *NO. ### Related concepts I - I "Changing optical environment parameters" on page 91 - The Change Optical Attributes (CHGOPTA) command can be used to change specific optical - configuration parameters that affect all jobs using the optical file system. I ### How optical files are used - An application can manipulate optical file data by using UNIX-type APIs or the hierarchical file system (HFS). - An application opens a file, operates on the file, and finally closes the file. When an application changes - I file data or attributes, the optical file system stores these changes in a temporary system object in i5/OS - storage. The optical file system does not update the optical disk until the application closes the file. When - two or more applications concurrently change file data or attributes, the optical file system updates the - optical disk when the last updating application closes the file. The application may force file and attribute data to optical disk by issuing either the HFS Force Buffered Data API or UNIX-Type fsync() functions. - Implementing this process has the following benefits: - Simulation of read and write access to optical files - File locking and sharing - Byte locking and sharing - Random processing of optical file data - Writing variable-length data buffers to the optical file - Reduction of input and output to the optical disk - Related information - Application programming interfaces (APIs) #### | Held optical files: - If the optical file system is unable to update the optical disk during a close function, the operation fails and the file is marked as held. - The optical file system might still consider the file to be open. If it considers the file open, the optical file - system allows any application that already has the file open to continue operating. In any case, no new - I application can open a file while it remains held. If the system can correct the condition that caused the - failure, and the file is still open, the application may attempt to close the file again. If the close function - I succeeds, the system no longer holds the file. #### Notes: - 1. If an HFS application specified an open type of normal, it cannot access the file through the HFS API any longer. See the online help information regarding the open types that concern the Open Stream File command. - 2. The system does not create held files when files fail to close on Universal Disk Format (UDF) media. ### Related reference - Application programming interfaces (APIs) - I Recovering a held optical file: - This topic provides instructions on recovering a held optical file. - If a close operation fails for an open optical file and the file becomes held, the held file can be handled in one or both of the following ways: - You can attempt a save request - You can release the file to allow it to be opened again. - I However, if the cause for the close failure has been corrected, the file can now be closed as usual, without - I having to save or release it first. In this situation, the file is automatically saved and released, and the - I held status is lifted. After releasing a held file, you can close it if the open file handle is still valid. - Before saving or releasing a held optical file, you can view all of its open instances by selecting Display - Usage information from the Work with Held Files Optical Files (WRKHLDOPTF) display. This can be an - I important step in determining the appropriate actions for the file. For example, before deciding not to - I save the latest version of a file, it is useful to know if other applications have been making concurrent - I updates to the same file. Updates would be rolled back for all users if the file were only released and no - I further updates were made before the last updating application closed the file. - I Saving a held optical file: - I Saving a held optical file physically writes the data and file attributes to the optical disk. You can choose - I to save to the original volume, directory, and file name that you specified at open time, or to a new - I optical file path. - In some situations, you can save the file at the original storage destination. For example, if the file has - I been opened with a normal open type, the file is now inaccessible through the HFS API, rendering the - open file handle no longer valid. However, the condition that caused the file to become held might have - I been corrected, giving you the ability to save the data by specifying the held file as the destination. - If the application specifies a different file path as the destination, the file must not already exist. If - appropriate, you can delete such a file before attempting to save to that volume, directory, and file name. - After a held optical file is saved, it should be released to allow the file to be used by future applications. - I Releasing a held optical file: - A held file can only be released if no locks are currently imposed on the file by other active jobs. - Releasing a held optical file clears the held status and allows new applications to open the file. It also - releases the optical file system from its obligation to update the optical disk, unless some application - I makes further updates to the file. After the file has been released, it may be closed if the user's process is - I still active. - If one or more applications continue to change a file after it is released, the optical file system attempts to - update the optical disk when the last updating application closes the file. However, if the cause for the - I close failure has not been corrected, the file can be expected to become held again. - A held file can be released after a save operation or without any save operation. If a successful save - I operation cannot be achieved, you can release the file simply to acknowledge that the data cannot be - I written to the disk and that this result is being accepted without taking further action aside from closing - I the file. - If you do not release the held optical file, it remains held even if the process ends, unless an automatic - I close operation is successful in saving the file at that time. For held files, this might only happen if the - I open type is permanent, and if the cause for the earlier close failure has been resolved. - I Implementing held optical file functions: - Before deciding whether to save or release a held optical file, you might want to view information that - I can influence save and release decisions. - The Work with Held Optical Files display provides this means, in addition to the ability to save and - I release held optical files. The save and release functions are also available as optical-specific functions of - I the HFS Control File System API. - The Work with Held Optical Files display provides a convenient way to list and manage any held optical - I files on the system. Use the Work with Held Optical Files (WRKHLDOPTF) command to access the Work - I with Held Optical Files display. - Options on the Work with Held Optical Files display are selected to display the use (open instances) of - I files, as well as to save and release held files. By default, using **Save** on the Work with Held Optical Files - display causes the automatic release of a held file after it is saved. - The functions provided by Save and Release are also available as the optical-specific functions, Save - Held Optical File and Release Held Optical File, of the Control File System API in the programming topic. - Unlike **Save**, the Save Held Optical File function of the Control File System API does not automatically release a held file after it is saved. Therefore, an explicit release request is needed afterward. #### Related information - Programming - I Disabling held optical file support: - i5/OS is shipped with held optical file support enabled. If desired, you may disable it by using the - Change Optical Attributes (CHGOPTA) command. - When held
optical file support is disabled, a held file is not created when a file fails to be archived to - optical disk. When using this option, it is up to the user application to manage recovery procedures for - I files that fail to be archived. Consider the following scenarios: #### Scenario 1 The application opens an optical file for a write operation, and then writes data to the file. When you attempt to close the file, it fails because the optical disk is full. ### Held file support enabled The file is still open, but becomes held. The file closes when the job ends if it never closes successfully before the job ends. The file will remain held until it is released. ### Held file support disabled The file is still open, but is not held. The file closes when the job ends if it never closed successfully before the job ends. The file will not become held, and all resources (virtual optical file) associated with the held file will then be freed up. #### Scenario 2 The application opens an optical file for write, and then writes data to the file. The application then issues a Force Buffered Data API to ensure the data is safe on nonvolatile storage. The system then loses power. ### Held File Support Enabled After the internal program load (IPL) of the system is completed the file exists as a held optical file. All data that was successfully forced to disk is recoverable. In other words, when you save the held file to optical storage, all data written before the Force buffered data request will be saved. ### Held File Support Disabled After the IPL of the system is completed, the file does not exist as a held optical file. All data written to this file on the previous open instance is lost. The force data request had no effect. It is important to note that when held optical file support is disabled, forcing data to nonvolatile storage - I is meaningless. This is because data is written to optical storage after the file closes successfully. The - Force buffered data function will force the data to the i5/OS disk, and you can use the held optical file to - I recover the data after a power loss. Held files are the only mechanism to recover data forced to - I nonvolatile storage after a power loss or other unexpected error. Held file support is needed to recover - I any data from an open instance that closes unsuccessfully. This affects the following application program I interfaces. - Force Buffered Data HFS (QHFFRCSF) API - This API is allowed when held file support is disabled, but it will have no effect. - Synchronize File Changes IFS fsync() API - This API is allowed when held file support is disabled, but it will have no effect. - Synchronous write-through flag on Open Stream File HFS (QHFOPNSF) API - I This value is allowed, but will be treated as an asynchronous write-through flag. - Use the Change Optical Attributes (CHGOPTA) command to enable, disable, or determine the current - status of held optical file support. After held optical file support is disabled, it remains disabled for all - optical users. You must enable held file support for it to become active again. ## Saving and restoring optical media - The i5/OS Save and Restore commands support directly attached optical media library devices, - CD-ROM, DVD-ROM, and DVD-RAM stand-alone devices. - The best use of optical storage devices is as a part of disaster recovery protection. The extraordinary long - shelf life of optical media is well suited for the long-term storage of critical data. You can provide extra - protection by using permanent WORM media because you cannot alter data on the media. Tape devices - may provide the optimal day-to-day backup mechanism. This depends on the amount of data that you - want backed up, and the amount of system time available for backup. CD-ROM and DVD-RAM media - are also well suited for software distribution. The save/restore command interface can be used as a part - of installation procedures for programs, data, and program fixes. CD-ROM and DVD-RAM stand-alone - drive optical devices also support the Load Run (LODRUN) command. #### Related concepts - "High performance optical file system" on page 71 - High Performance Optical File System (HPOFS) is an IBM-developed media format architecture available - to use when initializing optical media. - "Directory and file security" on page 75 - Directory- and file-level security is available for Universal Disk Format (UDF) volumes. The system - maintains the data authorities of optical directories and files for three groups of users: owner, group, - and public. Volume-level security is also available through authorization lists. - "CL command support for media formats" on page 76 - This topic provides information on using i5/OS commands to save and restore data and some of the - restrictions for the ISO 9660, High Performance Optical File System (HPOFS), and Universal Disk - Format (UDF) media. - Related reference - Save Restore (SAVRST) ### Concepts for saving and restoring optical media - Optical devices support many of the most widely used i5/OS Save and Restore commands. - The DVD-RAM stand-alone optical drive device is an economical alternative to magnetic tape for - save/restore operations on entry-level systems. The DVD-RAM stand-alone drive device supports all - major save/restore functions. The automated library device enhances ease of use of save and restore - operations that require volume lists. ### Optical media formats with saving and restoring operations: - This topic provides general information about different media formats in relation to save and restore - volume list processing. - I Save and restore volume list processing differs for each optical media format. A volume list is used on a - I save or restore request when multiple optical volumes are required for the operation, thus creating a - I volume set. All volumes in a volume set must have the same optical media format. Volume sets are not - supported for CD media formatted with ISO 9660. - You must initialize media of type permanent WORM and CCW WORM with the media format of High - Performance Optical File System (HPOFS). - You can initialize media of type rewritable with HPOFS format or Universal Disk Format (UDF). - You must initialize the DVD type of media that is used by DVD-RAM stand-alone drive devices with - UDF. ### Organizing save and restore data on optical devices: - This topic provides information about organizing save and restore data on optical devices according to - path name lengths, naming conventions, and directory levels. - The save data on optical media is uniquely identified by a path name. This path name has the form: - I /directory name/subdirectory name/../filename. You may create and specify as many directory levels as - I is necessary to organize your save data to suit your needs. If no directory levels are specified, the save - I data file is placed in the root directory of the specified optical volume. - The optical path name may be up to 256 alphanumeric characters in length. Optical volume names may - l be up to 32 alphanumeric characters in length. Some caution is necessary when using long names. Many - i5/OS save and restore displays, messages, reports, output files, and object descriptions, support a - I maximum of 6 characters for volume names, and 17 characters for path names. Longer names will appear - I truncated in these instances. Additionally, some automated data management software may not properly - handle long volume names and long path names. ### Saving a library to optical storage - You can save the i5/OS library DEVLIB01 to the optical volume SRVOL1 that is contained in library - device OPTMLB02. You do this by using the following command: - | SAVLIB LIB(DEVLIB01) DEV(OPTMLB02) VOL(SRVOL1) ('/DEVLIB01') - An optical file containing the save data, with the name DEVLIB01, will be created in the root directory of - volume SRVOL1. #### Displaying save and restore file information on optical storage: - You can use various commands to save and restore file information. - As an example, information concerning the save and restore files that are contained on a given optical - I volume can be displayed using the Display Optical (DSPOPT) command. The following command - I displays the information for all save and restore files that are found in the root directory of the optical - | volume SRVOL1: - DSPOPT VOL(SRVOL1) DATA(*SAVRST) PATH(/) #### | Using the OPTFILE parameter - The OPTFILE parameter is used in save and restore commands to designate the optical file path name to - I be used to contain the save data. The system dynamically creates any specified directory names that do - I not exist. - The OPTFILE parameter has a default value of (*). By using the default parameter value, you will place - I the file in the root directory of the optical volume that is specified by the VOLUME parameter. - Additionally, in commands other than SAV, the file name is the name of the i5/OS library that contains - I the objects that are saved. For the SAV command, OPTFILE(*) generates a filename of the form SAVyyyymmddhhmmssmmm, where yyyymmddhhmmssmmm is the current date and time. ### Using the media eject option - For stand-alone drive devices that are attached by PowerPC® IOAs, you can automatically open the - I media tray at the conclusion of a save and restore operation. You can do this by specifying the - ENDOPT(*UNLOAD) parameter. The system ignores this parameter for optical library devices. The - | ENDOPT(*LEAVE) or ENDOPT(*REWIND) parameters have no effect on optical stand-alone drive - I devices or optical media library devices. #### **Volume list contents:** - Volume lists allow a single save and restore operation to use many pieces of optical media to complete - the requested operation. - Information relating to optical volumes that are a part of a save and restore volume list may be displayed using the Display Optical (DSPOPT) command. - Volume list information
fields: ### Continued from Previous Volume flag - This field applies only to UDF media. - This flag indicates that the save and restore file is continued from the previous volume in the volume list. - Only one file on a given volume can have this flag set on. - You can use the DSPOPT DATA(*FILATR) command to display this flag. #### Continued on Next Volume flag - This field applies only to UDF media. - · This flag indicates that the save and restore file is continued to the next volume in the volume list. - Only one file on a given volume can have this flag set on. - You can use the DSPOPT DATA(*FILATR) command to display this flag. ### IPL Capable flag - This flag indicates that the Save System (SAVSYS) command created this volume and that you can use it for D-Mode IPL. - You can use the DSPOPT DATA(*VOLATR) command to display this flag. #### Last Volume in Volume List flag - This flag indicates that the volume is the final volume in a volume list. - For High Performance Optical File System (HPOFS) format volumes, the system does not allow save files that are unrelated to the volume list on the final volume. The remaining capacity does not affect this situation. UDF volumes do allow unrelated save files on the volume if sufficient free space exists. - You can use the DSPOPT DATA(*VOLATR) command to display this flag. ### Starting Volume ID - The volume ID of the first volume in a multiple volume set in a volume list is located in the starting volume ID field. For UDF volumes, the volume list might contain several different save files. Consequently, this field does not specify the starting volume of any given file that is contained in the set. - You can use the DSPOPT DATA(*VOLATR) or DATA(*FILATR) command to display this flag. #### Volume lists with HPOFS format media: - This topic describes volume list information specific to High Performance Optical File System (HPOFS) - format media. - Only one file in a multivolume set logically spans volumes. The last volume in the set does not accept additional save requests. The system does not maintain continued flags. - Volume1 (Sequence#=1, Starting volid=Volume1, Last volume in set=No) - File1 (Continued from previous volume=NO, Continued on next volume=NO) - File2 (Continued from previous volume=NO, Continued on next volume=NO) - File3 (Continued from previous volume=NO, Continued on next volume=NO) - Volume2 (Sequence#=2, Starting volid=Volume1, Last volume in set=No) - File3 (Continued from previous volume=NO, Continued on next volume=NO) - Volume3 (Sequence#=3, Starting volid=Volume1, Last volume in set=Yes) - File3 (Continued from previous volume=NO, Continued on next volume=NO) #### **Notes:** - No more save operations are allowed to Volume1, Volume2, or Volume3. The system does not allow additional save files to Volume3, regardless of sufficient free space. - Access to any previous save data is lost from Volume1, Volume2, and Volume3. - All restore operations must begin on Volume1. #### Volume lists with UDF media: - This topic describes volume list information specific to Universal Disk Format (UDF) media. - More than one file in a multi-volume set can logically span volumes, but only one file per volume can span to the next volume in the volume list. The last volume in the set accepts additional save requests if - space is available. The system maintains the continued flags for spanned files. - Volume1 (Sequence#=1, Starting volid=Volume1, Last volume in set=No) - File1 (Continued from previous volume=NO, Continued on next volume=NO) - File2 (Continued from previous volume=NO, Continued on next volume=NO) - File3 (Continued from previous volume=NO, Continued on next volume=YES) - Volume2 (Sequence#=2, Starting volid=Volume1, Last volume in set=No) - File3 (Continued from previous volume=YES, Continued on next volume=NO) - File4 (Continued from previous volume=NO, Continued on next volume=NO) - File5 (Continued from previous volume=NO, Continued on next volume=YES) - Volume3 (Sequence#=3, Starting volid=Volume1, Last volume in set=No) - File5 (Continued from previous volume=YES, Continued on next volume=YES) - Volume4 (Sequence#=4, Starting volid=Volume1, Last volume in set=Yes) - File5 (Continued from previous volume=YES, Continued on next volume=NO) - File6 (Continued from previous volume=NO, Continued on next volume=NO) #### Note: - 1. Space permitting, additional saves are allowed to Volume4. - 2. A restore operation begins on the volume that contains the first occurrence of the specified file. For example, you can restore data from File4 on Volume2 without processing Volume1. 3. The volume set for UDF media described in this section is not related to the volume set or multi-volume support that is defined in format specifications for UDF (ECMA 167 3rd Edition or UDF Revision 2.01). Support for volume sets as defined by these specifications is not currently provided by i5/OS. ### Related concepts "Clearing media" | | By specifying CLEAR(*ALL), you clear all the files on the media. ### Saving optical files to optical storage - You can save optical files to DVD-RAM, UDF, and HPOFS media. - | Specifying optical file path names: - This topic provides information about specifying a path name for the optical file that is used for the save operation. - Optical storage operates in random mode and uses a hierarchical file structure when writing files to the - media. Beginning with the root directory of the volume, you may specify a path name for the optical file - I that is used for the save operation. Specifying an asterisk (*) causes the system to generate an optical file - name in the root directory (/). Specifyingoptical_directory_path_name/* causes the system to generate - an optical file name in the specified directory of the optical volume. Specifying optical_file_path_name - I creates an optical file name. For example, specifying SAVLIB LIB(MYLIB) DEV(OPT01) - OPTFILE('/mydir/*') creates an optical file name of mydir/MYLIB. If mydir directory does not exist, the - 1 system creates it. - When you use DVD-RAM media to save i5/OS information, the system checks for active files by using - the CLEAR parameter on the save commands. Specify CLEAR(*NONE) to have the system search the - I DVD-RAM volume for any active optical files that have the same name. If an optical file of the same - I name exists, the system displays an inquiry message. You may cancel the processing, write over the - existing file on the volume, or insert a new cartridge. If no active files of the specified optical file exist - I and there is available space on your DVD-RAM volume, the system writes the file to your DVD-RAM - I media. If the system cannot find any available space on the media, it prompts you to insert a DVD-RAM - I volume in the device. #### | Clearing media: - By specifying CLEAR(*ALL), you clear all the files on the media. - I By specifying CLEAR(*AFTER), you automatically clear all media after the first volume. The system - I sends an inquiry message when it encounters the specified optical file on the first volume. This allows - you to either end the save operation or replace the file. Specifying CLEAR(*REPLACE) automatically - I replaces the active data of the specified optical file on the media. - The only option on the CLEAR parameter that clears all the files is CLEAR(*ALL). Otherwise, the system - I sends an inquiry message for each specified optical file name it encounters. Specifying CLEAR(*NONE) - I sends an inquiry message for each specified optical file name it encounters, not just the first one. - I To avoid receiving an inquiry message during the save operation, you can perform either of the following functions: - Initialize the optical volume (INZOPT) first. - Specify an option by using the CLEAR parameter on the save command. - Note: Do not use the CLEAR(*NONE) parameter, this sends an inquiry message. See the online help information regarding the use of the CLEAR parameter with the save commands. - Related concepts - "Volume lists with UDF media" on page 124 - This topic describes volume list information specific to Universal Disk Format (UDF) media. ### Saving to multiple volumes: - If the system writes data to a second DVD-RAM volume, the system considers this a DVD set. - A set includes two or more volumes. The system can only write information on the last volume in the set. - In a three-volume DVD-RAM set, the system cannot write information to the first or second volume. - I The table below provides command support information according to optical device. | İ | Command | Supported by optical device | |------|--|---| | 1 | SAVSTG | None | | 1 | SAVS36F | None | | 1 | SAVS36LIBM | None | | 1 | SAVUSFCNR | None | | Ι | RSTS36F | None | | Ι | RSTS36FLR | None | | Ι | RSTS36LIBM | None | | Ι | RSTUSFCNR | None | | Ι | SAVLICPGM | DVD (No optical libraries) | | Ι | SAVSYS | DVD (No optical libraries) | | Ι | RSTLICPGM | DVD (No optical libraries) | |
 | SAVCHGOBJ of more than one library, including LIB(*ALLUSR) | DVD and optical library devices with Universal Disk
Format (UDF) media | | I | SAVDLO of more than one ASP | DVD and optical library devices with UDF media | |
 | SAVLIB of more than one library, including LIB(*ALLUSR), LIB(*IBM), AND LIB(*NONSYS) | DVD and optical library devices with UDF media | | 1 | SAVCFG | All writable optical devices | | Ι | SAVCHGOBJ of one library | All writable optical devices | | Ι | SAVDLO of one ASP | All writable optical devices | | 1 | SAVLIB of one library | All writable optical devices | | Ι | SAVOBJ of one library | All writable optical devices | | 1 | SAVSAVFDTA | All writable optical devices | | 1 | SAVSECDTA | All writable optical devices | | 1 | RSTCFG | All optical devices | | T | RSTLIB | All optical devices | | T | RSTOBJ | All optical
devices | | T | RSTUSRPRF | All optical devices | | T | SAVAPARDTA | Not applicable, command does not use a device | | | RSTAUT | Not applicable, command does not use a device | ## Operating guidelines by optical device type - I This topic provides information on operational guidelines by device type for optical library data servers - and CD-ROM, DVD-ROM, and DVD-RAM stand-alone optical drive devices. ### | Optical library dataservers - You cannot use the default value, *MOUNTED, for the volume identifier. - Volumes that are provided in a volume list must all be in the same library device. - A single save data file may span several volumes in a volume list. - For High Performance Optical File System (HPOFS) media, any volume used in a volume list becomes unusable by any save or restore operation other than the operation originally processing the volume - list - For example: - Save command A writes save data fileA to volume volA. - Save command B writes save data fileB to volume list: volC, volB, volA. - Restore command A will not be able to restore from fileA on volume volA. - Restore command B will be able to restore from fileB on the volume list: volC, volB, volA. ### CD-ROM and DVD-ROM stand-alone optical drive devices - CD-ROM and DVD-ROM are read-only devices. The system does not support save commands for these devices. - Save files cannot span multiple CD-ROM or DVD-ROM media that contain ISO 9660 media format. - You can specify the default value, *MOUNTED, for the volume identifier. It will process the optical volume currently in the specified stand-alone device. #### | DVD-RAM stand-alone optical drive devices - DVD-RAM devices are read and write devices. Save and restore commands are supported for DVD-RAM devices. - You can specify the default value, *MOUNTED, for the volume identifier. It will process the optical volume currently in the specified stand-alone device. - Multiple save data files may span several volumes in a specified DVD_RAM volume list. **Note:** Software compression and decompression might increase the save and restore times. It uses considerable processing resources which may affect the overall system performance. # Troubleshooting optical storage This topic provides answers to several of the more common questions, steps to follow when a problem occurs, and information needed for problem analysis. ### Optical support FAQ This topic provides information to help with some common problems and questions encountered with optical devices. - 1. When writing objects, I receive a message indicating that there is not enough optical media space available. However, the volume is not full. What is wrong? - 2. My backup volume is filling up before all objects from the primary have been stored. What is using up the extra space? - 3. While backing up a platter, the task ends abnormally. When I restart the backup, I receive the OPT1210 message indicating that the directory already exists. However, the directory is not listed when I use the Work with Optical Directories (WRKOPTDIR) command. How can this be? - 4. I received an OPT1115 message indicating that the file is not found when trying to retrieve an object. When I use the Work with Optical Files (WRKOPTF) command, the object is displayed. Why am I unable to retrieve the object? - 5. My application appears to be storing objects correctly, but when I use the Work with Optical Files (WRKOPTF) command, not all of the objects are showing up. Where are the objects going? - 6. My application program fails with message CPF1F83 indicating that the file system name /QOPT was not found when I attempt to copy a stream file using the CPYSF command. What is wrong? - 7. There is a volume I want to use, but I cannot seem to access it. What can I do? - 8. Messages are occurring which indicate that I should run Reclaim Optical (RCLOPT) command. A RCLOPT of type *RESET can take a long time. Is there a quicker way to recover? - 9. What is the difference between volumes marked *OFFLINE and those marked *REMOVED? - 10. When I add full optical volumes into my optical media library by using the Add Optical Cartridge (ADDOPTCTG) command, it takes a long time. Any suggestions? - 11. I entered a CD-ROM volume into my CD-ROM device, but I received a message saying volume not found when I attempted to access it. I did not see any error messages. What went wrong? - When writing objects, I receive a message indicating that there is not enough optical media space available. However, the volume is not full. What is wrong? - I Either the threshold is incorrectly set, the object being stored is bigger than the available space, or the - I spares area is full. Display the volume attributes of the volume that you are writing to using the Display - Optical (DSPOPT) command. Verify that the threshold and space available values are valid. Also, verify - I that access to the volume access is writable, and not read only. If it is read only, then the spares area may - I be full. The spares area is a set of sectors to which data is written when the original sector is damaged. - My backup volume is filling up before all objects from the primary volume have been stored. What is using up the extra space? - Several situations could cause this to happen: - Device errors may have occurred when only part of a file was written. When the backup operation was restarted, the complete file was rewritten. - If the backup volume type is WORM, it might have been initialized multiple times before the backup operation, thus wasting some volume space. - If you are performing an incremental backup operation, you might have selected the wrong option on the SLTFILE parameter (*ALL instead of *CHANGED). - If you created the primary volume on a pre-Version 2 Release 3 Modification 0 system, and the primary volume is over 98% full, then the Duplicate Optical (DUPOPT) command may be the only choice to back up this volume. - The primary volume is a 2X media and the backup volume is 1X. - While backing up a volume, the task ends abnormally. When I restart the backup, I receive the - OPT1210 message indicating that the directory already exists. However, the directory is not listed - when I use the Work with Optical Directories (WRKOPTDIR) command. How can this be? - When the task ended abnormally, the directory was created on the volume, but the internal optical index - I files had not been updated yet. Remove the backup volume using the Remove Optical Cartridge - (RMVOPTCTG) command and add it back in using the Add Optical Cartridge (ADDOPTCTG) command - and specifying DIR(*YES). The internal optical index will be updated with the new path. - I received message OPT1115 indicating that the file is not found when trying to retrieve an object. - When I use the Work with Optical Files (WRKOPTF) command, the object is displayed. Why am I - unable to retrieve the object? - I The optical media may be dirty. Contact your next level of support (hardware) to get the media cleaned. - My application appears to be storing objects correctly, but when I use the Work with Optical Files - (WRKOPTF) command, not all of the objects are showing up. Where are the objects going? - The files may be held optical files. Refer to Held optical files for more information on held optical files. In - I this case, the volume may have reached its threshold. Verify that your application is handling the - OPT1345 message Threshold reached on optical volume or CPF1F61 message No space available on - I media correctly. - My application program fails with message CPF1F83 indicating that the file system name /QOPT was - not found when I attempt to copy a stream file using the CPYSF command. What is wrong? - The file system portion of the path (/QOPT) must be specified in uppercase characters. The rest of the - path can be in either uppercase or lowercase characters. - There is a volume I want to use, but I cannot seem to access it. What can I do? - Duplicate volume names might cause this. If the volume is in a LAN system, it may have the same name - as a volume in a directly attached library or another system. If there are duplicate names, only the first - I volume found is usable. - Messages are occurring which indicate that I should run Reclaim Optical (RCLOPT) command. A - RCLOPT of type *RESET can take a long time. Is there a quicker way to recover? - Yes. First read *Reclaiming the Optical Index Database* to gain a better understanding of the RCLOPT process. - I Then attempt one of the following: - Run RCLOPT MLB device_name OPTION(*SYNC). - Work with Optical Volumes (WRKOPTVOL) and press F14 (Show extended information). If any volumes show moving as the location, then do the following: - 1. Run RCLOPT MLB(device name) OPTION(*UPDATE) VOL moving volume name. - 2. Refresh the Work with Optical Volumes screen. If any volumes still show up as moving, repeat step 1. - Run RCLOPT MLB device name OPTION(*RESET) DIR(*NO) - Note: This choice takes longer than the first two, but by specifying DIR(*NO), it could cut the I RCLOPT *RESET time in half. - What is the difference between volumes marked *OFFLINE and those marked *REMOVED? - *OFFLINE entries are volumes in optical devices that are either powered off, varied off, or no longer - connected. *REMOVED entries are volumes that were removed from the optical media library with - VOLOPT *KEEP specified. - When I add full optical volumes into my optical media library by using the Add Optical Cartridge - (ADDOPTCTG) command, it takes a long time. Any suggestions? - When volumes are removed using the Remove Optical Cartridge (RMVOPTCTG) command, remove - them specifying *KEEP on the VOLOPT parameter. The internal optical indexes save all information - I about these volumes, including the optical directory information. When volumes are added using the - ADDOPTCTG command, specify *NO in the DIR parameter. The volumes are added and the directory - I index is not rebuilt. This speeds up the import process. -
Note: This process should not be followed if changes were made to the removed volumes since the volumes were last removed from this system. - I entered a CD-ROM volume into my CD-ROM device, but I received a message saying volume not - found when I attempted to access it. I did not see any error messages. What went wrong? - Refer to CD-ROM and DVD on System i for information on loading CD-ROM media. In this case, you - I probably attempted to access the CD-ROM before it was fully loaded (wait 10-20 seconds after the tray - I slides in), or an error occurred during the load operation. Refer to the QSYSOPR message queue to see if - I the CD-ROM volume loaded successfully. ### Collecting information - If you need to call the next level of support, have the following information ready to help speed up the problem analysis process. - Detailed description of problem, including each of the following items: - 1. Applications that are running - 2. Whether the system or application is newly installed or has been running - 3. Can the problem be reproduced? - Type and model number of the dataservers - Up to date PTF level - Number of dataservers - Number of volumes ### Other system commands - The following system commands can help in gathering pertinent information for analyzing problems. - The Display Job Log (DSPJOBLOG) command shows commands and related messages for a job while it is still active and has not yet been written. - Display Log (DSPLOG) command shows the system history log (QHST). The history log contains information about the operation of the system and the system status. - The Trace Job (TRCJOB) command controls traces of program calls and returns that occur in the current program, or the job being serviced. - The Start Service Job (STRSRVJOB) command starts the remote service operation for a specified job so that other service commands can be entered to service the specified job. - The End Service Job (ENDSRVJOB) command ends the remote job service operation. This command stops the service operation that began when the Start Service Job (STRSRVJOB) command was entered. - The Analyze Problem (ANZPRB) command allows you to analyze, create problem records for, or report - problems that were not detected by the system. If the problem is valid, a fix can be supplied by matching the problem description to an already known problem for which a PTF exists, or an APAR - I can be created. - Related information - l Programming ## **Output file support structures** - I This topic describes the three possible record formats that are created by the Display Optical (DSPOPT) - I command when output is directed to either an output file or user space. - Only the fields that are set for a LAN volume (volume type 9) are indicated with an asterisk (*). The - Volume Capacity and Volume Space Available fields have a different meaning for LAN volumes; this is - I because the Volume Full Threshold field is not available. The Volume Capacity field contains the current - I total free space on the volume. Total free space equals the free space available for the user's application - I plus the space reserved by the volume full threshold. - The Volume Space Available field contains the user free space on the volume. The user free space equals - I the total free space less the amount of space reserved by the volume-full threshold. # Output file structure for volume attributes | | Attribute name | Attribute length | | |---|----------------------------|------------------|--| | + | CENTURY | CHAR(1) | | | * | DATE | CHAR(6) | | | * | TIME | CHAR(6) | | | * | VOLUME NAME | CHAR(32) | | | | OPTICAL DEVICE | CHAR(10) | | | * | CSI | CHAR(8) | | | | CSI LIBRARY | CHAR(10) | | | * | AUTHORIZATION LIST | CHAR(10) | | | | INTERNAL VOLUME ID | CHAR(32) | | | | VOLUME SERIAL NUMBER | PACKED(11,0) | | | * | VOLUME TYPE | PACKED(3,0) | | | | VOLUME CCSID | CHAR(2) | | | * | MEDIA TYPE | PACKED(3,0) | | | | MEDIA FORMAT | PACKED(3,0) | | | | VOLUME FULL THRESHOLD | PACKED(5,0) | | | | VOLUME SEQUENCE NUMBER | PACKED(9,0) | | | | VOLUME CREATION DATE | CHAR(7) | | | | VOLUME CREATION TIME | CHAR(6) | | | | VOLUME DESCRIPTION TEXT | CHAR(50) | | | | VOLUME LAST REFERENCE DATE | CHAR(7) | | | * | OPPOSITE SIDE VOLUME NAME | CHAR(32) | | | | VOLUME BLOCK SIZE | PACKED(9,0) | | | * | VOLUME CAPACITY | PACKED(11,0) | | | * | VOLUME SPACE AVAILABLE | PACKED(11,0) | | | | VOLUME LOCATION | CHAR(1) | | | | VOLUME OFFLINE LOCATION | CHAR(50) | | | | VOLUME ACCESS | CHAR(1) | | | | VOLUME MEDIUM | CHAR(1) | | | | DOUBLE-SIDED MEDIUM | CHAR(1) | | | | IPL-CAPABLE | CHAR(1) | | | | LAST VOLUME OF SET | CHAR(1) | | | | RESERVED | CHAR(23) | | | 1 | When the volume type is backup, the following fields are used: | | |---|--|--------------| | I | PRIMARY VOLUME NAME | CHAR(32) | | I | PRIMARY VOLUME SERIAL # | PACKED(11,0) | | I | CMPLT RANGE START DATE | CHAR(7) | | I | CMPLT RANGE START TIME | CHAR(6) | | | When the volume type is backup, the following fields are used: | | | | | |---|--|-----------------------------|---------------|--|--| | 1 | CMPLT RANGE END DATE | CHAR(7) | | | | | 1 | CMPLT RANGE END TIME | CHAR(6) | | | | | 1 | VOLUME CHANGED END DATE | CHAR(7) | | | | | 1 | VOLUME CHANGED END TIME | CHAR(6) | | | | | | | | | | | | | When the volume media is CD-ROM, the follow | ving fields are applicable: | | | | | I | MODIFICATION DATE | CHAR(7) | | | | | I | MODIFICATION TIME | CHAR(6) | | | | | I | EXPIRATION DATE | CHAR(7) | | | | | 1 | EXPIRATION TIME | CHAR(6) | CHAR(6) | | | | 1 | EFFECTIVE DATE | CHAR(7) | | | | | Τ | EFFECTIVE TIME | CHAR(6) | | | | | Τ | COPYRIGHT INFORMATION | CHAR(37) | | | | | Τ | ABSTRACT INFORMATION | CHAR(37) | | | | | Τ | BIBLIOGRAPHIC INFO | CHAR(37) | | | | | Τ | PUBLISHER KEY | CHAR(1) | | | | | 1 | PUBLISHER | CHAR(128) | | | | | Ι | PREPARER KEY | CHAR(1) | | | | | 1 | PREPARER | CHAR(128) | | | | | 1 | DATA SPECIFICATION KEY | CHAR(1) | CHAR(1) | | | | I | DATA SPECIFICATION | CHAR(128) | | | | | I | | | | | | | | VOLUME LOCATION | | | | | | 1 | The following constants are used in the sta | tus fields: | | | | | Τ | OFFLINE | CHAR(1) | CONSTANT("0") | | | | 1 | SLOT | CHAR(1) | CONSTANT("1") | | | | 1 | DRIVE | CHAR(1) | CONSTANT("2") | | | | I | MOVING | CHAR(1) | CONSTANT("3") | | | | 1 | REMOVED | CHAR(1) | CONSTANT("4") | | | | | | | | | | | | VOLUME ACCESS | | | | | | 1 | READ ONLY | CHAR(1) | CONSTANT("1") | | | | I | WRITE PROTECTED | CHAR(1) | CONSTANT("2") | | | | 1 | WRITABLE | CHAR(1) | CONSTANT("3") | | | | I | | , | | | | | | DOUBLE VOLUME MEDIUM | | | | | | I | NO | CHAR(1) | CONSTANT("0") | | | | 1 | YES | CHAR(1) | CONSTANT("1") | | | | I | | · | | | | | | DOUBLE-SIDED MEDIUM | | | | | | 1 | NO | CHAR(1) | CONSTANT("0") | | | | | · | · · | - | | | | YES | CHAR(1) | CONSTANT("1") | |-------------------------------------|-------------|-----------------| | | | | | PL-CAPABLE | | | | NO | CHAR(1) | CONSTANT("0") | | YES | CHAR(1) | CONSTANT("1") | | AST VOLUME OF SET | | | | NO | CHAR(1) | CONSTANT("0") | | YES | CHAR(1) | CONSTANT("1") | | | · | · | | EY (PUBLISHER, PREPARER, DATA SPECI | | | | CONTAINS DATA | CHAR(1) | CONSTANT("0") | | CONTAINS FILE NAME | CHAR(1) | CONSTANT("1") | | OLUME TYPE | | | | PRIMARY | PACKED(3,0) | CONSTANT(000.) | | BACKUP | PACKED(3,0) | CONSTANT(001.) | | JOURNAL | PACKED(3,0) | CONSTANT(002.) | | MIRROR | PACKED(3,0) | CONSTANT(003.) | | UNFORMATTED | PACKED(3,0) | CONSTANT(004.) | | UNKNOWN | PACKED(3,0) | CONSTANT(005.) | | SERVER VOLUME | PACKED(3,0) | CONSTANT(009.) | | | , | | | IEDIA TYPE | | | | WORM | PACKED(3,0) | CONSTANT(000.) | | ERASABLE | PACKED(3,0) | CONSTANT(001.) | | CD-ROM | PACKED(3,0) | CONSTANT(002.) | | DVD-ROM | PACKED(3,0) | CONSTANT(003.) | | DVD-RAM | PACKED(3,0) | CONSTANT(004.) | | UNKNOWN | PACKED(3,0) | CONSTANT(009.) | | MEDIA FORMAT | | | | UNITIALIZED | PACKED(3,0) | CONSTANT(000.) | | | | ` ′ | | HPOFS | PACKED(3,0) | CONSTANT(001.) | | ISO 9660 | PACKED(3,0) | CONSTANT(002.) | | UNKNOWN | PACKED(3,0) | CONSTANT(003.) | | UDF | PACKED(3,0) | CONSTANT(004.) | | UDF PARTIAL | PACKED(3,0) | CONSTANT(005.) | | CE CARTRIDGE | PACKED(3,0) | CONSTANT(0254.) | ## Output file structure for directory attributes | | Record format for QAMODPA: | | | |---|----------------------------|------------------|--| | 1 | Attribute name | Attribute length | | | Ι | CENTURY | CHAR(1) | | | Ι | DATE | CHAR(6) | | | Ι | TIME | CHAR(6) | | | Ι | DIRECTORY NAME | CHAR(256) | | | 1 | VOLUME NAME | CHAR(32) | | | Ι | OPTICAL LIBRARY | CHAR(10) | | | 1 | DIR CREATION DATE | CHAR(7) | | | Ι | DIR CREATION TIME | CHAR(6) | | | 1 | RESERVED | CHAR(25) | | ## Output file structure for file attributes | | Record format for QAMODFA: | | | |---|----------------------------|------------------|--| | I | Attribute name | Attribute length | | | 1 | CENTURY | CHAR(1) | | | 1 | DATE | CHAR(6) | | | I | TIME | CHAR(6) | | | 1 | PATH NAME | CHAR(256) | | | 1 | VOLUME NAME | CHAR(32) | | | 1 | OPTICAL DEVICE | CHAR(10) | | | I | FILE SIZE | PACKED(9,0) | | | 1 | FILE CREATION DATE | CHAR(7) | | | I | FILE CREATION TIME | CHAR(6) | | | 1 | FILE MODIFICATION DATE | CHAR(7) | | | | FILE MODIFICATION TIME | CHAR(6) | | | 1 | FILE EXPIRATION DATE | CHAR(7) | | | 1 | FILE EXPIRATION TIME | CHAR(6) | | | I | CONT FROM PREVIOUS VOL | CHAR(1) | | | I | CONT ON NEXT VOLUME | CHAR(1) | | | I | STARTING VOLUME ID | CHAR(32) | | | I | ATTRIBUTE NAME | CHAR(25) | | | I | ATTRIBUTE DATA | CHAR(75) | | | 1 | FILE SIZE2 | PACKED(15,0) | | | 1 | RESERVED | CHAR(17) | | | | | | | ### | Notes: 1. If the file size is 999 999 999 bytes or less, FILE SIZE and FILE SIZE 2 will both contain the correct size of the file. If the file size is larger than 999 999 bytes, FILE SIZE is set to 999 999 999 and FILE SIZE 2 contains the correct file size. - 2. If a file has extended file
attributes, there will be one record per extended attribute until all attributes of the file have been listed. - Constants used in the status fields: | | CONTINUATION INDICATOR | | | |---|------------------------|-----|---------| | Ι | | NO | CHAR(1) | | I | | YES | CHAR(1) | ## Virtual storage - Virtual storage consists of objects that, when used together, imitate tape, CD, DVD, and write-once - read-many (WORM) media on your disk units. The imitated media appear to the system to be actual - media. ı ## Concepts for virtual storage - This topic provides general information about virtual storage, including descriptions and instructions for I use. - When you use virtual storage, you create virtual tape, CD, or DVD images that exist on your system disk units. The objects that virtual storage uses are as follows: ## Virtual storage device - A virtual storage device is a device description that supports virtual storage, like an actual tape or optical - device description supports actual storage. One to 35 virtual storage tape device descriptions and one to - 35 virtual storage optical device descriptions can be active at a time on the system. - 1 You create a virtual tape device by selecting the RSRCNAME(*VRT) or TYPE(63B0) parameters on the - Create Device Description (Tape) or (CRTDEVTAP) command. - You create a virtual optical device by selecting the RSRCNAME(*VRT) or TYPE(632B) parameters in - Create Device Description (Optical) or (CRTDEVOPT) command. ### Image catalog - I An image catalog is an object that can contain up to 256 image catalog entries. Each catalog is associated - with one user-specified integrated file system directory. The system-recognized identifier for the object - type is *IMGCLG. Image catalogs can have the following statuses: - I Ready All of the loaded and mounted image catalog entries are available for use by the virtual storage device. The image catalog can be made ready by using the Load Image Catalog (LODIMGCLG) ı command with the parameter OPTION(*LOAD). #### ı Not Ready ı - None of the image catalog entries in the image catalog are available for use by the virtual storage device. - You can view or change image catalogs by using the Work with Image Catalogs (WRKIMGCLG) command. ## Write protection - Write protection refers to whether you have enabled the write protection switch for an image catalog - entry. The statuses for write protection are as follows: - Write protection is set for the image catalog entry. You cannot write to the virtual image associated with the image catalog entry. - Write protection is not set for the image catalog entry. You can write to the virtual image associated with the image catalog entry. ## For optical use only - Note: If the access for an optical image catalog entry is *READWRITE, you set the write protection switch to Y or N. If the access for the optical image catalog entry is *READONLY, the write protection switch is always set to Y. - You can view or change image catalog entries by using the Work with Image Catalog Entries - I (WRKIMGCLGE) command. The WRKIMGCLGE command indicates if the image catalog is in a Ready - I state or a not-ready state, and you can use this command to change image catalog entries whether the - I image catalog is in a ready state or a not-ready state. - I You can change image catalog entries by using the Load/Unload/Mount IMGCLG Entry - I (LODIMGCLGE) command or by typing GO IMGCLG at a command line. ### Virtual image - A virtual image is an object that contains the data that is typically on physical media. The virtual image - I is a stream file that resides in the integrated file system. In a backup and recovery scenario, you can also - I span virtual images. - Related reference - Work with Image Catalogs (WRKIMGCLG) - Work with Catalog Entries (WRKIMGCLGE) - Load/Unload/Mount IMGCLG Entry (LODIMGCLGE) - Related information - iSeries Security Reference ### Benefits of virtual storage - Virtual storage can help eliminate media errors and user intervention and can increase system availability. - Virtual storage also provides the following advantages: #### Electronic distribution - You can use virtual storage to simplify software and data distribution by creating tape, CD or DVD - I images on your system. You can distribute these images electronically using file transfer protocol (FTP, - | FTP SSL) or other electronic methods. On the system that receives the images, you can mount the images - I in a virtual device for easy access. You can also receive or distribute programming temporary fixes (PTFs) - l electronically. ### Object signing - You can secure a virtual image by giving it a digital signature, i5/OS provides support for using digital - I certificates to digitally sign objects. A digital signature on an object is created by using a form of - I cryptography and is like a personal signature on a written document. You need to create a digital - signature to use object signing and signature verification. ### □ CD, DVD, and tape creation - You can use virtual storage to create actual media using the DUPOPT and DUPTAP commands to duplicate the virtual images to physical media. - Related concepts - Object signing and signature verification ### Catalog shadowing - Use catalog shadowing to create a copy of an existing image catalog. - Use the Create Image Catalog (CRTIMGCLG) command to create a copy of an image catalog. The - I reference image catalog contains information about images. The dependent image catalog is a copy of the - reference image catalog at a single point in time when the Create Image Catalog (CRTIMGCLG) - I command was performed. - Use this command to create a dependent image catalog of your reference catalog: - CRTIMGCLG IMGCLG(dependent) DIR(*refimgclg) REFIMGCLG(reference) - There can be up to 35 ready dependent catalogs pointing to one reference catalog. Each of the tape - I reference catalogs are read-only and write accessible. However, optical reference and all dependent image - catalogs are read-only and can be used for restore operations. - In order to delete the reference catalog or to delete any one image file all of the dependent image catalogs - I must be deleted first. The volume name for the optical dependent catalogs has a 4-character prefix. The - prefix is added after the optical dependent catalog is made ready. Use the Work with Image Catalog - Entries (WRKIMGCLGE) to find the optical dependent volume name. ## Virtual tape - When you use virtual tape devices, you create virtual tape volumes that exist on your system disk units. - Virtual tape devices can perform the same tasks as physical tape except for the following: - Install of base i5/OS (RSTLICPGM is supported) - SAVSTG - Dump to media from SST and DST ### Image catalog entry for virtual tape storage - An *image catalog entry* displays information about the virtual volume within an image catalog and - contains information about a virtual image located in the image catalog directory. - Examples of image catalog entry information include a file name of the virtual image, a volume identifier, - I the index position in the catalog, access information, write-protection information, and a text description - I of the image. - Possible statuses of an image catalog entry are: #### | Mounted ı ı ı The virtual image associated with the selected image catalog entry is active or loaded in the virtual device. The mounted virtual image is specified by selecting *MOUNTED in the using volume parameter. Only one virtual tape volume can be in mounted status at a time. #### Loaded The virtual tape volume associated with the selected image catalog entry is available for use by the virtual tape device. #### | Unloaded - The virtual image associated with the selected image catalog entry is not available for use by the virtual tape device. - If the image catalog is in a ready state, these statuses represent the current status of the image catalog - entry. If the image catalog is in a not ready state, these statuses represent what the status of the image - catalog entry will be when the image catalog is put in a ready state. ### Volume spanning for virtual tape storage - Spanning occurs when the volumes have files that continue from one volume to the next. - When a save operation spans a volume, it pauses the save process when the current piece of media you - are using runs out of space and continues the save operation on the next piece of media. In the context of - I backup and recovery, a volume is the media that you are using to save your data. - When you perform a save operation and span virtual images, the multivolume set of virtual images - behaves just like a multivolume set of any form of actual media. - **Note:** Volume spanning is not supported when the virtual tape device is being used by another partition. - One advantage of using virtual storage for a backup operation is that if you have enough disk space, you - can perform unattended backups without the use of a media autoloader or a media library. - I Similar to actual devices, when you span volumes of virtual images, you can specify a volume list or - specify *MOUNTED for the VOL parameter on all of the save commands. If you specify a volume list, - I the system mounts the volumes of virtual images when they are needed. In either case, you should allow - for enough volumes to complete the save operation. - If *MOUNTED is specified the volume that is mounted will be used. If there are no volumes mounted, - the next loaded volume in the image catalog will be mounted automatically. - If *MOUNTED is specified for a save, a new volume will be automatically created when the end of the - I image catalog is reached. - If a volume list is specified for a save, message CPA 6798 will be displayed when the volume list is - exhausted. You can provide a new volume at this time. - Note: If the new volume specified in reply to message CPA6798 does not exist, it will be automatically created. - If
you allow the system to create a new volume for you, the system does the following: - Adds a *NEW volume and inserts it at position 256 in the image catalog - Mounts the volume in the virtual device - Continues the save - When the system creates a new volume, the system gives the new virtual image a name. The system - always inserts the new virtual image in position 256 of the image catalog. The size of the new virtual - image is set to 1 000 000 MB with ALCSTG(*MIN). The previous volume gets moved to an earlier - position. - The following table shows an example of what happens when the system adds a new volume during a - I save to an image catalog where Vol001 and Vol002 existed before starting the save operation. | Index | Volume Name | Virtual image name | Volume sequence number | Size | Description | |-------|-------------|--------------------|------------------------|-----------------|------------------------------| | 1 | Vol001 | File1 | 1 | 1000 MB | My Save 1 | | 2 | Vol002 | File2 | 2 | 1000 MB | My Save 1 | | 256 | GEN001 | GEN001 | 3 | 1 000
000 MB | Created on 12/31/05 15:38:29 | # Formatting of virtual tape images I The density (format) parameter limits the block size that can be written to a virtual tape volume so that the volume will be compatible for duplication to your physical tape device. - Volumes with a Density of *VRT256K will use an optimum and maximum block size of 256 KB. - Volumes with a Density of *VRT240K will use an optimumand maximum block size of 240 KB. - Volumes with a Density of *VRT64K will use an optimum and maximum block size of 64 KB. - Volumes with a Density of *VRT32K will not use an optimum and maximum block size and will be compatible with all devices. Volumes with a Density of *VRT32K will not use an optimum and maximum block size and will be compatible with all devices. **Note:** The application using the tape device controls the actual block size used (up to the maximum block size) when data is written to a virtual tape volume. An application can write data blocks to virtual tape volumes that are smaller than the maximum block size. You cannot copy your virtual tape media to physical media if you choose an incompatible block size. Ensure that you pick a virtual tape density with a block size that is compatible with the physical tape devices on your system by performing one of the following: - In iSeries Navigator, expand Configuration and Service → Hardware → Tape Devices → Tape Libraries → Tape Resources for tape library devices. Next, right-click the device that you want to view and select Properties to display the supported block sizes for your tape device. - In iSeries Navigator, expand Configuration and Service → Hardware → Tape Devices → Stand-Alone Devices for stand alone tape devices. Next, right click on the device that you want to view and select Properties to display the supported block sizes for your tape device. - Save a small library to your physical tape drive with the USEOPTBLK parameter set to *YES. Type DSPTAP DATA(*LABELS) in the command line, and use the Block Length field to see the block size that was used. Note: The Initialize tape (INZTAP) command makes any pre-existing data on the virtual tape volume inaccessible by the virtual tape device. INZTAP with CLEAR(*YES) can be used to delete any existing data in a virtual tape volume, but this should only be used if there are security concerns with the existing data since this operation can take a long time and uses significant system resources. #### Related tasks - "Setting up virtual tape storage" on page 140 - This topic provides instructions for setting up virtual tape storage based on what task you want to accomplish. #### Preparing for virtual tape storage - This topic provides information about meeting the requirements for virtual tape storage and preparing to use it. - To prepare to use virtual tape storage, you need to consider these items: - Whether you have the authority to create virtual images - How much disk space you have - Because virtual images are stored on your disk units, they can quickly use disk space. It is essential - that you determine whether you have enough disk space. The smallest allowable size for a tape image - file volume is 48 MB. The largest allowable size is 1 000 000 MB. - To determine how much disk space you have, take the following steps. - 1. In iSeries Navigator, expand My Connections → your System i system → Configuration and Service → Hardware → Disk Units → Disk Pools. - 2. Right-click the **Disk Pool** you want to view, and select **Properties**. - 3. Select the **Capacity** tab. The **Capacity** page displays the used space, free space, total capacity, threshold, and percentage of disk space used for the disk pool. - **Note:** The maximum allowed storage threshold for virtual tape is the greater of 95% or 5GB of free space remaining in the ASP. The tape operation will stop with an end of media error when the maximum allowed storage threshold for virtual tape is reached. - You can also use the Work with Disk Status (WRKDSKSTS) command to determine your free space. If you need to clean up disk space, take the following steps. - 1. Remove any unused virtual tape volumes by using RMVIMGCLGE KEEP(*NO). - 2. Free up any unused space within the existing virtual tape volumes by using CHGIMGCLGE ALCSTG(*MIN). - 3. Delete any unused objects. - 4. Save objects by specifying STG(*FREE). - 5. Save the old log versions of QHST that are not currently used and then delete them. - 6. Print or delete spooled files on the system. - The number of virtual images volumes you need - To determine how many volumes you need, take the following steps. - 1. Determine how much data you plan to store. - 2. Determine the size of each virtual image. Determine image size based on what you plan to do with the tape image file. Keep files small if you want to electronically transfer them to another system. - The maximum block size supported by the physical tape device that the virtual tape volume will be saved to - Make sure that the user profiles used to create the virtual tape volumes has its maximum storage allowed attribute set to *NOMAX. - Related information - Work with Disk Status (WRKDSKSTS) - Cleaning up disk storage space # Setting up virtual tape storage - This topic provides instructions for setting up virtual tape storage based on what task you want to accomplish. - If you do not already have a virtual tape device type 63B0, create one and vary it on: - CRTDEVTAP DEVD(TAPVRT01) RSRCNAME(*VRT) - VRYCFG CFGOBJ(TAPVRT01) CFGTYPE(*DEV) STATUS(*ON) - **Note:** You can create up to 35 virtual tape devices. - I To create virtual images in an image catalog, take the following steps. - 1. Create the image catalog: - CRTIMGCLG IMGCLG(MYCATALOG) DIR('/MYCATALOGDIRECTORY') TYPE(*TAP) - 2. Add the virtual tape volume from an existing virtual tape file or create a new virtual tape volume. Add images from an image file: ı I ı - ADDIMGCLGE IMGCLG(MYCATALOG) FROMFILE(SLIC_N) TOFILE(*fromfile) - Repeat this step for each file in your catalog directory. This step assumes your image is already in the image catalog directory. - To create new virtual tape volumes, use the following command: - ADDIMGCLGE IMGCLG(MYCATAGLOG) FROMFILE(*NEW) - TOFILE(vo1001) VOLNAME(VOL1001) - To use virtual images in an image catalog, use the following command to load the image catalog in the virtual device: - LODIMGCLG IMGCLG(MYCATALOG) DEV(TAPVRT01) - You can perform the save and restore operations with virtual tape storage. # Perform a save operation To save to virtual tape storage, see Considering using virtual tape storage in the Backup up your system topic. #### Perform a restore operation To restore from virtual tape storage, see Backup and Recovery. # Duplicating virtual tape to physical media When you plan to duplicate the virtual tape volumes to physical tape devices you will need to make sure that the virtual tape volumes are created using a block size that is compatible with your physical tape device. The density (format) of the virtual tape volumes is used to control the maximum size for the blocks of data on the virtual tape volume. To determine the block size that your tape device supports, see Format of virtual tape images. # Using volumes in dependent image catalogs A dependent catalog provides a read-only view of the virtual tape volumes that are within a reference image catalog. For example, if there was an existing image catalog named JOE, you would use the following command to create a dependent image catalog based on image catalog JOE: CRTIMGCLG IMGCLG(JOEDEP) DIR(*REFIMGCLG) TYPE(*TAP) REFIMGCLG(JOE) All of the volumes in the reference image catalog (JOE) are accessible when the dependent image catalog (JOEDEP) is mounted in a separate virtual tape device. The dependent image catalogs are not synchronized with additional changes that are made to the reference image catalog. Multiple dependent image catalogs can be created all pointing to the same reference catalog. The same virtual tape volume can be mounted in several virtual devices at the same time through the use of dependent image catalogs. This mounting procedure enables the same virtual tape volume to be used for input operations by multiple users at the same time. A volume cannot be mounted for both read-only and read-write at the same time. A volume that is already mounted in a device via a dependent catalog cannot be mounted in a different device via a reference catalog. A volume that is already mounted in a device via a reference catalog cannot be mounted in a different device via a dependent catalog. #### Using virtual tape from other partitions The host partition must mount the virtual tape volume before it can be used by another partition. - 1. Make sure that the virtual tape device description has the Unload device at vary off parameter set to the value *NO. - 2. Mount the virtual volume in the virtual tape device using the
image catalog commands. - 3. Make sure that the virtual volume density is *VRT256K. - 4. Vary off the virtual tape device. **Note:** The virtual volume is still mounted. The other partition can now use the previously mounted virtual tape volume through the virtual I/O to the virtual tape device. The other partition will only be able to use the mounted volume, volume spanning is not supported. The virtual tape device will be configured as a 3580 model 002 tape device to the other partitions. Note: The image catalog commands should not be used to remove or change the virtual tape volumes while they are being used by other partitions. #### Using virtual tape volumes in user ASP's - 1. CRTUDFS '/dev/qaspXX/aspXX.udfs', where XX is the ASP number - 2. MKDIR '/your-path' to make a mount point directory - 3. MOUNT *UDFS '/dev/qaspXX/aspXX.udfs' '/mount-point-directory' - 4. Now anything you create in '/mountpoint' is created in the UDFS - 5. Use the CRTIMGCLG command to create an image catalog with the mount point in the path name Note: You cannot specify the mount-point directory when specifying a path-name with the CRTIMGCLG command. Only the directory below the mount-point can be specified. # Using virtual tape volumes in independent ASP's To use a virtual tape volume in an independent ASP specify the ASP device name as the first part of the IFS path name. The independent ASP must be varied on before the virtual tape volumes are usable. #### Image files *ALWSAV attributes When the image catalog is in ready status all of the image catalog's images have a *ALWSAV attribute value of *NO. This does not allow the images to be saved by the Save Object (SAV) command or the OsrSave API. When the image catalog is not in ready status all of the image catalog's images have a *ALWSAV attribute value of *YES. This allows the images to be saved. ### Related concepts - "Formatting of virtual tape images" on page 139 - The density (format) parameter limits the block size that can be written to a virtual tape volume so that the volume will be compatible for duplication to your physical tape device. - Related information - Tape media 1 - Backing up your system - Backup and Recovery # Changing the write protection for image catalog entries for virtual tape - Use this information to change the write protection for virtual tape media. - All image catalog entries include a write-protect switch, which functions identically to the write-protect - switch on actual media. The default setting is that the image catalog entry is not write-protected. - **Note:** All image catalog entries in dependent catalogs are write protected. - When you add a new image catalog entry to an image catalog, the image catalog entry is not - write-protected by default. After you add an image catalog entry to an image catalog, you can change - whether it is write-protected with the Change Image Catalog Entry (CHGIMGCLGE) command. - I To change an image catalog entry to be write-protected, type the following command, where the image - catalog name is MYCAT and the image catalog index is 3: - CHGIMGCLGE IMGCLG(MYCAT) IMGCLGIDX(3) WRTPTC(*YES) - To change an image catalog entry to be not write-protected, type the following command where the image catalog name is MYCAT and the image catalog index is 3: - CHGIMGCLGE IMGCLG(MYCAT) IMGCLGIDX(3) WRTPTC(*NO) # Transporting virtual images to another system - Use these instructions to move virtual images among different systems. - A benefit of using virtual tape storage is that you can use copies of a virtual image on more than one system. To transport a virtual image to another system, use one of the following methods. - You can transfer a virtual image from one system to another by using File Transfer Protocol (FTP). To use FTP you must have TCP/IP set up and running on your system. See FTP for more information. For instructions on moving a file with FTP see Transfer files with FTP. #### | iSeries Navigator There are two ways that you can use iSeries Navigator to transfer files between systems. The easiest way to use iSeries Navigator is to drag the file from one system to another. You can also use Management Central in iSeries Navigator to move files. Management Central is a powerful suite of systems management functions that make managing multiple systems as easy as managing a single system. For more information, see the Management Central topic. For instructions on moving a file with Management Central, see Packaging and sending objects with Management Central. #### Related tasks - Transferring files with File Transfer Protocol - | Related information - I FTP - I Management Central - Packaging and sending objects with Management Central # Troubleshooting virtual tape storage - This topic provides general information about troubleshooting common virtual tape problems. - I Typically, when an error occurs with virtual tape storage, the operation stops and you receive an inquiry - I or escape message. The message indicates that there is something wrong with the volume being - I processed and provides recovery instructions. Follow the instructions to recover from the inquiry or - l escape message. - The most common inquiry and escape messages that occur with virtual tape storage are: # Inquiry messages - CPA4262 Volume &5 on device &4 is write protected (C R). - CPA6745 Volume on device &4 is write protected (C R). - CPAB8E6 Device &1 cannot be varied off at this time. This message is sent when an attempt is made to - I vary off an independent ASP containing a virtual volume that is in use by an active virtual tape device. - The WKRASPJOB (Work with ASP Jobs) command can be used to determine which jobs are using the - I independent ASP. ### Escape messages - CPF415B Device list not correct. Multiple device descriptions cannot be specifed when virtual tape is - used. - CPF41B0 Incorrect image catalog name specified. - CPF41B3 No more volumes to mount from catalog. You specified VOL(*MOUNTED) and the last - accessible virtual tape volume in the catalog was already used and unloaded. - CPF41B4 Virtual tape volume not available. The specified volume is in unloaded status. - CPF41B5 Virtual tape volume not found. - CPF4371 Device Not Operational. This message is sent when an unexpected error occurs. Possible - causes are: - The virtual volume stream file was removed while in use. - A force vary off was performed on an IASP containing a virtual tape volume that was in use. - It is necessary to vary the virtual tape device description off and back on with RESET(*YES) to clear the - error. - CPF4373 End of Media on Device. This message is sent when the storage threshold of the ASP - containing the virtual tape volume exceeds the maximum allowed storage for virtual tape, or when the - I maximum storage allowed threshold of the user profile that owns the virtual tape volume is exceeded, - and additional storage cannot be allocated to continue the output operation. The maximum allowed - storage for virtual tape is the greater of 95% or 5GB of free space remaining in the ASP. - To see any of these messages, type: DSPMSGD CPFxxxx at a command line and press Enter. - CPF6760 Device &1 is not ready. This error will be reported when the requested virtual volume could - not be mounted. Typically this error occurs when the requested virtual volume is already mounted in a - different virtual device via a reference or a dependent image catalog and the mount is not allowed. - CPF67F5 Duplicate cartridge or virtual volume name found. # Diagnostic messages - CPDBC04 Error on command &3 during virtual tape function &2. Reason code 26. Reason code 26 is - sent when a command to mount or change a virtual volume could not be processed because the volume - is currently mounted in a device. The volume will need to be unloaded or unmounted from the device it - is currently in before the command can be completed. - **Note:** If the virtual volume was used by another partition and left mounted. There may not be any image - catalogs that show that the volume is in a mounted status. The CHKTAP command with - ENDOPT(*UNLOAD) can be used to unload the virtual tape volume. # Virtual optical storage - When you use virtual optical storage, you create virtual CD or DVD images that exist on your system - disk units. - You can use virtual optical images to perform the following tasks: - Install software such as Licensed Internal Code, program temporary fixes (PTFs), i5/OS, and licensed - programs - Distribute software - Perform backups - Create distribution media for Central Site - Create Save Licensed Programs media # Image catalog entry for virtual optical storage - I An image catalog entry is a position within an image catalog that contains information about a virtual - I image that is located in the image catalog directory. - Examples of image catalog entry information include a file name of the virtual image, a volume identifier, - the index position in the catalog, access information, write-protection information, and a text description - I of the image. - The following are the possible statuses of an image catalog entry. If the image catalog is in a ready state, - I these statuses represent the current status of the image catalog entry. If the image catalog is in a - not-ready state, these statuses represent what the status of the image catalog entry will be when the - image catalog is put in a ready state. #### Mounted Ι The virtual image associated with the selected image catalog entry is active or loaded in the active virtual device. The mounted virtual image is the available virtual image that can be seen by using the Work with Catalog Entries (WRKIMGCLGE) or Work with Optical Volumes (WRKOPTVOL) command. Only one virtual image can be in mounted status at a time. #### Loaded The virtual image associated with the selected image catalog entry is active or loaded in the selected virtual optical device. #### Unloaded The virtual image associated with the
selected image catalog entry is not active or not loaded in the active virtual optical device. Only image catalog entries with a status of mounted or loaded can be accessed through the virtual optical device. #### Access - Access refers to whether an image catalog entry is read-only or if it is also writable. - With respect to access, an image catalog entry can have the following statuses: #### *READONLY ı ı The virtual image associated with the image catalog entry is read-only. #### *READWRITE You can both read and write to the virtual image associated with the image catalog. # Volume spanning for virtual optical storage - When a save operation spans a volume, it pauses the save process when the current piece of media you - are using runs out of space and it continues the save operation on the next piece of media. In the context - of backup and recovery, a volume is the media that you are using to save your data. Spanning occurs - I when the volumes have files that continue from one volume to the next. - When you perform a save operation and span virtual images, the multivolume set of virtual images - behaves just like a multivolume set of any form of actual media. - I One advantage of using virtual storage for a backup operation is that if you have enough disk space, you - can perform unattended backups without the use of a media autoloader or a media library. - Similar to actual devices, when you span volumes of virtual images, you can specify a volume list or - specify *MOUNTED for the VOL parameter on all of the save commands. If you specify a volume list, - I the system mounts the volumes of virtual images when they are needed. If you specify *MOUNTED, you - I must have the virtual images mounted when you start the command. In either case, you must provide - l enough volumes to complete the save operation. - Whether you specify *MOUNTED or a volume list, if you do not provide enough volumes to complete - I save operation, the system sends you inquiry message OPT149F Load next volume on optical device &1. - Inquiry message OPT149F provides you with options: - Cancel the operation - Allow the system to create a new volume for you - Pause the operation and create a new volume manually - If you allow the system to create a new volume for you, the system does the following: - Adds a *NEW volume and inserts it at position 256 in the image catalog - Mounts the volume in the virtual device - Initializes the new volume - Continues the save operation - When the system creates a new volume, the system gives the new virtual image a name. The system uses - I a time stamp for the volume ID. The image name is a combination of volume ID and the volume - I sequence number. The system inserts the new virtual image in position 256 of the image catalog. The size - I of the new virtual image is the same as the previous virtual image. - The following table shows an example of what happens when the system adds two new volumes during the save operation to an image catalog where Volume 2 existed before starting the save operation. | i
I | Index | Volume ID | Virtual image name | Volume sequence number | Size | Description | |--------------|-------|--------------|--------------------|------------------------|---------|-------------------------| | I | 1 | Volume1 | File1 | 1 | 1300 MB | My Save 1 | | I | 2 | Volume2 | File2 | 2 | 650 MB | My Save 1 | |
 | 253 | 030311124115 | 0303111241150003 | 3 | 650 MB | SET ID VOLUME1 SEQ 0003 | |
 | 254 | 030311124330 | 0303111255320004 | 4 | 650 MB | SET ID VOLUME1 SEQ 0004 | |
 | 255 | 030311124545 | 0303111256450005 | 5 | 650 MB | SET ID VOLUME1 SEQ 0005 | |
 | 256 | 030311124801 | 0303111248010006 | 6 | 650 MB | SET ID VOLUME1 SEQ 0006 | #### Consideration for full backups - If you are doing a full backup, with the Save System (SAVSYS) command for example, the first volume - I must be least 1489 MB. The first volume must be at least 1489 MB because the first volume must be large - I enough to save the Licensed Internal Code. The remaining volumes can be smaller than 1489 MB. # Limitations of virtual optical storage You can use virtual optical storage for all operations that can write to actual media with the following exceptions. #### Main storage dump in SST and DST System service tools (SST) and dedicated services tools (DST) provide the capability to perform a main storage dump to media. You cannot use virtual optical storage for a main storage dump to media. #### Save Licensed Internal Code The Save Licensed Internal Code function is only available at the Initial Program Load (IPL) display or at the Install the Operating System display. Because the integrated file system is not available when these functions are used, the virtual optical device will not have any loaded media. **PTFs** If you build a custom fix package and save it to a virtual image, you cannot span volumes. Your custom fix package must fit on one volume. # IBM Integrated System x for System i Integrated System x hardware does not support write operations to virtual images. #### Backup and recovery 1 You only perform a restore operation from virtual images if the system is already up and running. Installations done by using an image catalog require a command line to start an installation. # Related concepts Custom fix package # Formatting of virtual optical images - For virtual optical, images are available in International Standards Organization (ISO) 9660 format and - Universal disk format (UDF). #### ISO 9660 If a virtual image is in ISO 9660 format, it is read-only. Also, you cannot span virtual images that are in ISO 9660 format. #### UDF - The virtual image is in UDF if you do one of the following: - Create a virtual image by specifying FROMFILE(*NEW) on the Add Image Catalog Entry (ADDIMGCLGE) command. - Create a virtual image from a DVD. - Create a virtual image from CD-RW media which is in UDF. - Typically, you specify FROMFILE(*NEW) when you plan to save to a virtual image or plan to use a virtual image to distribute software. You can also span virtual images that are in UDF. - If you want to create actual media from a virtual image in UDF, you can send the virtual image to a PC - or you can use the Duplicate Optical (DUPOPT) command to copy the virtual image directly to a - DVD-RAM drive on your system. # Preparing for virtual optical storage - This topic provides information about meeting the requirements for virtual tape storage and preparing to use it. - To prepare to use virtual optical storage, you need to consider these items: - • Whether you have the authority to create virtual images - You must have security administrator (*SECADM) and all object (*ALLOBJ) special authorities to use - the commands required to create virtual images. - The amount of disk space available - Because virtual images are stored on your disk units, they can quickly use disk space. It is essential - that you determine whether you have enough disk space. The smallest allowable size for an optical - image file volume is 48 MB. The largest allow able size is 16 GB. - To determine how much disk space you have, do the following steps. - 1. In iSeries Navigator, expand My Connections → your System i → Configuration and Service → Hardware → Disk Units → Disk Pools. - 2. Right-click the disk pool you want to view, and select **Properties**. - 3. Select the **Capacity** page. - The **Capacity** page displays the used space, free space, total capacity, threshold, and percentage of disk space used for the disk pool. - You can also use the Work with Disk Status (WRKDSKSTS) command to determine your free space. - The number of volumes of virtual images that you need - To determine how many volumes you need, do the following steps. - 1. Determine the how much data you are going to store. - 2. Determine the size of each virtual image. You can determine the size based on what you want to do with the optical image file. For example, if you are going to copy the optical image files to a CD, the largest you can make the volumes is 650 MB. - 3. Divide the amount of data you are going to store by the size of your volumes. For example, if you plan to save 1 GB of data, and you want to copy your volumes to a CD, you need to create two volumes. - If you are doing a full backup, the first volume must be at least 1489 MB because the first volume must be large enough to store the Licensed Internal Code. The remaining volumes can be smaller than 1489 MB. - Related reference - Work with Disk Status (WRKDSKSTS) - Related information - l 🔼 iSeries Security Reference ### Setting up virtual optical storage - This topic provides instructions for setting up virtual optical storage based on what task you want to accomplish. - To create virtual optical storage, take the following steps. - 1. Create the image catalog: - CRTIMGCLG IMGCLG(MYCATALOG) DIR('/MYCATALOGDIRECTORY') - 2. Add the image from physical media or from image files received from another system. If you are adding a new blank image, type the following command: - ADDIMGCLGE IMGCLG(MYCATALOG) FROMFILE(*NEW) TOFILE(NEWIMAGEFILE) IMGSIZ(16000) - Repeat this step for each optical disk needed. - 3. If you do not already have a virtual optical device type 632B, create one and vary it on: - CRTDEVOPT DEVD(OPTVRT01) RSRCNAME(*VRT) - VRYCFG CFGOBJ(OPTVRT01) CFGTYPE(*DEV) STATUS(*ON) - 4. Load the image catalog in the virtual device: - LODIMGCLG IMGCLG(MYCATALOG) DEV(OPTVRT01) - 5. Initialize the virtual image: - INZOPT NEWVOL(MYVOLUMEID) DEV(OPTVRT01) CHECK(*NO) TEXT(MYTEXTDESCRIPTION) - To use virtual images in an image catalog, take the following steps. - 1. Create the image catalog: - CRTIMGCLG IMGCLG(MYCATALOG) DIR('/MYCATALOGDIRECTORY') CRTDIR(*YES) - 2. Add the image from physical media or from image files received from another system. - To add images from physical media: ADDIMGCLGE IMGCLG(MYCATALOG) FROMDEV(OPTXX) TOFILE(*fromfile) Repeat for each optical disk. - To add
images from an image file: ADDIMGCLGE IMGCLG(MYCATALOG) FROMFILE(SLIC N) TOFILE(*fromfile) Repeat this step for each file in your catalog directory. This step assumes your image is already in the image catalog directory. 3. Create and vary on the virtual device: CRTDEVOPT DEVD(OPTVRT01) RSRCNAME(*VRT) VRYCFG CFGOBJ(OPTVRT01) CFGTYPE(*DEV) STATUS(*ON) 4. Load the image catalog in the virtual device: LODIMGCLG IMGCLG (MYCATALOG) DEV (OPTVRT01) - To install upgrades from an image catalog, take the following steps. - 1. Create the image catalog: CRTIMGCLG IMGCLG(MYCATALOG) DIR('/MYCATALOGDIRECTORY') - 2. Add the image from physical media or from image files received from another system: - To add images from physical media: ADDIMGCLGE IMGCLG(MYCATALOG) FROMDEV(OPTXX) TOFILE(*fromfile) Repeat this step for each optical disk. - To add the image from an image file: ADDIMGCLGE IMGCLG(MYCATALOG) FROMFILE(SLIC_N) TOFILE(*fromfile) Repeat this step for each file in your catalog directory. This step assumes your image is already in the image catalog directory. 3. Create and vary on the virtual device: CRTDEVOPT DEVD(OPTVRT01) RSRCNAME(*VRT) VRYCFG CFGOBJ(OPTVRT01) CFGTYPE(*DEV) STATUS(*ON) 4. Load the image catalog in the virtual device: LODIMGCLG IMGCLG(MYCATALOG) DEV(OPTVRT01) 5. Verify the catalog: VFYIMGCLG IMGCLG(MYCATALOG) TYPE(*UPGRADE) SORT(*YES) For the verification operation, the followings are required: - Licensed Internal Code for i5/OS - i5/OS operating system - i5/OS Library QGPL - i5/OS Library QUSRSYS - 6. Start the installation: PWRDWNSYS OPTION(*IMMED) RESTART(*YES) IPLSRC(*IMGCLG) IMGCLG(AL) You can also perform specific tasks with virtual optical storage ## Installing or replacing software To install or replace software using virtual optical storage, see Preparing to upgrade or replace software using an image catalog. #### Distributing software To set up virtual optical storage for software distribution, see Prepare the central system for virtual images in the Distribute software topic. #### Installing fixes | | | | I I To install fixes with virtual optical storage, see Install fixes from an image catalog. #### Performing a save operations To save files to virtual optical storage, see Consider using virtual optical storage in the Back up your system topic. **Note:** When the image catalog is in ready status, all images in the catalog have a *ALWSAV attribute value of *NO. This does not allow the images to be saved by the Save Object (SAV) command or the QsrSave API. When the image catalog is not in ready status, all images in the catalog have a *ALWSAV attribute value of *YES. This allows the images to be saved. #### Performing a restore operation To restore files from virtual images, see Backup and Recovery. # Related concepts - Virtual optical media - Related tasks ı - Installing i5/OS fixes from an image catalog - l Backing up your system - Related information - Preparing to upgrade or replace software using an image catalog - Preparing the central system for virtual images - Distributing software - Backup and Recovery # Changing the write protection for image catalog entries for virtual optical media - Use this information to change the access-mode for virtual optical media. - All image catalog entries include a write-protect switch, which functions identically to the write-protect - I switch on actual media. The initial position of this switch is on for read-only media and off for writable - I media. Virtual images in International Standards Organization (ISO) 9660 format are read-only while - I media in universal disk format (UDF) can be writable or read-only. - When you add a new image catalog entry to an image catalog, the image catalog entry is not - I write-protected by default. After you add an image catalog entry to an image catalog, you can change - whether it is write-protected with the Change Image Catalog Entry (CHGIMGCLGE) command. - To change an image catalog entry to be write-protected, type the following command, where the image catalog name is MYCAT and the image catalog index is 3: - CHGIMGCLGE IMGCLG(MYCAT) IMGCLGIDX(3) WRTPTC(*YES) - To change a write-protected image catalog entry's write-protection status to not write-protected, type the following command where the image catalog name is MYCAT and the image catalog index is 3: - CHGIMGCLGE IMGCLG(MYCAT) IMGCLGIDX(3) WRTPTC(*NO) # Creating actual media from a virtual image - Use these instructions to copy a virtual image to an optical disk. - I One of the advantages to using virtual optical storage is that you can copy virtual images to actual - I media. If you plan to copy your virtual images to actual media, you must ensure that they are the correct - I format and the correct size. The Image size (IMGSIZ) parameter of the Add Image Catalog Entry (ADDIMGCLGE) command has these values that you can use to specify the correct size for your virtual images: #### *CD650 The size of the virtual image is 650 MB. Images created with this size can be written to any standard 650 MB media or larger. #### *DVD2600 The size of the virtual image is 2.6 GB. Images created with this size can be written to any 2.6 GB media. #### *DVD4700 The size of the virtual image is 4.7 GB. Images created with this size can be written to any 4.7 GB media. When you create a virtual image, the image is a pure byte image. The system creates no headers in the image and uses no compression. A virtual image can be in one of two formats, ISO 9660 and Universal Disk Format (UDF). You can only use a virtual image in UDF to create actual media. To create an actual media using a PC, you must use a method such as File Transfer Protocol (FTP) or iSeries Navigator to move the file to a PC that has software with image burning capability. To create actual media, do the following steps. - 1. Use a transport method such as FTP or iSeries Navigator to move the image file to your PC. To use FTP to move the image file to your PC, see Transfer files with FTP. To use iSeries Navigator do the following steps. - a. In iSeries Navigator expand My Connections → your System i → File systems → Integrated File System. - b. Navigate to the directory with your virtual image. - c. Select the image and drag it to the desktop of your PC. - 2. Use image burning software on your PC to burn the image to a CD or DVD. It is recommended that you use disk-at-once mode rather than track-at-once mode or session-at-once mode. - If you have a DVD-RAM drive on your system, you can use the DUPOPT command to create actual media from a virtual image. - The size of your virtual image must be the same size or smaller as the media in your DVD-RAM. - To create actual media, do the following steps. - 1. Vary on your virtual optical device by typing the following command: - VRYCFG CFGOBJ(virtual-device-name) CFGTYPE(*DEV) STATUS(*ON) - 2. Load your image catalog by typing the following command: - LODIMGCLG IMGCLG(catalog- name) DEV(virtual-device-name) OPTION(* LOAD) - 3. Type WRKIMGCLGE (the Work with Image Catalog command) to ensure that your image catalog entry is loaded and mounted. If it is not, do the following steps. - a. If the image catalog entry is not loaded, type 8(LOAD) and press Enter. - b. If the image catalog entry is not mounted, type 6 (MOUNT) and press Enter. - c. Vary on your DVD-RAM drive by typing the following command: VRYCFG CFGOBJ(DVD-device-name) CFGTYPE(*DEV) STATUS(*ON) - 4. Verify that your media is loaded in your DVD device. - 5. Duplicate the virtual image to the DVD by typing the following command. ``` FROMVOL(*MOUNTED) TOVOL(*MOUNTED) NEWVOL(*FROMVOL) CLEAR(*YES) FROMDEV(virtual-device-name) TODEV(DVD-device-name) Related tasks ``` Transferring files with FTP # Transporting virtual images to another system Use these instructions to move virtual images among different systems. One benefit of using virtual optical storage is that you can use copies of a virtual image on more than one system. To transport a virtual image to another system, use one of the following methods. **FTP** You can transfer a virtual image from onesystemto another by using File Transfer Protocol (FTP). To use FTP you must have TCP/IP set up and running on your system. For instructions on moving a file with FTP see Transfer files with FTP. #### iSeries Navigator There are two ways that you can use iSeries Navigator to transfer files between systems. The easiest way to use System i is to drag the file from onesystem to another. You can also use Management Central in iSeries Navigator to move files. Management Central is a powerful suite of systems management functions that make managing multiple systems as easy as managing a single system. For instructions on moving a file with Management Central, see Packaging and sending objects with Management Central. #### QFilesvr.400 The i5/OS File Server file system (QFileSvr.400) is an integrated file system that provides transparent access to other file systems that reside on remote systems. For more information about QFileSvr.400 see i5/OS File Server file system (QFileSvr.400). **Note:** The largest file size that you can transfer using QFileSvr.400 is 4 GB. ## Related concepts - FTP - Management Central - i5/OS File Server file system (QFileSvr.400) - Related tasks - Transferring files with FTP - Packaging and sending objects with Management Central # Troubleshooting virtual optical storage This topic provides general information about troubleshooting common virtual optical problems. - Typically, when an error occurs with virtual optical storage, the operation stops and you receive an - inquiry or escape message. The message indicates that there is something wrong with the volume being - processed and provides recovery instructions. Follow the instructions to recover from the inquiry or - escape message. The following is a list of the most common inquiry and escape messages that occur with virtual optical storage: #### Inquiry messages - OPT1260 Active file found on
volume &1. - OPT1314 Volume is write-protected or read-only. - OPT1321 Error occurred processing volume &2. - OPT1486 Load next volume on optical device &1. - OPT1487 Load volume &2 on optical device &1. - OPT1488 Volume &2 on optical device &1 is not initialized. - Ι OPT1495 - Volume name list exhausted on device &1. - OPT1496 Load volume with sequence number &5 on device &1. - 1 OPT149B - Load volume with correct starting volume on device &1. - OPT149C Load volume with correct continued file on device &1. - OPT149D Optical volume is part of a existing volume set. - OPT149E Found unexpected volume on device &1. - OPT149F Load next volume on optical device &1. - OPT1503 Optical volume contains active files. - OPT1504 Optical device &1 is empty. #### Escape messages - OPT1390 Error with virtual volume image. - OPT1605 Media or device error occurred. - To see any of these messages, type: DSPMSGD OPTxxxx at a command line and press Enter. # Storage area networks This topic discusses advantages and disadvantages of storage area networks (SANs). SANs are a newer development in the disk and tape attachment business. They consolidate the storage of multiple, storage devices into a single set of centrally managed resources. To do so, they employ a combination of technologies, including hardware, software, and networking components. They support direct, high-speed data transfers between systems and storage devices in the following ways: #### Server to storage This is the traditional model of interaction with storage devices. The advantage of a SAN in this case is that the same storage device may be accessed serially or concurrently by multiple systems. #### Server to system A SAN may be used for high-speed, high-volume communications between systems. #### Storage to storage This SAN data movement capability enables data to be moved without system intervention, thereby freeing system processor cycles for other activities like application processing. Examples include a disk device backing up its data to a tape device without system intervention or remote device mirroring across the SAN. This type of data transfer is not currently available on the system. SANs provide many benefits in your System i network, including the following: #### Scalability Storage is independent of the system itself, so you are not limited by the number of disks you can attach directly to the system. # Improved availability of applications Storage is independent of applications and is accessible through alternative data paths. #### Better application performance Storage processing is moved from the systems onto a separate network. # Centralized and consolidated storage Storage capacity can be connected to systems at a greater distance, and storage resources can be disconnected from individual hosts. The results can be lower overall costs through better use of the storage, lower management costs, increased flexibility, and increased control. #### Data transfer for storage at remote sites You can keep a remote copy of data for disaster protection. ### Simplified centralized management A single image of storage media simplifies management. #### Related information Introduction to Storage Area Networks iSeries in Storage Area Networks A Guide to Implementing FC Disk and Tape with iSeries # Related information for storage solutions Listed here are the System i manuals (PDFs) and IBM RedbooksTM (PDFs), Web sites, and the System i information center topics that relate to the Storage solutions topic. You can view or print any of the PDFs. # **Manuals** - Backup, Recovery and Media Services for System i (about 2.5 MB) - Hierarchical Storage Management (about 943 KB) # **IBM Redbooks** • Introduction to Storage Area Network, SAN **(about 4.1 MB)** ### Web sites - Backup, Recovery and Media Services - IBM System Storage # Saving PDF files To save a PDF on your workstation for viewing or printing: - 1. Right-click the PDF in your browser (right-click the web page address above). - 2. Click the option that saves the PDF locally. - 3. Navigate to the directory in which you would like to save the PDF. - 4. Click Save. # **Downloading Adobe Reader** - I You need Adobe Reader installed on your system to view or print these PDFs. You can download a free - copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html) . # **Appendix. Notices** This information was developed for products and services offered in the U.S.A. IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service. IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to: IBM Director of Licensing IBM Corporation North Castle Drive Armonk, NY 10504-1785 U.S.A. For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to: IBM World Trade Asia Corporation Licensing 2-31 Roppongi 3-chome, Minato-ku Tokyo 106-0032, Japan The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you. This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice. Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk. IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you. Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact: IBM Corporation Software Interoperability Coordinator, Department YBWA 3605 Highway 52 N Rochester, MN 55901 U.S.A. Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee. - I The licensed program described in this information and all licensed material available for it are provided - l by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, - IBM License Agreement for Machine Code, or any equivalent agreement between us. Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products. All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only. This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental. #### COPYRIGHT LICENSE: This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows: © (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights reserved. If you are viewing this information softcopy, the photographs and color illustrations may not appear. # **Programming Interface Information** This Storage solutions publication documents intended Programming Interfaces that allow the customer to write programs to obtain the services of IBM i5/OS. # **Trademarks** The following terms are trademarks of International Business Machines Corporation in the United States, other countries, or both: - l i5/OS - IBM - 1 iSeries - | pSeries - | System i - 1 xSeries - 1 zSeries - Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both. UNIX is a registered trademark of The Open Group in the United States and other countries. Other company, product, and service names may be trademarks or service marks of others. # Terms and conditions Permissions for the use of these publications is granted subject to the following terms and conditions. Personal Use: You may reproduce these publications for your personal, noncommercial use provided that all proprietary notices are preserved. You may not distribute, display or make derivative works of these publications, or any portion thereof, without the express consent of IBM. Commercial Use: You may reproduce, distribute and display these publications solely within your enterprise provided that all proprietary notices are preserved. You may not make derivative works of these publications, or reproduce, distribute or display these publications or any portion thereof outside your enterprise, without the express consent of IBM. Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either express or implied, to the publications or any information, data, software or other intellectual property contained therein. IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not being properly followed. You may not download, export or re-export this information except in full compliance with all applicable laws and regulations, including all United States export laws and regulations. IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE. # IBM Printed in USA