
IBM Systems - iSeries

DB2 Universal Database for iSeries Database
Performance and Query Optimization
Version 5 Release 4

���

IBM Systems - iSeries

DB2 Universal Database for iSeries Database
Performance and Query Optimization
Version 5 Release 4

���

Note
Before using this information and the product it supports, read the information in “Notices,” on
page 333.

Sixth Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of IBM i5/OS (product number 5722-SS1) and to all
subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all
reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright IBM Corporation 1998, 2006.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Performance and query optimization . . 1
What's new for V5R4 1
Printable PDF 1
Query Engine Overview 2

SQE and CQE Engines 2
Query Dispatcher 4
Statistics Manager 5
Plan Cache 6

Data access on DB2 UDB for iSeries: data access
paths and methods 8

Permanent objects and access methods 8
Temporary objects and access methods 18
Objects processed in parallel. 42
Spreading data automatically 43

Processing queries: Overview 43
How the query optimizer makes your queries
more efficient. 44
General query optimization tips 44
Access plan validation 45
Single table optimization 45
Join optimization 46
Distinct optimization 57
Grouping optimization 57
Ordering optimization 62
View implementation 63
Materialized query table optimization 64
Recursive query optimization 73

Optimizing query performance using query
optimization tools 83

Verify the performance of SQL applications. . . 83
Examine query optimizer debug messages in the
job log 83
Gather information about embedded SQL
statements with the PRTSQLINF command . . . 84
Viewing the plan cache with iSeries Navigator . 85
Monitoring your queries using memory-resident
database monitor 91
Using iSeries Navigator with summary monitors 94
Monitoring your queries using Start Database
Monitor (STRDBMON) 98
Using iSeries Navigator with detailed monitors 108
Query optimizer index advisor 111
View the implementation of your queries with
Visual Explain 115
Change the attributes of your queries with the
Change Query Attributes (CHGQRYA)
command. 117
Collecting statistics with the Statistics Manager 138
Display information with Database Health
Center 143
Show Materialized Query Table columns . . . 144
Manage Check Pending Constraints columns 145
Query optimization tools: Comparison table . . 145

Creating an index strategy 146
Binary radix indexes 146
Encoded vector indexes 147

Comparing Binary radix indexes and Encoded
vector indexes 151
Indexes and the optimizer 152
Indexing strategy 160
Coding for effective indexes 161
Using indexes with sort sequence 163
Examples of indexes 164

Application design tips for database performance 170
Use live data 170
Reduce the number of open operations 171
Retain cursor positions 173

Programming techniques for database performance 176
Use the OPTIMIZE clause 176
Use FETCH FOR n ROWS 177
Use INSERT n ROWS 178
Control database manager blocking 178
Optimize the number of columns that are
selected with SELECT statements. 180
Eliminate redundant validation with SQL
PREPARE statements 180
Page interactively displayed data with
REFRESH(*FORWARD) 181

General DB2 UDB for iSeries performance
considerations 181

Effects on database performance when using
long object names 181
Effects of precompile options on database
performance 181
Effects of the ALWCPYDTA parameter on
database performance 182
Tips for using VARCHAR and VARGRAPHIC
data types in databases 183

Database monitor: Formats 185
Database monitor SQL table format 185
Optional database monitor SQL view format 191

Memory Resident Database Monitor: DDS. . . . 273
External table description (QAQQQRYI) -
Summary Row for SQL Information 273
External table description (QAQQTEXT) -
Summary Row for SQL Statement 278
External table description (QAQQ3000) - Arrival
sequence 278
External table description (QAQQ3001) - Using
existing index 280
External table description (QAQQ3002) - Index
created 282
External table description (QAQQ3003) - Query
sort. 284
External table description (QAQQ3004) -
Temporary table 285
External table description (QAQQ3007) -
Optimizer information 287
External table description (QAQQ3008) -
Subquery processing 287
External table description (QAQQ3010) - Host
variable and ODP implementation 288

© Copyright IBM Corp. 1998, 2006 iii

||

||

||

||

||
|
||
||
||

|
|
||

|
||

||
||

|
||
||

||
||
||

|
||

External table description (QAQQ3030) -
Materialized query table implementation . . . 288

Query optimizer messages reference. 289
Query optimization performance information
messages 289
Query optimization performance information
messages and open data paths 312

PRTSQLINF message reference 318

Appendix. Notices 333
Programming Interface Information 335
Trademarks 335
Terms and conditions. 335

iv IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
||

Performance and query optimization

The goal of database performance tuning is to minimize the response time of your queries and to make
the best use of your server's resources by minimizing network traffic, disk I/O, and CPU time. This goal
can only be achieved by understanding the logical and physical structure of your data, understanding the
applications used on your server, and understanding how the many conflicting uses of your database
may impact database performance.

The best way to avoid performance problems is to ensure that performance issues are part of your
ongoing development activities. Many of the most significant performance improvements are realized
through careful design at the beginning of the database development cycle. To most effectively optimize
performance, you must identify the areas that will yield the largest performance increases over the widest
variety of situations and focus your analysis on those areas.

Many of the examples within this publication illustrate a query written through either an SQL or an
OPNQRYF query interface. The interface chosen for a particular example does not indicate an operation
exclusive to that query interface, unless explicitly noted. It is only an illustration of one possible query
interface. Most examples can be easily rewritten into whatever query interface that you prefer.

Note: Read the “Code license and disclaimer information” on page 332 for important legal information.

What's new for V5R4
The following information was added or updated in this release of the information:
v “Recursive query optimization” on page 73
v “Viewing the plan cache with iSeries Navigator” on page 85
v “Query optimizer index advisor” on page 111
v Query resource governor
v “Encoded vector index symbol table scan” on page 16
v Queue data access method
v “Using iSeries Navigator with detailed monitors” on page 108
v QAQQINI updates
v Set Current Degree
v Visual Explain updates
v “Display information with Database Health Center” on page 143
v New database monitor format

How to see what's new or changed

To help you see where technical changes have been made, this information uses:
v The image to mark where new or changed information begins.
v The image to mark where new or changed information ends.

To find other information about what's new or changed this release, see the Memo to users.

Printable PDF
Use this to view and print a PDF of this information.

© Copyright IBM Corp. 1998, 2006 1

To view or download the PDF version of this document, select Database performance and query
optimization (about 7303 KB).

Other information

You can also find more information about the V5R2 query engine in the Preparing for and Tuning
the V5R2 SQL Query Engine on DB2 Universal Database™ for iSeries®.

Saving PDF files

To save a PDF on your workstation for viewing or printing:
1. Right-click the PDF in your browser (right-click the link above).
2. Click the option that saves the PDF locally.
3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free

copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html) .

Query Engine Overview
DB2® UDB for iSeries provides two query engines to process queries: the Classic Query Engine (CQE)
and the SQL Query Engine (SQE).

The CQE processes queries originating from non-SQL interfaces: OPNQRYF, Query/400, and QQQQry
API. SQL based interfaces, such as ODBC, JDBC, CLI, Query Manager, Net.Data®, RUNSQLSTM, and
embedded or interactive SQL, run through the SQE. For ease of use, the routing decision for processing
the query by either CQE or SQE is pervasive and under the control of the system. The requesting user or
application program cannot control or influence this behavior. However, a better understanding of the
engines and of the process that determines which path a query takes can lead you to a better understand
of your query's performance.

Along with the new query engine, several more components were created and other existing components
were updated. Additionally, new data access methods were created for SQE.
Related information

Embedded SQL programming
SQL programming
Query (QQQQRY) API
Open Query File (OPNQRYF) command
Run SQL Statements (RUNSQLSTM) command

SQE and CQE Engines
To fully understand the implementation of query management and processing in DB2 UDB for iSeries on
i5/OS® V5R2 and subsequent releases, it is important to see how the queries were implemented in
releases of i5/OS previous to V5R2.

The figure below shows a high-level overview of the architecture of DB2 UDB for iSeries before i5/OS
V5R2. The optimizer and database engine are implemented at different layers of the operating system.
The interaction between the optimizer and the database engine occurs across the Machine Interface (MI).

2 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|

http://www.redbooks.ibm.com/abstracts/sg246598.html?Open
http://www.redbooks.ibm.com/abstracts/sg246598.html?Open
http://www.adobe.com/products/acrobat/readstep.html

The figure below shows an overview of the DB2 UDB for iSeries architecture on i5/OS V5R3 and where
each SQE component fits. The functional separation of each SQE component is clearly evident. In line
with design objectives, this division of responsibility enables IBM® to more easily deliver functional
enhancements to the individual components of SQE, as and when required. Notice that most of the SQE
Optimizer components are implemented below the MI. This translates into enhanced performance
efficiency.

Performance and query optimization 3

Query Dispatcher
The function of the Dispatcher is to route the query request to either CQE or SQE, depending on the
attributes of the query. All queries are processed by the Dispatcher and you cannot bypass it.

Currently, the Dispatcher will route an SQL statement to CQE if it find that the statement references or
contains any of the following:
v INSERT WITH VALUES statement or the target of an INSERT with subselect statement
v NLSS or CCSID translation between columns
v Lateral correlation
v Logical files
v Datalink columns
v Tables with Read Triggers
v User-defined table functions
v Read-only queries with more than 1000 dataspaces or updateable queries with more than 256

dataspaces.
v DB2 Multisystem tables

4 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|

v non-SQL queries, for example the QQQQry API, Query/400, or OPNQRYF

The Dispatcher also has the built-in capability to re-route an SQL query to CQE that was initially routed
to SQE. Unless the IGNORE_DERIVED_INDEX option with a parameter value of *YES is specified, a
query will typically be reverted back to CQE from SQE whenever the Optimizer processes table objects
that have any of the following logical files or indexes defined:
v Logical files with the SELECT/OMIT DDS keyword specified
v Non-standard indexes or derived keys, for example logical files specifying the DDS keywords

RENAME or Alternate Collating Sequence (ACS) on any field referenced in the key
v Sort Sequence NLSS specified for the index or logical file

As new functionality is added in the future, the Dispatcher will route more queries to SQE and
increasingly fewer to CQE.
Related reference

“MQT supported function” on page 65
Although a MQT can contain almost any query, the optimizer only supports a limited set of query
functions when matching MQTs to user specified queries. The user specified query and the MQT query
must both be supported by the SQE optimizer.

Statistics Manager
In releases before V5R2, the retrieval of statistics was a function of the Optimizer. When the Optimizer
needed to know information about a table, it looked at the table description to retrieve the row count and
table size. If an index was available, the Optimizer might then extract further information about the data
in the table. In V5R2, the collection of statistics was removed from the Optimizer and is now handled by
a separate component called the Statistics Manager.

The Statistics Manager does not actually run or optimize the query. It controls the access to the metadata
and other information that is required to optimize the query. It uses this information to answer questions
posed by the query optimizer. The Statistics Manager always provides answers to the optimizer. In cases
where it cannot provide an answer based on actual existing statistics information, it is designed to
provide a predefined answer.

The Statistics Manager typically gathers and keeps track of the following information:

Cardinality of values
The number of unique or distinct occurrences of a specific value in a single column or multiple
columns of a table.

Selectivity
Also known as a histogram, this information is an indication of how many rows will be selected
by any given selection predicate or combination of predicates. Using sampling techniques, it
describes the selectivity and distribution of values in a given column of the table.

Frequent values
The top nn most frequent values of a column together with account of how frequently each value
occurs. This information is obtained by making use of statistical sampling techniques. Built-in
algorithms eliminate the possibility of data skewing; for example, NULL values and default
values that can influence the statistical values are not taken into account.

Metadata information
This includes the total number of rows in the table, indexes that exist over the table, and which
indexes are useful for implementing the particular query.

Estimate of IO operation
This is an estimate of the amount of IO operations that are required to process the table or the
identified index.

Performance and query optimization 5

The Statistics Manager uses a hybrid approach to manage database statistics. The majority of this
information can be obtained from existing indexes. In cases where the required statistics cannot be
gathered from existing indexes, statistical information is constructed of single columns of a table and
stored internally as part of the table. By default, this information is collected automatically by the system,
but you can manually control the collection of statistics. Unlike indexes, however, statistics are not
maintained immediately as data in the tables change.
Related reference

“Collecting statistics with the Statistics Manager” on page 138
As stated earlier, the collection of statistics is handled by a separate component called the Statistics
Manager. Statistical information can be used by the query optimizer to determine the best access plan for
a query. Since the query optimizer bases its choice of access plan on the statistical information found in
the table, it is important that this information be current.

Plan Cache
The Plan Cache is a repository that contains the access plans for queries that were optimized by SQE.

Access plans generated by CQE are not stored in the Plan Cache; instead, they are stored in SQL
Packages, the system-wide statement cache, and job cache). The purposes of the Plan Cache are to:
v Facilitate the reuse of a query access plan when the same query is re-executed
v Store runtime information for subsequent use in future query optimizations

Once an access plan is created, it is available for use by all users and all queries, regardless of where the
query originates. Furthermore, when an access plan is tuned, when creating an index for example, all
queries can benefit from this updated access plan. This eliminates the need to reoptimize the query,
resulting in greater efficiency.

The graphic below shows the concept of reusability of the query access plans stored in the Plan Cache:

6 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|

|

|

|
|
|
|

|

As shown above, the Plan Cache is interrogated each time a query is executed in order to determine if a
valid access plan exists that satisfies the requirements of the query. If a valid access plan is found, it is
used to implement the query. Otherwise a new access plan is created and stored in the Plan Cache for
future use. The Plan Cache is automatically updated with new query access plans as they are created, or
is updated for an existing plan (the next time the query is run) when new statistics or indexes become
available. The Plan Cache is also automatically updated by the database with runtime information as the
queries are run. It is created with an overall size of 512 Megabytes (MB). Each plan cache entry contains
the original query, the optimized query access plan and cumulative runtime information gathered during
the runs of the query. In addition, several instances of query runtime objects are stored with a plan cache
entry. These runtime objects are the real executables and temporary storage containers (hash tables, sorts,
temporary indexes, and so on) used to run the query. All systems are currently configured with the same
size Plan Cache, regardless of the server size or the hardware configuration.

When the Plan Cache exceeds its designated size, a background task is automatically scheduled to
remove plans from the Plan Cache. Access plans are deleted based upon the age of the access plan, how
frequently it is being used and how much cumulative resources (CPU/IO) were consumed by the runs of
the query. The total number of access plans stored in the Plan Cache depends largely upon the
complexity of the SQL statements that are being executed. In certain test environments, there have been
typically between 10,000 to 20,000 unique access plans stored in the Plan Cache. The Plan Cache is
cleared when a system Initial Program Load (IPL) is performed.

Multiple access plans can be maintained for a single SQL statement. Although the SQL statement itself is
the primary hash key to the Plan Cache, different environmental settings can cause different access plans
to be stored in the Plan Cache. Examples of these environmental settings include:
v Different SMP Degree settings for the same query
v Different library lists specified for the query tables
v Different settings for the job's share of available memory in the current pool

Performance and query optimization 7

|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|

|

v Different ALWCPYDTA settings

Currently, the Plan Cache can maintain a maximum of 3 different access plans for the same SQL
statement. As new access plans are created for the same SQL statement, older access plans are discarded
to make room for the new access plans. There are, however, certain conditions that can cause an existing
access plan to be invalidated. Examples of these include:
v Specifying REOPTIMIZE_ACCESS_PLAN(*YES) or (*FORCE) in the QAQQINI table or in Run SQL

Scripts
v Deleting or recreating the table that the access plan refers to
v Deleting an index that is used by the access plan
Related reference

“Effects of the ALWCPYDTA parameter on database performance” on page 182
Some complex queries can perform better by using a sort or hashing method to evaluate the query
instead of using or creating an index.
“Change the attributes of your queries with the Change Query Attributes (CHGQRYA) command” on
page 117
You can modify different types of attributes of the queries that you will execute during a certain job with
the Change Query Attributes (CHGQRYA) CL command, or by using the iSeries Navigator Change Query
Attributes interface.
“Viewing the plan cache with iSeries Navigator” on page 85
The Plan Cache contains a wealth of information about the SQE queries being run through the database.
Its contents are viewable through the iSeries Navigator GUI interface.

Data access on DB2 UDB for iSeries: data access paths and methods
Data access methods are used to process queries and access data.

In general, the query engine has two kinds of raw material with which to satisfy a query request:
v The database objects that contain the data to be queries
v The executable instructions or operations to retrieve and transform the data into usable information

There are actually only two types of permanent database objects that can be used as source material for a
query — tables and indexes (binary radix and encoded vector indexes). In addition, the query engine
may need to create temporary objects or data structures to hold interim results or references during the
execution of an access plan. The DB2 UDB Symmetric Multiprocessing feature provides the optimizer
with additional methods for retrieving data that include parallel processing. Finally, the optimizer uses
certain methods to manipulate these objects.

Permanent objects and access methods
The database objects and access methods used by the query engine can be broken down into three basic
types of operations that are used to manipulate the permanent and temporary objects -- Create, Scan, and
Probe.

The following table lists each object and the access methods that can be performed against that object.
The symbols shown in the table are the icons used by Visual Explain.

Table 1. Permanent object's data access methods

Permanent objects Scan operations Probe operations

Table Table scan Table probe

Radix index Radix index scan Radix index probe

Encoded vector index Encoded vector index symbol table
scan

Encoded vector index probe

8 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|
|
|
|

|
|

|

|

|

|
|
|

|
|
|
|
|

|
|
|

Table
An SQL table or physical file is the base object for a query. It represents the source of the data used to
produce the result set for the query. It is created by the user and specified in the FROM clause (or
OPNQRYF FILE parameter).

The optimizer will determine the most efficient way to extract the data from the table in order to satisfy
the query. This may include scanning or probing the table or using an index to extract the data.

Visual explain icon:

Table scan:

A table scan is the easiest and simplest operation that can be performed against a table. It sequentially
processes all of the rows in the table to determine if they satisfy the selection criteria specified in the
query. It does this in a way to maximize the I/O throughput for the table.

A table scan operation requests large I/Os to bring as many rows as possible into main memory for
processing. It also asynchronously pre-fetches the data to make sure that the table scan operation is never
waiting for rows to be paged into memory. Table scan however, has a disadvantage in it has to process all
of the rows in order to satisfy the query. The scan operation itself is very efficient if it does not need to
perform the I/O synchronously.

Table 2. Table scan attributes

Data access method Table scan

Description Reads all of the rows from the table and applies the selection criteria to each
of the rows within the table. The rows in the table are processed in no
guaranteed order, but typically they are processed sequentially.

Advantages v Minimizes page I/O operations through asynchronous pre-fetching of the
rows since the pages are scanned sequentially

v Requests a larger I/O to fetch the data efficiently

Considerations v All rows in the table are examined regardless of the selectivity of the query

v Rows marked as deleted are still paged into memory even though none will
be selected. You can reorganize the table to remove deleted rows.

Likely to be used v When expecting a large number of rows returned from the table

v When the number of large I/Os needed to scan is fewer than the number of
small I/Os required to probe the table

Example SQL statement SELECT * FROM Employee
WHERE WorkDept BETWEEN 'A01'AND 'E01'
OPTIMIZE FOR ALL ROWS

Performance and query optimization 9

Table 2. Table scan attributes (continued)

Data access method Table scan

Messages indicating use v Optimizer Debug:

CPI4329 — Arrival sequence was used for file EMPLOYEE

v PRTSQLINF:

SQL4010 — Table scan access for table 1.

SMP parallel enabled Yes

Also referred to as Table Scan, Preload

Visual Explain icon

Related concepts

“Nested loop join implementation” on page 46
DB2 Universal Database for iSeries provides a nested loop join method. For this method, the processing
of the tables in the join are ordered. This order is called the join order. The first table in the final join
order is called the primary table. The other tables are called secondary tables. Each join table position is
called a dial.

Table probe:

A table probe operation is used to retrieve a specific row from a table based upon its row number. The
row number is provided to the table probe access method by some other operation that generates a row
number for the table.

This can include index operations as well as temporary row number lists or bitmaps. The processing for a
table probe is typically random; it requests a small I/O to only retrieve the row in question and does not
attempt to bring in any extraneous rows. This leads to very efficient processing for smaller result sets
because only the rows needed to satisfy the query are processed rather than the scan method which must
process all of the rows. However, since the sequence of the row numbers are not known in advance, very
little pre-fetching can be performed to bring the data into main memory. This can result in most of the
I/Os associated with this access method to be performed synchronously.

Table 3. Table probe attributes

Data access method Table probe

Description Reads a single row from the table based upon a specific row number. A
random I/O is performed against the table to extract the row.

Advantages v Requests smaller I/Os to prevent paging rows into memory that are not
needed

v Can be used in conjunction with any access method that generates a row
number for the table probe to process

Considerations Because of the synchronous random I/O the probe can perform poorly when a
large number of rows are selected

10 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

Table 3. Table probe attributes (continued)

Data access method Table probe

Likely to be used v When row numbers (either from indexes or temporary row number lists) are
being used, but data from the underlying table rows are required for further
processing of the query

v When processing any remaining selection or projection of the values

Example SQL statement CREATE INDEX X1 ON Employee (LastName)

SELECT * FROM Employee
WHERE WorkDept BETWEEN 'A01' AND 'E01'
AND LastName IN ('Smith', 'Jones', 'Peterson')
OPTIMIZE FOR ALL ROWS

Messages indicating use There is no specific message that indicates the use of a table probe. The
messages in this example illustrate the use of a data access method that
generates a row number that is used to perform the table probe operation.

v Optimizer Debug:

CPI4328 — Access path of file X1 was used by query

v PRTSQLINF:

SQL4008 — Index X1 used for table 1.

SQL4011 — Index scan-key row positioning (probe)
used on table 1.

SMP parallel enabled Yes

Also referred to as Table Probe, Preload

Visual Explain icon

Radix index
An SQL index (or keyed sequence access path) is a permanent object that is created over a table and used
by the optimizer to provide a sequenced view of the data for a scan or probe operation.

The rows in the tables are sequenced in the index based upon the key columns specified on the creation
of the object. When the key columns are matched up by the optimizer to a query, it gives the optimizer
the ability to use the radix index to help satisfy any selection, ordering, grouping or join requirements.

Typically the use of an index operation will also include a Table Probe operation to provide access to any
columns needed to satisfy the query that cannot be found as index keys. If all of the columns necessary
to satisfy the query request for a table can be found as keys of an index, then the Table Probe is not
required and the query uses Index Only Access. Avoiding the Table Probe can be an important savings
for a query. The I/O associated with a Table Probe is typically the more expensive synchronous random
I/O.

Visual Explain icon:

Performance and query optimization 11

Radix index scan:

A radix index scan operation is used to retrieve the rows from a table in a keyed sequence. Like a Table
Scan, all of the rows in the index will be sequentially processed, but the resulting row numbers will be
sequenced based upon the key columns.

The sequenced rows can be used by the optimizer to satisfy a portion of the query request (such as
ordering or grouping). They can be also used to provide faster throughput by performing selection
against the index keys rather than all the rows in the table. Since the I/Os associated with the index will
only contain the index keys, typically more rows can be paged into memory in one I/O against the index
than the rows from a table with a large number of columns.

Table 4. Radix index scan attributes

Data access method Radix index scan

Description Sequentially scan and process all of the keys associated with the index. Any
selection is applied to every key value of the index before a table row

Advantages v Only those index entries that match any selection continue to be processed

v Potential to extract all of the data from the index keys' values, thus
eliminating the need for a Table Probe

v Returns the rows back in a sequence based upon the keys of the index

Considerations Generally requires a Table Probe to be performed to extract any remaining
columns required to satisfy the query. Can perform poorly when a large
number of rows are selected because of the random I/O associated with the
Table Probe.

Likely to be used v When asking for or expecting only a few rows to be returned from the
index

v When sequencing the rows is required for the query (for example, ordering
or grouping)

v When the selection columns cannot be matched against the leading key
columns of the index

Example SQL statement CREATE INDEX X1 ON Employee (LastName, WorkDept)

SELECT * FROM Employee
WHERE WorkDept BETWEEN 'A01' AND 'E01'
ORDER BY LastName
OPTIMIZE FOR 30 ROWS

Messages indicating use v Optimizer Debug:

CPI4328 -- Access path of file X1 was used by query.

v PRTSQLINF:

SQL4008 -- Index X1 used for table 1.

SMP parallel enabled Yes

12 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

Table 4. Radix index scan attributes (continued)

Data access method Radix index scan

Also referred to as Index Scan

Index Scan, Preload

Index Scan, Distinct

Index Scan Distinct, Preload

Index Scan, Key Selection

Visual Explain icon

Related reference

“Effects of the ALWCPYDTA parameter on database performance” on page 182
Some complex queries can perform better by using a sort or hashing method to evaluate the query
instead of using or creating an index.

Radix index probe:

A radix index probe operation is used to retrieve the rows from a table in a keyed sequence. The main
difference between the Radix Index Probe and the Radix Index Scan is that the rows being returned must
first be identified by a probe operation to subset the rows being retrieved.

The optimizer attempts to match the columns used for some or all of the selection against the leading
keys of the index. It then rewrites the selection into a series of ranges that can be used to probe directly
into the index's key values. Only those keys from the series of ranges are paged into main memory. The
resulting row numbers generated by the probe operation can then be further processed by any remaining
selection against the index keys or a Table Probe operation. This provides for very quick access to only
the rows of the index that satisfy the selection.

While the main function of a radix index probe is to provide a form of quick selection against the index
keys, the sequencing of the rows can still be used by the optimizer to satisfy other portions of the query
(such as ordering or grouping). Since the I/Os associated with the index will only be for those index
rows that match the selection, no extraneous processing will be performed on those rows that do not
match the probe selection. This savings in I/Os against rows that are not a part of the result set for the
query, is one of the primary advantages for this operation.

Table 5. Radix index probe attributes

Data access method Radix index probe

Description The index is quickly probed based upon the selection criteria that were
rewritten into a series of ranges. Only those keys that satisfy the selection will
be used to generate a table row number.

Advantages v Only those index entries that match any selection continue to be processed

v Provides very quick access to the selected rows

v Potential to extract all of the data from the index keys' values, thus
eliminating the need for a Table Probe

v Returns the rows back in a sequence based upon the keys of the index

Performance and query optimization 13

Table 5. Radix index probe attributes (continued)

Data access method Radix index probe

Considerations Generally requires a Table Probe to be performed to extract any remaining
columns required to satisfy the query. Can perform poorly when a large
number of rows are selected because of the random I/O associated with the
Table Probe.

Likely to be used v When asking for or expecting only a few rows to be returned from the index

v When sequencing the rows is required the query (for example, ordering or
grouping)

v When the selection columns match the leading key columns of the index

Example SQL statement CREATE INDEX X1 ON Employee (LastName, WorkDept)

SELECT * FROM Employee
WHERE WorkDept BETWEEN 'A01' AND 'E01'
AND LastName IN ('Smith', 'Jones', 'Peterson')
OPTIMIZE FOR ALL ROWS

Messages indicating use v Optimizer Debug:

CPI4328 -- Access path of file X1 was used by query.

v PRTSQLINF:

SQL4008 -- Index X1 used for table 1.
SQL4011 -- Index scan-key row positioning used

on table 1.

SMP parallel enabled Yes

Also referred to as Index Probe

Index Probe, Preload

Index Probe, Distinct

Index Probe Distinct, Preload

Index Probe, Key Positioning

Index Scan, Key Row Positioning

Visual Explain icon

The following example illustrates a query where the optimizer might choose the radix index probe access
method:

CREATE INDEX X1 ON Employee (LastName, WorkDept)

SELECT * FROM Employee
WHERE WorkDept BETWEEN 'A01' AND 'E01'
AND LastName IN ('Smith', 'Jones', 'Peterson')
OPTIMIZE FOR ALL ROWS

In this example, the optimizer uses the index X1 to position (probe) to the first index entry that matches
the selection built over both the LastName and WorkDept columns. The selection is rewritten into a series

14 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

of ranges that match all of the leading key columns used from the index X1. The probe is then based
upon the composite concatenated values for all of the leading keys. The pseudo-SQL for this rewritten
SQL might look as follows:

SELECT * FROM X1
WHERE X1.LeadingKeys BETWEEN 'JonesA01' AND 'JonesE01'

OR X1.LeadingKeys BETWEEN 'PetersonA01' AND 'PetersonE01'
OR X1.LeadingKeys BETWEEN 'SmithA01' AND 'SmithE01'

All of the key entries that satisfy the probe operation will then be used to generate a row number for the
table associated with the index (for example, Employee). The row number will be used by a Table Probe
operation to perform random I/O on the table to produce the results for the query. This processing
continues until all of the rows that satisfy the index probe operation have been processed. Note that in
this example, all of the index entries processed and rows retrieved met the index probe criteria. If
additional selection were added that cannot be performed through an index probe operation (such as
selection against columns which are not a part of the leading key columns of the index), the optimizer
will perform an index scan operation within the range of probed values. This still allows for selection to
be performed before the Table Probe operation.
Related concepts

“Nested loop join implementation” on page 46
DB2 Universal Database for iSeries provides a nested loop join method. For this method, the processing
of the tables in the join are ordered. This order is called the join order. The first table in the final join
order is called the primary table. The other tables are called secondary tables. Each join table position is
called a dial.
Related reference

“Effects of the ALWCPYDTA parameter on database performance” on page 182
Some complex queries can perform better by using a sort or hashing method to evaluate the query
instead of using or creating an index.

Encoded vector index
An encoded vector index is a permanent object that provides access to a table by assigning codes to
distinct key values and then representing those values in a vector.

The size of the vector will match the number of rows in the underlying table. Each vector entry
represents the table row number in the same position. The codes generated to represent the distinct key
values can be 1, 2 or 4 bytes in length, depending upon the number of distinct values that need to be
represented. Because of their compact size and relative simplicity, the EVI can be used to process large
amounts of data very efficiently.

Even though an encoded vector index is used to represent the values stored in a table, the index itself
cannot be used to directly gain access to the table. Instead, the encoded vector index can only be used to
generate either a temporary row number list or a temporary row number bitmap. These temporary
objects can then be used in conjunction with a Table Probe to specify the rows in the table that the query
needs to process. The main difference with the Table Probe associated with an encoded vector index
(versus a radix index) is that the paging associated with the table can be asynchronous. The I/O can now
be scheduled more efficiently to take advantage of groups of selected rows. Large portions of the table
can be skipped over where no rows are selected.

Visual explain icon:

Performance and query optimization 15

|

Encoded vector index symbol table scan:

An encoded vector index symbol table scan operation is used to retrieve the entries from the symbol
table portion of the index.

All entries (symbols) in the symbol table will be sequentially scanned, though the sequence of the
resulting entries is not in any guaranteed order. The symbol table can be used by the optimizer to satisfy
group by or distinct portions of a query request. Any selection is applied to every entry in the symbol
table. All entries are retrieved directly from the symbol table portion of the index without any access to
the vector portion of the index nor any access to the records in the associated table over which the EVI is
built.

Table 6. Encoded vector index symbol table scan attributes

Data access method Encoded vector index symbol table scan

Description Sequentially scan and process all of the symbol table entries associated with
the index. Any selection is applied to every entry in the symbol table. Selected
entries are retrieved directly without any access to the vector or the associated
table

Advantages v Pre-summarized results are readily available

v Only processes the unique values in the symbol table, avoiding processing
table records.

v Extract all of the data from the index unique key values, thus eliminating the
need for a Table Probe or vector scan.

Considerations Dramatic performance improvement for grouping queries where the resulting
number of groups is relatively small compared to the number of records in the
underlying table. Can perform poorly when there are a large number of groups
involved such that the symbol table is very large, especially if a large portion
of symbol table has been put into the overflow area.

Likely to be used v When asking for GROUP BY, DISTINCT, COUNT or COUNT DISTINCT
from a single table and the referenced column(s) are in the key definition

v When the number of unique values in the column(s) of the key definition is
small relative to the number of records in the underlying table.

v When there is no selection (Where clause) within the query or the selection
does not reduce the result set very much.

Example SQL statement CREATE ENCODED VECTOR INDEX EVI1 ON Sales (Region)

Example 1

SELECT Region, count(*)
FROM Sales
GROUP BY Region
OPTIMIZE FOR ALL ROWS

Example 2

SELECT DISTINCT Region
FROM Sales
OPTIMIZE FOR ALL ROWS

Example 3

SELECT COUNT(DISTINCT Region)
FROM Sales

16 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|
|

|
|
|
|
|
|

||

||

||
|
|
|

||

|
|

|
|

||
|
|
|
|

||
|

|
|

|
|

||

|

|
|
|
|

|

|
|
|

|

|
|

Table 6. Encoded vector index symbol table scan attributes (continued)

Data access method Encoded vector index symbol table scan

Messages indicating use v Optimizer Debug:

CPI4328 -- Access path of file EVI1 was used by query.

v PRTSQLINF:

SQL4008 -- Index EVI1 used for table 1.SQL4010

SMP parallel enabled No. Typically not critical as the 'grouping' has already been performed during
the index build.

Also referred to as Encoded Vector Index table scan, Preload

Visual Explain icon

Encoded vector index probe:

The encoded vector index (EVI) is quickly probed based upon the selection criteria that were rewritten
into a series of ranges. It produces either a temporary row number list or bitmap.

Table 7. Encoded vector index probe attributes

Data access method Encoded vector index probe

Description The encoded vector index (EVI) is quickly probed based upon the selection
criteria that were rewritten into a series of ranges. It produces either a
temporary row number list or bitmap.

Advantages v Only those index entries that match any selection continue to be processed

v Provides very quick access to the selected rows

v Returns the row numbers in ascending sequence so that the Table Probe can
be more aggressive in pre-fetching the rows for its operation

Considerations EVIs are generally built over a single key. The more distinct the column is and
the higher the overflow percentage, the less advantageous the encoded vector
index becomes. EVIs always require a Table Probe to be performed on the
result of the EVI probe operation.

Likely to be used v When the selection columns match the leading key columns of the index

v When an encoded vector index exists and savings in reduced I/O against the
table justifies the extra cost of probing the EVI and fully populating the
temporary row number list.

Example SQL statement CREATE ENCODED VECTOR INDEX EVI1 ON
Employee (WorkDept)

CREATE ENCODED VECTOR INDEX EVI2 ON
Employee (Salary)

CREATE ENCODED VECTOR INDEX EVI3 ON
Employee (Job)

SELECT *
FROM Employee
WHERE WorkDept = 'E01' AND Job = 'CLERK'
AND Salary = 5000
OPTIMIZE FOR 99999 ROWS

Performance and query optimization 17

|

||

||

|

|

|

|

||
|

||

||

|
|

|

Table 7. Encoded vector index probe attributes (continued)

Data access method Encoded vector index probe

Messages indicating use v Optimizer Debug:

CPI4329 -- Arrival sequence was used for file
EMPLOYEE.

CPI4338 -– 3 Access path(s) used for bitmap
processing of file EMPLOYEE.

v PRTSQLINF:

SQL4010 -- Table scan access for table 1.
SQL4032 -- Index EVI1 used for bitmap processing

of table 1.
SQL4032 -- Index EVI2 used for bitmap processing

of table 1.
SQL4032 -- Index EVI3 used for bitmap processing

of table 1.

SMP parallel enabled Yes

Also referred to as Encoded Vector Index Probe, Preload

Visual Explain icon

Using the example above, the optimizer chooses to create a temporary row number bitmap for each of
the encoded vector indexes used by this query. Each bitmap only identifies those rows that match the
selection on the key columns for that index. These temporary row number bitmaps are then merged
together to determine the intersection of the rows selected from each index. This intersection is used to
form a final temporary row number bitmap that will be used to help schedule the I/O paging against the
table for the selected rows.

The optimizer might choose to perform an index probe with a binary radix tree index if an index existed
over all three columns. The implementation choice is probably decided by the number of rows to be
returned and the anticipated cost of the I/O associated with each plan. If very few rows will be returned,
the optimizer probably choose to use the binary radix tree index and perform the random I/O against the
table. However, selecting more than a few rows will cause the optimizer to use the encoded vector
indexes because of the savings associated with the more efficient scheduled I/O against the table.

Temporary objects and access methods
Temporary objects are created by the optimizer in order to process a query. In general, these temporary
objects are internal objects and cannot be accessed by a user.

Table 8. Temporary object's data access methods

Temporary create objects Scan operations Probe operations

Temporary hash table Hash table scan Hash table probe

Temporary sort list Sorted list scan Sorted list probe

Temporary list List scan N/A

Temporary row number list Row number list scan Row number list probe

Temporary bitmap Bitmap scan Bitmap probe

18 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

||

|||

|||

|||

|||

|||

|||

Table 8. Temporary object's data access methods (continued)

Temporary create objects Scan operations Probe operations

Temporary index Temporary index scan Temporary index probe

Temporary buffer Buffer scan N/A

Queue N/A N/A

Temporary hash table
The temporary hash table is a temporary object that allows the optimizer to collate the rows based upon
a column or set of columns. The hash table can be either scanned or probed by the optimizer to satisfy
different operations of the query.

A temporary hash table is an efficient data structure because the rows are organized for quick and easy
retrieval after population has occurred. This is primarily due to the hash table remaining resident within
main memory so as to avoid any I/Os associated with either the scan or probe against the temporary
object. The optimizer will determine the optimal size for the hash table based upon the number of unique
combinations (for example, cardinality) of the columns used as keys for the creation.

Additionally the hash table can be populated with all of the necessary columns to satisfy any further
processing, avoiding any random I/Os associated with a Table Probe operation. However, the optimizer
does have the ability to selectively include columns in the hash table when the calculated size will exceed
the memory pool storage available for this query. In those cases, a Table Probe operation is required to
recollect the missing columns from the hash table before the selected rows can be processed.

The optimizer also has the ability to populate the hash table with distinct values. If the query contains
grouping or distinct processing, then all of the rows with the same key value are not required to be
stored in the temporary object. They are still collated, but the distinct processing is performed during the
population of the hash table itself. This allows a simple scan to be performed on the result in order to
complete the grouping or distinct operation.

A temporary hash table is an internal data structure and can only be created by the database manager

Visual explain icon:

Hash table scan:

During a Hash Table Scan operation, the entire temporary hash table is scanned and all of the entries
contained within the hash table will be processed.

The optimizer considers a hash table scan when the data values need to be collated together, but the
sequence of the data is not required. The use of a hash table scan will allow the optimizer to generate a
plan that can take advantage of any non-join selection while creating the temporary hash table. An
additional benefit of using a hash table scan is that the data structure of the temporary hash table will
typically cause the table data within the hash table to remain resident within main memory after creation,
thus reducing paging on the subsequent hash table scan operation.

Performance and query optimization 19

|

|||

|||

|||

|||
|

Table 9. Hash table scan attributes

Data access method Hash table scan

Description Read all of the entries in a temporary hash table. The hash table may perform
distinct processing to eliminate duplicates or takes advantage of the temporary
hash table to collate all of the rows with the same value together.

Advantages v Reduces the random I/O to the table generally associated with longer
running queries that may otherwise use an index to collate the data

v Selection can be performed before generating the hash table to subset the
number of rows in the temporary object

Considerations Generally used for distinct or group by processing. Can perform poorly when
the entire hash table does not stay resident in memory as it is being processed.

Likely to be used v When the use of temporary results is allowed by the query environmental
parameter (ALWCPYDTA)

v When the data is required to be collated based upon a column or columns
for distinct or grouping

Example SQL statement SELECT COUNT(*), FirstNme FROM Employee
WHERE WorkDept BETWEEN 'A01' AND 'E01'
GROUP BY FirstNme

Messages indicating use There are multiple ways in which a hash scan can be indicated through the
messages. The messages in this example illustrate how the SQL Query Engine
will indicate a hash scan was used.

v Optimizer Debug:

CPI4329 -- Arrival sequence was used for file
EMPLOYEE.

v PRTSQLINF:

SQL4010 -- Table scan access for table 1.
SQL4029 -- Hashing algorithm used to process

the grouping.

SMP parallel enabled Yes

Also referred to as Hash Scan, Preload

Hash Table Scan Distinct

Hash Table Scan Distinct, Preload

Visual Explain icon

Hash table probe:

A hash table probe operation is used to retrieve rows from a temporary hash table based upon a probe
lookup operation.

The optimizer initially identifies the keys of the temporary hash table from the join criteria specified in
the query. This is done so that when the hash table probe is performed, the values used to probe into the
temporary hash table will be extracted from the join-from criteria specified in the selection. Those values

20 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

will be sent through the same hashing algorithm used to populate the temporary hash table in order to
determine if any rows have a matching (equal) value. All of the matching join rows are then returned to
be further processed by the query.

Table 10. Hash table probe attributes

Data access method Hash table probe

Description The temporary hash table is quickly probed based upon the join criteria.

Advantages v Provides very quick access to the selected rows that match probe criteria

v Reduces the random I/O to the table generally associated with longer
running queries that use an index to collate the data

v Selection can be performed before generating the hash table to subset the
number of rows in the temporary object

Considerations Generally used to process equal join criteria. Can perform poorly when the
entire hash table does not stay resident in memory as it is being processed.

Likely to be used v When the use of temporary results is allowed by the query environmental
parameter (ALWCPYDTA)

v When the data is required to be collated based upon a column or columns
for join processing

v The join criteria was specified using an equals (=) operator

Example SQL statement SELET * FROM Employee XXX, Department YYY
WHERE XXX.WorkDept = YYY.DeptNbr
OPTIMIZE FOR ALL ROWS

Messages indicating use There are multiple ways in which a hash probe can be indicated through the
messages. The messages in this example illustrate how the SQL Query Engine
will indicate a hash probe was used.

v Optimizer Debug:

CPI4327 -- File EMPLOYEE processed in join
position 1.

CPI4327 -- File DEPARTMENT processed in join
position 2.

v PRTSQLINF:

SQL4007 -- Query implementation for join
position 1 table 1.

SQL4010 -- Table scan access for table 1.
SQL4007 -- Query implementation for join

position 2 table 2.
SQL4010 -- Table scan access for table 2.

SMP parallel enabled Yes

Also referred to as Hash Table Probe, Preload

Hash Table Probe Distinct

Hash Table Probe Distinct, Preload

Visual Explain icon

Performance and query optimization 21

The hash table probe access method is generally considered when determining the implementation for a
secondary table of a join. The hash table is created with the key columns that match the equal selection
or join criteria for the underlying table. The hash table probe allows the optimizer to choose the most
efficient implementation to select the rows from the underlying table without regard for any join criteria.
This single pass through the underlying table can now choose to perform a Table Scan or use an existing
index to select the rows needed for the hash table population.

Since hash tables are constructed so that the majority of the hash table will remain resident within main
memory, the I/O associated with a hash probe is minimal. Additionally, if the hash table was populated
with all necessary columns from the underlying table, no additional Table Probe will be required to finish
processing this table, once again causing further I/O savings.
Related concepts

“Nested loop join implementation” on page 46
DB2 Universal Database for iSeries provides a nested loop join method. For this method, the processing
of the tables in the join are ordered. This order is called the join order. The first table in the final join
order is called the primary table. The other tables are called secondary tables. Each join table position is
called a dial.

Temporary sorted list
The temporary sorted list is a temporary object that allows the optimizer to sequence rows based upon a
column or set of columns. The sorted list can be either scanned or probed by the optimizer to satisfy
different operations of the query.

A temporary sorted list is a data structure where the rows are organized for quick and easy retrieval after
population has occurred. During population, the rows are copied into the temporary object and then a
second pass is made through the temporary object to perform the sort. In order to optimize the creation
of this temporary object, minimal data movement is performed while the sort is processed. It is generally
not as efficient to probe a temporary sorted list as it is to probe a temporary hash table.

Additionally, the sorted list can be populated with all of the necessary columns to satisfy any further
processing, avoiding any random I/Os associated with a Table Probe operation. However, the optimizer
does have the ability to selectively include columns in the sorted list when the calculated size will exceed
the memory pool storage available for this query. In those cases, a Table Probe operation is required to
recollect the missing columns from the sorted list before the selected rows can be processed.

A temporary sorted list is an internal data structure and can only be created by the database manager.

Visual explain icon:

Sorted list scan:

During a sorted list scan operation, the entire temporary sorted list is scanned and all of the entries
contained within the sorted list will be processed.

A sorted list scan is generally considered when the optimizer is considering a plan that requires the data
values to be sequenced. The use of a sorted list scan will allow the optimizer to generate a plan that can
take advantage of any non-join selection while creating the temporary sorted list. An additional benefit of

22 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

using a sorted list scan is that the data structure of the temporary sorted list will usually cause the table
data within the sorted list to remain resident within main memory after creation thus reducing paging on
the subsequent sorted list scan operation.

Table 11. Sorted list scan attributes

Data access method Sorted list scan

Description Read all of the entries in a temporary sorted list. The sorted list may perform
distinct processing to eliminate duplicate values or take advantage of the
temporary sorted list to sequence all of the rows.

Advantages v Reduces the random I/O to the table generally associated with longer
running queries that would otherwise use an index to sequence the data.

v Selection can be performed prior to generating the sorted list to subset the
number of rows in the temporary object

Considerations Generally used to process ordering or distinct processing. Can perform poorly
when the entire sorted list does not stay resident in memory as it is being
populated and processed.

Likely to be used v When the use of temporary results is allowed by the query environmental
parameter (ALWCPYDTA)

v When the data is required to be ordered based upon a column or columns
for ordering or distinct processing

Example SQL statement CREATE INDEX X1 ON Employee (LastName, WorkDept)

SELECT * FROM Employee
WHERE WorkDept BETWEEN 'A01' AND 'E01'
ORDER BY FirstNme
OPTIMZE FOR ALL ROWS

Messages indicating use There are multiple ways in which a sorted list scan can be indicated through
the messages. The messages in this example illustrate how the SQL Query
Engine will indicate a sorted list scan was used.

v Optimizer Debug:

CPI4328 -- Access path of file X1 was used by query.
CPI4325 -- Temporary result file built for query.

v PRTSQLINF:

SQL4008 -- Index X1 used for table 1.
SQL4002 -- Reusable ODP sort used.

SMP parallel enabled No

Also referred to as Sorted List Scan, Preload

Sorted List Scan Distinct

Sorted List Scan Distinct, Preload

Visual Explain icon

Sorted list probe:

Performance and query optimization 23

A sorted list probe operation is used to retrieve rows from a temporary sorted list based upon a probe
lookup operation.

The optimizer initially identifies the keys of the temporary sorted list from the join criteria specified in
the query. This is done so that when the sorted list probe is performed, the values used to probe into the
temporary sorted list will be extracted from the join-from criteria specified in the selection. Those values
will be used to position within the sorted list in order to determine if any rows have a matching value.
All of the matching join rows are then returned to be further processed by the query.

Table 12. Sorted list probe attributes

Data access method Sorted list probe

Description The temporary sorted list is quickly probed based upon the join criteria.

Advantages v Provides very quick access to the selected rows that match probe criteria

v Reduces the random I/O to the table generally associated with longer
running queries that otherwise use an index to collate the data

v Selection can be performed before generating the sorted list to subset the
number of rows in the temporary object

Considerations Generally used to process non-equal join criteria. Can perform poorly when
the entire sorted list does not stay resident in memory as it is being populated
and processed.

Likely to be used v When the use of temporary results is allowed by the query environmental
parameter (ALWCPYDTA)

v When the data is required to be collated based upon a column or columns
for join processing

v The join criteria was specified using a non-equals operator

Example SQL statement SELECT * FROM Employee XXX, Department YYY
WHERE XXX.WorkDept > YYY.DeptNbr
OPTIMIZE FOR ALL ROWS

Messages indicating use There are multiple ways in which a sorted list probe can be indicated through
the messages. The messages in this example illustrate how the SQL Query
Engine will indicate a sorted list probe was used.

v Optimizer Debug:

CPI4327 -- File EMPLOYEE processed in join position 1.
CPI4327 -- File DEPARTMENT processed in join

position 2.

v PRTSQLINF:

SQL4007 -- Query implementation for join
position 1 table 1.

SQL4010 -- Table scan access for table 1.
SQL4007 -- Query implementation for join

position 2 table 2.
SQL4010 -- Table scan access for table 2.

SMP parallel enabled Yes

Also referred to as Sorted List Probe, Preload

Sorted List Probe Distinct

Sorted List Probe Distinct, Preload

24 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

Table 12. Sorted list probe attributes (continued)

Data access method Sorted list probe

Visual Explain icon

The sorted list probe access method is generally considered when determining the implementation for a
secondary table of a join. The sorted list is created with the key columns that match the non-equal join
criteria for the underlying table. The sorted list probe allows the optimizer to choose the most efficient
implementation to select the rows from the underlying table without regard for any join criteria. This
single pass through the underlying table can now choose to perform a Table Scan or use an existing index
to select the rows needed for the sorted list population.

Since sorted lists are constructed so that the majority of the temporary object will remain resident within
main memory, the I/O associated with a sorted list is minimal. Additionally, if the sorted list was
populated with all necessary columns from the table, no additional Table Probe will be required in order
to finish processing this table, once again causing further I/O savings.
Related concepts

“Nested loop join implementation” on page 46
DB2 Universal Database for iSeries provides a nested loop join method. For this method, the processing
of the tables in the join are ordered. This order is called the join order. The first table in the final join
order is called the primary table. The other tables are called secondary tables. Each join table position is
called a dial.

Temporary list
The temporary list is a temporary object that allows the optimizer to store intermediate results of a query.
The list is an unsorted data structure that is used to simplify the operation of the query. Since the list
does not have any keys, the rows within the list can only be retrieved by a sequential scan operation.

The temporary list can be used for a variety of reasons, some of which include an overly complex view
or derived table, Symmetric Multiprocessing (SMP) or simply to prevent a portion of the query from
being processed multiple times.

A temporary list is an internal data structure and can only be created by the database manager.

Visual explain icon:

List scan:

The list scan operation is used when a portion of the query will be processed multiple times, but no key
columns can be identified. In these cases, that portion of the query is processed once and its results are
stored within the temporary list. The list can then be scanned for only those rows that satisfy any
selection or processing contained within the temporary object.

Performance and query optimization 25

Table 13. List scan attributes

Data access method List scan

Description Sequentially scan and process all of the rows in the temporary list.

Advantages v The temporary list and list scan can be used by the optimizer to minimize
repetition of an operation or to simplify the optimizer's logic flow

v Selection can be performed before generating the list to subset the number
of rows in the temporary object

Considerations Generally used to prevent portions of the query from being processed multiple
times when no key columns are required to satisfy the request.

Likely to be used v When the use of temporary results is allowed by the query environmental
parameter (ALWCPYDTA)

v When Symmetric Multiprocessing will be used for the query

Example SQL statement SELECT * FROM Employee XXX, Department YYY
WHERE XXX.LastName IN ('Smith', 'Jones', 'Peterson')
AND YYY.DeptNo BETWEEN 'A01' AND 'E01'
OPTIMIZE FOR ALL ROWS

Messages indicating use There are multiple ways in which a list scan can be indicated through the
messages. The messages in this example illustrate how the SQL Query Engine
will indicate a list scan was used.

v Optimizer Debug:

CPI4325 -- Temporary result file built for query.
CPI4327 -- File EMPLOYEE processed in join

position 1.
CPI4327 -- File DEPARTMENT processed in join

position 2.

v PRTSQLINF:

SQL4007 -- Query implementation for join
position 1 table 1.

SQL4010 -- Table scan access for table 1.
SQL4007 -- Query implementation for join

position 2 table 2.
SQL4001 -- Temporary result created
SQL4010 -- Table scan access for table 2.

SMP parallel enabled Yes

Also referred to as List Scan, Preload

Visual Explain icon

Using the example above, the optimizer chose to create a temporary list to store the selected rows from
the DEPARTMENT table. Since there is no join criteria, a cartesian product join is performed between the
two tables. To prevent the join from scanning all of the rows of the DEPARTMENT table for each join
possibility, the selection against the DEPARTMENT table is performed once and the results are stored in
the temporary list. The temporary list is then scanned for the cartesian product join.

26 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

Temporary row number list
The temporary row number list is a temporary object that allows the optimizer to sequence rows based
upon their row address (their row number). The row number list can be either scanned or probed by the
optimizer to satisfy different operations of the query.

A temporary row number list is a data structure where the rows are organized for quick and efficient
retrieval. The temporary only contains the row number for the associated row. Since no table data is
present within the temporary, a table probe operation is typically associated with this temporary in order
to retrieve the underlying table data. Because the row numbers are sorted, the random I/O associated
with the table probe operation can be perform more efficiently. The database manager will perform
pre-fetch or look ahead logic to determine if multiple rows are located on adjacent pages. If so, the table
probe will request a larger I/O to bring the rows into main memory more efficiently.

A temporary row number list is an internal data structure and can only be created by the database
manager.

Visual explain icon:

Row number list scan:

During a row number list scan operation, the entire temporary row number list is scanned and all of the
row addresses contained within the row number list will be processed. A row number list scan is
generally considered when the optimizer is considering a plan that involves an encoded vector index or if
the cost of the random I/O associated with an index probe or scan operation can be reduced by first
preprocessing and sorting the row numbers associated with the Table Probe operation.

The use of a row number list scan allows the optimizer to generate a plan that can take advantage of
multiple indexes to match up to different portions of the query.

An additional benefit of using a row number list scan is that the data structure of the temporary row
number list guarantees that the row numbers are sorted, it closely mirrors the row number layout of the
table data ensuring that the paging on the table will never revisit the same page of data twice. This
results in increased I/O savings for the query.

A row number list scan is identical to a bitmap scan operation. The only difference between the two
operations is that a row number list scan is performed over a list of row addresses while the bitmap scan
is performed over a bitmap that represents the row addresses.

Table 14. Row number list scan

Data access method Row number list scan

Description Sequentially scan and process all of the row numbers in the temporary row
number list. The sorted row numbers can be merged with other temporary row
number lists or can be used as input into a Table Probe operation.

Performance and query optimization 27

Table 14. Row number list scan (continued)

Data access method Row number list scan

Advantages v The temporary row number list only contains address, no data, so the
temporary can be efficiently scanned within memory

v The row numbers contained within the temporary object are sorted to
provide efficient I/O processing to access the underlying table

v Selection is performed as the row number list is generated to subset the
number of rows in the temporary object

Considerations Since the row number list only contains the addresses of the selected row in
the table, a separate Table Probe operation must be performed in order to fetch
the table rows

Likely to be used v When the use of temporary results is allowed by the query environmental
parameter (ALWCPYDTA)

v When the cost of sorting of the row number is justified by the more efficient
I/O that can be performed during the Table Probe operation

v When multiple indexes over the same table need to be combined in order to
minimize the number of selected rows

Example SQL statement CREATE INDEX X1 ON Employee (WorkDept)
CREATE ENCODED VECTOR INDEX EVI2 ON

Employee (Salary)
CREATE ENCODED VECTOR INDEX EVI3 ON

Employee (Job)

SELECT * FROM Employee
WHERE WorkDept = 'E01' AND Job = 'CLERK'
AND Salary = 5000
OPTIMIZE FOR 99999 ROWS

Messages indicating use There are multiple ways in which a row number list scan can be indicated
through the messages. The messages in this example illustrate how the SQL
Query Engine will indicate a row number list scan was used.

v Optimizer Debug:

CPI4329 -- Arrival sequence was used for file
EMPLOYEE.

CPI4338 -– 3 Access path(s) used for bitmap
processing of file EMPLOYEE.

v PRTSQLINF:

SQL4010 -- Table scan access for table 1.
SQL4032 -- Index X1 used for bitmap

processing of table 1.
SQL4032 -- Index EVI2 used for bitmap

processing of table 1.
SQL4032 -- Index EVI3 used for bitmap

processing of table 1.

SMP parallel enabled Yes

Also referred to as Row Number List Scan, Preload

Visual Explain icon

28 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

Using the example above, the optimizer created a temporary row number list for each of the indexes
used by this query. This query used a combination of a radix index and two encoded vector indexes to
create the row number lists. The temporary row number lists for each index was scanned and merged
into a final composite row number list that represents the intersection of the rows represented by all of
the temporary row number lists. The final row number list is then used by the Table Probe operation to
determine what rows are selected and need to be processed for the query results.

Row number list probe:

A row number list probe operation is used to test row numbers generated by a separate operation against
the selected rows of a temporary row number list. The row numbers can be generated by any operation
that constructs a row number for a table. That row number is then used to probe into a temporary row
number list to determine if that row number matches the selection used to generate the temporary row
number list.

The use of a row number list probe operation allows the optimizer to generate a plan that can take
advantage of any sequencing provided by an index, but still use the row number list to perform
additional selection before any Table probe operations.

A row number list probe is identical to a bitmap probe operation. The only difference between the two
operations is that a row number list probe is performed over a list of row addresses while the bitmap
probe is performed over a bitmap that represents the row addresses.

Table 15. Row number list probe

Data access method Row number list probe

Description The temporary row number list is quickly probed based upon the row number
generated by a separate operation.

Advantages v The temporary row number list only contains a rows' address, no data, so
the temporary can be efficiently probed within memory

v The row numbers represented within the row number list are sorted to
provide efficient lookup processing to test the underlying table

v Selection is performed as the row number list is generated to subset the
number of selected rows in the temporary object

Considerations Since the row number list only contains the addresses of the selected rows in
the table, a separate Table Probe operation must be performed in order to fetch
the table rows

Likely to be used v When the use of temporary results is allowed by the query environmental
parameter (ALWCPYDTA)

v When the cost of creating and probing the row number list is justified by
reducing the number of Table Probe operations that must be performed

v When multiple indexes over the same table need to be combined in order to
minimize the number of selected rows

Example SQL statement CREATE INDEX X1 ON Employee (WorkDept)
CREATE ENCODED VECTOR INDEX EVI2 ON

Employee (Salary)
CREATE ENCODED VECTOR INDEX EVI3 ON

Employee (Job)

SELECT * FROM Employee
WHERE WorkDept = 'E01' AND Job = 'CLERK'
AND Salary = 5000
ORDER BY WorkDept

Performance and query optimization 29

Table 15. Row number list probe (continued)

Data access method Row number list probe

Messages indicating use There are multiple ways in which a row number list probe can be indicated
through the messages. The messages in this example illustrate how the SQL
Query Engine will indicate a row number list probe was used.

v Optimizer Debug:

CPI4328 -- Access path of file X1 was used by query.
CPI4338 -– 2 Access path(s) used for bitmap

processing of file EMPLOYEE.

v PRTSQLINF:

SQL4008 -- Index X1 used for table 1.
SQL4011 -- Index scan-key row positioning

used on table 1.
SQL4032 -- Index EVI2 used for bitmap

processing of table 1.
SQL4032 -- Index EVI3 used for bitmap

processing of table 1.

SMP parallel enabled Yes

Also referred to as Row Number List Probe, Preload

Visual Explain icon

Using the example above, the optimizer created a temporary row number list for each of the encoded
vector indexes. Additionally, an index probe operation was performed against the radix index X1 to
satisfy the ordering requirement. Since the ORDER BY clause requires that the resulting rows be
sequenced by the WorkDept column, the temporary row number list can no longer be scanned to process
the selected rows. However, the temporary row number list can be probed using a row address extracted
from the index X1 used to satisfy the ordering. By probing the temporary row number list with the row
address extracted from index probe operation, the sequencing of the keys in the index X1 is preserved
and the row can still be tested against the selected rows within the row number list.

Temporary bitmap
The temporary bitmap is a temporary object that allows the optimizer to sequence rows based upon their
row address (their row number). The bitmap can be either scanned or probed by the optimizer to satisfy
different operations of the query.

A temporary bitmap is a data structure that uses a bitmap to represent all of the row numbers for a table.
Since each row is represented by a separate bit, all of the rows within a table can be represented in a
fairly condensed form. When a row is selected by the temporary, the bit within the bitmap that
corresponds to the selected row is set on. After the temporary bitmap is populated, all of the selected
rows can be retrieved in a sorted manner for quick and efficient retrieval. The temporary only represents
the row number for the associated selected rows. No table data is present within the temporary, so a table
probe operation is typically associated with this temporary in order to retrieve the underlying table data.
Because the bitmap is by definition sorted, the random I/O associated with the table probe operation can
be performed more efficiently. The database manager will perform pre-fetch or look ahead logic to
determine if multiple rows are located on adjacent pages. If so, the table probe will request a larger I/O
to bring the rows into main memory more efficiently.

30 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

A temporary bitmap is an internal data structure and can only be created by the database manager.

Visual explain icon:

Bitmap scan:

During a bitmap scan operation, the entire temporary bitmap is scanned and all of the row addresses
contained within the bitmap will be processed. A bitmap scan is generally considered when the optimizer
is considering a plan that involves an encoded vector index or if the cost of the random I/O associated
with an index probe or scan operation can be reduced by first preprocessing and sorting the row
numbers associated with the Table Probe operation.

The use of a bitmap scan will allow the optimizer to generate a plan that can take advantage of multiple
indexes to match up to different portions of the query.

An additional benefit of using a bitmap scan is that the data structure of the temporary bitmap
guarantees that the row numbers are sorted; it closely mirrors the row number layout of the table data
ensuring that the paging on the table will never revisit the same page of data twice. This results in
increased I/O savings for the query.

A bitmap scan is identical to a row number list scan operation. The only difference between the two
operations is that a row number list scan is performed over a list of row addresses while the bitmap scan
is performed over a bitmap that represents the row addresses.

Table 16. Bitmap scan attributes

Data access method Bitmap scan attributes

Description Sequentially scan and process all of the row numbers in the temporary bitmap.
The sorted row numbers can be merged with other temporary bitmaps or can
be used as input into a Table Probe operation.

Advantages v The temporary bitmap only contains a reference to a rows' address, no data,
so the temporary can be efficiently scanned within memory

v The row numbers represented within the temporary object are sorted to
provide efficient I/O processing to access the underlying table

v Selection is performed as the bitmap is generated to subset the number of
selected rows in the temporary object

Considerations Since the bitmap only contains the addresses of the selected row in the table, a
separate Table Probe operation must be performed in order to fetch the table
rows

Likely to be used v When the use of temporary results is allowed by the query environmental
parameter (ALWCPYDTA)

v When the cost of sorting of the row numbers is justified by the more
efficient I/O that can be performed during the Table Probe operation

v When multiple indexes over the same table need to be combined in order to
minimize the number of selected rows

Performance and query optimization 31

Table 16. Bitmap scan attributes (continued)

Data access method Bitmap scan attributes

Example SQL statement CREATE INDEX X1 ON Employee (WorkDept)
CREATE ENCODED VECTOR INDEX EVI2 ON

Employee (Salary)
CREATE ENCODED VECTOR INDEX EVI3 ON

Employee (Job)

SELECT * FROM Employee
WHERE WorkDept = 'E01' AND Job = 'CLERK'
AND Salary = 5000
OPTIMIZE FOR 99999 ROWS

Messages indicating use There are multiple ways in which a bitmap scan can be indicated through the
messages. The messages in this example illustrate how the Classic Query
Engine will indicate a bitmap scan was used.

v Optimizer Debug:

CPI4329 -- Arrival sequence was used for file
EMPLOYEE.

CPI4338 -– 3 Access path(s) used for bitmap
processing of file EMPLOYEE.

v PRTSQLINF:

SQL4010 -- Table scan access for table 1.
SQL4032 -- Index X1 used for bitmap

processing of table 1.
SQL4032 -- Index EVI2 used for bitmap

processing of table 1.
SQL4032 -- Index EVI3 used for bitmap

processing of table 1.

SMP parallel enabled Yes

Also referred to as Bitmap Scan, Preload

Row Number Bitmap Scan

Row Number Bitmap Scan, Preload

Skip Sequential Scan

Visual Explain icon

Using the example above, the optimizer created a temporary bitmap for each of the indexes used by his
query. This query used a combination of a radix index and two encoded vector indexes to create the row
number lists. The temporary bitmaps for each index were scanned and merged into a final composite
bitmap that represents the intersection of the rows represented by all of the temporary bitmaps. The final
bitmap is then used by the Table Probe operation to determine what rows are selected and need to be
processed for the query results.

Bitmap probe:

A bitmap probe operation is used to test row numbers generated by a separate operation against the
selected rows of a temporary bitmap. The row numbers can be generated by any operation that

32 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

constructs a row number for a table. That row number is then used to probe into a temporary bitmap to
determine if that row number matches the selection used to generate the temporary bitmap.

The use of a bitmap probe operation allows the optimizer to generate a plan that can take advantage of
any sequencing provided by an index, but still use the bitmap to perform additional selection before any
Table Probe operations.

A bitmap probe is identical to a row number list probe operation. The only difference between the two
operations is that a row number list probe is performed over a list of row addresses while the bitmap
probe is performed over a bitmap that represents the row addresses.

Table 17. Bitmap probe attributes

Data access method Bitmap probe attributes

Description The temporary bitmap is quickly probed based upon the row number
generated by a separate operation.

Advantages v The temporary bitmap only contains a reference to a rows' address, no data,
so the temporary can be efficiently probed within memory

v The row numbers represented within the bitmap are sorted to provide
efficient lookup processing to test the underlying table

v Selection is performed as the bitmap is generated to subset the number of
selected rows in the temporary object

Considerations Since the bitmap only contains the addresses of the selected rows in the table,
a separate Table Probe operation must be performed in order to fetch the table
rows

Likely to be used v When the use of temporary results is allowed by the query environmental
parameter (ALWCPYDTA)

v When the cost of creating and probing the bitmap is justified by reducing
the number of Table Probe operations that must be performed

v When multiple indexes over the same table need to be combined in order to
minimize the number of selected rows

Example SQL statement CREATE INDEX X1 ON Employee (WorkDept)
CREATE ENCODED VECTOR INDEX EVI2 ON

Employee (Salary)
CREATE ENCODED VECTOR INDEX EVI3 ON

Employee (Job)

SELECT * FROM Employee
WHERE WorkDept = 'E01' AND Job = 'CLERK'
AND Salary = 5000
ORDER BY WorkDept

Performance and query optimization 33

Table 17. Bitmap probe attributes (continued)

Data access method Bitmap probe attributes

Messages indicating use There are multiple ways in which a bitmap probe can be indicated through the
messages. The messages in this example illustrate how the Classic Query
Engine will indicate a bitmap probe was used.

v Optimizer Debug:

CPI4328 -- Access path of file X1 was used by query.
CPI4338 -– 2 Access path(s) used for bitmap

processing of file EMPLOYEE.

v PRTSQLINF:

SQL4008 -- Index X1 used for table 1.
SQL4011 -- Index scan-key row positioning

used on table 1.
SQL4032 -- Index EVI2 used for bitmap

processing of table 1.
SQL4032 -- Index EVI3 used for bitmap

processing of table 1.

SMP parallel enabled Yes

Also referred to as Bitmap Probe, Preload

Row Number Bitmap Probe

Row Number Bitmap Probe, Preload

Visual Explain icon

Using the example above, the optimizer created a temporary bitmap for each of the encoded vector
indexes. Additionally, an index probe operation was performed against the radix index X1 to satisfy the
ordering requirement. Since the ORDER BY clause requires that the resulting rows be sequenced by the
WorkDept column, the temporary bitmap can no longer be scanned to process the selected rows.
However, the temporary bitmap can be probed using a row address extracted from the index X1 used to
satisfy the ordering. By probing the temporary bitmap with the row address extracted from index probe
operation, the sequencing of the keys in the index X1 are preserved and the row can still be tested
against the selected rows within the bitmap.

Temporary index
A temporary index is a temporary object that allows the optimizer to create and use a radix index for a
specific query. The temporary index has all of the same attributes and benefits as a radix index that is
created by a user through the CREATE INDEX SQL statement or Create Logical File (CRTLF) CL
command.

Additionally, the temporary index is optimized for use by the optimizer to satisfy a specific query
request. This includes setting the logical page size and applying any selection to the creation to speed up
the use of the temporary index after it has been created.

The temporary index can be used to satisfy a variety of query requests:
v Ordering
v Grouping/Distinct

34 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|

v Joins
v Record selection

Generally a temporary index is a more expensive temporary object to create than other temporary objects.
It can be populated by either performing a table scan to fetch the rows to be used for the index or by
performing an index scan or probe against one or more indexes to produce the rows. The optimizer
considers all of the methods available when determining which method to use to produce the rows for
the index creation. This process is similar to the costing and selection of the other temporary objects used
by the optimizer.

One significant advantage of the temporary index over the other forms of temporary objects is that the
temporary index is the only form of a temporary object that is maintained if the underlying table
changes. The temporary index is identical to a radix index in that as any inserts or updates are performed
against the table, those changes are reflected immediately within the temporary index through the normal
index maintenance processing.

SQE usage of temporary indexes is different than CQE usage in that SQE allows reuse. References to
temporary indexes created and used by the SQE optimizer are kept in the system Plan Cache. A
temporary index is saved for reuse by other instances of the same query or other instances of the same
query running in a different job. It is also saved for potential reuse by a different query that can benefit
from the use of the same temporary index. By default, a SQE temporary index persists until the Plan
Cache entry for the last referencing query plan is removed. You can control this behavior by setting the
CACHE_RESULTS QAQQINI value. The default for this INI value allows the optimizer to keep
temporary indexes around for reuse. Changing the INI value to '*JOB' prevents the temporary index from
being saved in the Plan Cache; the index does not survive a hard close. The *JOB option causes SQE
optimizer use of temporary indexes to behave more like CQE optimizer; it becomes shorter lived, but still
shared as long as there are active queries using it. This behavior can be desirable in cases where there is
concern about increased maintenance costs for temporary indexes that persist for reuse.

A temporary index is an internal data structure and can only be created by the database manager.

Visual explain icon:

Temporary index scan:

A temporary index scan operation is identical to the index scan operation that is performed upon the
permanent radix index. It is still used to retrieve the rows from a table in a keyed sequence; however, the
temporary index object must first be created. All of the rows in the index will be sequentially processed,
but the resulting row numbers will be sequenced based upon the key columns.

The sequenced rows can be used by the optimizer to satisfy a portion of the query request (such as
ordering or grouping).

Table 18. Temporary index scan attributes

Data access method Temporary index scan

Description Sequentially scan and process all of the keys associated with the temporary
index.

Performance and query optimization 35

|

|

|
|
|
|
|
|
|
|
|
|
|
|

Table 18. Temporary index scan attributes (continued)

Data access method Temporary index scan

Advantages v Potential to extract all of the data from the index keys' values, thus
eliminating the need for a Table Probe

v Returns the rows back in a sequence based upon the keys of the index

Considerations Generally requires a Table Probe to be performed to extract any remaining
columns required to satisfy the query. Can perform poorly when a large
number of rows are selected because of the random I/O associated with the
Table Probe.

Likely to be used v When sequencing the rows is required for the query (for example, ordering
or grouping)

v When the selection columns cannot be matched against the leading key
columns of the index

v When the overhead cost associated with the creation of the temporary
index can be justified against other alternative methods to implement this
query

Example SQL statement SELECT * FROM Employee
WHERE WorkDept BETWEEN 'A01' AND 'E01'
ORDER BY LastName
OPTIMIZE FOR ALL ROWS

Messages indicating use v Optimizer Debug:

CPI4321 -- Access path built for file EMPLOYEE.

v PRTSQLINF:

SQL4009 -- Index created for table 1.

SMP parallel enabled Yes

Also referred to as Index Scan

Index Scan, Preload

Index Scan, Distinct

Index Scan Distinct, Preload

Index Scan, Key Selection

Visual Explain icon

Using the example above, the optimizer chose to create a temporary index to sequence the rows based
upon the LastName column. A temporary index scan might then be performed to satisfy the ORDER BY
clause in this query.

The optimizer will determine where the selection against the WorkDept column best belongs. It can be
performed as the temporary index itself is being created or it can be performed as a part of the
temporary index scan. Adding the selection to the temporary index creation has the possibility of making
the open data path (ODP) for this query non-reusable. This ODP reuse is taken into consideration when
determining how selection will be performed.

36 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

Temporary index probe:

A temporary index probe operation is identical to the index probe operation that is performed upon the
permanent radix index. Its main function is to provide a form of quick access against the index keys of
the temporary index; however it can still used to retrieve the rows from a table in a keyed sequence.

The temporary index is used by the optimizer to satisfy the join portion of the query request.

Table 19. Temporary index probe attributes

Data access method Temporary index probe

Description The index is quickly probed based upon the selection criteria that were
rewritten into a series of ranges. Only those keys that satisfy the selection will
be used to generate a table row number.

Advantages v Only those index entries that match any selection continue to be processed.
Provides very quick access to the selected rows

v Potential to extract all of the data from the index keys' values, thus
eliminating the need for a Table Probe

v Returns the rows back in a sequence based upon the keys of the index

Considerations Generally requires a Table Probe to be performed to extract any remaining
columns required to satisfy the query. Can perform poorly when a large
number of rows are selected because of the random I/O associated with the
Table Probe.

Likely to be used v When the ability to probe the rows required for the query (for example,
joins) exists

v When the selection columns cannot be matched against the leading key
columns of the index

v When the overhead cost associated with the creation of the temporary
index can be justified against other alternative methods to implement this
query

Example SQL statement SELET * FROM Employee XXX, Department YYY
WHERE XXX.WorkDept = YYY.DeptNo
OPTIMIZE FOR ALL ROWS

Messages indicating use There are multiple ways in which a temporary index probe can be indicated
through the messages. The messages in this example illustrate one example of
how the Classic Query Engine will indicate a temporary index probe was
used.

v Optimizer Debug:

CPI4321 -- Access path built for file DEPARTMENT.
CPI4327 -- File EMPLOYEE processed in join

position 1.
CPI4326 -- File DEPARTMENT processed in join

position 2.

v PRTSQLINF:

SQL4007 -- Query implementation for join
position 1 table 1.

SQL4010 -- Table scan access for table 1.
SQL4007 -- Query implementation for join

position 2 table 2.
SQL4009 -- Index created for table 2.

SMP parallel enabled Yes

Performance and query optimization 37

Table 19. Temporary index probe attributes (continued)

Data access method Temporary index probe

Also referred to as Index Probe

Index Probe, Preload

Index Probe, Distinct

Index Probe Distinct, Preload

Index Probe, Key Selection

Visual Explain icon

Using the example above, the optimizer chose to create a temporary index over the DeptNo column to
help satisfy the join requirement against the DEPARTMENT table. A temporary index probe was then
performed against the temporary index to process the join criteria between the two tables. In this
particular case, there was no additional selection that might be applied against the DEPARTMENT table
while the temporary index was being created.

Temporary buffer
The temporary buffer is a temporary object that is used to help facilitate operations such as parallelism. It
is an unsorted data structure that is used to store intermediate rows of a query. The main difference
between a temporary buffer and a temporary list is that the buffer does not need to be fully populated in
order to allow its results to be processed.

The temporary buffer acts as a serialization point between parallel and non-parallel portions of a query.
The operations used to populate the buffer cannot be performed in parallel, whereas the operations that
fetch rows from the buffer can be performed in parallel. The temporary buffer is required for the SQL
Query Engine because the index scan and index probe operations are not considered to be SMP parallel
enabled for this engine. Unlike the Classic Query Engine, which will perform these index operations in
parallel, the SQL Query Engine will not subdivide the work necessary within the index operation to take
full advantage of parallel processing. The buffer is used to allow a query to be processed under
parallelism by serializing access to the index operations, while allowing any remaining work within the
query to be processed in parallel.

A temporary buffer is an internal data structure and can only be created by the database manager.

Visual explain icon:

Buffer scan:

38 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

The buffer scan operation is used when a query is processed using DB2 UDB Symmetric Multiprocessing,
yet a portion of the query is not enabled to be processed under parallelism. The buffer scan acts as a
gateway to control access to rows between the parallel enabled portions of the query and the non-parallel
portions.

Multiple threads can be used to fetch the selected rows from the buffer, allowing the query to perform
any remaining processing in parallel. However, the buffer will be populated in a non-parallel manner.

A buffer scan operation is identical to the list scan operation that is performed upon the temporary list
object. The main difference is that a buffer does not need to be fully populated before the start of the scan
operation. A temporary list requires that the list is fully populated before fetching any rows.

Table 20. Buffer scan attributes

Data access method Buffer scan

Description Sequentially scan and process all of the rows in the temporary buffer. Enables
SMP parallelism to be performed over a non-parallel portion of the query.

Advantages v The temporary buffer can be used to enable parallelism over a portion of a
query that is non-parallel

v The temporary buffer does not need to be fully populated in order to start
fetching rows

Considerations Generally used to prevent portions of the query from being processed multiple
times when no key columns are required to satisfy the request.

Likely to be used v When the query is attempting to take advantage of DB2 UDB Symmetric
Multiprocessing

v When a portion of the query cannot be performed in parallel (for example,
index scan or index probe)

Example SQL statement CHGQRYA DEGREE(*OPTIMIZE)
CREATE INDEX X1 ON

Employee (LastName, WorkDept)

SELECT * FROM Employee
WHERE WorkDept BETWEEN 'A01' AND 'E01'
AND LastName IN ('Smith', 'Jones', 'Peterson')
OPTIMIZE FOR ALL ROWS

Messages indicating use v Optimizer Debug:

CPI4328 -- Access path of file X1 was used by query.
CPI4330 -- 8 tasks used for parallel index scan

of file EMPLOYEE.

v PRTSQLINF:

SQL4027 -- Access plan was saved with DB2 UDB
SMP installed on the system.

SQL4008 -- Index X1 used for table 1.
SQL4011 -- Index scan-key row positioning

used on table 1.
SQL4030 -- 8 tasks specified for parallel scan

on table 1.

SMP parallel enabled Yes

Also referred to as Not applicable

Performance and query optimization 39

Table 20. Buffer scan attributes (continued)

Data access method Buffer scan

Visual Explain icon

Using the example above, the optimizer chose to use the existing index X1 to perform an index probe
operation against the table. In order to speed up the remaining processing for this query (for example,
the Table Probe operation), DB2 Symmetric Multiprocessing will be used to perform the random probe
into the table. Since the index probe operation is not SMP parallel enabled for the SQL Query Engine,
that portion of the query is placed within a temporary buffer to control access to the selected index
entries.

Queue
The Queue is a temporary object that allows the optimizer to feed the recursion of a recursive query by
putting on the queue those data values needed for the recursion. This data typically includes those values
used on the recursive join predicate and other recursive data being accumulated or manipulated during
the recursive process.

The Queue has two operations allowed:
v Enqueue: puts data on the queue
v Dequeue: takes data off the queue

A queue is an efficient data structure because it contains only that data needed to feed the recursion or
directly modified by the recursion process and its size is managed by the optimizer.

Unlike other temporary objects created by the optimizer, the queue is not populated in all at once by the
underlying query node tree but is really a real time temporary holding area for values feeding the
recursion. In this regard, a queue is not considered temporary as it will not prevent the query from
running if ALWCPYDTA(*NO) was specified, because the data can still being flowing up and out of the
query at the same time the recursive values are inserted into the queue to be used to retrieve additional
join rows.

A queue is an internal data structure and can only be created by the database manager.

Visual explain icon:

Enqueue:

During a enqueue operation, an entry it put on the queue that contains key values used by the recursive
join predicates or data manipulated as a part of the recursion process. The optimizer always supplies an
enqueue operation to collect the required recursive data on the query node directly above the Union All.

40 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|
|
|

|

|

|

|
|

|
|
|
|
|
|

|

|

|

|

|
|
|

Table 21. Enqueue Attributes

Data Access Method Enqueue

Description Places an entry on the queue needed to cause further recursion

Advantages v Required as a source for the recursion. Only enqueues required values for
the recursion process. Each entry has short life span, until it is dequeued.

v Each entry on the queue can seed multiple iterative fullselects that are
recursive from the same rcte/view.

Likely to be used A required access method for recursive queries

Example SQL statement WITH RPL (PART, SUBPART, QUANTITY) AS
(SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY

FROM PARTLIST ROOT
WHERE ROOT.PART = '01'

UNION ALL
SELECT CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY
FROM RPL PARENT, PARTLIST CHILD
WHERE PARENT.SUBPART = CHILD.PART

)
SELECT DISTINCT PART, SUBPART, QUANTITY
FROM RPL

Messages indicating use There are no explicit message that indicate the use of an enqueue

SMP parallel enabled Yes

Also referred to as Not applicable

Visual Explain icon

Use the CYCLE option in the definition of the recursive query if there is the possibility that the data
reflecting the parent, child relationship may be cyclic, causing an infinite recursion loop. CYCLE will
prevent already visited recursive key values from being put on the queue again for a given set of related
(ancestry chain) rows.

Use the SEARCH option in the definition of the recursive query to return the results of the recursion in
the specified parent-child hierarchical ordering. The search choices are Depth or Breadth first. Depth first
means that all the descendents of each immediate child are returned before the next child is returned.
Breadth first means that each child is returned before their children are returned. SEARCH requires not
only the specification of the relationship keys, which columns make up the parent child relationship and
the search type of Depth or Breadth but it also requires an ORDER BY clause in the main query on the
provided sequence column in order to fully implement the specified ordering.

Dequeue:

During a dequeue operation, an entry is taken off the queue and those values specified by recursive
reference are fed back in to the recursive join process.

The optimizer always supplies a corresponding enqueue, dequeue pair of operations for each reference of
a recursive common table expression or recursive view in the specifying query. Recursion ends when
there are no more entries to pull off the queue.

Performance and query optimization 41

||

||

||

||
|

|
|

||

||
|
|
|
|
|
|
|
|
|
|

||

||

||

||

|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|

|
|
|

Table 22. Dequeue Attributes

Data Access Method Dequeue

Description Removes an entry off the queue, provides minimally one side of the recursive
join predicate that feeds the recursive join and other data values that are
manipulated through the recursive process. The dequeue is always the left side
of inner join with constraint where the right side of the join being the target
child rows.

Advantages v Provides very quick access to recursive values

v Allows for post selection of local predicate on recursive data values

Likely to be used v A required access method for recursive queries

v A single dequeued values can feed the recursion of multiple iterative
fullselects that reference the same rcte/view

Example SQL statement WITH RPL (PART, SUBPART, QUANTITY) AS
(SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY

FROM PARTLIST ROOT
WHERE ROOT.PART = '01'

UNION ALL
SELECT CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY
FROM RPL PARENT, PARTLIST CHILD
WHERE PARENT.SUBPART = CHILD.PART

)
SELECT DISTINCT PART, SUBPART, QUANTITY
FROM RPL

Messages indicating use There are no explicit messages that indicate the use of a dequeue

SMP parallel enabled Yes

Also referred to as Not applicable

Visual Explain icon

Objects processed in parallel
The DB2 UDB Symmetric Multiprocessing feature provides the optimizer with additional methods for
retrieving data that include parallel processing. Symmetrical multiprocessing (SMP) is a form of
parallelism achieved on a single server where multiple (CPU and I/O) processors that share memory and
disk resource work simultaneously toward achieving a single end result.

This parallel processing means that the database manager can have more than one (or all) of the server
processors working on a single query simultaneously. The performance of a CPU bound query can be
significantly improved with this feature on multiple-processor servers by distributing the processor load
across more than one processor.

The tables above indicate what data access method are enabled to take advantage of the DB2 UDB
Symmetric Multiprocessing feature. An important thing to note, however, is that the parallel
implementation differs for both the SQL Query Engine and the Classic Query Engine.

Processing requirements

Parallelism requires that SMP parallel processing must be enabled by one of the following methods:
v System value QQRYDEGREE
v Query option file
v DEGREE parameter on the Change Query Attributes (CHGQRYA) command
v SQL SET CURRENT DEGREE statement

42 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

||

||

||
|
|
|
|

||

|

||

|
|

||
|
|
|
|
|
|
|
|
|
|

||

||

||

||

|
|

|

|

|

|

|

|

|

Once parallelism has been enabled, a set of database system tasks or threads is created at server startup
for use by the database manager. The database manager uses the tasks to process and retrieve data from
different disk devices. Since these tasks can be run on multiple processors simultaneously, the elapsed
time of a query can be reduced. Even though much of the I/O and CPU processing of a parallel query is
done by the tasks, the accounting of the I/O and CPU resources used are transferred to the application
job. The summarized I/O and CPU resources for this type of application continue to be accurately
displayed by the Work with Active Jobs (WRKACTJOB) command.

The job should be run in a shared storage pool with the *CALC paging option, as this will cause more
efficient use of active memory.
Related concepts

“Nested loop join implementation” on page 46
DB2 Universal Database for iSeries provides a nested loop join method. For this method, the processing
of the tables in the join are ordered. This order is called the join order. The first table in the final join
order is called the primary table. The other tables are called secondary tables. Each join table position is
called a dial.
Related reference

“Change the attributes of your queries with the Change Query Attributes (CHGQRYA) command” on
page 117
You can modify different types of attributes of the queries that you will execute during a certain job with
the Change Query Attributes (CHGQRYA) CL command, or by using the iSeries Navigator Change Query
Attributes interface.
Related information

SET CURRENT DEGREE statement
Parallel processing for queries and indexes system value
Automatically tune performance
Work with Active Jobs (WRKACTJOB) command
Change Query Attributes (CHGQRYA) command

Spreading data automatically
DB2 Universal Database for iSeries automatically spreads the data across the disk devices available in the
auxiliary storage pool (ASP) where the data is allocated. This ensures that the data is spread without user
intervention.

The spreading allows the database manager to easily process the blocks of rows on different disk devices
in parallel. Even though DB2 Universal Database for iSeries spreads data across disk devices within an
ASP, sometimes the allocation of the data extents (contiguous sets of data) might not be spread evenly.
This occurs when there is uneven allocation of space on the devices, or when a new device is added to
the ASP. The allocation of the table data space may be spread again by saving, deleting, and then
restoring the table.

Maintaining an even distribution of data across all of the disk devices can lead to better throughput on
query processing. The number of disk devices used and how the data is spread across these devices is
taken into account by the optimizer while costing the different plan permutations.

Processing queries: Overview
This overview of the query optimizer provides guidelines for designing queries that will perform and
will use server resources more efficiently.

This overview covers queries that are optimized by the query optimizer and includes interfaces such as
SQL, OPNQRYF, APIs (QQQQRY), ODBC, and Query/400 queries. Whether you apply the guidelines, the
query results will still be correct.

Performance and query optimization 43

|
|
|
|
|
|
|

|
|

Note: The information in this overview is complex. You might find it helpful to experiment with an
iSeries server as you read this information to gain a better understanding of the concepts.

When you understand how DB2 Universal Database for iSeries processes queries, it is easier to
understand the performance impacts of the guidelines discussed in this overview. There are two major
components of DB2 Universal Database for iSeries query processing:
v How the server accesses data.

These methods are the algorithms that are used to retrieve data from the disk. The methods include
index usage and row selection techniques. In addition, parallel access methods are available with the
DB2 UDB Symmetric Multiprocessing operating system feature.

v Query optimizer.
The query optimizer identifies the valid techniques which can be used to implement the query and
selects the most efficient technique.

How the query optimizer makes your queries more efficient
Data manipulation statements such as SELECT specify only what data the user wants, not how to retrieve
that data. This path to the data is chosen by the optimizer and stored in the access plan. You should
understand the techniques employed by the query optimizer for performing this task.

The optimizer is an important part of DB2 Universal Database for iSeries because the optimizer:
v Makes the key decisions which affect database performance.
v Identifies the techniques which can be used to implement the query.
v Selects the most efficient technique.

General query optimization tips
Here are some tips to help your queries run as fast as possible.
v Create indexes whose leftmost key columns match your selection predicates to help supply the

optimizer with selectivity values (key range estimates).
v For join queries, create indexes that match your join columns to help the optimizer determine the

average number of matching rows.
v Minimize extraneous mapping by specifying only columns of interest on the query. For example,

specify only the columns you need to query on the SQL SELECT statement instead of specifying
SELECT *. Also, you should specify FOR FETCH ONLY if the columns do not need to be updated.

v If your queries often use table scan access method, use the Reorganize Physical File Member
(RGZPFM) command to remove deleted rows from tables or the Change Physical File (CHGPF)
REUSEDLT (*YES) command to reuse deleted rows.

Consider using the following options:
v Specify ALWCPYDTA(*OPTIMIZE) to allow the query optimizer to create temporary copies of data so

better performance can be obtained. The iSeries Access ODBC driver and Query Management driver
always uses this mode. If ALWCPYDTA(*YES) is specified, the query optimizer will attempt to
implement the query without copies of the data, but may create copies if required. If
ALWCPYDTA(*NO) is specified, copies of the data are not allowed. If the query optimizer cannot find
a plan that does not use a temporary, then the query cannot be run.

v For SQL, use CLOSQLCSR(*ENDJOB) or CLOSQLCSR(*ENDACTGRP) to allow open data paths to
remain open for future invocations.

v Specify DLYPRP(*YES) to delay SQL statement validation until an OPEN, EXECUTE, or DESCRIBE
statement is run. This option improves performance by eliminating redundant validation.

v Use ALWBLK(*ALLREAD) to allow row blocking for read-only cursors.

44 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

Related information

Reorganize Physical File Member (RGZPFM) command
Change Physical File (CHGPF) command

Access plan validation
An access plan is a control structure that describes the actions necessary to satisfy each query request. It
contains information about the data and how to extract it. For any query, whenever optimization occurs,
the query optimizer develops an optimized plan of how to access the requested data.

To improve performance, an access plan is saved (see exceptions below) once it is built so as to be
available for potentially future runs of the query. However, the optimizer has dynamic replan capability.
This means that even if previously built (and saved) plan is found, the optimizer may rebuild it if it
determines that a more optimal plan is possible. This allows for maximum flexibility while still taking
advantage of saved plans.
v For dynamic SQL, an access plan is created at prepare or open time. However, optimization uses the

host variable values to determine an optimal plan. Therefore, a plan built at prepare time may be
rebuilt the first time the query is opened (when the host variable values are present).

v For an iSeries program that contains static embedded SQL, an access plan is initially created at compile
time. Again, since optimization uses the host variable values to determine an optimal plan, the compile
time plan may be rebuilt the first time the query is opened.

v For Open Query File (OPNQRYF), an access plan is created but is not saved. A new access plan is
created each time the OPNQRYF command is processed.

v For Query/400, an access plan is saved as part of the query definition object.

In all cases above where a plan is saved above, including static SQL, dynamic replan can still apply as
the queries are run over time.

The access plan is validated when the query is opened. Validation includes the following:
v Verifying that the same tables are referenced in the query as in the access plan. For example, the tables

were not deleted and recreated or that the tables resolved by using *LIBL have not changed.
v Verifying that the indexes used to implement the query, still exist.
v Verifying that the table size or predicate selectivity has not changed significantly.
v Verifying that QAQQINI options have not changed.

Single table optimization
At run time, the optimizer chooses an optimal access method for the query by calculating an
implementation cost based on the current state of the database. The optimizer uses 2 costs when making
decisions: an I/O cost and a CPU cost. The goal of the optimizer is to minimize both I/O and CPU cost.

Optimizing Access to each table

The optimizer uses a general set of guidelines to choose the best method for accessing data of each table.
The optimizer:
v Determines the default filter factor for each predicate in the selection clause.
v Determines the true filter factor of the predicates by doing a key range estimate when the selection

predicates match the left most keys of an index or by using columns statistic when available.
v Determines the cost of table scan processing if an index is not required.
v Determines the cost of creating an index over a table if an index is required. This index is created by

performing either a table scan or creating an index-from-index.
v Determines the cost of using a sort routine or hashing method if appropriate.
v Determines the cost of using existing indexes using Index Probe or Index Scan

Performance and query optimization 45

– Orders the indexes. For SQE, the indexes are ordered in general such that the indexes that access the
smallest number of entries are examined first. For CQE, the indexes are generally ordered from
mostly recently created to oldest.

– For each index available, the optimizer does the following:
- Determines if the index meets the selection criteria.
- Determines the cost of using the index by estimating the number of I/Os and the CPU cost that

will be needed to perform the Index Probe or the Index Scan and the possible Table Probes.
- Compares the cost of using this index with the previous cost (current best).
- Picks the cheaper one.
- Continues to search for best index until the optimizer decides to look at no more indexes.
For SQE, since the indexes are ordered so that the best indexes are examined first, once an index
that is more expensive than the previously chosen best index, the search is ended.
For CQE, the time limit controls how much time the optimizer spends choosing an implementation.
It is based on how much time was spent so far and the current best implementation cost found. The
idea is to prevent the optimizer from spending more time optimizing the query than it takes to
actually execute the query. Dynamic SQL queries are subject to the optimizer time restrictions. Static
SQL queries optimization time is not limited. For OPNQRYF, if you specify OPTALLAP(*YES), the
optimization time is not limited. For small tables, the query optimizer spends little time in query
optimization. For large tables, the query optimizer considers more indexes. Generally, the optimizer
considers five or six indexes (for each table of a join) before running out of optimization time.
Because of this, it is normal for the optimizer to spend longer lengths of time analyzing queries
against larger tables.

v Determines the cost of using a temporary bitmap
– Orders the indexes that can be used for bitmapping. In general the indexes that select the smallest

number of entries are examined first.
– Determine the cost of using this index for bitmapping and the cost of merging this bitmap with any

previously generated bitmaps.
– If the cost of this bitmap plan is cheaper than the previous bitmap plan, continue searching for

bitmap plans.
v After examining the possible methods of access the data for the table, the optimizer chooses the best

plan from all the plans examined.

Join optimization
A join operation is a complex function that requires special attention in order to achieve good
performance. This section describes how DB2 Universal Database for iSeries implements join queries and
how optimization choices are made by the query optimizer. It also describes design tips and techniques
which help avoid or solve performance problems.

Nested loop join implementation
DB2 Universal Database for iSeries provides a nested loop join method. For this method, the processing
of the tables in the join are ordered. This order is called the join order. The first table in the final join
order is called the primary table. The other tables are called secondary tables. Each join table position is
called a dial.

The nested loop will be implemented either using an index on secondary tables, a hash table, or a table
scan (arrival sequence) on the secondary tables. In general, the join will be implemented using either an
index or a hash table.

Index nested loop join implementation

During the join, DB2 Universal Database for iSeries:
1. Accesses the first primary table row selected by the predicates local to the primary table.

46 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

2. Builds a key value from the join columns in the primary table.
3. Depending on the access to the first secondary table:
v If using an index to access the secondary table, Radix Index Probe is used to locate the first row

that satisfies the join condition for the first secondary table by using an index with keys matching
the join condition or local row selection columns of the secondary table.

v Applies bitmap selection, if applicable.
All rows that satisfy the join condition from each secondary dial are located using an index. Rows
are retrieved from secondary tables in random sequence. This random disk I/O time often accounts
for a large percentage of the processing time of the query. Since a given secondary dial is searched
once for each row selected from the primary and the preceding secondary dials that satisfy the join
condition for each of the preceding secondary dials, a large number of searches may be performed
against the later dials. Any inefficiencies in the processing of the later dials can significantly inflate
the query processing time. This is the reason why attention to performance considerations for join
queries can reduce the run-time of a join query from hours to minutes.
If an efficient index cannot be found, a temporary index may be created. Some join queries build
temporary indexes over secondary dials even when an index exists for all of the join keys. Because
efficiency is very important for secondary dials of longer running queries, the query optimizer may
choose to build a temporary index which contains only entries which pass the local row selection
for that dial. This preprocessing of row selection allows the database manager to process row
selection in one pass instead of each time rows are matched for a dial.

v If using a Hash Table Probe to access the secondary table, a hash temporary result table is created
that contains all of the rows selected by local selection against the table on the first probe. The
structure of the hash table is such that rows with the same join value are loaded into the same hash
table partition (clustered). The location of the rows for any given join value can be found by
applying a hashing function to the join value.
A nested loop join using a Hash Table Probe has several advantages over a nested loop join using
an Index Probe:
– The structure of a hash temporary result table is simpler than that of an index, so less CPU

processing is required to build and probe a hash table.
– The rows in the hash result table contain all of the data required by the query so there is no

need to access the dataspace of the table with random I/O when probing the hash table.
– Like join values are clustered, so all matching rows for a given join value can typically be

accessed with a single I/O request.
– The hash temporary result table can be built using SMP parallelism.
– Unlike indexes, entries in hash tables are not updated to reflect changes of column values in the

underlying table. The existence of a hash table does not affect the processing cost of other
updating jobs in the server.

v If using a Sorted List Probe to access the secondary table, a sorted list result is created that contains
all of the rows selected by local selection against the table on the first probe. The structure of the
sorted list table is such that rows with the same join value are sorted together in the list. The
location of the rows for any given join value can be found by probing using the join value.

v If using a table scan to access the secondary table, scan the secondary to locate the first row that
satisfies the join condition for the first secondary table using the table scan to match the join
condition or local row selection columns of the secondary table. The join may be implemented with
a table scan when the secondary table is a user-defined table function.

4. Determines if the row is selected by applying any remaining selection local to the first secondary dial.
If the secondary dial row is not selected then the next row that satisfies the join condition is located.
Steps 1 through 4 are repeated until a row that satisfies both the join condition and any remaining
selection is selected from all secondary tables

5. Returns the result join row.

Performance and query optimization 47

6. Processes the last secondary table again to find the next row that satisfies the join condition in that
dial.
During this processing, when no more rows that satisfy the join condition can be selected, the
processing backs up to the logical previous dial and attempts to read the next row that satisfies its
join condition.

7. Ends processing when all selected rows from the primary table are processed.

Note the following characteristics of a nested loop join:
v If ordering or grouping is specified and all the columns are over a single table and that table is eligible

to be the primary, then the optimizer costs the join with that table as the primary and performing the
grouping and ordering with an index.

v If ordering and grouping is specified on two or more tables or if temporaries are allowed, DB2
Universal Database for iSeries breaks the processing of the query into two parts:
1. Perform the join selection omitting the ordering or grouping processing and write the result rows to

a temporary work table. This allows the optimizer to consider any table of the join query as a
candidate for the primary table.

2. The ordering or grouping processing is then performed on the data in the temporary work table.

Queries that cannot use hash join

Hash join cannot be used for queries that:
v Hash join cannot be used for queries involving physical files or tables that have read triggers.
v Require that the cursor position be restored as the result of the SQL ROLLBACK HOLD statement or

the ROLLBACK CL command. For SQL applications using commitment control level other than
*NONE, this requires that *ALLREAD be specified as the value for the ALWBLK precompiler
parameter.

v Hash join cannot be used for a table in a join query where the join condition something other than an
equals operator.

v CQE does not support hash join if the query contains any of the following:
– Subqueries unless all subqueries in the query can be transformed to inner joins.
– UNION or UNION ALL
– Perform left outer or exception join.
– Use a DDS created join logical file.

48 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

Related concepts

“Objects processed in parallel” on page 42
The DB2 UDB Symmetric Multiprocessing feature provides the optimizer with additional methods for
retrieving data that include parallel processing. Symmetrical multiprocessing (SMP) is a form of
parallelism achieved on a single server where multiple (CPU and I/O) processors that share memory and
disk resource work simultaneously toward achieving a single end result.
Related reference

“Table scan” on page 9
A table scan is the easiest and simplest operation that can be performed against a table. It sequentially
processes all of the rows in the table to determine if they satisfy the selection criteria specified in the
query. It does this in a way to maximize the I/O throughput for the table.
“Sorted list probe” on page 23
A sorted list probe operation is used to retrieve rows from a temporary sorted list based upon a probe
lookup operation.
“Hash table probe” on page 20
A hash table probe operation is used to retrieve rows from a temporary hash table based upon a probe
lookup operation.
“Radix index probe” on page 13
A radix index probe operation is used to retrieve the rows from a table in a keyed sequence. The main
difference between the Radix Index Probe and the Radix Index Scan is that the rows being returned must
first be identified by a probe operation to subset the rows being retrieved.

Join optimization algorithm
The query optimizer must determine the join columns, join operators, local row selection, dial
implementation, and dial ordering for a join query.

The join columns and join operators depend on the following situations:
v Join column specifications of the query
v Join order
v Interaction of join columns with other row selection

Join specifications which are not implemented for the dial are either deferred until they can be processed
in a later dial or, if an inner join was being performed for this dial, processed as row selection.

For a given dial, the only join specifications which are usable as join columns for that dial are those being
joined to a previous dial. For example, for the second dial the only join specifications that can be used to
satisfy the join condition are join specifications which reference columns in the primary dial. Likewise,
the third dial can only use join specifications which reference columns in the primary and the second
dials and so on. Join specifications which reference later dials are deferred until the referenced dial is
processed.

Note: For OPNQRYF, only one type of join operator is allowed for either a left outer or an exception join.
That is, the join operator for all join conditions must be the same.

When looking for an existing index to access a secondary dial, the query optimizer looks at the left-most
key columns of the index. For a given dial and index, the join specifications which use the left-most key
columns can be used. For example:

DECLARE BROWSE2 CURSOR FOR
SELECT * FROM EMPLOYEE, EMP_ACT
WHERE EMPLOYEE.EMPNO = EMP_ACT.EMPNO

AND EMPLOYEE.HIREDATE = EMP_ACT.EMSTDATE
OPTIMIZE FOR 99999 ROWS

Performance and query optimization 49

For the index over EMP_ACT with key columns EMPNO, PROJNO, and EMSTDATE, the join operation
is performed only on column EMPNO. After the join is performed, index scan-key selection is done using
column EMSTDATE.

The query optimizer also uses local row selection when choosing the best use of the index for the
secondary dial. If the previous example had been expressed with a local predicate as:

DECLARE BROWSE2 CURSOR FOR
SELECT * FROM EMPLOYEE, EMP_ACT
WHERE EMPLOYEE.EMPNO = EMP_ACT.EMPNO

AND EMPLOYEE.HIREDATE = EMP_ACT.EMSTDATE
AND EMP_ACT.PROJNO = '123456'

OPTIMIZE FOR 99999 ROWS

The index with key columns EMPNO, PROJNO, and EMSTDATE are fully utilized by combining join and
selection into one operation against all three key columns.

When creating a temporary index, the left-most key columns are the usable join columns in that dial
position. All local row selection for that dial is processed when selecting entries for inclusion into the
temporary index. A temporary index is similar to the index created for a select/omit keyed logical file.
The temporary index for the previous example has key columns of EMPNO and EMSTDATE.

Since the query optimizer attempts a combination of join and local row selection when determining
access path usage, it is possible to achieve almost all of the same advantages of a temporary index by use
of an existing index. In the above example, using either implementation, an existing index may be used
or a temporary index may be created. A temporary index is built with the local row selection on PROJNO
applied during the index's creation; the temporary index has key columns of EMPNO and EMSTDATE
(to match the join selection). If, instead, an existing index was used with key columns of EMPNO,
PROJNO, EMSTDATE (or PROJNO, EMP_ACT, EMSTDATE or EMSTDATE, PROJNO, EMP_ACT or ...)
the local row selection can be applied at the same time as the join selection (rather than before the join
selection, as happens when the temporary index is created, or after the join selection, as happens when
only the first key column of the index matches the join column).

The implementation using the existing index is more likely to provide faster performance because join
and selection processing are combined without the overhead of building a temporary index. However, the
use of the existing index may have just slightly slower I/O processing than the temporary index because
the local selection is run many times rather than once. In general, it is a good idea to have existing
indexes available with key columns for the combination of join columns and columns using equal
selection as the left-most keys.

Join order optimization
The join order is fixed if any join logical files are referenced. The join order is also fixed if the OPNQRYF
JORDER(*FILE) parameter is specified or the query options file (QAQQINI) FORCE_JOIN_ORDER
parameter is *YES.

Otherwise, the following join ordering algorithm is used to determine the order of the tables:
1. Determine an access method for each individual table as candidates for the primary dial.
2. Estimate the number of rows returned for each table based on local row selection.

If the join query with row ordering or group by processing is being processed in one step, then the
table with the ordering or grouping columns is the primary table.

3. Determine an access method, cost, and expected number of rows returned for each join combination
of candidate tables as primary and first secondary tables.
The join order combinations estimated for a four table inner join would be:
1-2 2-1 1-3 3-1 1-4 4-1 2-3 3-2 2-4 4-2 3-4 4-3

4. Choose the combination with the lowest join cost and number of selected rows or both.

50 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

5. Determine the cost, access method, and expected number of rows for each remaining table joined to
the previous secondary table.

6. Select an access method for each table that has the lowest cost for that table.
7. Choose the secondary table with the lowest join cost and number of selected rows or both.
8. Repeat steps 4 through 7 until the lowest cost join order is determined.

Note: After dial 32, the optimizer uses a different method to determine file join order, which may not be
the lowest cost.

When a query contains a left or right outer join or a right exception join, the join order is not fixed.
However, all from-columns of the ON clause must occur from dials previous to the left or right outer or
exception join. For example:
FROM A INNER JOIN B ON A.C1=B.C1
LEFT OUTER JOIN C ON B. C2=C.C2

The allowable join order combinations for this query would be:

1–2–3, 2–1–3, or 2–3–1

Right outer or right exception joins are implemented as left outer and left exception, with files flipped.
For example:
FROM A RIGHT OUTER JOIN B ON A.C1=B.C1

is implemented as B LEFT OUTER JOIN A ON B.C1=A.C1. The only allowed join order is 2–1.

When a join logical file is referenced or the join order is forced to the specified table order, the query
optimizer loops through all of the dials in the order specified, and determines the lowest cost access
methods.
Related information

Open Query File (OPNQRYF) command
Change Query Attributes (CHGQRYA) command

Cost estimation and index selection for join secondary dials
As the query optimizer compares the various possible access choices, it must assign a numeric cost value
to each candidate and use that value to determine the implementation which consumes the least amount
of processing time. This costing value is a combination of CPU and I/O time

In step 3 and in step 5 in “Join order optimization” on page 50, the query optimizer has to estimate a cost
and choose an access method for a given dial combination. The choices made are similar to those for row
selection except that a plan using a probe must be chosen.

The costing value is based on the following assumptions:
v Table pages and index pages must be retrieved from auxiliary storage. For example, the query

optimizer is not aware that an entire table may be loaded into active memory as the result of a Set
Object Access (SETOBJACC) CL command. Usage of this command may significantly improve the
performance of a query, but the query optimizer does not change the query implementation to take
advantage of the memory resident state of the table.

v The query is the only process running on the server. No allowance is given for server CPU utilization
or I/O waits which occur because of other processes using the same resources. CPU related costs are
scaled to the relative processing speed of the server running the query.

v The values in a column are uniformly distributed across the table. For example, if 10% of the rows in a
table have the same value, then it is assumed that every tenth row in the table contains that value.

Performance and query optimization 51

v The values in a column are independent from the values in any other columns in a row, unless there is
an index available whose key definition is (A,B). Multi key field indexes allows the optimizer to detect
when the values between columns are correlated. For example, if a column named A has a value of 1 in
50% of the rows in a table and a column named B has a value of 2 in 50% of the rows, then it is
expected that a query which selects rows where A = 1, and B = 2 selects 25% of the rows in the table.

The main factors of the join cost calculations for secondary dials are the number of rows selected in all
previous dials and the number of rows which match, on average, each of the rows selected from previous
dials. Both of these factors can be derived by estimating the number of matching rows for a given dial.

When the join operator is something other than equal, the expected number of matching rows is based on
the following default filter factors:
v 33% for less-than, greater-than, less-than-equal-to, or greater-than-equal-to
v 90% for not equal
v 25% for BETWEEN range (OPNQRYF %RANGE)
v 10% for each IN list value (OPNQRYF %VALUES)

For example, when the join operator is less-than, the expected number of matching rows is .33 * (number
of rows in the dial). If no join specifications are active for the current dial, the cartesian product is
assumed to be the operator. For cartesian products, the number of matching rows is every row in the
dial, unless local row selection can be applied to the index.

When the join operator is equal, the expected number of rows is the average number of duplicate rows
for a given value.
Related information

Set Object Access (SETOBJACC) command

Predicates generated through transitive closure
For join queries, the query optimizer may do some special processing to generate additional selection.
When the set of predicates that belong to a query logically infer extra predicates, the query optimizer
generates additional predicates. The purpose is to provide more information during join optimization.

See the following examples:
SELECT * FROM EMPLOYEE, EMP_ACT

WHERE EMPLOYEE.EMPNO = EMP_ACT.EMPNO
AND EMPLOYEE.EMPNO = '000010'

The optimizer will modify the query to be:
SELECT * FROM EMPLOYEE, EMP_ACT

WHERE EMPLOYEE.EMPNO = EMP_ACT.EMPNO
AND EMPLOYEE.EMPNO = '000010'
AND EMP_ACT.EMPNO = '000010'

The following rules determine which predicates are added to other join dials:
v The dials affected must have join operators of equal.
v The predicate is isolatable, which means that a false condition from this predicate omits the row.
v One operand of the predicate is an equal join column and the other is a constant or host variable.
v The predicate operator is not LIKE (OPNQRYF %WLDCRD, or *CT).
v The predicate is not connected to other predicates by OR.

The query optimizer generates a new predicate, whether a predicate already exists in the WHERE clause
(OPNQRYF QRYSLT parameter).

52 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|

|

|

Some predicates are redundant. This occurs when a previous evaluation of other predicates in the query
already determines the result that predicate provides. Redundant predicates can be specified by you or
generated by the query optimizer during predicate manipulation. Redundant predicates with predicate
operators of =, >, >=, <, <=, or BETWEEN (OPNQRYF *EQ, *GT, *GE, *LT, *LE, or %RANGE) are merged
into a single predicate to reflect the most selective range.

Look ahead predicate generation (LPG)
A special type of transitive closure called look ahead predicate generation (LPG) may be costed for joins.
In this case, the optimizer attempts to minimize the random I/O costs of a join by pre-applying the
results of the query to a large fact table. LPG will typically be used with a class of queries referred to as
star join queries, however it can possibly be used with any join query.

Look at the following query:
SELECT * FROM EMPLOYEE,EMP_ACT
WHERE EMPLOYEE.EMPNO = EMP_ACT.EMPNO
AND EMPLOYEE.EMPNO ='000010'

The optimizer may decide to internally modify the query to be:
WITH HT AS (SELECT *

FROM EMPLOYEE
WHERE EMPLOYEE.EMPNO='000010')

SELECT *
FROM HT, EMP_ACT
WHERE HT.EMPNO = EMP_ACT.EMPNO
AND EMP_ACT.EMPNO IN (SELECT DISTINCT EMPNO

FROM HT)

The optimizer places the results of the "subquery" into a temporary hash table. The hash table of the
subquery can be applied in one of two methods against the EMP_ACT (fact) table:
v The distinct values of the hash tables are retrieved. For each distinct value, an index over EMP_ACT is

probed to determine which records are returned for that value. Those record identifiers are normally
then stored and sorted (sometimes the sorting is omitted, depending on the total number of record ids
expected). Once the ids are determined, those subset of EMP_ACT records can then be accessed in a
way much more efficient than in a traditional nested loop join processing.

v EMP_ACT can be scanned. For each record, the hash table is probed to see if the record will join at all
to EMPLOYEE. This allows for efficient access to EMP_ACT with a more efficient record rejection
method than in a traditional nested loop join process.

Note: LPG processing is part of the normal processing in the SQL Query Engine. Classic Query Engine
only considers the first method, requires that the index in question by an EVI and also requires use
of the STAR_JOIN and FORCE_JOIN_ORDER QAQQINI options.

Related reference

“Control queries dynamically with the query options file QAQQINI” on page 118
The query options file QAQQINI support provides the ability to dynamically modify or override the
environment in which queries are executed through the Change Query Attributes (CHGQRYA) command
and the QAQQINI file. The query options file QAQQINI is used to set some attributes used by the
database manager.

Tips for improving performance when selecting data from more than two tables
The following suggestion is only applicable to CQE and is directed specifically to select-statements that
access several tables. For joins that involve more than two tables, you might want to provide redundant
information about the join columns. The CQE optimizer does not generate transitive closure predicates
between 2 columns. If you give the optimizer extra information to work with when requesting a join, it
can determine the best way to do the join. The additional information might seem redundant, but is
helpful to the optimizer.

Performance and query optimization 53

|
|
|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|

If the select-statement you are considering accesses two or more tables, all the recommendations
suggested in “Creating an index strategy” on page 146 apply. For example, instead of coding:

EXEC SQL
DECLARE EMPACTDATA CURSOR FOR
SELECT LASTNAME, DEPTNAME, PROJNO, ACTNO

FROM CORPDATA.DEPARTMENT, CORPDATA.EMPLOYEE,
CORPDATA.EMP_ACT

WHERE DEPARTMENT.MGRNO = EMPLOYEE.EMPNO
AND EMPLOYEE.EMPNO = EMP_ACT.EMPNO

END-EXEC.

Provide the optimizer with a little more data and code:
EXEC SQL

DECLARE EMPACTDATA CURSOR FOR
SELECT LASTNAME, DEPTNAME, PROJNO, ACTNO

FROM CORPDATA.DEPARTMENT, CORPDATA.EMPLOYEE,
CORPDATA.EMP_ACT

WHERE DEPARTMENT.MGRNO = EMPLOYEE.EMPNO
AND EMPLOYEE.EMPNO = EMP_ACT.EMPNO
AND DEPARTMENT.MGRNO = EMP_ACT.EMPNO

END-EXEC.

Multiple join types for a query
Even though multiple join types (inner, left outer, right outer, left exception, and right exception) can be
specified in the query using the JOIN syntax, the iSeries Licensed Internal Code can only support one
join type of inner, left outer, or left exception join type for the entire query. This requires the optimizer to
determine what the overall join type for the query should be and to reorder files to achieve the correct
semantics.

Note: This section does not apply to SQE or OPNQRYF.

The optimizer will evaluate the join criteria along with any row selection that may be specified in order
to determine the join type for each dial and for the entire query. Once this information is known the
optimizer will generate additional selection using the relative row number of the tables to simulate the
different types of joins that may occur within the query.

Since null values are returned for any unmatched rows for either a left outer or an exception join, any
isolatable selection specified for that dial, including any additional join criteria that may be specified in
the WHERE clause, will cause all of the unmatched rows to be eliminated (unless the selection is for an
IS NULL predicate). This will cause the join type for that dial to be changed to an inner join (or an
exception join) if the IS NULL predicate was specified.

In the following example a left outer join is specified between the tables EMPLOYEE and DEPARTMENT.
In the WHERE clause there are two selection predicates that also apply to the DEPARTMENT table.

SELECT EMPNO, LASTNAME, DEPTNAME, PROJNO
FROM CORPDATA.EMPLOYEE XXX LEFT OUTER JOIN CORPDATA.DEPARTMENT YYY

ON XXX.WORKDEPT = YYY.DEPTNO
LEFT OUTER JOIN CORPDATA.PROJECT ZZZ

ON XXX.EMPNO = ZZZ.RESPEMP
WHERE XXX.EMPNO = YYY.MGRNO AND

YYY.DEPTNO IN ('A00', 'D01', 'D11', 'D21', 'E11')

The first selection predicate, XXX.EMPNO = YYY.MGRNO, is an additional join condition that will be
added to the join criteria and evaluated as an "inner join" join condition. The second is an isolatable
selection predicate that will eliminate any unmatched rows. Either one of these selection predicates will
cause the join type for the DEPARTMENT table to be changed from a left outer join to an inner join.

54 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

Even though the join between the EMPLOYEE and the DEPARTMENT table was changed to an inner join
the entire query will still need to remain a left outer join to satisfy the join condition for the PROJECT
table.

Note: Care must be taken when specifying multiple join types since they are supported by appending
selection to the query for any unmatched rows. This means that the number of resulting rows that
satisfy the join criteria can become quite large before any selection is applied that will either select
or omit the unmatched rows based on that individual dial's join type.

Sources of join query performance problems
The optimization algorithms described above benefit most join queries, but the performance of a few
queries may be degraded.

This occurs when:
v An index is not available which provides average number of duplicate values statistics for the potential

join columns.
v The query optimizer uses default filter factors to estimate the number of rows being selected when

applying local selection to the table because indexes or column statistics do not exist over the selection
columns.
Creating indexes over the selection columns allow—s the query optimizer to make a more accurate
filtering estimate by using key range estimates.

v The particular values selected for the join columns yield a significantly greater number of matching
rows than the average number of duplicate values for all values of the join columns in the table (for
example, the data is not uniformly distributed).

Tips for improving the performance of join queries
If you are looking at a join query which is performing poorly or you are about to create a new
application which uses join queries, these tips may be useful.

Table 23. Checklist for Creating an Application that Uses Join Queries

What to Do How It Helps

Check the database design. Make
sure that there are indexes
available over all of the join
columns and row selection
columns or both. The optimizer
provides index advise in several
places to aid in this process. Use
either the index advisor under
iSeries navigator - Database, the
advised information under visual
explain, or the advised
information in the 3020 record in
the database monitor.

This gives the query optimizer a better opportunity to select an efficient access
method because it can determine the average number of duplicate values. Many
queries may be able to use the existing index to implement the query and avoid
the cost of creating a temporary index or hash table.

Check the query to see whether
some complex predicates should
be added to other dials to allow
the optimizer to get a better idea
of the selectivity of each dial.

Since the query optimizer does not add predicates for predicates connected by
OR or non-isolatable predicates, or predicate operators of LIKE, modifying the
query by adding these predicates may help.

Performance and query optimization 55

||

||

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

Table 23. Checklist for Creating an Application that Uses Join Queries (continued)

What to Do How It Helps

Specify
ALWCPYDTA(*OPTIMIZE) or
ALWCPYDTA(*YES)

If the query is creating a temporary index or hash table, and you feel that the
processing time may be better if the optimizer only used the existing index or
hash table, specify ALWCPYDTA(*YES).

If the query is not creating a temporary index or hash table, and you feel that
the processing time may be better if a temporary index was created, specify
ALWCPYDTA(*OPTIMIZE).

Alternatively, specify the OPTIMIZE FOR n ROWS to inform the optimizer of the
application has intention to read every resulting row. To do this set n to a large
number. You can also set n to a small number before ending the query.

For OPNQRYF, specify
OPTIMIZE(*FIRSTIO) or
OPTIMIZE(*ALLIO)

Specify the OPTIMIZE(*FIRSTIO) or OPTIMIZE(*ALLIO) option to accurately
reflect your application. Use *FIRSTIO, if you want the optimizer to optimize the
query to retrieve the first block of rows most efficiently. This biases the optimizer
toward using existing objects. If you want to optimize the retrieval time for the
entire answer set, use *ALLIO. This may cause the optimizer to create temporary
objects such as temporary indexes or hash tables in order to minimize I/O.

Star join queries A join in which one table is joined with all secondary tables consecutively is
sometimes called a star join. In the case of a star join where all secondary join
predicates contain a column reference to a particular table, there may be
performance advantages if that table is placed in join position one. In Example
A, all tables are joined to table EMPLOYEE. The query optimizer can freely
determine the join order. For SQE, the optimizer uses Look Ahead Predicate
generation to determine the optimal join order. For CQE, the query should be
changed to force EMPLOYEE into join position one by using the query options
file (QAQQINI) FORCE_JOIN_ORDER parameter of *YES. Note that in these
examples the join type is a join with no default values returned (this is an inner
join.). The reason for forcing the table into the first position is to avoid random
I/O processing. If EMPLOYEE is not in join position one, every row in
EMPLOYEE can be examined repeatedly during the join process. If EMPLOYEE
is fairly large, considerable random I/O processing occurs resulting in poor
performance. By forcing EMPLOYEE to the first position, random I/O processing
is minimized.

Example A: Star join query

DECLARE C1 CURSOR FOR
SELECT * FROM DEPARTMENT, EMP_ACT, EMPLOYEE,
PROJECT
WHERE DEPARTMENT.DEPTNO=EMPLOYEE.WORKDEPT
AND EMP_ACT.EMPNO=EMPLOYEE.EMPNO
AND EMPLOYEE.WORKDEPT=PROJECT.DEPTNO

Example B: Star join query with order forced via FORCE_JOIN_ORDER

DECLARE C1 CURSOR FOR
SELECT * FROM EMPLOYEE, DEPARTMENT, EMP_ACT,
PROJECT
WHERE DEPARTMENT.DEPTNO=EMPLOYEE.WORKDEPT
AND EMP_ACT.EMPNO=EMPLOYEE.EMPNO
AND EMPLOYEE.WORKDEPT=PROJECT.DEPTNO

Specify
ALWCPYDTA(*OPTIMIZE) to
allow the query optimizer to use a
sort routine.

In the cases where ordering is specified and all key columns are from a single
dial, this allows the query optimizer to consider all possible join orders.

56 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

||

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|

|
|

Table 23. Checklist for Creating an Application that Uses Join Queries (continued)

What to Do How It Helps

Specify join predicates to prevent
all of the rows from one table
from being joined to every row in
the other table.

This improves performance by reducing the join fan-out. Every secondary table
should have at least one join predicate that references on of its columns as a
'join-to' column.

Distinct optimization
Distinct is used to compare a value with another value.

There are two methods to write a query that returns distinct values in SQL. One method uses the
DISTINCT keyword:
SELECT DISTINCT COL1, COL2
FROM TABLE1

The second method uses GROUP BY:
SELECT COL1, COL2
FROM TABLE1
GROUP BY COL1, COL2

All queries that contain a DISTINCT, and are run using SQE, will be rewritten into queries using GROUP
BY. This rewrite enables queries using DISTINCT to take advantage of the many grouping techniques
available to the optimizer.

Distinct to Grouping implementation

Below is an example of a query with a DISTINCT:
SELECT DISTINCT COL1, COL2
FROM T1
WHERE COL2 > 5 AND COL3 = 2

The optimizer will rewrite it into this query:
SELECT COL1, COL2
FROM T1
WHERE COL2 > 5 AND COL3 = 2
GROUP BY COL1, COL2

Distinct removal

A query containing a DISTINCT over whole-file aggregation (no grouping or selection) allows the
DISTINCT to be removed. For example, look at this query with DISTINCT:
SELECT DISTINCT COUNT(C1), SUM(C1)
FROM TABLE1

The optimizer rewrites this query as the following:
SELECT COUNT(C1), SUM(C1)
FROM TABLE1

If the DISTINCT and the GROUP BY fields are identical, the DISTINCT can be removed. If the DISTINCT
fields are a subset of the GROUP BY fields (and there are no aggregates), the DISTINCTs can be removed.

Grouping optimization
DB2 Universal Database for iSeries has certain techniques to use when the optimizer encounters
grouping. The query optimizer chooses its methods for optimizing your query.

Performance and query optimization 57

|

||

|
|
|
|

|
|
|

|

|

|

|
|

|
|

|

|
|
|

|
|
|

|

|

|
|
|

|

|
|
|
|

|

|
|

|
|

|

|
|

|
|

Grouping hash implementation
This technique uses the base hash access method to perform grouping or summarization of the selected
table rows. For each selected row, the specified grouping value is run through the hash function. The
computed hash value and grouping value are used to quickly find the entry in the hash table
corresponding to the grouping value.

If the current grouping value already has a row in the hash table, the hash table entry is retrieved and
summarized (updated) with the current table row values based on the requested grouping column
operations (such as SUM or COUNT). If a hash table entry is not found for the current grouping value, a
new entry is inserted into the hash table and initialized with the current grouping value.

The time required to receive the first group result for this implementation will most likely be longer than
other grouping implementations because the hash table must be built and populated first. Once the hash
table is completely populated, the database manager uses the table to start returning the grouping results.
Before returning any results, the database manager must apply any specified grouping selection criteria
or ordering to the summary entries in the hash table.

Where the grouping hash method is most effective

The grouping hash method is most effective when the consolidation ratio is high. The consolidation ratio
is the ratio of the selected table rows to the computed grouping results. If every database table row has
its own unique grouping value, then the hash table will become too large. This in turn will slow down
the hashing access method.

The optimizer estimates the consolidation ratio by first determining the number of unique values in the
specified grouping columns (that is, the expected number of groups in the database table). The optimizer
then examines the total number of rows in the table and the specified selection criteria and uses the result
of this examination to estimate the consolidation ratio.

Indexes over the grouping columns can help make the optimizer's ratio estimate more accurate. Indexes
improve the accuracy because they contain statistics that include the average number of duplicate values
for the key columns.

The optimizer also uses the expected number of groups estimate to compute the number of partitions in
the hash table. As mentioned earlier, the hashing access method is more effective when the hash table is
well-balanced. The number of hash table partitions directly affects how entries are distributed across the
hash table and the uniformity of this distribution.

The hash function performs better when the grouping values consist of columns that have non-numeric
data types, with the exception of the integer (binary) data type. In addition, specifying grouping value
columns that are not associated with the variable length and null column attributes allows the hash
function to perform more effectively.

Index grouping implementation
There are two primary ways to implement grouping via an index: Ordered grouping and
pre-summarized processing.

Ordered grouping

This implementation utilizes the Radix Index Scan or the Radix Index Probe access methods to perform
the grouping. An index is required that contains all of the grouping columns as contiguous leftmost key
columns. The database manager accesses the individual groups through the index and performs the
requested summary functions.

Since the index, by definition, already has all of the key values grouped together, the first group result
can be returned in less time than the hashing method. This is because of the temporary result that is

58 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|

|

|
|
|
|

|
|

required for the hashing method. This implementation can be beneficial if an application does not need to
retrieve all of the group results or if an index already exists that matches the grouping columns.

When the grouping is implemented with an index and a permanent index does not already exist that
satisfies grouping columns, a temporary index is created. The grouping columns specified within the
query are used as the key columns for this index.

Pre-summarized processing

This SQE only implementation utilizes an Encoded Vector Index to extract the summary information
already in the index's symbol table. The symbol table portion of an EVI contains the unique values of the
key along with a count of the number of table records that have that unique value, basically the grouping
for the columns of the index key are already performed. If the query references a single table and
performs simple aggregation, the EVI may be used for quick access to the grouping results. For example,
consider the following query:
SELECT COUNT(*), col1
FROM t1
GROUP BY col1

If an EVI exists over t1 with a key of col1, the optimizer can rewrite the query to access the precomputed
grouping answer in the EVI symbol table. This can result in dramatic improvements in queries when the
number of records in the table is large and the number of resulting groups is small (relative to the size of
the table). This method is also possible with selection (WHERE clause), as long as the reference columns
are in the key definition of the EVI. For example, consider the following query:
SELECT COUNT(*), col1
FROM t1
WHERE col1 > 100
GROUP BY col1

This query can be rewritten by the optimizer to make use of the EVI. This pre-summarized processing
works for DISTINCT processing, GROUP BY and for column function COUNT. All columns of the table
referenced in the query must also be in the key definition of the EVI. So, for example, the following
query can be made to use the EVI:
SELECT DISTINCT col1
FROM t1

However, this query cannot:
SELECT DISTINCT col1
FROM t1
WHERE col2 > 1

The reason that this query cannot use the EVI is because it references col2 of the table, which is not in the
key definition of the EVI. Note also that if multiple columns are defined in the EVI key, for example, col1
and col2, that it is important that the left most columns of the key be utilized. For example, if an EVI
existed with a key definition of (col1, col2), but the query referenced just col2, it is very unlikely the EVI
will be used.

Optimizing grouping by eliminating grouping columns
All of the grouping columns are evaluated to determine if they can be removed from the list of grouping
columns. Only those grouping columns that have isolatable selection predicates with an equal operator
specified can be considered. This guarantees that the column can only match a single value and will not
help determine a unique group.

This processing is done to allow the optimizer to consider more indexes to implement the query and to
reduce the number of columns that will be added as key columns to a temporary index or hash table.

The following example illustrates a query where the optimizer might eliminate a grouping column.

Performance and query optimization 59

|
|

|
|
|

|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|
|

|
|
|
|
|

DECLARE DEPTEMP CURSOR FOR
SELECT EMPNO, LASTNAME, WORKDEPT

FROM CORPDATA.EMPLOYEE
WHERE EMPNO = '000190'
GROUP BY EMPNO, LASTNAME, WORKDEPT

OPNQRYF example:
OPNQRYF FILE(EMPLOYEE) FORMAT(FORMAT1)

QRYSLT('EMPNO *EQ ''000190''')
GRPFLD(EMPNO LASTNAME WORKDEPT)

In this example, the optimizer can remove EMPNO from the list of grouping columns because of the
EMPNO = '000190' selection predicate. An index that only has LASTNAME and WORKDEPT specified as
key columns can be considered to implement the query and if a temporary index or hash is required then
EMPNO will not be used.

Note: Even though EMPNO can be removed from the list of grouping columns, the optimizer might still
choose to use that index if a permanent index exists with all three grouping columns.

Optimizing grouping by adding additional grouping columns
The same logic that is applied to removing grouping columns can also be used to add additional
grouping columns to the query. This is only done when you are trying to determine if an index can be
used to implement the grouping.

The following example illustrates a query where the optimizer might add an additional grouping column.
CREATE INDEX X1 ON EMPLOYEE

(LASTNAME, EMPNO, WORKDEPT)

DECLARE DEPTEMP CURSOR FOR
SELECT LASTNAME, WORKDEPT

FROM CORPDATA.EMPLOYEE
WHERE EMPNO = '000190'
GROUP BY LASTNAME, WORKDEPT

For this query request, the optimizer can add EMPNO as an additional grouping column when
considering X1 for the query.

Optimizing grouping by using index skip key processing
Index Skip Key processing can be used when grouping with the keyed sequence implementation
algorithm which uses an existing index. It is a specialized version of ordered grouping that processes
very few records in each group rather than all records in each group.

The index skip key processing algorithm:
1. Uses the index to position to a group and
2. finds the first row matching the selection criteria for the group, and if specified the first non-null MIN

or MAX value in the group
3. Returns the group to the user
4. "Skip" to the next group and repeat processing

This will improve performance by potentially not processing all index key values for a group.

Index skip key processing can be used:
v For single table queries using the keyed sequence grouping implementation when:

– There are no column functions in the query, or
– There is only a single MIN or MAX column function in the query and the operand of the MIN or

MAX is the next key column in the index after the grouping columns. There can be no other

60 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

grouping functions in the query. For the MIN function, the key column must be an ascending key;
for the MAX function, the key column must be a descending key. If the query is whole table
grouping, the operand of the MIN or MAX must be the first key column.
Example 1, using SQL:
CREATE INDEX IX1 ON EMPLOYEE (SALARY DESC)

DECLARE C1 CURSOR FOR
SELECT MAX(SALARY) FROM EMPLOYEE;

The query optimizer will chose to use the index IX1. The SLIC runtime code will scan the index
until it finds the first non-null value for SALARY. Assuming that SALARY is not null, the runtime
code will position to the first index key and return that key value as the MAX of salary. No more
index keys will be processed.
Example 2, using SQL:
CREATE INDEX IX2 ON EMPLOYEE (WORKDEPT, JOB, SALARY)

DECLARE C1 CURSOR FOR
SELECT WORKDEPT, MIN(SALARY)
FROM EMPLOYEE
WHERE JOB='CLERK'
GROUP BY WORKDEPT

The query optimizer will chose to use Index IX2. The database manager will position to the first
group for DEPT where JOB equals 'CLERK' and will return the SALARY. The code will then skip to
the next DEPT group where JOB equals 'CLERK'.

v For join queries:
– All grouping columns must be from a single table.
– For each dial there can be at most one MIN or MAX column function operand that references the

dial and no other column functions can exist in the query.
– If the MIN or MAX function operand is from the same dial as the grouping columns, then it uses

the same rules as single table queries.
– If the MIN or MAX function operand is from a different dial then the join column for that dial must

join to one of the grouping columns and the index for that dial must contain the join columns
followed by the MIN or MAX operand.
Example 1, using SQL:
CREATE INDEX IX1 ON DEPARTMENT(DEPTNAME)

CREATE INDEX IX2 ON EMPLOYEE(WORKDEPT, SALARY)

DECLARE C1 CURSOR FOR
SELECT DEPARTMENT.DEPTNO, MIN(SALARY)

FROM DEPARTMENT, EMPLOYEE
WHERE DEPARTMENT.DEPTNO=EMPLOYEE.WORKDEPT
GROUP BY DEPARTMENT.DEPTNO;

Optimizing grouping by removing read triggers
For queries involving physical files or tables with read triggers, group by triggers will always involve a
temporary file before the group by processing, and will therefore slow down these queries.

Note: Read triggers are added when the Add Physical File Trigger (ADDPFTRG) command has been
used on the table with TRGTIME (*AFTER) and TRGEVENT (*READ).

The query will run faster is the read trigger is removed (RMVPFTRG TRGTIME (*AFTER) TRGEVENT
(*READ)).

Performance and query optimization 61

Related information

Add Physical File Trigger (ADDPFTRG) command

Ordering optimization
This section describes how DB2 Universal Database for iSeries implements ordering techniques, and how
optimization choices are made by the query optimizer. The query optimizer can use either index ordering
or a sort to implement ordering.

Sort Ordering implementation

The sort algorithm reads the rows into a sort space and sorts the rows based on the specified ordering
keys. The rows are then returned to the user from the ordered sort space.

Index Ordering implementation

The index ordering implementation requires an index that contains all of the ordering columns as
contiguous leftmost key columns. The database manager accesses the individual rows through the index
in index order, which results in the rows being returned in order to the requester.

This implementation can be beneficial if an application does not need to retrieve all of the ordered
results, or if an index already exists that matches the ordering columns. When the ordering is
implemented with an index, and a permanent index does not already exist that satisfies ordering
columns, a temporary index is created. The ordering columns specified within the query are used as the
key columns for this index.

Optimizing ordering by eliminating ordering columns

All of the ordering columns are evaluated to determine if they can be removed from the list of ordering
columns. Only those ordering columns that have isolatable selection predicates with an equal operator
specified can be considered. This guarantees that the column can match only a single value, and will not
help determine in the order.

This processing is done to allow the optimizer to consider more indexes as it implements the query, and
to reduce the number of columns that will be added as key columns to a temporary index. The following
SQL example illustrates a query where the optimizer might eliminate an ordering column.
DECLARE DEPTEMP CURSOR FOR

SELECT EMPNO, LASTNAME, WORKDEPT
FROM CORPDATA.EMPLOYEE
WHERE EMPNO = '000190'
ORDER BY EMPNO, LASTNAME, WORKDEPT

Optimizing ordering by adding additional ordering columns

The same logic that is applied to removing ordering columns can also be used to add additional
grouping columns to the query. This is done only when you are trying to determine if an index can be
used to implement the ordering.

The following example illustrates a query where the optimizer might add an additional ordering column.
CREATE INDEX X1 ON EMPLOYEE (LASTNAME, EMPNO, WORKDEPT)

DECLARE DEPTEMP CURSOR FOR
SELECT LASTNAME, WORKDEPT
FROM CORPDATA.EMPLOYEE
WHERE EMPNO = '000190'
ORDER BY LASTNAME, WORKDEPT

62 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

For this query request, the optimizer can add EMPNO as an additional ordering column when
considering X1 for the query.

View implementation
Views, derived tables (nested table expressions or NTEs), and common table expressions (CTEs) are
implemented by the query optimizer using one of two methods.

These methods are:
v The optimizer combines the query select statement with the select statement of the view.
v The optimizer places the results of the view in a temporary table and then replaces the view reference

in the query with the temporary table.

View composite implementation
The view composite implementation takes the query select statement and combines it with the select
statement of the view to generate a new query. The new, combined select statement query is then run
directly against the underlying base tables.

This single, composite statement is the preferred implementation for queries containing views, since it
requires only a single pass of the data.

See the following examples:
CREATE VIEW D21EMPL AS

SELECT * FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT='D21'

Using SQL:
SELECT LASTNAME, FIRSTNME, SALARY
FROM D21EMPL
WHERE JOB='CLERK'

The query optimizer will generate a new query that looks like the following example:
SELECT LASTNAME, FIRSTNME, SALARY

FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT='D21' AND JOB='CLERK'

The query contains the columns selected by the user's query, the base tables referenced in the query, and
the selection from both the view and the user's query.

Note: The new composite query that the query optimizer generates is not visible to users. Only the
original query against the view will be seen by users and database performance tools.

View materialization implementation
The view materialization implementation runs the query of the view and places the results in a
temporary result. The view reference in the user's query is then replaced with the temporary, and the
query is run against the temporary result.

View materialization is done whenever it is not possible to create a view composite. Note that for SQE,
view materialization is optional. The following types of queries require view materialization:
v The outermost select of the view contains grouping, the query contains grouping, and refers to a

column derived from a column function in the view in the HAVING or select-list.
v The query is a join and the outermost select of the view contains grouping or DISTINCT.
v The outermost select of the view contains DISTINCT, and the query has UNION, grouping, or

DISTINCT and one of the following:
– Only the query has a shared weight NLSS table

Performance and query optimization 63

|
|

|
|

|

|
|

|

– Only the view has a shared weight NLSS table
– Both the query and the view have a shared weight NLSS table, but the tables are different.

v The query contains a column function and the outermost select of the view contains a DISTINCT
v The view does not contain an access plan. This can occur when a view references a view and a view

composite cannot be created because of one of the reasons listed above. This does not apply to nested
table expressions and common table expressions.

v The Common table expression (CTE) is reference more than once in the query's FROM clause(s) and
the CTE's SELECT clause references a MODIFIES or EXTERNAL ACTION UDF.

When a temporary result table is created, access methods that are allowed with
ALWCPYDTA(*OPTIMIZE) may be used to implement the query. These methods include hash grouping,
hash join, and bitmaps.

See the following examples:
CREATE VIEW AVGSALVW AS

SELECT WORKDEPT, AVG(SALARY) AS AVGSAL
FROM CORPDATA.EMPLOYEE
GROUP BY WORKDEPT

SQL example:
SELECT D.DEPTNAME, A.AVGSAL
FROM CORPDATA.DEPARTMENT D, AVGSALVW A
WHERE D.DEPTNO=A.WORKDEPT

In this case, a view composite cannot be created since a join query references a grouping view. The
results of AVGSALVW are placed in a temporary result table (*QUERY0001). The view reference
AVGSALVW is replaced with the temporary result table. The new query is then run. The generated query
looks like the following:
SELECT D.DEPTNAME, A.AVGSAL

FROM CORPDATA.DEPARTMENT D, *QUERY0001 A
WHERE D.DEPTNO=A.WORKDEPT

Note: The new query that the query optimizer generates is not visible to users. Only the original query
against the view will be seen by users and database performance tools.

Whenever possible, isolatable selection from the query, except subquery predicates, is added to the view
materialization process. This results in smaller temporary result tables and allows existing indexes to be
used when materializing the view. This will not be done if there is more than one reference to the same
view or common table expression in the query. The following is an example where isolatable selection is
added to the view materialization:
SELECT D.DEPTNAME,A.AVGSAL

FROM CORPDATA.DEPARTMENT D, AVGSALVW A
WHERE D.DEPTNO=A.WORKDEPT AND
A.WORKDEPT LIKE 'D%' AND AVGSAL>10000

The isolatable selection from the query is added to the view resulting in a new query to generate the
temporary result table:
SELECT WORKDEPT, AVG(SALARY) AS AVGSAL

FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT LIKE 'D%'
GROUP BY WORKDEPT
HAVING AVG(SALARY)>10000

Materialized query table optimization
Materialized query tables (MQTs) (also referred to as automatic summary tables or materialized views)
can provide performance enhancements for queries.

64 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|

|
|
|

|
|

This is done by precomputing and storing results of a query in the materialized query table. The database
engine can use these results instead of recomputing them for a user specified query. The query optimizer
will look for any applicable MQTs and can choose to implement the query using a given MQT provided
this is a faster implementation choice.

Materialized Query Tables are created using the SQL CREATE TABLE statement. Alternatively, the ALTER
TABLE statement may be used to convert an existing table into a materialized query table. The REFRESH
TABLE statement is used to recompute the results stored in the MQT. For user-maintained MQTs, the
MQTs may also be maintained by the user via INSERT, UPDATE, and DELETE statements.
Related information

Create Table statement

MQT supported function
Although a MQT can contain almost any query, the optimizer only supports a limited set of query
functions when matching MQTs to user specified queries. The user specified query and the MQT query
must both be supported by the SQE optimizer.

The supported function in the MQT query by the MQT matching algorithm includes:
v Single table and join queries
v WHERE clause
v GROUP BY and optional HAVING clauses
v ORDER BY
v FETCH FIRST n ROWS
v Views, common table expressions, and nested table expressions
v UNIONs
v Partitioned tables

There is limited support in the MQT matching algorithm for the following:
v Scalar subselects
v User Defined Functions (UDFs) and user defined table functions
v Recursive Common Table Expressions (RCTE)
v The following scalar functions:

– ATAN2
– DAYNAME
– DBPARTITIONNAME
– DECRYPT_BIT
– DECRYPT_BINARY
– DECRYPT_CHAR
– DECRYPT_DB
– DIFFERENCE
– DLVALUE
– DLURLPATH
– DLURLPATHONLY
– DLURLSEVER
– DLURLSCHEME
– DLURLCOMPLETE
– ENCRYPT_RC2
– GENERATE_UNIQUE

Performance and query optimization 65

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

– GETHINT
– INSERT
– MONTHNAME
– NEXT_DAY
– RADIANS
– REPEAT
– REPLACE
– SOUNDEX
– VARCHAR_FORMAT

It is recommended that the MQT only contain references to columns, and column functions. In many
environments, queries that contain constants will have the constants converted to parameter markers.
This allows a much higher degree of ODP reuse. The MQT matching algorithm attempts to match
constants in the MQT with parameter marks or host variable values in the query. However, in some
complex cases this support is limited and may result in the MQT not matching the query.
Related concepts

“Query Dispatcher” on page 4
The function of the Dispatcher is to route the query request to either CQE or SQE, depending on the
attributes of the query. All queries are processed by the Dispatcher and you cannot bypass it.
Related reference

“Details on the MQT matching algorithm” on page 69
What follows is a generalized discussion of how the MQT matching algorithm works.

Using MQTs during Query optimization
Before using MQTs, you need to consider your environment attributes.

To even consider using MQTs during optimization the following environmental attributes must be true:
v The query must specify ALWCPYDTA(*OPTMIZE) or INSENSITIVE cursor.
v The query must not be a SENSITIVE cursor.
v The table to be replaced with a MQT must not be update or delete capable for this query.
v The MQT currently has the ENABLE QUERY OPTIMIZATION attribute active
v The MATERIALIZED_QUERY_TABLE_USAGE QAQQINI option must be set to *ALL or *USER to

enable use of MQTs. The default setting of MATERIALIZED_QUERY_TABLE_USAGE does not allow
usage of MQTs.

v The timestamp of the last REFRESH TABLE for a MQT is within the duration specified by the
MATERIALIZED_QUERY_TABLE_REFRESH_AGE QAQQINI option or *ANY is specified which
allows MQTs to be considered regardless of the last REFRESH TABLE. The default setting of
MATERIALIZED_QUERY_TABLE_REFRESH_AGE does not allow usage of MQTs.

v The query must be capable of being run through SQE.
v The following QAQQINI options must match: IGNORE_LIKE_REDUNDANT_SHIFTS,

NORMALIZE_DATA, and VARIABLE_LENGTH_OPTIMIZATION. These options are stored at
CREATE materialized query table time and must match the options specified at query run time.

v The commit level of the MQT must be greater than or equal to the query commit level. The commit
level of the MQT is either specified in the MQT query using the WITH clause or it is defaulted to the
commit level that the MQT was run under when it was created.

MQT examples
The following are examples of using MQTs.

66 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|

|

|

|

|

|

|

|
|
|
|
|

Example 1

The first example is a query that returns information about employees whose job is DESIGNER. The
original query looks like this:
Q1: SELECT D.deptname, D.location, E.firstnme, E.lastname, E.salary+E.comm+E.bonus as total_sal

FROM Department D, Employee E
WHERE D.deptno=E.workdept
AND E.job = 'DESIGNER'

Create a table, MQT1, that uses this query:
CREATE TABLE MQT1

AS (SELECT D.deptname, D.location, E.firstnme, E.lastname, E.salary, E.comm, E.bonus, E.job
FROM Department D, Employee E
WHERE D.deptno=E.workdept)

DATA INITIALLY IMMEDIATE REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION
MAINTAINED BY USER

Resulting new query after replacing the specified tables with the MQT.
SELECT M.deptname, M.location, M.firstnme, M.lastname, M.salary+M.comm+M.bonus as total_sal

FROM MQT1 M
WHERE M.job = 'DESIGNER'

In this query, the MQT matches part of the user's query. The MQT is placed in the FROM clause and
replaces tables DEPARTMENT and EMPLOYEE. Any remaining selection not done by the MQT query
(M.job= 'DESIGNER') is done to remove the extra rows and the result expression,
M.salary+M.comm+M.bonus, is calculated. Note that JOB must be in the select-list of the MQT so that the
additional selection can be performed.

Visual Explain diagram of the query when using the MQT:

Performance and query optimization 67

Example 2

Get the total salary for all departments that are located in 'NY'. The original query looks like this:
SELECT D.deptname, sum(E.salary)
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.deptno=E.workdept AND D.location = 'NY'
GROUP BY D.deptname

Create a table, MQT2, that uses this query:
CREATE TABLE MQT2

AS (SELECT D.deptname, D.location, sum(E.salary) as sum_sal
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.deptno=E.workdept
GROUP BY D.Deptname, D.location)
DATA INITIALLY IMMEDIATE REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION
MAINTAINED BY USER

Resulting new query after replacing the specified tables with the MQT:
SELECT M.deptname, sum(M.sum_sal)
FROM MQT2 M
WHERE M.location = 'NY'
GROUP BY M.deptname

Since the MQT may potentially produce more groups than the original query, the final resulting query
must group again and SUM the results to return the correct answer. Also the selection M.location='NY'
must be part of the new query.

Visual Explain diagram of the query when using the MQT:

68 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

Details on the MQT matching algorithm
What follows is a generalized discussion of how the MQT matching algorithm works.

The tables specified in the query and the MQT are examined. If the MQT and the query specify the same
tables, then the MQT can potentially be used and matching continues. If the MQT references tables not
referenced in the query, then the unreferenced table is examined to determine if it is a parent table in
referential integrity constraint. If the foreign key is non-nullable and the two tables are joined using a
primary key or foreign key equal predicate, then the MQT can still be potentially used.

Example 3

The MQT contains less tables than the query:
SELECT D.deptname, p.projname, sum(E.salary)
FROM DEPARTMENT D, EMPLOYEE E, EMPPROJACT EP, PROJECT P
WHERE D.deptno=E.workdept AND E.Empno=ep.empno
AND ep.projno=p.projno
GROUP BY D.DEPTNAME, p.projname

Create an MQT based on the query above:
CREATE TABLE MQT3

AS (SELECT D.deptname, sum(E.salary) as sum_sal, e.workdept, e.empno
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.deptno=E.workdept
GROUP BY D.Deptname, e.workdept, e.empno)
DATA INITIALLY IMMEDIATE REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION
MAINTAINED BY USER

The rewritten query looks like this:

Performance and query optimization 69

SELECT M.deptname, p.projname, SUM(M.sum_sal)
FROM MQT3 M, EMPPROJACT EP, PROJECT P
WHERE M.Empno=ep.empno AND ep.projno=p.projno
GROUP BY M.deptname, p.projname

All predicates specified in the MQT, must also be specified in the query. The query may contain
additional predicates. Predicates specified in the MQT must match exactly the predicates in the query.
Any additional predicates specified in the query, but not in the MQT must be able to be derived from
columns projected from the MQT. See previous example 1.

Example 4

Set the total salary for all departments that are located in 'NY'.
SELECT D.deptname, sum(E.salary)
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.deptno=E.workdept AND D.location = ?
GROUP BY D.Deptname

Create an MQT based on the query above:
CREATE TABLE MQT4

AS (SELECT D.deptname, D.location, sum(E.salary) as sum_sal
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.deptno=E.workdept AND D.location = 'NY'
GROUP BY D.deptnamet, D.location)
DATA INITIALLY IMMEDIATE REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION
MAINTAINED BY USER

In this example, the constant 'NY' was replaced by a parameter marker and the MQT also had the local
selection of location='NY' applied to it when the MQT was populated. The MQT matching algorithm
matches the parameter marker and to the constant 'NY' in the predicate D.Location=?. It verifies that the
values of the parameter marker is the same as the constant in the MQT; therefore the MQT can be used.

The MQT matching algorithm will also attempt to match where the predicates between the MQT and the
query are not exactly the same. For example if the MQT has a predicate SALARY > 50000 and the query
has the predicate SALARY > 70000, the MQT contains the rows necessary to run the query. The MQT will
be used in the query, but the predicate SALARY > 70000 is left as selection in the query, so SALARY must
be a column of the MQT.

Example 5
SELECT D.deptname, sum(E.salary)
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.deptno=E.workdept AND D.location = 'NY'
GROUP BY D.deptname

Create an MQT based on the query above:
CREATE TABLE MQT5

AS (SELECT D.deptname, E.salary
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.deptno=E.workdept)
DATA INITIALLY IMMEDIATE REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION
MAINTAINED BY USER

In this example, since D.Location is not a column of the MQT, the user query local selection predicate
Location='NY' cannot be determined, so the MQT cannot be used.

If the MQT contains grouping, then the query must be a grouping query. The simplest case is where the
MQT and the query specify the same list of grouping columns and column functions. In some cases if the

70 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|
|

|
|
|
|
|

MQT specifies a list of group by columns that is a superset of query group by columns, the query can be
rewritten to do a step called regrouping. This will reaggreate the groups of the MQT, into the groups
required by the query. When regrouping is required, the column functions need to be recomputed. The
table below shows the supported regroup expressions.

The regroup new expression/aggregation rules are:

Table 24. Expression/aggregation rules for MQTs

Query MQT Final query

COUNT(*) COUNT(*) as cnt SUM(cnt)

COUNT(*) COUNT(C2) as cnt2 (where c2 is
non-nullable)

SUM(cnt2)

COUNT(c1) COUNT(c1) as cnt SUM(cnt)

COUNT(C1) (where C1 is
non-nullable)

COUNT(C2) as cnt2 (where C2 is
non-nullable)

SUM(cnt2)

COUNT(distinct C1) C1 as group_c1 (where C1 is a
grouping column)

COUNT(group_C1)

COUNT(distinct C1) where C1 is not a grouping column MQT not usable

COUNT(C2) where C2 is from a table
not in the MQT

COUNT(*) as cnt cnt*COUNT(C2)

COUNT(distinct C2) where C2 is
from a table not in the MQT

Not applicable COUNT(distinct C2)

SUM(C1) SUM(C1) as sm SUM(sm)

SUM(C1) C1 as group_c1, COUNT(*) as cnt
(where C1 is a grouping column)

SUM(group_c1 * cnt)

SUM(C2) where C2 is from a table
not in the MQT

COUNT(*) as cnt cnt*SUM(C2)

SUM(distinct C1) C1 as group_c1 (where C1 is a
grouping column)

SUM(group_C1)

SUM(distinct C1) where C1 is not a grouping column MQT not usable

SUM(distinct C2) where C2 is from a
table not in the MQT

Not applicable SUM(distinct C2)

MAX(C1) MAX(C1) as mx MAX(mx)

MAX(C1) C1 as group_C1 (where C1 is a
grouping column)

MAX(group_c1)

MAX(C2) where C2 is from a table
not in the MQT

Not applicable MAX(C2)

MIN(C1) MIN(C1) as mn MIN(mn)

MIN(C1) C1 as group_C1 (where C1 is a
grouping column)

MIN(group_c1)

MIN(C2) where C2 is from a table
not in the MQT

Not applicable MIN(C2)

AVG, STDDEV, STDDEV_SAMP, VARIANCE_SAMPand VAR_POP are calculated using combinations of
COUNT and SUM. If AVG, STDDEV, or VAR_POP are included in the MQT and regroup requires
recalculation of these functions, the MQT cannot be used. It is recommended that the MQT only use
COUNT, SUM, MIN, and MAX. If the query contains AVG, STDDEV, or VAR_POP, it can be recalculated
using COUNT and SUM.

Performance and query optimization 71

If the FETCH FIRST N ROWS clause is specified in the MQT, then a FETCH FIRST N ROWS clause must
also be specified in the query and the number of rows specified for the MQT must be greater than or
equal to the number of rows specified in the query. It is not recommended that a MQT contain the
FETCH FIRST N ROWS clause.

The ORDER BY clause on the MQT can be used to order the data in the MQT if a REFRESH TABLE is
run. It is ignored during MQT matching and if the query contains an ORDER BY clause, it will be part of
the rewritten query.
Related reference

“MQT supported function” on page 65
Although a MQT can contain almost any query, the optimizer only supports a limited set of query
functions when matching MQTs to user specified queries. The user specified query and the MQT query
must both be supported by the SQE optimizer.

Determining unnecessary MQTs
You can easily determine which MQTs are being used for query optimization. However, you can now
easily find all MQTs and retrieve statistics on MQT usage as a result of iSeries Navigator and i5/OS
functionality.

To assist you in tuning your performance, this function now produces statistics on MQT usage in a query.
To access this through the iSeries Navigator, navigate to: Database → Schemas → Tables. Right-click your
table and select Show Materialized Query Tables.

Note: You can also view the statistics through an application programming interface (API).

In addition to all existing attributes of an MQT, two new fields have been added to the iSeries Navigator.

These new fields are:

Last Query Use
States the timestamp when the MQT was last used by the optimizer to replace user specified
tables in a query.

Query Use Count
Lists the number of instances the MQT was used by the optimizer to replace user specified tables
in a query.

The fields start and stop counting based on your situation, or the actions you are currently performing on
your system. A save and restore procedure does not reset the statistics counter if the MQT is restored
over an existing MQT. If an MQT is restored that does not exist on the server, the statistics are reset.
Related information

Retrieve member description (QUSRMBRD) command

Summary of MQT query recommendations
Follow these recommendations when using MQT queries.
v Do not include local selection or constants in the MQT because that limits the number of user specified

queries that query optimizer can use the MQT in.
v For grouping MQTs, only use the SUM, COUNT, MIN, and MAX grouping functions. The query

optimizer can recalculate AVG, STDDEV, and VAR_POP in user specified queries.
v Specifying FETCH FIRST N ROWS in the MQT limits the number of user specified queries that the

query optimizer can use the MQT in and is not recommended.
v If the MQT is created with DATA INITIALLY DEFERRED, consider specifying the DISABLE QUERY

OPTIMIZATION clause to prevent the query optimizer from using the MQT until it has been
populated. When the MQT has been populated and is ready for use, the ALTER TABLE statement with
the ENABLE QUERY OPTIMIZATION clause can used to enable the MQT for the query optimizer.

72 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|
|

|
|
|

|

|

|

|
|
|

|
|
|

|
|
|

|

|

MQT tables need to be optimized just like non-MQT tables. Indexes should be created over the MQT
columns that are used for selection, join and grouping as appropriate. Column statistics are collected for
MQT tables.

The database monitor shows the list of MQTs considered during optimization. This information is in the
3030 record. If MQT usage has been enabled through the QAQQINI file and a MQT exists over at least
one of the tables in the query, there will be a 3030 record for the query. Each MQT has a reason code
indicating that it was used or if it was not used, why it was not used.

Recursive query optimization
Certain applications and data are recursive by nature. Examples of such applications are a bill-of-material,
reservation, trip planner or networking planning system where data in one results row has a natural
relationship (call it a parent, child relationship) with data in another row or rows. Although the kinds of
recursion implemented in these systems can be performed by using SQL Stored Procedures and
temporary results tables, the use of a recursive query to facilitate the access of this hierarchical data can
lead to a more elegant and better performing application.

Recursive queries can be implemented by defining either a Recursive Common Table Expression (RCTE)
or a Recursive View.

Recursive query example
A recursive query is one that is defined by a Union All with an initialization fullselect that seeds the
recursion and an iterative fullselect that contains a direct reference to itself in the FROM clause.

There are additional restrictions as to what can be specified in the definition of a recursive query and
those restrictions can be found in the SQL Programming. A key restriction is that query functions like
grouping, aggregation or distinct that require a materialization of all the qualifying records before
performing the function cannot be allowed within the iterative fullselect itself and must be requested in
the main query, allowing the recursion to complete.

The following is an example of a recursive query over a table called flights, that contains information
about departure and arrival cities. The query returns all the flight destinations available by recursion
from the two specified cities (New York and Chicago) and the number of connections and total cost to
arrive at that final destination.

Because this example uses the recursion process to also accumulate information like the running cost and
number of connections, four values are actually put on the queue entry. These values are:
v The originating departure city (either Chicago or New York) because it remains fixed from the start of

the recursion
v The arrival city which is used for subsequent joins
v The incrementing connection count
v The accumulating total cost to reach each destination

Typically the data needed for the queue entry is less then the full record (sometimes much less) although
that is not the case for this example.
CREATE TABLE flights
(
departure CHAR (10) NOT NULL WITH DEFAULT,
arrival CHAR (10) NOT NULL WITH DEFAULT,
carrier CHAR (15) NOT NULL WITH DEFAULT,
flight_num CHAR (5) NOT NULL WITH DEFAULT,
ticket INT NOT NULL WITH DEFAULT)

WITH destinations (departure, arrival, connects, cost) AS
(

SELECT f.departure,f.arrival, 0, ticket

Performance and query optimization 73

|

|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|

FROM flights f
WHERE f.departure = 'Chicago' OR

f.departure = 'New York'
UNION ALL

SELECT
r.departure, b.arrival, r.connects + 1,
r.cost + b.ticket
FROM destinations r, flights b

WHERE r.arrival = b.departure
)
SELECT DISTINCT departure, arrival, connects, cost
FROM destinations

The following is the initialization fullselect of the above query. It seeds the rows that will start the
recursion process. It provides the initial destinations (arrival cities) that are a direct flight from Chicago or
New York.
SELECT f.departure,f.arrival, 0, ticket
FROM flights f
WHERE f.departure='Chicago' OR

f.departure='New York'

The following is the iterative fullselect of the above query. It contains a single reference in the FROM
clause to the destinations recursive common table expression and will source further recursive joins to the
same flights table. The arrival values of the parent row (initially direct flights from New York or Chicago)
are joined with the departure value of the subsequent child rows. It is important to identify the correct
parent/child relationship on the recursive join predicate or infinite recursion can occur. Other local
predicates can also be used to limit the recursion. For example, if you want a limit of at most 3
connecting flights, a local predicate using the accumulating connection count, r.connects<=3, can be
specified.
SELECT

r.departure, b.arrival, r.connects + 1 ,
r.cost + b.ticket
FROM destinations r, flights b
WHERE r.arrival=b.departure

The main query is the query that references the recursive common table expression or view. It is in the
main query where requests like grouping, ordering and distinct will be specified.
SELECT DISTINCT departure, arrival, connects, cost
FROM destinations

Implementation considerations

To implement a source for the recursion, a new temporary data object is provided called a queue. As
rows meet the requirements of either the initialization fullselect or the iterative fullselect and are pulled
up through the union all, values necessary to feed the continuing recursion process are captured and
placed in an entry on the queue , an enqueue operation. At query runtime, the queue data source then
takes the place of the recursive reference in the common table expression or view. The iterative fullselect
processing ends when the queue is exhausted of entries or a fetch N rows limitation has been met.
Because the recursive queue feeds the recursion process and holds transient data, the join between the
dequeue of these queue entries and the rest of the fullselect tables will always be a constrained join, with
the queue on the left.

74 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

|

|
|
|
|
|
|
|
|
|

Multiple initialization and iterative fullselects
The use of multiple initialization and iterative fullselects specified in the recursive query definition allows
for a multitude of data sources and separate selection requirements to feed the recursion process.

For example, the following query allows for final destinations accessible from Chicago by both flight and
train travel..
WITH destinations (departure, arrival, connects, cost) AS
(

SELECT f.departure, f.arrival, 0 , ticket
FROM flights f
WHERE f.departure='Chicago'
UNION ALL
SELECT t.departure, t.arrival, 0 , ticket

Performance and query optimization 75

|

|
|
|

|
|

|
|
|
|
|
|
|

FROM trains t
WHERE t.departure='Chicago'
UNION ALL
SELECT
r.departure,b.arrival, r.connects + 1 ,
r.cost + b.ticket
FROM destinations r, flights b
WHERE r.arrival=b.departure
UNION ALL
SELECT
r.departure,b.arrival, r.connects+1 ,
r.cost+b.ticket
FROM destinations r, trains b
WHERE r.arrival=b.departure)

SELECT departure, arrival, connects,cost
FROM destinations;

As all rows coming out of the RCTE/View are part of the recursion process and need to be fed back in,
when there are multiple fullselects referencing the common table expression, the query is rewritten by the
optimizer to process all non-recursive initialization fullselect first and then using a single queue feed
those same rows and all other row results equally to the remaining iterative fullselects. No matter how
you order the initialization and iterative fullselects in the definition of the RCTE/view, the initialization
fullselects will run first and the iterative fullselects will share equal access to the contents of the queue.

76 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

Predicate Pushing
When processing most queries with a non-recursive common table expressions or views, local predicates
specified on the main query are pushed down so fewer records need to be materialized. Pushing local
predicates from the main query in to the defined recursive part of the query (through the Union ALL),
however, may considerably alter the process of recursion itself. So as a general rule, the Union All
specified in a recursive query is currently a predicate fence and predicates are not pushed down or up,
through this fence.

The following is an example of how pushing a predicate in to the recursion limits the recursive results
and alter the intent of the query.

If the intent of the query is to find all destinations accessible from 'Chicago' but do not include the final
destinations of 'Dallas', pushing the "arrival<>'Dallas'" predicate in to the recursive query alters the
output of the intended results, preventing the output of final destinations that are not 'Dallas' but where
'Dallas' was an intermediate stop.

Performance and query optimization 77

|

|
|
|
|
|
|
|

|
|

|
|
|
|

WITH destinations (departure, arrival, connects, cost) AS
(

SELECT f.departure,f.arrival, 0, ticket
FROM flights f
WHERE f.departure='Chicago'
UNION ALL

SELECT
r.departure, b.arrival, r.connects + 1 ,
r.cost + b.ticket
FROM destinations r, flights b
WHERE r.arrival=b.departure

)
SELECT departure, arrival, connects, cost

FROM destinations
WHERE arrival != 'Dallas'

Conversely, the following is an example where a local predicate applied to all the recursive results is a
good predicate to put in the body of the recursive definition because it may greatly decrease the amount
of rows materialized from the RCTE/View. The better query request here is to specify the r.connects <=3
local predicate with in the RCTE definition, in the iterative fullselect.
WITH destinations (departure, arrival, connects, cost) AS
(

SELECT f.departure,f.arrival, 0, ticket
FROM flights f
WHERE f.departure='Chicago' OR

f.departure='New York'
UNION ALL

SELECT
r.departure, b.arrival, r.connects + 1 ,
r.cost + b.ticket
FROM destinations r, flights b
WHERE r.arrival=b.departure

)
SELECT departure, arrival, connects, cost

FROM destinations
WHERE r.connects<=3

Placement of local predicates is key in recursive queries as they can incorrectly alter the recursive results
if pushed in to a recursive definition or can cause unnecessary rows to be materialized and then rejected
when a local predicate may legitimately help limit the recursion.

Specifying SEARCH consideration
Certain applications dealing with hierarchical, recursive data, may have a requirement in how data is
processed: by depth or by breadth.

Using a queuing (First In First Out) mechanism to keep track of the recursive join key values implies the
results are retrieved in breadth first order. Breadth first means retrieving all the direct children of a parent
row before retrieving any of the grandchildren of that same row. This is an implementation distinction,
however, and not a guarantee. Applications may want to guarantee how the data is retrieved. Some
applications may want to retrieve the hierarchical data in depth first order. Depth first means that all the
descendents of each immediate child row are retrieved before the descendents of the next child are
retrieved.

The SQL architecture allows for the guaranteed specification of how the application retrieves the resulting
data by the use of the SEARCH DEPTH FIRST or BREADTH FIRST keyword. When this option is
specified along with naming the recursive join value, identifying a set sequence column and providing
the sequence column in an outer ORDER BY clause, the results will be output in depth or breadth first
order. Note this is ultimately a relationship sort and not a value based sort.

Here is the example above output in depth order.

78 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

WITH destinations (departure, arrival, connects, cost) AS
(

SELECT f.departure, f.arrival, 0 , ticket
FROM flights f
WHERE f.departure='Chicago' OR f.departure='New York'

UNION ALL
SELECT
r.departure,b.arrival, r.connects+1 ,
r.cost+b.ticket
FROM destinations r, flights b
WHERE r.arrival=b.departure)

SEARCH DEPTH FIRST BY arrival SET depth_sequence

SELECT *
FROM destinations
ORDER BY depth_sequence

If the ORDER BY clause is not specified in the main query, the sequencing option is ignored. To facilitate
the correct sort there is additional information put on the queue entry during recursion. In the case of
BREADTH FIRST, it is the recursion level number and the immediate ancestor join value, so sibling rows
can be sorted together. A depth first search is a little more data intensive. In the case of DEPTH FIRST,
the query engine needs to represent the entire ancestry of join values leading up to the current row and
puts that information in a queue entry. Also, because these sort values are not coming from a external
data source, the implementation for the sort will always be a temporary sorted list (no indexes possible).

Do not use the SEARCH option if you do not have a requirement that your data be materialized in a
depth or breadth first manner as there is additional CPU and memory overhead to manage the
sequencing information.

Specifying CYCLE considerations
Recognizing that data in the tables used in a recursive query might be cyclic in nature is important to
preventing infinite loops.

The SQL architecture allow for the optional checking for cyclic data and will discontinue the repeating
cycles at that point. This additional checking is done by the use of the CYCLE option. The correct join
recursion value must be specified on the CYCLE request and a cyclic indicator must be specified. Note
that the cyclic indicator may be optionally output in the main query and can be used to help determine
and correct errant cyclic data.
WITH destinations (departure, arrival, connects, cost , itinerary) AS

(
SELECT f.departure, f.arrival, 1 , ticket, CAST(f.departure||f.arrival AS VARCHAR(2000))
FROM flights f
WHERE f.departure='New York'

UNION ALL
SELECT r.departure,b.arrival, r.connects+1 ,
r.cost+b.ticket, cast(r.itinerary||b.arrival AS varchar(2000))

FROM destinations r, flights b
WHERE r.arrival = b.departure)

CYCLE arrival SET cyclic TO '1' DEFAULT '0' USING Cycle_Path

SELECT departure, arrival, itinerary, cyclic
FROM destinations

When a cycle is determined to be repeating, the output of that cyclic sequence of rows is stopped. To
check for a 'repeated' value however, the query engine needs to represent the entire ancestry of the join
values leading to up to the current row in order to look for the repeating join value. This ancestral
history is information that is appended to with each recursive cycle and put in a field on the queue entry.
To implement this, the query engine uses a compressed representation of the recursion values on the

Performance and query optimization 79

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

ancestry chain so that the query engine can do a fixed length, quicker scan through the accumulating
ancestry to determine if the value has been seen before. This compressed representation is determined by
the use of a distinct node in the query tree.

Do not use the CYCLE option unless you know your data is cyclic or you want to use it specifically to
help find the cycles for correction or verification purposes. There is additional CPU and memory
overhead to manage and check for repeating cycles before a given row is materialized.

SMP and recursive queries
Recursive queries can benefit as much from symmetric multiprocessing (SMP) as do other queries on the
system.

Recursive queries and parallelism however present some unique requirements. Because the initialization
fullselect of a recursive query (the fullselect that seeds the initial values of the recursion), is likely to
produce only a small fraction of the ultimate results that cycle through the recursion process, the query
optimizer does not want each of the threads running in parallel to have a unique queue object that feeds

80 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|

|
|
|

|

|
|
|

|
|
|
|

only itself. This results in some threads having way too much work to do and others threads quickly
depleting their work. The best way to do this is to have all the threads share the same queue allowing a
thread to enqueue a new recursive key value just as a waiting thread is there to dequeue that request. A
shared queue allow all threads to actively contribute to the overall depletion of the queue entries until no
thread is able to contribute more results. Having multiple threads share the same queue however requires
some management by the Query runtime so that threads do not prematurely end. Some buffering of the
initial seed values might be necessary. Illustrated in the query below, where there are two fullselects that
seed the recursion, a buffer is provide so that no thread hits a dequeue state and terminates before the
query has seeded enough recursive values to get things going.

The following Visual Explain diagram illustrates the plan for the following query run with CHGQRYA
DEGREE(*NBRTASKS 4). It illustrates that the results of the multiple initialization fullselects are buffered up
and that multiple threads (illustrated by the multiple arrow lines) are acting on the enqueue and dequeue
request nodes. As with all SMP queries, the multiple threads (in this case 4) are putting their results in to
a Temporary List object which become the output for the main query.
cl:chgqrya degree(*nbrtasks 4);

WITH destinations (departure, arrival, connects, cost)AS
(

SELECT f.departure, f.arrival, 0 , ticket
FROM flights f WHERE f.departure='Chicago'
UNION ALL
SELECT t.departure, t.arrival, 0 , ticket
FROM trains t WHERE t.departure='Chicago'
UNION ALL
SELECT

r.departure,b.arrival, r.connects+1 ,
r.cost+b.ticket

FROM destinations r, flights b
WHERE r.arrival=b.departure
UNION ALL
SELECT

r.departure,b.arrival, r.connects+1 ,
r.cost+b.ticket

FROM destinations r, trains b
WHERE r.arrival=b.departure)

SELECT departure, arrival, connects,cost
FROM destinations;

Performance and query optimization 81

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

82 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

Optimizing query performance using query optimization tools
Query optimization is an iterative process. You can gather performance information about your queries
and control the processing of your queries.

Verify the performance of SQL applications
You can verify the performance of an SQL application by using commands.

The commands that can help you to verify performance are:

Display Job (DSPJOB)
You can use the Display Job (DSPJOB) command with the OPTION(*OPNF) parameter to show
the indexes and tables being used by an application that is running in a job.

You can also use DSPJOB with the OPTION(*JOBLCK) parameter to analyze object and row lock
contention. It displays the objects and rows that are locked and the name of the job holding the
lock.

Specify the OPTION(*CMTCTL) parameter on the DSPJOB command to show the isolation level
that the program is running, the number of rows being locked during a transaction, and the
pending DDL functions. The isolation level displayed is the default isolation level. The actual
isolation level, used for any SQL program, is specified on the COMMIT parameter of the
CRTSQLxxx command.

Print SQL Information (PRTSQLINF)
The Print SQL Information (PRTSQLINF) command lets you print information about the
embedded SQL statements in a program, SQL package, or service program. The information
includes the SQL statements, the access plans used during the running of the statement, and a list
of the command parameters used to precompile the source member for the object.

Start Database Monitor (STRDBMON)
You can use the Start Database Monitor (STRDBMON) command to capture to a file information
about every SQL statement that runs.

Change Query Attribute (CHGQRYA)
You can use the Change Query Attribute (CHGQRYA) command to change the query attributes
for the query optimizer. Among the attributes that can be changed by this command are the
predictive query governor, parallelism, and the query options.

Start Debug (STRDBG)
You can use the Start Debug (STRDBG) command to put a job into debug mode and, optionally,
add as many as 20 programs and 20 class files and 20 service programs to debug mode. It also
specifies certain attributes of the debugging session. For example, it can specify whether database
files in production libraries can be updated while in debug mode.

Related information

Display Job (DSPJOB) command
Print SQL Information (PRTSQLINF) command
Start Database Monitor (STRDBMON) command
Change Query Attributes (CHGQRYA) command
Start Debug (STRDBG) command

Examine query optimizer debug messages in the job log
Query optimizer debug messages issue informational messages to the job log about the implementation
of a query. These messages explain what happened during the query optimization process.

For example, you can learn:
v Why an index was or was not used

Performance and query optimization 83

v Why a temporary result was required
v Whether joins and blocking are used
v What type of index was advised by the optimizer
v Status of the job's queries
v Indexes used
v Status of the cursor

The optimizer automatically logs messages for all queries it optimizes, including SQL, call level interface,
ODBC, OPNQRYF, and SQL Query Manager.

Viewing debug messages using STRDBG command:

STRDBG command puts a job into debug mode. It also specifies certain attributes of the debugging
session. For example, it can specify whether database files in production schemas can be updated while
in debug mode. For example, use the following command:
STRDBG PGM(Schema/program) UPDPROD(*YES)

STRDBG places in the job log information about all SQL statements that run.

Viewing debug messages using QAQQINI table:

You can also set the QRYOPTLIB parameter on the Change Query Attributes (CHGQRYA) command to a
user schema where the QAQQINI table exists. Set the parameter on the QAQQINI table to
MESSAGES_DEBUG, and set the value to *YES. This option places query optimization information in the
job log. Changes made to the QAQQINI table are effective immediately and will affect all users and
queries that use this table. Once you change the MESSAGES_DEBUG parameter, all queries that use this
QAQQINI table will write debug messages to their respective joblogs. Pressing F10 from the command
Entry panel displays the message text. To see the second-level text, press F1 (Help). The second-level text
sometimes offers hints for improving query performance.

Viewing debug messages in Run SQL Scripts:

To view debug messages in Run SQL Scripts, from the Options menu, select Include Debug Messages in
Job Log. Then from the View menu, select Job Log. To view detailed messages, double-click a message.

Viewing debug messages in Visual Explain:

In Visual Explain, debug messages are always available. You do not need to turn them on or off. Debug
messages appear in the lower portion of the window. You can view detailed messages by double-clicking
on a message.

Gather information about embedded SQL statements with the
PRTSQLINF command
The Print SQL Information (PRTSQLINF) command returns information about the embedded SQL
statements in a program, SQL package (the object normally used to store the access plan for a remote
query), or service program. This information is then stored in a spooled file.

PRTSQLINF provides information about:
v The SQL statements being executed
v The type of access plan used during execution. This includes information about how the query will be

implemented, the indexes used, the join order, whether a sort is done, whether a database scan is sued,
and whether an index is created.

v A list of the command parameters used to precompile the source member for the object.

84 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

v The CREATE PROCEDURE and CREATE FUNCTION statement text used to create external procedures
or User Defined Functions.

This output is similar to the information that you can get from debug messages. However, while query
debug messages work at runtime, PRTSQLINF works retroactively. You can also see this information in
the second level text of the query governor inquiry message CPA4259.

You can issue PRTSQLINF in a couple of ways. First, you can run the PRTSQLINF command against a
saved access plan. This means you must execute or at least prepare the query (using SQL's PREPARE
statement) before you use the command. It is best to execute the query because the index created as a
result of PREPARE is relatively sparse and may well change after the first run. PRTSQLINF's requirement
of a saved access plan means the command cannot be used with OPNQRYF.

You can also run PRTSQLINF against functions, stored procedures, triggers, SQL packages, and programs
from iSeries Navigator. This function is called Explain SQL. To view PRTSQLINF information, right-click
an object and select Explain SQL.
Related information

Print SQL Information (PRTSQLINF) command

Viewing the plan cache with iSeries Navigator
The Plan Cache contains a wealth of information about the SQE queries being run through the database.
Its contents are viewable through the iSeries Navigator GUI interface.

This Plan Cache interface provides a window into the database query operations on the system. The
interface to the Plan Cache resides under the iSeries Navigator → system name → Database.

Performance and query optimization 85

|

|
|

|
|

Clicking the SQL Plan Cache folder shows a list of any snapshots gathered so far. A snapshot is a
database monitor file generated from the plan cache and can be treated very much the same as the SQL
Performance Monitors list. The same analysis capability exists for snapshots as exists for traditional SQL
performance monitors.

By right-clicking the SQL Plan Cache icon, a series of options are shown which allow different views of
current plan cache of the database. The SQL Plan Cache → Show Statements option brings up a screen
with filtering capability. This screen provides a direct view of the current plan cache on the system.

86 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|
|
|
|

|
|
|

Note that the retrieve action needs to be performed (pushed) to fill the display. The information shown
shows the SQL query text, the last time the query was run, the most expensive single instance run of the
query, total processing time consumed by the query, total number of times the query has been run and
information about the user and job that first created the plan entry. It also shows how many times (if
any) that the database engine was able to reuse the results of a prior run of the query to avoid rerunning
the entire query.

The screen also provides filtering options which allow the user to more quickly isolate specific criteria of
interest. No filters are required to be specified (the default), though adding filtering will shorten the time
it takes to show the results. The list of queries that is returned is ordered by default so that those
consuming the most processing time are shown at the top. You can reorder the results by clicking on the
column heading for which you want the list ordered. Repeated clicking toggles the order from ascending
to descending. When an individual entry is chosen, more detailed information about that entry can be
seen. Show Longest Runs shows details of up to ten of the longest running instances of that query. Run
Visual Explain can also be performed against the chosen query to show the details of the query plan.
Finally, if one or more entries are highlighted, a snapshot (database performance monitor file) for those
selected entries can be generated.

The information presented can be used in multiple ways to help with performance tuning. For example,
Visual Explain of key queries can be utilized to show advice for creating an index to improve those
queries. Alternatively, the longest running information can be used to determine if the query is being run
during a heavy utilization period and can potentially be rescheduled to a more opportune time.

Performance and query optimization 87

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

One item to note is that the user and job name information given for each entry is the user and job that
initially caused the creation of the cached entry (the user where full optimization took place). This is not
necessarily the same as the last user to run that query.

The filtering options provide a way to focus in on a particular area of interest:

Minimum runtime for the longest execution
Filter to those queries with at least one long individual query instance runtime

Queries run after this date and time
Filters to those queries that have been run recently

Top 'n' most frequently run queries
Finds those queries run most often.

Top 'n' queries with the largest total accumulated runtime
Shows the top resource consumers. This equates to the first n entries shown by default when no
filtering is given. Specifying a value for n improves the performance of getting the first screen of
entries, though the total entries displayed is limited to n.

Queries ever run by user
Provides a way to see the list of queries a particular user has run. Note that if this filter is
specified, the user and job name information shown in the resulting entries still reflect the
originator of the cached entry, which is not necessarily the same as the user specified on the filter.

Queries currently active
Shows the list of cached entries associated with queries that are still running or are in pseudo
close mode. As with the user filtering, the user and job name information shown in the resulting
entries still reflects the originator of the cached entry, which is not necessarily the same as the
user currently running the query (there may be multiple users running the query).

Note: Current SQL for a job (right-click the Database icon) is an alternative for the viewing a
particular job's active query.

Queries with index advised
Limits the list to those queries where an index was advised by the optimizer to improve
performance.

Queries with statistics advised
Limits the list to those queries where a statistic not yet gathered might have been useful to the
optimizer if it was collected. The optimizer automatically gathers these statistics in the
background, so this option is normally not that interesting unless, for whatever reason, you want
to control the statistics gathering yourself.

Include queries initiated by the operating system
includes into the list the 'hidden' queries initiated by the database itself behind the scenes to
process a request. By default the list only includes user initiated queries.

Queries that use or reference these objects
Provides a way to limit the entries to those that referenced or use the table(s) or index(s)
specified.

SQL statement contains
Provides a wildcard search capability on the SQL text itself. It is useful for finding particular
types of queries. For example, queries with a FETCH FIRST clause can be found by specifying
‘fetch’. The search is case insensitive for ease of use. For example, the string 'FETCH' will find the
same entries as the search string 'fetch'.

Multiple filter options can be specified. Note that in a multi-filter case, the candidate entries for each
filter are computed independently and only those entries that are present in all the candidate lists are
shown. So, for example, if you specified options Top 'n' most frequently run queries and Queries ever

88 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|

|

|
|

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|

run by user, you will be shown those most-run entries in the cache that happen to have been run at
some point by the specified user. You will not necessarily be shown the most frequently run queries run
by the user (unless those queries also happen to be the most frequently run queries in the entire cache).

The SQL Plan Cache → Properties option shows high level information about the cache, including for
example, cache size, number of plans, number of full open and pseudo opens that have occurred.

This information can be used to view overall database activity. If tracked over time, it provides trends to
help you better understand the database utilization peaks and valleys throughout the day and week.

The New → Snapshot option allows for the creation of a snapshot from the plan cache. Unlike the
snapshot option under Show Statements, it allows you to create a snapshot without having to first view
the queries.

Performance and query optimization 89

|
|
|

|
|

|

|
|

|
|
|

The same filtering options are provided here as on the Show Statements screen.

90 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

The stored procedure, qsys2.dump_plan_cache, provides the simplest way to create a database monitor
file output (snapshot) from the plan cache. The dump_plan_cache procedure takes two parameters,
library name and file name, for identifying the resulting database monitor file. If the file does not exist, it
is created. For example, to dump the plan cache to a database performance monitor file in library QGPL:
CALL qsys2.dump_plan_cache('QGPL','SNAPSHOT1');

Note that the plan cache is an actively changing cache. Therefore, it is important to realize that it contains
timely information. If information over long periods of time is of interest, consider implementing a
method of performing periodic snapshots of the plan cache to capture trends and heavy usage periods.
The APIs described above, used in conjunction with job scheduling (for example), can be used to
programmatically perform periodic snapshots.
Related concepts

“Plan Cache” on page 6
The Plan Cache is a repository that contains the access plans for queries that were optimized by SQE.

Monitoring your queries using memory-resident database monitor
The Memory-Resident Database Monitor is a tool that provides another method for monitoring database
performance. This tool is only intended for SQL performance monitoring and is useful for programmers
and performance analysts. The monitor, with the help of a set of APIs, takes database monitoring
information and manages them for the user in memory. This memory-based monitor reduces CPU
overhead as well as resulting table sizes.

The Start Database Monitor (STRDBMON) can constrain server resources when collecting performance
information. This overhead is mainly attributed to the fact that performance information is written
directly to a database table as the information is collected. The memory-based collection mode reduces
the server resources consumed by collecting and managing performance results in memory. This allows
the monitor to gather database performance statistics with a minimal impact to the performance of the
server as whole (or to the performance of individual SQL statements).

The monitor collects much of the same information as the STRDBMON monitor, but the performance
statistics are kept in memory. At the expense of some detail, information is summarized for identical SQL
statements to reduce the amount of information collected. The objective is to get the statistics to memory
as fast as possible while deferring any manipulation or conversion of the data until the performance data
is dumped to a result table for analysis.

The memory-based monitor is not meant to replace the STRDBMON monitor. There are circumstances
where the loss of detail in the monitor will not be sufficient to fully analyze an SQL statement. In these
cases, the STRDBMON monitor should still be used.

The memory-based monitor manages the data in memory, combining and accumulating the information
into a series of row formats. This means that for each unique SQL statement, information is accumulated
from each run of the statement and the detail information is only collected for the most expensive
statement execution.

Each SQL statement is identified by the monitor according to the following:
v statement name
v package (or program)
v schema that contains the prepared statement
v cursor name that is used

For pure dynamic statements, the statement text is kept in a separate space and the statement
identification will be handled internally via a pointer.

Performance and query optimization 91

|
|
|
|

|

|
|
|
|
|

|

|
|

While this system avoids the significant overhead of writing each SQL operation to a table, keeping
statistics in memory comes at the expense of some detail. Your objective should be to get the statistics to
memory as fast as possible, then reserve time for data manipulation or data conversion later when you
dump data to a table.

The memory-based monitor manages the data that is in memory by combining and accumulating the
information into the new row formats. Therefore, for each unique SQL statement, information
accumulates from each running of the statement, and the server only collects detail information for the
most expensive statement execution.

Each SQL statement is identified by the monitor by the statement name, the package (or program) and
schema that contains the prepared statement and the cursor name that is used. For pure dynamic
statements:
v Statement text is kept in a separate space and
v Statement identification is handled internally via a pointer.

API support for the memory-based monitor

A set of APIs enable support for the memory-based monitor. An API supports each of the following
activities:
v Start the new monitor
v Dump statistics to tables
v Clear the monitor data from memory
v Query the monitor status
v End the new monitor

When you start the new monitor, information is stored in the local address space of each job that the
system monitors. As each statement completes, the system moves information from the local job space to
a common system space. If more statements are executed than can fit in this amount of common system
space, the system drops the statements that have not been executed recently.
Related information

Start SQL Database Monitor (QQQSSDBM) API
Dump SQL Database Monitor (QQQDSDBM) API
Clear SQL Database Monitor Statistics (QQQCSDBM) API
Query SQL Database Monitor (QQQQSDBM) API
End SQL Database Monitor (QQQESDBM) API

Memory-resident database monitor external API description
The memory-resident database monitor is controlled by a set of APIs.

Table 25. External API Description

API Description

Start SQL Database Monitor (QQQSSDBM) API to start the SQL monitor

Clear SQL Database Monitor Statistics (QQQCSDBM) API to clear SQL monitor memory

Dump SQL Database Monitor (QQQDSDBM) API to dump the contents of the SQL monitor to table

End SQL Database Monitor (QQQESDBM) API API to end the SQL monitor

Query SQL Database Monitor (QQQQSDBM) API to query status of the database monitor

92 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

Memory-resident database monitor external table description
The memory resident database monitor uses its own set of tables instead of using the single table with
logical files that the STRDBMON monitor uses. The memory resident database monitor tables closely
match the suggested logical files of the STRDBMON monitor.

Table 26. External table Description

Monitor table Description

QAQQQRYI Query (SQL) information

QAQQTEXT SQL statement text

QAQQ3000 Table scan

QAQQ3001 Index used

QAQQ3002 Index created

QAQQ3003 Sort

QAQQ3004 Temporary table

QAQQ3007 Optimizer time out/ all indexes considered

QAQQ3008 Subquery

QAQQ3010 Host variable values

QAQQ3030 Materialized Query Tables considered

Sample SQL queries
As with the STRDBMON monitor, it is up to the user to extract the information from the tables in which
all of the monitored data is stored. This can be done through any query interface that the user chooses.

If you are using iSeries Navigator with the support for the SQL Monitor, you have the ability to analyze
the results direct through the graphical user interface. There are a number of shipped queries that can be
used or modified to extract the information from any of the tables. For a list of these queries, go to

Common queries on analysis of DB Performance Monitor data the DB2 UDB for iSeries website .

Memory-resident database monitor row identification
The join key column QQKEY simplifies the joining of multiple tables together. This column replaces the
join field (QQJFLD) and unique query counters (QQCNT) that the database monitor used. The join key
column contains a unique identifier that allows all of the information for this query to be received from
each of the tables.

This join key column does not replace all of the detail columns that are still required to identify the
specific information about the individual steps of a query. The Query Definition Template (QDT) Number
or the Subselect Number identifies information about each detailed step. Use these columns to identify
which rows belong to each step of the query process:
v QQQDTN - Query Definition Template Number
v QQQDTL - Query Definition Template Subselect Number (Subquery)
v QQMATN - Materialized Query Definition Template Number (View)
v QQMATL - Materialized Query Definition Template Subselect Number (View w/ Subquery)
v QQMATULVL - Materialized Query Definition Template Union Number (View w/Union)

Use these columns when the monitored query contains a subquery, union, or a view operation. All query
types can generate multiple QDT's to satisfy the original query request. The server uses these columns to
separate the information for each QDT while still allowing each QDT to be identified as belonging to this
original query (QQKEY).

Performance and query optimization 93

||

||

||

||

||

||

||

||

||

||

||

||

||
|

http://www.iseries.ibm.com/db2/dbmonqrys.htm

Using iSeries Navigator with summary monitors
You can work with summary monitors from the iSeries Navigator interface. A summary monitor creates a
Memory-Resident Database monitor (DBMon), found on the native interface.

As the name implies, this monitor resides in memory and only retains a summary of the data collected.
When the monitor is paused or ended, this data is written to a hard disk and can be analyzed. Because
the monitor stores its information in memory, the performance impact to your system is minimized.
However, you do lose some of the detail.

Starting a summary monitor
You can start a summary monitor from the iSeries Navigator interface.

You can start this monitor by right-clicking SQL Performance Monitors under the Database portion of the
iSeries Navigator tree and selecting New → SQL Performance Monitor. In the monitor wizard, select
Summary.

When you create a summary monitor, certain kinds of information are always collected. This information
includes summary information, SQL statement information, and host variable information. You can also
choose to collect the following types of information:

Table scans and arrival sequences
Select to include information about table scan data for the monitored jobs. Table scans of large
tables can be time-consuming. If the SQL statement is long running, it may indicate that an index
might be necessary to improve performance.

Indexes used
Select to include information about how indexes are used by monitored jobs. This information
can be used to quickly tell if any of the permanent indexes were used to improve the
performance of a query. Permanent indexes are typically necessary to achieve optimal query
performance. This information can be used to determine how often a permanent index was used
by in the statements that were monitored. Indexes that are never (or very rarely) used should
probably be dropped to improve the performance of inserts updates and deletes to a table. Before
dropping the index, you may want to determine if the index is being used by the query optimizer
as a source of statistics.

Index creation
Select to include information about the creation of indexes by monitored jobs. Temporary indexes
may need to be created for several reasons such as to perform a join, to support scrollable
cursors, to implement ORDER BY or GROUP BY, and so on. The created indexes may only
contain keys for rows that satisfy the query (such indexes are known as sparse indexes). In many
cases, the index create may be perfectly normal and the most efficient way to perform the query.
However, if the number of rows is large, or if the same index is repeatedly created, you may be
able to create a permanent index to improve performance of this query. This may be true whether
an index was advised.

Data sorts
Select to include information about data sorts that monitored jobs perform. Sorts of large result
sets in an SQL statement may be a time consuming operation. In some cases, an index can be
created that will eliminate the need for a sort.

Temporary file use
Select to include information about temporary files that monitored jobs created. Temporary
results are sometimes necessary based on the SQL statement. If the result set inserted into a
temporary result is large, you may want to investigate why the temporary result is necessary. In
some cases, the SQL statement can be modified to eliminate the need for the temporary result.
For example, if a cursor has an attribute of INSENSITIVE, a temporary result will be created.
Eliminating the keyword INSENSITIVE will typically remove the need for the temporary result,
but your application will then see changes as they are occur in the database tables.

94 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

Indexes considered
Select to include information about which indexes were considered for the monitored jobs. This
information can help to determine if an index is used in the query. If an index was considered,
but not used, you might need to rewrite the index or drop it. Before dropping the index, you may
want to determine if the index is being used by the query optimizer as a source of statistics.

Subselect processing
Select to include information about subselect processing. This information can indicate which
subquery in a complex SQL statement is the most expensive.

You can choose which jobs you want to monitor or choose to monitor all jobs. You can have multiple
instances of monitors running on you system at one time. For summary monitors, only one monitor
instance can be monitoring all jobs. Additionally, you cannot have two monitors monitoring the same job.
When collecting information for all jobs, the monitor will collect on previously started jobs or new jobs
started after the monitor is created. You can edit this list by selecting and removing jobs from the
Selected jobs list.
Related reference

“Determining unnecessary indexes” on page 153
You can easily determine which indexes are being used for query optimization.

Analyzing summary monitor information
Once data has been collected in the monitor, it can be analyzed.

You can analyze information in a summary monitory by right-clicking the summary monitor in the right
pane and selecting Analyze. A summary monitor must be ended or paused in order to analyze the data.

The following is an overview of the information that you can obtain from the predefined reports.

General Summary
Contains information that summarizes all SQL activity. This information provides the user with a
high level indication of the nature of the SQL statements used. For example, how much SQL is
used in the application? Are the SQL statements mainly short-running or long running? Is the
number of results returned small or large?

Job Summary
Contains a row of information for each job. Each row summarizes all SQL activity for that job.
This information can be used to tell which jobs on the system are the heaviest users of SQL, and
hence which ones are perhaps candidates for performance tuning. The user may then want to
start a separate detailed performance monitor on an individual job to get more detailed
information without having to monitor the entire system.

Operation Summary
Contains a row of summary information for each type of SQL operation. Each row summarizes
all SQL activity for that type of SQL operation. This information provides the user with a high
level indication of the type of SQL statements used. For example, are the applications mainly
read-only, or is there a large amount of update, delete, or insert activity. This information can
then be used to try specific performance tuning techniques. For example, if a large amount of
INSERT activity is occurring, perhaps using an OVRDBF command to increase the blocking factor
or perhaps use of the QDBENCWT API is appropriate.

Program Summary
Contains a row of information for each program that performed SQL operations. Each row
summarizes all SQL activity for that program. This information can be used to identify which
programs use the most or most expensive SQL statements. Those programs are then potential
candidates for performance tuning. Note that a program name is only available if the SQL
statements are embedded inside a compiled program. SQL statements that are issued through
ODBC, JDBC, or OLE DB have a blank program name unless they result from a procedure,
function, or trigger.

Performance and query optimization 95

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|

|
|

|
|

|
|

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

Additionally, you can select more Detailed Results:

Basic statement information
This information provides the user with basic information about each SQL statement. The most
expensive SQL statements are presented first in the list so at a glance the user can see which
statements (if any) were long running.

Access plan rebuild information
Contains a row of information for each SQL statement that required the access plan to be rebuilt.
Reoptimization will occasionally be necessary for one of several reasons such as a new index
being created or dropped, the apply of a PTF, and so on. However, excessive access plan rebuilds
may indicate a problem.

Optimizer information
Contains a row of optimization information for each subselect in an SQL statement. This
information provides the user with basic optimizer information about those SQL statements that
involve data manipulation (Selects, opens, updates, and so on) The most expensive SQL
statements are presented first in the list.

Index create information
Contains a row of information for each SQL statement that required an index to be created.
Temporary indexes may need to be created for several reasons such as to perform a join, to
support scrollable cursors, to implement ORDER BY or GROUP BY, and so on. The created
indexes may only contain keys for rows that satisfy the query (such indexes are known as sparse
indexes). In many cases, the index create may be perfectly normal and the most efficient way to
perform the query. However, if the number of rows is large, or if the same index is repeatedly
created, you may be able to create a permanent index to improve performance of this query. This
may be true whether an index was advised.

Index used information
Contains a row of information for each permanent index that an SQL statement used. This can be
used to quickly tell if any of the permanent indexes were used to improve the performance of a
query. Permanent indexes are typically necessary to achieve optimal query performance. This
information can be used to determine how often a permanent index was used by in the
statements that were monitored. Indexes that are never (or very rarely) used should probably be
dropped to improve the performance of inserts updates and deletes to a table. Before dropping
the index you may also want to look at the last used date in the Description information for the
index.

Open information
Contains a row of information for each open activity for each SQL statement. The first time (or
times) a open occurs for a specific statement in a job is a full open. A full open creates an Open
Data Path (ODP) that will be then be used to fetch, update, delete, or insert rows. Since there will
typically be many fetch, update, delete, or insert operations for an ODP, as much processing of
the SQL statement as possible is done during the ODP creation so that same processing does not
need to be done on each subsequent I/O operation. An ODP may be cached at close time so that
if the SQL statement is run again during the job, the ODP will be reused. Such an open is called a
pseudo open and is much less expensive than a full open. You can control the number of ODPs
that are cached in the job and then number of times the same ODP for a statement should be
created before caching it.

Table scan
Contains a row of information for each subselect that required records to be processed in arrival
sequence order. Table scans of large tables can be time-consuming. If the SQL statement is long
running, it may indicate that an index might be necessary to improve performance.

Sort information
Contains a row of information for each sort that an SQL statement performed. Sorts of large
result sets in an SQL statement may be a time consuming operation. In some cases, an index can
be created that will eliminate the need for a sort.

96 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

Temporary file information
Contains a row of information for each SQL statement that required a temporary result.
Temporary results are sometimes necessary based on the SQL statement. If the result set inserted
into a temporary result is large, you may want to investigate why the temporary result is
necessary. In some cases, the SQL statement can be modified to eliminate the need for the
temporary result. For example, if a cursor has an attribute of INSENSITIVE, a temporary result
will be created. Eliminating the keyword INSENSITIVE will typically remove the need for the
temporary result, but your application will then see changes as they are occur in the database
tables.

Data conversion information
Contains a row of information for each SQL statement that required data conversion. For
example, if a result column has an attribute of INTEGER, but the variable the result is being
returned to is DECIMAL, the data must be converted from integer to decimal. A single data
conversion operation is very inexpensive, but repeated thousands or millions of times can add
up. In some cases, it is a simple task to change one of the attributes so a faster direct map can be
performed. In other cases, the conversion is necessary because there is no exact matching data
type available.

Subquery information
Contains a row of subquery information. This information can indicate which subquery in a
complex SQL statement is the most expensive.

Finally, you can select the Composite view.

Summary data
Contains resource and other general information about monitored jobs.

Statement text
Contains the SQL text that monitored jobs call.

Table scan
Contains the table scan data for the monitored jobs.

Data sorts
Contains details of data sorts that monitored jobs perform.

Host variable use
Contains the values of host variables that monitored jobs use.

Optimizer time out/access paths considered
Contains details of any occurrences of time outs of monitored jobs.

Indexes used
Contains details of how indexes are used by monitored jobs.

Index creation
Contains details of the creation of indexes by monitored jobs.

Subselect processing
Contains information about each subselect in an SQL statement.

Temporary file use
Contains details of temporary files that monitored jobs created.

Importing a monitor
You can import monitor data that has been collected using Start Database Monitor (STRDBMON)
command or some other interface by using iSeries Navigator.

To import monitor data, right-click SQL Performance monitors and select Import. Once you have
imported a monitor, you can analyze the data.

Performance and query optimization 97

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

Monitoring your queries using Start Database Monitor (STRDBMON)
Start Database Monitor (STRDBMON) command gathers information about a query in real time and
stores this information in an output table. This information can help you determine whether your system
and your queries are performing as they should, or whether they need fine tuning. Database monitors
can generate significant CPU and disk storage overhead when in use.

You can gather performance information for a specific query, for every query on the server, or for a group
of queries on the server. When a job is monitored by multiple monitors, each monitor is logging rows to
a different output table. You can identify rows in the output database table by each row's unique
identification number.

What kinds of statistics you can gather

The database monitor provides the same information that is provided with the query optimizer debug
messages (Start Debug (STRDBG)) and the Print SQL information (PRTSQLINF) command. The following
is a sampling of the additional information that will be gathered by the database monitors:
v System and job name
v SQL statement and sub-select number
v Start and end timestamp
v Estimated processing time
v Total rows in table queried
v Number of rows selected
v Estimated number of rows selected
v Estimated number of joined rows
v Key columns for advised index
v Total optimization time
v Join type and method
v ODP implementation

How you can use performance statistics

You can use these performance statistics to generate various reports. For instance, you can include reports
that show queries that:
v Use an abundance of the server resources.
v Take an extremely long time to execute.
v Did not run because of the query governor time limit.
v Create a temporary index during execution
v Use the query sort during execution
v Might perform faster with the creation of a keyed logical file containing keys suggested by the query

optimizer.

Note: A query that is canceled by an end request generally does not generate a full set of performance
statistics. However, it does contain all the information about how a query was optimized, with the
exception of runtime or multi-step query information.

98 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|
|
|
|

|
|
|
|

|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|
|

|
|
|

Related information

Start Debug (STRDBG) command
Print SQL Information (PRTSQLINF) command
Start Database Monitor (STRDBMON) command

Start Database Monitor (STRDBMON) command
The Start Database Monitor (STRDBMON) command starts the collection of database performance
statistics for a specified job, for all jobs on the system or for a selected set of jobs. The statistics are placed
in a user-specified database table and member. If the table or member do not exist, one is created based
on the QAQQDBMN table in library QSYS. If the table and member do exist, the record format of the
specified table is verified to insure it is the same.

For each monitor started using the STRDBMON command, the system generates a monitor ID that can be
used to uniquely identify each individual monitor. The monitor ID can be used on the ENDDBMON
command to uniquely identify which monitor is to be ended. The monitor ID is returned in the
informational message CPI436A which is generated for each occurrence of the STRDBMON command.
The monitor ID can also be found in column QQC101 of the QQQ3018 database monitor record.

Informally there are two types of monitors. A private monitor is a monitor over one, specific job (or the
current job). Only one (1) monitor can be started on a specific job at a time. For example, STRDBMON
JOB(*) followed by another STRDBMON JOB(*) within the same job is not allowed. A public monitor is a
monitor which collects data across multiple jobs. There can be a maximum of ten (10) public monitors
active at any one time. For example, STRDBMON JOB(*ALL) followed by another STRDBMON
JOB(*ALL) is allowed providing the maximum number of public monitors does not exceed 10. You may
have 10 public monitors and 1 private monitor active at the same time for any specific job.

If multiple monitors specify the same output file, only one copy of the database statistic records will be
written to the specified output file for each job. For example, STRDBMON OUTFILE(LIB/TABLE1) JOB(*)
and STRDBMON OUTFILE(LIB/TABLE1) JOB(*ALL) target the same output file. For the current job, you
will not get two copies of the database statistic records, one copy for the private monitor and one copy
for the public monitor. You will get only one copy of the database statistic records.

If the monitor is started on all jobs (a public monitor), any jobs waiting on job queues or any jobs started
during the monitoring period are included in the monitor data. If the monitor is started on a specific job
(a private monitor) that job must be active in the server when the command is issued. Each job in the
server can be monitored concurrently by one private monitor and a maximum of 10 public monitors.

The STRDBMON command allows you to collect statistic records for a specific set or subset of the queries
running on any job. This filtering can be performed over the job name, the user profile, the name of the
table(s) being queried, the estimated run time of the query, the TCP/IP internet address, or any
combination of those filters. Specifying a STRDBMON filter should help minimize the number of statistic
records captured for any monitor.

Example 1: Starting Database Monitoring For All Jobs
STRDBMON OUTFILE(QGPL/FILE1) OUTMBR(MEMBER1 *ADD) JOB(*ALL)
FRCRCD(10)

This command starts database monitoring for all jobs on the system. The performance statistics are added
to the member named MEMBER1 in the file named FILE1 in the QGPL library. Ten records will be held
before being written to the file.

Example 2: Starting Database Monitoring For a Specific Job
STRDBMON OUTFILE(*LIBL/FILE3) OUTMBR(MEMBER2) JOB(134543/QPGMR/DSP01)
FRCRCD(20)

Performance and query optimization 99

|

|

|

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|

|
|
|

|

|
|

This command starts database monitoring for job number 134543. The job name is DSP01 and was started
by the user named QPGMR. The performance statistics are added to the member named MEMBER2 in
the file named FILE3. Twenty records will be held before being written to the file.

Example 3: Starting Database Monitoring For a Specific Job to a File in a Library in an
Independent ASP
STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(134543/QPGMR/DSP01)

This command starts database monitoring for job number 134543. The job name is DSP01 and was started
by the user named QPGMR. The performance statistics are added to the member name DBMONFILE
(since OUTMBR was not specified) in the file named DBMONFILE in the library named LIB41. This
library may exist in more than one independent auxiliary storage pool (ASP); the library in the name
space of the originator's job will always be used.

Example 4: Starting Database Monitoring For All Jobs That Begin With 'QZDA'
STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(*ALL/*ALL/QZDA*)

This command starts database monitoring for all jobs whose job name begins with 'QZDA'. The
performance statistics (monitor records) are added to member DBMONFILE (since OUTMBR was not
specified) in file DBMONFILE in library LIB41. This library may exist in more than one independent
auxiliary storage pool (ASP); the library in the name space of the originator's job will always be used.
Note that because this is a public type monitor, so any QZDA jobs that are started will also have statistics
records collected.

Example 5: Starting Database Monitoring For All Jobs and Filtering SQL Statements That
Run Over 10 Seconds
STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(*ALL) RUNTHLD(10)

This command starts database monitoring for all jobs. Monitor records are created only for those SQL
statements whose estimated run time meets or exceeds 10 seconds.

Example 6: Starting Database Monitoring For the Current® Job and Filtering Over a
Specific File
STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(*) FTRFILE(LIB41/TABLE1)

This command starts database monitoring for the current job. Monitor records are created only for those
SQL statements that use file TABLE1 in Library LIB41.

Example 7: Starting Database Monitoring For the Current Job and the Current User
STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(*) FTRUSER(*CURRENT)

This command starts database monitoring for the current job. Monitor records are created only for those
SQL statements that are executed by the current user.

Example 8: Starting Database Monitoring For Jobs Beginning With 'QZDA' and Filtering
Over Run Time and File
STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(*ALL/*ALL/QZDA*)

RUNTHLD(10) FTRUSER(DEVLPR1) FTRFILE(LIB41/TTT*)

This command starts database monitoring for all jobs whose job name begins with 'QZDA'. Monitor
records are created only for those SQL statements that meet all of the following conditions:
v The estimated run time, as calculated by the query optimizer, meets or exceeds 10 seconds
v Was executed by user 'DEVLPR1'.
v Uses any file whose name begins with 'TTT' and resides in library LIB41.

100 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|

|
|

|

|
|
|
|
|

|

|

|
|
|
|
|
|

|
|

|

|
|

|
|

|

|
|

|

|

|
|

|
|

|
|

|
|

|

|

|

Related information

Start Database Monitor (STRDBMON) command

End Database Monitor (ENDDBMON) command
The End Database Monitor (ENDDBMON) command ends the collection of database performance
statistics for a specified job, all jobs on the system or a selected set of jobs (for example, a generic job
name).

To end a monitor, you can specify the job or the monitor ID or both. If only the JOB parameter is
specified, the monitor that was started using the same exact JOB parameter is ended - if there is only one
monitor which matches the specified JOB. If more than one monitor is active which matches the specified
JOB, then the user uniquely identifies which monitor is to be ended by use of the MONID parameter.
When only the MONID parameter is specified, the specified MONID is compared to the monitor ID of
the monitor for the current job and to the monitor ID of all active public monitors (monitors that are
open across multiple jobs). The monitor matching the specified MONID is ended.

The monitor ID is returned in the informational message CPI436A. This message is generated for each
occurrence of the STRDBMON command. Look in the joblog for message CPI436A to find the system
generated monitor ID, if needed. The monitor ID can also be found in column QQC101 of the QQQ3018
database monitor record.

Restrictions
v If a specific job name and number or JOB(*) was specified on the Start Database Monitor (STRDBMON)

command, the monitor can only be ended by specifying the same job name and number or JOB(*) on
the ENDDBMON command.

v If JOB(*ALL) was specified on the Start Database Monitor (STRDBMON) command, the monitor can
only be ended by specifying ENDDBMON JOB(*ALL). The monitor cannot be ended by specifying
ENDDBMON JOB(*).

When monitoring is ended for all jobs, all of the jobs on the server will be triggered to close the database
monitor output table. However, the ENDDBMON command can complete before all of the monitored
jobs have written their final statistic records to the log. Use the Work with Object Locks (WRKOBJLCK)
command to determine that all of the monitored jobs no longer hold locks on the database monitor
output table before assuming the monitoring is complete.

Example 1: End Monitoring for a Specific Job
ENDDBMON JOB(*)

This command ends database monitoring for the current job.

Example 2: End Monitoring for All Jobs
ENDDBMON JOB(*ALL)

This command ends the monitor open across all jobs on the system. If more than one monitor with
JOB(*ALL) is active, then the MONID parameter must also be specified to uniquely identify which
specific public monitor to end.

Example 3: End Monitoring for an Individual Public Monitor with MONID Parameter
ENDDBMON JOB(*ALL) MONID(061601001)

This command ends the monitor that was started with JOB(*ALL) and that has a monitor ID of
061601001. Because there were multiple monitors started with JOB(*ALL), the monitor ID must be
specified to uniquely identify which monitor that was started with JOB(*ALL) is to be ended.

Performance and query optimization 101

|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

|
|
|

|
|
|

|
|
|
|
|

|

|

|

|

|

|
|
|

|

|

|
|
|

Example 4: End Monitoring for an Individual Public Monitor with MONID Parameter
ENDDBMON MONID(061601001)

This command performs the same function as the previous example. It ends the monitor that was started
with JOB(*ALL) or JOB(*) and that has a monitor ID of 061601001.

Example 5: End Monitoring for All JOB(*ALL) Monitors
ENDDBMON JOB(*ALL/*ALL/*ALL) MONID(*ALL)

This command ends all monitors that are active across multiple jobs. It will not end any monitors open
for a specific job or the current job.

Example 6: End Monitoring for a Generic Job
ENDDBMON JOB(QZDA*)

This command ends the monitor that was started with JOB(QZDA*). If more than one monitor with
JOB(QZDA*) is active, then the MONID parameter must also be specified to uniquely identify which
individual monitor to end.

Example 7: End Monitoring for an Individual Monitor with a Generic Job
ENDDBMON JOB(QZDA*) MONID(061601001)

This command ends the monitor that was started with JOB(QZDA*) and has a monitor ID of 061601001.
Because there were multiple monitors started with JOB(QZDA*), the monitor ID must be specified to
uniquely identify which JOB(QZDA*) monitor is to be ended.

Example 8: End Monitoring for a Group of Generic Jobs
ENDDBMON JOB(QZDA*) MONID(*ALL)

This command ends all monitors that were started with JOB(QZDA*).
Related information

End Database Monitor (ENDDBMON) command

Database monitor performance rows
The rows in the database table are uniquely identified by their row identification number. The
information within the file-based monitor (Start Database Monitor (STRDBMON)) is written out based
upon a set of logical formats which are defined in the Database Monitor formats. These views correlate
closely to the debug messages and the Print SQL Information (PRSQLINF) messages.

The Database monitor formats section also identifies which physical columns are used for each view and
what information it contains. You can use the views to identify the information that can be extracted from
the monitor. These rows are defined in several different views which are not shipped with the server and
must be created by the user, if wanted. The views can be created with the SQL DDL. The column
descriptions are explained in the tables following each figure.

Database monitor examples
The iSeries navigator interface provides a powerful tool for gathering and analyzing performance monitor
data using database monitor. However, you may want to do your own analysis of the database monitor
files.

Suppose you have an application program with SQL statements and you want to analyze and
performance tune these queries. The first step in analyzing the performance is collection of data. The
following examples show how you might collect and analyze data using Start Database Monitor

102 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|

|

|

|
|

|

|

|
|
|

|

|

|
|
|

|

|

|

|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

(STRDBMON) and End Database Monitor (ENDDBMON) commands. Performance data is collected in
LIB/PERFDATA for an application running in your current job. The following sequence collects
performance data and prepares to analyze it.
1. STRDBMON FILE(LIB/PERFDATA) TYPE(*DETAIL). If this table does not already exist, the

command will create one from the skeleton table in QSYS/QAQQDBMN.
2. Run your application
3. ENDDBMON
4. Create views over LIB/PERFDATA using the SQL DDL. Creating the views is not mandatory. All of

the information resides in the base table that was specified on the STRDBMON command. The views
simply provide an easier way to view the data.

You are now ready to analyze the data. The following examples give you a few ideas on how to use this
data. You should closely study the physical and logical view formats to understand all the data being
collected so you can create queries that give the best information for your applications.
Related information

Start Database Monitor (STRDBMON) command
End Database Monitor (ENDDBMON) command

Database monitor performance analysis example 1:

Determine which queries in your SQL application are implemented with table scans. The complete
information can be obtained by joining two views: QQQ1000, which contains information about the SQL
statements, and QQQ3000, which contains data about queries performing table scans.

The following SQL query can be used:
SELECT A.System_Table_Schema, A.System_Table_Name, A.Table_Total_Rows, A.Index_Advised,

C.Number_Rows_Returned, (B.End_Timestamp - B.Start_Timestamp)
AS TOT_TIME, B.Statement_Text_Long
FROM LIB/QQQ3000 A, LIB/QQQ1000 B, LIB/QQQ3019 C
WHERE A.Join_Column = B.Join_Column
AND A.Unique_Count = B.Unique_Count
AND A.Join_Column = C.Join_Column
AND A.Unique_Count = C.Unique_Count

Sample output of this query is shown in the table below. Key to this example are the join criteria:
WHERE A.Join_Column = B.Join_Column

AND A.Join_Column = C.Join_Column

A lot of data about many queries is contained in multiple rows in table LIB/PERFDATA. It is not
uncommon for data about a single query to be contained in 10 or more rows within the table. The
combination of defining the logical views and then joining the views together allows you to piece
together all the data for a query or set of queries. Column QQJFLD uniquely identifies all queries within
a job; column QQUCNT is unique at the query level. The combination of the two, when referenced in the
context of the logical views, connects the query implementation to the query statement information.

Table 27. Output for SQL Queries that Performed Table Scans

Lib Name
Table
Name

Total
Rows

Index
Advised

Rows
Returned

TOT_
TIME Statement Text

LIB1 TBL1 20000 Y 10 6.2 SELECT * FROM LIB1/TBL1
WHERE FLD1 = 'A'

LIB1 TBL2 100 N 100 0.9 SELECT * FROM LIB1/TBL2
LIB1 TBL1 20000 Y 32 7.1 SELECT * FROM LIB1/TBL1

WHERE FLD1 = 'B' AND
FLD2 > 9000

Performance and query optimization 103

|
|
|

|
|

|

|

|
|
|

|
|
|

|

|

|

|

|
|
|

|

|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|

||

|
|
|
|
|
|
|
|
|
|
||

|||||||
|
|||||||
|||||||
|
|
|

If the query does not use SQL, the SQL information row (QQQ1000) is not created. This makes it more
difficult to determine which rows in LIB/PERFDATA pertain to which query. When using SQL, row
QQQ1000 contains the actual SQL statement text that matches the monitor rows to the corresponding
query. Only through SQL is the statement text captured. For queries executed using the OPNQRYF
command, the OPNID parameter is captured and can be used to tie the rows to the query. The OPNID is
contained in column Open_Id of row QQQ3014.

Database monitor performance analysis example 2:

Similar to the preceding example that showed which SQL applications were implemented with table
scans, the following example shows all queries that are implemented with table scans.
SELECT A.System_Table_Schema, A.System_Table_Name,

A.Table_Total_Rows, A.Index_Advised,
B.Open_Id, B.Open_Time,
C.Clock_Time_to_Return_All_Rows, C.Number_Rows_Returned, D.Result_Rows,
(D.End_Timestamp - D.Start_Timestamp) AS TOT_TIME,
D.Statement_Text_Long

FROM LIB/QQQ3000 A INNER JOIN LIB/QQQ3014 B
ON (A.Join_Column = B.Join_Column AND
A.Unique_Count = B.Unique_Count)
LEFT OUTER JOIN LIB/QQQ3019 C
ON (A.Join_Column = C.Join_Column AND A.Unique_Count = C.Unique_Count)
LEFT OUTER JOIN LIB/QQQ1000 D
ON (A.Join_Column = D.Join_Column AND A.Unique_Count = D.Unique_Count)

In this example, the output for all queries that performed table scans are shown in the table below.

Note: The columns selected from table QQQ1000 do return NULL default values if the query was not
executed using SQL. For this example assume the default value for character data is blanks and the
default value for numeric data is an asterisk (*).

Table 28. Output for All Queries that Performed Table Scans

Lib
Name

Table
Name

Total
Rows

Index
Advised

Query
OPNID

ODP
Open
Time

Clock
Time

Recs
Rtned

Rows
Rtned

TOT_
TIME Statement Text

LIB1 TBL1 20000 Y 1.1 4.7 10 10 6.2 SELECT *
FROM LIB1/TBL1
WHERE FLD1 = 'A'

LIB1 TBL2 100 N 0.1 0.7 100 100 0.9 SELECT *
FROM LIB1/TBL2

LIB1 TBL1 20000 Y 2.6 4.4 32 32 7.1 SELECT *
FROM LIB1/TBL1
WHERE FLD1 = 'A'
AND FLD2 > 9000

LIB1 TBL4 4000 N QRY04 1.2 4.2 724 * * *

If the SQL statement text is not needed, joining to table QQQ1000 is not necessary. You can determine the
total time and rows selected from data in the QQQ3014 and QQQ3019 rows.

Database monitor performance analysis example 3:

Your next step may include further analysis of the table scan data. The previous examples contained a
column titled Index Advised. A 'Y' (yes) in this column is a hint from the query optimizer that the query
may perform better with an index to access the data. For the queries where an index is advised, notice
that the rows selected by the query are low in comparison to the total number of rows in the table. This
is another indication that a table scan may not be optimal. Finally, a long execution time may highlight
queries that may be improved by performance tuning.

104 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

||

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
||

|||||||||||
|
|
|||||||||||
|
|||||||||||
|
|
|
|||||||||||
|

|
|

|

|
|
|
|
|
|

The next logical step is to look into the index advised optimizer hint. The following query can be used
for this:
SELECT A.System_Table_Schema, A.System_Table_Name,

A.Index_Advised, A.Index_Advised_Columns,
A.Index_Advised_Columns_Count, B.Open_Id,
C.Statement_Text_Long

FROM LIB/QQQ3000 A INNER JOIN LIB/QQQ3014 B
ON (A.Join_Column = B.Join_Column AND
A.Unique_Count = B.Unique_Count)
LEFT OUTER JOIN LIB/QQQ1000 C
ON (A.Join_Column = C.Join_Column AND
A.Unique_Count = C.Unique_Count)

WHERE A.Index_Advised = 'Y'

There are two slight modifications from the first example. First, the selected columns have been changed.
Most important is the selection of column Index_Advised_Columns that contains a list of possible key
columns to use when creating the index suggested by the query optimizer. Second, the query selection
limits the output to those table scan queries where the optimizer advises that an index be created
(A.Index_Advised = 'Y'). The table below shows what the results might look like.

Table 29. Output with Recommended Key Columns

Lib Name
Table
Name

Index
Advised

Advised
Key
columns

Advised
Primary
Key

Query
OPNID Statement Text

LIB1 TBL1 Y FLD1 1 SELECT * FROM LIB1/TBL1
WHERE FLD1 = 'A'

LIB1 TBL1 Y FLD1,
FLD2

1 SELECT * FROM LIB1/TBL1
WHERE FLD1 = 'B' AND
FLD2 > 9000

LIB1 TBL4 Y FLD1,
FLD4

1 QRY04

At this point you should determine whether it makes sense to create a permanent index as advised by
the optimizer. In this example, creating one index over LIB1/TBL1 satisfies all three queries since each
use a primary or left-most key column of FLD1. By creating one index over LIB1/TBL1 with key columns
FLD1, FLD2, there is potential to improve the performance of the second query even more. The frequency
these queries are run and the overhead of maintaining an additional index over the table should be
considered when deciding whether to create the suggested index.

If you create a permanent index over FLD1, FLD2 the next sequence of steps is as follows:
1. Start the performance monitor again
2. Re-run the application
3. End the performance monitor
4. Re-evaluate the data.

It is likely that the three index-advised queries are no longer performing table scans.

Additional database monitor examples:

The following are additional ideas or examples on how to extract information from the performance
monitor statistics. All of the examples assume data has been collected in LIB/PERFDATA and the
documented views have been created.
1. How many queries are performing dynamic replans?

SELECT COUNT(*)
FROM LIB/QQQ1000
WHERE Dynamic_Replan_Reason_Code <> 'NA'

Performance and query optimization 105

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

||

|
|
|
|
|

|
|
|

|
|
|
|
||

|||||||
|
||||
|
|||
|
|
||||
|
|||

|

|
|
|
|
|
|

|

|

|

|

|

|

|

|
|
|

|

|
|
|

2. What is the statement text and the reason for the dynamic replans?
SELECT Dynamic_Replan_Reason_Code, Statement_Text_Long

FROM LIB/QQQ1000
WHERE Dynamic_Replan_Reason_Code <> 'NA'

Note: You need to refer to the description of column Dynamic_Replan_Reason_Code for definitions
of the dynamic replan reason codes.

3. How many indexes have been created over LIB1/TBL1?
SELECT COUNT(*)

FROM LIB/QQQ3002
WHERE System_Table_Schema = 'LIB1'

AND System_Table_Name = 'TBL1'

4. What key columns are used for all indexes created over LIB1/TBL1 and what is the associated SQL
statement text?
SELECT A.System_Table_Schema, A.System_Table_Name,

A.Index_Advised_Columns, B.Statement_Text_Long
FROM LIB/QQQ3002 A, LIB/QQQ1000 B
WHERE A.Join_Column = B.Join_Column

AND A.Unique_Count = B.Unique_Count
AND A.System_Table_Schema = 'LIB1'
AND A.System_Table_Name = 'TBL1'

Note: This query shows key columns only from queries executed using SQL.
5. What key columns are used for all indexes created over LIB1/TBL1 and what was the associated

SQL statement text or query open ID?
SELECT A.System_Table_Schema, A.System_Table_Name, A.Index_Advised_Columns,

B.Open_Id, C.Statement_Text_Long
FROM LIB/QQQ3002 A INNER JOIN LIB/QQQ3014 B

ON (A.Join_Column = B.Join_Column AND
A.Unique_Count = B.Unique_Count)

LEFT OUTER JOIN LIB/QQQ1000 C
ON (A.Join_Column = C.Join_Column AND
A.Unique_Count = C.Unique_Count)

WHERE A.System_Table_Schema LIKE '%'
AND A.System_Table_Name = '%'

Note: This query shows key columns from all queries on the server.
6. What types of SQL statements are being performed? Which are performed most frequently?

SELECT CASE Statement_Function
WHEN 'O' THEN 'Other'
WHEN 'S' THEN 'Select'
WHEN 'L' THEN 'DDL'
WHEN 'I' THEN 'Insert'
WHEN 'U' THEN 'Update'

ELSE 'Unknown'
END, COUNT(*)
FROM LIB/QQQ1000
GROUP BY Statement_Function
ORDER BY 2 DESC

7. Which SQL queries are the most time consuming? Which user is running these queries?
SELECT (End_Timestamp - Start_Timestamp), Job_User,

Current_User_Profile, Statement_Text_Long
FROM LIB/QQQ1000
ORDER BY 1 DESC

8. Which queries are the most time consuming?
SELECT (A.Open_Time + B.Clock_Time_to_Return_All_Rows),

A.Open_Id, C.Statement_Text_Long
FROM LIB/QQQ3014 A LEFT OUTER JOIN LIB/QQQ3019 B

ON (A.Join_Column = B.Join_Column AND

106 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|
|
|

|
|

|

|
|
|
|

|
|

|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|

|
|
|
|

A.Unique_Count = B.Unique_Count)
LEFT OUTER JOIN LIB/QQQ1000 C

ON (A.Join_Column = C.Join_Column AND
A.Unique_Count = C.Unique_Count)

ORDER BY 1 DESC

Note: This example assumes detail data was collected (STRDBMON TYPE(*DETAIL)).
9. Show the data for all SQL queries with the data for each SQL query logically grouped together.

SELECT A.*
FROM LIB/PERFDATA A, LIB/QQQ1000 B
WHERE A.QQJFLD = B.Join_Column

AND A.QQUCNT = B.Unique_Count

Note: This might be used within a report that will format the interesting data into a more readable
format. For example, all reason code columns can be expanded by the report to print the
definition of the reason code (that is, physical column QQRCOD = 'T1' means a table scan was
performed because no indexes exist over the queried table).

10. How many queries are being implemented with temporary tables because a key length of greater
than 2000 bytes or more than 120 key columns was specified for ordering?
SELECT COUNT(*)

FROM LIB/QQQ3004
WHERE Reason_Code = 'F6'

11. Which SQL queries were implemented with nonreusable ODPs?
SELECT B.Statement_Text_Long

FROM LIB/QQQ3010 A, LIB/QQQ1000 B
WHERE A.Join_Column = B.Join_Column

AND A.Unique_Count = B.Unique_Count
AND A.ODP_Implementation = 'N';

12. What is the estimated time for all queries stopped by the query governor?
SELECT Estimated_Processing_Time, Open_Id

FROM LIB/QQQ3014
WHERE Stopped_By_Query_Governor = 'Y'

Note: This example assumes detail data was collected (STRDBMON TYPE(*DETAIL)).
13. Which queries estimated time exceeds actual time?

SELECT A.Estimated_Processing_Time,
(A.Open_Time + B.Clock_Time_to_Return_All_Rows),
A.Open_Id, C.Statement_Text_Long

FROM LIB/QQQ3014 A LEFT OUTER JOIN LIB/QQQ3019 B
ON (A.Join_Column = B.Join_Column AND
A.Unique_Count = B.Unique_Count)

LEFT OUTER JOIN LIB/QQQ1000 C
ON (A.Join_Column = C.Join_Column AND
A.Unique_Count = C.Unique_Count)

WHERE A.Estimated_Processing_Time/1000 >
(A.Open_Time + B.Clock_Time_to_Return_All_Rows)

Note: This example assumes detail data was collected (STRDBMON TYPE(*DETAIL)).
14. Should a PTF for queries that perform UNION exists be applied. It should be applied if any queries

are performing UNION. Do any of the queries perform this function?
SELECT COUNT(*)

FROM QQQ3014
WHERE Has_Union = 'Y'

Note: If result is greater than 0, the PTF should be applied.
15. You are a system administrator and an upgrade to the next release is planned. You want to compare

data from the two releases.
v Collect data from your application on the current release and save this data in LIB/CUR_DATA

Performance and query optimization 107

|
|
|
|
|

|

|

|
|
|
|

|
|
|
|

|
|

|
|
|

|

|
|
|
|
|

|

|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|

|

|
|

|

v Move to the next release
v Collect data from your application on the new release and save this data in a different table:

LIB/NEW_DATA
v Write a program to compare the results. You will need to compare the statement text between the

rows in the two tables to correlate the data.

Using iSeries Navigator with detailed monitors
You can work with detailed monitors from the iSeries Navigator interface. The detailed SQL performance
monitor is the iSeries Navigator version of the STRDBMON database monitor, found on the native
interface.

You can start this monitor by right-clicking SQL Performance Monitors under the Database portion of the
iSeries Navigator tree and selecting New → Monitor. This monitor save detailed data in real time to a
hard disk and does not need to be paused or ended in order to analyze the results. You can also choose
to run a Visual Explain based on the data gather by the monitor. Since this monitor does save data in real
time, it may have a performance impact on your system.

Starting a detailed monitor
You can start a detailed monitor from the iSeries Navigator interface.

You can start this monitor by right-clicking SQL Performance Monitors under the Database portion of the
iSeries Navigator tree and selecting New → SQL Performance Monitor. On the monitor wizard, select
Detailed.

When you create a detailed monitor, you can filter the information that you want to capture.

Minimum estimated query runtime
Select this to include queries that exceed a specified amount of time. Select a number and then a
unit of time.

Job name
Select this to filter by a specific job name. Specify a job name in the field. You can specify the
entire ID or use a wildcard. For example, 'QZDAS*' will find all jobs where the name starts with
'QZDAS.'

Job user
Select this to filter by a job user. Specify a user ID in the field. You can specify the entire ID or
use a wildcard. For example, 'QUSER*' will find all user IDs where the name starts with 'QUSER.'

Current user
Select this to filter by the current user of the job. Specify a user ID in the field. You can specify
the entire ID or use a wildcard. For example, 'QSYS*' will find all users where the name starts
with 'QSYS.'

Internet address
Select this to filter by Internet access. The format must be xxx.xxx.xxx.xxx. For example:
5.5.199.199.

Only queries that access these tables
Select this to filter by only queries that use certain tables. Click Browse to select tables to include.
To remove a table from the list, select the table and click Remove. A maximum of ten table names
can be specified.

Activity to monitor
Select to collect monitor output for user-generated queries or for both user-generated and
system-generated queries.

You can choose which jobs you want to monitor or choose to monitor all jobs. You can have multiple
instances of monitors running on you system at one time. You can create up to 10 detailed monitors to

108 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|
|

|
|

|

|
|
|

|
|
|
|
|

|
|

|
|
|

|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|

monitor all jobs. When collecting information for all jobs, the monitor will collect on previously started
jobs or new jobs that are started after the monitor is created. You can edit this list by selecting and
removing jobs from the Selected jobs list.

Analyze detailed monitor data
SQL Performance monitors provides several predefined reports that you can use to analyze your monitor
data.

To view these reports, right-click a monitor and select Analyze. The monitor does not need to be ended
in order to view this information.

On the Analysis Overview dialog, you can view overview information or else choose one of the following
categories:
v How much work was requested?
v What options were provided to the optimizer?
v What implementations did the optimizer use?
v What types of SQL statements were requested?
v Miscellaneous information
v I/O information

From the Actions menu, you can choose one of the following summary predefined reports:

Performance and query optimization 109

|
|
|

|
|
|

|
|

|

|
|

|

|

|

|

|

|

|

User summary
Contains a row of summary information for each user. Each row summarizes all SQL activity for
that user.

Job summary
Contains a row of information for each job. Each row summarizes all SQL activity for that job.
This information can be used to tell which jobs on the system are the heaviest users of SQL, and
hence which ones are perhaps candidates for performance tuning. The user may then want to
start a separate detailed performance monitor on an individual job to get more detailed
information without having to monitor the entire system.

Operation summary
Contains a row of summary information for each type of SQL operation. Each row summarizes
all SQL activity for that type of SQL operation. This information provides the user with a high
level indication of the type of SQL statements used. For example, are the applications mainly
read-only, or is there a large amount of update, delete, or insert activity. This information can
then be used to try specific performance tuning techniques. For example, if a large amount of
INSERT activity is occurring, perhaps using an OVRDBF command to increase the blocking factor
or perhaps use of the QDBENCWT API is appropriate.

Program summary
Contains a row of information for each program that performed SQL operations. Each row
summarizes all SQL activity for that program. This information can be used to identify which
programs use the most or most expensive SQL statements. Those programs are then potential
candidates for performance tuning. Note that a program name is only available if the SQL
statements are embedded inside a compiled program. SQL statements that are issued through
ODBC, JDBC, or OLE DB have a blank program name unless they result from a procedure,
function, or trigger.

In addition, when a green check is displayed under Summary column, you can select that row and click
Summary to view information about that row type. Click Help for more information about the summary
report. To view information organized by statements, click Statements.

Comparing monitor data
You can use iSeries Navigator to compare data sets in two different monitors.

To compare data sets in different monitors, go to iSeries Navigator → system name → SQL performance
monitors. Right-click a monitor in the right pane and select Compare.

On the Compare dialog, you can specify information about the data sets that you want to compare.

Name The name of the monitors that you want to compare.

Schema mask
Select any names that you want the compare to ignore. For example, consider the following
scenario: You have an application running in a test schema and have it optimized. Now you
move it to the production schema and you want to compare how it executes there. The
statements in the compare are identical except that the statements in the test schema use "TEST"
and the statements in the production schema use "PROD". You can use the schema mask to
ignore "TEST" in the first monitor and to ignore "PROD" in the second monitor so that the
statements in the two monitors appear identical.

Compare statements that ran longer than
The minimum runtime for statements to be compared.

Minimum percent difference
The minimum difference in key attributes of the two statements being compared that determines
if the statements are considered equal or not. For example, if you select 25% as the minimum
percent different, only matching statements whose key attributes differ by 25% or more are
returned.

110 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|

|
|

|

||

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

When you click Compare, both monitors are scanned for matching statements. Any matches found will
be displayed side-by-side for comparison of key attributes of each implementation.

On the Comparison output dialog, you view statements that are included in the monitor by clicking
Show Statements. You can also run Visual Explain by selecting a statement and clicking Visual Explain.

Viewing statements in a monitor
You can view SQL statements that are included in a detailed monitor.

Right-click any detailed monitor in the SQL performance monitor window and select Show statements.

The filtering options provide a way to focus in on a particular area of interest:

Minimum runtime for the longest execution
Filter to those queries with at least one long individual query instance runtime

Queries run after this date and time
Filters to those queries that have been run recently

Queries that use or reference these objects
Provides a way to limit the entries to those that referenced or use the table(s) or index(s)
specified.

SQL statement contains
Provides a wildcard search capability on the SQL text itself. It is useful for finding particular
types of queries. For example, queries with a FETCH FIRST clause can be found by specifying
‘fetch’. The search is case insensitive for ease of use. For example, the string 'FETCH' will find the
same entries as the search string 'fetch'.

Multiple filter options can be specified. Note that in a multi-filter case, the candidate entries for each
filter are computed independently and only those entries that are present in all the candidate lists are
shown. So, for example, if you specified options Minimum runtime for the longest execution and
Queries run after this date and time, you will be shown those entries with the minimum runtime that
are run after the specified date and time.
Related reference

“Query optimizer index advisor”
The query optimizer analyzes the row selection in the query and determines, based on default values, if
creation of a permanent index improves performance. If the optimizer determines that a permanent index
might be beneficial, it returns the key columns necessary to create the suggested index.

Importing a monitor
You can import monitor data that has been collected using Start Database Monitor (STRDBMON)
command or some other interface by using iSeries Navigator.

To import monitor data, right-click SQL Performance monitors and select Import. Once you have
imported a monitor, you can analyze the data.

Query optimizer index advisor
The query optimizer analyzes the row selection in the query and determines, based on default values, if
creation of a permanent index improves performance. If the optimizer determines that a permanent index
might be beneficial, it returns the key columns necessary to create the suggested index.

The optimizer is able to perform radix index probe over any combination of the primary key columns,
plus one additional secondary key column. Therefore it is important that the first secondary key column
be the most selective secondary key column. The optimizer will use radix index scan with any of the

Performance and query optimization 111

|
|

|
|

|
|

|

|

|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|

|
|
|

|
|

|

|
|
|

|
|
|

remaining secondary key columns. While radix index scan is not as fast as radix index probe it can still
reduce the number of keys selected. Hence, secondary key columns that are fairly selective should be
included.

It is up to the user to determine the true selectivity of any secondary key columns and to determine
whether those key columns should be included when creating the index. When building the index the
primary key columns should be the left-most key columns followed by any of the secondary key columns
the user chooses and they should be prioritized by selectivity.

Note: After creating the suggested index and executing the query again, it is possible that the query
optimizer will choose not to use the suggested index. The CQE optimizer when suggesting indexes
only considers the selection criteria and does not include join, ordering, and grouping criteria. The
SQE optimizer includes selection, join, ordering, and grouping criteria when suggesting indexes.

You can access index advisor information in many different ways. These include:
v The index advisor interface in iSeries Navigator
v SQL performance monitor Show statements
v Visual Explain interface
v Querying the Database monitor view 3020 - Index advised.
Related reference

“Overview of information available from Visual Explain” on page 116
You can use Visual Explain to view many types of information.
“Database monitor view 3020 - Index advised (SQE)” on page 250
“Viewing statements in a monitor” on page 111
You can view SQL statements that are included in a detailed monitor.

Display index advisor information
You can display index advisor information from the optimizer using iSeries Navigator.

iSeries navigator displays information found in the QSYS2/SYSIXADV system table.

To display index advisor information, follow these steps:
1. In the iSeries Navigator window, expand the system that you want to use.
2. Expand Databases.
3. Right-click the database that you want to work with and select Index Advisor → Index Advisor.

You can also find index advisor information for a specific schema or a specific table by right-clicking on a
schema or table object.

Once you have displayed the information, you can choose to create an index from the list, remove the
index advised from the list, or clear the list entirely.

Database manager indexes advised system table:

This topic describes the indexes advised system table.

Table 30. SYSIXADV system table

Column name
System column
name Data type Description

TABLE_NAME TBNAME VARCHAR(258) Table over which an index is advised

TABLE_SCHEMA DBNAME CHAR(10) Schema containing the table

112 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|

|
|
|
|

|
|
|
|

|

|

|

|

|

|

|
|

|

|
|

|
|

|

|

|

|

|

|
|

|
|

|

|

||

|
|
|||

||||

||||

Table 30. SYSIXADV system table (continued)

Column name
System column
name Data type Description

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System table name on which the index is
advised

PARTITION_NAME TBMEMBER CHAR(10) Partition detail for the index

KEY_COLUMNS_ADVISED KEYSADV VARCHAR(16000) Column names for the advised index

LEADING_COLUMN_KEYS LEADKEYS VARCHAR(16000) Leading, Order Independent keys. the
keys at the beginning of the
KEY_COLUMNS_ADVISED field which
could be reordered and still satisfy the
index being advised.

INDEX_TYPE INDEX_TYPE CHAR(14) Radix (default) or EVI

LAST_ADVISED LASTADV TIMESTAMP Last time this row was updated

TIMES_ADVISED TIMESADV BIGTINT Number of times this index has been
advised

ESTIMATED_CREATION_TIME ESTTIME INT Estimated number of seconds for index
creation

REASON_ADVISED REASON CHAR(2) Coded reason why index was advised

LOGICAL_PAGE_SIZE PAGESIZE INT Recommended page size for index

MOST_EXPENSIVE_QUERY QUERYCOST INT Execution time in seconds of the query

AVERAGE_QUERY_ESTIMATE QUERYEST INT Average execution time in seconds of the
query

TABLE_SIZE TABLE_SIZE BIGINT Number of rows in table when the index
was advised

NLSS_TABLE_NAME NLSSNAME CHAR(10) NLSS table to use for the index

NLSS_TABLE_SCHEMA NLSSDBNAME CHAR(10) Schema name of the NLSS table

Index advisor columns
Displays the columns that are used in the Index advisor window.

Table 31. Columns used in Index advisor window

Column name Description

Table for Which Index was Advised The optimizer is advising creation of a permanent index over this
table. This is the long name for the table. The advice was generated
because the table was queried and no existing permanent index
could be used to improve the performance of the query.

Schema Schema or library containing the table

Short Name System table name on which the index is advised

Partition Partition detail for the index. Possible values:

v <blank>, which means For all partitions

v For Each Partition

v specific name of the partition

Key Advised Column names for the advised index. The order of the column
names is important. The names should be listed in the same order
on the CREATE INDEX SQL statement, unless the leading, order
independent key information indicates that the ordering can be
changed.

Performance and query optimization 113

|

|
|
|||

||||
|

||||

||||

||||
|
|
|
|

||||

||||

||||
|

||||
|

||||

||||

||||

||||
|

||||
|

||||

||||
|

|
|

||

||

||
|
|
|

||

||

||

|

|

|

||
|
|
|
|

Table 31. Columns used in Index advisor window (continued)

Column name Description

Leading Keys Order Independent Leading, Order Independent keys. the keys at the beginning of the
KEY_COLUMNS_ADVISED field which could be reordered and
still satisfy the index being advised.

Index Type Advised Radix (default) or EVI

Last Advised for Query Use The timestamp representing the last time this index was advised for
a query.

Times Advised for Query Use The cumulative number of times this index has been advised. This
count should cease to increase once a matching permanent index is
created. The row of advice will remain in this table until the user
removes it

Estimated Index Creation Time Estimated time required to create this index.

Reason advised Reason why index was advised. Possible values are:
Row selection
Ordering/Grouping
Row selection and Ordering/Grouping

Logical Page Size Advised (KB) Recommended page size to be used on the PAGESIZE keyword of
the CREATE INDEX SQL statement when creating this index.

Most Expensive Query Estimate Execution time in seconds of the longest running query which
generated this index advice.

Average of Query Estimates (seconds) Average execution time in seconds of all queries that generated this
index advice.

Rows in Table when Advised Number of rows in table for the last time this index was advised.

NLSS Table Advised The sort sequence table in use by the query which generated the
index advice. For more detail on sort sequences:

NLSS Schema Advised The schema of the sort sequence table.

MTI Used The number of times that this specific Maintained Temporary Index
(MTI) has been used by the optimizer.

MTI Created The number of times that this specific Maintained Temporary Index
(MTI) has been created by the optimizer. MTI's do not persist across
system IPL's.

MTI Last Used The timestamp representing the last time this specific Maintained
Temporary Index (MTI) was used by the optimizer to improve the
performance of a query. The MTI Last Used field can be blank,
which indicates that an MTI which exactly matches this advice has
never been used by the queries which generated this index advice.

Querying database monitor view 3020 - Index advised
The index advisor information can be found in the Database Monitor view 3020 - Index advised (SQE).

The advisor information is stored in columns QQIDXA, QQIDXK and QQIDXD. When the QQIDXA
column contains a value of 'Y' the optimizer is advising you to create an index using the key columns
shown in column QQIDXD. The intention of creating this index is to improve the performance of the
query.

In the list of key columns contained in column QQIDXD the optimizer has listed what it considers the
suggested primary and secondary key columns. Primary key columns are columns that should
significantly reduce the number of keys selected based on the corresponding query selection. Secondary
key columns are columns that may or may not significantly reduce the number of keys selected.

114 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

||

||
|
|

||

||
|

||
|
|
|

||

||
|
|
|

||
|

||
|

||
|

||

||
|

||

||
|

||
|
|

||
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

Column QQIDXK contains the number of suggested primary key columns that are listed in column
QQIDXD. These are the left-most suggested key columns. The remaining key columns are considered
secondary key columns and are listed in order of expected selectivity based on the query. For example,
assuming QQIDXK contains the value of 4 and QQIDXD specifies 7 key columns, then the first 4 key
columns specified in QQIDXK is the primary key columns. The remaining 3 key columns are the
suggested secondary key columns.

View the implementation of your queries with Visual Explain
You can use the Visual Explain tool with iSeries Navigator to create a query graph that graphically
displays the implementation of an SQL statement. You can use this tool to see information about both
static and dynamic SQL statements. Visual Explain supports the following types of SQL statements:
SELECT, INSERT, UPDATE, and DELETE.

Queries are displayed using a graph with a series of icons that represent different operations that occur
during implementation. This graph is displayed in the main window. In the lower portion of the pane,
the SQL statement that the graph is based on is displayed. If Visual explain is started from Run SQL
Scripts, you can view the debug messages issued by the optimizer by clicking the Optimizer messages
tab. The Query attributes are displayed in the right pane.

Visual Explain can be used to graphically display the implementations of queries stored in the detailed
SQL performance monitor. However, it does not work with tables resulting from the memory-resident
monitor.

Starting Visual Explain
There are two ways to invoke the Visual Explain tool. The first, and most common, is through iSeries
Navigator. The second is through the Visual Explain (QQQVEXPL) API.

You can start Visual Explain from any of the following windows in iSeries Navigator:
v Enter an SQL statement in the Run SQL Scripts window. Select the statement and choose Explain from

the context menu, or select Run and Explain from the Visual Explain menu.
v Expand the list of available SQL Performance Monitors. Right-click a detailed SQL Performance

Monitor and choose the Show Statements option. Select filtering information and select the statement
in the List of Statements window. Click Run Visual Explain. You can also start an SQL Performance
Monitor from Run SQL Scripts. Select Start SQL Performance monitor from the Monitor menu.

v Start the Current SQL for a Job function by right-clicking Databases and select Current SQL for a Job.
Select a job from the list and click SQL Statement. When the SQL is displayed in the lower pane, you
can start Visual Explain by clicking Run Visual Explain.

v Right-click SQL Plan Cache and select Show Statements. Select filtering information and select the
statement in the List of Statements window. Click Run Visual Explain.

v Expand the list of available SQL Plan Cache Snapshots. Right-click a snapshot and select Show
Statements. Select filtering information and select the statement in the List of Statements window.
Click Run Visual Explain.

You have three options when running Visual Explain from Run SQL Scripts.

Visual Explain only
This option allows you to explain the query without actually running it. The data displayed
represents the query optimizer's estimates.

Note: When using the Explain only option of Visual Explain from Run SQL Scripts in iSeries
Navigator, some queries receive an error code 93 stating that they are too complex for
displaying in Visual Explain. You can circumvent this by selecting the "Run and Explain"
option.

Performance and query optimization 115

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|

|

Run and Explain
If you select Run and Explain, the query is run by the system before the diagram is displayed.
This option may take a significant amount of time, but the information displays is more complete
and accurate.

Explain while running
For long running queries, you can choose to start Visual Explain while the query is running. By
refreshing the Visual Explain diagram, you can view the progress of the query.

In addition, a database monitor table that was not created as a result of using iSeries Navigator can be
explained through iSeries Navigator. First you must import the database monitor table into iSeries
Navigator. To do this, right-click the SQL Performance Monitors and choose the Import option. Specify a
name for the performance monitor (name it will be known by within iSeries Navigator) and the qualified
name of the database monitor table. Be sure to select Detailed as the type of monitor. Detailed represents
the file-based (STRDBMON) monitor while Summary represents the memory-resident monitor (which is
not supported by Visual Explain). Once the monitor has been imported, follow the steps to start Visual
Explain from within iSeries Navigator.

You can save your Visual Explain information as an SQL Performance monitor, which can be useful if
you started the query from Run SQL Scripts and want to save the information for later comparison. Select
Save as Performance monitor from the File menu.
Related information

Visual Explain (QQQVEXPL) API

Overview of information available from Visual Explain
You can use Visual Explain to view many types of information.

The information includes:
v Information about each operation (icon) in the query graph
v Highlight expensive icons
v The statistics and index advisor
v The predicate implementation of the query
v Basic and detailed information in the graph

Information about each operation (icon) in the query graph

As stated before, the icons in the graph represent operations that occur during the implementation of the
query. The order of operations is shown by the arrows connecting the icons. If parallelism was used to
process an operation, the arrows are doubled. Occasionally, the optimizer "shares" hash tables with
different operations in a query, causing the lines of the query to cross.

You can view information about an operation by selecting the icon. Information is displayed in the
Attributes table in the right pane. To view information about the environment, click an icon and then
select Display query environment from the Action menu. Finally, you can view more information about
the icon by right-clicking the icon and selecting Help.

Highlight expensive icons

You can highlight problem areas (expensive icons) in your query using Visual Explain. Visual Explain
offers you two types of expensive icons to highlight: by processing time or number of rows. You can
highlight icons by selecting Highlight expensive icons from the View menu.

116 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

The statistics and index advisor

During the implementation of a query, the optimizer can determine if statistics need to be created or
refreshed, or if an index might make the query run faster. You can view these recommendations using the
Statistics and Index Advisor from Visual Explain. Start the advisor by selecting Advisor from the Action
menu. Additionally, you can begin collecting statistics or create an index directly from the advisor.

The predicate implementation of the query

Visual explain allows you to view the implementation of query predicates. Predicate implementation is
represented by a blue plus sign next to an icon. You can expand this view by right-clicking the icon and
selecting Expand. or open it into another window. Click an icon to view attributes about the operation. To
collapse the view, right-click anywhere in the window and select Collapse. This function is only available
on V5R3 or later systems.

The optimizer can also use the Look Ahead Predicate Generation to minimize the random the I/O costs
of a join. To highlight predicates that used this method, select Highlight LPG from the View menu.

Basic and full information in the graph

Visual Explain also presents information in two different views: basic and full. The basic view only shows
those icons that are necessary to understand the implementation of the SQL statement, thus excluding
some preliminary or intermediate operations that are not essential for understanding the main flow of
query implementation. The full view may show more icons that further depict the flow of the execution
tree. You can change the graph detail by select Graph Detail from the Options menu and selecting either
Basic or Full. The default view is Basic. Note that in order to see all of the detail for a Full view, you
will need to change the Graph Detail to Full, close out Visual Explain, and run the query again. The
setting for Graph Detail will persist.

For more information about Visual Explain and the different options that are available, see the Visual
Explain online help.

Refresh the Visual Explain diagram

For long running queries, you can refresh the visual explain graph with runtime statistical information
before the query is complete. Refresh also updates the appropriate information in the attributes section of
the icon shown on the right of the screen. In order to use the Refresh option, you need to select Explain
while Running from the Run SQL Scripts window.

To refresh the diagram, select Refresh from the View menu. Or click the Refresh button in the toolbar.
Related reference

“Query optimizer index advisor” on page 111
The query optimizer analyzes the row selection in the query and determines, based on default values, if
creation of a permanent index improves performance. If the optimizer determines that a permanent index
might be beneficial, it returns the key columns necessary to create the suggested index.

Change the attributes of your queries with the Change Query
Attributes (CHGQRYA) command
You can modify different types of attributes of the queries that you will execute during a certain job with
the Change Query Attributes (CHGQRYA) CL command, or by using the iSeries Navigator Change Query
Attributes interface.

Performance and query optimization 117

|

|
|
|
|

|

|

|

|
|
|

Related concepts

“Plan Cache” on page 6
The Plan Cache is a repository that contains the access plans for queries that were optimized by SQE.
“Objects processed in parallel” on page 42
The DB2 UDB Symmetric Multiprocessing feature provides the optimizer with additional methods for
retrieving data that include parallel processing. Symmetrical multiprocessing (SMP) is a form of
parallelism achieved on a single server where multiple (CPU and I/O) processors that share memory and
disk resource work simultaneously toward achieving a single end result.
Related information

Change Query Attributes (CHGQRYA) command

Control queries dynamically with the query options file QAQQINI
The query options file QAQQINI support provides the ability to dynamically modify or override the
environment in which queries are executed through the Change Query Attributes (CHGQRYA) command
and the QAQQINI file. The query options file QAQQINI is used to set some attributes used by the
database manager.

For each query that is run the query option values are retrieved from the QAQQINI file in the schema
specified on the QRYOPTLIB parameter of the CHGQRYA CL command and used to optimize or
implement the query.

Environmental attributes that you can modify through the QAQQINI file include:
v APPLY_REMOTE
v ASYNC_JOB_USAGE
v COMMITMENT_CONTROL_LOCK_LIMIT
v FORCE_JOIN_ORDER
v IGNORE_DERIVED_INDEX
v IGNORE_LIKE_REDUNDANT_SHIFTS
v LOB_LOCATOR_THRESHOLD
v MATERIALIZED_QUERY_TABLE_REFRESH_AGE
v MATERIALIZED_QUERY_TABLE _USAGE
v MESSAGES_DEBUG
v NORMALIZE_DATA
v OPEN_CURSOR_CLOSE_COUNT
v OPEN_CURSOR_THRESHOLD
v OPTIMIZE_STATISTIC_LIMITATION
v OPTIMIZATION_GOAL
v PARALLEL_DEGREE
v PARAMETER_MARKER_CONVERSION
v QUERY_TIME_LIMIT
v REOPTIMIZE_ACCESS_PLAN
v SQLSTANDARDS_MIXED_CONSTANT
v SQL_FAST_DELETE_ROW_COUNT
v SQL_STMT_COMPRESS_MAX
v SQL_SUPPRESS_WARNINGS
v SQL_TRANSLATE_ASCII_TO_JOB
v STAR_JOIN
v STORAGE_LIMIT

118 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|
|

|
|
|
|
|

|

|

|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

v SYSTEM_SQL_STATEMENT_CACHE
v UDF_TIME_OUT
v VARIABLE_LENGTH_OPTIMIZATION
Related reference

“Look ahead predicate generation (LPG)” on page 53
A special type of transitive closure called look ahead predicate generation (LPG) may be costed for joins.
In this case, the optimizer attempts to minimize the random I/O costs of a join by pre-applying the
results of the query to a large fact table. LPG will typically be used with a class of queries referred to as
star join queries, however it can possibly be used with any join query.

Specifying the QAQQINI file:

Use the Change Query Attributes (CHGQRYA) command with the QRYOPTLIB (query options library)
parameter to specify which schema currently contains or will contain the query options file QAQQINI.

The query options file will be retrieved from the schema specified on the QRYOPTLIB parameter for each
query and remains in effect for the duration of the job or user session, or until the QRYOPTLIB
parameter is changed by the Change Query Attributes (CHGQRYA) command.

If the Change Query Attributes (CHGQRYA) command is not issued or is issued but the QRYOPTLIB
parameter is not specified, the schema QUSRSYS is searched for the existence of the QAQQINI file. If a
query options file is not found for a query, no attributes will be modified. Since the server is shipped
with no INI file in QUSRSYS, you may receive a message indicating that there is no INI file. This
message is not an error but an indication that a QAQQINI file that contains all default values is being
used. The initial value of the QRYOPTLIB parameter for a job is QUSRSYS.
Related information

Change Query Attributes (CHGQRYA) command

Creating the QAQQINI query options file:

Each server is shipped with a QAQQINI template file in schema QSYS. The QAQQINI file in QSYS is to
be used as a template when creating all user specified QAQQINI files.

To create your own QAQQINI file, use the Create Duplicate Object (CRTDUPOBJ) command to create a
copy of the QAQQINI file in the schema that will be specified on the Change Query Attributes
(CHGQRYA) QRYOPTLIB parameter. The file name must remain QAQQINI. For example:
CRTDUPOBJ OBJ(QAQQINI)

FROMLIB(QSYS)
OBJTYPE(*FILE)
TOLIB(MYLIB)
DATA(*YES)

System-supplied triggers are attached to the QAQQINI file in QSYS therefore it is imperative that the
only means of copying the QAQQINI file is through the CRTDUPOBJ CL command. If another means is
used, such as CPYF, then the triggers may be corrupted and an error will be signaled that the options file
cannot be retrieved or that the options file cannot be updated.

Because of the trigger programs attached to the QAQQINI file, the following CPI321A informational
message will be displayed six times in the job log when the CRTDUPOBJ CL is used to create the file.
This is not an error. It is only an informational message.

CPI321A Information Message: Trigger QSYS_TRIG_&1___QAQQINI___00000&N in library &1 was
added to file QAQQINI in library &1. The ampersand variables (&1, &N) are replacement variables that
contain either the library name or a numeric value.

Performance and query optimization 119

|

|

|

|

|
|
|
|
|

|

|
|

|
|
|

|
|
|
|
|
|

|

|

|

|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

Note: It is highly recommended that the file QAQQINI, in QSYS, not be modified. This is the original
template that is to be duplicated into QUSRSYS or a user specified library for use.

Related information

Change Query Attributes (CHGQRYA) command
Create Duplicate Object (CRTDUPOBJ) command

QAQQINI query options file format:

The QAQQINI file is shipped in the schema QSYS. It has a predefined format and has been
pre-populated with the default values for the rows.

Query Options File:
A UNIQUE
A R QAQQINI TEXT('Query options + file')
A QQPARM 256A VARLEN(10) +

TEXT('Query+
option parameter') +

COLHDG('Parameter')
A QQVAL 256A VARLEN(10) +

TEXT('Query option +
parameter value') +

COLHDG('Parameter Value')
A QQTEXT 1000G VARLEN(100) +

TEXT('Query +
option text') +

ALWNULL +
COLHDG('Query Option' +

'Text') +
CCSID(13488) +
DFT(*NULL)

A K QQPARM

Setting the options within the query options file:

The QAQQINI file query options can be modified with the INSERT, UPDATE, or DELETE SQL
statements.

For the following examples, a QAQQINI file has already been created in library MyLib. To update an
existing row in MyLib/QAQQINI use the UPDATE SQL statment. This example sets MESSAGES_DEBUG
= *YES so that the query optimizer will print out the optimizer debug messages:
UPDATE MyLib/QAQQINI SET QQVAL='*YES'
WHERE QQPARM='MESSAGES_DEBUG'

To delete an existing row in MyLib/QAQQINI use the DELETE SQL statement. This example removes
the QUERY_TIME_LIMIT row from the QAQQINI file:
DELETE FROM MyLib/QAQQINI
WHERE QQPARM='QUERY_TIME_LIMIT'

To insert a new row into MyLib/QAQQINI use the INSERT SQL statement. This example adds the
QUERY_TIME_LIMIT row with a value of *NOMAX to the QAQQINI file:
INSERT INTO MyLib/QAQQINI

VALUES('QUERY_TIME_LIMIT','*NOMAX','New time limit set by DBAdmin')

QAQQINI query options file authority requirements:

120 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|

|

|

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|

QAQQINI is shipped with a *PUBLIC *USE authority. This allows users to view the query options file,
but not change it. Because changing the values of the QAQQINI file affect all queries that are run on the
system, only the system or database administrator should have *CHANGE authority to the QAQQINI
query options file.

The query options file, which resides in the library specified on the Change Query Attributes
(CHGQRYA) CL command QRYOPTLIB parameter, is always used by the query optimizer. This is true
even if the user has no authority to the query options library and file. This provides the system
administrator with an additional security mechanism.

When the QAQQINI file resides in the library QUSRSYS the query options will effect all of the query
users on the server. To prevent anyone from inserting, deleting, or updating the query options, the
system administrator should remove update authority from *PUBLIC to the file. This will prevent users
from changing the data in the file.

When the QAQQINI file resides in a user library and that library is specified on the QRYOPTLIB
parameter of the Change Query Attributes (CHGQRYA) command, the query options will effect all of the
queries run for that user's job. To prevent the query options from being retrieved from a particular library
the system administrator can revoke authority to the Change Query Attributes (CHGQRYA) CL
command.

QAQQINI file system supplied triggers:

The query options file QAQQINI file uses a system-supplied trigger program in order to process any
changes made to the file. A trigger cannot be removed from or added to the file QAQQINI.

If an error occurs on the update of the QAQQINI file (an INSERT, DELETE, or UPDATE operation), the
following SQL0443 diagnostic message will be issued:
Trigger program or external routine detected an error.

QAQQINI query options:

There are different options available for parameters in the QAQQINI file.

The following table summarizes the query options that can be specified on the QAQQINI command:

Table 32. Query Options Specified on QAQQINI Command

Parameter Value Description

ALLOW_TEMPORARY_INDEXES

*DEFAULT The default value is set to *YES.

*YES Allow temporary indexes to be considered.

*ONLY_
REQUIRED

Do not allow any temporary indexes to be considered for
this access plan. Choose any other implementation
regardless of cost to avoid the creation of a temporary
index. Only if no viable plan can be found, will a
temporary index be allowed.

Performance and query optimization 121

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|

|
|

|

|

|

|

||

|||

|

||

||

|
|

|
|
|
|
|

Table 32. Query Options Specified on QAQQINI Command (continued)

Parameter Value Description

APPLY_REMOTE

*DEFAULT The default value is set to *YES.

*NO
The CHGQRYA attributes for the job are not applied to the
remote jobs. The remote jobs will use the attributes
associated to them on their servers.

*YES

The query attributes for the job are applied to the remote
jobs used in processing database queries involving
distributed tables. For attributes where *SYSVAL is
specified, the system value on the remote server is used for
the remote job. This option requires that, if CHGQRYA was
used for this job, the remote jobs must have authority to
use the CHGQRYA command.

ASYNC_JOB_USAGE

*DEFAULT The default value is set to *LOCAL.

*LOCAL

Asynchronous jobs may be used for database queries that
involve only tables local to the server where the database
queries are being run. In addition, for queries involving
distributed tables, this option allows the communications
required to be asynchronous. This allows each server
involved in the query of the distributed tables to run its
portion of the query at the same time (in parallel) as the
other servers.

*DIST
Asynchronous jobs may be used for database queries that
involve distributed tables.

*ANY Asynchronous jobs may be used for any database query.

*NONE

No asynchronous jobs are allowed to be used for database
query processing. In addition, all processing for queries
involving distributed tables occurs synchronously.
Therefore, no inter-system parallel processing will occur.

CACHE_RESULTS

*DEFAULT The default value is the same as *SYSTEM.

*SYSTEM

The database manager may cache a query result set. A
subsequent run of the query by that job or, if the ODP for
the query has been deleted, by any job, will consider
reusing the cached result set.

*JOB

The database manager may cache a query result set from
one run to the next for a job, as long as the query uses a
reusable ODP. When the reusable ODP is deleted, the
cached result set is destroyed. This value mimics V5R2
processing.

*NONE The database does not cache any query results.

COMMITMENT_CONTROL_
LOCK_LIMIT

*DEFAULT *DEFAULT is equivalent to 500,000,000.

Integer Value
The maximum number of records that can be locked to a
commit transaction initiated after setting the new value.
The valid integer value is 1–500,000,000.

122 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|||

|

||

|
|
|
|

|

|
|
|
|
|
|
|

|

||

|

|
|
|
|
|
|
|
|

|||

||

|

|
|
|
|

|

||

|

|
|
|
|

|

|
|
|
|
|

||

|
|

||

|
|
|
|

Table 32. Query Options Specified on QAQQINI Command (continued)

Parameter Value Description

FORCE_JOIN_ORDER

*DEFAULT The default is set to *NO.

*NO Allow the optimizer to reorder join tables.

*SQL
Only force the join order for those queries that use the SQL
JOIN syntax. This mimics the behavior for the optimizer
before V4R4M0.

*PRIMARY nnn

Only force the join position for the file listed by the
numeric value nnn (nnn is optional and will default to 1)
into the primary position (or dial) for the join. The
optimizer will then determine the join order for all of the
remaining files based upon cost.

*YES
Do not allow the query optimizer to reorder join tables as
part of its optimization process. The join will occur in the
order in which the tables were specified in the query.

IGNORE_DERIVED_INDEX

*DEFAULT The default value is the same as *NO.

*YES

Allow the SQE optimizer to ignore the derived index and
process the query. The resulting query plan will be created
without any regard to the existence of the derived index(s).
The index types that are ignored include:

v Keyed logical files defined with select or omit criteria
and with the DYNSLT keyword omitted

v Keyed logical files built over multiple physical file
members (V5R2 restriction, not a restriction for V5R3)

v Keyed logical files where one or more keys reference an
intermediate derivation in the DDS. Exceptions to this
are: 1. when the intermediate definition is defining the
field in the DDS so that shows up in the logical's format
and 2. RENAME of a field (these two exceptions do not
make the key derived)

v Keyed logical files with K *NONE specified.

v Keyed logical files with Alternate Collating Sequence
(ACS) specified

v SQL indexes created when the sort sequence active at the
time of creation requires a weighting (translation) of the
key to occur. This is true when any of several non-US
language IDs are specified. It also occurs if language ID
shared weight is specified, even for language US.

*NO
Do not ignore the derived index. If a derived index exists,
have CQE process the query.

Performance and query optimization 123

|

|||

|

||

||

|
|
|
|

|

|
|
|
|
|

|
|
|
|

|

||

|

|
|
|
|

|
|

|
|

|
|
|
|
|
|

|

|
|

|
|
|
|
|

|||

Table 32. Query Options Specified on QAQQINI Command (continued)

Parameter Value Description

IGNORE_LIKE_
REDUNDANT_SHIFTS

*DEFAULT The default value is set to *OPTIMIZE.

*ALWAYS

When processing the SQL LIKE predicate or OPNQRYF
command %WLDCRD built-in function, redundant shift
characters are ignored for DBCS-Open operands. Note that
this option restricts the query optimizer from using an
index to perform key row positioning for SQL LIKE or
OPNQRYF %WLDCRD predicates involving DBCS-Open,
DBCS-Either, or DBCS-Only operands.

*OPTIMIZE

When processing the SQL LIKE predicate or the OPNQRYF
command %WLDCRD built-in function, redundant shift
characters may or may not be ignored for DBCS-Open
operands depending on whether an index is used to
perform key row positioning for these predicates. Note that
this option will enable the query optimizer to consider key
row positioning for SQL LIKE or OPNQRYF %WLDCRD
predicates involving DBCS-Open, DBCS-Either, or
DBCS-Only operands.

LIMIT_PREDICATE_
OPTIMIZATION

*DEFAULT
Do not eliminate the predicates that are not simple
isolatable predicates (OIF) when doing index optimization.
Same as *NO.

*NO
Do not eliminate the predicates that are not simple
isolatable predicates (OIF) when doing index optimization.

*YES
Eliminate the predicates that are not simple isolatable
predicates (OIF) when doing index optimization.

LOB_LOCATOR_THRESHOLD

*DEFAULT
The default value is set to 0. This indicates that the
database will take no action to free locators.

Integer Value

If the value is 0, then the database will take no action to
free locators. For values 1 through 250,000, on a FETCH
request, the database will compare the active LOB locator
count for the job against the threshold value. If the locator
count is greater than or equal to the threshold, the database
will free host server created locators that have been
retrieved. This option applies to all host server jobs
(QZDASOINIT) and has no impact to other jobs.

MATERIALIZED_QUERY_
TABLE_REFRESH_AGE

*DEFAULT The default value is set to 0.

0 No materialized query tables may be used.

*ANY
Any tables indicated by the MATERIALIZED_
QUERY_TABLE_USAGE INI parameter may be used.

timestamp_
duration

Only tables indicated by MATERIALIZED_
QUERY_TABLE_USAGE INI option which have a
REFRESH TABLE performed within the specified
timestamp duration may be used.

MATERIALIZED_QUERY_
TABLE_USAGE

*DEFAULT The default value is set to *NONE.

*NONE
Materialized query tables may not be used in query
optimization and implementation.

*ALL User-maintained materialized query tables may be used.

*USER User-maintained materialized query tables may be used.

124 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|||

|
|

||

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|||

|||

|

|||

|

|
|
|
|
|
|
|
|

|
|

||

||

|||

|
|

|
|
|
|

|
|

||

|||

||

||

Table 32. Query Options Specified on QAQQINI Command (continued)

Parameter Value Description

MESSAGES_DEBUG

*DEFAULT The default is set to *NO.

*NO No debug messages are to be displayed.

*YES Issue all debug messages that are generated for STRDBG.

NORMALIZE_DATA

*DEFAULT The default is set to *NO.

*NO
Unicode constants, host variables, parameter markers, and
expressions that combine strings will not be normalized.

*YES
Unicode constants, host variables, parameter markers, and
expressions that combine strings will be normalized

OPEN_CURSOR_CLOSE_
COUNT

*DEFAULT *DEFAULT is equivalent to 0. See Integer Value for details.

Integer Value

OPEN_CURSOR_CLOSE_COUNT is used in conjunction
with OPEN_CURSOR_THRESHOLD to manage the number
of open cursors within a job. If the number of open cursors,
which includes open cursors and pseudo-closed cursors,
reaches the value specified by the
OPEN_CURSOR_THRESHOLD, pseudo-closed cursors are
hard (fully) closed with the least recently used cursors
being closed first. This value determines the number of
cursors to be closed. The valid values for this parameter are
1 to 65536. The value for this parameter should be less than
or equal to the number in the
OPEN_CURSOR_THREHOLD parameter. This value is
ignored if OPEN_CURSOR_THRESHOLD is *DEFAULT. If
OPEN_CURSOR_THRESHOLD is specified and this value
is *DEFAULT, the number of cursors closed is equal to
OPEN_CURSOR_THRESHOLD multiplied by 10 percent
and rounded up to the next integer value.

OPEN_CURSOR_
THRESHOLD

*DEFAULT *DEFAULT is equivalent to 0. See Integer Value for details.

Integer Value

OPEN_CURSOR_THRESHOLD is used in conjunction with
OPEN_CURSOR_CLOSE_COUNT to manage the number
of open cursors within a job. If the number of open cursors,
which includes open cursors and pseudo-closed cursors,
reaches this threshold value, pseudo-closed cursors are hard
(fully) closed with the least recently used cursors being
closed first. The number of cursors to be closed is
determined by OPEN_CURSOR_CLOSE_COUNT. The valid
user-entered values for this parameter are 1 - 65536. Having
a value of 0 (default value) indicates that there is no
threshold and hard closes will not be forced on the basis of
the number of open cursors within a job.

Performance and query optimization 125

|

|||

|

||

||

||

|

||

|||

|||

|
|

||

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

||

|

|
|
|
|
|
|
|
|
|
|
|
|

Table 32. Query Options Specified on QAQQINI Command (continued)

Parameter Value Description

OPTIMIZATION_GOAL

*DEFAULT
Optimization goal is determined by the interface (ODBC,
SQL precompiler options, OPTIMIZE FOR nnn ROWS
clause).

*FIRSTIO

All queries will be optimized with the goal of returning the
first page of output as fast as possible. This goal works well
when the control of the output is controlled by a user who
is most likely to cancel the query after viewing the first
page of output data. Queries coded with an OPTIMIZE
FOR nnn ROWS clause will honor the goal specified by the
clause.

*ALLIO

All queries will be optimized with the goal of running the
entire query to completion in the shortest amount of
elapsed time. This is a good option for when the output of
a query is being written to a file or report, or the interface
is queuing the output data. Queries coded with an
OPTIMIZE FOR nnn ROWS clause will honor the goal
specified by the clause.

OPTIMIZE_STATISTIC_
LIMITATION

*DEFAULT
The amount of time spent in gathering index statistics is
determined by the query optimizer.

*NO
No index statistics will be gathered by the query optimizer.
Default statistics will be used for optimization. (Use this
option sparingly.)

*PERCENTAGE
integer value

Specifies the maximum percentage of the index that will be
searched while gathering statistics. Valid values for are 1 to
99.

*MAX_
NUMBER_
OF_RECORDS_
ALLOWED
integer value

Specifies the largest table size, in number of rows, for
which gathering statistics is allowed. For tables with more
rows than the specified value, the optimizer will not gather
statistics and will use default values.

126 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|||

|

|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|

|||

|
|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|

Table 32. Query Options Specified on QAQQINI Command (continued)

Parameter Value Description

PARALLEL_DEGREE

*DEFAULT The default value is set to *SYSVAL.

*SYSVAL
The processing option used is set to the current value of the
system value, QQRYDEGREE.

*IO
Any number of tasks can be used when the database query
optimizer chooses to use I/O parallel processing for
queries. SMP parallel processing is not allowed.

*OPTIMIZE

The query optimizer can choose to use any number of tasks
for either I/O or SMP parallel processing to process the
query or database file keyed access path build, rebuild, or
maintenance. SMP parallel processing is used only if the
system feature, DB2 Symmetric Multiprocessing for i5/OS,
is installed. Use of parallel processing and the number of
tasks used is determined with respect to the number of
processors available in the server, this job has a share of the
amount of active memory available in the pool in which the
job is run, and whether the expected elapsed time for the
query or database file keyed access path build or rebuild is
limited by CPU processing or I/O resources. The query
optimizer chooses an implementation that minimizes
elapsed time based on the job has a share of the memory in
the pool.

*OPTIMIZE xxx

This option is very similar to *OPTIMIZE. The value xxx
indicates the ability to specify an integer percentage value
from 1-200. The query optimizer determines the parallel
degree for the query using the same processing as is done
for *OPTIMIZE, Once determined, the optimizer will adjust
the actual parallel degree used for the query by the
percentage given. This provides the user the ability to
override the parallel degree used to some extent without
having to specify a particular parallel degree under
*NUMBER_OF_TASKS.

*MAX

The query optimizer chooses to use either I/O or SMP
parallel processing to process the query. SMP parallel
processing will only be used if the system feature, DB2
Symmetric Multiprocessing for i5/OS, is installed. The
choices made by the query optimizer are similar to those
made for parameter value *OPTIMIZE except the optimizer
assumes that all active memory in the pool can be used to
process the query or database file keyed access path build,
rebuild, or maintenance.

*NONE
No parallel processing is allowed for database query
processing or database table index build, rebuild, or
maintenance.

*NUMBER_OF
_TASKS nn

Indicates the maximum number of tasks that can be used
for a single query. The number of tasks will be capped off
at either this value or the number of disk arms associated
with the table.

PARAMETER_MARKER_
CONVERSION

*DEFAULT The default value is set to *YES.

*NO Constants cannot be implemented as parameter markers.

*YES Constants can be implemented as parameter markers.

Performance and query optimization 127

|

|||

|

||

|||

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|

||

||

||

Table 32. Query Options Specified on QAQQINI Command (continued)

Parameter Value Description

QUERY_TIME_LIMIT

*DEFAULT The default value is set to *SYSVAL.

*SYSVAL
The query time limit for this job will be obtained from the
system value, QQRYTIMLMT.

*NOMAX
There is no maximum number of estimated elapsed
seconds.

integer value

Specifies the maximum value that is checked against the
estimated number of elapsed seconds required to run a
query. If the estimated elapsed seconds is greater than this
value, the query is not started. Valid values range from 0 to
2,147,352,578.

REOPTIMIZE_ACCESS_PLAN

*DEFAULT The default value is set to *NO.

*NO
Do not force the existing query to be reoptimized.
However, if the optimizer determines that optimization is
necessary, the query will be reoptimized.

*YES Force the existing query to be reoptimized.

*FORCE Force the existing query to be reoptimized.

*ONLY_
REQUIRED

Do not allow the plan to be reoptimized for any subjective
reasons. For these cases, continue to use the existing plan
since it is still a valid workable plan. This may mean that
you may not get all of the performance benefits that a
reoptimization plan may derive. Subjective reasons include,
file size changes, new indexes, and so on. Non-subjective
reasons include, deletion of an index used by existing
access plan, query file being deleted and recreated, and so
on.

SQLSTANDARDS_MIXED_
CONSTANT

*DEFAULT The default value is set to *YES.

*YES SQL IGC constants will be treated as IGC-OPEN constants.

*NO
If the data in the IGC constant only contains shift-out
DBCS-data shift-in, then the constant will be treated as
IGC-ONLY, otherwise it will be treated as IGC-OPEN.

SQL_FAST_DELETE_ROW_COUNT

*DEFAULT

The default value is set to 0.

Having a value of 0 indicates that the database manager
will choose how many rows to consider when determining
whether fast delete should be used instead of a traditional
delete. When using the default value, the database manager
will most likely use 1000 as a row count. This means that
using the INI option with a value of 1000 result in no
operational difference than using 0 for the option.

*NONE
This value will force the database manager to never attempt
to fast delete on the rows.

*OPTIMIZE This value is same as using *DEFAULT.

integer value

Specifying a value for this option allows the user to tune
the behavior of DELETE. The target table for the DELETE
statement must match or exceed the number of rows
specified on the option, for fast delete to be attempted. A
fast delete will not write individual rows into a journal. The
valid values range from 1 to 999,999,999,999,999.

128 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|||

|

||

|||

|||

|

|
|
|
|
|

|

||

|
|
|
|

||

||

|
|

|
|
|
|
|
|
|
|
|

|
|

||

||

|
|
|
|

|

|

|

|
|
|
|
|
|
|

|||

||

|

|
|
|
|
|
|

Table 32. Query Options Specified on QAQQINI Command (continued)

Parameter Value Description

SQL_STMT_COMPRESS_MAX

*DEFAULT

The default value is set to 2, which indicates that the access
plan associated with any statement will be removed after a
statement has been compressed twice without being
executed.

Integer Value

The integer value represents the number of times that a
statement is compressed before the access plan is removed
to create more space in the package. Note that executing
the SQL statement resets the count for that statement to 0.
The valid Integer values are 1 to 255.

SQL_SUPPRESS_WARNINGS

*DEFAULT The default value is set to *NO.

*YES

Examine the SQLCODE in the SQLCA after execution of a
statement. If the SQLCODE is + 30, then alter the SQLCA
so that no warning is returned to the caller.

Set the SQLCODE to 0, the SQLSTATE to '00000' and
SQLWARN to ' '.

*NO Specifies that SQL warnings will be returned to the caller.

SQL_TRANSLATE_ASCII_
TO_JOB

*DEFAULT The default value is set to *NO.

*YES
Translate ASCII SQL statement text to the CCSID of the
iSeries job.

*NO
Translate ASCII SQL statement text to the EBCIDIC CCSID
associated with the ASCII CCSID.

STAR_JOIN (see note)

*DEFAULT The default value is set to *NO

*NO The EVI Star Join optimization support is not enabled.

*COST

Allow query optimization to consider (cost) the usage of
EVI Star Join support.

The determination of whether the Distinct List selection is
used will be determined by the optimizer based on how
much benefit can be derived from using that selection.

STORAGE_LIMIT

*DEFAULT The default value is set to *NOMAX.

*NOMAX
Never stop a query from running because of storage
concerns.

Integer Value

The maximum amount of temporary storage in megabytes
that may be used by a query. This value is checked against
the estimated amount of temporary storage required to run
the query as calculated by the query optimizer. If the
estimated amount of temporary storage is greater than this
value, the query is not started. Valid values range from 0
through 2147352578.

SYSTEM_SQL_STATEMENT_
CACHE

*DEFAULT The default value is set to *YES.

*YES

Examine the SQL system-wide statement cache when an
SQL prepare request is processed. If a matching statement
already exists in the cache, use the results of that prepare.
This allows the application to potentially have better
performing prepares.

*NO
Specifies that the SQL system-wide statement cache should
not be examined when processing an SQL prepare request.

Performance and query optimization 129

|

|||

|

|

|
|
|
|

|

|
|
|
|
|

|

||

|

|
|
|

|
|

||

|
|

||

|||

|||

|

||

||

|

|
|

|
|
|

|

||

|||

|

|
|
|
|
|
|
|

|
|

||

|

|
|
|
|
|

|||

Table 32. Query Options Specified on QAQQINI Command (continued)

Parameter Value Description

UDF_TIME_OUT (see note)

*DEFAULT
The amount of time to wait is determined by the database.
The default is 30 seconds.

*MAX
The maximum amount of time that the database will wait
for the UDF to finish.

integer value

Specify the number of seconds that the database should
wait for a UDF to finish. If the value given exceeds the
database maximum wait time, the maximum wait time will
be used by the database. Minimum value is 1 and
maximum value is system defined.

VARIABLE_LENGTH_
OPTIMIZATION

*DEFAULT The default value is set to *YES.

*YES

Allow aggressive optimization of variable length columns.
Allows index only access for the column(s). It also allows
constant value substitution when an equal predicate is
present against the column(s). As a consequence, the length
of the data returned for the variable length column may not
include any trailing blanks that existed in the original data.

*NO
Do not allow aggressive optimization of variable length
columns.

Note: Only modifies the environment for the Classic Query Engine.

Set resource limits with the Predictive Query Governor
The DB2 Universal Database for iSeries Predictive Query Governor can stop the initiation of a query if
the estimated run time (elapsed execution time) or estimated temporary storage for the query is
excessive. The governor acts before a query is run instead of while a query is run. The governor can be
used in any interactive or batch job on the iSeries. It can be used with all DB2 Universal Database for
iSeries query interfaces and is not limited to use with SQL queries.

The ability of the governor to predict and stop queries before they are started is important because:
v Operating a long-running query and abnormally ending the query before obtaining any results wastes

server resources.
v Some CQE operations within a query cannot be interrupted by the End Request (ENDRQS) CL

command. The creation of a temporary index or a query using a column function without a GROUP
BY clause are two examples of these types of queries. It is important to not start these operations if
they will take longer than the user wants to wait.

The governor in DB2 Universal Database for iSeries is based on two measurements:
v The estimated runtime for a query.
v The estimated temporary storage consumption for a query.

If the query’s estimated runtime or temporary storage usage exceed the user defined limits, the initiation
of the query can be stopped.

To define a time limit (in seconds) for the governor to use, do one of the following:
v Use the Query Time Limit (QRYTIMLMT) parameter on the Change Query Attributes (CHGQRYA) CL

command. This is the first place where the query optimizer attempts to find the time limit.
v Set the Query Time Limit option in the query options file. This is the second place where the query

optimizer attempts to find the time limit.

130 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|||

|

|||

|||

|

|
|
|
|
|

|
|

||

|

|
|
|
|
|
|

|||
|

|

|
|
|
|
|
|

|

|
|

|
|
|
|

|

|

|

|
|

|

|
|

|
|

v Set the QQRYTIMLMT system value. Allow each job to use the value *SYSVAL on the Change Query
Attributes (CHGQRYA) CL command, and set the query options file to *DEFAULT. This is the third
place where the query optimizer attempts to find the time limit.

To define a temporary storage limit (in megabytes) for the governor to use, do the following:
v Use the Query Storage Limit (QRYSTGLMT) parameter on the Change Query Attributes (CHGQRYA)

CL command. This is the first place where the query optimizer attempts to find the limit.
v Set the Query Storage Limit option STORAGE_LIMIT in the query options file. This is the second place

where the query optimizer attempts to find the time limit.

It is important to remember that the time and temporary storage values generated by the optimizer are
only estimates. The actual query runtime might be more or less than the estimate. In certain cases when
the optimizer does not have full information about the data being queried, the estimate may vary
considerably from the actual resource used. In those case, you may need to artificially adjust your limits
to correspond to an inaccurate estimate.

When setting the time limit for the entire server, it is typically best to set the limit to the maximum
allowable time that any query should be allowed to run. By setting the limit too low you will run the risk
of preventing some queries from completing and thus preventing the application from successfully
finishing. There are many functions that use the query component to internally perform query requests.
These requests will also be compared to the user-defined time limit.

You can check the inquiry message CPA4259 for the predicted runtime and storage. If the query is
canceled, debug messages will still be written to the job log.

You can also add the Query Governor Exit Program that is called when estimated runtime and temporary
storage limits have exceeded the specified limits.
Related information

Query Governor Exit Program
End Request (ENDRQS) command
Change Query Attributes (CHGQRYA) command

Using the Query Governor:

The resource governor works in conjunction with the query optimizer.

When a user issues a request to the server to run a query, the following occurs:
1. The query access plan is created by the optimizer.

As part of the evaluation, the optimizer predicts or estimates the runtime for the query. This helps
determine the best way to access and retrieve the data for the query. In addition, as part of the
estimating process, the optimizer also computes the estimated temporary storage usage for the query.

2. The estimated runtime and estimated temporary storage is compared against the user-defined query
limit currently in effect for the job or user session.

3. If the estimates for the query are less than or equal to the specified limits, the query governor lets the
query run without interruption and no message is sent to the user.

4. If the query limit is exceeded, inquiry message CPA4259 is sent to the user. The message states the
estimates as well as the specified limits. Realize that only one limit needs to be exceeded; it is possible
that you will see that only one limit was exceeded. Also, if no limit was explicitly specified by the
user, a large integer value will be shown for that limit.

Note: A default reply can be established for this message so that the user does not have the option to
reply to the message, and the query request is always ended.

5. If a default message reply is not used, the user chooses to do one of the following:

Performance and query optimization 131

|
|
|

|

|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|

|

|

|

|

|

|

|

|

|
|
|

|
|

|
|

|
|
|
|

|
|

|

v End the query request before it is actually run.
v Continue and run the query even though the estimated value exceeds the associated governor limit.

Setting the resource limits for jobs other than the current job

You can set either or both resource limits for a job other than the current job. You do this by using the
JOB parameter on the Change Query Attributes (CHGQRYA) command to specify either a query options
file library to search (QRYOPTLIB) or a specific QRYTIMLMT, or QRYSTGLMT, or both for that job.

Using the resource limits to balance system resources

After the source job runs the Change Query Attributes (CHGQRYA) command, effects of the governor on
the target job is not dependent upon the source job. The query resource limits remain in effect for the
duration of the job or user session, or until a resource limit is changed by a Change Query Attributes
(CHGQRYA) command. Under program control, a user might be given different limits depending on the
application function being performed, the time of day, or the amount of system resources available. This
provides a significant amount of flexibility when trying to balance system resources with temporary
query requirements.

Canceling a query with the Query Governor:

When a query is expected to take more resources than the set limit, the governor issues inquiry message
CPA4259.

You can respond to the message in one of the following ways:
v Enter a C to cancel the query. Escape message CPF427F is issued to the SQL runtime code. SQL returns

SQLCODE -666.
v Enter an I to ignore the exceeded limit and let the query run to completion.

Controlling the default reply to the query governor inquiry message:

The system administrator can control whether the interactive user has the option of ignoring the database
query inquiry message by using the Change Job (CHGJOB) CL command.

Changes made include the following:
v If a value of *DFT is specified for the INQMSGRPY parameter of the Change Job (CHGJOB) CL

command, the interactive user does not see the inquiry messages and the query is canceled
immediately.

v If a value of *RQD is specified for the INQMSGRPY parameter of the Change Job (CHGJOB) CL
command, the interactive user sees the inquiry and must reply to the inquiry.

v If a value of *SYSRPYL is specified for the INQMSGRPY parameter of the Change Job (CHGJOB) CL
command, a system reply list is used to determine whether the interactive user sees the inquiry and
whether a reply is necessary. The system reply list entries can be used to customize different default
replies based on user profile name, user id, or process names. The fully qualified job name is available
in the message data for inquiry message CPA4259. This will allow the keyword CMPDTA to be used to
select the system reply list entry that applies to the process or user profile. The user profile name is 10
characters long and starts at position 51. The process name is 10 character long and starts at position
27.

v The following example will add a reply list element that will cause the default reply of C to cancel any
requests for jobs whose user profile is 'QPGMR'.
ADDRPYLE SEQNBR(56) MSGID(CPA4259) CMPDTA(QPGMR 51) RPY(C)

The following example will add a reply list element that will cause the default reply of C to cancel any
requests for jobs whose process name is 'QPADEV0011'.

132 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|

|
|
|

|

|
|
|
|
|
|
|

|

|
|

|

|
|

|

|

|
|

|

|
|
|

|
|

|
|
|
|
|
|
|
|

|
|

|

|
|

ADDRPYLE SEQNBR(57) MSGID(CPA4259) CMPDTA(QPADEV0011 27) RPY(C)

Related information

Change Job (CHGJOB) command

Testing performance with the query governor:

You can use the query governor to test the performance of your queries.

To test the performance of a query with the query governor, do the following:
1. Set the query time limit to zero (QRYTIMLMT(0)) using the Change Query Attributes (CHGQRYA)

command or in the INI file. This forces an inquiry message from the governor stating that the
estimated time to run the query exceeds the query time limit.

2. Prompt for message help on the inquiry message and find the same information that you can find by
running the Print SQL Information (PRTSQLINF) command.

The query governor lets you optimize performance without having to run through several iterations of
the query.

Additionally, if the query is canceled, the query optimizer evaluates the access plan and sends the
optimizer debug messages to the job log. This occurs even if the job is not in debug mode. You can then
review the optimizer tuning messages in the job log to see if additional tuning is needed to obtain
optimal query performance. This allows you to try several permutations of the query with different
attributes, indexes, and syntax or both to determine what performs better through the optimizer without
actually running the query to completion. This saves on system resources because the actual query of the
data is never actually done. If the tables to be queried contain a large number of rows, this represents a
significant savings in system resources.

Be careful when you use this technique for performance testing, because all query requests will be
stopped before they are run. This is especially important for a CQE query that cannot be implemented in
a single query step. For these types of queries, separate multiple query requests are issued, and then their
results are accumulated before returning the final results. Stopping the query in one of these intermediate
steps gives you only the performance information that relates to that intermediate step, and not for the
entire query.
Related information

Print SQL Information (PRTSQLINF) command
Change Query Attributes (CHGQRYA) command

Examples of setting query time limits:

To set the query time limit for the current job or user session using query options file QAQQINI, specify
QRYOPTLIB parameter on the Change Query Attributes (CHGQRYA) command to a user library where
the QAQQINI file exists with the parameter set to QUERY_TIME_LIMIT, and the value set to a valid
query time limit.

To set the query time limit for 45 seconds you can use the following Change Query Attributes
(CHGQRYA) command:

CHGQRYA JOB(*) QRYTIMLMT(45)

This sets the query time limit at 45 seconds. If the user runs a query with an estimated runtime equal to
or less than 45 seconds, the query runs without interruption. The time limit remains in effect for the
duration of the job or user session, or until the time limit is changed by the Change Query Attributes
(CHGQRYA) command.

Performance and query optimization 133

|

|

|

|

|

|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

|

|

|
|
|
|

|
|

|

|
|
|
|

Assume that the query optimizer estimated the runtime for a query as 135 seconds. A message is sent to
the user that stated that the estimated runtime of 135 seconds exceeds the query time limit of 45 seconds.

To set or change the query time limit for a job other than your current job, the Change Query Attributes
(CHGQRYA) command is run using the JOB parameter. To set the query time limit to 45 seconds for job
123456/USERNAME/JOBNAME use the following Change Query Attributes (CHGQRYA) command:

CHGQRYA JOB(123456/USERNAME/JOBNAME) QRYTIMLMT(45)

This sets the query time limit at 45 seconds for job 123456/USERNAME/JOBNAME. If job
123456/USERNAME/JOBNAME tries to run a query with an estimated runtime equal to or less than 45
seconds the query runs without interruption. If the estimated runtime for the query is greater than 45
seconds, for example 50 seconds, a message is sent to the user stating that the estimated runtime of 50
seconds exceeds the query time limit of 45 seconds. The time limit remains in effect for the duration of
job 123456/USERNAME/JOBNAME, or until the time limit for job 123456/USERNAME/JOBNAME is
changed by the Change Query Attributes (CHGQRYA) command.

To set or change the query time limit to the QQRYTIMLMT system value, use the following Change
Query Attributes (CHGQRYA) command:

CHGQRYA QRYTIMLMT(*SYSVAL)

The QQRYTIMLMT system value is used for duration of the job or user session, or until the time limit is
changed by the Change Query Attributes (CHGQRYA) command. This is the default behavior for the
Change Query Attributes (CHGQRYA) command.

Note: The query time limit can also be set in the INI file, or by using the Change System Value
(CHGSYSVAL) command.

Related information

Change Query Attributes (CHGQRYA) command
Change System Value (CHGSYSVAL) command

Testing temporary storage usage with the query governor:

The predictive storage governor specifies a temporary storage limit for database queries. You can use the
query governor to test if a query uses any temporary object to run the query, such as a hash table, sort or
temporary index.

To test for a temporary object's usage, do the following:
v Set the query storage limit to zero (QRYSTGLMT(0)) using the Change Query Attributes (CHGQRYA)

command or in the INI file. This forces an inquiry message from the governor anytime a temporary
object will be used for the query, regardless of the temporary object's estimated size.

v Prompt for message help on the inquiry message and find the same information that you can find by
running the Print SQL Information (PRTSQLINF) command. This allows you to see what temporary
object(s) was involved.

Related information

Print SQL Information (PRTSQLINF) command
Change Query Attributes (CHGQRYA) command

Examples of setting query temporary storage limits:

The temporary storage limit can be specified either in the QAQQINI file or on the Change Query
Attributes (CHGQRYA) command.

134 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|

|
|
|

|

|
|
|
|
|
|
|

|
|

|

|
|
|

|
|

|

|

|

|

|
|
|

|

|
|
|

|
|
|

|

|

|

|

|
|

To set the query temporary storage limit for a job using query options file QAQQINI, specify
QRYOPTLIB parameter on the Change Query Attributes (CHGQRYA) command to a user library where
the QAQQINI file exists with a valid value set for parameter STORAGE_LIMIT.

To set the query temporary storage limit on the Change Query Attributes (CHGQRYA) command itself,
specify a valid value for the QRYSTGLMT parameter.

In the case where a value is specified both on the Change Query Attributes (CHGQRYA) command
QRYSTGLMT parameter and in the QAQQINI file specified on the QRYOPTLIB parameter, the
QRYSTGLMT's value is used.

To set the temporary storage limit for 100 megabytes in the current job, you can use the following
Change Query Attributes (CHGQRYA) command:

CHGQRYA JOB(*) QRYSTGLMT(100)

If the user runs any query with an estimated temporary storage consumption equal to or less than 100
megabytes, the query runs without interruption. If the estimate is more than 100 megabytes, the CPA4259
inquiry message is sent by the database. To set or change the query time limit for a job other than your
current job, the CHGQRYA command is run using the JOB parameter. To set the same limit for job
123456/USERNAME/JOBNAME use the following CHGQRYA command:
CHGQRYA JOB(123456/USERNAME/JOBNAME) QRYSTGLMT(100)

This sets the query temporary storage limit to 100 megabytes for job 123456/USERNAME/JOBNAME.

Note: Unlike the query time limit, there is no system value for temporary storage limit. The default
behavior is to let any queries run regardless of their temporary storage usage The query temporary
storage limit can be specified either in the INI file or on the Change Query Attributes (CHGQRYA)
command.

Related information

Change Query Attributes (CHGQRYA) command

Control parallel processing for queries
There are two types of parallel processing available. The first is a parallel I/O that is available at no
charge. The second is DB2 UDB Symmetric Multiprocessing, a feature that you can purchase. You can
turn parallel processing on and off.

Even though parallelism has been enabled for a server or given job, the individual queries that run in a
job might not actually use a parallel method. This might be because of functional restrictions, or the
optimizer might choose a non-parallel method because it runs faster.

Because queries being processed with parallel access methods aggressively use main storage, CPU, and
disk resources, the number of queries that use parallel processing should be limited and controlled.

Controlling system wide parallel processing for queries:

You can use the QQRYDEGREE system value to control parallel processing for a server.

The current value of the system value can be displayed or modified using the following CL commands:
v WRKSYSVAL - Work with System Value
v CHGSYSVAL - Change System Value
v DSPSYSVAL - Display System Value
v RTVSYSVAL - Retrieve System Value

Performance and query optimization 135

|
|
|

|
|

|
|
|

|
|

|

|
|
|
|
|

|

|

|
|
|
|

|

|

|
|
|
|

|
|
|

|
|

|

|

|

|

|

|

|

The special values for QQRYDEGREE control whether parallel processing is allowed by default for all
jobs on the server. The possible values are:

*NONE
No parallel processing is allowed for database query processing.

*IO
I/O parallel processing is allowed for queries.

*OPTIMIZE
The query optimizer can choose to use any number of tasks for either I/O or SMP parallel processing
to process the queries. SMP parallel processing is used only if the DB2 UDB Symmetric
Multiprocessing feature is installed. The query optimizer chooses to use parallel processing to
minimize elapsed time based on the job's share of the memory in the pool.

*MAX
The query optimizer can choose to use either I/O or SMP parallel processing to process the query.
SMP parallel processing can be used only if the DB2 UDB Symmetric Multiprocessing feature is
installed. The choices made by the query optimizer are similar to those made for parameter value
*OPTIMIZE, except the optimizer assumes that all active memory in the pool can be used to process
the query.

The default value of the QQRYDEGREE system value is *NONE, so you must change the value if you
want parallel query processing as the default for jobs run on the server.

Changing this system value affects all jobs that will be run or are currently running on the server whose
DEGREE query attribute is *SYSVAL. However, queries that have already been started or queries using
reusable ODPs are not affected.

Controlling job level parallel processing for queries:

You can also control query parallel processing at the job level using the DEGREE parameter of the
Change Query Attributes (CHGQRYA) command or in the QAQQINI file, or using the
SET_CURRENT_DEGREE SQL statement.

Using the Change Query Attributes (CHGQRYA) command

The parallel processing option allowed and, optionally, the number of tasks that can be used when
running database queries in the job can be specified. You can prompt on the Change Query Attributes
(CHGQRYA) command in an interactive job to display the current values of the DEGREE query attribute.

Changing the DEGREE query attribute does not affect queries that have already been started or queries
using reusable ODPs.

The parameter values for the DEGREE keyword are:

*SAME
The parallel degree query attribute does not change.

*NONE
No parallel processing is allowed for database query processing.

*IO
Any number of tasks can be used when the database query optimizer chooses to use I/O parallel
processing for queries. SMP parallel processing is not allowed.

*OPTIMIZE
The query optimizer can choose to use any number of tasks for either I/O or SMP parallel processing
to process the query. SMP parallel processing can be used only if the DB2 UDB Symmetric
Multiprocessing feature is installed. Use of parallel processing and the number of tasks used is

136 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|

|

|
|
|

|

|
|
|

|
|

|

|
|

|
|

|
|
|

|
|
|
|

determined with respect to the number of processors available in the server, the job's share of the
amount of active memory available in the pool in which the job is run, and whether the expected
elapsed time for the query is limited by CPU processing or I/O resources. The query optimizer
chooses an implementation that minimizes elapsed time based on the job's share of the memory in
the pool.

*MAX
The query optimizer can choose to use either I/O or SMP parallel processing to process the query.
SMP parallel processing can be used only if the DB2 UDB Symmetric Multiprocessing feature is
installed. The choices made by the query optimizer are similar to those made for parameter value
*OPTIMIZE except the optimizer assumes that all active memory in the pool can be used to process
the query.

*NBRTASKS number-of-tasks
Specifies the number of tasks to be used when the query optimizer chooses to use SMP parallel
processing to process a query. I/O parallelism is also allowed. SMP parallel processing can be used
only if the DB2 UDB Symmetric Multiprocessing feature is installed.

Using a number of tasks less than the number of processors available on the server restricts the
number of processors used simultaneously for running a given query. A larger number of tasks
ensures that the query is allowed to use all of the processors available on the server to run the query.
Too many tasks can degrade performance because of the over commitment of active memory and the
overhead cost of managing all of the tasks.

*SYSVAL
Specifies that the processing option used should be set to the current value of the QQRYDEGREE
system value.

The initial value of the DEGREE attribute for a job is *SYSVAL.

Using the SET CURRENT DEGREE SQL statement

You can use the SET CURRENT DEGREE SQL statement to change the value of the CURRENT_DEGREE
special register. The possible values for the CURRENT_DEGREE special register are:

1 No parallel processing is allowed.

2 through 32767
Specifies the degree of parallelism that will be used.

ANY
Specifies that the database manager can choose to use any number of tasks for either I/O or SMP
parallel processing. Use of parallel processing and the number of tasks used is determined based on
the number of processors available in the system, this job's share of the amount of active memory
available in the pool in which the job is run, and whether the expected elapsed time for the operation
is limited by CPU processing or I/O resources. The database manager chooses an implementation
that minimizes elapsed time based on the job's share of the memory in the pool.

NONE
No parallel processing is allowed.

MAX
The database manager can choose to use any number of tasks for either I/O or SMP parallel
processing. MAX is similar to ANY except the database manager assumes that all active memory in
the pool can be used.

IO Any number of tasks can be used when the database manager chooses to use I/O parallel processing
for queries. SMP is not allowed.

The value can be changed by invoking the SET CURRENT DEGREE statement.

Performance and query optimization 137

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|

|

|
|

||

|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

||
|

|

The initial value of CURRENT DEGREE is determined by the current degree in effect from the
CHGQRYA CL command, PARALLEL_DEGREE parameter in the current query options file (QAQQINI),
or the QQRYDEGREE system value.
Related information

Set Current Degree statement
Change Query Attributes (CHGQRYA) command

Collecting statistics with the Statistics Manager
As stated earlier, the collection of statistics is handled by a separate component called the Statistics
Manager. Statistical information can be used by the query optimizer to determine the best access plan for
a query. Since the query optimizer bases its choice of access plan on the statistical information found in
the table, it is important that this information be current.

On many platforms, statistics collection is a manual process that is the responsibility of the database
administrator. With iSeries servers, the database statistics collection process is handled automatically, and
only rarely is it necessary to update statistics manually.

The Statistics Manager does not actually run or optimize the query. It controls the access to the metadata
and other information that is required to optimize the query. It uses this information to answer questions
posed by the query optimizer. The answers can either be derived from table header information, from
existing indexes, or from single-column statistics.

The Statistics Manager must always provide an answer to the questions from the Optimizer. It uses the
best method available to provide the answers. For example, it may use a single-column statistic or
perform a key range estimate over an index. Along with the answer, the Statistics Manager returns a
confidence level to the optimizer that the optimizer may use to provide greater latitude for sizing
algorithms. If the Statistics Manager provides a low confidence in the number of groups that are
estimated for a grouping request, then the optimizer may increase the size of the temporary hash table
allocated.
Related concepts

“Statistics Manager” on page 5
In releases before V5R2, the retrieval of statistics was a function of the Optimizer. When the Optimizer
needed to know information about a table, it looked at the table description to retrieve the row count and
table size. If an index was available, the Optimizer might then extract further information about the data
in the table. In V5R2, the collection of statistics was removed from the Optimizer and is now handled by
a separate component called the Statistics Manager.

Automatic statistics collection
When the Statistics Manager prepares its responses to the Optimizer, it keeps track of the responses that
are generated by using default filter factors (because column statistics or indexes were not available). It
uses this information during the time that the access plan is being written to the Plan Cache to
automatically generate a statistic collection request for the columns. If system resources allow it, the
Statistics Manager generates statistics collections in real time for direct use by the current query, avoiding
a default answer to the Optimizer.

Otherwise, as system resources become available, the requested column statistics will be collected in the
background. That way, the next time that the query is executed, the missing column statistics will be
available to the Statistics Manager, thus allowing it to provide more accurate information to the
Optimizer at that time. More statistics make it easier for the Optimizer to generate a good performing
access plan.

If a query is canceled before or during execution, the requests for column statistics are still processed, as
long as the execution reaches the point where the generated access plan is written to the Plan Cache.

138 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|

|

|

|

To minimize the number of passes through a table during statistics collection, the Statistics Manger
groups multiple requests for the same table together. For example, two queries are executed against table
T1. The first query has selection criteria on column C1 and the second over column C2. If no statistics are
available for the table, the Statistics Manager identifies both of these columns as good candidates for
column statistics. When the Statistics Manager reviews requests, it looks for multiple requests for the
same table and groups them together into one request. This allows both column statistics to be created
with only one pass through table T1.

One thing to note is that column statistics normally are automatically created when the Statistics Manager
must answer questions from the optimizer using default filter factors. However, when an index is
available that might be used to generate the answer, then column statistics are not automatically
generated. There may be cases where optimization time would benefit from column statistics in this
scenario because using column statistics to answer questions from the optimizer is generally more
efficient than using the index data. So if you have cases where the query performance seems extended,
you might want to verify that there is are indexes over the relevant columns in your query. If this is the
case, try manually generating columns statistics for these columns.

As stated before, statistics collection occurs as system resources become available. If you have schedule a
low priority job that is permanently active on your system and that is supposed to use all spare CPU
cycles for processing, your statistics collection will never become active.

Automatic statistics refresh
Column statistics are not maintained when the underlying table data changes. The Statistics Manager
determines if columns statistics are still valid or if they no longer represent the column accurately (stale).

This validation is done each time one of the following occurs:
v A full open occurs for a query where column statistics were used to create the access plan
v A new plan is added to the plan cache, either because a completely new query was optimized or

because an existing plan was re-optimized.

To validate the statistics, the Statistics Manager checks to see if any of the following apply:
v Number of rows in the table has changed by more than 15% of the total table row count
v Number of rows changed in the table is more than 15% of the total table row count

If the statistics is determined to be stale, the Statistics Manager still uses the stale column statistics to
answer the questions from the optimizer, but it also marks the column statistics as stale in the Plan Cache
and generates a request to refresh the statistics.

Viewing statistics requests
You can view the current statistics requests by using iSeries Navigator or by using Statistics APIs.

To view requests in iSeries Navigator, right-click Database and select Statistic Requests. This window
shows all user requested statistics collections that are pending or active, as well as all system requested
statistics collections that are being considered (are candidates), are active, or have failed. You can change
the status of the request, order the request to process immediately, or cancel the request.
Related reference

“Statistics Manager APIs” on page 143
The following APIs are used to implement the statistics function of iSeries Navigator.

Indexes versus column statistics
If you are trying to decide whether to use statistics or indexes to provide information to the Statistics
Manager, keep the following differences in mind.

One major difference between indexes and column statistics is that indexes are permanent objects that are
updated when changes to the underlying table occur, while column statistics are not. If your data is

Performance and query optimization 139

|
|
|
|

constantly changing, the Statistics Manager may need to rely on stale column statistics. However,
maintaining an index after each change to the table might take up more system resources than refreshing
the stale column statistics after a group of changes to the table have occurred.

Another difference is the effect that the existence of new indexes or column statistics has on the
Optimizer. When new indexes become available, the Optimizer will consider them for implementation. If
they are candidates, the Optimizer will re-optimize the query and try to find a better implementation.
However, this is not true for column statistics. When new or refreshed column statistics are available, the
Statistics Manager will interrogate immediately. Reoptimization will occur only if the answers are
significantly different from the ones that were given before these refreshed statistics. This means that it is
possible to use statistics that are refreshed without causing a reoptimization of an access plan.

When trying to determine the selectivity of predicates, the Statistics Manager considers column statistics
and indexes as resources for its answers in the following order:
1. Try to use a multi-column keyed index when ANDed or ORed predicates reference multiple columns
2. If there is no perfect index that contains all of the columns in the predicates, it will try to find a

combination of indexes that can be used.
3. For single column questions, it will use available column statistics
4. If the answer derived from the column statistics shows a selectivity of less than 2%, indexes are used

to verify this answer

Accessing column statistics to answer questions is faster than trying to obtain these answers from
indexes.

Column statistics can only be used by SQE. For CQE, all statistics are retrieved from indexes.

Finally, column statistics can be used only for query optimization. They cannot be used for the actual
implementation of a query, whereas indexes can be used for both.

Monitoring background statistics collection
The system value QDBFSTCCOL controls who is allowed to create statistics in the background.

The following list provides the possible values:

*ALL
Allows all statistics to be collected in the background. This is the default setting.

*NONE
Restricts everyone from creating statistics in the background. This does not prevent immediate
user-requested statistics from being collected, however.

*USER
Allows only user-requested statistics to be collected in the background.

*SYSTEM
Allows only system-requested statistics to be collected in the background.

When you switch the system value to something other than *ALL or *SYSTEM, the Statistics Manager
continues to place statistics requests in the Plan Cache. When the system value is switched back to *ALL,
for example, background processing analyzes the entire Plan Cache and looks for any column statistics
requests that are there. This background task also identifies column statistics that have been used by an
plan in the Plan Cache and determines if these column statistics have become stale. Requests for the new
column statistics as well as requests for refresh of the stale columns statistics are then executed.

All background statistic collections initiated by the system or submitted to the background by a user are
performed by the system job QDBFSTCCOL (user-initiated immediate requests are run within the user's

140 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

job). This job uses multiple threads to create the statistics. The number of threads is determined by the
number of processors that the system has. Each thread is then associated with a request queue.

There are four types of request queues based on who submitted the request and how long the collection
is estimated to take. The default priority assigned to each thread can determine to which queue the
thread belongs:
v Priority 90 — short user requests
v Priority 93 — long user requests
v Priority 96 — short system requests
v Priority 99 — long system requests

Background statistics collections attempt to use as much parallelism as possible. This parallelism is
independent of the SMP feature installed on the iSeries. However, parallel processing is allowed only for
immediate statistics collection if SMP is installed on the system and the job requesting the column
statistics is set to allow parallelism.
Related information

Allow background database statistics collection (QDBFSTCCOL) system value

Replication of column statistics with CRTDUPOBJ versus CPYF
You can replicate column statistics with the Create Duplicate Object (CRTDUPOBJ) or the Copy File
(CPYF) commands.

Statistics are not copied to new tables when using the Copy File (CPYF) command. If statistics are needed
immediately after using this command, then you must manually generate the statistics using iSeries
Navigator or the statistics APIs. If statistics are not needed immediately, then the creation of column
statistics may be performed automatically by the system after the first touch of a column by a query.

Statistics are copied when using Create Duplicate Object (CRTDUPOBJ) command with DATA(*YES). You
can use this as an alternative to creating statistics automatically after using a Copy File (CPYF) command.
Related information

Create Duplicate Object (CRTDUPOBJ) command
Copy File (CPYF) command

Determining what column statistics exist
You can determine what column statistics exist in a couple of ways.

The first is to view statistics by using iSeries Navigator. Right-click a table or alias and select Statistic
Data. Another way is to create a user-defined table function and call that function from an SQL statement
or stored procedure.

Manually collecting and refreshing statistics
You can manually collect and refresh statistics through iSeries Navigator or by using Statistics APIs.

To collect statistics using iSeries Navigator, right-click a table or alias and select Statistic Data. On the
Statistic Data dialog, click New. Then select the columns that you want to collect statistics for. Once you
have selected the columns, you can collect the statistics immediately or collect them in the background.

To refresh a statistic using iSeries Navigator, right-click a table or alias and select Statistic Data. Click
Update. Select the statistic that you want to refresh. You can collect the statistics immediately or collect
them in the background.

There are several scenarios in which the manual management (create, remove, refresh, and so on) of
column statistics may be beneficial and recommended.

Performance and query optimization 141

High Availability (HA) solutions
When considering the design of high availability solutions where data is replicated to a
secondary system by using journal entries, it is important to know that column statistics
information is not journaled. That means that, on your backup system, no column statistics are
available when you first start using that system. To prevent the "warm up" effect that this may
cause, you may want to propagate the column statistics were gathered on your production
system and recreate them on your backup system manually.

ISV (Independent Solution Provider) preparation
An ISV may want to deliver a solution to a customer that already includes column statistics
frequently used in the application instead of waiting for the automatic statistics collection to
create them. A way to accomplish this is to run the application on the development system for
some time and examine which column statistics were created automatically. You can then
generate a script file to be shipped as part of the application that should be executed on the
customer system after the initial data load took place.

Business Intelligence environments
In a large Business Intelligence environment, it is quite common for large data load and update
operations to occur overnight. As column statistics are marked as stale only when they are
touched by the Statistics Manager, and then refreshed after first touch, you may want to consider
refreshing them manually after loading the data.

You can do this easily by toggling the system value QDBFSTCCOL to *NONE and then back to
*ALL. This causes all stale column statistics to be refreshed and starts collection of any column
statistics previously requested by the system but not yet available. Since this process relies on the
access plans stored in the Plan Cache, avoid performing a system initial program load (IPL)
before toggling QDBFSTCCOL since an IPL clears the Plan Cache.

You should be aware that this procedure works only if you do not delete (drop) the tables and
recreate them in the process of loading your data. When deleting a table, access plans in the Plan
Cache that refer to this table are deleted. Information about column statistics on that table is also
lost. The process in this environment is either to add data to your tables or to clear the tables
instead of deleting them.

Massive data updates
Updating rows in a column statistics-enabled table that significantly change the cardinality, add
new ranges of values, or change the distribution of data values can affect the performance for
queries when they are first run against the new data. This may happen because, on the first run
of such a query, the optimizer uses stale column statistics to make decisions on the access plan.
At that point, it starts a request to refresh the column statistics.

If you know that you are doing this kind of update to your data, you may want to toggle the
system value QDBFSTCCOL to *NONE and back to *ALL or *SYSTEM. This causes an analysis of
the Plan Cache. The analysis includes searching for column statistics that were used in the
generation of an access plan, analyzing them for staleness, and requesting updates for the stale
statistics.

If you massively update or load data and run queries against these tables at the same time, then
the automatic collection of column statistics tries to refresh every time 15% of the data is
changed. This can be redundant processing since you are still in the process of updating or
loading the data. In this case, you may want to block automatic statistics collection for the tables
in question and deblock it again after the data update or load finishes. An alternative is to turn
off automatic statistics collection for the whole system before updating or loading the data and
switching it back on after the updating or loading has finished.

Backup and recovery
When thinking about backup and recovery strategies, keep in mind that creation of column
statistics is not journaled. Column statistics that exist at the time a save operation occurs are
saved as part of the table and restored with the table. Any column statistics created after the save
took place are lost and cannot be recreated by using techniques such as applying journal entries.

142 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

If you have a rather long interval between save operations and rely heavily on journaling for
restoring your environment to a current state, consider keeping track of column statistics that are
generated after the latest save operation.

Related information

Allow background database statistics collection (QDBFSTCCOL) system value

Statistics Manager APIs
The following APIs are used to implement the statistics function of iSeries Navigator.
v Cancel Requested Statistics Collections (QDBSTCRS, QdbstCancelRequestedStatistics) immediately

cancels statistics collections that have been requested, but are not yet completed or not successfully
completed.

v Delete Statistics Collections (QDBSTDS, QdbstDeleteStatistics) immediately deletes existing completed
statistics collections.

v List Requested Statistics Collections (QDBSTLRS, QdbstListRequestedStatistics) lists all of the columns
and combination of columns and file members that have background statistic collections requested, but
not yet completed.

v List Statistics Collection Details (QDBSTLDS, QdbstListDetailStatistics) lists additional statistics data for
a single statistics collection.

v List Statistics Collections (QDBSTLS, QdbstListStatistics) lists all of the columns and combination of
columns for a given file member that have statistics available.

v Request Statistics Collections (QDBSTRS, QdbstRequestStatistics) allows you to request one or more
statistics collections for a given set of columns of a specific file member.

v Update Statistics Collection (QDBSTUS, QdbstUpdateStatistics) allows you to update the attributes and
to refresh the data of an existing single statistics collection

Related reference

“Viewing statistics requests” on page 139
You can view the current statistics requests by using iSeries Navigator or by using Statistics APIs.

Display information with Database Health Center
Use the Database Health Center to capture information about your database. You can view the total
number of objects, the size limits of selected objects in your database, and the design limits of selected
objects.

To start the Health Center, follow these steps:
1. In the iSeries Navigator window, expand the system that you want to use.
2. Expand Databases.
3. Right-click the database that you want to work with and select Health Center.

You can change your preferences by clicking Change and entering filter information. Click Refresh to
update the information.

To save your health center history, do the following:
1. In the iSeries Navigator window, expand the system you want to use.
2. Expand Databases.
3. Right-click the database that you want to work with and select Health Center.
4. On the Health center dialog, select the area that you want to save. For example, if you want to save

the current overview, click Save on the Overview. Size limits and Design limits are not saved.
5. Specify a schema and table to save the information. You can view the contents of the selected table by

clicking View Contents. If you select to save information to a table that does not exist, the system will
create the table for you.

Performance and query optimization 143

|

|
|
|

|

|

|

|

|
|

|

|

|

|

|
|

|
|
|

Show Materialized Query Table columns
You can display materialized query tables associated with another table using iSeries Navigator.

To display materialized query tables, follow these steps:
1. In the iSeries Navigator window, expand the system that you want to use.
2. Expand Databases and the database that you want to work with.
3. Expand Schemas and the schema that you want to work with.
4. Right-click a table and select Show Materialized Query Tables.

Table 33. Columns used in Show materialized query table window

Column name Description

SQL Name The SQL name for the materialized query table

Schema Schema or library containing the materialized query table

Partition Partition detail for the index. Possible values:

v <blank>, which means For all partitions

v For Each Partition

v specific name of the partition

Owner The user ID of the owner of the materialized query table.

Short Name System table name for the materialized query table

Enabled Whether the materialized query table is enabled. Possible values
are:

v Yes

v No

If the materialized query table is not enabled, it cannot be used for
query optimization. It can, however, be queried directly.

Creation Date The timestamp of when the materialized table was created.

Last Refresh Date The timestamp of the last time the materialized query table was
refreshed.

Last Query Use The timestamp when the materialized query table was last used by
the optimizer to replace user specified tables in a query.

Last Query Statistics Use The timestamp when the materialized query table was last used by
the statistics manager to determine an access method.

Query Use Count The number of instances the materialized query table was used by
the optimizer to replace user specified tables in a query.

Query Statistics Use Count The number of instances the materialized query table was used by
the statistics manager to determine an access method.

Last Used Date The timestamp when the materialized query table was last used.

Days Used Count The number of days the materialized query table has been used.

Date Reset Days Used Count The year and date when the days-used count was last set to 0.

Current Number of Rows The total number of rows included in this materialized query table
at this time.

Current Size The current size of the materialized query table.

Last Changed The timestamp when the materialized query table was last changed.

Maintenance The maintenance for the materialized query table. Possible values
are:

v User

v System

144 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

Table 33. Columns used in Show materialized query table window (continued)

Column name Description

Initial Data Whether the initial data was inserted immediately or deferred.
Possible values are

v Deferred

v Immediate

Refresh Mode The refresh mode for the materialized query table. A materialized
query table can be refreshed whenever a change is made to the
table or deferred to a later time.

Isolation Level The isolation level for the materialized query table.

Sort Sequence The alternate character sorting sequence for National Language
Support (NLS).

Language Identifier The language code for the object.

SQL Statement The SQL statement that is used to populate the table.

Text The text description of the materialized query table.

Manage Check Pending Constraints columns
You can view and change constraints that have been placed in a check pending state by the system.
Check pending refers to a state in which a mismatch exists between a parent and foreign key in the case
of a referential constraint or between the column value and the check constraint definition in the case of a
check constraint.

To view constraints that have been placed in a check pending state, follow these steps:
1. Expand the system name and Databases. Right-click the database that you want to use, and select

Manage check pending constraints.
2. From this interface, you can view the definition of the constraint and the rows that are in violation of

the constraint rules. Select the constraint that you want to work with and then select Edit Check
Pending Constraint from the File menu.

3. You can either alter or delete the rows that are in violation.

Table 34. Columns used in Check pending constraints window

Column name Description

Name of Constraint in Check Pending Displays the name of the constraint that is in a check pending state.

Schema Schema containing the constraint that is in a check pending state.

Type Displays the type of constraint that is in check pending. Possible
values are:

Check constraint
Foreign key constraint

Enabled Displays whether the constraint is enabled. The constraint must be
disabled or the relationship must be taken out of the check pending
state before any input/output (I/O) operations can be performed
on it.

Query optimization tools: Comparison table
Use this table to learn what information each tool can yield about your query, when in the process a
specific tool can analyze your query, and the tasks that each tool can perform to improve your query.

Performance and query optimization 145

PRTSQLINF STRDBG or
CHGQRYA

File-based monitor
(STRDBMON)

Memory-Based
Monitor

Visual Explain

Available without
running query (after
access plan has been
created)

Only available when
the query is run

Only available when
the query is run

Only available when
the query is run

Only available when
the query is
explained

Displayed for all
queries in SQL
program, whether
executed or not

Displayed only for
those queries which
are executed

Displayed only for
those queries which
are executed

Displayed only for
those queries which
are executed

Displayed only for
those queries that are
explained

Information about
host variable
implementation

Limited information
about the
implementation of
host variables

All information about
host variables,
implementation, and
values

All information about
host variables,
implementation, and
values

All information about
host variables,
implementation, and
values

Available only to SQL
users with programs,
packages, or service
programs

Available to all query
users (OPNQRYF,
SQL, QUERY/400)

Available to all query
users (OPNQRYF,
SQL, QUERY/400)

Available only to SQL
interfaces

Available through
iSeries Navigator
Database and API
interface

Messages are printed
to spool file

Messages is displayed
in job log

Performance rows are
written to database
table

Performance
information is
collected in memory
and then written to
database table

Information is
displayed visually
through iSeries
Navigator

Easier to tie messages
to query with
subqueries or unions

Difficult to tie
messages to query
with subqueries or
unions

Uniquely identifies
every query,
subquery and
materialized view

Repeated query
requests are
summarized

Easy to view
implementation of the
query and associated
information

Creating an index strategy
DB2 Universal Database for iSeries provides two basic means for accessing tables: a table scan and an
index-based retrieval. Index-based retrieval is typically more efficient than table scan when less than 20%
of the table rows are selected.

There are two kinds of persistent indexes: binary radix tree indexes, which have been available since
1988, and encoded vector indexes (EVIs), which became available in 1998 with V4R2. Both types of
indexes are useful in improving performance for certain kinds of queries.

Binary radix indexes
A radix index is a multilevel, hybrid tree structure that allows a large number of key values to be stored
efficiently while minimizing access times. A key compression algorithm assists in this process. The lowest
level of the tree contains the leaf nodes, which contain the address of the rows in the base table that are
associated with the key value. The key value is used to quickly navigator to the leaf node with a few
simple binary search tests.

The binary radix tree structure is very good for finding a small number of rows because it is able to find
a given row with a minimal amount of processing. For example, using a binary radix index over a
customer number column for a typical OLTP request like "find the outstanding orders for a single
customer: will result in fast performance. An index created over the customer number column is
considered to be the perfect index for this type of query because it allows the database to zero in on the
rows it needs and perform a minimal number of I/Os.

In some situations, however, you do not always have the same level of predictability. Increasingly, users
want ad hoc access to the detail data. They might for example, run a report every week to look at sales

146 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|
|
|
|
|

|
|
|
|
|
|

|
|

data, then "drill down" for more information related to a particular problem areas that they found in the
report. In this scenario, you cannot write all of the queries in advance on behalf of the end users. Without
knowing what queries will be run, it is impossible to build the perfect index.
Related information

SQL Create Index statement

Specifying PAGESIZE on CRTPF or CRTLF commands
When creating keyed files or indexes using the Create Physical File (CRTPF) or Create Logical File
(CRTLF) commands, or the SQL CREATE INDEX statement, you can use the PAGESIZE parameter to
specify the access path logical page size that is used by the system when the access path is created.

This logical page size is the amount of bytes of the access path that can be moved into the job's storage
pool from the auxiliary storage for a page fault.

You should consider using the default of *KEYLEN for this parameter except in rare circumstances so
that the page size can be determined by the system based on the total length of the key, or keys. When
the access path is used by very selective queries (for example, individual key look up), a smaller page
size is typically more efficient. Also, when the keys being selected by queries are grouped together in the
access path and many records are being selected, or the access path is being scanned, a larger page size is
typically more efficient.
Related information

Create Logical File (CRTLF) command
Create Physical File (CRTPF) command
SQL Create Index statement

General index maintenance
Whenever indexes are created and used, there is a potential for a decrease in I/O velocity due to
maintenance, therefore, you should consider the maintenance cost of creating and using additional
indexes. For radix indexes with MAINT(*IMMED) maintenance occurs when inserting, updating or
deleting rows.

To reduce the maintenance of your indexes consider:
v Minimizing the number of indexes over a given table by creating composite (multiple column) key

indexes such that an index can be used for multiple different situations.
v Dropping indexes during batch inserts, updates, and deletes
v Creating in parallel. Either create indexes, one at a time, in parallel using SMP or create multiple

indexes simultaneously with multiple batch jobs
v Maintaining indexes in parallel using SMP

The goal of creating indexes is to improve query performance by providing statistics and implementation
choices, while maintaining a reasonable balance on the number of indexes so as to limit maintenance
overhead

Encoded vector indexes
An encoded vector index (EVI) is an index object that is used by the query optimizer and database
engine to provide fast data access in decision support and query reporting environments.

EVIs are a complementary alternative to existing index objects (binary radix tree structure - logical file or
SQL index) and are a variation on bitmap indexing. Because of their compact size and relative simplicity,
EVIs provide for faster scans of a table that can also be processed in parallel.

An EVI is a data structure that is stored as two components:

Performance and query optimization 147

|
|
|

|

|

|
|
|
|

|
|

|
|
|
|
|
|

|

|

|

|

|
|
|
|
|

|

|
|

|

|
|

|

|
|
|

|

|
|

|
|
|

|

v The symbol table contains statistical and descriptive information about each distinct key value
represented in the table. Each distinct key is assigned a unique code, either 1, 2 or 4 bytes in size.

v The vector is an array of codes listed in the same ordinal position as the rows in the table. The vector
does not contain any pointers to the actual rows in the table.

Advantages of EVIs:
v Require less storage
v May have better build times than radix, especially if the number of unique values in the column(s)

defined for the key is relatively small.
v Provide more accurate statistics to the query optimizer
v Considerably better performance for certain grouping types of queries
v Good performance characteristics for decision support environments.

Disadvantages of EVIs:
v Cannot be used in ordering
v Use for grouping is specialized
v Use with joins always done in cooperation with hash table processing
v Some additional maintenance idiosyncrasies
Related information

SQL Create Index statement

How the EVI works
EVIs work in different ways for costing and implementation.

For costing, the optimizer uses the symbol table to collect metadata information about the query.

For implementation, the optimizer may use the EVI in one of the following ways:
v Selection (WHERE clause)

If the optimizer decides to use an EVI to process the query, the database engine uses the vector to
build the dynamic bitmap (or a list of selected row ids) that contains one bit for each row in the table,
the bit being turned on for each selected row. Like a bitmap index, these intermediate dynamic bitmaps
(or lists) can be AND'ed and OR'ed together to satisfy an ad hoc query.
For example, if a user wants to see sales data for a certain region during a certain time period, you can
define an EVI over the region column and the Quarter column of the database. When the query runs,
the database engine builds dynamic bitmaps using the two EVIs and then ANDs the bitmaps together
to produce a bitmap that contains only the relevant rows for both selection criteria. This AND'ing
capability drastically reduces the number of rows that the server must read and test. The dynamic
bitmap(s) exists only as long as the query is executing. Once the query is completed, the dynamic
bitmap(s) are eliminated.

v Grouping or Distinct

The symbol table within the EVI contains the distinct values for the specified columns in the key
definition, along with a count of the number of records in the base table that have each distinct value.
The symbol table in effect contains the grouping results of the columns in that key. Therefore, queries
involving grouping or distinct on the columns in that key are potential candidates for a technique that
uses the symbol table directly to determine the query result. Note that the symbol table contains only
the key values and their associated counts. Therefore, queries involving column function COUNT are
eligible for this technique, but queries involving column functions MIN or MAX on other columns are
not eligible (since the min and max values are not stored in the symbol table).

148 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|

|
|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

When to create EVIs
There are several instances when you should consider creating EVIs.

Encoded vector indexes should be considered when any one of the following is true:
v You want to gather 'live' statistics
v Full table scan is currently being selected for the query
v Selectivity of the query is 20%-70% and using skip sequential access with dynamic bitmaps will speed

up the scan
v When a star schema join is expected to be used for star schema join queries.
v When grouping or distinct queries are specified against a column, the columns have a small number of

distinct values and (if a column function is specified at all) only the COUNT column function is used.

Encoded vector indexes should be created with:
v Single key columns with a low number of distinct values expected
v Keys columns with a low volatililty (they don't change often)
v Maximum number of distinct values expected using the WITH n DISTINCT VALUES clause
v Single key over foreign key columns for a star schema model

EVI maintenance
There are unique challenges to maintaining EVIs. The following table shows a progression of how EVIs
are maintained and the conditions under which EVIs are most effective and where EVIs are least effective
based on the EVI maintenance characteristics.

Performance and query optimization 149

|
|

|

|

|

|
|

|

|
|

|

|

|

|

|

|
|
|
|

Table 35. EVI Maintenance Considerations

Condition Characteristics

Most Effective

Least Effective

When inserting an existing distinct
key value

v Minimum overhead

v Symbol table key value looked up
and statistics updated

v Vector element added for new row,
with existing byte code

When inserting a new distinct key
value - in order, within byte code
range

v Minimum overhead

v Symbol table key value added,
byte code assigned, statistics
assigned

v Vector element added for new row,
with new byte code

When inserting a new distinct key
value - out of order, within byte code
range

v Minimum overhead if contained
within overflow area threshold

v Symbol table key value added to
overflow area, byte code assigned,
statistics assigned

v Vector element added for new row,
with new byte code

v Considerable overhead if overflow
area threshold reached

v Access path validated - not
available

v EVI refreshed, overflow area keys
incorporated, new byte codes
assigned (symbol table and vector
elements updated)

When inserting a new distinct key
value - out of byte code range

v Considerable overhead

v Access plan invalidated - not
available

v EVI refreshed, next byte code size
used, new byte codes assigned
(symbol table and vector elements
updated

Recommendations for EVI use
Encoded vector indexes are a powerful tool for providing fast data access in decision support and query
reporting environments, but to ensure the effective use of EVIs, you should implement EVIs with the
following guidelines:

Create EVIs on
v Read-only tables or tables with a minimum of INSERT, UPDATE, DELETE activity.
v Key columns that are used in the WHERE clause - local selection predicates of SQL requests.
v Single key columns that have a relatively small set of distinct values.
v Multiple key columns that result in a relatively small set of distinct values.
v Key columns that have a static or relatively static set of distinct values.

150 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

||

|||

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|

|
|
|

|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|
|

|

|
|
|
|

|

|

|

|

|

|

v Non-unique key columns, with many duplicates.

Create EVIs with the maximum byte code size expected
v Use the "WITH n DISTINCT VALUES" clause on the CREATE ENCODED VECTOR INDEX statement.
v If unsure, use a number greater than 65,535 to create a 4 byte code, thus avoiding the EVI maintenance

overhead of switching byte code sizes.

When loading data
v Drop EVIs, load data, create EVIs.
v EVI byte code size will be assigned automatically based on the number of actual distinct key values

found in the table.
v Symbol table will contain all key values, in order, no keys in overflow area.

Consider SMP and parallel index creation and maintenance

Symmetrical Multiprocessing (SMP) is a valuable tool for building and maintaining indexes in parallel.
The results of using the optional SMP feature of i5/OS are faster index build times, and faster I/O
velocities while maintaining indexes in parallel. Using an SMP degree value of either *OPTIMIZE or
*MAX, additional multiple tasks and additional server resources are used to build or maintain the
indexes. With a degree value of *MAX, expect linear scalability on index creation. For example, creating
indexes on a 4 processor server can be 4 times as fast as a 1 processor server.

Checking values in the overflow area

You can also use the Display File Description (DSPFD) command (or iSeries Navigator - Database) to
check how many values are in the overflow area. Once the DSPFD command is issued, check the
overflow area parameter for details on the initial and actual number of distinct key values in the
overflow area.

Using CHGLF to rebuild an index's access path

Use the Change Logical File (CHGLF) command with the attribute Force Rebuild Access Path set to YES
(FRCRBDAP(*YES)). This command accomplishes the same thing as dropping and recreating the index,
but it does not require that you know about how the index was built. This command is especially
effective for applications where the original index definitions are not available, or for refreshing the
access path.
Related information

SQL Create Index statement
Change Logical File (CHGLF) command
Display File Description (DSPFD) command

Comparing Binary radix indexes and Encoded vector indexes
DB2 UDB for iSeries makes indexes a powerful tool.

The following table summarizes some of the differences between binary radix indexes and encoded
vector indexes:

Table 36. Comparison of radix and evi indexes

Binary Radix Indexes Encoded Vector Indexes

Basic data structure A wide, flat tree A Symbol Table and a vector

Interface for creating Command, SQL, iSeries Navigator SQL, iSeries Navigator

Can be created in parallel Yes Yes

Performance and query optimization 151

|

|

|

|
|

|

|

|
|

|

|

|
|
|
|
|
|

|

|
|
|
|

|

|
|
|
|
|

|

|

|

|

|

|

|
|

||

|||

|||

|||

|||

Table 36. Comparison of radix and evi indexes (continued)

Binary Radix Indexes Encoded Vector Indexes

Can be maintained in parallel Yes Yes

Used for statistics Yes Yes

Used for selection Yes Yes, via dynamic bitmaps or RRN list

Used for joining Yes Yes (in conjunction with a hash table)

Used for grouping Yes Yes

Used for ordering Yes No

Used to enforce unique Referential
Integrity constraints

Yes No

Indexes and the optimizer
Since the iSeries optimizer uses cost based optimization, the more information that the optimizer is given
about the rows and columns in the database, the better able the optimizer is to create the best possible
(least costly/fastest) access plan for the query. With the information from the indexes, the optimizer can
make better choices about how to process the request (local selection, joins, grouping, and ordering).

The CQE optimizer attempts to examine most, if not all, indexes built over a table unless or until it times
out. However, the SQE optimizer only considers those indexes that are returned by the Statistics Manager.
These include only indexes that the Statistics Manager decides are useful in performing local selection
based on the "where" clause predicates. Consequently, the SQE optimizer does not time out.

The primary goal of the optimizer is to choose an implementation that quickly and efficiently eliminates
the rows that are not interesting or required to satisfy the request. Normally, query optimization is
thought of as trying to find the rows of interest. A proper indexing strategy will assist the optimizer and
database engine with this task.

Instances where an index is not used
DB2 Universal Database for iSeries does not use indexes in the following instances:
v For a column that is expected to be updated; for example, when using SQL, your program might

include the following:
EXEC SQL
DECLARE DEPTEMP CURSOR FOR

SELECT EMPNO, LASTNAME, WORKDEPT
FROM CORPDATA.EMPLOYEE
WHERE (WORKDEPT = 'D11' OR

WORKDEPT = 'D21') AND
EMPNO = '000190'

FOR UPDATE OF EMPNO, WORKDEPT
END-EXEC.

When using the OPNQRYF command, for example:
OPNQRYF FILE((CORPDATA/EMPLOYEE)) OPTION(*ALL)

QRYSLT('(WORKDEPT *EQ ''D11'' *OR WORKDEPT *EQ ''D21'')
*AND EMPNO *EQ ''000190''')

Even if you do not intend to update the employee's department, the system cannot use an index with a
key of WORKDEPT.
The system can use an index if all of the updateable columns used within the index are also used
within the query as an isolatable selection predicate with an equal operator. In the previous example,
the system uses an index with a key of EMPNO.
The system can operate more efficiently if the FOR UPDATE OF column list only names the column
you intend to update: WORKDEPT. Therefore, do not specify a column in the FOR UPDATE OF
column list unless you intend to update the column.

152 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|||

|||

|||

|||

|||

|||

|||

|
|
||

|

|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|
|

|
|
|

If you have an updateable cursor because of dynamic SQL or the FOR UPDATE clause was not
specified and the program contains an UPDATE statement then all columns can be updated.

v For a column being compared with another column from the same row. For example, when using SQL,
your program might include the following:
EXEC SQL
DECLARE DEPTDATA CURSOR FOR

SELECT WORKDEPT, DEPTNAME
FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = ADMRDEPT

END-EXEC.

When using the OPNQRYF command, for example:
OPNQRYF FILE (EMPLOYEE) FORMAT(FORMAT1)

QRYSLT('WORKDEPT *EQ ADMRDEPT')

Even though there is an index for WORKDEPT and another index for ADMRDEPT, DB2 Universal
Database for iSeries will not use either index. The index has no added benefit because every row of the
table needs to be looked at.

Determining unnecessary indexes
You can easily determine which indexes are being used for query optimization.

Before V5R3, it was difficult to determine unnecessary indexes. Using the Last Used Date was not
dependable, as it was only updated when the logical file was opened using a native database application
(for example, in an RPG application). Furthermore, it was difficult to find all the indexes over a physical
file. Indexes are created as part of a keyed physical file, a keyed logical file, a join logical file, an SQL
index, a primary key or unique constraint, or a referential constraint. However, you can now easily find
all indexes and retrieve statistics on index usage as a result of new V5R3 iSeries Navigator and i5/OS
functionality. To assist you in tuning your performance, this function now produces statistics on index
usage as well as index usage in a query.

To access this through the iSeries Navigator, navigate to: Database → Schemas → Tables. Right-click your
table and select Show Indexes

Note: You can also view the statistics through the Retrieve Member Description (QUSRMBRD) API.

In addition to all existing attributes of an index, four new fields have been added to the iSeries
Navigator. Those four new fields are:

Last Query Use
States the timestamp when the index was last used to retrieve data for a query.

Last Query Statistic Use
States the timestamp when the index was last used to provide statistical information.

Query Use Count
Lists the number of instances the index was used in a query.

Query Statistics Use
Lists the number of instances the index was used for statistical information.

Last Used Date
The century and date this index was last used.

Days Used Count
The number of days the index was used. If the index does not have a last used date, the count is
0.

Date Reset Days Used Count
The date that the days used count was last reset. You can reset the days used by Change Object
Description (CHGOBJD) command.

Performance and query optimization 153

|
|

|
|

|
|
|
|
|
|

|

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|

The fields start and stop counting based on your situation, or the actions you are currently performing on
your system. The following list describes what might affect one or both of your counters:
v The SQE and CQE query engines increment both counters. As a result, the statistics field will be

updated regardless of which query interface is used.
v A save and restore procedure does not reset the statistics counter if the index is restored over an

existing index. If an index is restored that does not exist on the server, the statistics are reset.
Related reference

“Starting a summary monitor” on page 94
You can start a summary monitor from the iSeries Navigator interface.
Related information

Retrieve Member Description (QUSRMBRD) API
Change Object Description (CHGOBJD) command

Show index for a table
You can display indexes that are created on a table using iSeries Navigator.

To display indexes for a table, follow these steps:
1. In the iSeries Navigator window, expand the system that you want to use.
2. Expand Databases and the database that you want to work with.
3. Expand Schemas and the schema that you want to work with.
4. Right-click a table and select Show Indexes.

The Show index window includes the following columns:

Table 37. Columns used in Show index window

Column name Description

SQL Name The SQL name for the index

Type The type of index displayed. Possible values are:

v Keyed Physical File

v Keyed Logical File

v Primary Key Constraint

v Unique Key Constraint

v Foreign Key Constraint

v Index

Schema Schema or library containing the index or access path

Owner User ID of the owner of this index or access path

Short Name System table name for the index or access path.

Text The text description of the index or access path

Index partition Partition detail for the index. Possible values:

v <blank>, For all partitions

v For Each Partition

v specific name of the partition

Valid Whether the access path or index is valid. The possible values are
Yes or No.

Creation Date The timestamp of when the index was created.

Last Build The last time that the access path or index was rebuilt.

Last Query Use Timestamp when the access path was last used by the optimizer.

Last Query Statistics Use Timestamp when the access path was last used for statistics

154 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|

|
|

|
|

|

|
|

|

|

|

|
|

|

|

|

|

|

|

||

||

||

||

|

|

|

|

|

|

||

||

||

||

||

|

|

|

||
|

||

||

||

||

Table 37. Columns used in Show index window (continued)

Column name Description

Query Use Count Number of times the access path has been used for a query

Query Statistics Use Count Number of times the access path has been used for statistics

Last Used Date Timestamp when the access path or index was last used.

Days Used Count The number of days the index has been used.

Date Reset Days Used Count The year and date when the days-used count was last set to 0.

Number of Key Columns The number of key columns defined for the access path or index.

Key Columns The key columns defined for the access path or index.

Current Key Values The number of current key values.

Current Size The size of the access path or index.

Current Allocated Pages The current number of pages allocated for the access path or index.

Logical Page Size The number of bytes used for the access path or index's logical
page size. Indexes with larger logical page sizes are typically more
efficient when scanned during query processing. Indexes with
smaller logical page sizes are typically more efficient for simple
index probes and individual key look ups. If the access path or
index is an encoded vector, the value 0 is returned.

Duplicate Key Order How the access path or index handles duplicate key values.
Possible values are:

v Unique - all values are unique.

v Unique where not null - all values are unique unless null is
specified.

Maximum Key Length The maximum key length for the access path or index.

Unique Partial Key Values The number of unique partial keys for the key fields 1 through 4. If
the access path is an encoded vector, this number represents the
number of full key distinct values.

Overflow Values The number of overflow values for this encoded vector index.

Key Code Size The length of the code assigned to each distinct key value of the
encoded vector index.

Sparse Is the index considered sparse. Sparse indexes only contain keys for
rows that satisfy the query. Possible values are:

v Yes

v No

Derived Key Is the index considered derived. A derived key is a key that is the
result of an operation on the base column. Possible values are:

v Yes

v No

Partitioned Whether the index partition should be created for each data
partition defined for the table using the specified columns. Possible
values are:

v Yes

v No

Maximum Size The maximum size of the access path or index.

Sort Sequence The alternate character sorting sequence for National Language
Support (NLS).

Language Identifier The language code for the object.

Performance and query optimization 155

|

||

||

||

||

||

||

||

||

||

||

||

||
|
|
|
|
|

||
|

|

|
|

||

||
|
|

||

||
|

||
|

|

|

||
|

|

|

||
|
|

|

|

||

||
|

||

Table 37. Columns used in Show index window (continued)

Column name Description

Estimated Rebuild Time The estimated time required to rebuild the access path or index.

Held Is a rebuild of an access path or index is held. Possible values are:

v Yes

v No

Maintenance For objects with key fields or join logical files, the type of access
path maintenance used. The possible values are:

v Do not wait

v Delayed

v Rebuild

Delayed Maintenance Keys The number of delayed maintenance keys for the access path or
index.

Recovery Whether the access path is rebuilt immediately when damage to the
access path is recognized. The possible values are:

v After IPL

v During IPL

v Next Open

Index Logical Reads The number of access path or index logical read operations since
the last IPL.

Index Physical Reads The number of access path or index physical read operations since
the last IPL.

Manage index rebuilds
You can manage the rebuild of your indexes using iSeries Navigator. You can view a list of access paths
that are rebuilding and either hold the access path rebuild or change the priority of a rebuild.

To display Access paths to rebuild, follow these steps:
1. In the iSeries Navigator window, expand the system that you want to use.
2. Expand Databases.
3. Right-click the database that you want to work with and select Manage index rebuilds.

The Access paths to rebuild dialog includes the following columns:

Table 38. Columns used in Manage index rebuilds window

Column name Description

Name of Index to Rebuild Long name of access path being rebuilt

Schema Schema name where the index is located

Type The type of index displayed.
Possible values are:

Keyed Physical File
Keyed Logical File
Primary Key
Unique Key
Foreign Key
Index

156 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

||

||

||

|

|

||
|

|

|

|

||
|

||
|

|

|

|

||
|

||
|
|

|
|
|

|

|

|

|

|

||

||

||

||

||
|
|
|
|
|
|
|

Table 38. Columns used in Manage index rebuilds window (continued)

Column name Description

Status Displays the status of the rebuild.
Possible values are:

1-99 – Rebuild Priority
Running – Rebuilding
Held – Held from be rebuilt

Rebuild Priority Displays the priority in which the rebuild for this access path is
run. Also referred to as sequence number.
Possible values are:

1-99: Order to rebuild
Held
Open

Rebuild Reason Displays the reason why this access path needs to be rebuilt.
Possible values are:

Create or build index
IPL
Runtime error
Change file or index sharing
Other
Not needed
Change End of Data
Restore
Alter table
Change table
Change file
Reorganize
Enable a constraint
Alter table recovery
Change file recovery
Index shared
Runtime error
Verify constraint
Convert member
Restore recovery

Performance and query optimization 157

|

||

||
|
|
|
|

||
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 38. Columns used in Manage index rebuilds window (continued)

Column name Description

Rebuild Reason Subtype Displays the subtype reason why this access path needs to be
rebuilt.
Possible values are:

Unexpected error
Index in use during failure
Unexpected error during update, delete, or insert
Delayed maintenance overflow or catch-up error
Other
No event
Change End of Data
Delayed maintenance mismatch
Logical page size mismatch
Partial index restore
Index conversion
Index not saved and restored
Partitioning mismatch
Partitioning change
Index or key attributes change
Original index invalid
Index attributes change
Force rebuild of index
Index not restored
Asynchronous rebuilds requested
Job ended abnormally
Alter table
Change constraint
Index invalid or attributes change
Invalid unique index found
Invalid constraint index found
Index conversion required

Note that if there is no subtype, this field will display a 0.

Invalidation Reason Displays the reason why this access path was invalidated.
Possible values are:

User requested (See Invalidation Reason type for more
information)
Build Index
Load (See Invalidation Reason type for more information)
Initial Program Load (IPL)
Runtime error
Modify
Journal failed to build the index
Marked index as mendable during runtime
Marked index as mendable during IPL
Change end of data

158 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

||

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|
|
|
|

Table 38. Columns used in Manage index rebuilds window (continued)

Column name Description

Invalidation Reason Type Displays the reason type for why this access path was invalidation.
Possible reason types for User requested:

Invalid because of REORG
It is a copy
Alter file
Converting new member
Change to *FRCRBDAP
Change to *UNIQUE
Change to *REBLD

Possible reason types for LOAD
The index was marked for invalidation but the system
crashed before the invalidation could actually occur
The index was associated with the overlaid data space header
during a load, therefore it was invalidated
Index was in IMPI format. The header was converted and
now it is invalidated to be rebuilt in RISC format
The RISC index was converted to V5R1 format
Index invalidated due to partial load
Index invalidated due to a delayed maintenance mismatch
Index invalidated due to a pad key mismatch
Index invalidated due to a significant fields bitmap fix
Index invalidated due to a logical page size mismatch
Index was not restored. File may have been saved with
ACCPTH(*NO) or index did not exist when file was saved.
Index was not restored. File may have been saved with
ACCPTH(*NO) or index did not exist when file was saved.
Index was rebuilt because file was saved in an inconsistent
state with SAVACT(*SYSDFN).

Note that for other invalidation codes, this field will display a 0.

Estimated Rebuild Time Amount of time that it is estimated that the rebuild of the access
path will take.

Rebuild Start Time Time when the rebuild was started.

Elapsed Rebuild Time Amount of time that has elapsed since the start of the rebuild of the
access path

Unique Indicates whether the rows in the access path are unique. Possible
values are:

Yes
No

Last Query Use Timestamp when the access path was last used

Last Query Statistics Use Timestamp when the access path was last used for statistics

Query Use Count Number of times the access path has been used for a query

Query Statistics Use Count Number of times the access path has been used for statistics

Partition Partition detail for the index.
Possible values:

v <blank>, which means For all partitions

v For Each Partition

v specific name of the partition

Owner User ID of the owner of this access path.

Parallel Degree Number of processors to be used to rebuild the index.

Short Name The system name of the file that owns the index to be rebuilt.

Text Text description of the file owning the index.

Performance and query optimization 159

|

||

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||
|

||

||
|

||
|
|
|

||

||

||

||

||
|

|

|

|

||

||

||

||

You can also use the Edit Rebuild of Access Paths (EDTRBDAP) command to manage rebuilding of access
paths.
Related information

Rebuild access paths
Edit Rebuild of Access Paths (EDTRBDAP) command

Indexing strategy
There are two approaches to index creation: proactive and reactive. As the name implies proactive index
creation involves anticipating which columns will be most often used for selection, joining, grouping and
ordering; and then building indexes over those columns. In the reactive approach, indexes are created
based on optimizer feedback, query implementation plan, and system performance measurements.

It is useful to initially build indexes based on the database model and application(s) and not any
particular query. As a starting point, consider designing basic indexes based on the following criteria:
v Primary and foreign key columns based on the database model
v Commonly used local selection columns, including columns that are dependent, such as an

automobile's make and model
v Commonly used join columns not considered primary or foreign key columns
v Commonly used grouping columns
Related information

Indexing and statistics strategies for DB2 UDB for iSeries

Reactive approach to tuning
To perform reactive tuning, build a prototype of the proposed application without any indexes and start
running some queries or build an initial set of indexes and start running the application to see what gets
used and what does not. Even with a smaller database, the slow running queries will become obvious
very quickly.

The reactive tuning method is also used when trying to understand and tune an existing application that
is not performing up to expectations. Using the appropriate debugging and monitoring tools, which are
described in the next section, the database feedback messages that will tell basically three things can be
viewed:
v Any indexes the optimizer recommends for local selection
v Any temporary indexes used for a query
v The implementation method(s) that the optimizer has chosen to run the queries

If the database engine is building temporary indexes to process joins or to perform grouping and
selection over permanent tables, permanent indexes should be built over the same columns to try to
eliminate the temporary index creation. In some cases, a temporary index is built over a temporary table,
so a permanent index will not be able to be built for those tables. You can use the optimization tools
listed in the previous section to note the creation of the temporary index, the reason the temporary index
was created, and the key columns in the temporary index.

Proactive approach to tuning
Typically you will create an index for the most selective columns and create statistics for the least
selective columns in a query. By creating an index, the optimizer knows that the column is selective and
it also gives the optimizer the ability to use that index to implement the query.

160 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|
|

|

|

|

http://www.ibm.com/servers/enable/site/education/abstracts/indxng_abs.html

In a perfect radix index, the order of the columns is important. In fact, it can make a difference as to
whether the optimizer uses it for data retrieval at all. As a general rule, order the columns in an index in
the following way:
v Equal predicates first. That is, any predicate that uses the "=" operator may narrow down the range of

rows the fastest and should therefore be first in the index.
v If all predicates have an equal operator, then order the columns as follows:

– Selection predicates + join predicates
– Join predicates + selection predicates
– Selection predicates + group by columns
– Selection predicates + order by columns

In addition to the guidelines above, in general, the most selective key columns should be placed first in
the index.

Consider the following SQL statement:
SELECT b.col1, b.col2, a.col1

FROM table1 a, table2 b
WHERE b.col1='some_value' AND

b.col2=some_number AND
a.join_col=b.join_col

GROUP BY b.col1, b.col2, a.col1
ORDER BY b.col1

With a query like this, the proactive index creation process can begin. The basic rules are:
v Custom-build a radix index for the largest or most commonly used queries. Example using the query

above:
radix index over join column(s) - a.join_col and b.join_col
radix index over most commonly used local selection column(s) - b.col2

v For ad hoc online analytical processing (OLAP) environments or less frequently used queries, build
single-key EVIs over the local selection column(s) used in the queries. Example using the query above:
EVI over non-unique local selection columns - b.col1 and b.col2

Coding for effective indexes
The following topics provide suggestions that will help you to design code which allows DB2 Universal
Database for iSeries to take advantage of available indexes:

Avoid numeric conversions
When a column value and a host variable (or constant value) are being compared, try to specify the same
data types and attributes. DB2 Universal Database for iSeries does not use an index for the named
column if the host variable or constant value has a greater precision than the precision of the column. If
the two items being compared have different data types, DB2 Universal Database for iSeries will need to
convert one or the other of the values, which can result in inaccuracies (because of limited machine
precision).

To avoid problems for columns and constants being compared, use the following:
v same data type
v same scale, if applicable
v same precision, if applicable

For example, EDUCLVL is a halfword integer value (SMALLINT). When using SQL, specify:
... WHERE EDUCLVL < 11 AND

EDUCLVL >= 2

Performance and query optimization 161

instead of
... WHERE EDUCLVL < 1.1E1 AND

EDUCLVL > 1.3

When using the OPNQRYF command, specify:
... QRYSLT('EDUCLVL *LT 11 *AND ENUCLVL *GE 2')

instead of
... QRYSLT('EDUCLVL *LT 1.1E1 *AND EDUCLVL *GT 1.3')

If an index was created over the EDUCLVL column, then the optimizer does not use the index in the
second example because the precision of the constant is greater than the precision of the column. In the
first example, the optimizer considers using the index, because the precisions are equal.

Avoid arithmetic expressions
Do not use an arithmetic expression as an operand to be compared to a column in a row selection
predicate. The optimizer does not use an index on a column that is being compared to an arithmetic
expression. While this may not cause an index over the column to become unusable, it will prevent any
estimates and possibly the use of index scan-key positioning on the index. The primary thing that is lost
is the ability to use and extract any statistics that might be useful in the optimization of the query.

For example, when using SQL, specify the following:
... WHERE SALARY > 16500

instead of
... WHERE SALARY > 15000*1.1

Avoid character string padding
Try to use the same data length when comparing a fixed-length character string column value to a host
variable or constant value. DB2 Universal Database for iSeries does not use an index if the constant value
or host variable is longer than the column length.

For example, EMPNO is CHAR(6) and DEPTNO is CHAR(3). For example, when using SQL, specify the
following:
... WHERE EMPNO > '000300' AND

DEPTNO < 'E20'

instead of
... WHERE EMPNO > '000300 ' AND

DEPTNO < 'E20 '

When using the OPNQRYF command, specify:
... QRYSLT('EMPNO *GT "000300" *AND DEPTNO *LT "E20"')

instead of
... QRYSLT('EMPNO *GT "000300" *AND DEPTNO *LT "E20"')

Avoid the use of like patterns beginning with % or _
The percent sign (%), and the underline (_), when used in the pattern of a LIKE (OPNQRYF %WLDCRD)
predicate, specify a character string that is similar to the column value of rows you want to select. They
can take advantage of indexes when used to denote characters in the middle or at the end of a character
string.

For example, when using SQL, specify the following:
... WHERE LASTNAME LIKE 'J%SON%'

162 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

When using the OPNQRYF command, specify the following:
... QRYSLT('LASTNAME *EQ %WLDCRD(''J*SON*'')')

However, when used at the beginning of a character string, they can prevent DB2 Universal Database for
iSeries from using any indexes that might be defined on the LASTNAME column to limit the number of
rows scanned using index scan-key positioning. Index scan-key selection, however, is allowed. For
example, in the following queries index scan-key selection can be used, but index scan-key positioning
cannot.

In SQL:
... WHERE LASTNAME LIKE '%SON'

In OPNQRYF:
... QRYSLT('LASTNAME *EQ %WLDCRD(''*SON'')')

Ideally, you should avoid patterns with a % so that you can get the best performance when you perform
key processing on the predicate. If possible, you should try to get a partial string to search so that index
scan-key positioning can be used.

For example, if you were looking for the name "Smithers", but you only type "S%," this query returns all
names starting with "S." You should adjust the query to return all names with "Smi%". By forcing the use
of partial strings, you may get better performance in the long term.

Using indexes with sort sequence
The following sections provide useful information about how indexes work with sort sequence tables.

Using indexes and sort sequence with selection, joins, or grouping
Before using an existing index, DB2 Universal Database for iSeries ensures the attributes of the columns
(selection, join, or grouping columns) match the attributes of the key columns in the existing index. The
sort sequence table is an additional attribute that must be compared.

The sort sequence table associated with the query (specified by the SRTSEQ and LANGID parameters)
must match the sort sequence table with which the existing index was built. DB2 Universal Database for
iSeries compares the sort sequence tables. If they do not match, the existing index cannot be used.

There is an exception to this, however. If the sort sequence table associated with the query is a
unique-weight sequence table (including *HEX), DB2 Universal Database for iSeries acts as though no
sort sequence table is specified for selection, join, or grouping columns that use the following operators
and predicates:
v equal (=) operator
v not equal (^= or <>) operator
v LIKE predicate (OPNQRYF %WLDCRD and *CT)
v IN predicate (OPNQRYF %VALUES)

When these conditions are true, DB2 Universal Database for iSeries is free to use any existing index
where the key columns match the columns and either:
v The index does not contain a sort sequence table or
v The index contains a unique-weight sort sequence table

Note:

1. The table does not need to match the unique-weight sort sequence table associated with the
query.

Performance and query optimization 163

2. Bitmap processing has a special consideration when multiple indexes are used for a table. If
two or more indexes have a common key column between them that is also referenced in the
query selection, then those indexes must either use the same sort sequence table or use no sort
sequence table.

Using indexes and sort sequence with ordering
Unless the optimizer chooses to do a sort to satisfy the ordering request, the sort sequence table
associated with the index must match the sort sequence table associated with the query.

When a sort is used, the translation is done during the sort. Since the sort is handling the sort sequence
requirement, this allows DB2 Universal Database for iSeries to use any existing index that meets the
selection criteria.

Examples of indexes
The following index examples are provided to help you create effective indexes.

For the purposes of the examples, assume that three indexes are created.

Assume that an index HEXIX was created with *HEX as the sort sequence.
CREATE INDEX HEXIX ON STAFF (JOB)

Assume that an index UNQIX was created with a unique-weight sort sequence.
CREATE INDEX UNQIX ON STAFF (JOB)

Assume that an index SHRIX was created with a shared-weight sort sequence.
CREATE INDEX SHRIX ON STAFF (JOB)

Index example: Equals selection with no sort sequence table
Equals selection with no sort sequence table (SRTSEQ(*HEX)).

SELECT * FROM STAFF
WHERE JOB = 'MGR'

When using the OPNQRYF command, specify:
OPNQRYF FILE((STAFF))

QRYSLT('JOB *EQ ''MGR''')
SRTSEQ(*HEX)

The system can use either index HEXIX or index UNQIX.

Index example: Equals selection with a unique-weight sort sequence table
Equals selection with a unique-weight sort sequence table (SRTSEQ(*LANGIDUNQ) LANGID(ENU)).

SELECT * FROM STAFF
WHERE JOB = 'MGR'

When using the OPNQRYF command, specify:
OPNQRYF FILE((STAFF))

QRYSLT('JOB *EQ ''MGR''')
SRTSEQ(*LANGIDUNQ) LANGID(ENU)

The system can use either index HEXIX or index UNQIX.

Index example: Equal selection with a shared-weight sort sequence table
Equal selection with a shared-weight sort sequence table (SRTSEQ(*LANGIDSHR) LANGID(ENU)).

SELECT * FROM STAFF
WHERE JOB = 'MGR'

164 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

When using the OPNQRYF command, specify:
OPNQRYF FILE((STAFF))

QRYSLT('JOB *EQ ''MGR''')
SRTSEQ(*LANGIDSHR) LANGID(ENU)

The system can only use index SHRIX.

Index example: Greater than selection with a unique-weight sort sequence table
Greater than selection with a unique-weight sort sequence table (SRTSEQ(*LANGIDUNQ)
LANGID(ENU)).

SELECT * FROM STAFF
WHERE JOB > 'MGR'

When using the OPNQRYF command, specify:
OPNQRYF FILE((STAFF))

QRYSLT('JOB *GT ''MGR''')
SRTSEQ(*LANGIDUNQ) LANGID(ENU)

The system can only use index UNQIX.

Index example: Join selection with a unique-weight sort sequence table
Join selection with a unique-weight sort sequence table (SRTSEQ(*LANGIDUNQ) LANGID(ENU)).

SELECT * FROM STAFF S1, STAFF S2
WHERE S1.JOB = S2.JOB

or the same query using the JOIN syntax.
SELECT *
FROM STAFF S1 INNER JOIN STAFF S2

ON S1.JOB = S2.JOB

When using the OPNQRYF command, specify:
OPNQRYF FILE(STAFF STAFF)

FORMAT(FORMAT1)
JFLD((1/JOB 2/JOB *EQ))
SRTSEQ(*LANGIDUNQ) LANGID(ENU)

The system can use either index HEXIX or index UNQIX for either query.

Index example: Join selection with a shared-weight sort sequence table
Join selection with a shared-weight sort sequence table (SRTSEQ(*LANGIDSHR) LANGID(ENU)).

SELECT * FROM STAFF S1, STAFF S2
WHERE S1.JOB = S2.JOB

or the same query using the JOIN syntax.
SELECT *
FROM STAFF S1 INNER JOIN STAFF S2

ON S1.JOB = S2.JOB

When using the OPNQRYF command, specify:
OPNQRYF FILE(STAFF STAFF) FORMAT(FORMAT1)

JFLD((1/JOB 2/JOB *EQ))
SRTSEQ(*LANGIDSHR) LANGID(ENU)

The system can only use index SHRIX for either query.

Index example: Ordering with no sort sequence table
Ordering with no sort sequence table (SRTSEQ(*HEX)).

Performance and query optimization 165

SELECT * FROM STAFF
WHERE JOB = 'MGR'
ORDER BY JOB

When using the OPNQRYF command, specify:
OPNQRYF FILE((STAFF))

QRYSLT('JOB *EQ ''MGR''')
KEYFLD(JOB)
SRTSEQ(*HEX)

The system can only use index HEXIX.

Index example: Ordering with a unique-weight sort sequence table
Ordering with a unique-weight sort sequence table (SRTSEQ(*LANGIDUNQ) LANGID(ENU)).

SELECT * FROM STAFF
WHERE JOB = 'MGR'
ORDER BY JOB

When using the OPNQRYF command, specify:
OPNQRYF FILE((STAFF))

QRYSLT('JOB *EQ ''MGR''')
KEYFLD(JOB) SRTSEQ(*LANGIDUNQ) LANGID(ENU)

The system can only use index UNQIX.

Index example: Ordering with a shared-weight sort sequence table
Ordering with a shared-weight sort sequence table (SRTSEQ(*LANGIDSHR) LANGID(ENU)).

SELECT * FROM STAFF
WHERE JOB = 'MGR'
ORDER BY JOB

When using the OPNQRYF command, specify:
OPNQRYF FILE((STAFF))

QRYSLT('JOB *EQ ''MGR''')
KEYFLD(JOB) SRTSEQ(*LANGIDSHR) LANGID(ENU)

The system can only use index SHRIX.

Index example: Ordering with ALWCPYDTA(*OPTIMIZE) and a unique-weight sort
sequence table
Ordering with ALWCPYDTA(*OPTIMIZE) and a unique-weight sort sequence table
(SRTSEQ(*LANGIDUNQ) LANGID(ENU)).

SELECT * FROM STAFF
WHERE JOB = 'MGR'
ORDER BY JOB

When using the OPNQRYF command, specify:
OPNQRYF FILE((STAFF))

QRYSLT('JOB *EQ ''MGR''')
KEYFLD(JOB)
SRTSEQ(*LANGIDUNQ) LANGID(ENU)
ALWCPYDTA(*OPTIMIZE)

The system can use either index HEXIX or index UNQIX for selection. Ordering is done during the sort
using the *LANGIDUNQ sort sequence table.

Index example: Grouping with no sort sequence table
Grouping with no sort sequence table (SRTSEQ(*HEX)).

166 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

SELECT JOB FROM STAFF
GROUP BY JOB

When using the OPNQRYF command, specify:
OPNQRYF FILE((STAFF)) FORMAT(FORMAT2)

GRPFLD((JOB))
SRTSEQ(*HEX)

The system can use either index HEXIX or index UNQIX.

Index example: Grouping with a unique-weight sort sequence table
Grouping with a unique-weight sort sequence table (SRTSEQ(*LANGIDUNQ) LANGID(ENU)).

SELECT JOB FROM STAFF
GROUP BY JOB

When using the OPNQRYF command, specify:
OPNQRYF FILE((STAFF)) FORMAT(FORMAT2)

GRPFLD((JOB))
SRTSEQ(*LANGIDUNQ) LANGID(ENU)

The system can use either index HEXIX or index UNQIX.

Index example: Grouping with a shared-weight sort sequence table
Grouping with a shared-weight sort sequence table (SRTSEQ(*LANGIDSHR) LANGID(ENU)).

SELECT JOB FROM STAFF
GROUP BY JOB

When using the OPNQRYF command, specify:
OPNQRYF FILE((STAFF)) FORMAT(FORMAT2)

GRPFLD((JOB))
SRTSEQ(*LANGIDSHR) LANGID(ENU)

The system can only use index SHRIX.

The following examples assume that 3 more indexes are created over columns JOB and SALARY. The
CREATE INDEX statements precede the examples.

Assume an index HEXIX2 was created with *HEX as the sort sequence.
CREATE INDEX HEXIX2 ON STAFF (JOB, SALARY)

Assume that an index UNQIX2 was created and the sort sequence is a unique-weight sort sequence.
CREATE INDEX UNQIX2 ON STAFF (JOB, SALARY)

Assume an index SHRIX2 was created with a shared-weight sort sequence.
CREATE INDEX SHRIX2 ON STAFF (JOB, SALARY)

Index example: Ordering and grouping on the same columns with a unique-weight
sort sequence table
Ordering and grouping on the same columns with a unique-weight sort sequence table
(SRTSEQ(*LANGIDUNQ) LANGID(ENU)).

SELECT JOB, SALARY FROM STAFF
GROUP BY JOB, SALARY
ORDER BY JOB, SALARY

When using the OPNQRYF command, specify:

Performance and query optimization 167

OPNQRYF FILE((STAFF)) FORMAT(FORMAT3)
GRPFLD(JOB SALARY)
KEYFLD(JOB SALARY)
SRTSEQ(*LANGIDUNQ) LANGID(ENU)

The system can use UNQIX2 to satisfy both the grouping and ordering requirements. If index UNQIX2
did not exist, the system creates an index using a sort sequence table of *LANGIDUNQ.

Index example: Ordering and grouping on the same columns with
ALWCPYDTA(*OPTIMIZE) and a unique-weight sort sequence table
Ordering and grouping on the same columns with ALWCPYDTA(*OPTIMIZE) and a unique-weight sort
sequence table (SRTSEQ(*LANGIDUNQ) LANGID(ENU)).

SELECT JOB, SALARY FROM STAFF
GROUP BY JOB, SALARY
ORDER BY JOB, SALARY

When using the OPNQRYF command, specify:
OPNQRYF FILE((STAFF)) FORMAT(FORMAT3)

GRPFLD(JOB SALARY)
KEYFLD(JOB SALARY)
SRTSEQ(*LANGIDUNQ) LANGID(ENU)
ALWCPYDTA(*OPTIMIZE)

The system can use UNQIX2 to satisfy both the grouping and ordering requirements. If index UNQIX2
did not exist, the system does one of the following actions:
v Create an index using a sort sequence table of *LANGIDUNQ or
v Use index HEXIX2 to satisfy the grouping and to perform a sort to satisfy the ordering

Index example: Ordering and grouping on the same columns with a shared-weight
sort sequence table
Ordering and grouping on the same columns with a shared-weight sort sequence table
(SRTSEQ(*LANGIDSHR) LANGID(ENU)).

SELECT JOB, SALARY FROM STAFF
GROUP BY JOB, SALARY
ORDER BY JOB, SALARY

When using the OPNQRYF command, specify:
OPNQRYF FILE((STAFF)) FORMAT(FORMAT3)

GRPFLD(JOB SALARY)
KEYFLD(JOB SALARY)
SRTSEQ(*LANGIDSHR) LANGID(ENU)

The system can use SHRIX2 to satisfy both the grouping and ordering requirements. If index SHRIX2 did
not exist, the system creates an index using a sort sequence table of *LANGIDSHR.

Index example: Ordering and grouping on the same columns with
ALWCPYDTA(*OPTIMIZE) and a shared-weight sort sequence table
Ordering and grouping on the same columns with ALWCPYDTA(*OPTIMIZE) and a shared-weight sort
sequence table (SRTSEQ(*LANGIDSHR) LANGID(ENU).

SELECT JOB, SALARY FROM STAFF
GROUP BY JOB, SALARY
ORDER BY JOB, SALARY

When using the OPNQRYF command, specify:

168 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

OPNQRYF FILE((STAFF)) FORMAT(FORMAT3)
GRPFLD(JOB SALARY)
KEYFLD(JOB SALARY)
SRTSEQ(*LANGIDSHR) LANGID(ENU)
ALWCPYDTA(*OPTIMIZE)

The system can use SHRIX2 to satisfy both the grouping and ordering requirements. If index SHRIX2 did
not exist, the system creates an index using a sort sequence table of *LANGIDSHR.

Index example: Ordering and grouping on different columns with a unique-weight
sort sequence table
Ordering and grouping on different columns with a unique-weight sort sequence table
(SRTSEQ(*LANGIDUNQ) LANGID(ENU)).

SELECT JOB, SALARY FROM STAFF
GROUP BY JOB, SALARY
ORDER BY SALARY, JOB

When using the OPNQRYF command, specify:
OPNQRYF FILE((STAFF)) FORMAT(FORMAT3)

GRPFLD(JOB SALARY)
KEYFLD(SALARY JOB)
SRTSEQ(*LANGIDSHR) LANGID(ENU)

The system can use index HEXIX2 or index UNQIX2 to satisfy the grouping requirements. A temporary
result is created containing the grouping results. A temporary index is then built over the temporary
result using a *LANGIDUNQ sort sequence table to satisfy the ordering requirements.

Index example: Ordering and grouping on different columns with
ALWCPYDTA(*OPTIMIZE) and a unique-weight sort sequence table
Ordering and grouping on different columns with ALWCPYDTA(*OPTIMIZE) and a unique-weight sort
sequence table (SRTSEQ(*LANGIDUNQ) LANGID(ENU)).

SELECT JOB, SALARY FROM STAFF
GROUP BY JOB, SALARY
ORDER BY SALARY, JOB

When using the OPNQRYF command, specify:
OPNQRYF FILE((STAFF)) FORMAT(FORMAT3)

GRPFLD(JOB SALARY)
KEYFLD(SALARY JOB)
SRTSEQ(*LANGIDUNQ) LANGID(ENU)
ALWCPYDTA(*OPTIMIZE)

The system can use index HEXIX2 or index UNQIX2 to satisfy the grouping requirements. A sort is
performed to satisfy the ordering requirements.

Index example: Ordering and grouping on different columns with
ALWCPYDTA(*OPTIMIZE) and a shared-weight sort sequence table
Ordering and grouping on different columns with ALWCPYDTA(*OPTIMIZE) and a shared-weight sort
sequence table (SRTSEQ(*LANGIDSHR) LANGID(ENU)).

SELECT JOB, SALARY FROM STAFF
GROUP BY JOB, SALARY
ORDER BY SALARY, JOB

When using the OPNQRYF command, specify:
OPNQRYF FILE((STAFF)) FORMAT(FORMAT3)

GRPFLD(JOB SALARY)
KEYFLD(SALARY JOB)
SRTSEQ(*LANGIDSHR) LANGID(ENU)
ALWCPYDTA(*OPTIMIZE)

Performance and query optimization 169

The system can use index SHRIX2 to satisfy the grouping requirements. A sort is performed to satisfy the
ordering requirements.

Application design tips for database performance
There are some design tips that you can apply when designing SQL applications to maximize your
database performance.

Use live data
The term live data refers to the type of access that the database manager uses when it retrieves data
without making a copy of the data. Using this type of access, the data, which is returned to the program,
always reflects the current values of the data in the database. The programmer can control whether the
database manager uses a copy of the data or retrieves the data directly. This is done by specifying the
allow copy data (ALWCPYDTA) parameter on the precompiler commands or on the Start SQL (STRSQL)
command.

Specifying ALWCPYDTA(*NO) instructs the database manager to always use live data. In most cases,
forcing live data access is a detriment to performance as it severely limits the possible plan choices that
the optimizer may use to implement the query. Consequently, in most cases it should be avoided.
However, in specialized cases involving a simple query, live data access can be used as a performance
advantage because the cursor does not need be closed and opened again to refresh the data being
retrieved. An example application demonstrating this advantage is one that produces a list on a display.
If the display screen can only show 20 elements of the list at a time, then, after the initial 20 elements are
displayed, the application programmer can request that the next 20 rows be displayed. A typical SQL
application designed for an operating system other than the i5/OS operating system, might be structured
as follows:
EXEC SQL

DECLARE C1 CURSOR FOR
SELECT EMPNO, LASTNAME, WORKDEPT

FROM CORPDATA.EMPLOYEE
ORDER BY EMPNO

END-EXEC.

EXEC SQL
OPEN C1

END-EXEC.

* PERFORM FETCH-C1-PARA 20 TIMES.

MOVE EMPNO to LAST-EMPNO.

EXEC SQL
CLOSE C1

END-EXEC.

* Show the display and wait for the user to indicate that
* the next 20 rows should be displayed.

EXEC SQL
DECLARE C2 CURSOR FOR
SELECT EMPNO, LASTNAME, WORKDEPT

FROM CORPDATA.EMPLOYEE
WHERE EMPNO > :LAST-EMPNO
ORDER BY EMPNO

END-EXEC.

EXEC SQL
OPEN C2

END-EXEC.

* PERFORM FETCH-C21-PARA 20 TIMES.

170 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

* Show the display with these 20 rows of data.

EXEC SQL
CLOSE C2

END-EXEC.

In the above example, notice that an additional cursor had to be opened to continue the list and to get
current data. This can result in creating an additional ODP that increases the processing time on the
iSeries server. In place of the above example, the programmer can design the application specifying
ALWCPYDTA(*NO) with the following SQL statements:
EXEC SQL

DECLARE C1 CURSOR FOR
SELECT EMPNO, LASTNAME, WORKDEPT

FROM CORPDATA.EMPLOYEE
ORDER BY EMPNO

END-EXEC.

EXEC SQL
OPEN C1

END-EXEC.

* Display the screen with these 20 rows of data.

* PERFORM FETCH-C1-PARA 20 TIMES.

* Show the display and wait for the user to indicate that
* the next 20 rows should be displayed.

* PERFORM FETCH-C1-PARA 20 TIMES.

EXEC SQL
CLOSE C1

END-EXEC.

In the above example, the query might perform better if the FOR 20 ROWS clause was used on the
multiple-row FETCH statement. Then, the 20 rows are retrieved in one operation.
Related information

Start SQL (STRSQL) command

Reduce the number of open operations
The SQL data manipulation language statements must do database open operations in order to create an
open data path (ODP) to the data. An open data path is the path through which all input/output
operations for the table are performed. In a sense, it connects the SQL application to a table. The number
of open operations in a program can significantly affect performance.

A database open operation occurs on:
v An OPEN statement
v SELECT INTO statement
v An INSERT statement with a VALUES clause
v An UPDATE statement with a WHERE condition
v An UPDATE statement with a WHERE CURRENT OF cursor and SET clauses that refer to operators or

functions
v SET statement that contains an expression
v VALUES INTO statement that contains an expression
v A DELETE statement with a WHERE condition

Performance and query optimization 171

An INSERT statement with a select-statement requires two open operations. Certain forms of subqueries
may also require one open per subselect.

To minimize the number of opens, DB2 Universal Database for iSeries leaves the open data path (ODP)
open and reuses the ODP if the statement is run again, unless:
v The ODP used a host variable to build a subset temporary index. The i5/OS database support may

choose to build a temporary index with entries for only the rows that match the row selection specified
in the SQL statement. If a host variable was used in the row selection, the temporary index will not
have the entries required for a different value contained in the host variable.

v Ordering was specified on a host variable value.
v An Override Database File (OVRDBF) or Delete Override (DLTOVR) CL command has been issued

since the ODP was opened, which affects the SQL statement execution. The ODPs opened by DB2
Universal Database for iSeries

Note: Only overrides that affect the name of the table being referred to will cause the ODP to be
closed within a given program invocation.

v The join is a complex join that requires temporaries to contain the intermediate steps of the join.
v Some cases involve a complex sort, where a temporary file is required, may not be reusable.
v A change to the library list since the last open has occurred, which changes the table selected by an

unqualified referral in system naming mode.
v The join was implemented by the CQE optimizer using hash join.

For embedded static SQL, DB2 Universal Database for iSeries only reuses ODPs opened by the same
statement. An identical statement coded later in the program does not reuse an ODP from any other
statement. If the identical statement must be run in the program many times, code it once in a subroutine
and call the subroutine to run the statement.

The ODPs opened by DB2 Universal Database for iSeries are closed when any of the following occurs:
v A CLOSE, INSERT, UPDATE, DELETE, or SELECT INTO statement completes and the ODP required a

temporary result that was not reusable or a subset temporary index.
v The Reclaim Resources (RCLRSC) command is issued. A Reclaim Resources (RCLRSC) is issued when

the first COBOL program on the call stack ends or when a COBOL program issues the STOP RUN
COBOL statement. Reclaim Resources (RCLRSC) will not close ODPs created for programs precompiled
using CLOSQLCSR(*ENDJOB). For interaction of Reclaim Resources (RCLRSC) with non-default
activation groups, see the following books:
– WebSphere® Development Studio: ILE C/C++ Programmer's Guide
– WebSphere Development Studio: ILE COBOL Programmer's Guide
– WebSphere Development Studio: ILE RPG Programmer's Guide

v When the last program that contains SQL statements on the call stack exits, except for ODPs created for
programs precompiled using CLOSQLCSR(*ENDJOB) or modules precompiled using
CLOSQLCSR(*ENDACTGRP).

v When a CONNECT (Type 1) statement changes the application server for an activation group, all ODPs
created for the activation group are closed.

v When a DISCONNECT statement ends a connection to the application server, all ODPs for that
application server are closed.

v When a released connection is ended by a successful COMMIT, all ODPs for that application server are
closed.

v When the threshold for open cursors specified by the query options file (QAQQINI) parameter
OPEN_CURSOR_THRESHOLD is reached.

v The SQL LOCK TABLE or CL ALCOBJ OBJ((filename *FILE *EXCL)) CONFLICT(*RQSRLS) command
will close any pseudo-closed cursors associated with the specified table.

172 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|
|

|
|
|
|
|

|

|

|

|
|
|

|
|

|
|

|
|

|
|

|
|

v Open data paths left open by DB2 Universal Database when the application has requested a close can
be forced to close for a specific file by using the ALCOBJ CL command. This will not force the ODP to
be closed if the application has not requested the cursor be closed. The syntax for the command is:
ALCOBJ OBJ((library/file *FILE *EXCL)) CONFLICT(*RQSRLS).

You can control whether the system keeps the ODPs open in the following ways:
v Design the application so a program that issues an SQL statement is always on the call stack
v Use the CLOSQLCSR(*ENDJOB) or CLOSQLCSR(*ENDACTGRP) parameter
v By specifying the OPEN_CURSOR_THRESHOLD and OPEN_CURSOR_CLOSE_COUNT parameters of

the query options file (QAQQINI)

The system does an open operation for the first execution of each UPDATE WHERE CURRENT OF when
any expression in the SET clause contains an operator or function. The open can be avoided by coding
the function or operation in the host language code.

For example, the following UPDATE causes the system to do an open operation:
EXEC SQL
FETCH EMPT INTO :SALARY
END-EXEC.

EXEC SQL
UPDATE CORPDATA.EMPLOYEE

SET SALARY = :SALARY + 1000
WHERE CURRENT OF EMPT

END-EXEC.

Instead, use the following coding technique to avoid opens:
EXEC SQL
FETCH EMPT INTO :SALARY
END EXEC.

ADD 1000 TO SALARY.

EXEC SQL
UPDATE CORPDATA.EMPLOYEE

SET SALARY = :SALARY
WHERE CURRENT OF EMPT

END-EXEC.

You can determine whether SQL statements result in full opens in several ways. The preferred methods
are to use the Database Monitor or by looking at the messages issued while debug is active. You can also
use the CL commands Trace Job (TRCJOB) or Display Journal (DSPJRN).
Related information

Reclaim Resources (RCLRSC) command
Trace Job (TRCJOB) command
Display Journal (DSPJRN) command
ILE RPG
ILE COBOL
C and C++

Retain cursor positions
You can improve performance by retaining cursor positions.

Retaining cursor positions for non-ILE program calls
For non-ILE program calls, the close SQL cursor (CLOSQLCSR) parameter allows you to specify the
scope of the following:

Performance and query optimization 173

|
|
|
|

v The cursors
v The prepared statements
v The locks

When used properly, the CLOSQLCSR parameter can reduce the number of SQL OPEN, PREPARE, and
LOCK statements needed. It can also simplify applications by allowing you to retain cursor positions
across program calls.

*ENDPGM
This is the default for all non-ILE precompilers. With this option, a cursor remains open and
accessible only while the program that opened it is on the call stack. When the program ends, the
SQL cursor can no longer be used. Prepared statements are also lost when the program ends.
Locks, however, remain until the last SQL program on the call stack has completed.

*ENDSQL
With this option, SQL cursors and prepared statements that are created by a program remain
open until the last SQL program on the call stack has completed. They cannot be used by other
programs, only by a different call to the same program. Locks remain until the last SQL program
in the call stack completes.

*ENDJOB
This option allows you to keep SQL cursors, prepared statements, and locks active for the
duration of the job. When the last SQL program on the stack has completed, any SQL resources
created by *ENDJOB programs are still active. The locks remain in effect. The SQL cursors that
were not explicitly closed by the CLOSE, COMMIT, or ROLLBACK statements remain open. The
prepared statements are still usable on subsequent calls to the same program.

Related reference

“Effects of precompile options on database performance” on page 181
Several precompile options are available for creating SQL programs with improved performance. They
are only options because using them may impact the function of the application. For this reason, the
default value for these parameters is the value that will ensure successful migration of applications from
prior releases. However, you can improve performance by specifying other options.

Retaining cursor positions across ILE program calls
For ILE program calls, the close SQL cursor (CLOSQLCSR) parameter allows you to specify the scope of
the following:
v The cursors
v The prepared statements
v The locks

When used properly, the CLOSQLCSR parameter can reduce the number of SQL OPEN, PREPARE, and
LOCK statements needed. It can also simplify applications by allowing you to retain cursor positions
across program calls.

*ENDACTGRP
This is the default for the ILE precompilers. With this option, SQL cursors and prepared
statements remain open until the activation group that the program is running under ends. They
cannot be used by other programs, only by a different call to the same program. Locks remain
until the activation group ends.

*ENDMOD
With this option, a cursor remains open and accessible only while the module that opened it is
active. When the module ends, the SQL cursor can no longer be used. Prepared statements will
also be lost when the module ends. Locks, however, remain until the last SQL program in the call
stack completes.

174 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

General rules for retaining cursor positions for all program calls
When using programs compiled with either CLOSQLCSR(*ENDPGM) or CLOSQLCSR(*ENDMOD), a
cursor must be opened every time the program or module is called, in order to access the data. If the
SQL program or module is going to be called several times, and you want to take advantage of a
reusable ODP, then the cursor must be explicitly closed before the program or module exits.

Using the CLOSQLCSR parameter and specifying *ENDSQL, *ENDJOB, or *ENDACTGRP, you may not
need to run an OPEN and a CLOSE statement on every call. In addition to having fewer statements to
run, you can maintain the cursor position between calls to the program or module.

The following examples of SQL statements help demonstrate the advantage of using the CLOSQLCSR
parameter:

EXEC SQL
DECLARE DEPTDATA CURSOR FOR

SELECT EMPNO, LASTNAME
FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = :DEPTNUM

END-EXEC.

EXEC SQL
OPEN DEPTDATA
END-EXEC.

EXEC SQL
FETCH DEPTDATA INTO :EMPNUM, :LNAME
END-EXEC.

EXEC SQL
CLOSE DEPTDATA
END-EXEC.

If this program is called several times from another SQL program, it will be able to use a reusable ODP.
This means that, as long as SQL remains active between the calls to this program, the OPEN statement
will not require a database open operation. However, the cursor is still positioned to the first result row
after each OPEN statement, and the FETCH statement will always return the first row.

In the following example, the CLOSE statement has been removed:
EXEC SQL
DECLARE DEPTDATA CURSOR FOR

SELECT EMPNO, LASTNAME
FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = :DEPTNUM

END-EXEC.

IF CURSOR-CLOSED IS = TRUE THEN
EXEC SQL
OPEN DEPTDATA
END-EXEC.

EXEC SQL
FETCH DEPTDATA INTO :EMPNUM, :LNAME
END-EXEC.

If this program is precompiled with the *ENDJOB option or the *ENDACTGRP option and the activation
group remains active, the cursor position is maintained. The cursor position is also maintained when the
following occurs:
v The program is precompiled with the *ENDSQL option.
v SQL remains active between program calls.

Performance and query optimization 175

The result of this strategy is that each call to the program retrieves the next row in the cursor. On
subsequent data requests, the OPEN statement is unnecessary and, in fact, fails with a -502 SQLCODE.
You can ignore the error, or add code to skip the OPEN. You can do this by using a FETCH statement
first, and then running the OPEN statement only if the FETCH operation failed.

This technique also applies to prepared statements. A program can first try the EXECUTE, and if it fails,
perform the PREPARE. The result is that the PREPARE is only needed on the first call to the program,
assuming the correct CLOSQLCSR option was chosen. Of course, if the statement can change between
calls to the program, it should perform the PREPARE in all cases.

The main program might also control this by sending a special parameter on the first call only. This
special parameter value indicates that because it is the first call, the subprogram should perform the
OPENs, PREPAREs, and LOCKs.

Note: If you are using COBOL programs, do not use the STOP RUN statement. When the first COBOL
program on the call stack ends or a STOP RUN statement runs, a reclaim resource (RCLRSC)
operation is done. This operation closes the SQL cursor. The *ENDSQL option does not work as
you wanted.

Programming techniques for database performance
By changing the coding of your queries, you can improve their performance.

Use the OPTIMIZE clause
If an application is not going to retrieve the entire result table for a cursor, using the OPTIMIZE clause
can improve performance. The query optimizer modifies the cost estimates to retrieve the subset of rows
using the value specified on the OPTIMIZE clause.

Assume that the following query returns 1000 rows:
EXEC SQL

DECLARE C1 CURSOR FOR
SELECT EMPNO, LASTNAME, WORKDEPT

FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = 'A00'

ORDER BY LASTNAME
OPTIMIZE FOR 100 ROWS

END EXEC.

Note: The values that can be used for the OPTIMIZE clause above are 1–9999999 or ALL.

The optimizer calculates the following costs.

The optimize ratio = optimize for n rows value / estimated number of rows in answer set.
Cost using a temporarily created index:

Cost to retrieve answer set rows
+ Cost to create the index
+ Cost to retrieve the rows again

with a temporary index * optimize ratio

Cost using a SORT:

Cost to retrieve answer set rows
+ Cost for SORT input processing
+ Cost for SORT output processing * optimize ratio

Cost using an existing index:

176 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

Cost to retrieve answer set rows
using an existing index * optimize ratio

In the previous examples, the estimated cost to sort or to create an index is not adjusted by the optimize
ratio. This enables the optimizer to balance the optimization and preprocessing requirements. If the
optimize number is larger than the number of rows in the result table, no adjustments are made to the
cost estimates. If the OPTIMIZE clause is not specified for a query, a default value is used based on the
statement type, value of ALWCPYDTA specified, or output device.

Statement Type ALWCPYDTA(*OPTIMIZE) ALWCPYDTA(*YES or *NO)

DECLARE CURSOR The number or rows in the result
table.

3% or the number of rows in the
result table.

Embedded Select 2 2

INTERACTIVE Select output to
display

3% or the number of rows in the
result table.

3% or the number of rows in the
result table.

INTERACTIVE Select output to
printer or database table

The number of rows in the result
table.

The number of rows in the result
table.

The OPTIMIZE clause influences the optimization of a query:
v To use an existing index (by specifying a small number).
v To enable the creation of an index or to run a sort or a hash by specifying a large number of possible

rows in the answer set.
Related information

select-statement

Use FETCH FOR n ROWS
Applications that perform many FETCH statements in succession may be improved by using FETCH
FOR n ROWS. With this clause, you can retrieve multiple rows of data from a table and put them into a
host structure array or row storage area with a single FETCH.

An SQL application that uses a FETCH statement without the FOR n ROWS clause can be improved by
using the multiple-row FETCH statement to retrieve multiple rows. After the host structure array or row
storage area has been filled by the FETCH, the application can loop through the data in the array or
storage area to process each of the individual rows. The statement runs faster because the SQL run-time
was called only once and all the data was simultaneously returned to the application program.

You can change the application program to allow the database manager to block the rows that the SQL
run-time retrieves from the tables.

In the following table, the program attempted to FETCH 100 rows into the application. Note the
differences in the table for the number of calls to SQL run-time and the database manager when blocking
can be performed.

Table 39. Number of Calls Using a FETCH Statement

Database Manager Not Using
Blocking Database Manager Using Blocking

Single-Row FETCH Statement 100 SQL calls 100 database calls 100 SQL calls 1 database call

Multiple-Row FETCH Statement 1 SQL run-time call 100 database calls 1 SQL run-time call 1 database call

Performance and query optimization 177

Related information

FETCH statement

Improve SQL blocking performance when using FETCH FOR n ROWS
Special performance considerations should be made for the following points when using FETCH FOR n
ROWS.

You can improve SQL blocking performance with the following:
v The attribute information in the host structure array or the descriptor associated with the row storage

area should match the attributes of the columns retrieved.
v The application should retrieve as many rows as possible with a single multiple-row FETCH call. The

blocking factor for a multiple-row FETCH request is not controlled by the system page sizes or the
SEQONLY parameter on the OVRDBF command. It is controlled by the number of rows that are
requested on the multiple-row FETCH request.

v Single- and multiple-row FETCH requests against the same cursor should not be mixed within a
program. If one FETCH against a cursor is treated as a multiple-row FETCH, all fetches against that
cursor are treated as multiple-row fetches. In that case, each of the single-row FETCH requests is
treated as a multiple-row FETCH of one row.

v The PRIOR, CURRENT, and RELATIVE scroll options should not be used with multiple-row FETCH
statements. To allow random movement of the cursor by the application, the database manager must
maintain the same cursor position as the application. Therefore, the SQL run-time treats all FETCH
requests against a scrollable cursor with these options specified as multiple-row FETCH requests.

Use INSERT n ROWS
Applications that perform many INSERT statements in succession may be improved by using INSERT n
ROWS. With this clause, you can insert one or more rows of data from a host structure array into a target
table. This array must be an array of structures where the elements of the structure correspond to
columns in the target table.

An SQL application that loops over an INSERT...VALUES statement (without the n ROWS clause) can be
improved by using the INSERT n ROWS statement to insert multiple rows into the table. After the
application has looped to fill the host array with rows, a single INSERT n ROWS statement can be run to
insert the entire array into the table. The statement runs faster because the SQL run-time was only called
once and all the data was simultaneously inserted into the target table.

In the following table, the program attempted to INSERT 100 rows into a table. Note the differences in
the number of calls to SQL run-time and to the database manager when blocking can be performed.

Table 40. Number of Calls Using an INSERT Statement

Database Manager Not Using
Blocking Database Manager Using Blocking

Single-Row INSERT Statement 100 SQL run-time calls 100 database
calls

100 SQL run-time calls 1 database call

Multiple-Row INSERT Statement 1 SQL run-time call 100 database calls 1 SQL run-time call 1 database call

Related information

INSERT statement

Control database manager blocking
To improve performance, the SQL runtime attempts to retrieve and insert rows from the database
manager a block at a time whenever possible.

178 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

You can control blocking, if you want. Use the SEQONLY parameter on the CL command Override
Database File (OVRDBF) before calling the application program that contains the SQL statements. You can
also specify the ALWBLK parameter on the CRTSQLxxx commands.

The database manager does not allow blocking in the following situations:
v The cursor is update or delete capable.
v The length of the row plus the feedback information is greater than 32767. The minimum size for the

feedback information is 11 bytes. The feedback size is increased by the number of bytes in the key
columns for the index used by the cursor and by the number of key columns, if any, that are null
capable.

v COMMIT(*CS) is specified, and ALWBLK(*ALLREAD) is not specified.
v COMMIT(*ALL) is specified, and the following are true:

– A SELECT INTO statement or a blocked FETCH statement is not used
– The query does not use column functions or specify group by columns.
– A temporary result table does not need to be created.

v COMMIT(*CHG) is specified, and ALWBLK(*ALLREAD) is not specified.
v The cursor contains at least one subquery and the outermost subselect provided a correlated reference

for a subquery or the outermost subselect processed a subquery with an IN, = ANY, or < > ALL
subquery predicate operator, which is treated as a correlated reference, and that subquery is not
isolatable.

The SQL run-time automatically blocks rows with the database manager in the following cases:
v INSERT

If an INSERT statement contains a select-statement, inserted rows are blocked and not actually inserted
into the target table until the block is full. The SQL run-time automatically does blocking for blocked
inserts.

Note: If an INSERT with a VALUES clause is specified, the SQL run-time might not actually close the
internal cursor that is used to perform the inserts until the program ends. If the same INSERT
statement is run again, a full open is not necessary and the application runs much faster.

v OPEN
Blocking is done under the OPEN statement when the rows are retrieved if all of the following
conditions are true:
– The cursor is only used for FETCH statements.
– No EXECUTE or EXECUTE IMMEDIATE statements are in the program, or ALWBLK(*ALLREAD)

was specified, or the cursor is declared with the FOR FETCH ONLY clause.
– COMMIT(*CHG) and ALWBLK(*ALLREAD) are specified, COMMIT(*CS) and

ALWBLK(*ALLREAD) are specified, or COMMIT(*NONE) is specified.

Performance and query optimization 179

Related reference

“Effects of precompile options on database performance” on page 181
Several precompile options are available for creating SQL programs with improved performance. They
are only options because using them may impact the function of the application. For this reason, the
default value for these parameters is the value that will ensure successful migration of applications from
prior releases. However, you can improve performance by specifying other options.
Related information

Override Database File (OVRDBF) command

Optimize the number of columns that are selected with SELECT
statements
The number of columns that you specify in the select list of a SELECT statement causes the database
manager to retrieve the data from the underlying tables and map the data into host variables in the
application programs. By minimizing the number of columns that are specified, processing unit resource
usage can be conserved.

Even though it is convenient to code SELECT *, it is far better to explicitly code the columns that are
actually required for the application. This is especially important if index-only access is wanted or if all of
the columns will participate in a sort operation (as happens for SELECT DISTINCT and for SELECT
UNION).

This is also important when considering index only access, since you minimize the number of columns in
a query and thereby increase the odds that an index can be used to completely satisfy the request for all
the data.
Related information

select-statement

Eliminate redundant validation with SQL PREPARE statements
The processing which occurs when an SQL PREPARE statement is run is similar to the processing which
occurs during precompile processing.

The following processing occurs for the statement that is being prepared:
v The syntax is checked.
v The statement is validated to ensure that the usage of objects are valid.
v An access plan is built.

Again when the statement is executed or opened, the database manager will re-validate that the access
plan is still valid. Much of this open processing validation is redundant with the validation which
occurred during the PREPARE processing. The DLYPRP(*YES) parameter specifies whether PREPARE
statements in this program will completely validate the dynamic statement. The validation will be
completed when the dynamic statement is opened or executed. This parameter can provide a significant
performance enhancement for programs which use the PREPARE SQL statement because it eliminates
redundant validation. Programs that specify this precompile option should check the SQLCODE and
SQLSTATE after running the OPEN or EXECUTE statement to ensure that the statement is valid.
DLYPRP(*YES) will not provide any performance improvement if the INTO clause is used on the
PREPARE statement or if a DESCRIBE statement uses the dynamic statement before an OPEN is issued
for the statement.

180 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

Related reference

“Effects of precompile options on database performance”
Several precompile options are available for creating SQL programs with improved performance. They
are only options because using them may impact the function of the application. For this reason, the
default value for these parameters is the value that will ensure successful migration of applications from
prior releases. However, you can improve performance by specifying other options.
Related information

Prepare statement

Page interactively displayed data with REFRESH(*FORWARD)
In large tables, paging performance is typically degraded because of the REFRESH(*ALWAYS) parameter
on the Start SQL (STRSQL) command which dynamically retrieves the latest data directly from the table.
Paging performance can be improved by specifying REFRESH(*FORWARD).

When interactively displaying data using REFRESH(*FORWARD), the results of a select-statement are
copied to a temporary table as you page forward through the display. Other users sharing the table can
make changes to the rows while you are displaying the select-statement results. If you page backward or
forward to rows that have already been displayed, the rows shown are those in the temporary table
instead of those in the updated table.

The refresh option can be changed on the Session Services display.
Related information

Start SQL (STRSQL) command

General DB2 UDB for iSeries performance considerations
As you code your applications, there are some general tips that can help you optimize performance.

Effects on database performance when using long object names
Long object names are converted internally to system object names when used in SQL statements. This
conversion can have some performance impacts.

Qualify the long object name with a library name, and the conversion to the short name happens at
precompile time. In this case, there is no performance impact when the statement is executed. Otherwise,
the conversion is done at execution time, and has a small performance impact.

Effects of precompile options on database performance
Several precompile options are available for creating SQL programs with improved performance. They
are only options because using them may impact the function of the application. For this reason, the
default value for these parameters is the value that will ensure successful migration of applications from
prior releases. However, you can improve performance by specifying other options.

The following table shows these precompile options and their performance impacts.

Some of these options may be suitable for most of your applications. Use the command CRTDUPOBJ to
create a copy of the SQL CRTSQLxxx command. and the CHGCMDDFT command to customize the
optimal values for the precompile parameters. The DSPPGM, DSPSRVPGM, DSPMOD, or PRTSQLINF
commands can be used to show the precompile options that are used for an existing program object.

Performance and query optimization 181

Precompile Option Optimal Value Improvements Considerations

ALWCPYDTA *OPTIMIZE (the default) Queries where the ordering
or grouping criteria
conflicts with the selection
criteria.

A copy of the data may be
made when the query is
opened.

ALWBLK *ALLREAD (the default) Additional read-only
cursors use blocking.

ROLLBACK HOLD may
not change the position of a
read-only cursor. Dynamic
processing of positioned
updates or deletes might
fail.

CLOSQLCSR *ENDJOB, *ENDSQL, or
*ENDACTGRP

Cursor position can be
retained across program
invocations.

Implicit closing of SQL
cursor is not done when the
program invocation ends.

DLYPRP *YES Programs using SQL
PREPARE statements may
run faster.

Complete validation of the
prepared statement is
delayed until the statement
is run or opened.

TGTRLS *CURRENT (the default) The precompiler can
generate code that will take
advantage of performance
enhancements available in
the current release.

The program object cannot
be used on a server from a
previous release.

Related reference

“Effects of the ALWCPYDTA parameter on database performance”
Some complex queries can perform better by using a sort or hashing method to evaluate the query
instead of using or creating an index.
“Control database manager blocking” on page 178
To improve performance, the SQL runtime attempts to retrieve and insert rows from the database
manager a block at a time whenever possible.
“Retaining cursor positions for non-ILE program calls” on page 173
For non-ILE program calls, the close SQL cursor (CLOSQLCSR) parameter allows you to specify the
scope of the following:
“Eliminate redundant validation with SQL PREPARE statements” on page 180
The processing which occurs when an SQL PREPARE statement is run is similar to the processing which
occurs during precompile processing.

Effects of the ALWCPYDTA parameter on database performance
Some complex queries can perform better by using a sort or hashing method to evaluate the query
instead of using or creating an index.

By using the sort or hash, the database manager is able to separate the row selection from the ordering
and grouping process. Bitmap processing can also be partially controlled through this parameter. This
separation allows the use of the most efficient index for the selection. For example, consider the following
SQL statement:
EXEC SQL

DECLARE C1 CURSOR FOR
SELECT EMPNO, LASTNAME, WORKDEPT

FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = 'A00'
ORDER BY LASTNAME

END-EXEC.

The above SQL statement can be written in the following way by using the OPNQRYF command:

182 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

OPNQRYF FILE(CORPDATA/EMPLOYEE)
FORMAT(FORMAT1)
QRYSLT(WORKDEPT *EQ ''AOO'')
KEYFLD(LASTNAME)

In the above example when ALWCPYDTA(*NO) or ALWCPYDTA(*YES) is specified, the database
manager may try to create an index from the first index with a column named LASTNAME, if such an
index exists. The rows in the table are scanned, using the index, to select only the rows matching the
WHERE condition.

If ALWCPYDTA(*OPTIMIZE) is specified, the database manager uses an index with the first index
column of WORKDEPT. It then makes a copy of all of the rows that match the WHERE condition. Finally,
it may sort the copied rows by the values in LASTNAME. This row selection processing is significantly
more efficient, because the index used immediately locates the rows to be selected.

ALWCPYDTA(*OPTIMIZE) optimizes the total time that is required to process the query. However, the
time required to receive the first row may be increased because a copy of the data must be made before
returning the first row of the result table. This initial change in response time may be important for
applications that are presenting interactive displays or that retrieve only the first few rows of the query.
The DB2 Universal Database for iSeries query optimizer can be influenced to avoid sorting by using the
OPTIMIZE clause.

Queries that involve a join operation may also benefit from ALWCPYDTA(*OPTIMIZE) because the join
order can be optimized regardless of the ORDER BY specification.
Related concepts

“Plan Cache” on page 6
The Plan Cache is a repository that contains the access plans for queries that were optimized by SQE.
Related reference

“Effects of precompile options on database performance” on page 181
Several precompile options are available for creating SQL programs with improved performance. They
are only options because using them may impact the function of the application. For this reason, the
default value for these parameters is the value that will ensure successful migration of applications from
prior releases. However, you can improve performance by specifying other options.
“Radix index scan” on page 12
A radix index scan operation is used to retrieve the rows from a table in a keyed sequence. Like a Table
Scan, all of the rows in the index will be sequentially processed, but the resulting row numbers will be
sequenced based upon the key columns.
“Radix index probe” on page 13
A radix index probe operation is used to retrieve the rows from a table in a keyed sequence. The main
difference between the Radix Index Probe and the Radix Index Scan is that the rows being returned must
first be identified by a probe operation to subset the rows being retrieved.

Tips for using VARCHAR and VARGRAPHIC data types in databases
Variable-length column (VARCHAR or VARGRAPHIC) support allows you to define any number of
columns in a table as variable length. If you use VARCHAR or VARGRAPHIC support, the size of a table
can typically be reduced.

Data in a variable-length column is stored internally in two areas: a fixed-length or ALLOCATE area and
an overflow area. If a default value is specified, the allocated length is at least as large as the value. The
following points help you determine the best way to use your storage area.

When you define a table with variable-length data, you must decide the width of the ALLOCATE area. If
the primary goal is:
v Space saving: use ALLOCATE(0).

Performance and query optimization 183

v Performance: the ALLOCATE area should be wide enough to incorporate at least 90% to 95% of the
values for the column.

It is possible to balance space savings and performance. In the following example of an electronic
telephone book, the following data is used:
v 8600 names that are identified by: last, first, and middle name
v The Last, First, and Middle columns are variable length.
v The shortest last name is 2 characters; the longest is 22 characters.

This example shows how space can be saved by using variable-length columns. The fixed-length column
table uses the most space. The table with the carefully calculated allocate sizes uses less disk space. The
table that was defined with no allocate size (with all of the data stored in the overflow area) uses the
least disk space.

Variety of
Support

Last Name
Max/Alloc

First Name
Max/Alloc

Middle Name
Max/Alloc

Total Physical
File Size

Number of Rows
in Overflow
Space

Fixed Length 22 22 22 567 K 0

Variable Length 40/10 40/10 40/7 408 K 73

Variable-Length
Default

40/0 40/0 40/0 373 K 8600

In many applications, performance must be considered. If you use the default ALLOCATE(0), it will
double the disk unit traffic. ALLOCATE(0) requires two reads; one to read the fixed-length portion of the
row and one to read the overflow space. The variable-length implementation, with the carefully chosen
ALLOCATE, minimizes overflow and space and maximizes performance. The size of the table is 28%
smaller than the fixed-length implementation. Because 1% of rows are in the overflow area, the access
requiring two reads is minimized. The variable-length implementation performs about the same as the
fixed-length implementation.

To create the table using the ALLOCATE keyword:
CREATE TABLE PHONEDIR

(LAST VARCHAR(40) ALLOCATE(10),
FIRST VARCHAR(40) ALLOCATE(10),
MIDDLE VARCHAR(40) ALLOCATE(7))

If you are using host variables to insert or update variable-length columns, the host variables should be
variable length. Because blanks are not truncated from fixed-length host variables, using fixed-length host
variables can cause more rows to spill into the overflow space. This increases the size of the table.

In this example, fixed-length host variables are used to insert a row into a table:
01 LAST-NAME PIC X(40).

...
MOVE "SMITH" TO LAST-NAME.
EXEC SQL

INSERT INTO PHONEDIR
VALUES(:LAST-NAME, :FIRST-NAME, :MIDDLE-NAME, :PHONE)

END-EXEC.

The host-variable LAST-NAME is not variable length. The string “SMITH”, followed by 35 blanks, is
inserted into the VARCHAR column LAST. The value is longer than the allocate size of 10. Thirty of
thirty-five trailing blanks are in the overflow area.

In this example, variable-length host variables are used to insert a row into a table:

184 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

01 VLAST-NAME.
49 LAST-NAME-LEN PIC S9(4) BINARY.
49 LAST-NAME-DATA PIC X(40).
...
MOVE "SMITH" TO LAST-NAME-DATA.
MOVE 5 TO LAST-NAME-LEN.
EXEC SQL

INSERT INTO PHONEDIR
VALUES(:VLAST-NAME, :VFIRST-NAME, :VMIDDLE-NAME, :PHONE)
END-EXEC.

The host variable VLAST-NAME is variable length. The actual length of the data is set to 5. The value is
shorter than the allocated length. It can be placed in the fixed portion of the column.

Running the Reorganize Physical File Member (RGZPFM) command against tables that contain
variable-length columns can improve performance. The fragments in the overflow area that are not in use
are compacted by the Reorganize Physical File Member (RGZPFM) command. This reduces the read time
for rows that overflow, increases the locality of reference, and produces optimal order for serial batch
processing.

Choose the appropriate maximum length for variable-length columns. Selecting lengths that are too long
increases the process access group (PAG). A large PAG slows performance. A large maximum length
makes SEQONLY(*YES) less effective. Variable-length columns longer than 2000 bytes are not eligible as
key columns.

Using LOBs and VARCHAR in the same table

Storage for LOB columns allocated in the same manner as VARCHAR columns. When a column stored in
the overflow storage area is referenced, currently all of the columns in that area are paged into memory.
A reference to a "smaller" VARCHAR column that is in the overflow area can potentially force extra
paging of LOB columns. For example, A VARCHAR(256) column retrieved by application has side-effect
of paging in two 5 MB BLOB columns that are in the same row. In order to prevent this, you may want
to use ALLOCATE keyword to ensure that only LOB columns are stored in the overflow area.
Related information

Reorganize Physical File Member (RGZPFM) command
Reorganizing a physical file
Embedded SQL programming

Database monitor: Formats
This section contains the formats used to create the database monitor SQL tables and views.

Database monitor SQL table format
The following figure shows the format used to create the QSYS/QAQQDBMN performance statistics
table, that is shipped with the system.

CREATE TABLE QSYS/QQQDBMN (
QQRID DECIMAL(15, 0) NOT NULL DEFAULT 0 ,
QQTIME TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ,
QQJFLD CHAR(46) CCSID 65535 NOT NULL DEFAULT '' ,
QQRDBN CHAR(18) NOT NULL DEFAULT '' ,
QQSYS CHAR(8) NOT NULL DEFAULT '' ,
QQJOB CHAR(10) NOT NULL DEFAULT '' ,
QQUSER CHAR(10) NOT NULL DEFAULT '' ,
QQJNUM CHAR(6) NOT NULL DEFAULT '' ,
QQUCNT DECIMAL(15, 0) ,
QQUDEF VARCHAR(100) ,
QQSTN DECIMAL(15, 0) ,
QQQDTN DECIMAL(15, 0) ,

Performance and query optimization 185

|

|
|
|
|
|
|

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

QQQDTL DECIMAL(15, 0) ,
QQMATN DECIMAL(15, 0) ,
QQMATL DECIMAL(15, 0) ,
QQTLN CHAR(10) ,
QQTFN CHAR(10) ,
QQTMN CHAR(10) ,
QQPTLN CHAR(10) ,
QQPTFN CHAR(10) ,
QQPTMN CHAR(10) ,
QQILNM CHAR(10) ,
QQIFNM CHAR(10) ,
QQIMNM CHAR(10) ,
QQNTNM CHAR(10) ,
QQNLNM CHAR(10) ,
QQSTIM TIMESTAMP ,
QQETIM TIMESTAMP ,
QQKP CHAR(1) ,
QQKS CHAR(1) ,
QQTOTR DECIMAL(15, 0) ,
QQTMPR DECIMAL(15, 0) ,
QQJNP DECIMAL(15, 0) ,
QQEPT DECIMAL(15, 0) ,
QQDSS CHAR(1) ,
QQIDXA CHAR(1) ,
QQORDG CHAR(1) ,
QQGRPG CHAR(1) ,
QQJNG CHAR(1) ,
QQUNIN CHAR(1) ,
QQSUBQ CHAR(1) ,
QQHSTV CHAR(1) ,
QQRCDS CHAR(1) ,
QQRCOD CHAR(2) ,
QQRSS DECIMAL(15, 0) ,
QQREST DECIMAL(15, 0) ,
QQRIDX DECIMAL(15, 0) ,
QQFKEY DECIMAL(15, 0) ,
QQKSEL DECIMAL(15, 0) ,
QQAJN DECIMAL(15, 0) ,
QQIDXD VARCHAR(1000) ALLOCATE(48) ,
QQC11 CHAR(1) ,
QQC12 CHAR(1) ,
QQC13 CHAR(1) ,
QQC14 CHAR(1) ,
QQC15 CHAR(1) ,
QQC16 CHAR(1) ,
QQC18 CHAR(1) ,
QQC21 CHAR(2) ,
QQC22 CHAR(2) ,
QQC23 CHAR(2) ,
QQI1 DECIMAL(15, 0) ,
QQI2 DECIMAL(15, 0) ,
QQI3 DECIMAL(15, 0) ,
QQI4 DECIMAL(15, 0) ,
QQI5 DECIMAL(15, 0) ,
QQI6 DECIMAL(15, 0) ,
QQI7 DECIMAL(15, 0) ,
QQI8 DECIMAL(15, 0) ,
QQI9 DECIMAL(15, 0) ,
QQIA DECIMAL(15, 0) ,
QQF1 DECIMAL(15, 0) ,
QQF2 DECIMAL(15, 0) ,
QQF3 DECIMAL(15, 0) ,
QQC61 CHAR(6) ,
QQC81 CHAR(8) ,
QQC82 CHAR(8) ,
QQC83 CHAR(8) ,
QQC84 CHAR(8) ,

186 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

QQC101 CHAR(10) ,
QQC102 CHAR(10) ,
QQC103 CHAR(10) ,
QQC104 CHAR(10) ,
QQC105 CHAR(10) ,
QQC106 CHAR(10) ,
QQC181 CHAR(18) ,
QQC182 CHAR(18) ,
QQC183 CHAR(18) ,
QQC301 VARCHAR(30) ALLOCATE(10) ,
QQC302 VARCHAR(30) ALLOCATE(10) ,
QQC303 VARCHAR(30) ALLOCATE(10) ,
QQ1000 VARCHAR(1000) ALLOCATE(48) ,
QQTIM1 TIMESTAMP ,
QQTIM2 TIMESTAMP ,
QVQTBL VARCHAR(128) ALLOCATE(10) ,
QVQLIB VARCHAR(128) ALLOCATE(10) ,
QVPTBL VARCHAR(128) ALLOCATE(10) ,
QVPLIB VARCHAR(128) ALLOCATE(10) ,
QVINAM VARCHAR(128) ALLOCATE(10) ,
QVILIB VARCHAR(128) ALLOCATE(10) ,
QVQTBLI CHAR(1) ,
QVPTBLI CHAR(1) ,
QVINAMI CHAR(1) ,
QVBNDY CHAR(1) ,
QVJFANO CHAR(1) ,
QVPARPF CHAR(1) ,
QVPARPL CHAR(1) ,
QVC11 CHAR(1) ,
QVC12 CHAR(1) ,
QVC13 CHAR(1) ,
QVC14 CHAR(1) ,
QVC15 CHAR(1) ,
QVC16 CHAR(1) ,
QVC17 CHAR(1) ,
QVC18 CHAR(1) ,
QVC19 CHAR(1) ,
QVC1A CHAR(1) ,
QVC1B CHAR(1) ,
QVC1C CHAR(1) ,
QVC1D CHAR(1) ,
QVC1E CHAR(1) ,
QVC1F CHAR(1) ,
QWC11 CHAR(1) ,
QWC12 CHAR(1) ,
QWC13 CHAR(1) ,
QWC14 CHAR(1) ,
QWC15 CHAR(1) ,
QWC16 CHAR(1) ,
QWC17 CHAR(1) ,
QWC18 CHAR(1) ,
QWC19 CHAR(1) ,
QWC1A CHAR(1) ,
QWC1B CHAR(1) ,
QWC1C CHAR(1) ,
QWC1D CHAR(1) ,
QWC1E CHAR(1) ,
QWC1F CHAR(1) ,
QVC21 CHAR(2) ,
QVC22 CHAR(2) ,
QVC23 CHAR(2) ,
QVC24 CHAR(2) ,
QVCTIM DECIMAL(15, 0) ,
QVPARD DECIMAL(15, 0) ,
QVPARU DECIMAL(15, 0) ,
QVPARRC DECIMAL(15, 0) ,
QVRCNT DECIMAL(15, 0) ,

Performance and query optimization 187

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

QVFILES DECIMAL(15, 0) ,
QVP151 DECIMAL(15, 0) ,
QVP152 DECIMAL(15, 0) ,
QVP153 DECIMAL(15, 0) ,
QVP154 DECIMAL(15, 0) ,
QVP155 DECIMAL(15, 0) ,
QVP156 DECIMAL(15, 0) ,
QVP157 DECIMAL(15, 0) ,
QVP158 DECIMAL(15, 0) ,
QVP159 DECIMAL(15, 0) ,
QVP15A DECIMAL(15, 0) ,
QVP15B DECIMAL(15, 0) ,
QVP15C DECIMAL(15, 0) ,
QVP15D DECIMAL(15, 0) ,
QVP15E DECIMAL(15, 0) ,
QVP15F DECIMAL(15, 0) ,
QVC41 CHAR(4) ,
QVC42 CHAR(4) ,
QVC43 CHAR(4) ,
QVC44 CHAR(4) ,
QVC81 CHAR(8) ,
QVC82 CHAR(8) ,
QVC83 CHAR(8) ,
QVC84 CHAR(8) ,
QVC85 CHAR(8) ,
QVC86 CHAR(8) ,
QVC87 CHAR(8) ,
QVC88 CHAR(8) ,
QVC101 CHAR(10) ,
QVC102 CHAR(10) ,
QVC103 CHAR(10) ,
QVC104 CHAR(10) ,
QVC105 CHAR(10) ,
QVC106 CHAR(10) ,
QVC107 CHAR(10) ,
QVC108 CHAR(10) ,
QVC1281 VARCHAR(128) ALLOCATE(10) ,
QVC1282 VARCHAR(128) ALLOCATE(10) ,
QVC1283 VARCHAR(128) ALLOCATE(10) ,
QVC1284 VARCHAR(128) ALLOCATE(10) ,
QVC3001 VARCHAR(300) ALLOCATE(32) ,
QVC3002 VARCHAR(300) ALLOCATE(32) ,
QVC3003 VARCHAR(300) ALLOCATE(32) ,
QVC3004 VARCHAR(300) ALLOCATE(32) ,
QVC3005 VARCHAR(300) ALLOCATE(32) ,
QVC3006 VARCHAR(300) ALLOCATE(32) ,
QVC3007 VARCHAR(300) ALLOCATE(32) ,
QVC3008 VARCHAR(300) ALLOCATE(32) ,
QVC5001 VARCHAR(500) ALLOCATE(32) ,
QVC5002 VARCHAR(500) ALLOCATE(32) ,
QVC1000 VARCHAR(1000) ALLOCATE(48) ,
QWC1000 VARCHAR(1000) ALLOCATE(48) ,
QQINT01 INTEGER ,
QQINT02 INTEGER ,
QQINT03 INTEGER ,
QQINT04 INTEGER ,
QQSMINT1 SMALLINT ,
QQSMINT2 SMALLINT ,
QQSMINT3 SMALLINT ,
QQSMINT4 SMALLINT ,
QQSMINT5 SMALLINT ,
QQSMINT6 SMALLINT ,

QQ1000L CLOB(2M) ALLOCATE(48)) ;

RENAME QSYS/QQQDBMN TO SYSTEM NAME QAQQDBMN;

LABEL ON TABLE QSYS/QAQQDBMN

188 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

IS 'Database Monitor Physical File' ;

LABEL ON COLUMN QSYS/QAQQDBMN
(QQRID IS 'Record ID' ,
QQTIME IS 'Created Time' ,
QQJFLD IS 'Join Column' ,
QQRDBN IS 'Relational Database Name' ,
QQSYS IS 'System Name' ,
QQJOB IS 'Job Name' ,
QQUSER IS 'Job User' ,
QQJNUM IS 'Job Number' ,
QQUCNT IS 'Unique Counter' ,
QQUDEF IS 'User Defined Column' ,
QQSTN IS 'Statement Number' ,
QQQDTN IS 'Subselect Number' ,
QQQDTL IS 'Subselect Nested Level' ,
QQMATN IS 'Subselect Number of Materialized View' ,
QQMATL IS 'Subselect Level of Materialized View' ,
QQTLN IS 'Library of Table Queried' ,
QQTFN IS 'Name of Table Queried' ,
QQTMN IS 'Member of Table Queried' ,
QQPTLN IS 'Library of Base Table' ,
QQPTFN IS 'Name of Base Table' ,
QQPTMN IS 'Member of Base Table' ,
QQILNM IS 'Library of Index Used' ,
QQIFNM IS 'Name of Index Used' ,
QQIMNM IS 'Member of Index Used' ,
QQNTNM IS 'NLSS Table' ,
QQNLNM IS 'NLSS Library' ,
QQSTIM IS 'Start Time' ,
QQETIM IS 'End Time' ,
QQKP IS 'Key Positioning' ,
QQKS IS 'Key Selection' ,
QQTOTR IS 'Total Rows' ,
QQTMPR IS 'Number of Rows in Temporary' ,
QQJNP IS 'Join Position' ,
QQEPT IS 'Estimated Processing Time' ,
QQDSS IS 'Data Space Selection' ,
QQIDXA IS 'Index Advised' ,
QQORDG IS 'Ordering' ,
QQGRPG IS 'Grouping' ,
QQJNG IS 'Join' ,
QQUNIN IS 'Union' ,
QQSUBQ IS 'Subquery' ,
QQHSTV IS 'Host Variables' ,
QQRCDS IS 'Row Selection' ,
QQRCOD IS 'Reason Code' ,
QQRSS IS 'Number of Rows Selected' ,
QQREST IS 'Estimated Number of Rows Selected' ,
QQRIDX IS 'Number of Entries in Index Created' ,
QQFKEY IS 'Estimated Entries for Key Positioning' ,
QQKSEL IS 'Estimated Entries for Key Selection' ,
QQAJN IS 'Estimated Number of Joined Rows' ,
QQIDXD IS 'Advised Key Columns' ,
QQI9 IS 'Thread Identifier' ,
QVQTBL IS 'Queried Table Long Name' ,
QVQLIB IS 'Queried Library Long Name' ,
QVPTBL IS 'Base Table Long Name' ,
QVPLIB IS 'Base Library Long Name' ,
QVINAM IS 'Index Used Long Name' ,
QVILIB IS 'Index Used Library Name' ,
QVQTBLI IS 'Table Long Required' ,
QVPTBLI IS 'Base Long Required' ,
QVINAMI IS 'Index Long Required' ,
QVBNDY IS 'I/O or CPU Bound' ,
QVJFANO IS 'Join Fan Out' ,
QVPARPF IS 'Parallel Pre-Fetch' ,

Performance and query optimization 189

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

QVPARPL IS 'Parallel Pre-Load' ,
QVCTIM IS 'Estimated Cumulative Time' ,
QVPARD IS 'Parallel Degree Requested' ,
QVPARU IS 'Parallel Degree Used' ,
QVPARRC IS 'Parallel Limited Reason Code' ,
QVRCNT IS 'Refresh Count' ,
QVFILES IS 'Number of Tables Joined') ;

LABEL ON COLUMN QSYS/QAQQDBMN
(QQRID TEXT IS 'Record ID' ,
QQTIME TEXT IS 'Time record was created' ,
QQJFLD TEXT IS 'Join Column' ,
QQRDBN TEXT IS 'Relational Database Name' ,
QQSYS TEXT IS 'System Name' ,
QQJOB TEXT IS 'Job Name' ,
QQUSER TEXT IS 'Job User' ,
QQJNUM TEXT IS 'Job Number' ,
QQUCNT TEXT IS 'Unique Counter' ,
QQUDEF TEXT IS 'User Defined Column' ,
QQSTN TEXT IS 'Statement Number' ,
QQQDTN TEXT IS 'Subselect Number' ,
QQQDTL TEXT IS 'Subselect Nested Level' ,
QQMATN TEXT IS 'Subselect Number of Materialized View' ,
QQMATL TEXT IS 'Subselect Level of Materialized View' ,
QQTLN TEXT IS 'Library of Table Queried' ,
QQTFN TEXT IS 'Name of Table Queried' ,
QQTMN TEXT IS 'Member of Table Queried' ,
QQPTLN TEXT IS 'Base Table Library' ,
QQPTFN TEXT IS 'Base Table' ,
QQPTMN TEXT IS 'Base Table Member' ,
QQILNM TEXT IS 'Library of Index Used' ,
QQIFNM TEXT IS 'Name of Index Used' ,
QQIMNM TEXT IS 'Member of Index Used' ,
QQNTNM TEXT IS 'NLSS Table' ,
QQNLNM TEXT IS 'NLSS Library' ,
QQSTIM TEXT IS 'Start timestamp' ,
QQETIM TEXT IS 'End timestamp' ,
QQKP TEXT IS 'Key positioning' ,
QQKS TEXT IS 'Key selection' ,
QQTOTR TEXT IS 'Total row in table' ,
QQTMPR TEXT IS 'Number of rows in temporary' ,
QQJNP TEXT IS 'Join Position' ,
QQEPT TEXT IS 'Estimated processing time' ,
QQDSS TEXT IS 'Data Space Selection' ,
QQIDXA TEXT IS 'Index advised' ,
QQORDG TEXT IS 'Ordering' ,
QQGRPG TEXT IS 'Grouping' ,
QQJNG TEXT IS 'Join' ,
QQUNIN TEXT IS 'Union' ,
QQSUBQ TEXT IS 'Subquery' ,
QQHSTV TEXT IS 'Host Variables' ,
QQRCDS TEXT IS 'Row Selection' ,
QQRCOD TEXT IS 'Reason Code' ,
QQRSS TEXT IS 'Number of rows selected or sorted' ,
QQREST TEXT IS 'Estimated number of rows selected' ,
QQRIDX TEXT IS 'Number of entries in index created' ,
QQFKEY TEXT IS 'Estimated keys for key positioning' ,
QQKSEL TEXT IS 'Estimated keys for key selection' ,
QQAJN TEXT IS 'Estimated number of joined rows' ,
QQIDXD TEXT IS 'Key columns for the index advised' ,
QQI9 TEXT IS 'Thread Identifier' ,
QVQTBL TEXT IS 'Queried Table, Long Name' ,
QVQLIB TEXT IS 'Queried Library, Long Name' ,
QVPTBL TEXT IS 'Base Table, Long Name' ,
QVPLIB TEXT IS 'Base Library, Long Name' ,
QVINAM TEXT IS 'Index Used, Long Name' ,
QVILIB TEXT IS 'Index Used, Libary Name' ,

190 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

QVQTBLI TEXT IS 'Table Long Required' ,
QVPTBLI TEXT IS 'Base Long Required' ,
QVINAMI TEXT IS 'Index Long Required' ,
QVBNDY TEXT IS 'I/O or CPU Bound' ,
QVJFANO TEXT IS 'Join Fan out' ,
QVPARPF TEXT IS 'Parallel Pre-Fetch' ,
QVPARPL TEXT IS 'Parallel Pre-Load' ,
QVCTIM TEXT IS 'Cumulative Time' ,
QVPARD TEXT IS 'Parallel Degree, Requested' ,
QVPARU TEXT IS 'Parallel Degree, Used' ,
QVPARRC TEXT IS 'Parallel Limited, Reason Code' ,
QVRCNT TEXT IS 'Refresh Count' ,
QVFILES TEXT IS 'Number of, Tables Joined');

Optional database monitor SQL view format
The following examples show the different optional SQL view format that you can create with the SQL
shown. The column descriptions are explained in the tables following each example. These views are not
shipped with the server, and you must create them, if you choose to do so. These views are optional and
are not required for analyzing monitor data.

Any rows that have a row identification number (QQRID) of 5000 or greater are for internal database use.

Database monitor view 1000 - SQL Information
Create View QQQ1000 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,
QQUSER as Job_User,
QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQUCNT as Unique_Count,
QQI5 as Unique_Refresh_Counter,
QQUDEF as User_Defined,
QQSTN as Statement_Number,
QQC11 as Statement_Function,
QQC21 as Statement_Operation,
QQC12 as Statement_Type,
QQC13 as Parse_Required,
QQC103 as Package_Name,
QQC104 as Package_Library,
QQC181 as Cursor_Name,
QQC182 as Statement_Name,
QQSTIM as Start_Timestamp,
QQ1000 as Statement_Text,
QQC14 as Statement_Outcome,
QQI2 as Result_Rows,
QQC22 as Dynamic_Replan_Reason_Code,
QQC16 as Data_Conversion_Reason_Code,
QQI4 as Total_Time_Milliseconds,
QQI3 as Rows_Fetched,
QQETIM as End_Timestamp,
QQI6 as Total_Time_Microseconds,
QQI7 as SQL_Statement_Length,
QQI1 as Insert_Unique_Count,
QQI8 as SQLCode,
QQC81 as SQLState,
QVC101 as Close_Cursor_Mode,
QVC11 as Allow_Copy_Data_Value,
QVC12 as PseudoOpen,
QVC13 as PseudoClose,
QVC14 as ODP_Implementation,

Performance and query optimization 191

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

QVC21 as Dynamic_Replan_SubCode,
QVC41 as Commitment_Control_Level,
QVC15 as Blocking_Type,
QVC16 as Delay_Prepare,
QVC1C as Explainable,
QVC17 as Naming_Convention,
QVC18 as Dynamic_Processing_Type,
QVC19 as LOB_Data_Optimized,
QVC1A as Program_User_Profile_Used,
QVC1B as Dynamic_User_Profile_Used,
QVC1281 as Default_Collection,
QVC1282 as Procedure_Name,
QVC1283 as Procedure_Library,
QVC1000 as SQL_Path,
QWC1000 as SQL_Path_2,
QVC5001 as SQL_Path_3,
QVC5002 as SQL_Path_4,
QVC3001 as SQL_Path_5,
QVC3002 as SQL_Path_6,
QVC3003 as SQL_Path_7,
QVC1284 as Current_Schema,
QQC18 as Binding_Type,
QQC61 as Cursor_Type,
QVC1D as Statement_Originator,
QQC15 as Hard_Close_Reason_Code,
QQC23 as Hard_Close_Subcode,
QVC42 as Date_Format,
QWC11 as Date_Separator,
QVC43 as Time_Format,
QWC12 as Time_Separator,
QWC13 as Decimal_Point,
QVC104 as Sort_Sequence_Table,
QVC105 as Sort_Sequence_Library,
QVC44 as Language_ID,
QVC23 as Country_ID,
QQIA as First_N_Rows_Value,
QQF1 as Optimize_For_N_Rows_Value,
QVC22 as SQL_Access_Plan_Reason_Code,
QVC24 as Access_Plan_Not_Saved_Reason_Code,
QVC81 as Transaction_Context_ID,
QVP152 as Activation_Group_Mark,
QVP153 as Open_Cursor_Threshold,
QVP154 as Open_Cursor_Close_Count,
QVP155 as Commitment_Control_Lock_Limit,
QWC15 as Allow_SQL_Mixed_Constants,
QWC16 as Suppress_SQL_Warnings,
QWC17 as Translate_ASCII,
QWC18 as System_Wide_Statement_Cache,
QVP159 as LOB_Locator_Threshold,
QVP156 as Max_Decimal_Precision,
QVP157 as Max_Decimal_Scale,
QVP158 as Min_Decimal_Divide_Scale ,
QWC19 as Unicode_Normalization,
QQ1000L as Statement_Text_Long,
QVP15B as Old_Access_Plan_Length,
QVP15C as New_Access_Plan_Length,
QVP151 as Fast_Delete_Count,
QQF2 as Statement_Max_Compression,
QVC102 as Current_User_Profile,
QVC1E as Expression_Evaluator_Used,
QVP15A as Host_Server_Delta,
QQC301 as NTS_Lock_Space_Id,
QQC183 as IP_Address,
QQSMINT2 as IP_Port_Number,
QVC3004 as NTS_Transaction_Id,
QQSMINT3 as NTS_Format_Id_Length,
QQSMINT4 as NTS_Transatction_ID_SubLength,

192 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

QVRCNT as Unique_Refresh_Counter2,
QVP15F as Times_Run,
QVP15E as Full_Opens

FROM DbMonLib/DbMonTable
WHERE QQRID=1000)

Table 41. QQQ1000 - SQL Information

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

Unique_Refresh_Counter QQI5 Unique refresh counter

User_Defined QQUDEF User defined column

Statement_Number QQSTN Statement number (unique per statement)

Statement_Function QQC11 Statement function:

v S - Select

v U - Update

v I - Insert

v D - Delete

v L - Data definition language

v O - Other

Performance and query optimization 193

|
|
|
|
|

||

|

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|

|

|

|

|

|

Table 41. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Statement_Operation QQC21 Statement operation:

v AD - Allocate descriptor

v AL - Alter table

v AP - Alter procedure

v AQ - Alter sequence

v CA - Call

v CC - Create collection

v CD - Create type

v CF - Create function

v CG - Create trigger

v CI - Create index

v CL - Close

v CM - Commit

v CN - Connect

v CO - Comment on

v CP - Create procedure

v CQ - Create sequence

v CS - Create alias/synonym

v CT - Create table

v CV - Create view

v DA - Deallocate descriptor

v DE - Describe

v DI - Disconnect

v DL - Delete

v DM - Describe parameter marker

v DP - Declare procedure

v DR - Drop

v DT - Describe table

v EI - Execute immediate

v EX - Execute

v FE - Fetch

v FL - Free locator

v GR - Grant

v GS - Get descriptor

v HC - Hard close

v HL - Hold locator

194 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|
||

|||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Table 41. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Statement_Operation (continued) QQC21 v IN - Insert

v JR - Server job reused

v LK - Lock

v LO - Label on

v MT - More text (Deprecated in V5R4)

v OP - Open

v PD - Prepare and describe

v PR - Prepare

v RB - Rollback to savepoint

v RE - Release

v RF - Refresh Table

v RG - Resignal

v RO - Rollback

v RS - Release Savepoint

v RT - Rename table

v RV - Revoke

v SA - Savepoint

v SC - Set connection

v SD - Set descriptor

v SE - Set encryption password

v SN - Set session user

v SI - Select into

v SO - Set current degree

v SP - Set path

v SR - Set result set

v SS - Set current schema

v ST - Set transaction

v SV - Set variable

v UP - Update

v VI - Values into

v X0 - Unknown statement

v X1 - Unknown statement

v X2 - DRDA® (AS) Unknown statement

v X3 - Unknown statement

v X9 - Internal error

v XA - X/Open API

v ZD - Host server only activity

Statement_Type QQC12 Statement type:

v D - Dynamic statement

v S - Static statement

Parse_Required QQC13 Parse required (Y/N)

Package_Name QQC103 Name of the package or name of the program that contains the
current SQL statement

Performance and query optimization 195

|

|

|
|
||

|||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|||

|

|

|||

|||
|

Table 41. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Package_Library QQC104 Name of the library containing the package

Cursor_Name QQC181 Name of the cursor corresponding to this SQL statement, if
applicable

Statement_Name QQC182 Name of statement for SQL statement, if applicable

Start_Timestamp QQSTIM Time this statement entered

Statement_Text QQ1000 First 1000 bytes of statement text

Statement_Outcome QQC14 Statement outcome

v S - Successful

v U - Unsuccessful

Result_Rows QQI2 Number of result rows returned. Will only be set for the
following SQL operations and will be 0 for all others:

v IN - Insert

v UP - Update

v DL - Delete

196 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|
||

|||

|||
|

|||

|||

|||

|||

|

|

|||
|

|

|

|

Table 41. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Dynamic_Replan_Reason_Code QQC22 Dynamic replan (access plan rebuilt)

v NA - No replan.

v NR - SQL QDT rebuilt for new release.

v A1 - A table or member is not the same object as the one
referenced when the access plan was last built. Some reasons
why they might be different are:

– Object was deleted and recreated.

– Object was saved and restored.

– Library list was changed.

– Object was renamed.

– Object was moved.

– Object was overridden to a different object.

– This is the first run of this query after the object
containing the query has been restored.

v A2 - Access plan was built to use a reusable Open Data Path
(ODP) and the optimizer chose to use a non-reusable ODP
for this call.

v A3 - Access plan was built to use a non-reusable Open Data
Path (ODP) and the optimizer chose to use a reusable ODP
for this call.

v A4 - The number of rows in the table member has changed
by more than 10% since the access plan was last built.

v A5 - A new index exists over one of the tables in the query.

v A6 - An index that was used for this access plan no longer
exists or is no longer valid.

v A7 - i5/OS Query requires the access plan to be rebuilt
because of system programming changes.

v A8 - The CCSID of the current job is different than the
CCSID of the job that last created the access plan.

v A9 - The value of one or more of the following is different
for the current job than it was for the job that last created
this access plan:

– date format

– date separator

– time format

– time separator

Performance and query optimization 197

|

|

|
|
||

|||

|

|

|
|
|

|

|

|

|

|

|

|
|

|
|
|

|
|
|

|
|

|

|
|

|
|

|
|

|
|
|

|

|

|

|

Table 41. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Dynamic_Replan_Reason_Code
(continued)

QQC22 v AA - The sort sequence table specified is different than the
sort sequence table that was used when this access plan was
created.

v AB - Storage pool changed or DEGREE parameter of
CHGQRYA command changed.

v AC - The system feature DB2 Multisystem has been installed
or removed.

v AD - The value of the degree query attribute has changed.

v AE - A view is either being opened by a high level language
or a view is being materialized.

v AF - A user-defined type or user-defined function is not the
same object as the one referred to in the access plan, or, the
SQL Path is not the same as when the access plan was built.

v B0 - The options specified have changed as a result of the
query options file.

v B1 - The access plan was generated with a commitment
control level that is different in the current job.

v B2 - The access plan was generated with a static cursor
answer set size that is different than the previous access
plan.

v B3 - The query was reoptimized because this is the first run
of the query after a prepare. That is, it is the first run with
real actual parameter marker values.

v B4 - The query was reoptimized because referential or check
constraints have changed.

v B5 - The query was reoptimized because Materialized query
tables have changed.

Data_Conversion_Reason_Code QQC16 Data conversion

v N - No.

v 0 - Not applicable.

v 1 - Lengths do not match.

v 2 - Numeric types do not match.

v 3 - C host variable is NUL-terminated.

v 4 - Host variable or column is variable length and the other
is not variable length.

v 5 - Host variable or column is not variable length and the
other is variable length.

v 6 - Host variable or column is variable length and the other
is not variable length.

v 7 - CCSID conversion.

v 8 - DRDA and NULL capable, variable length, contained in a
partial row, derived expression, or blocked fetch with not
enough host variables.

v 9 - Target table of an insert is not an SQL table.

198 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|
||

|
|
||
|
|

|
|

|
|

|

|
|

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|||

|

|

|

|

|

|
|

|
|

|
|

|

|
|
|

|

Table 41. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Data_Conversion_Reason_Code
(continued)

v 10 - Host variable is too short to hold a TIME or
TIMESTAMP value being retrieved.

v 11 - Host variable is DATE, TIME, or TIMESTAMP and value
being retrieved is a character string.

v 12 - Too many host variables specified and records are
blocked.

v 13 - DRDA used for a blocked FETCH and the number of
host variables specified in the INTO clause is less than the
number of result values in the select list.

v 14 - LOB locator used and the commitment control level was
not *ALL.

Total_Time_Milliseconds QQI4 Total time for this statement, in milliseconds. For fetches, this
includes all fetches for this OPEN of the cursor.

Rows_Fetched QQI3 Total rows fetched for cursor

End_Timestamp QQETIM Time SQL request completed

Total_Time_Microseconds QQI6 Total time for this statement, in microseconds. For fetches, this
includes all fetches for this OPEN of the cursor.

SQL_Statement_Length QQI7 Length of SQL Statement

Insert_Unique_Count QQI1 Unique query count for the QDT associated with the INSERT.
QQUCNT contains the unique query count for the QDT
associated with the WHERE part of the statement.

SQLCode QQI8 SQL return code

SQLState QQC81 SQLSTATE

Close_Cursor_Mode QVC101 Close Cursor. Possible values are:

v *ENDJOB - SQL cursors are closed when the job ends.

v *ENDMOD - SQL cursors are closed when the module ends

v *ENDPGM - SQL cursors are closed when the program ends.

v *ENDSQL - SQL cursors are closed when the first SQL
program on the call stack ends.

v *ENDACTGRP - SQL cursors are closed when the activation
group ends.

Allow_Copy_Data_Value QVC11 ALWCPYDTA setting (Y/N/O)

v Y - A copy of the data may be used.

v N - Cannot use a copy of the data.

v O - The optimizer can choose to use a copy of the data for
performance.

PseudoOpen QVC12 Pseudo Open (Y/N) for SQL operations that can trigger opens.

v OP - Open

v IN - Insert

v UP - Update

v DL - Delete

v SI - Select Into

v SV - Set

v VI - Values into

For all operations it can be blank.

Performance and query optimization 199

|

|

|
|
||

|
|
||
|

|
|

|
|

|
|
|

|
|

|||
|

|||

|||

|||
|

|||

|||
|
|

|||

|||

|||

|

|

|

|
|

|
|

|||

|

|

|
|

|||

|

|

|

|

|

|

|

|

Table 41. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

PseudoClose QVC13 Pseudo Close (Y/N) for SQL operations that can trigger a
close.

v CL - Close

v IN - Insert

v UP - Update

v DL - Delete

v SI - Select Into

v SV - Set

v VI - Values into

For all operations it can be blank.

ODP_Implementation QVC14 ODP implementation

v R - Reusable ODP

v N - Nonreusable ODP

v ' ' - Column not used

Dynamic_Replan_SubCode QVC21 Dynamic replan, subtype reason code

Commitment_Control_Level QVC41 Commitment control level. Possible values are:

v CS - Cursor stability

v CSKL - Cursor stability. Keep exclusive locks.

v NC - No commit

v RR - Repeatable read

v RREL - Repeatable read. Keep exclusive locks.

v RS - Read stability

v RSEL - Read stability. Keep exclusive locks.

v UR - Uncommitted read

Blocking_Type QVC15 Type of blocking . Possible value are:

v S - Single row, ALWBLK(*READ)

v F - Force one row, ALWBLK(*NONE)

v L - Limited block, ALWBLK(*ALLREAD)

Delay_Prepare QVC16 Delay prepare (Y/N)

Explainable QVC1C The SQL statement is explainable (Y/N).

Naming_Convention QVC17 Naming convention. Possibles values:

v N - System naming convention

v S - SQL naming convention

Dynamic_Processing_Type QVC18 Type of dynamic processing.

v E - Extended dynamic

v S - System wide cache

v L - Local prepared statement

LOB_Data_Optimized QVC19 Optimize LOB data types (Y/N)

200 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|
||

|||
|

|

|

|

|

|

|

|

|

|||

|

|

|

|||

|||

|

|

|

|

|

|

|

|

|||

|

|

|

|||

|||

|||

|

|

|||

|

|

|

|||

Table 41. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Program_User_Profile_Used QVC1A User profile used when compiled programs are executed.
Possible values are:

v N = User Profile is determined by naming conventions. For
*SQL, USRPRF(*OWNER) is used. For *SYS, USRPRF(*USER)
is used.

v U = USRPRF(*USER) is used.

v O = USRPRF(*OWNER) is used.

Dynamic_User_Profile_Used QVC1B User profile used for dynamic SQL statements.

v U = USRPRF(*USER) is used.

v O = USRPRF(*OWNER) is used.

Default_Collection QVC1281 Name of the default collection.

Procedure_Name QVC1282 Procedure name on CALL to SQL.

Procedure_Library QVC1283 Procedure library on CALL to SQL.

SQL_Path QVC1000 Path used to find procedures, functions, and user defined types
for static SQL statements.

SQL_Path_2 QWC1000 Continuation of SQL path, if needed. Contains bytes 1001-2000
of the SQL path.

SQL_Path_3 QVC5001 Continuation of SQL path, if needed. Contains bytes 2001-2500
of the SQL path.

SQL_Path_4 QVC5002 Continuation of SQL path, if needed. Contains bytes 2501-3000
of the SQL path.

SQL_Path_5 QVC3001 Continuation of SQL path, if needed. Contains bytes 3001-3300
of the SQL path.

SQL_Path_6 QVC3002 Continuation of SQL path, if needed. Contains bytes 3301-3600
of the SQL path.

SQL_Path_7 QVC3003 Continuation of SQL path, if needed. Contains bytes 3601-3900
of the SQL path.

Current_Schema QVC1284 SQL Current Schema

Binding_Type QQC18 Binding type:

v C - Column-wise binding

v R - Row-wise binding

Cursor_Type QQC61 Cursor Type:

v NSA - Non-scrollable, asensitive, forward only

v NSI - Non-scrollable, sensitive, forward only

v NSS - Non-scrollable, insensitive, forward only

v SCA - scrollable, asensitive

v SCI - scrollable, sensitive

v SCS - scrollable, insensitive

Statement_Originator QVC1D SQL statement originator:

v U - User

v S - System

Performance and query optimization 201

|

|

|
|
||

|||
|

|
|
|

|

|

|||

|

|

|||

|||

|||

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||

|||

|

|

|||

|

|

|

|

|

|

|||

|

|

Table 41. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Hard_Close_Reason_Code QQC15 SQL cursor hardclose reason. Possible reasons are:

v 1 - Internal Error

v 2 - Exclusive Lock

v 3 - Interactive SQL Reuse Restriction

v 4 - Host variable Reuse Restriction

v 5 - Temporary Result Restriction

v 6 - Cursor Restriction

v 7 - Cursor Hard Close Requested

v 8 - Internal Error

v 9 - Cursor Threshold

v A - Refresh Error

v B - Reuse Cursor Error

v C - DRDA AS Cursor Closed

v D - DRDA AR Not WITH HOLD

v E - Repeatable Read

v F - Lock Conflict Or QSQPRCED Threshold - Library

v G - Lock Conflict Or QSQPRCED Threshold - File

v H - Execute Immediate Access Plan Space

v I - QSQCSRTH Dummy Cursor Threshold

v J - File Override Change

v K - Program Invocation Change

v L - File Open Options Change

v M - Statement Reuse Restriction

v N - Internal Error

v O - Library List Changed

v P - Exit Processing

v Q - SET SESSION USER statement

Hard_Close_Subcode QQC23 SQL cursor hardclose reason subcode

Date_Format QVC42 Date Format. Possible values are:

v ISO

v USA

v EUR

v JIS

v JUL

v MDY

v DMY

v YMD

Date_Separator QWC11 Date Separator. Possible values are:

v "/"

v "."

v ","

v "-"

v " "

202 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|
||

|||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|||

|||

|

|

|

|

|

|

|

|

|||

|

|

|

|

|

Table 41. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Time_Format QVC43 Time Format. Possible values are:

v ISO

v USA

v EUR

v JIS

v HMS

Time_Separator QWC12 Time Separator. Possible values are:

v ":"

v "."

v ","

v " "

Decimal_Point QWC13 Decimal Point. Possible values are:

v "."

v ","

Sort_Sequence_Table QVC104 Sort Sequence Table

Sort_Sequence_Library QVC105 Sort Sequence Library

Language_ID QVC44 Language ID

Country_ID QVC23 Country ID

First_N_Rows_Value QQIA Value specified on the FIRST n ROWS clause.

Optimize_For_N_Rows _Value QQF1 Value specified on the OPTIMIZE FOR n ROWS clause.

SQL_Access_Plan_Reason_Code QVC22 SQL access plan rebuild reason code. Possible reasons are:

v A1 - A table or member is not the same object as the one
referenced when the access plan was last built. Some reasons
they might be different are:

– Object was deleted and recreated.

– Object was saved and restored.

– Library list was changed.

– Object was renamed.

– Object was moved.

– Object was overridden to a different object.

– This is the first run of this query after the object
containing the query has been restored.

v A2 - Access plan was built to use a reusable Open Data Path
(ODP) and the optimizer chose to use a non-reusable ODP
for this call.

v A3 - Access plan was built to use a non-reusable Open Data
Path (ODP) and the optimizer chose to use a reusable ODP
for this call.

v A4 - The number of rows in the table has changed by more
than 10% since the access plan was last built.

v A5 - A new index exists over one of the tables in the query

v A6 - An index that was used for this access plan no longer
exists or is no longer valid.

Performance and query optimization 203

|

|

|
|
||

|||

|

|

|

|

|

|||

|

|

|

|

|||

|

|

|||

|||

|||

|||

|||

|||

|||

|
|
|

|

|

|

|

|

|

|
|

|
|
|

|
|
|

|
|

|

|
|

Table 41. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

SQL_Access_Plan_Reason_Code
(continued)

v A7 - i5/OS Query requires the access plan to be rebuilt
because of system programming changes.

v A8 - The CCSID of the current job is different than the
CCSID of the job that last created the access plan.

v A9 - The value of one or more of the following is different
for the current job than it was for the job that last created
this access plan:

– date format

– date separator

– time format

– time separator.

v AA - The sort sequence table specified is different than the
sort sequence table that was used when this access plan was
created.

v AB - Storage pool changed or DEGREE parameter of
CHGQRYA command changed.

v AC - The system feature DB2 Multisystem has been installed
or removed.

v AD - The value of the degree query attribute has changed.

v AE - A view is either being opened by a high level language
or a view is being materialized.

v AF - A user-defined type or user-defined function is not the
same object as the one referred to in the access plan, or, the
SQL Path is not the same as when the access plan was built.

v B0 - The options specified have changed as a result of the
query options file.

v B1 - The access plan was generated with a commitment
control level that is different in the current job.

v B2 - The access plan was generated with a static cursor
answer set size that is different than the previous access
plan.

v B3 - The query was reoptimized because this is the first run
of the query after a prepare. That is, it is the first run with
real actual parameter marker values.

v B4 - The query was reoptimized because referential or check
constraints have changed.

v B5 - The query was reoptimized because Materialized query
tables have changed.

204 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|
||

|
|
||
|

|
|

|
|
|

|

|

|

|

|
|
|

|
|

|
|

|

|
|

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

Table 41. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Access_Plan_Not_Saved_Reason_Code QVC24 Access plan not saved reason code. Possible reasons are:

v A1 - Failed to get a LSUP lock on associated space of
program or package.

v A2 - Failed to get an immediate LEAR space location lock on
first byte of associated space of program.

v A3 - Failed to get an immediate LENR space location lock
on first byte of associated space of program.

v A5 - Failed to get an immediate LEAR space location lock on
first byte of ILE associated space of a program.

v A6 - Error trying to extend space of an ILE program.

v A7 - No room in program.

v A8 - No room in program associated space.

v A9 - No room in program associated space.

v AA - No need to save. Save already done in another job.

v AB - Query optimizer cannot lock the QDT.

v B1 - Saved at the end of the program associated space.

v B2 - Saved at the end of the program associated space.

v B3 - Saved in place.

v B4 - Saved in place.

v B5 - Saved at the end of the program associated space.

v B6 - Saved in place.

v B7 - Saved at the end of the program associated space.

v B8 - Saved at the end of the program associated space.

Transaction_Context_ID QVC81 Transaction context ID.

Activation_Group_Mark QVP152 Activation Group Mark

Open_Cursor_Threshold QVP153 Open cursor threshold

Open_Cursor_Close_Count QVP154 Open cursor close count

Commitment_Control_Lock_Limit QVP155 Commitment control lock limit

Allow_SQL_Mixed_Constants QWC15 Using SQL mixed constants (Y/N)

Suppress_SQL_Warnings QWC16 Suppress SQL warning messages (Y/N)

Translate_ASCII QWC17 Translate ASCII to job (Y/N)

System_Wide_Statement_Cache QWC18 Using system-wide SQL statement cache (Y/N)

LOB_Locator_Threshold QVP159 LOB locator threshold

Max_Decimal_Precision QVP156 Maximum decimal precision (63/31)

Max_Decimal_Scale QVP157 Maximum decimal scale

Min_Decimal_Divide_Scale QVP158 Minimum decimal divide scale

Unicode_Normalization QWC19 Unicode data normalization requested (Y/N)

Statement_Text_Long QQ1000L Complete statement text

Old_Access_Plan_Length QVP15B Length of old access plan

New_Access_Plan_Length QVP15C Length of new access plan

Performance and query optimization 205

|

|

|
|
||

|||

|
|

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 41. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Fast_Delete_Count QVP151 SQL fast count delete count. Possible values are:

v 0 = *OPTIMIZE or *DEFAULT

v 1-999,999,999,999 = User specified value

v 'FFFFFFFFFFFFFFFF'x = *NONE

Statement_Max_Compression QQF2 SQL statement maximum compression. Possible values are:

v 1 - *DEFAULT

v 1 - User specified queries

v 2 - All queries, user and system

v 3 - System generated internal queries

Current_User_Profile QVC102 Current user profile name

Expression_Evaluator_Used QVC1E Expression Evaluator Used (Y/N)

Host_Server_Delta QVP15A Time not spent within Host Server

NTS_Lock_Space_Id QQC301 NTS Lock Space Identifier

IP_Address QQC183 IP Address

IP_Port_Number QQSMINT2 IP Port Number

NTS_Transaction_Id QVC3004 NTS Transaction Identifier

NTS_Format_Id_Length QQSMINT3 NTS Format Identified length

NTS_Transaction_ID_SubLength QQSMINT4 NTS Transaction Identifier sub-length

Unique_Refresh_Counter2 QVRCNT Unique refresh counter

Times_Run QVP15F Number of times this Statement was run. If Null, then the
statement was run once.

Full_Opens QVP15E Number of runs that were processed as full opens. If Null,
then the refresh count (qvrcnt) should be used to determine if
the open was a full open (0) or a pseudo open (>0)

Database monitor view 3000 - Table Scan
Create View QQQ3000 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,
QQUSER as Job_User,
QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQUCNT as Unique_Count,
QQUDEF as User_Defined,
QQQDTN as Unique_SubSelect_Number,
QQQDTL as SubSelect_Nested_Level,
QQMATN as Materialized_View_Subselect_Number,
QQMATL as Materialized_View_Nested_Level,
QVP15E as Materialized_View_Union_Level,
QVP15A as Decomposed_Subselect_Number,
QVP15B as Total_Number_Decomposed_SubSelects,
QVP15C as Decomposed_SubSelect_Reason_Code,
QVP15D as Starting_Decomposed_SubSelect,
QQTLN as System_Table_Schema,
QQTFN as System_Table_Name,

206 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|
||

|||

|

|

|

|||

|

|

|

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

QQTMN as Member_Name,
QQPTLN as System_Base_Table_Schema,
QQPTFN as System_Base_Table_Name,
QQPTMN as Base_Member_Name,
QQTOTR as Table_Total_Rows,
QQREST as Estimated_Rows_Selected,
QQAJN as Estimated_Join_Rows,
QQEPT as Estimated_Processing_Time,
QQJNP as Join_Position,
QQI1 as DataSpace_Number,
QQC21 as Join_Method,
QQC22 as Join_Type,
QQC23 as Join_Operator,
QQI2 as Index_Advised_Columns_Count,
QQDSS as DataSpace_Selection,
QQIDXA as Index_Advised,
QQRCOD as Reason_Code,
QQIDXD as Index_Advised_Columns,
QVQTBL as Table_Name,
QVQLIB as Table_Schema,
QVPTBL as Base_Table_Name,
QVPLIB as Base_Table_Schema,
QVBNDY as Bound,
QVRCNT as Unique_Refresh_Counter,
QVJFANO as Join_Fanout,
QVFILES as Join_Table_Count,
QVPARPF as Parallel_Prefetch,
QVPARPL as Parallel_PreLoad,
QVPARD as Parallel_Degree_Requested,
QVPARU as Parallel_Degree_Used,
QVPARRC as Parallel_Degree_Reason_Code,
QVCTIM as Estimated_Cumulative_Time,
QQC11 as Skip_Sequential_Table_Scan,
QQI3 as Table_Size,
QVC3001 as DataSpace_Selection_Columns,
QQC14 as Derived_Column_Selection,
QVC3002 as Derived_Column_Selection_Columns,
QQC18 as Read_Trigger,
QVP157 as UDTF_Cardinality,
QVC1281 as UDTF_Specific_Name,
QVC1282 as UDTF_Specific_Schema,
QVP154 as Pool_Size,
QVP155 as Pool_Id,
QQC13 as MQT_Replacement

FROM UserLib/DBMONTABLE
WHERE QQRID=3000)

Table 42. QQQ3000 - Table Scan

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Performance and query optimization 207

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

|

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 42. QQQ3000 - Table Scan (continued)

View Column Name

Table
Column
Name Description

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSelects QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

System_Table_Schema QQTLN Schema of table queried

System_Table_Name QQTFN Name of table queried

Member_Name QQTMN Member name of table queried

System_Base_Table_Schema QQPTLN Schema name of base table

System_Base_Table_Name QQPTFN Name of base table for table queried

Base_Member_Name QQPTMN Member name of base table

Table_Total_Rows QQTOTR Total rows in table

Estimated_Rows_Selected QQREST Estimated number of rows selected

Estimated_Join_Rows QQAJN Estimated number of joined rows

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Join_Position QQJNP Join position - when available

DataSpace_Number QQI1 Dataspace number

Join_Method QQC21 Join method - when available

v NL - Nested loop

v MF - Nested loop with selection

v HJ - Hash join

Join_Type QQC22 Join type - when available

v IN - Inner join

v PO - Left partial outer join

v EX - Exception join

Join_Operator QQC23 Join operator - when available

v EQ - Equal

v NE - Not equal

v GT - Greater than

v GE - Greater than or equal

v LT - Less than

v LE - Less than or equal

v CP - Cartesian product

208 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|

|

|

|||

|

|

|

|||

|

|

|

|

|

|

|

Table 42. QQQ3000 - Table Scan (continued)

View Column Name

Table
Column
Name Description

Index_Advised_Columns_Count QQI2 Number of advised columns that use index scan-key
positioning

DataSpace_Selection QQDSS Dataspace selection

v Y - Yes

v N - No

Index_Advised QQIDXA Index advised

v Y - Yes

v N - No

Reason_Code QQRCOD Reason code

v T1 - No indexes exist.

v T2 - Indexes exist, but none can be used.

v T3 - Optimizer chose table scan over available indexes.

Index_Advised_Columns QQIDXD Columns for the index advised

Table_Name QVQTBL Queried table, long name

Table_Schema QVQLIB Schema of queried table, long name

Base_Table_Name QVPTBL Base table, long name

Base_Table_Schema QVPLIB Schema of base table, long name

Bound QVBNDY I/O or CPU bound. Possible values are:

v I - I/O bound

v C - CPU bound

Unique_Refresh_Counter QVRCNT Unique refresh counter

Join_Fanout QVJFANO Join fan out. Possible values are:

v N - Normal join situation where fanout is allowed and
each matching row of the join fanout is returned.

v D - Distinct fanout. Join fanout is allowed however none
of the join fanout rows are returned.

v U - Unique fanout. Join fanout is not allowed. Error
situation if join fanout occurs.

Join_Table_Count QVFILES Number of tables joined

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_PreLoad QVPARPL Parallel Preload (Y/N)

Parallel_Degree_Requested QVPARD Parallel degree requested

Parallel_Degree_Used QVPARU Parallel degree used

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Skip_Sequential_Table_Scan QQC11 Skip sequential table scan (Y/N)

Table_Size QQI3 Size of table being queried

DataSpace_Selection_Columns QVC3001 Columns used for dataspace selection

Derived_Column_Selection QQC14 Derived column selection (Y/N)

Derived_Column_Selection_Columns QVC3002 Columns used for derived column selection

Read_Trigger QQC18 Read Trigger (Y/N)

Performance and query optimization 209

|

|

|
|
||

|||
|

|||

|

|

|||

|

|

|||

|

|

|

|||

|||

|||

|||

|||

|||

|

|

|||

|||

|
|

|
|

|
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 42. QQQ3000 - Table Scan (continued)

View Column Name

Table
Column
Name Description

UDTF_Cardinality QVP157 User-defined table function Cardinality

UDTF_Specific_Name QVC1281 User-defined table function specific name

UDTF_Specific_Schema QVC1282 User-defined table function specific schema

Pool_Size QVP154 Pool size

Pool_Id QVP155 Pool id

MQT_Replacement QQC13 Materialized Query Table replaced queried table (Y/N)

Database monitor view 3001 - Index Used
Create View QQQ3001 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,
QQUSER as Job_User,
QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQUCNT as Unique_Count,
QQUDEF as User_Defined,
QQQDTN as Unique_SubSelect_Number,
QQQDTL as SubSelect_Nested_Level,
QQMATN as Materialized_View_Subselect_Number,
QQMATL as Materialized_View_Nested_Level,
QVP15E as Materialized_View_Union_Level,
QVP15A as Decomposed_Subselect_Number,
QVP15B as Total_Number_Decomposed_SubSelects,
QVP15C as Decomposed_SubSelect_Reason_Code,
QVP15D as Starting_Decomposed_SubSelect,
QQTLN as System_Table_Schema,
QQTFN as System_Table_Name,
QQTMN as Member_Name,
QQPTLN as System_Base_Table_Schema,
QQPTFN as System_Base_Table_Name,
QQPTMN as Base_Member_Name,
QQILNM as System_Index_Schema,
QQIFNM as System_Index_Name,
QQIMNM as Index_Member_Name,
QQTOTR as Table_Total_Rows,
QQREST as Estimated_Rows_Selected,
QQFKEY as Index_Probe_Keys,
QQKSEL as Index_Scan_Keys,
QQAJN as Estimated_Join_Rows,
QQEPT as Estimated_Processing_Time,
QQJNP as Join_Position,
QQI1 as DataSpace_Number,
QQC21 as Join_Method,
QQC22 as Join_Type,
QQC23 as Join_Operator,
QQI2 as Index_Advised_Probe_Count,
QQKP as Index_Probe_Used,
QQI3 as Index_Probe_Column_Count,
QQKS as Index_Scan_Used,
QQDSS as DataSpace_Selection,
QQIDXA as Index_Advised,
QQRCOD as Reason_Code,
QQIDXD as Index_Advised_Columns,

210 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|
||

|||

|||

|||

|||

|||

|||
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

QQC11 as Constraint,
QQ1000 as Constraint_Name,
QVQTBL as Table_Name,
QVQLIB as Table_Schema,
QVPTBL as Base_Table_Name,
QVPLIB as Base_Table_Schema,
QVINAM as Index_Name,
QVILIB as Index_Schema,
QVBNDY as Bound,
QVRCNT as Unique_Refresh_Counter,
QVJFANO as Join_Fanout,
QVFILES as Join_Table_Count,
QVPARPF as Parallel_Prefetch,
QVPARPL as Parallel_Preload,
QVPARD as Parallel_Degree_Requested,
QVPARU as Parallel_Degree_Used,
QVPARRC as Parallel_Degree_Reason_Code,
QVCTIM as Estimated_Cumulative_Time,
QVc14 as Index_Only_Access,
QQc12 as Index_Fits_In_Memory,
QQC15 as Index_Type,
QVC12 as Index_Usage,
QQI4 as Index_Entries,
QQI5 as Unique_Keys,
QQI6 as Percent_Overflow,
QQI7 as Vector_Size,
QQI8 as Index_Size,
QQIA as Index_Page_Size,
QVP154 as Pool_Size,
QVP155 as Pool_Id,
QVP156 as Table_Size,
QQC16 as Skip_Sequential_Table_Scan,
QVC13 as Tertiary_Indexes_Exist,
QVC3001 as DataSpace_Selection_COlumns,
QQC14 as Derived_Column_Selection,
QVC3002 as Derived_Column_Selection_Columns,
QVC3003 as Table_Columns_For_Index_Probe,
QVC3004 as Table_Columns_For_Index_Scan,
QVC3005 as Join_Selection_Columns,
QVC3006 as Ordering_Columns,
QVC3007 as Grouping_Columns,
QQC18 as Read_Trigger,
QVP157 as UDTF_Cardinality,
QVC1281 as UDTF_Specific_Name,
QVC1282 as UDTF_Specific_Schema,
QQC13 as MQT_Replacement

FROM UserLib/DBMONTable
WHERE QQRID=3001)

Table 43. QQQ3001 - Index Used

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Performance and query optimization 211

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

|

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

Table 43. QQQ3001 - Index Used (continued)

View Column Name

Table
Column
Name Description

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSelects QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first decomposed
subselect

System_Table_Schema QQTLN Schema of table queried

System_Table_Name QQTFN Name of table queried

Member_Name QQTMN Member name of table queried

System_Base_Table_Schema QQPTLN Schema name of base table

System_Base_Table_Name QQPTFN Name of base table for table queried

Base_Member_Name QQPTMN Member name of base table

System_Index_Schema QQILNM Schema name of index used for access

System_Index_Name QQIFNM Name of index used for access

Index_Member_Name QQIMNM Member name of index used for access

Table_Total_Rows QQTOTR Total rows in base table

Estimated_Rows_Selected QQREST Estimated number of rows selected

Index_Probe_Keys QQFKEY Columns selected through index scan-key positioning

Index_Scan_Keys QQKSEL Columns selected through index scan-key selection

Estimated_Join_Rows QQAJN Estimated number of joined rows

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Join_Position QQJNP Join position - when available

DataSpace_Number QQI1 Dataspace number

Join_Method QQC21 Join method - when available

v NL - Nested loop

v MF - Nested loop with selection

v HJ - Hash join

Join_Type QQC22 Join type - when available

v IN - Inner join

v PO - Left partial outer join

v EX - Exception join

212 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|

|

|

|||

|

|

|

Table 43. QQQ3001 - Index Used (continued)

View Column Name

Table
Column
Name Description

Join_Operator QQC23 Join operator - when available

v EQ - Equal

v NE - Not equal

v GT - Greater than

v GE - Greater than or equal

v LT - Less than

v LE - Less than or equal

v CP - Cartesian product

Index_Advised_Probe_Count QQI2 Number of advised key columns that use index scan-key
positioning

Index_Probe_Used QQKP Index scan-key positioning

v Y - Yes

v N - No

Index_Probe_Column_Count QQI3 Number of columns that use index scan-key positioning for
the index used

Index_Scan_Used QQKS Index scan-key selection

v Y - Yes

v N - No

DataSpace_Selection QQDSS Dataspace selection

v Y - Yes

v N - No

Index_Advised QQIDXA Index advised

v Y - Yes

v N - No

Reason_Code QQRCOD Reason code

v I1 - Row selection

v I2 - Ordering/Grouping

v I3 - Row selection and Ordering/Grouping

v I4 - Nested loop join

v I5 - Row selection using bitmap processing

Index_Advised_Columns QQIDXD Columns for index advised

Constraint QQC11 Index is a constraint (Y/N)

Constraint_Name QQ1000 Constraint name

Table_Name QVQTBL Queried table, long name

Table_Schema QVQLIB Schema of queried table, long name

Base_Table_Name QVPTBL Base table, long name

Base_Table_Schema QVPLIB Schema of base table, long name

Index_Name QVINAM Name of index (or constraint) used, long name

Index_Schema QVILIB Library of index used, long name

Bound QVBNDY I/O or CPU bound. Possible values are:

v I - I/O bound

v C - CPU bound

Performance and query optimization 213

|

|

|
|
||

|||

|

|

|

|

|

|

|

|||
|

|||

|

|

|||
|

|||

|

|

|||

|

|

|||

|

|

|||

|

|

|

|

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|

|

Table 43. QQQ3001 - Index Used (continued)

View Column Name

Table
Column
Name Description

Unique_Refresh_Counter QVRCNT Unique refresh counter

Join_Fanout QVJFANO Join fan out. Possible values are:

v N - Normal join situation where fanout is allowed and each
matching row of the join fanout is returned.

v D - Distinct fanout. Join fanout is allowed however none of
the join fanout rows are returned.

v U - Unique fanout. Join fanout is not allowed. Error
situation if join fanout occurs.

Join_Table_Count QVFILES Number of tables joined

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_Preload QVPARPL Parallel Preload (Y/N)

Parallel_Degree_Requested QVPARD Parallel degree requested

Parallel_Degree_Used QVPARU Parallel degree used

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Index_Only_Access QVC14 Index only access (Y/N)

Index_Fits_In_Memory QQC12 Index fits in memory (Y/N)

Index_Type QQC15 Type of Index. Possible values are:

v B - Binary Radix Index

v C - Constraint (Binary Radix)

v E - Encoded Vector Index (EVI)

v X - Query created temporary index

Index_Usage QVC12 Index Usage. Possible values are:

v P - Primary Index

v T - Tertiary (AND/OR) Index

Index_Entries QQI4 Number of index entries

Unique_Keys QQI5 Number of unique key values

Percent_Overflow QQI6 Percent overflow

Vector_Size QQI7 Vector size

Index_Size QQI8 Index size

Index_Page_Size QQIA Index page size

Pool_Size QVP154 Pool size

Pool_Id QVP155 Pool id

Table_Size QVP156 Table size

Skip_Sequential_Table_Scan QQC16 Skip sequential table scan (Y/N)

Tertiary_Indexes_Exist QVC13 Tertiary indexes exist (Y/N)

DataSpace_Selection_Columns QVC3001 Columns used for dataspace selection

Derived_Column_Selection QQC14 Derived column selection (Y/N)

Derived_Column_Selection_Columns QVC3002 Columns used for derived column selection

Table_Column_For_Index_Probe QVC3003 Columns used for index scan-key positioning

214 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|
||

|||

|||

|
|

|
|

|
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|

|

|

|

|||

|

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 43. QQQ3001 - Index Used (continued)

View Column Name

Table
Column
Name Description

Table_Column_For_Index_Scan QVC3004 Columns used for index scan-key selection

Join_Selection_Columns QVC3005 Columns used for Join selection

Ordering_Columns QVC3006 Columns used for Ordering

Grouping_Columns QVC3007 Columns used for Grouping

Read_Trigger QQC18 Read Trigger (Y/N)

UDTF_Cardinality QVP157 User-defined table function Cardinality

UDTF_Specific_Name QVC1281 User-defined table function specific name

UDTF_Specific_Schema QVC1282 User-defined table function specific schema

MQT_Replacement QQC13 Materialized Query Table replaced queried table (Y/N)

Database monitor view 3002 - Index Created
Create View QQQ3002 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,
QQUSER as Job_User,
QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQUCNT as Unique_Count,
QQUDEF as User_Defined,
QQQDTN as Unique_SubSelect_Number,
QQQDTL as SubSelect_Nested_Level,
QQMATN as Materialized_View_Subselect_Number,
QQMATL as Materialized_View_Nested_Level,
QVP15E as Materialized_View_Union_Level,
QVP15A as Decomposed_Subselect_Number,
QVP15B as Total_Number_Decomposed_SubSelects,
QVP15C as Decomposed_SubSelect_Reason_Code,
QVP15D as Starting_Decomposed_SubSelect,
QQTLN as System_Table_Schema,
QQTFN as System_Table_Name,
QQTMN as Member_Name,
QQPTLN as System_Base_Table_Schema,
QQPTFN as System_Base_Table_Name,
QQPTMN as Base_Member_Name,
QQILNM as System_Index_Schema,
QQIFNM as System_Index_Name,
QQIMNM as Index_Member_Name,
QQNTNM as NLSS_Table,
QQNLNM as NLSS_Library,
QQSTIM as Start_Timestamp,
QQETIM as End_Timestamp,
QQTOTR as Table_Total_Rows,
QQRIDX as Created_Index_Entries,
QQREST as Estimated_Rows_Selected,
QQFKEY as Index_Probe_Keys,
QQKSEL as Index_Scan_Keys,
QQAJN as Estimated_Join_Rows,
QQEPT as Estimated_Processing_Time,
QQJNP as Join_Position,
QQI1 as DataSpace_Number,
QQC21 as Join_Method,

Performance and query optimization 215

|

|

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

QQC22 as Join_Type,
QQC23 as Join_Operator,
QQI2 as Index_Advised_Probe_Count,
QQKP as Index_Probe_Used,
QQI3 as Index_Probe_Column_Count,
QQKS as Index_Scan_Used,
QQDSS as DataSpace_Selection,
QQIDXA as Index_Advised,
QQRCOD as Reason_Code,
QQIDXD as Index_Advised_Columns,
QQ1000 as Created_Index_Columns,
QVQTBL as Table_Name,
QVQLIB as Table_Schema,
QVPTBL as Base_Table_Name,
QVPLIB as Base_Table_Schema,
QVINAM as Index_Name,
QVILIB as Index_Schema,
QVBNDY as Bound,
QVRCNT as Unique_Refresh_Counter,
QVJFANO as Join_Fanout,
QVFILES as Join_Table_Count,
QVPARPF as Parallel_Prefetch,
QVPARPL as Parallel_Preload,
QVPARD as Parallel_Degree_Requested,
QVPARU as Parallel_Degree_Used,
QVPARRC as Parallel_Degree_Reason_Code,
QVCTIM as Estimated_Cumulative_Time,
QQC101 as Created_Index_Name,
QQC102 as Created_Index_Schema,
QQI4 as Created_Index_Page_Size,
QQI5 as Created_Index_Row_Size,
QQC14 as Created_Index_Used_ACS_Table,
QQC103 as Created_Index_ACS_Table,
QQC104 as Created_Index_ACS_Library,
QVC13 as Created_Index_Reusable,
QVC14 as Created_Index_Sparse,
QVC1F as Created_Index_Type,
QVP15F as Created_Index_Unique_EVI_Count,
QVC15 as Permanent_Index_Created,
QVC16 as Index_From_Index,
QVP151 as Created_Index_Parallel_Degree_Requested,
QVP152 as Created_Index_Parallel_Degree_Used,
QVP153 as Created_Index_Parallel_Degree_Reason_Code,
QVC17 as Index_Only_Access,
QVC18 as Index_Fits_In_Memory,
QVC1B as Index_Type,
QQI6 as Index_Entries,
QQI7 as Unique_Keys,
QVP158 as Percent_Overflow,
QVP159 as Vector_Size,
QQI8 as Index_Size,
QVP156 as Index_Page_Size,
QVP154 as Pool_Size,
QVP155 as Pool_ID,
QVP157 as Table_Size,
QVC1C as Skip_Sequential_Table_Scan,
QVC3001 as DataSpace_Selection_Columns,
QVC1E as Derived_Column_Selection,
QVC3002 as Derived_Column_Selection_Columns,
QVC3003 as Table_Column_For_Index_Probe,
QVC3004 as Table_Column_For_Index_Scan,
QQC18 as Read_Trigger,
QQC13 as MQT_Replacement,
QQC16 as Reused_Temporary_Index

FROM UserLib/DBMONTable
WHERE QQRID=3002)

216 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 44. QQQ3002 - Index Created

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSelects QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

System_Table_Schema QQTLN Schema of table queried

System_Table_Name QQTFN Name of table queried

Member_Name QQTMN Member name of table queried

System_Base_Table_Schema QQPTLN Schema name of base table

System_Base_Table_Name QQPTFN Name of base table for table queried

Base_Member_Name QQPTMN Member name of base table

System_Index_Schema QQILNM Schema name of index used for access

System_Index_Name QQIFNM Name of index used for access

Index_Member_Name QQIMNM Member name of index used for access

NLSS_Table QQNTNM NLSS table

NLSS_Library QQNLNM NLSS library

Start_Timestamp QQSTIM Start timestamp, when available.

End_Timestamp QQETIM End timestamp, when available

Table_Total_Rows QQTOTR Total rows in table

Created_Index_Entries QQRIDX Number of entries in index created

Estimated_Rows_Selected QQREST Estimated number of rows selected

Index_Probe_Keys QQFKEY Keys selected thru index scan-key positioning

Performance and query optimization 217

||

|

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 44. QQQ3002 - Index Created (continued)

View Column Name

Table
Column
Name Description

Index_Scan_Keys QQKSEL Keys selected thru index scan-key selection

Estimated_Join_Rows QQAJN Estimated number of joined rows

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Join_Position QQJNP Join position - when available

DataSpace_Number QQI1 Dataspace number

Join_Method QQC21 Join method - when available

v NL - Nested loop

v MF - Nested loop with selection

v HJ - Hash join

Join_Type QQC22 Join type - when available

v IN - Inner join

v PO - Left partial outer join

v EX - Exception join

Join_Operator QQC23 Join operator - when available

v EQ - Equal

v NE - Not equal

v GT - Greater than

v GE - Greater than or equal

v LT - Less than

v LE - Less than or equal

v CP - Cartesian product

Index_Advised_Probe_Count QQI2 Number of advised key columns that use index
scan-key positioning

Index_Probe_Used QQKP Index scan-key positioning

v Y - Yes

v N - No

Index_Probe_Column_Count QQI3 Number of columns that use index scan-key positioning
for the index used

Index_Scan_Used QQKS Index scan-key selection

v Y - Yes

v N - No

DataSpace_Selection QQDSS Dataspace selection

v Y - Yes

v N - No

Index_Advised QQIDXA Index advised

v Y - Yes

v N - No

Reason_Code QQRCOD Reason code

v I1 - Row selection

v I2 - Ordering/Grouping

v I3 - Row selection and Ordering/Grouping

v I4 - Nested loop join

218 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|
||

|||

|||

|||

|||

|||

|||

|

|

|

|||

|

|

|

|||

|

|

|

|

|

|

|

|||
|

|||

|

|

|||
|

|||

|

|

|||

|

|

|||

|

|

|||

|

|

|

|

Table 44. QQQ3002 - Index Created (continued)

View Column Name

Table
Column
Name Description

Index_Advised_Columns QQIDXD Key columns for index advised

Created_Index_Columns QQ1000 Key columns for index created

Table_Name QVQTBL Queried table, long name

Table_Schema QVQLIB Schema of queried table, long name

Base_Table_Name QVPTBL Base table, long name

Base_Table_Schema QVPLIB Schema of base table, long name

Index_Name QVINAM Name of index (or constraint) used, long name

Index_Schema QVILIB Schema of index used, long name

Bound QVBNDY I/O or CPU bound. Possible values are:

v I - I/O bound

v C - CPU bound

Unique_Refresh_Counter QVRCNT Unique refresh counter

Join_Fanout QVJFANO Join fan out. Possible values are:

v N - Normal join situation where fanout is allowed
and each matching row of the join fanout is returned.

v D - Distinct fanout. Join fanout is allowed however
none of the join fanout rows are returned.

v U - Unique fanout. Join fanout is not allowed. Error
situation if join fanout occurs.

Join_Table_Count QVFILES Number of tables joined

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_Preload QVPARPL Parallel Preload (index used)

Parallel_Degree_Requested QVPARD Parallel degree requested (index used)

Parallel_Degree_Used QVPARU Parallel degree used (index used)

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited (index used)

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Created_Index_Name QQC101 Name of index created - when available

Created_Index_Schema QQC102 Schema of index created - when available

Created_Index_Page_Size QQI4 Page size of index created

Created_Index_Row_Size QQI5 Row size of index created

Created_Index_Used_ACS_Table QQC14 Index Created used Alternate Collating Sequence Table
(Y/N)

Created_Index_ACS_Table QQC103 Alternate Collating Sequence table of index created.

Created_Index_ACS_Library QQC104 Alternate Collating Sequence library of index created.

Created_Index_Reusable QVC13 Index created is reusable (Y/N)

Created_Index_Sparse QVC14 Index created is sparse index (Y/N)

Created_Index_Type QVC1F Type of index created. Possible values:

v B - Binary Radix Index

v E - Encoded Vector Index (EVI)

Created_Index_Unique_EVI_Count QVP15F Number of unique values of index created if index
created is an EVI index.

Performance and query optimization 219

|

|

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|

|

|||

|||

|
|

|
|

|
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||

|||

|||

|

|

|||
|

Table 44. QQQ3002 - Index Created (continued)

View Column Name

Table
Column
Name Description

Permanent_Index_Created QVC15 Permanent index created (Y/N)

Index_From_Index QVC16 Index from index (Y/N)

Created_Index_Parallel_Degree_Requested QVP151 Parallel degree requested (index created)

Created_Index_Parallel_Degree_Used QVP152 Parallel degree used (index created)

Created_Index_Parallel_Degree_Reason_Code QVP153 Reason parallel processing was limited (index created)

Index_Only_Access QVC17 Index only access (Y/N)

Index_Fits_In_Memory QVC18 Index fits in memory (Y/N)

Index_Type QVC1B Type of Index. Possible values are:

v B - Binary Radix Index

v C - Constraint (Binary Radix)

v E - Encoded Vector Index (EVI)

v T - Tertiary (AND/OR) Index

Index_Entries QQI6 Number of index entries, index used

Unique_Keys QQI7 Number of unique key values, index used

Percent_Overflow QVP158 Percent overflow, index used

Vector_Size QVP159 Vector size, index used

Index_Size QQI8 Size of index used.

Index_Page_Size QVP156 Index page size

Pool_Size QVP154 Pool size

Pool_ID QVP155 Pool id

Table_Size QVP157 Table size

Skip_Sequential_Table_Scan QVC1C Skip sequential table scan (Y/N)

DataSpace_Selection_Columns QVC3001 Columns used for dataspace selection

Derived_Column_Selection QVC1E Derived column selection (Y/N)

Derived_Column_Selection_Columns QVC3002 Columns used for derived column selection

Table_Columns_For_Index_Probe QVC3003 Columns used for index scan-key positioning

Table_Columns_For_Index_Scan QVC3004 Columns used for index scan-key selection

Read_Trigger QQC18 Read Trigger (Y/N)

MQT_Replacement QQC13 Materialized Query Table replaced queried table (Y/N)

Reused_Temporary_Index QQC16 Temporary index reused (Y/N)

Database monitor view 3003 - Query Sort
Create View QQQ3003 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,
QQUSER as Job_User,
QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQUCNT as Unique_Count,

220 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|

|

|

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|
|
|
|
|
|
|
|
|
|
|

QQUDEF as User_Defined,
QQQDTN as Unique_SubSelect_Number,
QQQDTL as SubSelect_Nested_Level,
QQMATN as Materialized_View_Subselect_Number,
QQMATL as Materialized_View_Nested_Level,
QVP15E as Materialized_View_Union_Level,
QVP15A as Decomposed_Subselect_Number,
QVP15B as Total_Number_Decomposed_SubSelects,
QVP15C as Decomposed_SubSelect_Reason_Code,
QVP15D as Starting_Decomposed_SubSelect,
QQSTIM as Start_Timestamp,
QQETIM as End_Timestamp,
QQRSS as Sorted_Rows,
QQI1 as Sort_Space_Size,
QQI2 as Pool_Size,
QQI3 as Pool_Id,
QQI4 as Internal_Sort_Buffer_Length,
QQI5 as External_Sort_Buffer_Length,
QQRCOD as Reason_Code,
QQI7 as Union_Reason_Subcode,
QVBNDY as Bound,
QVRCNT as Unique_Refresh_Counter,
QVPARPF as Parallel_Prefetch,
QVPARPL as Parallel_PreLoad,
QVPARD as Parallel_Degree_Requested,
QVPARU as Parallel_Degree_Used,
QVPARRC as Parallel_Degree_Reason_Code,
QQEPT as Estimated_Processing_Time,
QVCTIM as Estimated_Cumulative_Time,
QQAJN as Estimated_Join_Rows,
QQJNP as Join_Position,
QQI6 as DataSpace_Number,
QQC21 as Join_Method,
QQC22 as Join_Type,
QQC23 as Join_Operator,
QVJFANO as Join_Fanout,
QVFILES as Join_Table_Count

FROM UserLib/DBMONTable
WHERE QQRID=3003)

Table 45. QQQ3003 - Query Sort

View Column Name
Table Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Performance and query optimization 221

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 45. QQQ3003 - Query Sort (continued)

View Column Name
Table Column
Name Description

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSelects QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

Start_Timestamp QQSTIM Start timestamp, when available

End_Timestamp QQETIM End timestamp, when available

Sorted_Rows QQRSS Estimated number of rows selected or sorted.

Sort_Space_Size QQI1 Estimated size of sort space.

Pool_Size QQI2 Pool size

Pool_Id QQI3 Pool id

Internal_Sort_Buffer_Length QQI4 Internal sort buffer length

External_Sort_Buffer_Length QQI5 External sort buffer length

Reason_Code QQRCOD Reason code

v F1 - Query contains grouping columns (GROUP BY)
from more that one table, or contains grouping
columns from a secondary table of a join query that
cannot be reordered.

v F2 - Query contains ordering columns (ORDER BY)
from more that one table, or contains ordering columns
from a secondary table of a join query that cannot be
reordered.

v F3 - The grouping and ordering columns are not
compatible.

v F4 - DISTINCT was specified for the query.

v F5 - UNION was specified for the query.

v F6 - Query had to be implemented using a sort. Key
length of more than 2000 bytes or more than 120 key
columns specified for ordering.

Reason_Code (continued) v F7 - Query optimizer chose to use a sort rather than an
index to order the results of the query.

v F8 - Perform specified row selection to minimize I/O
wait time.

v FC - The query contains grouping fields and there is a
read trigger on at least one of the physical files in the
query.

Union_Reason_Subcode QQI7 Reason subcode for Union:

v 51 - Query contains UNION and ORDER BY

v 52 - Query contains UNION ALL

Bound QVBNDY I/O or CPU bound. Possible values are:

v I - I/O bound

v C - CPU bound

222 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|
|
||

|||

|||

|||
|

|||

|||

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|
|
|
|

|
|
|
|

|
|

|

|

|
|
|

|||
|

|
|

|
|
|

|||

|

|

|||

|

|

Table 45. QQQ3003 - Query Sort (continued)

View Column Name
Table Column
Name Description

Unique_Refresh_Counter QVRCNT Unique refresh counter

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_PreLoad QVPARPL Parallel Preload (index used)

Parallel_Degree_Requested QVPARD Parallel degree requested (index used)

Parallel_Degree_Used QVPARU Parallel degree used (index used)

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited (index used)

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Estimated_Join_Rows QQAJN Estimated number of joined rows

Join_Position QQJNP Join position - when available

DataSpace_Number QQI6 Dataspace number

Join_Method QQC21 Join method - when available

v NL - Nested loop

v MF - Nested loop with selection

v HJ - Hash join

Join_Type QQC22 Join type - when available

v IN - Inner join

v PO - Left partial outer join

v EX - Exception join

Join_Operator QQC23 Join operator - when available

v EQ - Equal

v NE - Not equal

v GT - Greater than

v GE - Greater than or equal

v LT - Less than

v LE - Less than or equal

v CP - Cartesian product

Join_Fanout QVJFANO Join fan out. Possible values are:

v N - Normal join situation where fanout is allowed and
each matching row of the join fanout is returned.

v D - Distinct fanout. Join fanout is allowed however
none of the join fanout rows are returned.

v U - Unique fanout. Join fanout is not allowed. Error
situation if join fanout occurs.

Join_Table_Count QVFILES Number of tables joined

Database monitor view 3004 - Temp Table
Create View QQQ3004 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,
QQUSER as Job_User,

Performance and query optimization 223

|

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|

|

|

|||

|

|

|

|||

|

|

|

|

|

|

|

|||

|
|

|
|

|
|

|||
|

|
|
|
|
|
|
|
|
|

QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQUCNT as Unique_Count,
QQUDEF as User_Defined,
QQQDTN as Unique_SubSelect_Number,
QQQDTL as SubSelect_Nested_Level,
QQMATN as Materialized_View_Subselect_Number,
QQMATL as Materialized_View_Nested_Level,
QVP15E as Materialized_View_Union_Level,
QVP15A as Decomposed_Subselect_Number,
QVP15B as Total_Number_Decomposed_SubSelects,
QVP15C as Decomposed_SubSelect_Reason_Code,
QVP15D as Starting_Decomposed_SubSelect,
QQTLN as System_Table_Schema,
QQTFN as System_Table_Name,
QQTMN as Member_Name,
QQPTLN as System_Base_Table_Schema,
QQPTFN as System_Base_Table_Name,
QQPTMN as Base_Member_Name,
QQSTIM as Start_Timestamp,
QQETIM as End_Timestamp,
QQC11 as Has_Default_Values,
QQTMPR as Table_Rows,
QQRCOD as Reason_Code,
QVQTBL as Table_Name,
QVQLIB as Table_Schema,
QVPTBL as Base_Table_Name,
QVPLIB as Base_Table_Schema,
QQC101 as Temporary_Table_Name,
QQC102 as Temporary_Table_Schema,
QVBNDY as Bound,
QVRCNT as Unique_Refresh_Counter,
QVJFANO as Join_Fanout,
QVFILES as Join_Table_Count,
QVPARPF as Parallel_Prefetch,
QVPARPL as Parallel_PreLoad,
QVPARD as Parallel_Degree_Requested,
QVPARU as Parallel_Degree_Used,
QVPARRC as Parallel_Degree_Reason_Code,
QQEPT as Estimated_Processing_Time,
QVCTIM as Estimated_Cumulative_Time,
QQAJN as Estimated_Join_Rows,
QQJNP as Join_Position,
QQI6 as DataSpace_Number,
QQC21 as Join_Method,
QQC22 as Join_Type,
QQC23 as Join_Operator,
QQI2 as Temporary_Table_Row_Size,
QQI3 as Temporary_Table_Size,
QQC12 as Temporary_Query_Result,
QQC13 as Distributed_Temporary_Table,
QVC3001 as Distributed_Temporary_Data_Nodes,
QQI7 as Materialized_Subqery_QDT_Level,
QQI8 as Materialized_Union_QDT_Level,
QQC14 as View_Contains_Union

FROM UserLib/DBMONTable
WHERE QQRID=3004)

Table 46. QQQ3004 - Temp Table

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

224 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

|

|
|
||

|||

|||

Table 46. QQQ3004 - Temp Table (continued)

View Column Name

Table
Column
Name Description

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSelects QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first decomposed
subselect

System_Table_Schema QQTLN Schema of table queried

System_Table_Name QQTFN Name of table queried

Member_Name QQTMN Member name of table queried

System_Base_Table_Schema QQPTLN Schema name of base table

System_Base_Table_Name QQPTFN Name of base table for table queried

Base_Member_Name QQPTMN Member name of base table

Start_Timestamp QQSTIM Start timestamp, when available

End_Timestamp QQETIM End timestamp, when available

Has_Default_Values QQC11 Default values may be present in temporary

v Y - Yes

v N - No

Table_Rows QQTMPR Estimated number of rows in the temporary

Performance and query optimization 225

|

|

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|

|

|||

Table 46. QQQ3004 - Temp Table (continued)

View Column Name

Table
Column
Name Description

Reason_Code QQRCOD Reason code. Possible values are:

v F1 - Query contains grouping columns (GROUP BY) from
more that one table, or contains grouping columns from a
secondary table of a join query that cannot be reordered.

v F2 - Query contains ordering columns (ORDER BY) from
more that one table, or contains ordering columns from a
secondary table of a join query that cannot be reordered.

v F3 - The grouping and ordering columns are not compatible.

v F4 - DISTINCT was specified for the query.

v F5 - UNION was specified for the query.

v F6 - Query had to be implemented using a sort. Key length
of more than 2000 bytes or more than 120 key columns
specified for ordering.

v F7 - Query optimizer chose to use a sort rather than an index
to order the results of the query.

v F8 - Perform specified row selection to minimize I/O wait
time.

v F9 - The query optimizer chose to use a hashing algorithm
rather than an index to perform the grouping.

v FA - The query contains a join condition that requires a
temporary table

v FB - The query optimizer creates a run-time temporary file in
order to implement certain correlated group by queries.

v FC - The query contains grouping fields and there is a read
trigger on at least one of the physical files in the query.

v FD - The query optimizer creates a runtime temporary file
for a static-cursor request.

v H1 - Table is a join logical file and its join type does not
match the join type specified in the query.

v H2 - Format specified for the logical table references more
than one base table.

v H3 - Table is a complex SQL view requiring a temporary
table to contain the results of the SQL view.

v H4 - For an update-capable query, a subselect references a
column in this table which matches one of the columns being
updated.

v H5 - For an update-capable query, a subselect references an
SQL view which is based on the table being updated.

v H6 - For a delete-capable query, a subselect references either
the table from which rows are to be deleted, an SQL view, or
an index based on the table from which rows are to be
deleted

v H7 - A user-defined table function was materialized.

Table_Name QVQTBL Queried table, long name

Table_Schema QVQLIB Schema of queried table, long name

Base_Table_Name QVPTBL Base table, long name

Base_Table_Schema QVPLIB Library of base table, long name

Temporary_Table_Name QQC101 Temporary table name

226 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|
||

|||

|
|
|

|
|
|

|

|

|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|
|
|

|

|||

|||

|||

|||

|||

Table 46. QQQ3004 - Temp Table (continued)

View Column Name

Table
Column
Name Description

Temporary_Table_Schema QQC102 Temporary table schema

Bound QVBNDY I/O or CPU bound. Possible values are:

v I - I/O bound

v C - CPU bound

Unique_Refresh_Counter QVRCNT Unique refresh counter

Join_Fanout QVJFANO Join fan out. Possible values are:

v N - Normal join situation where fanout is allowed and each
matching row of the join fanout is returned.

v D - Distinct fanout. Join fanout is allowed however none of
the join fanout rows are returned.

v U - Unique fanout. Join fanout is not allowed. Error situation
if join fanout occurs.

Join_Table_Count QVFILES Number of tables joined

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_PreLoad QVPARPL Parallel Preload (Y/N)

Parallel_Degree_Requested QVPARD Parallel degree requested

Parallel_Degree_Used QVPARU Parallel degree used

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Estimated_Join_Rows QQAJN Estimated number of joined rows

Join_Position QQJNP Join position - when available

DataSpace_Number QQI6 Dataspace number

Join_Method QQC21 Join method - when available

v NL - Nested loop

v MF - Nested loop with selection

v HJ - Hash join

Join_Type QQC22 Join type - when available

v IN - Inner join

v PO - Left partial outer join

v EX - Exception join

Join_Operator QQC23 Join operator - when available

v EQ - Equal

v NE - Not equal

v GT - Greater than

v GE - Greater than or equal

v LT - Less than

v LE - Less than or equal

v CP - Cartesian product

Temporary_Table_Row_Size QQI2 Row size of temporary table, in bytes

Temporary_Table_Size QQI3 Estimated size of temporary table, in bytes.

Performance and query optimization 227

|

|

|
|
||

|||

|||

|

|

|||

|||

|
|

|
|

|
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|

|

|

|||

|

|

|

|||

|

|

|

|

|

|

|

|||

|||

Table 46. QQQ3004 - Temp Table (continued)

View Column Name

Table
Column
Name Description

Temporary_Query_Result QQC12 Temporary result table that contains the results of the query.
(Y/N)

Distributed_Temporary_Table QQC13 Distributed Table (Y/N)

Distributed_Temporary_Data_Nodes QVC3001 Data nodes of temporary table

Materialized_Subqery_QDT_Level QQI7 Materialized subquery QDT level

Materialized_Union_QDT_Level QQI8 Materialized Union QDT level

View_Contains_Union QQC14 Union in a view (Y/N)

Database monitor view 3005 - Table Locked
Create View QQQ3005 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,
QQUSER as Job_User,
QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQUCNT as Unique_Count,
QQUDEF as User_Defined,
QQQDTN as Unique_SubSelect_Number,
QQQDTL as SubSelect_Nested_Level,
QQMATN as Materialized_View_Subselect_Number,
QQMATL as Materialized_View_Nested_Level,
QVP15E as Materialized_View_Union_Level,
QVP15A as Decomposed_Subselect_Number,
QVP15B as Total_Number_Decomposed_SubSelects,
QVP15C as Decomposed_SubSelect_Reason_Code,
QVP15D as Starting_Decomposed_SubSelect,
QQTLN as System_Table_Schema,
QQTFN as System_Table_Name,
QQTMN as Member_Name,
QQPTLN as System_Base_Table_Schema,
QQPTFN as System_Base_Table_Name,
QQPTMN as Base_Member_Name,
QQC11 as Lock_Success,
QQC12 as Unlock_Request,
QQRCOD as Reason_Code,
QVQTBL as Table_Name,
QVQLIB as Table_Schema,
QVPTBL as Base_Table_Name,
QVPLIB as Base_Table_Schema,
QQJNP as Join_Position,
QQI6 as DataSpace_Number,
QQC21 as Join_Method,
QQC22 as Join_Type,
QQC23 as Join_Operator,
QVJFANO as Join_Fanout,
QVFILES as Join_Table_Count,
QVRCNT as Unique_Refresh_Counter

FROM UserLib/DBMONTable
WHERE QQRID=3005)

228 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|
||

|||
|

|||

|||

|||

|||

|||
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 47. QQQ3005 - Table Locked

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSelects QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

System_Table_Schema QQTLN Schema of table queried

System_Table_Name QQTFN Name of table queried

Member_Name QQTMN Member name of table queried

System_Base_Table_Schema QQPTLN Schema name of base table

System_Base_Table_Name QQPTFN Name of base table for table queried

Base_Member_Name QQPTMN Member name of base table

Lock_Success QQC11 Successful lock indicator (Y/N)

Unlock_Request QQC12 Unlock request (Y/N)

Reason_Code QQRCOD Reason code

v L1 - UNION with *ALL or *CS with Keep Locks

v L2 - DISTINCT with *ALL or *CS with Keep Locks

v L3 - No duplicate keys with *ALL or *CS with Keep Locks

v L4 - Temporary needed with *ALL or *CS with Keep Locks

v L5 - System Table with *ALL or *CS with Keep Locks

v L6 - Orderby > 2000 bytes with *ALL or *CS with Keep
Locks

v L9 - Unknown

v LA - User-defined table function with *ALL or *CS with
Keep Locks

Performance and query optimization 229

||

|

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|

|

|

|

|

|
|

|

|
|

Table 47. QQQ3005 - Table Locked (continued)

View Column Name

Table
Column
Name Description

Table_Name QVQTBL Queried table, long name

Table_Schema QVQLIB Schema of queried table, long name

Base_Table_Name QVPTBL Base table, long name

Base_Table_Schema QVPLIB Schema of base table, long name

Join_Position QQJNP Join position - when available

DataSpace_Number QQI6 Dataspace number

Join_Method QQC21 Join method - when available

v NL - Nested loop

v MF - Nested loop with selection

v HJ - Hash join

Join_Type QQC22 Join type - when available

v IN - Inner join

v PO - Left partial outer join

v EX - Exception join

Join_Operator QQC23 Join operator - when available

v EQ - Equal

v NE - Not equal

v GT - Greater than

v GE - Greater than or equal

v LT - Less than

v LE - Less than or equal

v CP - Cartesian product

Join_Fanout QVJFANO Join fan out. Possible values are:

v N - Normal join situation where fanout is allowed and
each matching row of the join fanout is returned.

v D - Distinct fanout. Join fanout is allowed however none of
the join fanout rows are returned.

v U - Unique fanout. Join fanout is not allowed. Error
situation if join fanout occurs.

Join_Table_Count QVFILES Number of tables joined

Unique_Refresh_Counter QVRCNT Unique refresh counter

Database monitor view 3006 - Access Plan Rebuilt
Create View QQQ3006 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,
QQUSER as Job_User,
QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQUCNT as Unique_Count,
QQUDEF as User_Defined,
QQQDTN as Unique_SubSelect_Number,
QQQDTL as SubSelect_Nested_Level,

230 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|
||

|||

|||

|||

|||

|||

|||

|||

|

|

|

|||

|

|

|

|||

|

|

|

|

|

|

|

|||

|
|

|
|

|
|

|||

|||
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

QQMATN as Materialized_View_Subselect_Number,
QQMATL as Materialized_View_Nested_Level,
QVP15E as Materialized_View_Union_Level,
QVP15A as Decomposed_Subselect_Number,
QVP15B as Total_Number_Decomposed_SubSelects,
QVP15C as Decomposed_SubSelect_Reason_Code,
QVP15D as Starting_Decomposed_SubSelect,
QQRCOD as Reason_Code,
QQC21 as SubCode,
QVRCNT as Unique_Refresh_Counter,
QQTIM1 as Last_Access_Plan_Rebuild_Timestamp,
QQC11 as Reoptimization_Done,
QVC22 as Previous_Reason_Code,
QVC23 as Previous_SubCode,

FROM UserLib/DBMONTable
WHERE QQRID=3006)

Table 48. QQQ3006 - Access Plan Rebuilt

View Column Name
Table Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSelects QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

Performance and query optimization 231

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||
|

Table 48. QQQ3006 - Access Plan Rebuilt (continued)

View Column Name
Table Column
Name Description

Reason_Code QQRCOD Reason code why access plan was rebuilt

v A1 - A table or member is not the same object as the
one referenced when the access plan was last built.
Some reasons they might be different are:

– Object was deleted and recreated.

– Object was saved and restored.

– Library list was changed.

– Object was renamed.

– Object was moved.

– Object was overridden to a different object.

– This is the first run of this query after the object
containing the query has been restored.

v A2 - Access plan was built to use a reusable Open Data
Path (ODP) and the optimizer chose to use a
non-reusable ODP for this call.

v A3 - Access plan was built to use a non-reusable Open
Data Path (ODP) and the optimizer chose to use a
reusable ODP for this call.

v A4 - The number of rows in the table has changed by
more than 10% since the access plan was last built.

v A5 - A new index exists over one of the tables in the
query

v A6 - An index that was used for this access plan no
longer exists or is no longer valid.

v A7 - i5/OS Query requires the access plan to be rebuilt
because of system programming changes.

v A8 - The CCSID of the current job is different than the
CCSID of the job that last created the access plan.

v A9 - The value of one or more of the following is
different for the current job than it was for the job that
last created this access plan:

– date format

– date separator

– time format

– time separator.

232 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|
|
||

|||

|
|
|

|

|

|

|

|

|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|

|

|

|

Table 48. QQQ3006 - Access Plan Rebuilt (continued)

View Column Name
Table Column
Name Description

Reason_Code (continued) QQRCOD v AA - The sort sequence table specified is different than
the sort sequence table that was used when this access
plan was created.

v AB - Storage pool changed or DEGREE parameter of
CHGQRYA command changed.

v AC - The system feature DB2 multisystem has been
installed or removed.

v AD - The value of the degree query attribute has
changed.

v AE - A view is either being opened by a high level
language or a view is being materialized.

v AF - A sequence object or user-defined type or function
is not the same object as the one referred to in the
access plan; or, the SQL path used to generate the
access plan is different than the current SQL path.

v B0 - The options specified have changed as a result of
the query options file.

v B1 - The access plan was generated with a commitment
control level that is different in the current job.

v B2 - The access plan was generated with a static cursor
answer set size that is different than the previous
access plan.

v B3 - The query was reoptimized because this is the first
run of the query after a prepare. That is, it is the first
run with real actual parameter marker values.

v B4 - The query was reoptimized because referential or
check constraints have changed.

v B5 - The query was reoptimized because MQTs have
changed.

SubCode QQC21 If the access plan rebuild reason code was A7 this
two-byte hex value identifies which specific reason for A7
forced a rebuild.

Unique_Refresh_Counter QVRCNT Unique refresh counter

Last_Access_Plan_Rebuild_Timestamp QQTIM1 Timestamp of last access plan rebuild

Reoptimization_Done QQC11 Required optimization for this plan.

v Y - Yes, plan was really optimized.

v N - No, the plan was not reoptimized because of the
QAQQINI option for the
REOPTIMIZE_ACCESS_PLAN parameter value

Previous_Reason_Code QVC22 Previous reason code

Previous_SubCode QVC23 Previous reason subcode

Database monitor view 3007 - Optimizer Timed Out
Create View QQQ3007 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,

Performance and query optimization 233

|

|
|
||

|||
|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|||
|
|

|||

|||

|||

|

|
|
|

|||

|||
|

|
|
|
|
|
|
|
|

QQUSER as Job_User,
QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQUCNT as Unique_Count,
QQUDEF as User_Defined,
QQQDTN as Unique_SubSelect_Number,
QQQDTL as SubSelect_Nested_Level,
QQMATN as Materialized_View_Subselect_Number,
QQMATL as Materialized_View_Nested_Level,
QVP15E as Materialized_View_Union_Level,
QVP15A as Decomposed_Subselect_Number,
QVP15B as Total_Number_Decomposed_SubSelects,
QVP15C as Decomposed_SubSelect_Reason_Code,
QVP15D as Starting_Decomposed_SubSelect,
QQTLN as System_Table_Schema,
QQTFN as System_Table_Name,
QQTMN as Member_Name,
QQPTLN as System_Base_Table_Schema,
QQPTFN as System_Base_Table_Name,
QQPTMN as Base_Member_Name,
QQ1000 as Index_Names,
QQC11 as Optimizer_Timed_Out,
QQC301 as Reason_Codes,
QVQTBL as Table_Name,
QVQLIB as Table_Schema,
QVPTBL as Base_Table_Name,
QVPLIB as Base_Table_Schema,
QQJNP as Join_Position,
QQI6 as DataSpace_Number,
QQC21 as Join_Method,
QQC22 as Join_Type,
QQC23 as Join_Operator,
QVJFANO as Join_Fanout,
QVFILES as Join_Table_Count,
QVRCNT as Unique_Refresh_Counter

FROM UserLib/DBMONTable
WHERE QQRID=3007)

Table 49. QQQ3007 - Optimizer Timed Out

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

234 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

|

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 49. QQQ3007 - Optimizer Timed Out (continued)

View Column Name

Table
Column
Name Description

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSelects QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

System_Table_Schema QQTLN Schema of table queried

System_Table_Name QQTFN Name of table queried

Member_Name QQTMN Member name of table queried

System_Base_Table_Schema QQPTLN Schema name of base table

System_Base_Table_Name QQPTFN Name of base table for table queried

Base_Member_Name QQPTMN Member name of base table

Index_Names QQ1000 Names of indexes not used and reason code.

1. Access path was not in a valid state. The system
invalidated the access path.

2. Access path was not in a valid state. The user requested
that the access path be rebuilt.

3. Access path is a temporary access path (resides in
library QTEMP) and was not specified as the file to be
queried.

4. The cost to use this access path, as determined by the
optimizer, was higher than the cost associated with the
chosen access method.

5. The keys of the access path did not match the fields
specified for the ordering/grouping criteria. For
distributed file queries, the access path keys must
exactly match the ordering fields if the access path is to
be used when ALWCPYDTA(*YES or *NO) is specified.

6. The keys of the access path did not match the fields
specified for the join criteria.

7. Use of this access path will not minimize delays when
reading records from the file. The user requested to
minimize delays when reading records from the file.

8. The access path cannot be used for a secondary file of
the join query because it contains static select/omit
selection criteria. The join-type of the query does not
allow the use of select/omit access paths for secondary
files.

9. File contains record ID selection. The join-type of the
query forces a temporary access path to be built to
process the record ID selection.

10. The user specified ignore decimal data errors on the
query. This disallows the use of permanent access
paths.

Performance and query optimization 235

|

|

|
|
||

|||

|||
|

|||

|||

|||
|

|||

|||

|||

|||

|||

|||

|||

|
|

|
|

|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|

Table 49. QQQ3007 - Optimizer Timed Out (continued)

View Column Name

Table
Column
Name Description

Index_Names (continued) QQ1000 v 11. The access path contains static select/omit selection
criteria which is not compatible with the selection in the
query.

v 12. The access path contains static select/omit selection
criteria whose compatibility with the selection in the
query cannot be determined. Either the select/omit
criteria or the query selection became too complex during
compatibility processing.

v 13. The access path contains one or more keys which may
be changed by the query during an insert or update.

v 14. The access path is being deleted or is being created in
an uncommitted unit of work in another process.

v 15. The keys of the access path matched the fields
specified for the ordering/grouping criteria. However, the
sequence table associated with the access path did not
match the sequence table associated with the query.

v 16. The keys of the access path matched the fields
specified for the join criteria. However, the sequence table
associated with the access path did not match the
sequence table associated with the query.

v 17. The left-most key of the access path did not match any
fields specified for the selection criteria. Therefore, key
row positioning cannot be performed, making the cost to
use this access path higher than the cost associated with
the chosen access method.

v 18. The left-most key of the access path matched a field
specified for the selection criteria. However, the sequence
table associated with the access path did not match the
sequence table associated with the query. Therefore, key
row positioning cannot be performed, making the cost to
use this access path higher than the cost associated with
the chosen access method.

v 19. The access path cannot be used because the secondary
file of the join query is a select/omit logical file. The
join-type requires that the select/omit access path
associated with the secondary file be used or, if dynamic,
that an access path be created by the system.

Optimizer_Timed_Out QQC11 Optimizer timed out (Y/N)

Reason_Codes QQC301 List of unique reason codes used by the indexes that timed
out (each index has a corresponding reason code associated
with it)

Table_Name QVQTBL Queried table, long name

Table_Schema QVQLIB Schema of queried table, long name

Base_Table_Name QVPTBL Base table, long name

Base_Table_Schema QVPLIB Schema of base table, long name

Join_Position QQJNP Join position - when available

DataSpace_Number QQI6 Dataspace number

236 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|
||

|||
|
|

|
|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|||

|||
|
|

|||

|||

|||

|||

|||

|||

Table 49. QQQ3007 - Optimizer Timed Out (continued)

View Column Name

Table
Column
Name Description

Join_Method QQC21 Join method - when available

v NL - Nested loop

v MF - Nested loop with selection

v HJ - Hash join

Join_Type QQC22 Join type - when available

v IN - Inner join

v PO - Left partial outer join

v EX - Exception join

Join_Operator QQC23 Join operator - when available

v EQ - Equal

v NE - Not equal

v GT - Greater than

v GE - Greater than or equal

v LT - Less than

v LE - Less than or equal

v CP - Cartesian product

Join_Fanout QVJFANO Join fan out. Possible values are:

v N - Normal join situation where fanout is allowed and
each matching row of the join fanout is returned.

v D - Distinct fanout. Join fanout is allowed however none
of the join fanout rows are returned.

v U - Unique fanout. Join fanout is not allowed. Error
situation if join fanout occurs.

Join_Table_Count QVFILES Number of tables joined

Unique_Refresh_Counter QVRCNT Unique refresh counter

Database monitor view 3008 - Subquery Processing
Create View QQQ3008 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,
QQUSER as Job_User,
QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQUCNT as Unique_Count,
QQUDEF as User_Defined,
QQQDTN as Unique_SubSelect_Number,
QQQDTL as SubSelect_Nested_Level,
QQMATN as Materialized_View_Subselect_Number,
QQMATL as Materialized_View_Nested_Level,
QVP15E as Materialized_View_Union_Level,
QVP15A as Decomposed_Subselect_Number,
QQI1 as Original_QDT_Count,
QQI2 as Merged_QDT_Count,

Performance and query optimization 237

|

|

|
|
||

|||

|

|

|

|||

|

|

|

|||

|

|

|

|

|

|

|

|||

|
|

|
|

|
|

|||

|||
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

QQI3 as Final_QDT_Count,
QVRCNT as Unique_Refresh_Counter

FROM UserLib/DBMONTable
WHERE QQRID=3008)

Table 50. QQQ3008 - Subquery Processing

View Column Name
Table Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Original_QDT_Count QQI1 Original number of QDTs

Merged_QDT_Count QQI2 Number of QDTs merged

Final_QDT_Count QQI3 Final number of QDTs

Unique_Refresh_Counter QVRCNT Unique refresh counter

Database monitor view 3010 - HostVar & ODP Implementation
Create View QQQ3010 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,
QQUSER as Job_User,
QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQUCNT as Unique_Count,
QQI5 as Unqiue_Refresh_Counter2,
QQUDEF as User_Defined,
QQC11 as ODP_Implementation,
QQC12 as Host_Variable_Implementation,
QQ1000 as Host_Variable_Values,
QVRCNT as Unique_Refresh_Counter

FROM UserLib/DBMONTable
WHERE QQRID=3010)

238 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|
|

||

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||

|||
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 51. QQQ3010 - HostVar & ODP Implementation

View Column Name
Table Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

Unqiue_Refresh_Counter2 QQI5 Unique refresh counter

User_Defined QQUDEF User defined column

ODP_Implementation QQC11 ODP implementation

v R - Reusable ODP

v N - Nonreusable ODP

v ' ' - Column not used

Host_Variable_Implementation QQC12 Host variable implementation

v I - Interface supplied values (ISV)

v V - Host variables treated as constants (V2)

v U - Table management row positioning (UP)

Host_Variable_Values QQ1000 Host variable values

Unique_Refresh_Counter QVRCNT Unique refresh counter

Database monitor view 3014 - Generic QQ Information
Create View QQQ3014 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,
QQUSER as Job_User,
QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQUCNT as Unique_Count,
QQUDEF as User_Defined,
QQQDTN as Unique_SubSelect_Number,
QQQDTL as SubSelect_Nested_Level,
QQMATN as Materialized_View_Subselect_Number,
QQMATL as Materialized_View_Nested_Level,
QVP15E as Materialized_View_Union_Level,
QVP15A as Decomposed_Subselect_Number,
QVP15B as Total_Number_Decomposed_SubSelects,
QVP15C as Decomposed_SubSelect_Reason_Code,
QVP15D as Starting_Decomposed_SubSelect,
QQREST as Estimated_Rows_Selected,
QQEPT as Estimated_Processing_Time,
QQI1 as Open_Time,
QQORDG as Has_Ordering,
QQGRPG as Has_Grouping,

Performance and query optimization 239

||

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|

|

|

|||

|

|

|

|||

|||
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

QQJNG as Has_Join,
QQC22 as Join_Type,
QQUNIN as Has_Union,
QQSUBQ as Has_Subquery,
QWC1F as Has_Scalar_Subselect,
QQHSTV as Has_Host_Variables,
QQRCDS as Has_Row_Selection,
QQC11 as Query_Governor_Enabled,
QQC12 as Stopped_By_Query_Governor,
QQC101 as Open_Id,
QQC102 as Query_Options_Library,
QQC103 as Query_Options_Table_Name,
QQC13 as Early_Exit,
QVRCNT as Unique_Refresh_Counter,
QQI5 as Optimizer_Time,
QQTIM1 as Access_Plan_Timestamp,
QVC11 as Ordering_Implementation,
QVC12 as Grouping_Implementation,
QVC13 as Join_Implementation,
QVC14 as Has_Distinct,
QVC15 as Is_Distributed,
QVC3001 as Distributed_Nodes,
QVC105 as NLSS_Table,
QVC106 as NLSS_Library,
QVC16 as ALWCPYDATA,
QVC21 as Access_Plan_Reason_Code,
QVC22 as Access_Plan_Reason_SubCode,
QVC3002 as Summary,
QWC16 as Last_Union_Subselect,
QVP154 as Query_PoolSize,
QVP155 as Query_PoolID,
QQI2 as Query_Time_Limit,
QVC81 as Parallel_Degree,
QQI3 as Max_Number_of_Tasks,
QVC17 as Apply_CHGQRYA_Remote,
QVC82 as Async_Job_Usage,
QVC18 as Force_Join_Order_Indicator,
QVC19 as Print_Debug_Messages,
QVC1A as Parameter_Marker_Conversion,
QQI4 as UDF_Time_Limit,
QVC1283 as Optimizer_Limitations,
QVC1E as Reoptimize_Requested,
QVC87 as Optimize_All_Indexes,
QQC14 as Has_Final_Decomposed_QDT,
QQC15 as Is_Final_Decomposed_QDT,
QQC18 as Read_Trigger,
QQC81 as Star_Join,
SUBSTR(QVC23,1,1) as Optimization_Goal,
SUBSTR(QVC24,1,1) as VE_Diagram_Type,
SUBSTR(QVC24,2,1) as Ignore_Like_Redunant_Shifts,
QQC23 as Union_QDT,
QQC21 as Unicode_Normalization,
QVP153 as Pool_Fair_Share,
QQC82 as Force_Join_Order_Requested,
QVP152 as Force_Join_Order_Dataspace1,
QQI6 as No_Parameter_Marker_Reason_Code,
QVP151 as Hash_Join_Reason_Code,
QQI7 as MQT_Refresh_Age,
SUBSTR(QVC42,1,1) as MQT_Usage,
QVC43 as SQE_NotUsed_Reason_Code,
QVP156 as Estimated_IO_Count,
QVP157 as Estimated_Processing_Cost,
QVP158 as Estimated_CPU_Cost,
QVP159 as Estimated_IO_Cost,
SUBSTR(QVC44,1,1) as Has_Implicit_Numeric_Conversion

FROM UserLib/DBMONTable
WHERE QQRID=3014)

240 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 52. QQQ3014 - Generic QQ Information

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSelects QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first decomposed
subselect

Estimated_Rows_Selected QQREST Estimated number of rows selected

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Open_Time QQI1 Time spent to open cursor, in milliseconds

Has_Ordering QQORDG Ordering (Y/N)

Has_Grouping QQGRPG Grouping (Y/N)

Has_Join QQJNG Join Query (Y/N)

Join_Type QQC22 Join type - when available

v IN - Inner join

v PO - Left partial outer join

v EX - Exception join

Has_Union QQUNIN Union Query (Y/N)

Has_Subquery QQSUBQ Subquery (Y/N)

Has_Scalar_Subselect QWC1F Scalar Subselects (Y/N)

Has_Host_Variables QQHSTV Host variables (Y/N)

Has_Row_Selection QQRCDS Row selection (Y/N)

Query_Governor_Enabled QQC11 Query governor enabled (Y/N)

Stopped_By_Query_Governor QQC12 Query governor stopped the query (Y/N)

Performance and query optimization 241

||

|

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||
|

|||

|||

|||

|||

|||

|||

|||

|

|

|

|||

|||

|||

|||

|||

|||

|||

Table 52. QQQ3014 - Generic QQ Information (continued)

View Column Name

Table
Column
Name Description

Open_Id QQC101 Query open ID

Query_Options_Library QQC102 Query Options library name

Query_Options_Table_Name QQC103 Query Options file name

Early_Exit QQC13 Query early exit value

Unique_Refresh_Counter QVRCNT Unique refresh counter

Optimizer_Time QQI5 Time spent in optimizer, in milliseconds

Access_Plan_Timestamp QQTIM1 Access Plan rebuilt timestamp, last time access plan was
rebuilt.

Ordering_Implementation QVC11 Ordering implementation. Possible values are:

v I - Index

v S - Sort

Grouping_Implementation QVC12 Grouping implementation. Possible values are:

v I - Index

v H - Hash grouping

Join_Implementation QVC13 Join Implementation. Possible values are:

v N - Nested Loop join

v H - Hash join

v C - Combination of Nested Loop and Hash

Has_Distinct QVC14 Distinct query (Y/N)

Is_Distributed QVC15 Distributed query (Y/N)

Distributed_Nodes QVC3001 Distributed nodes

NLSS_Table QVC105 Sort Sequence Table

NLSS_Library QVC106 Sort Sequence Library

ALWCPYDATA QVC16 ALWCPYDTA setting

Access_Plan_Reason_Code QVC21 Reason code why access plan was rebuilt

Access_Plan_Reason_SubCode QVC22 Subcode why access plan was rebuilt

Summary QVC3002 Summary of query implementation. Shows dataspace number
and name of index used for each table being queried.

Last_Union_Subselect QWC16 Last part (last QDT) of Union (Y/N)

Query_PoolSize QVP154 Pool size

Query_PoolID QVP155 Pool id

Query_Time_Limit QQI2 Query time limit

242 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|
||

|||

|||

|||

|||

|||

|||

|||
|

|||

|

|

|||

|

|

|||

|

|

|

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||

|||

Table 52. QQQ3014 - Generic QQ Information (continued)

View Column Name

Table
Column
Name Description

Parallel_Degree QVC81 Parallel Degree

v *SAME - Don't change current setting

v *NONE - No parallel processing is allowed

v *I/O - Any number of tasks may be used for I/O processing.
SMP parallel processing is not allowed.

v *OPTIMIZE - The optimizer chooses the number of tasks to
use for either I/O or SMP parallel processing.

v *MAX - The optimizer chooses to use either I/O or SMP
parallel processing.

v *SYSVAL - Use the current system value to process the
query.

v *ANY - Has the same meaning as *I/O.

v *NBRTASKS - The number of tasks for SMP parallel
processing is specified in column QVTASKN.

Max_Number_of_Tasks QQI3 Max number of tasks

Apply_CHGQRYA_Remote QVC17 Apply CHGQRYA remotely (Y/N)

Async_Job_Usage QVC82 Asynchronous job usage

v *SAME - Don't change current setting

v *DIST - Asynchronous jobs may be used for queries with
distributed tables

v *LOCAL - Asynchronous jobs may be used for queries with
local tables only

v *ANY - Asynchronous jobs may be used for any database
query

v *NONE - No asynchronous jobs are allowed

Force_Join_Order_Indicator QVC18 Force join order (Y/N)

Print_Debug_Messages QVC19 Print debug messages (Y/N)

Parameter_Marker_Conversion QVC1A Parameter marker conversion (Y/N)

UDF_Time_Limit QQI4 User Defined Function time limit

Optimizer_Limitations QVC1283 Optimizer limitations. Possible values:

v *PERCENT followed by 2 byte integer containing the percent
value

v *MAX_NUMBER_OF_RECORDS followed by an integer
value that represents the maximum number of rows

Reoptimize_Requested Reoptimize access plan requested. Possible values are:

v O - Only reoptimize the access plan when absolutely
required. Do not reoptimize for subjective reasons.

v Y - Yes, force the access plan to be reoptimized.

v N - No, do not reoptimize the access plan, unless optimizer
determines that it is necessary. May reoptimize for subjective
reasons.

Performance and query optimization 243

|

|

|
|
||

|||

|

|

|
|

|
|

|
|

|
|

|

|
|

|||

|||

|||

|

|
|

|
|

|
|

|

|||

|||

|||

|||

|||

|
|

|
|

|||

|
|

|

|
|
|

Table 52. QQQ3014 - Generic QQ Information (continued)

View Column Name

Table
Column
Name Description

Optimize_All_Indexes Optimize all indexes requested

v *SAME - Don't change current setting

v *YES - Examine all indexes

v *NO - Allow optimizer to time-out

v *TIMEOUT - Force optimizer to time-out

Has_Final_Decomposed_QDT QQC14 Final decomposed QDT built indicator (Y/N)

Is_Final_Decomposed_QDT QQC15 This is the final decomposed QDT indicator (Y/N)

Read_Trigger QQC18 One of the files contains a read trigger (Y/N)

Star_Join QQC81 Star join optimization requested.

v *NO - Star join optimization will not be performed.

v *COST - The optimizer will determine if any EVIs can be
used for star join optimization.

v *FORCE - The optimizer will add any EVIs that can be used
for star join optimization.

Optimization_Goal QVC23 Byte 1 = Optimization goal. Possible values are:

v F - First I/O, optimize the query to return the first screen
full of rows as quickly as possible.

v A - All I/O, optimize the query to return all rows as quickly
as possible.

VE_Diagram_Type QVC24 Byte 1 = Type of Visual Explain diagram. Possible values are:

v D - Detail

v B - Basic

Ignore_Like_Redunant_Shifts QVC24 Byte 2 - Ignore LIKE redundant shifts. Possible values are:

v O - Optimize, the query optimizer determines which
redundant shifts to ignore.

v A - All, all redundant shifts will be ignored.

Union_QDT QQC23 Byte 1 = This QDT is part of a UNION that is contained within
a view (Y/N)

Byte 2 = This QDT is the last subselect of the UNION that is
contained within a view (Y/N)

Unicode_Normalization QQC21 Unicode data normalization requested (Y/N)

Pool_Fair_Share QVP153 Fair share of the pool size as determined by the optimizer

Force_Join_Order_Requested QQC82 Force Join Order requested. Possible values are:

v *NO - The optimizer was allowed to reorder join files

v *YES - The optimizer was not allowed to reorder join files as
part of its optimization process

v *SQL - The optimizer only forced the join order for those
queries that used the SQL JOIN syntax

v *PRIMARY - The optimizer was only required to force the
primary dial for the join.

Force_Join_Order_Dataspace1 QVP152 Primary dial to force if Force_Join_Order_Indicator is
*PRIMARY.

244 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|
||

|||

|

|

|

|

|||

|||

|||

|||

|

|
|

|
|

|||

|
|

|
|

|||

|

|

|||

|
|

|

|||
|

|
|

|||

|||

|||

|

|
|

|
|

|
|

|||
|

Table 52. QQQ3014 - Generic QQ Information (continued)

View Column Name

Table
Column
Name Description

No_Parameter_Marker_Reason_Code QQI6 Reason code for why Parameter Marker Conversion was not
performed:

1. Argument of function must be a literal

2. LOCALTIME or LOCALTIMESTAMP

3. Duration literal in arithmetic expression

4. UPDATE query with no WHERE clause

5. BLOB literal

6. Special register in UPDATE or INSERT with values

7. Result expression for CASE

8. GROUP BY expression

9. ESCAPE character

10. Double Negative value -(-1)

11. INSERT or UPDATE with a mix of literals, parameter
markers, and NULLs

12. UPDATE with a mix of literals and parameter markers

13. INSERT with VALUES containing NULL value and
expressions

14. UPDATE with list of expressions

99. Parameter marker conversion disabled by QAQQINI

Hash_Join_Reason_Code QVP151 Reason code why hash join was not used.

MQT_Refresh_Age QQI7 Value of the MATERIALIZED_QUERY_TABLE_REFRESH_AGE
duration. If the QAQQINI parameter value is set to *ANY, the
timestamp duration will be 99999999999999.

MQT_Usage QVC42,1,1 Byte 1 - Contains the
MATERIALIZED_QUERY_TABLE_USAGE. Possible values are:

v N - *NONE - no materialized query tables used in query
optimization and implementation

v A - *ALL - User-maintained. Refresh-deferred query tables
can be used.

v U - *USER - Only user-maintained materialized query tables
can be used.

SQE_NotUsed_Reason_Code QVC43 SQE Not Used Reason Code. Possible values:

v XL - Translation used in query

v XU - Translation for UTF used in query

v UF - User Defined Table Function used in query

v LF - DDS logical file specified in query definition

v LC - Lateral correlation

v DK - An index with derived key or select/omit was found
over a queried table

v NF - Too many tables in query

v NS - Not an SQL query or query not run through an SQL
interface

Performance and query optimization 245

|

|

|
|
||

|||
|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|||

|||
|
|

|||
|

|
|

|
|

|
|

|||

|

|

|

|

|

|
|

|

|
|

Table 52. QQQ3014 - Generic QQ Information (continued)

View Column Name

Table
Column
Name Description

SQE_NotUsed_Reason_Code
(continued)

v DF - Distributed table in query

v RT - Read Trigger defined on queried table

v PD - Program described file in query

v WC - WHERE CURRENT OF a partition table

v IO - Simple INSERT query

v CV - Create view statement

Estimated_IO_Count QVP156 Estimated I/O count

Estimated_Processing_Cost QVP157 Estimated processing cost in milliseconds

Estimated_CPU_Cost QVP158 Estimated CPU cost in milliseconds

Estimated_IO_Cost QVP159 Estimated I/O cost in milliseconds

Has_Implicit_Numeric_Conversion QVC44 Byte 1: Implicit numeric conversion (Y/N)

Database monitor view 3015 - Statistics Information
Create View QQQ3015 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,
QQUSER as Job_User,
QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQUCNT as Unique_Count,
QQUDEF as User_Defined,
QQQDTN as Unique_SubSelect_Number,
QQQDTL as SubSelect_Nested_Level,
QQMATN as Materialized_View_Subselect_Number,
QQMATL as Materialized_View_Nested_Level,
QVP15E as Materialized_View_Union_Level,
QVP15A as Decomposed_Subselect_Number,
QVP15B as Total_Number_Decomposed_SubSelects,
QVP15C as Decomposed_SubSelect_Reason_Code,
QVP15D as Starting_Decomposed_SubSelect,
QQTLN as System_Table_Schema,
QQTFN as System_Table_Name,
QQTMN as Member_Name,
QQPTLN as System_Base_Table_Schema,
QQPTFN as System_Base_Table_Name,
QQPTMN as Base_Member_Name,
QVQTBL as Table_Name,
QVQLIB as Table_Schema,
QVPTBL as Base_Table_Name,
QVPLIB as Base_Table_Schema,
QQNTNM as NLSS_Table,
QQNLNM as NLSS_Library,
QQC11 as Statistic_Status,
QQI2 as Statistic_Importance,
QQ1000 as Statistic_Columns,
QVC1000 as Statistic_ID

FROM UserLib/DBMONTable
WHERE QQRID=3015)

246 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|
||

|
|
||

|

|

|

|

|

|||

|||

|||

|||

|||
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 53. QQQ3015 - Statistic Information

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSelects QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first decomposed
subselect

System_Table_Schema QQTLN Schema of table queried

System_Table_Name QQTFN Name of table queried

Member_Name QQTMN Member name of table queried

System_Base_Table_Schema QQPTLN Schema name of base table

System_Base_Table_Name QQPTFN Name of the base table queried

Base_Member_Name QQPTMN Member name of base table

Table_Name QVQTBL Queried table, long name

Table_Schema QVQLIB Schema of queried table, long name

Base_Table_Name QVPTBL Base table, long name

Base_Table_Schema QVPLIB Schema of base table, long name

NLSS_Table QQNTNM NLSS table

NLSS_Library QQNLNM NLSS library

Statistic_Status QQC11 Statistic Status. Possible values are:

v 'N' - No statistic

v 'S' - Stale statistic

v ' ' - Unknown

Statistic_Importance QQI2 Importance of this statistic

Performance and query optimization 247

||

|

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|

|

|

|||

Table 53. QQQ3015 - Statistic Information (continued)

View Column Name

Table
Column
Name Description

Statistic_Columns QQ1000 Columns for the statistic advised

Statistic_ID QVC1000 Statistic identifier

Database monitor view 3018 - STRDBMON/ENDDBMON
Create View QQQ3018 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,
QQUSER as Job_User,
QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQC11 as Monitored_Job_type,
QQC12 as Monitor_Command,
QQC301 as Monitor_Job_Information,
QQ1000L as STRDBMON_Command_Text

FROM UserLib/DBMONTable
WHERE QQRID=3018)

Table 54. QQQ3018 - STRDBMON/ENDDBMON

View Column Name
Table Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Monitored_Job_type QQC11 Type of job monitored

v C - Current

v J - Job name

v A - All

Monitor_Command QQC12 Command type

v S - STRDBMON

v E - ENDDBMON

Monitor_Job_Information QQC301 Monitored job information

v * - Current job

v Job number/User/Job name

v *ALL - All jobs

STRDBMON_Command_Text QQ1000L STRDBMON command text.

248 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|
||

|||

|||
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|

|

|

|||

|

|

|||

|

|

|

|||
|

Database monitor view 3019 - Rows retrieved
Create View QQQ3019 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,
QQUSER as Job_User,
QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQUCNT as Unique_Count,
QQUDEF as User_Defined,
QQQDTN as Unique_SubSelect_Number,
QQQDTL as SubSelect_Nested_Level,
QQMATN as Materialized_View_Subselect_Number,
QQMATL as Materialized_View_Nested_Level,
QVP15E as Materialized_View_Union_Level,
QVP15A as Decomposed_Subselect_Number,
QVP15B as Total_Number_Decomposed_SubSelects,
QVP15C as Decomposed_SubSelect_Reason_Code,
QVP15D as Starting_Decomposed_SubSelect,
QQI1 as CPU_Time_to_Return_All_Rows,
QQI2 as Clock_Time_to_Return_All_Rows,
QQI3 as Number_Synchronous_Database_Reads,
QQI4 as Number_Synchronous_Database_Writes,
QQI5 as Number_Asynchronous_Database_Reads,
QQI6 as Number_Asynchronous_Database_Writes,
QVP151 as Number_Page_Faults,
QQI7 as Number_Rows_Returned,
QQI8 as Number_of_Calls_for_Returned_Rows,
QVP15F as Number_of_Times_Statement_was_Run

FROM UserLib/DBMONTable
WHERE QQRID=3019)

Table 55. QQQ3019 - Rows retrieved

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Performance and query optimization 249

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

|

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 55. QQQ3019 - Rows retrieved (continued)

View Column Name

Table
Column
Name Description

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSelects QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

CPU_Time_to_Return_All_Rows QQI1 CPU time to return all rows, in milliseconds

Clock_Time_to_Return_All_Rows QQI2 Clock time to return all rows, in milliseconds

Number_Synchronous_Database_Reads QQI3 Number of synchronous database reads

Number_Synchronous_Database_Writes QQI4 Number of synchronous database writes

Number_Asynchronous_Database_Reads QQI5 Number of asynchronous database reads

Number_Asynchronous_Database_Writes QQI6 Number of asynchronous database writes

Number_Page_Faults QVP151 Number of page faults

Number_Rows_Returned QQI7 Number of rows returned

Number_of_Calls_for_Returned_Rows QQI8 Number of calls to retrieve rows returned

Number_of_Times_Statement_was_Run QVP15F Number of times this Statement was run. If Null, then the
statement was run once.

Database monitor view 3020 - Index advised (SQE)
Create View QQQ3020 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,
QQUSER as Job_User,
QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQUCNT as Unique_Count,
QQUDEF as User_Defined,
QQQDTN as Unique_SubSelect_Number,
QQQDTL as SubSelect_Nested_Level,
QQMATN as Materialized_View_Subselect_Number,
QQMATL as Materialized_View_Nested_Level,
QVP15E as Materialized_View_Union_Level,
QVP15A as Decomposed_Subselect_Number,
QVP15B as Total_Number_Decomposed_SubSelects,
QVP15C as Decomposed_SubSelect_Reason_Code,
QVP15D as Starting_Decomposed_SubSelect,
QQTLN as System_Table_Schema,
QQTFN as System_Table_Name,
QQTMN as Member_Name,
QQPTLN as System_Base_Table_Schema,
QQPTFN as System_Base_Table_Name,
QQPTMN as Base_Member_Name,
QVPLIB as Base_Table_Schema,
QVPTBL as Base_Table_Name,
QQTOTR as Table_Total_Rows,
QQEPT as Estimated_Processing_Time,
QQIDXA as Index_is_Advised,
QQIDXD as Index_Advised_Columns_Short_List,

250 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|
||

|||
|

|||

|||

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

QQ1000L as Index_Advised_Columns_Long_List,
QQI1 as Number_of_Advised_Columns,
QQI2 as Number_of_Advised_Primary_Columns,
QQRCOD as Reason_Code,
QVRCNT as Unique_Refresh_Counter,
QVC1F as Type_of_Index_Advised,
QQNTNM as NLSS_Table,
QQNLNM as NLSS_Library

FROM UserLib/DBMONTable
WHERE QQRID=3020)

Table 56. QQQ3020 - Index advised (SQE)

View Column Name
Table Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSelects QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

System_Table_Schema QQTLN Schema of table queried

System_Table_Name QQTFN Name of table queried

Member_Name QQTMN Member name of table queried

System_Base_Table_Schema QQPTLN Schema name of base table

System_Base_Table_Name QQPTFN Name of base table for table queried

Base_Member_Name QQPTMN Member of base table

Base_Table_Schema QVPLIB Schema of base table, long name

Base_Table_Name QVPTBL Base table, long name

Table_Total_Rows QQTOTR Number of rows in the table

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Index_is_Advised QQIDXA Index advised (Y/N)

Performance and query optimization 251

|
|
|
|
|
|
|
|
|
|

||

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 56. QQQ3020 - Index advised (SQE) (continued)

View Column Name
Table Column
Name Description

Index_Advised_Columns_Short_List QQIDXD Columns for the index advised, first 1000 bytes

Index_Advised_Columns_Long_List QQ1000L Column for the index advised

Number_of_Advised_Columns QQI1 Number of indexes advised

Number_of_Advised_Primary_Columns QQI2 Number of advised columns that use index scan-key
positioning

Reason_Code QQRCOD Reason code

v I1 - Row selection

v I2 - Ordering/Grouping

v I3 - Row selection and Ordering/Grouping

v I4 - Nested loop join

v I5 - Row selection using bitmap processing

Unique_Refresh_Counter QVRCNT Unique refresh counter

Type_of_Index_Advised QVC1F Type of index advised. Possible values are:

v B - Radix index

v E - Encoded vector index

NLSS_Table QQNTNM Sort Sequence Table

NLSS_Library QQNLNM Sort Sequence Library

Related reference

“Query optimizer index advisor” on page 111
The query optimizer analyzes the row selection in the query and determines, based on default values, if
creation of a permanent index improves performance. If the optimizer determines that a permanent index
might be beneficial, it returns the key columns necessary to create the suggested index.

Database monitor view 3021 - Bitmap Created
Create View QQQ3021 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,
QQUSER as Job_User,
QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQUCNT as Unique_Count,
QQUDEF as User_Defined,
QQQDTN as Unique_SubSelect_Number,
QQQDTL as SubSelect_Nested_Level,
QQMATN as Materialized_View_Subselect_Number,
QQMATL as Materialized_View_Nested_Level,
QVP15E as Materialized_View_Union_Level,
QVP15A as Decomposed_Subselect_Number,
QVP15B as Total_Number_Decomposed_SubSelects,
QVP15C as Decomposed_SubSelect_Reason_Code,
QVP15D as Starting_Decomposed_SubSelect,
QVRCNT as Unique_Refresh_Counter,
QVPARPF as Parallel_Prefetch,
QVPARPL as Parallel_PreLoad,
QVPARD as Parallel_Degree_Requested,
QVPARU as Parallel_Degree_Used,
QVPARRC as Parallel_Degree_Reason_Code,
QQEPT as Estimated_Processing_Time,

252 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|
|
||

|||

|||

|||

|||
|

|||

|

|

|

|

|

|||

|||

|

|

|||

|||
|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

QVCTIM as Estimated_Cumulative_Time,
QQREST as Estimated_Rows_Selected,
QQAJN as Estimated_Join_Rows,
QQJNP as Join_Position,
QQI6 as DataSpace_Number,
QQC21 as Join_Method,
QQC22 as Join_Type,
QQC23 as Join_Operator,
QVJFANO as Join_Fanout,
QVFILES as Join_Table_Count,
QQI2 as Bitmap_Size,
QVP151 as Bitmap_Count,
QVC3001 as Bitmap_IDs

FROM UserLib/DBMONTable
WHERE QQRID=3021)

Table 57. QQQ3021 - Bitmap Created

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSelects QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

Unique_Refresh_Counter QVRCNT Unique refresh counter

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_PreLoad QVPARPL Parallel Preload (index used)

Parallel_Degree_Requested QVPARD Parallel degree requested (index used)

Parallel_Degree_Used QVPARU Parallel degree used (index used)

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited (index used)

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Performance and query optimization 253

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

|

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||
|

|||

|||

|||

|||

|||

|||

|||

Table 57. QQQ3021 - Bitmap Created (continued)

View Column Name

Table
Column
Name Description

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Estimated_Rows_Selected QQREST Estimated rows selected

Estimated_Join_Rows QQAJN Estimated number of joined rows

Join_Position QQJNP Join position - when available

DataSpace_Number QQI6 Dataspace number

Join_Method QQC21 Join method - when available

v NL - Nested loop

v MF - Nested loop with selection

v HJ - Hash join

Join_Type QQC22 Join type - when available

v IN - Inner join

v PO - Left partial outer join

v EX - Exception join

Join_Operator QQC23 Join operator - when available

v EQ - Equal

v NE - Not equal

v GT - Greater than

v GE - Greater than or equal

v LT - Less than

v LE - Less than or equal

v CP - Cartesian product

Join_Fanout QVJFANO Join fan out. Possible values are:

v N - Normal join situation where fanout is allowed and
each matching row of the join fanout is returned.

v D - Distinct fanout. Join fanout is allowed however none
of the join fanout rows are returned.

v U - Unique fanout. Join fanout is not allowed. Error
situation if join fanout occurs.

Join_Table_Count QVFILES Number of tables joined

Bitmap_Size QQI2 Bitmap size

Bitmap_Count QVP151 Number of bitmaps created

Bitmap_IDs QVC3001 Internal bitmap IDs

Database monitor view 3022 - Bitmap Merge
Create View QQQ3022 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,
QQUSER as Job_User,
QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQUCNT as Unique_Count,
QQUDEF as User_Defined,

254 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|
||

|||

|||

|||

|||

|||

|||

|

|

|

|||

|

|

|

|||

|

|

|

|

|

|

|

|||

|
|

|
|

|
|

|||

|||

|||

|||
|

|
|
|
|
|
|
|
|
|
|
|
|
|

QQQDTN as Unique_SubSelect_Number,
QQQDTL as SubSelect_Nested_Level,
QQMATN as Materialized_View_Subselect_Number,
QQMATL as Materialized_View_Nested_Level,
QVP15E as Materialized_View_Union_Level,
QVP15A as Decomposed_Subselect_Number,
QVP15B as Total_Number_Decomposed_SubSelects,
QVP15C as Decomposed_SubSelect_Reason_Code,
QVP15D as Starting_Decomposed_SubSelect,
QVRCNT as Unique_Refresh_Counter,
QVPARPF as Parallel_Prefetch,
QVPARPL as Parallel_PreLoad,
QVPARD as Parallel_Degree_Requested,
QVPARU as Parallel_Degree_Used,
QVPARRC as Parallel_Degree_Reason_Code,
QQEPT as Estimated_Processing_Time,
QVCTIM as Estimated_Cumulative_Time,
QQREST as Estimated_Rows_Selected,
QQAJN as Estimated_Join_Rows,
QQJNP as Join_Position,
QQI6 as DataSpace_Number,
QQC21 as Join_Method,
QQC22 as Join_Type,
QQC23 as Join_Operator,
QVJFANO as Join_Fanout,
QVFILES as Join_Table_Count,
QQI2 as Bitmap_Size,
QVC101 as Bitmap_ID,
QVC3001 as Bitmaps_Merged

FROM UserLib/DBMONTable
WHERE QQRID=3022)

Table 58. QQQ3022 - Bitmap Merge

View Column Name
Table Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSelects QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Performance and query optimization 255

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

Table 58. QQQ3022 - Bitmap Merge (continued)

View Column Name
Table Column
Name Description

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

Unique_Refresh_Counter QVRCNT Unique refresh counter

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_PreLoad QVPARPL Parallel Preload (index used)

Parallel_Degree_Requested QVPARD Parallel degree requested (index used)

Parallel_Degree_Used QVPARU Parallel degree used (index used)

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited (index used)

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Estimated_Rows_Selected QQREST Estimated rows selected

Estimated_Join_Rows QQAJN Estimated number of joined rows

Join_Position QQJNP Join position - when available

DataSpace_Number QQI6 Dataspace number

Join_Method QQC21 Join method - when available

v NL - Nested loop

v MF - Nested loop with selection

v HJ - Hash join

Join_Type QQC22 Join type - when available

v IN - Inner join

v PO - Left partial outer join

v EX - Exception join

Join_Operator QQC23 Join operator - when available

v EQ - Equal

v NE - Not equal

v GT - Greater than

v GE - Greater than or equal

v LT - Less than

v LE - Less than or equal

v CP - Cartesian product

Join_Fanout QVJFANO Join fan out. Possible values are:

v N - Normal join situation where fanout is allowed and
each matching row of the join fanout is returned.

v D - Distinct fanout. Join fanout is allowed however none
of the join fanout rows are returned.

v U - Unique fanout. Join fanout is not allowed. Error
situation if join fanout occurs.

Join_Table_Count QVFILES Number of tables joined

Bitmap_Size QQI2 Bitmap size

Bitmap_ID QVC101 Internal bitmap ID

Bitmaps_Merged QVC3001 IDs of bitmaps merged together

256 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|
|
||

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|

|

|

|||

|

|

|

|||

|

|

|

|

|

|

|

|||

|
|

|
|

|
|

|||

|||

|||

|||
|

Database monitor view 3023 - Temp Hash Table Created
Create View QQQ3023 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,
QQUSER as Job_User,
QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQUCNT as Unique_Count,
QQUDEF as User_Defined,
QQQDTN as Unique_SubSelect_Number,
QQQDTL as SubSelect_Nested_Level,
QQMATN as Materialized_View_Subselect_Number,
QQMATL as Materialized_View_Nested_Level,
QVP15E as Materialized_View_Union_Level,
QVP15A as Decomposed_Subselect_Number,
QVP15B as Total_Number_Decomposed_SubSelects,
QVP15C as Decomposed_SubSelect_Reason_Code,
QVP15D as Starting_Decomposed_SubSelect,
QVRCNT as Unique_Refresh_Counter,
QVPARPF as Parallel_Prefetch,
QVPARPL as Parallel_PreLoad,
QVPARD as Parallel_Degree_Requested,
QVPARU as Parallel_Degree_Used,
QVPARRC as Parallel_Degree_Reason_Code,
QQEPT as Estimated_Processing_Time,
QVCTIM as Estimated_Cumulative_Time,
QQREST as Estimated_Rows_Selected,
QQAJN as Estimated_Join_Rows,
QQJNP as Join_Position,
QQI6 as DataSpace_Number,
QQC21 as Join_Method,
QQC22 as Join_Type,
QQC23 as Join_Operator,
QVJFANO as Join_Fanout,
QVFILES as Join_Table_Count,
QVC1F as HashTable_ReasonCode,
QQI2 as HashTable_Entries,
QQI3 as HashTable_Size,
QQI4 as HashTable_Row_Size,
QQI5 as HashTable_Key_Size,
QQIA as HashTable_Element_Size,
QQI7 as HashTable_PoolSize,
QQI8 as HashTable_PoolID,
QVC101 as HashTable_Name,
QVC102 as HashTable_Library,
QVC3001 as HashTable_Columns

FROM UserLib/DBMONTable
WHERE QQRID=3023)

Table 59. QQQ3023 - Temp Hash Table Created

View Column Name
Table Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Performance and query optimization 257

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

|
|
||

|||

|||

|||

|||

|||

|||

Table 59. QQQ3023 - Temp Hash Table Created (continued)

View Column Name
Table Column
Name Description

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSelects QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

Unique_Refresh_Counter QVRCNT Unique refresh counter

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_PreLoad QVPARPL Parallel Preload (index used)

Parallel_Degree_Requested QVPARD Parallel degree requested (index used)

Parallel_Degree_Used QVPARU Parallel degree used (index used)

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited (index used)

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Estimated_Rows_Selected QQREST Estimated rows selected

Estimated_Join_Rows QQAJN Estimated number of joined rows

Join_Position QQJNP Join position - when available

DataSpace_Number QQI6 Dataspace number

Join_Method QQC21 Join method - when available

v NL - Nested loop

v MF - Nested loop with selection

v HJ - Hash join

Join_Type QQC22 Join type - when available

v IN - Inner join

v PO - Left partial outer join

v EX - Exception join

258 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|

|

|

|||

|

|

|

Table 59. QQQ3023 - Temp Hash Table Created (continued)

View Column Name
Table Column
Name Description

Join_Operator QQC23 Join operator - when available

v EQ - Equal

v NE - Not equal

v GT - Greater than

v GE - Greater than or equal

v LT - Less than

v LE - Less than or equal

v CP - Cartesian product

Join_Fanout QVJFANO Join fan out. Possible values are:

v N - Normal join situation where fanout is allowed and
each matching row of the join fanout is returned.

v D - Distinct fanout. Join fanout is allowed however none
of the join fanout rows are returned.

v U - Unique fanout. Join fanout is not allowed. Error
situation if join fanout occurs.

Join_Table_Count QVFILES Number of tables joined

HashTable_ReasonCode QVC1F Hash table reason code

v J - Created for hash join

v G - Created for hash grouping

HashTable_Entries QQI2 Hash table entries

HashTable_Size QQI3 Hash table size

HashTable_Row_Size QQI4 Hash table row size

HashTable_Key_Size QQI5 Hash table key size

HashTable_Element_Size QQIA Hash table element size

HashTable_PoolSize QQI7 Hash table pool size

HashTable_PoolID QQI8 Hash table pool ID

HashTable_Name QVC101 Hash table internal name

HashTable_Library QVC102 Hash table library

HashTable_Columns QVC3001 Columns used to create hash table

Database monitor view 3025 - Distinct Processing
Create View QQQ3025 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,
QQUSER as Job_User,
QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQUCNT as Unique_Count,
QQUDEF as User_Defined,
QQQDTN as Unique_SubSelect_Number,
QQQDTL as SubSelect_Nested_Level,
QQMATN as Materialized_View_Subselect_Number,
QQMATL as Materialized_View_Nested_Level,
QVP15E as Materialized_View_Union_Level,

Performance and query optimization 259

|

|
|
||

|||

|

|

|

|

|

|

|

|||

|
|

|
|

|
|

|||

|||

|

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

QVP15A as Decomposed_Subselect_Number,
QVP15B as Total_Number_Decomposed_SubSelects,
QVP15C as Decomposed_SubSelect_Reason_Code,
QVP15D as Starting_Decomposed_SubSelect,
QVRCNT as Unique_Refresh_Counter,
QVPARPF as Parallel_Prefetch,
QVPARPL as Parallel_PreLoad,
QVPARD as Parallel_Degree_Requested,
QVPARU as Parallel_Degree_Used,
QVPARRC as Parallel_Degree_Reason_Code,
QQEPT as Estimated_Processing_Time,
QVCTIM as Estimated_Cumulative_Time,
QQREST as Estimated_Rows_Selected

FROM UserLib/DBMONTable
WHERE QQRID=3025)

Table 60. QQQ3025 - Distinct Processing

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSelects QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

Unique_Refresh_Counter QVRCNT Unique refresh counter

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_PreLoad QVPARPL Parallel Preload (index used)

Parallel_Degree_Requested QVPARD Parallel degree requested (index used)

Parallel_Degree_Used QVPARU Parallel degree used (index used)

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited (index used)

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

260 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

|

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||
|

|||

|||

|||

|||

|||

|||

|||

Table 60. QQQ3025 - Distinct Processing (continued)

View Column Name

Table
Column
Name Description

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Estimated_Rows_Selected QQREST Estimated rows selected

Database monitor view 3026 - Set operation
Create View QQQ3026 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,
QQUSER as Job_User,
QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQUCNT as Unique_Count,
QQUDEF as User_Defined,
QQQDTN as Unique_SubSelect_Number,
QQQDTL as SubSelect_Nested_Level,
QQMATN as Materialized_View_Subselect_Number,
QQMATL as Materialized_View_Nested_Level,
QVP15E as Materialized_View_Union_Level,
QVP15A as Decomposed_Subselect_Number,
QVP15B as Total_Number_Decomposed_SubSelects,
QVP15C as Decomposed_SubSelect_Reason_Code,
QVP15D as Starting_Decomposed_SubSelect,
QVRCNT as Unique_Refresh_Counter,
QVPARPF as Parallel_Prefetch,
QVPARPL as Parallel_PreLoad,
QVPARD as Parallel_Degree_Requested,
QVPARU as Parallel_Degree_Used,
QVPARRC as Parallel_Degree_Reason_Code,
QQEPT as Estimated_Processing_Time,
QVCTIM as Estimated_Cumulative_Time,
QQREST as Estimated_Rows_Selected,
QQC11 as Union_Type,
QVFILES as Join_Table_Count,
QQUNIN as Has_Union,
QWC16 as Last_Union_Subselect,
QQC23 as Set_in_a_View,
QQC22 as Set_Operator

FROM UserLib/DBMONTable
WHERE QQRID=3026)

Table 61. QQQ3026 - Set operatoin

View Column Name
Table Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Performance and query optimization 261

|

|

|
|
||

|||

|||
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

Table 61. QQQ3026 - Set operatoin (continued)

View Column Name
Table Column
Name Description

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSelects QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

Unique_Refresh_Counter QVRCNT Unique refresh counter

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_PreLoad QVPARPL Parallel Preload (Y/N)

Parallel_Degree_Requested QVPARD Parallel degree requested

Parallel_Degree_Used QVPARU Parallel degree used

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Estimated_Rows_Selected QQREST Estimated number of rows selected

Union_Type QQC11 Type of union. Possible values are:

v A - Union All

v U - Union

Join_Table_Count QVFILES Number of tables queried

Has_Union QQUNIN Union subselect (Y/N)

Last_Union_Subselect QWC16 This is the last subselect, or only subselect, for the query.
(Y/N)

Set_in_a_View QQC23 Set operation within a view.

v Byte 1 of 2 (Y/N): This subselect is part of a query that
is contained within a view and it contains a set
operation (for example, Union).

v Byte 2 of 2 (Y/N): This is the last subselect of the query
that is contained within a view.

262 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|

|

|||

|||

|||
|

|||

|
|
|

|
|

Table 61. QQQ3026 - Set operatoin (continued)

View Column Name
Table Column
Name Description

Set_Operator QQC22 Type of set operation. Possible values are:

v UU - Union

v UA - Union All

v UR - Union Recursive

v EE - Except

v EA - Except All

v II - Intersect

v IA - Intersect All

Database monitor view 3027 - Subquery Merge
Create View QQQ3027 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,
QQUSER as Job_User,
QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQUCNT as Unique_Count,
QQUDEF as User_Defined,
QQQDTN as Unique_SubSelect_Number,
QQQDTL as SubSelect_Nested_Level,
QQMATN as Materialized_View_Subselect_Number,
QQMATL as Materialized_View_Nested_Level,
QVP15E as Materialized_View_Union_Level,
QVP15A as Decomposed_Subselect_Number,
QVP15B as Total_Number_Decomposed_SubSelects,
QVP15C as Decomposed_SubSelect_Reason_Code,
QVP15D as Starting_Decomposed_SubSelect,
QVRCNT as Unique_Refresh_Counter,
QVPARPF as Parallel_Prefetch,
QVPARPL as Parallel_PreLoad,
QVPARD as Parallel_Degree_Requested,
QVPARU as Parallel_Degree_Used,
QVPARRC as Parallel_Degree_Reason_Code,
QQEPT as Estimated_Processing_Time,
QVCTIM as Estimated_Cumulative_Time,
QQREST as Estimated_Rows_Selected,
QQAJN as Estimated_Join_Rows,
QQJNP as Join_Position,
QQI1 as DataSpace_Number,
QQC21 as Join_Method,
QQC22 as Join_Type,
QQC23 as Join_Operator,
QVJFANO as Join_Fanout,
QVFILES as Join_Table_Count,
QVP151 as Subselect_Number_of_Inner_Subquery,
QVP152 as Subselect_Level_of_Inner_Subquery,
QVP153 as Materialized_View_Subselect_Number_of_Inner,
QVP154 as Materialized_View_Nested_Level_of_Inner,
QVP155 as Materialized_View_Union_Level_of_Inner,
QQC101 as Subquery_Operator,
QVC21 as Subquery_Type,

Performance and query optimization 263

|

|
|
||

|||

|

|

|

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

QQC11 as Has_Correlated_Columns,
QVC3001 as Correlated_Columns

FROM UserLib/DBMONTable
WHERE QQRID=3027)

Table 62. QQQ3027 - Subquery Merge

View Column Name
Table Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Subselect number for outer subquery

SubSelect_Nested_Level QQQDTL Subselect level for outer subquery

Materialized_View_Subselect_Number QQMATN Materialized view subselect number for outer
subquery

Materialized_View_Nested_Level QQMATL Materialized view subselect level for outer subquery

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across
all decomposed subselects

Total_Number_Decomposed_SubSelects QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

Unique_Refresh_Counter QVRCNT Unique refresh counter

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_PreLoad QVPARPL Parallel Preload (index used)

Parallel_Degree_Requested QVPARD Parallel degree requested (index used)

Parallel_Degree_Used QVPARU Parallel degree used (index used)

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited (index used)

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Estimated_Rows_Selected QQREST Estimated rows selected

Estimated_Join_Rows QQAJN Estimated number of joined rows

Join_Position QQJNP Join position - when available

DataSpace_Number QQI6 Dataspace number

264 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|
|

||

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||
|

|||

|||

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 62. QQQ3027 - Subquery Merge (continued)

View Column Name
Table Column
Name Description

Join_Method QQC21 Join method - when available

v NL - Nested loop

v MF - Nested loop with selection

v HJ - Hash join

Join_Type QQC22 Join type - when available

v IN - Inner join

v PO - Left partial outer join

v EX - Exception join

Join_Operator QQC23 Join operator - when available

v EQ - Equal

v NE - Not equal

v GT - Greater than

v GE - Greater than or equal

v LT - Less than

v LE - Less than or equal

v CP - Cartesian product

Join_Fanout QVJFANO Join fan out. Possible values are:

v N - Normal join situation where fanout is allowed
and each matching row of the join fanout is
returned.

v D - Distinct fanout. Join fanout is allowed however
none of the join fanout rows are returned.

v U - Unique fanout. Join fanout is not allowed.
Error situation if join fanout occurs.

Join_Table_Count QVFILES Number of tables joined

Subselect_Number_of_Inner_Subquery QVP151 Subselect number for inner subquery

Subselect_Level_of_Inner_Subquery QVP152 Subselect level for inner subquery

Materialized_View_Subselect_Number
_of_Inner

QVP153 Materialized view subselect number for inner
subquery

Materialized_View_Nested_Level_of_Inner QVP154 Materialized view subselect level for inner subquery

Materialized_View_Union_Level_of_Inner QVP155 Materialized view union level for inner subquery

Subquery_Operator QQC101 Subquery operator. Possible values are:

v EQ - Equal

v NE - Not Equal

v LT - Less Than or Equal

v LT - Less Than

v GE - Greater Than or Equal

v GT - Greater Than

v IN

v LIKE

v EXISTS

v NOT - Can precede IN, LIKE or EXISTS

Performance and query optimization 265

|

|
|
||

|||

|

|

|

|||

|

|

|

|||

|

|

|

|

|

|

|

|||

|
|
|

|
|

|
|

|||

|||

|||

|
|
||
|

|||

|||

|||

|

|

|

|

|

|

|

|

|

|

Table 62. QQQ3027 - Subquery Merge (continued)

View Column Name
Table Column
Name Description

Subquery_Type QVC21 Subquery type. Possible values are:

v SQ - Subquery

v SS - Scalar subselect

v SU - Set Update

Has_Correlated_Columns QQC11 Correlated columns exist (Y/N)

Correlated_Columns QVC3001 List of correlated columns with corresponding QDT
number

Database monitor view 3028 - Grouping
Create View QQQ3028 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,
QQUSER as Job_User,
QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQUCNT as Unique_Count,
QQUDEF as User_Defined,
QQQDTN as Unique_SubSelect_Number,
QQQDTL as SubSelect_Nested_Level,
QQMATN as Materialized_View_Subselect_Number,
QQMATL as Materialized_View_Nested_Level,
QVP15E as Materialized_View_Union_Level,
QVP15A as Decomposed_Subselect_Number,
QVP15B as Total_Number_Decomposed_SubSelects,
QVP15C as Decomposed_SubSelect_Reason_Code,
QVP15D as Starting_Decomposed_SubSelect,
QVRCNT as Unique_Refresh_Counter,
QVPARPF as Parallel_Prefetch,
QVPARPL as Parallel_PreLoad,
QVPARD as Parallel_Degree_Requested,
QVPARU as Parallel_Degree_Used,
QVPARRC as Parallel_Degree_Reason_Code,
QQEPT as Estimated_Processing_Time,
QVCTIM as Estimated_Cumulative_Time,
QQREST as Estimated_Rows_Selected,
QQAJN as Estimated_Join_Rows,
QQJNP as Join_Position,
QQI1 as DataSpace_Number,
QQC21 as Join_Method,
QQC22 as Join_Type,
QQC23 as Join_Operator,
QVJFANO as Join_Fanout,
QVFILES as Join_Table_Count,
QQC11 as GroupBy_Implementation,
QQC101 as GroupBy_Index_Name,
QQC102 as GroupBy_Index_Library,
QVINAM as GroupBy_Index_Long_Name,
QVILIB as GroupBy_Index_Long_Library,
QQC12 as Has_Having_Selection,
QQC13 as Having_to_Where_Selection_Conversion,
QQI2 as Estimated_Number_of_Groups,
QQI3 as Average_Number_Rows_per_Group,
QVC3001 as GroupBy_Columns,
QVC3002 as MIN_Columns,
QVC3003 as MAX_Columns,

266 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|
|
||

|||

|

|

|

|||

|||
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

QVC3004 as SUM_Columns,
QVC3005 as COUNT_Columns,
QVC3006 as AVG_Columns,
QVC3007 as STDDEV_Columns,
QVC3008 as VAR_Columns

FROM UserLib/DBMONTable
WHERE QQRID=3028)

Table 63. QQQ3028 - Grouping

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSelects QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

Unique_Refresh_Counter QVRCNT Unique refresh counter

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_PreLoad QVPARPL Parallel Preload (index used)

Parallel_Degree_Requested QVPARD Parallel degree requested (index used)

Parallel_Degree_Used QVPARU Parallel degree used (index used)

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited (index used)

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Estimated_Rows_Selected QQREST Estimated rows selected

Estimated_Join_Rows QQAJN Estimated number of joined rows

Join_Position QQJNP Join position

DataSpace_Number QQI1 Dataspace number

Performance and query optimization 267

|
|
|
|
|
|
|

||

|

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 63. QQQ3028 - Grouping (continued)

View Column Name

Table
Column
Name Description

Join_Method QQC21 Join method - when available

v NL - Nested loop

v MF - Nested loop with selection

v HJ - Hash join

Join_Type QQC22 Join type - when available

v IN - Inner join

v PO - Left partial outer join

v EX - Exception join

Join_Operator QQC23 Join operator - when available

v EQ - Equal

v NE - Not equal

v GT - Greater than

v GE - Greater than or equal

v LT - Less than

v LE - Less than or equal

v CP - Cartesian product

Join_Fanout QVJFANO Join fan out. Possible values are:

v N - Normal join situation where fanout is allowed and
each matching row of the join fanout is returned.

v D - Distinct fanout. Join fanout is allowed however none
of the join fanout rows are returned.

v U - Unique fanout. Join fanout is not allowed. Error
situation if join fanout occurs.

Join_Table_Count QVFILES Number of tables joined

GroupBy_Implementation QQC11 Group by implementation

v ' ' - No grouping

v I - Index

v H - Hash

GroupBy_Index_Name QQC101 Index, or constraint, used for grouping

GroupBy_Index_Library QQC102 Library of index used for grouping

GroupBy_Index_Long_Name QVINAM Long name of index, or constraint, used for grouping

GroupBy_Index_Long_Library QVILIB Long name of index, or constraint, library used for grouping

Has_Having_Selection QQC12 Having selection exists (Y/N)

Having_to_Where_Selection_Conversion QQC13 Having to Where conversion (Y/N)

Estimated_Number_of_Groups QQI2 Estimated number of groups

Average_Number_Rows_per_Group QQI3 Average number of rows in each group

GroupBy_Columns QVC3001 Grouping columns

MIN_Columns QVC3002 MIN columns

MAX_Columns QVC3003 MAX columns

SUM_Columns QVC3004 SUM columns

COUNT_Columns QVC3005 COUNT columns

AVG_Columns QVC3006 AVG columns

268 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

|
|
||

|||

|

|

|

|||

|

|

|

|||

|

|

|

|

|

|

|

|||

|
|

|
|

|
|

|||

|||

|

|

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 63. QQQ3028 - Grouping (continued)

View Column Name

Table
Column
Name Description

STDDEV_Columns QVC3007 STDDEV columns

VAR_Columns QVC3008 VAR columns

Database monitor view 3030 - Materialized query tables
Create View QQQ3030 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,
QQUSER as Job_User,
QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQUCNT as Unique_Count,
QQUDEF as User_Defined,
QQQDTN as Unique_SubSelect_Number,
QQQDTL as SubSelect_Nested_Level,
QQMATN as Materialized_View_Subselect_Number,
QQMATL as Materialized_View_Nested_Level,
QVP15E as Materialized_View_Union_Level,
QVP15A as Decomposed_Subselect_Number,
QVP15B as Total_Number_Decomposed_SubSelects,
QVP15C as Decomposed_SubSelect_Reason_Code,
QVP15D as Starting_Decomposed_SubSelect,
QVRCNT as Unique_Refresh_Counter,
QQ1000 as Materialized_Query_Tables,
QQC301 as MQT_Reason_Codes

FROM UserLib/DBMONTable
WHERE QQRID=3030)

Table 64. QQQ3030 - Materialized query tables

View Column Name
Table Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job User

Job_Number QQJNUM Job Number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Performance and query optimization 269

|

|

|
|
||

|||

|||
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 64. QQQ3030 - Materialized query tables (continued)

View Column Name
Table Column
Name Description

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSelects QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

Unique_Refresh_Counter QVRCNT Unique refresh counter

Materialized_Query_Tables QQ1000 Materialized query tables examined and reason why used
or not used:

v 0 - The materialized query table was used

v 1 - The cost to use the materialized query table, as
determined by the optimizer, was higher than the cost
associated with the chosen implementation.

v 2 - The join specified in the materialized query was not
compatible with the query.

v 3 - The materialized query table had predicates that were
not matched in the query.

v 4 - The grouping specified in the materialized query
table is not compatible with the grouping specified in the
query.

270 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|
|
||

|||

|||
|

|||

|||

|||
|

|||

|||
|

|

|
|
|

|
|

|
|

|
|
|

Table 64. QQQ3030 - Materialized query tables (continued)

View Column Name
Table Column
Name Description

Materialized_Query_Tables (continued) v 5 - The query specified columns that were not in the
select-list of the materialized query table.

v 6 - The materialized query table query contains
functionality that is not supported by the query
optimizer.

v 7 - The materialized query table specified the DISABLE
QUERY OPTIMIZATION clause.

v 8 - The ordering specified in the materialized query table
is not compatible with the ordering specified in the
query.

v 9 - The query contains functionality that is not supported
by the materialized query table matching algorithm.

v 10 - Materialized query tables may not be used for this
query.

v 11 - The refresh age of this materialized query table
exceeds the duration specified by the
MATERIALIZED_QUERY_TABLE_REFRESH_AGE
QAQQINI option.

v 12 - The commit level of the materialized query table is
lower than the commit level specified for the query.

v 13 - The distinct specified in the materialized query table
is not compatible with the distinct specified in the query.

v 14 - The FETCH FOR FIRST n ROWS clause of the
materialized query table is not compatible with the
query.

v 15 - The QAQQINI options used to create the
materialized query table are not compatible with the
QAQQINI options used to run this query.

v 16 - The materialized query table is not usable.

v 17 - The union specified in the materialized query table
is not compatible with the query.

v 18 - The constants specified in the materialized query
table are not compatible with host variable values
specified in the query.

MQT_Reason_Codes QQC301 List of unique reason codes used by the materialized query
tables (each materialized query table has a corresponding
reason code associated with it)

QVRCNT QVRCNT Unique refresh counter

Database monitor view 3031 - Recursive common table expressions
Create View QQQ3031 as

(SELECT QQRID as Row_ID,
QQTIME as Time_Created,
QQJFLD as Join_Column,
QQRDBN as Relational_Database_Name,
QQSYS as System_Name,
QQJOB as Job_Name,
QQUSER as Job_User,
QQJNUM as Job_Number,
QQI9 as Thread_ID,
QQUCNT as Unique_Count,
QQUDEF as User_Defined,

Performance and query optimization 271

|

|
|
||

|||
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|
|

|
|
|

|

|
|

|
|
|

|||
|
|

|||
|

|
|
|
|
|
|
|
|
|
|
|
|
|

QQQDTN as Unique_SubSelect_Number,
QQQDTL as SubSelect_Nested_Level,
QQMATN as Materialized_View_Subselect_Number,
QQMATL as Materialized_View_Nested_Level,
QVP15E as Materialized_View_Union_Level,
QVP15A as Decomposed_Subselect_Number,
QVP15B as Total_Number_Decomposed_SubSelects,
QVP15C as Decomposed_SubSelect_Reason_Code,
QVP15D as Starting_Decomposed_SubSelect,
QVRCNT as Unique_Refresh_Counter,
QVPARPF as Parallel_Prefetch,
QVPARPL as Parallel_PreLoad,
QVPARD as Parallel_Degree_Requested,
QVPARU as Parallel_Degree_Used,
QVPARRC as Parallel_Degree_Reason_Code,
QQEPT as Estimated_Processing_Time,
QVCTIM as Estimated_Cumulative_Time,
QQREST as Estimated_Rows_Selected,
QQC11 as Recursive_Query_Cycle_Check,
QQC15 as Recursive_Query_Search_Option,
QQI2 as Number_of_Recursive_Values

FROM UserLib/DBMONTable
WHERE QQRID=3031)

Table 65. QQQ3031 - Recursive common table expressions

View Column Name
Table Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job User

Job_Number QQJNUM Job Number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSelects QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

Unique_Refresh_Counter QVRCNT Unique refresh counter

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_PreLoad QVPARPL Parallel Preload (Y/N)

272 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||
|

|||

|||

|||

Table 65. QQQ3031 - Recursive common table expressions (continued)

View Column Name
Table Column
Name Description

Parallel_Degree_Requested QVPARD Parallel degree requested

Parallel_Degree_Used QVPARU Parallel degree used

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Estimated_Rows_Selected QQREST Estimated number of rows selected

Recursive_Query_Cycle_Check QQC11 CYCLE option:

v Y - checking for cyclic data

v N - not checking for cyclic data

Recursive_Query_Search_Option QQC15 SEARCH option:

v N - None specified

v D - Depth first

v B - Breadth first

Number_of_Recursive_Values QQI2 Number of values put on queue to implement recursion.
Includes values necessary for CYCLE and SEARCH
options.

Memory Resident Database Monitor: DDS
The following DDS statements are used to create the memory resident database monitor physical and
logical files.

External table description (QAQQQRYI) - Summary Row for SQL
Information
Table 66. QAQQQRYI - Summary Row for SQL Information

Column Name Description

QQKEY Join column (unique per query) used to link rows for a single query together

QQTIME Time row was created

QQJOB Job name

QQUSER Job user

QQJNUM Job number

QQTHID Thread Id

QQUDEF User defined column

QQPLIB Name of the library containing the program or package

QQCNAM Cursor name

QQPNAM Name of the package or name of the program that contains the current SQL statement

QQSNAM Name of the statement for SQL statement, if applicable

QQCNT Statement usage count

QQAVGT Average runtime (ms)

QQMINT Minimum runtime (ms)

QQMAXT Maximum runtime (ms)

Performance and query optimization 273

|

|
|
||

|||

|||

|||

|||

|||

|||

|||

|

|

|||

|

|

|

|||
|
|
|

|

Table 66. QAQQQRYI - Summary Row for SQL Information (continued)

Column Name Description

QQOPNT Open time for most expensive execution (ms)

QQFETT Fetch time for most expensive execution (ms)

QQCLST Close time for most expensive execution (ms)

QQOTHT Other time for most expensive execution (ms)

QQLTU Time statement last used

QQMETU Most expensive time used

QQAPRT Access plan rebuild time

QQFULO Number of full opens

QQPSUO Number of pseudo-opens

QQTOTR Total rows in table if non-join

QQRROW Number of result rows returned

QQRROW Statement function

S - Select
U - Update
I - Insert
D - Delete
L - Data definition language
O - Other

QQSTOP Statement operation

v AD - Allocate descriptor

v AL - Alter table

v AP - Alter procedure

v AQ - Alter sequence

v CA - Call

v CC - Create collection

v CD - Create type

v CF - Create function

v CG - Create trigger

v CI - Create index

v CL - Close

v CM - Commit

v CN - Connect

v CO - Comment on

v CP - Create procedure

v CQ - Create sequence

v CS - Create alias/synonym

v CT - Create table

v CV - Create view

v DA - Deallocate descriptor

v DE - Describe

v DI - Disconnect

v DL - Delete

274 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

Table 66. QAQQQRYI - Summary Row for SQL Information (continued)

Column Name Description

QQSTOP (continued) v DM - Describe parameter marker

v DP - Declare procedure

v DR - Drop

v DT - Describe table

v EI - Execute immediate

v EX - Execute

v FE - Fetch

v FL - Free locator

v GR - Grant

v GS - Get descriptor

v HC - Hard close

v HL - Hold locator

v IN - Insert

v JR - Server job reused

v LK - Lock

v LO - Label on

v MT - More text (Depreciated in V5R4)

v OP - Open

v PD - Prepare and describe

v PR - Prepare

v RB - Rollback to savepoint

v RE - Release

v RF - Refresh Table

v RG - Resignal

v RO - Rollback

v RS - Release Savepoint

v RT - Rename table

v RV - Revoke

v SA - Savepoint

v SC - Set connection

v SD - Set descriptor

v SE - Set encryption password

v SN - Set session user

v SI - Select into

v SO - Set current degree

v SP - Set path

v SR - Set result set

v SS - Set current schema

v ST - Set transaction

v SV - Set variable

v UP - Update

v VI - Values into

v X0 - Unknown statement

Performance and query optimization 275

Table 66. QAQQQRYI - Summary Row for SQL Information (continued)

Column Name Description

QQSTOP (continued) v X1 - Unknown statement

v X2 - DRDA (AS) Unknown statement

v X3 - Unknown statement

v X9 - Internal error

v XA - X/Open API

v ZD - Host server only activity

QQODPI ODP implementation

R - Reusable ODP (ISV)
N - Non-reusable ODP (V2)

QQHVI Host variable implementation

I - Interface supplied values (ISV)
V - Host variables treated as constants (V2)
U - Table management row positioning (UP)

QQAPR Access plan rebuilt

v A1 - A table or member is not the same object as the one referenced when the access
plan was last built. Some reasons they may be different are:

– Object was deleted and recreated.

– Object was saved and restored.

– Library list was changed.

– Object was renamed.

– Object was moved.

– Object was overridden to a different object.

– This is the first run of this query after the object containing the query has been
restored.

v A2 - Access plan was built to use a reusable Open Data Path (ODP) and the
optimizer chose to use a non-reusable ODP for this call.

v A3 - Access plan was built to use a non-reusable Open Data Path (ODP) and the
optimizer chose to use a reusable ODP for this call.

v A4 - The number of rows in the table has changed by more than 10% since the
access plan was last built.

v A5 - A new index exists over one of the tables in the query.

v A6 - An index that was used for this access plan no longer exists or is no longer
valid.

v A7 - i5/OS Query requires the access plan to be rebuilt because of system
programming changes.

v A8 - The CCSID of the current job is different than the CCSID of the job that last
created the access plan.

v A9 - The value of one or more of the following is different for the current job than it
was for the job that last created this access plan:

– date format

– date separator

– time format

– time separator

276 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

Table 66. QAQQQRYI - Summary Row for SQL Information (continued)

Column Name Description

QQAPR (continued) v AA - The sort sequence table specified is different than the sort sequence table that
was used when this access plan was created.

v AB - Storage pool changed or DEGREE parameter of CHGQRYA command changed.

v AC - The system feature DB2 multisystem has been installed or removed.

v AD - The value of the degree query attribute has changed.

v AE - A view is either being opened by a high level language or a view is being
materialized.

v AF - A sequence object or user-defined type or function is not the same object as the
one referred to in the access plan; or, the SQL path used to generate the access plan
is different than the current SQL path.

v B0 - The options specified have changed as a result of the query options file
QAQQINI.

v B1 - The access plan was generated with a commitment control level that is different
in the current job.

v B2 - The access plan was generated with a static cursor answer set size that is
different than the previous access plan.

v B3 - The query was reoptimized because this is the first run of the query after a
prepare. That is, it is the first run with real actual parameter marker values.

v B4 - The query was reoptimized because referential or check constraints have
changed.

v B5 - The query was reoptimized because Materialized Query Tables have changed.

QQDACV Data conversion

v N - No.

v 0 - Not applicable.

v 1 - Lengths do not match.

v 2 - Numeric types do not match.

v 3 - C host variable is NUL-terminated.

v 4 - Host variable or column is variable length and the other is not variable length.

v 5 - Host variable or column is not variable length and the other is variable length.

v 6 - Host variable or column is variable length and the other is not variable length.

v 7 - CCSID conversion.

v 8 - DRDA and NULL capable, variable length, contained in a partial row, derived
expression, or blocked fetch with not enough host variables.

v 9 - Target table of an insert is not an SQL table.

v 10 - Host variable is too short to hold a TIME or TIMESTAMP value being retrieved.

v 11 - Host variable is DATE, TIME, or TIMESTAMP and value being retrieved is a
character string.

v 12 - Too many host variables specified and records are blocked.

v 13 - DRDA used for a blocked FETCH and the number of host variables specified in
the INTO clause is less than the number of result values in the select list.

v 14 - LOB locator used and the commitment control level was not *ALL.

QQCTS Statement table scan usage count

QQCIU Statement index usage count

QQCIC Statement index creation count

QQCSO Statement sort usage count

QQCTF Statement temporary table count

QQCIA Statement index advised count

Performance and query optimization 277

Table 66. QAQQQRYI - Summary Row for SQL Information (continued)

Column Name Description

QQCAPR Statement access plan rebuild count

QQARSS Average result set size

QQC11 Reserved

QQC12 Reserved

QQC21 Reserved

QQC22 Reserved

QQI1 Reserved

QQI2 Reserved

QQC301 Reserved

QQC302 Reserved

QQC1000 Reserved

External table description (QAQQTEXT) - Summary Row for SQL
Statement
Table 67. QAQQTEXT - Summary Row for SQL Statement

Column Name Description

QQKEY Join column (unique per query) used to link rows for a single query together with row
identification

QQTIME Time row was created

QQSTTX Statement text

QQC11 Reserved

QQC12 Reserved

QQC21 Reserved

QQC22 Reserved

QQQI1 Reserved

QQI2 Reserved

QQC301 Reserved

QQC302 Reserved

QQ1000 Reserved

External table description (QAQQ3000) - Arrival sequence
Table 68. QAQQ3000 - Arrival sequence

Column Name Description

QQKEY Join column (unique per query) used to link rows for a single query together with row
identification

QQTIME Time row was created

QQQDTN QDT number (unique per ODT)

QQQDTL QDT subquery nested level

QQMATN Materialized view QDT number

278 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

||

||

||
|

||

||

||

||

Table 68. QAQQ3000 - Arrival sequence (continued)

Column Name Description

QQMATL Materialized view nested level

QQTLN Library

QQTFN Table

QQPTLN Physical library

QQPTFN Physical table

QQTOTR Total rows in table

QQREST Estimated number of rows selected

QQAJN Estimated number of joined rows

QQEPT Estimated processing time, in seconds

QQJNP Join position - when available

QQJNDS Dataspace number

QQJNMT Join method - when available

NL - Nested loop
MF - Nested loop with selection
HJ - Hash join

QQJNTY Join type - when available

IN - Inner join
PO - Left partial outer join
EX - Exception join

QQJNOP Join operator - when available

EQ - Equal
NE - Not equal
GT - Greater than
GE - Greater than or equal
LT - Less than
LE - Less than or equal
CP - Cartesian product

QQDSS Dataspace selection

Y - Yes
N - No

QQIDXA Index advised

Y - Yes
N - No

QQRCOD Reason code

T1 - No indexes exist.
T2 - Indexes exist, but none can be used.
T3 - Optimizer chose table scan over available indexes.

QQLTLN Library-long

QQLTFN Table-long

QQLPTL Physical library-long

QQLPTF Table-long

Performance and query optimization 279

|

||

||

||

||

||

||

||

||

||

||

||

||

||

|
|
|

||

|
|
|

||

|
|
|
|
|
|
|

||

|
|

||

|
|

||

|
|
|

||

||

||

||

Table 68. QAQQ3000 - Arrival sequence (continued)

Column Name Description

QQIDXD Key columns for the index advised

QQC11 Materialized query table

QQC12 Reserved

QQC21 Reserved

QQC22 Reserved

QQI1 Number of advised key columns that use index scan-key positioning.

QQI2 Reserved

QQC301 Reserved

QQC302 Reserved

QQ1000 Reserved

External table description (QAQQ3001) - Using existing index
Table 69. QQQ3001 - Using existing index

Column Name Description

QQKEY Join column (unique per query) used to link rows for a single query together

QQTIME Time row was created

QQQDTN QDT number (unique per QDT)

QQQDTL RQDT subquery nested level relational database name

QQMATN Materialized view QDT number

QQMATL Materialized view nested level

QQTLN Library

QQTFN Table

QQPTLN Physical library

QQPTFN Physical table

QQILNM Index library

QQIFNM Index

QQTOTR Total rows in table

QQREST Estimated number of rows selected

QQFKEY Number of key positioning keys

QQKSEL Number of key selection keys

QQAJN Join position - when available

QQEPT Estimated processing time, in seconds

QQJNP Join position - when available

QQJNDS Dataspace number

QQJNMT Join method - when available

NL - Nested loop
MF - Nested loop with selection
HJ - Hash join

280 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

||

||

||

||

||

||

||

||

||

||

||
|

|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

|
|
|

Table 69. QQQ3001 - Using existing index (continued)

Column Name Description

QQJNTY Join type - when available

IN - Inner join
PO - Left partial outer join
EX - Exception join

QQJNOP Join operator - when available

EQ - Equal
NE - Not equal
GT - Greater than
GE - Greater than or equal
LT - Less than
LE - Less than or equal
CP - Cartesian product

QQIDXK Number of advised key columns that use index scan-key positioning

QQKP Index scan-key positioning

Y - Yes
N - No

QQKPN Number of key positioning columns

QQKS Index scan-key selection

Y - Yes
N - No

QQDSS Dataspace selection

Y - Yes
N - No

QQIDXA Index advised

Y - Yes
N - No

QQRCOD Reason code

I1 - Row selection
I2 - Ordering/Grouping
I3 - Row selection and

Ordering/Grouping
I4 - Nested loop join
I5 - Row selection using

bitmap processing

QQCST Constraint indicator

Y - Yes
N - No

QQCSTN Constraint name

QQLTLN Library-long

QQLTFN Table-long

QQLPTL Physical library-long

QQLPTF Table-long

Performance and query optimization 281

|

||

||

|
|
|

||

|
|
|
|
|
|
|

||

||

|
|

||

||

|
|

||

|
|

||

|
|

||

|
|
|
|
|
|
|

||

|
|

||

||

||

||

||

Table 69. QQQ3001 - Using existing index (continued)

Column Name Description

QQLILN Index library – long

QQLIFN Index – long

QQIDXD Key columns for the index advised

QQC11 Materialized query table

QQC12 Reserved

QQC21 Reserved

QQC22 Reserved

QQI1 Reserved

QQI2 Reserved

QQC301 Reserved

QQC302 Reserved

QQ1000 Reserved

External table description (QAQQ3002) - Index created
Table 70. QQQ3002 - Index created

Column Name Description

QQKEY Join column (unique per query) used to link rows for a single query together

QQTIME Time row was created

QQQDTN QDT number (unique per QDT)

QQQDTL RQDT subquery nested level relational database name

QQMATN Materialized view QDT number

QQMATL Materialized view nested level

QQTLN Library

QQTFN Table

QQPTLN Physical library

QQPTFN Physical table

QQILNM Index library

QQIFNM Index

QQNTNM NLSS table

QQNLNM NLSS library

QQTOTR Total rows in table

QQRIDX Number of entries in index created

QQREST Estimated number of rows selected

QQFKEY Number of index scan-key positioning keys

QQKSEL Number of index scan-key selection keys

QQAJN Estimated number of joined rows

QQJNP Join position - when available

QQJNDS Dataspace number

282 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

||

||

||

||

||

||

||

||

||

||

||

||

||
|

Table 70. QQQ3002 - Index created (continued)

Column Name Description

QQJNMT Join method - when available

NL - Nested loop
MF - Nested loop with selection
HJ - Hash join

QQJNTY Join type - when available

IN - Inner join
PO - Left partial outer join
EX - Exception join

QQJNOP Join operator - when available

EQ - Equal
NE - Not equal
GT - Greater than
GE - Greater than or equal
LT - Less than
LE - Less than or equal
CP - Cartesian product

QQIDXK Number of advised key columns that use index scan-key positioning

QQEPT Estimated processing time, in seconds

QQKP Index scan-key positioning

Y - Yes
N - No

QQKPN Number of index scan-key positioning columns

QQKS Index scan-key selection

Y - Yes
N - No

QQDSS Dataspace selection

Y - Yes
N - No

QQIDXA Index advised

Y - Yes
N - No

QQCST Constraint indicator

Y - Yes
N - No

QQCSTN Constraint name

Performance and query optimization 283

Table 70. QQQ3002 - Index created (continued)

Column Name Description

QQRCOD Reason code

I1 - Row selection
I2 - Ordering/Grouping
I3 - Row selection and

Ordering/Grouping
I4 - Nested loop join
I5 - Row selection using

bitmap processing

QQTTIM Index create time

QQLTLN Library-long

QQLTFN Table-long

QQLPTL Physical library-long

QQLPTF Table-long

QQLILN Index library-long

QQLIFN Index-long

QQLNTN NLSS table-long

QQLNLN NLSS library-long

QQIDXD Key columns for the index advised

QQCRTK Key columns for index created

QQC11 Materialized query table

QQC12 Reserved

QQC21 Reserved

QQC22 Reserved

QQI1 Reserved

QQI2 Reserved

QQC301 Reserved

QQC302 Reserved

QQ1000 Reserved

External table description (QAQQ3003) - Query sort
Table 71. QQQ3003 - Query sort

Column Name Description

QQKEY Join column (unique per query) used to link rows for a single query together

QQTIME Time row was created

QQQDTN QDT number (unique per QDT)

QQQDTL RQDT subquery nested level relational database name

QQMATN Materialized view QDT number

QQMATL Materialized view nested level

QQTTIM Sort time

QQRSS Number of rows selected or sorted

QQSIZ Size of sort space

284 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

Table 71. QQQ3003 - Query sort (continued)

Column Name Description

QQPSIZ Pool size

QQPID Pool id

QQIBUF Internal sort buffer length

QQEBUF External sort buffer length

QQRCOD Reason code

F1 - Query contains grouping columns (Group By) from more than one table, or contains
grouping columns from a secondary table of a join query that cannot be reordered.

F2 - Query contains ordering columns (Order By) from more than one table, or contains
ordering columns from a secondary table of a join query that cannot be reordered.

F3 - The grouping and ordering columns are not compatible.

F4 - DISTINCT was specified for the query.

F5 - UNION was specified for the query.

F6 - Query had to be implemented using a sort. Key length of more than 2000 bytes or more
than 120 columns specified for ordering.

F7 - Query optimizer chose to use a sort rather than an index to order the results of the query.

F8 - Perform specified row selection to minimize I/O wait time.

FC - The query contains grouping fields and there is a read trigger on at least one of the
physical files in the query.

QQC11 Reserved

QQC12 Reserved

QQC21 Reserved

QQC22 Reserved

QQI1 Reserved

QQI2 Reserved

QQC301 Reserved

QQC302 Reserved

QQ1000 Reserved

External table description (QAQQ3004) - Temporary table
Table 72. QQQ3004 - Temporary table

Column Name Description

QQKEY Join column (unique per query) used to link rows for a single query together

QQTIME Time row was created

QQQDTN QDT number (unique per QDT)

QQQDTL RQDT subquery nested level relational database name

QQMATN Materialized view QDT number

QQMATL Materialized view nested level

QQTLN Library

QQTFN Table

QQTTIM Temporary table create time

QQTMPR Number of rows in temporary

Performance and query optimization 285

Table 72. QQQ3004 - Temporary table (continued)

Column Name Description

QQRCOD Reason code

F1 - Query contains grouping columns (Group By) from more than one table, or contains
grouping columns from a secondary table of a join query that cannot be reordered.

F2 - Query contains ordering columns (Order By) from more than one table, or contains
ordering columns from a secondary table of a join query that cannot be reordered.

F3 - The grouping and ordering columns are not compatible.

F4 - DISTINCT was specified for the query.

F5 - UNION was specified for the query.

F6 - Query had to be implemented using a sort. Key length of more than 2000 bytes or more
than 120 columns specified for ordering.

F7 - Query optimizer chose to use a sort rather than an index to order the results of the
query.

F8 - Perform specified row selection to minimize I/O wait time.

F9 - The query optimizer chose to use a hashing algorithm rather than an access path to
perform the grouping for the query.

FA - The query contains a join condition that requires a temporary file.

FB - The query optimizer creates a run-time temporary file in order to implement certain
correlated group by queries.

FC - The query contains grouping fields and there is a read trigger on at least one of the
physical files in the query.

FD - The query optimizer creates a runtime temporary file for a static-cursor request.

H1 - Table is a join logical file and its join type does not match the join type specified in the
query.

H2 - Format specified for the logical table references more than one base table.

H3 - Table is a complex SQL view requiring a temporary results of the SQL view.

H4 - For an update-capable query, a subselect references a column in this table which
matches one of the columns being updated.

H5 - For an update-capable query, a subselect references an SQL view which is based on the
table being updated.

H6 - For a delete-capable query, a subselect references either the table from which rows are
to be deleted, an SQL view, or an index based on the table from which rows are to be
deleted.

H7 - A user-defined table function was materialized.

QQDFVL Default values may be present in temporary

Y - Yes
N - No

QQLTLN Library-long

QQLTFN Table-long

QQC11 Reserved

QQC12 Reserved

QQC21 Reserved

QQC22 Reserved

QQI1 Reserved

QQI2 Reserved

QQC301 Reserved

QQC302 Reserved

286 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

Table 72. QQQ3004 - Temporary table (continued)

Column Name Description

QQ1000 Reserved

External table description (QAQQ3007) - Optimizer information
Table 73. QQQ3007 - Optimizer information

Column Name Description

QQKEY Join column (unique per query) used to link rows for a single query together

QQTIME Time row was created

QQQDTN QDT number (unique per QDT)

QQQDTL RQDT subquery nested level relational database name

QQMATN Materialized view QDT number

QQMATL Materialized view nested level

QQTLN Library

QQTFN Table

QQPTLN Physical library

QQPTFN Table

QQTOUT Optimizer timed out

Y - Yes
N - No.

QQIRSN Reason code

QQLTLN Library-long

QQLTFN Table-long

QQPTL Physical library-long

QQPTF Table-long

QQIDXN Index names

QQC11 Reserved

QQC12 Reserved

QQC21 Reserved

QQC22 Reserved

QQI1 Reserved

QQI2 Reserved

QQC301 Reserved

QQC302 Reserved

QQ1000 Reserved

External table description (QAQQ3008) - Subquery processing
Table 74. QQQ3008 - Subquery processing

Column Name Description

QQKEY Join column (unique per query) used to link rows for a single query together

Performance and query optimization 287

Table 74. QQQ3008 - Subquery processing (continued)

Column Name Description

QQTIME Time row was created

QQQDTN QDT number (unique per QDT)

QQQDTL RQDT subquery nested level relational database name

QQMATN Materialized view QDT number

QQMATL Materialized view nested level

QQORGQ Materialized view QDT number

QQMRGQ Materialized view nested level

QQC11 Reserved

QQC12 Reserved

QQC21 Reserved

QQC22 Reserved

QQI1 Reserved

QQI2 Reserved

QQC301 Reserved

QQC302 Reserved

QQ1000 Reserved

External table description (QAQQ3010) - Host variable and ODP
implementation
Table 75. QQQ3010 - Host variable and ODP implementation

Column Name Description

QQKEY Join column (unique per query) used to link rows for a single query together

QQTIME Time row was created

QQHVAR Host variable values

QQC11 Reserved

QQC12 Reserved

QQC21 Reserved

QQC22 Reserved

QQI1 Reserved

QQI2 Reserved

QQC301 Reserved

QQC302 Reserved

External table description (QAQQ3030) - Materialized query table
implementation
Table 76. QQQ3030 - Materialized query table implementation

Column Name Description

QQKEY Join column (unique per query) used to link rows for a single query together

QQTIME Time row was created

288 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|

|

||

||

||

||

Table 76. QQQ3030 - Materialized query table implementation (continued)

Column Name Description

QQQDTN Unique subselect number

QQQDTL Subselect nested level

QQMATN Materialized view subselect number

QQMATL Materialized view nested level

QQMRSN List of unique reason codes used by the materialized query table (each materialized query table
has a corresponding reason code associated with it)

QQMQTS List of MQTs examined with a reason code indicating if the MQT was used and if not used, why
not used.

QQC11 Reserved

QQC12 Reserved

QQC21 Reserved

QQC22 Reserved

QQCI1 Reserved

QQCI2 Reserved

QQC301 Reserved

QQC302 Reserved

Query optimizer messages reference
See the following for query optimizer message reference:

Query optimization performance information messages
You can evaluate the structure and performance of the given SQL statements in a program using
informational messages put in the job log by the database manager.

The messages are issued for an SQL program or interactive SQL when running in the debug mode. The
database manager may send any of the following messages when appropriate. The ampersand variables
(&1, &X) are replacement variables that contain either an object name or some other substitution value
when the message appears in the job log. These messages provide feedback on how a query was run and,
in some cases, indicate the improvements that can be made to help the query run faster.

The messages contain message help that provides information about the cause for the message, object
name references, and possible user responses.

The time at which the message is sent does not necessarily indicate when the associated function was
performed. Some messages are sent altogether at the start of a query run.

CPI4321 - Access path built for &18 &19

CPI4321

Message Text: Access path built for &18 &19.

Performance and query optimization 289

|

||

||

||

||

||

||
|

||
|

||

||

||

||

||

||

||

||
|

|

CPI4321

Cause Text:

A temporary access path was built to access records from member &6 of &18 &19 in
library &5 for reason code &10. This process took &11 minutes and &12 seconds.
The access path built contains &15 entries. The access path was built using &16
parallel tasks. A zero for the number of parallel tasks indicates that parallelism was
not used. The reason codes and their meanings follow:

1. Perform specified ordering/grouping criteria.

2. Perform specified join criteria.

3. Perform specified record selection to minimize I/O wait time.

The access path was built using the following key fields. The key fields and their
corresponding sequence (ASCEND or DESCEND) will be shown:&17.

A key field of *MAP indicates the key field is an expression (derived field).

The access path was built using sequence table &13 in library &14.

A sequence table of *N indicates the access path was built without a sequence table.
A sequence table of *I indicates the table was an internally derived table that is not
available to the user.

If &18 &19 in library &5 is a logical file then the access path is built over member
&9 of physical file &7 in library &8.

A file name starting with *QUERY or *N indicates the access path was built over a
temporary file.

Recovery Text:

If this query is run frequently, you may want to create an access path (index) similar
to this definition for performance reasons. Create the access path using sequence
table &13 in library &14, unless the sequence table is *N. If an access path is created,
it is possible the query optimizer may still choose to create a temporary access path
to process the query.

If *MAP is returned for one of the key fields or *I is returned for the sequence table,
then a permanent access path cannot be created. A permanent access path cannot be
built with these specifications.

This message indicates that a temporary index was created to process the query. The new index is created
by reading all of the rows in the specified table.

The time required to create an index on each run of a query can be significant. Consider creating a logical
file (CRTLF) or an SQL index (CREATE INDEX SQL statement):
v Over the table named in the message help.
v With key columns named in the message help.
v With the ascending or descending sequencing specified in the message help.
v With the sort sequence table specified in the message help.

Consider creating the logical file with select or omit criteria that either match or partially match the
query's predicates involving constants. The database manager will consider using select or omit logical
files even though they are not explicitly specified on the query.

For certain queries, the optimizer may decide to create an index even when an existing one can be used.
This might occur when a query has an ordering column as a key column for an index, and the only row
selection specified uses a different column. If the row selection results in roughly 20% of the rows or
more to be returned, then the optimizer may create a new index to get faster performance when accessing
the data. The new index minimizes the amount of data that needs to be read.

290 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

CPI4322 - Access path built from keyed file &1

CPI4322

Message Text: Access path built from keyed file &1.

Cause Text:

A temporary access path was built using the access path from member &3 of keyed
file &1 in library &2 to access records from member &6 of file &4 in library &5 for
reason code &10. This process took &11 minutes and &12 seconds. The access path
built contains &15 entries. The reason codes and their meanings follow:

1. Perform specified ordering/grouping criteria.

2. Perform specified join criteria.

3. Perform specified record selection to minimize I/O wait time

The access path was built using the following key fields. The key fields and their
corresponding sequence (ASCEND or DESCEND) will be shown:

&17.

A key field of *MAP indicates the key field is an expression (derived field).

The temporary access path was built using sequence table &13 in library &14.

A sequence table of *N indicates the access path was built without a sequence table.
A sequence table of *I indicates the table was an internally derived table that is not
available to the user.

If file &4 in library &5 is a logical file then the temporary access path is built over
member &9 of physical file &7 in library &8. Creating an access path from a keyed
file generally results in improved performance.

Recovery Text:

If this query is run frequently, you may want to create an access path (index) similar
to this definition for performance reasons. Create the access path using sequence
table &13 in library &14, unless the sequence table is *N. If an access path is created,
it is possible the query optimizer may still choose to create a temporary access path
to process the query.

If *MAP is returned for one of the key fields or *I is returned for the sequence table,
then a permanent access path cannot be created. A permanent access path cannot be
built with these specifications.

A temporary access path can only be created using index only access if all of the
fields that were used by this temporary access path are also key fields for the access
path from the keyed file.

This message indicates that a temporary index was created from the access path of an existing keyed
table or index.

Generally, this action should not take a significant amount of time or resource because only a subset of
the data in the table needs to be read. This is normally done to allow the optimizer to use an existing
index for selection while creating one for ordering, grouping, or join criteria. Sometimes even faster
performance can be achieved by creating a logical file or SQL index that satisfies the index requirement
stated in the message help.

CPI4323 - The query access plan has been rebuilt

CPI4323

Message Text: The query access plan has been rebuilt.

Performance and query optimization 291

CPI4323

Cause Text:

The access plan was rebuilt for reason code &13. The reason codes and their
meanings follow:

1. A file or member is not the same object as the one referred to in the access plan.
Some reasons include the object being re-created, restored, or overridden to a
new object.

2. Access plan was using a reusable Open Data Path (ODP), and the optimizer
chose to use a non-reusable ODP.

3. Access plan was using a non-reusable Open Data Path (ODP) and the optimizer
chose to use a reusable ODP

4. The number of records in member &3 of file &1 in library &2 has changed by
more than 10%.

5. A new access path exists over member &6 of file &4 in library &5.

6. An access path over member &9 of file &7 in library &8 that was used for this
access plan no longer exists or is no longer valid.

7. The query access plan had to be rebuilt because of system programming
changes.

8. The CCSID (Coded Character Set Identifier) of the current job is different than
the CCSID used in the access plan

9. The value of one of the following is different in the current job: date format,
date separator, time format, or time separator.

10. The sort sequence table specified has changed.

11. The number of active processors or the size or paging option of the storage pool
has changed.

12. The system feature DB2 UDB Symmetric Multiprocessing has either been
installed or removed.

13. The value of the degree query attribute has changed either by the CHGSYSVAL
or CHGQRYA CL commands or with the query options file &15 in library &16.

14. A view is either being opened by a high level language open, or is being
materialized.

15. A sequence object or user-defined type or function is not the same object as the
one referred to in the access plan; or, the SQL path used to generate the access
plan is different than the current SQL path.

16. Query attributes have been specified from the query options file &15 in library
&16.

17. The access plan was generated with a commitment control level that is different
in the current job.

18. The access plan was generated with a different static cursor answer set size.

19. This is the first run of the query since a prepare or compile.

20. or greater. View the second level message text of the next message issued
(CPI4351) for an explanation of these reason codes.

If the reason code is 4, 5, 6, 20, or 21 and the file specified in the reason code
explanation is a logical file, then member &12 of physical file &10 in library &11 is
the file with the specified change.

Recovery Text:
Excessive rebuilds should be avoided and may indicate an application design
problem.

This message can be sent for a variety of reasons. The specific reason is provided in the message help.

Most of the time, this message is sent when the queried table environment has changed, making the
current access plan obsolete. An example of the table environment changing is when an index required
by the query no longer exists on the server.

292 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

An access plan contains the instructions for how a query is to be run and lists the indexes for running the
query. If a needed index is no longer available, the query is again optimized, and a new access plan is
created, replacing the old one.

The process of again optimizing the query and building a new access plan at runtime is a function of
DB2 UDB for iSeries. It allows a query to be run as efficiently as possible, using the most current state of
the database without user intervention.

The infrequent appearance of this message is not a cause for action. For example, this message will be
sent when an SQL package is run the first time after a restore, or anytime the optimizer detects that a
change has occurred (such as a new index was created), that warrants an implicit rebuild. However,
excessive rebuilds should be avoided because extra query processing will occur. Excessive rebuilds may
indicate a possible application design problem or inefficient database management practices.
Related reference

“CPI4351 - Additional reason codes for query access plan has been rebuilt.” on page 311
“CPI434C - The query access plan was not rebuilt” on page 310

CPI4324 - Temporary file built for file &1

CPI4324

Message Text: Temporary file built for file &1.

Cause Text:

A temporary file was built for member &3 of file &1 in library &2 for reason code
&4. This process took &5 minutes and &6 seconds. The temporary file was required
in order for the query to be processed. The reason codes and their meanings follow:

1. The file is a join logical file and its join-type (JDFTVAL) does not match the
join-type specified in the query.

2. The format specified for the logical file references more than one physical file.

3. The file is a complex SQL view requiring a temporary file to contain the results
of the SQL view.

4. For an update-capable query, a subselect references a field in this file which
matches one of the fields being updated.

5. For an update-capable query, a subselect references SQL view &1, which is based
on the file being updated.

6. For a delete-capable query, a subselect references either the file from which
records are to be deleted or an SQL view or logical file based on the file from
which records are to be deleted.

7. The file is user-defined table function &8 in &2, and all the records were
retrieved from the function. The processing time is not returned for this reason
code.

8. The file is a partition file requiring a temporary file for processing the grouping
or join.

Recovery Text:
You may want to change the query to refer to a file that does not require a
temporary file to be built.

Before the query processing could begin, the data in the specified table had to be copied into a temporary
physical table to simplify running the query. The message help contains the reason why this message was
sent.

If the specified table selects few rows, typically less than 1000 rows, then the row selection part of the
query's implementation should not take a significant amount of resource and time. However if the query
is taking more time and resources than can be allowed, consider changing the query so that a temporary
table is not required.

Performance and query optimization 293

One way to do this is by breaking the query into multiple steps. Consider using an INSERT statement
with a subselect to select only the rows that are required into a table, and then use that table's rows for
the rest of the query.

CPI4325 - Temporary result file built for query

CPI4325

Message Text: Temporary result file built for query.

Cause Text:

A temporary result file was created to contain the results of the query for reason
code &4. This process took &5 minutes and &6 seconds. The temporary file created
contains &7 records. The reason codes and their meanings follow:

1. The query contains grouping fields (GROUP BY) from more than one file, or
contains grouping fields from a secondary file of a join query that cannot be
reordered.

2. The query contains ordering fields (ORDER BY) from more than one file, or
contains ordering fields from a secondary file of a join query that cannot be
reordered.

3. The grouping and ordering fields are not compatible.

4. DISTINCT was specified for the query.

5. Set operator (UNION, EXCEPT, or INTERSECT) was specified for the query.

6. The query had to be implemented using a sort. Key length of more than 2000
bytes or more than 120 key fields specified for ordering.

7. The query optimizer chose to use a sort rather than an access path to order the
results of the query.

8. Perform specified record selection to minimize I/O wait time.

9. The query optimizer chose to use a hashing algorithm rather than an access
path to perform the grouping for the query.

10. The query contains a join condition that requires a temporary file.

11. The query optimizer creates a run-time temporary file in order to implement
certain correlated group by queries.

12. The query contains grouping fields (GROUP BY, MIN/MAX, COUNT, and so
on) and there is a read trigger on one or more of the underlying physical files
in the query.

13. The query involves a static cursor or the SQL FETCH FIRST clause.

Recovery Text:
For more information about why a temporary result was used, refer to the “Data
access on DB2 UDB for iSeries: data access paths and methods” on page 8.

A temporary result table was created to contain the intermediate results of the query. The results are
stored in an internal temporary table (structure). This allows for more flexibility by the optimizer in how
to process and store the results. The message help contains the reason why a temporary result table is
required.

In some cases, creating a temporary result table provides the fastest way to run a query. Other queries
that have many rows to be copied into the temporary result table can take a significant amount of time.
However, if the query is taking more time and resources than can be allowed, consider changing the
query so that a temporary result table is not required.

CPI4326 - &12 &13 processed in join position &10

CPI4326

Message Text: &12 &13 processed in join position &10.

294 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

CPI4326

Cause Text:

Access path for member &5 of file &3 in library &4 was used to access records in
member &2 of file &13 in library &1 for reason code &9. The reason codes and their
meanings follow:

1. Perform specified record selection.

2. Perform specified ordering/grouping criteria.

3. Record selection and ordering/grouping criteria.

4. Perform specified join criteria.

If file &13 in library &1 is a logical file then member &8 of physical file &6 in library
&7 is the actual file in join position &10.

A file name starting with *TEMPX for the access path indicates it is a temporary
access path built over file &6.

A file name starting with *N or *QUERY for the file indicates it is a temporary file.

Index only access was used for this file within the query: &11.

A value of *YES for index only access processing indicates that all of the fields used
from this file for this query can be found within the access path of file &3. A value
of *NO indicates that index only access could not be performed for this access path.

Index only access is generally a performance advantage since all of the data can be
extracted from the access path and the data space does not have to be paged into
active memory.

Recovery Text:

Generally, to force a file to be processed in join position 1, specify an order by field
from that file only.

If ordering is desired, specifying ORDER BY fields over more than one file forces the
creation of a temporary file and allows the optimizer to optimize the join order of all
the files. No file is forced to be first.

An access path can only be considered for index only access if all of the fields used
within the query for this file are also key fields for that access path.

Refer to “Data access on DB2 UDB for iSeries: data access paths and methods” on
page 8 for additional tips on optimizing a query's join order and index only access.

This message provides the join position of the specified table when an index is used to access the table's
data. Join position pertains to the order in which the tables are joined.

CPI4327 - File &12 &13 processed in join position &10

CPI4327

Message Text: &12 &13 processed in join position &10.

Cause Text:

Arrival sequence access was used to select records from member &2 of file &13 in
library &1.

If file &13 in library &1 is a logical file then member &8 of physical file &6 in library
&7 is the actual file in join position &10.

A file name that starts with *QUERY for the file indicates it is a temporary file.

Recovery Text:
Generally, to force a file to be processed in join position 1, specify an order by field
from that file only.

Performance and query optimization 295

CPI4328 - Access path of file &3 was used by query

CPI4328

Message Text: Access path of file &3 was used by query.

Cause Text:

Access path for member &5 of file &3 in library &4 was used to access records from
member &2 of &12 &13 in library &1 for reason code &9. The reason codes and their
meanings follow:

1. Record selection.

2. Ordering/grouping criteria.

3. Record selection and ordering/grouping criteria.

If file &13 in library &1 is a logical file then member &8 of physical file &6 in library
&7 is the actual file being accessed.

Index only access was used for this query: &11.

A value of *YES for index only access processing indicates that all of the fields used
for this query can be found within the access path of file &3. A value of *NO
indicates that index only access could not be performed for this access path.

Index only access is generally a performance advantage since all of the data can be
extracted from the access path and the data space does not have to be paged into
active memory.

Recovery Text:

An access path can only be considered for index only access if all of the fields used
within the query for this file are also key fields for that access path.

Refer to “Data access on DB2 UDB for iSeries: data access paths and methods” on
page 8 for additional tips on index only access.

This message names an existing index that was used by the query.

The reason the index was used is given in the message help.

CPI4329 - Arrival sequence access was used for &12 &13

CPI4329

Message Text: Arrival sequence access was used for &12 &13.

Cause Text:

Arrival sequence access was used to select records from member &2 of file &13 in
library &1.

If file &13 in library &1 is a logical file then member &8 of physical file &6 in library
&7 is the actual file from which records are being selected.

A file name starting with *N or *QUERY for the file indicates it is a temporary file.

Recovery Text:

The use of an access path may improve the performance of the query if record
selection is specified.

If an access path does not exist, you may want to create one whose left-most key
fields match fields in the record selection. Matching more key fields in the access
path with fields in the record selection will result in improved performance.

Generally, to force the use of an existing access path, specify order by fields that
match the left-most key fields of that access path.

For more information refer to “Data access on DB2 UDB for iSeries: data access
paths and methods” on page 8.

296 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

If an index does not exist, you may want to create one whose key column matches one of the columns in
the row selection. You should only create an index if the row selection (WHERE clause) selects 20% or
fewer rows in the table. To force the use of an existing index, change the ORDER BY clause of the query
to specify the first key column of the index, or ensure that the query is running under a first I/O
environment.

CPI432A - Query optimizer timed out for file &1

CPI432A

Message Text: Query optimizer timed out for file &1.

Cause Text:

The query optimizer timed out before it could consider all access paths built over
member &3 of file &1 in library &2.

The list below shows the access paths considered before the optimizer timed out. If
file &1 in library &2 is a logical file then the access paths specified are actually built
over member &9 of physical file &7 in library &8.

Following each access path name in the list is a reason code which explains why the
access path was not used. A reason code of 0 indicates that the access path was used
to implement the query.

The reason codes and their meanings follow:

1. Access path was not in a valid state. The system invalidated the access path.

2. Access path was not in a valid state. The user requested that the access path be
rebuilt.

3. Access path is a temporary access path (resides in library QTEMP) and was not
specified as the file to be queried.

4. The cost to use this access path, as determined by the optimizer, was higher
than the cost associated with the chosen access method.

5. The keys of the access path did not match the fields specified for the
ordering/grouping criteria.

6. The keys of the access path did not match the fields specified for the join
criteria.

7. Use of this access path would not minimize delays when reading records from
the file as the user requested.

8. The access path cannot be used for a secondary file of the join query because it
contains static select/omit selection criteria. The join-type of the query does not
allow the use of select/omit access paths for secondary files.

9. File &1 contains record ID selection. The join-type of the query forces a
temporary access path to be built to process the record ID selection.

10. and greater - View the second level message text of the next message issued
(CPI432D) for an explanation of these reason codes.

Recovery Text:

To ensure an access path is considered for optimization specify that access path to be
the queried file. The optimizer will first consider the access path of the file specified
on the query. SQL-created indexes cannot be queried but can be deleted and
recreated to increase the chance they will be considered during query optimization.

The user may want to delete any access paths no longer needed.

The optimizer stops considering indexes when the time spent optimizing the query exceeds an internal
value that corresponds to the estimated time to run the query and the number of rows in the queried
tables. Generally, the more rows in the tables, the greater the number of indexes that will be considered.

When the estimated time to run the query is exceeded, the optimizer does not consider any more indexes
and uses the current best method to implement the query. Either an index has been found to get the best

Performance and query optimization 297

performance, or an index will have to be created. If the actual time to execute the query exceeds the
estimated run time this may indicate the optimizer did not consider the best index.

The message help contains a list of indexes that were considered before the optimizer timed out. By
viewing this list of indexes, you may be able to determine if the optimizer timed out before the best
index was considered.

To ensure that an index is considered for optimization, specify the logical file associated with the index as
the table to be queried. The optimizer will consider the index of the table specified on the query or SQL
statement first. Remember that SQL indexes cannot be queried.

You may want to delete any indexes that are no longer needed.
Related reference

“CPI432D - Additional access path reason codes were used” on page 299

CPI432B - Subselects processed as join query

CPI423B

Message Text: Subselects processed as join query.

Cause Text:
Two or more SQL subselects were combined together by the query optimizer and
processed as a join query. Processing subselects as a join query generally results in
improved performance.

Recovery Text: None — Generally, this method of processing is a good performing option.

CPI432C - All access paths were considered for file &1

CPI432C

Message Text: All access paths were considered for file &1.

298 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

CPI432C

Cause Text:

The query optimizer considered all access paths built over member &3 of file &1 in
library &2.

The list below shows the access paths considered. If file &1 in library &2 is a logical
file then the access paths specified are actually built over member &9 of physical file
&7 in library &8.

Following each access path name in the list is a reason code which explains why the
access path was not used. A reason code of 0 indicates that the access path was used
to implement the query.

The reason codes and their meanings follow:

1. Access path was not in a valid state. The system invalidated the access path.

2. Access path was not in a valid state. The user requested that the access path be
rebuilt.

3. Access path is a temporary access path (resides in library QTEMP) and was not
specified as the file to be queried.

4. The cost to use this access path, as determined by the optimizer, was higher
than the cost associated with the chosen access method.

5. The keys of the access path did not match the fields specified for the
ordering/grouping criteria. For distributed file queries, the access path keys
must exactly match the ordering fields if the access path is to be used when
ALWCPYDTA(*YES or *NO) is specified.

6. The keys of the access path did not match the fields specified for the join
criteria.

7. Use of this access path would not minimize delays when reading records from
the file. The user requested to minimize delays when reading records from the
file.

8. The access path cannot be used for a secondary file of the join query because it
contains static select/omit selection criteria. The join-type of the query does not
allow the use of select/omit access paths for secondary files.

9. File &1 contains record ID selection. The join-type of the query forces a
temporary access path to be built to process the record ID selection.

10. and greater - View the second level message text of the next message issued
(CPI432D) for an explanation of these reason codes.

Recovery Text: The user may want to delete any access paths no longer needed.

The optimizer considered all indexes built over the specified table. Since the optimizer examined all
indexes for the table, it determined the current best access to the table.

The message help contains a list of the indexes. With each index a reason code is added. The reason code
explains why the index was or was not used.
Related reference

“CPI432D - Additional access path reason codes were used”

CPI432D - Additional access path reason codes were used

CPI432D

Message Text: Additional access path reason codes were used.

Performance and query optimization 299

CPI432D

Cause Text:

Message CPI432A or CPI432C was issued immediately before this message. Because
of message length restrictions, some of the reason codes used by messages CPI432A
and CPI432C are explained below rather than in those messages.

The reason codes and their meanings follow:

v 10 - The user specified ignore decimal data errors on the query. This disallows the
use of permanent access paths.

v 11 - The access path contains static select/omit selection criteria which is not
compatible with the selection in the query.

v 12 - The access path contains static select/omit selection criteria whose
compatibility with the selection in the query could not be determined. Either the
select/omit criteria or the query selection became too complex during
compatibility processing.

v 13 - The access path contains one or more keys which may be changed by the
query during an insert or update.

v 14 - The access path is being deleted or is being created in an uncommitted unit of
work in another process.

v 15 - The keys of the access path matched the fields specified for the
ordering/grouping criteria. However, the sequence table associated with the
access path did not match the sequence table associated with the query.

v 16 - The keys of the access path matched the fields specified for the join criteria.
However, the sequence table associated with the access path did not match the
sequence table associated with the query.

v 17 - The left-most key of the access path did not match any fields specified for the
selection criteria. Therefore, key row positioning could not be performed, making
the cost to use this access path higher than the cost associated with the chosen
access method.

v 18 - The left-most key of the access path matched a field specified for the selection
criteria. However, the sequence table associated with the access path did not
match the sequence table associated with the query. Therefore, key row
positioning could not be performed, making the cost to use this access path higher
than the cost associated with the chosen access method.

v 19 - The access path cannot be used because the secondary file of the join query is
a select/omit logical file. The join-type requires that the select/omit access path
associated with the secondary file be used or, if dynamic, that an access path be
created by the system.

Recovery Text: See prior message CPI432A or CPI432C for more information.

Message CPI432A or CPI432C was issued immediately before this message. Because of message length
restrictions, some of the reason codes used by messages CPI432A and CPI432C are explained in the
message help of CPI432D. Use the message help from this message to interpret the information returned
from message CPI432A or CPI432C.
Related reference

“CPI432A - Query optimizer timed out for file &1” on page 297
“CPI432C - All access paths were considered for file &1” on page 298

CPI432F - Access path suggestion for file &1

CPI432F

Message Text: Access path suggestion for file &1.

300 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

CPI432F

Cause Text:

To improve performance the query optimizer is suggesting a permanent access path
be built with the key fields it is recommending. The access path will access records
from member &3 of file &1 in library &2.

In the list of key fields that follow, the query optimizer is recommending the first
&10 key fields as primary key fields. The remaining key fields are considered
secondary key fields and are listed in order of expected selectivity based on this
query. Primary key fields are fields that significantly reduce the number of keys
selected based on the corresponding selection predicate. Secondary key fields are
fields that may or may not significantly reduce the number of keys selected. It is up
to the user to determine the true selectivity of secondary key fields and to determine
whether those key fields should be used when creating the access path.

The query optimizer is able to perform key positioning over any combination of the
primary key fields, plus one additional secondary key field. Therefore it is important
that the first secondary key field be the most selective secondary key field. The
query optimizer will use key selection with any remaining secondary key fields.
While key selection is not as fast as key positioning it can still reduce the number of
keys selected. Hence, secondary key fields that are fairly selective should be
included. When building the access path all primary key fields should be specified
first followed by the secondary key fields which are prioritized by selectivity. The
following list contains the suggested primary and secondary key fields:

&11.

If file &1 in library &2 is a logical file then the access path should be built over
member &9 of physical file &7 in library &8.

Recovery Text:

If this query is run frequently, you may want to create the suggested access path for
performance reasons. It is possible that the query optimizer will choose not to use
the access path just created.

For more information, refer to “Data access on DB2 UDB for iSeries: data access
paths and methods” on page 8.

CPI4330 - &6 tasks used for parallel &10 scan of file &1

CPI4330

Message Text: &6 tasks used for parallel &10 scan of file &1.

Performance and query optimization 301

CPI4330

Cause Text:

&6 is the average numbers of tasks used for a &10 scan of member &3 of file &1 in
library &2.

If file &1 in library &2 is a logical file, then member &9 of physical file &7 in library
&8 is the actual file from which records are being selected.

A file name starting with *QUERY or *N for the file indicates a temporary result file
is being used.

The query optimizer has calculated that the optimal number of tasks is &5 which
was limited for reason code &4. The reason code definitions are:

1. The *NBRTASKS parameter value was specified for the DEGREE parameter of
the CHGQRYA CL command.

2. The optimizer calculated the number of tasks which would use all of the central
processing units (CPU).

3. The optimizer calculated the number of tasks which can efficiently run in this
job's share of the memory pool.

4. The optimizer calculated the number of tasks which can efficiently run using the
entire memory pool

5. The optimizer limited the number of tasks to equal the number of disk units
which contain the file's data.

The database manager may further limit the number of tasks used if the allocation
of the file's data is not evenly distributed across disk units.

Recovery Text:

To disallow usage of parallel &10 scan, specify *NONE on the query attribute
degree.

A larger number of tasks might further improve performance. The following actions
based on the optimizer reason code might allow the optimizer to calculate a larger
number:

1. Specify a larger number of tasks value for the DEGREE parameter of the
CHGQRYA CL command. Start with a value for number of tasks which is a
slightly larger than &5

2. Simplify the query by reducing the number of fields being mapped to the result
buffer or by removing expressions. Also, try specifying a number of tasks as
described by reason code 1.

3. Specify *MAX for the query attribute DEGREE.

4. Increase the size of the memory pool.

5. Use the CHGPF CL command or the SQL ALTER statement to redistribute the
file's data across more disk units.

CPI4331 - &6 tasks used for parallel index created over file

CPI4331

Message Text: &6 tasks used for parallel index created over file &1.

302 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

CPI4331

Cause Text:

&6 is the average numbers of tasks used for an index created over member &3 of
file &1 in library &2.

If file &1 in library &2 is a logical file, then member &9 of physical file &7 in library
&8 is the actual file over which the index is being built.

A file name starting with *QUERY or *N for the file indicates a temporary result file
is being used.

The query optimizer has calculated that the optimal number of tasks is &5 which
was limited for reason code &4. The definition of reason codes are:

1. The *NBRTASKS parameter value was specified for the DEGREE parameter of
the CHGQRYA CL command.

2. The optimizer calculated the number of tasks which would use all of the central
processing units (CPU).

3. The optimizer calculated the number of tasks which can efficiently run in this
job's share of the memory pool.

4. The optimizer calculated the number of tasks which can efficiently run using the
entire memory pool.

The database manager may further limit the number of tasks used for the parallel
index build if either the allocation of the file's data is not evenly distributed across
disk units or the system has too few disk units.

Recovery Text:

To disallow usage of parallel index build, specify *NONE on the query attribute
degree.

A larger number of tasks might further improve performance. The following actions
based on the reason code might allow the optimizer to calculate a larger number:

1. Specify a larger number of tasks value for the DEGREE parameter of the
CHGQRYA CL command. Start with a value for number of tasks which is a
slightly larger than &5 to see if a performance improvement is achieved.

2. Simplify the query by reducing the number of fields being mapped to the result
buffer or by removing expressions. Also, try specifying a number of tasks for the
DEGREE parameter of the CHGQRYA CL command as described by reason code
1.

3. Specify *MAX for the query attribute degree.

4. Increase the size of the memory pool.

CPI4332 - &1 host variables used in query

CPI4332

Message Text: &1 host variables used in query.

Cause Text:

There were &1 host variables defined for use in the query. The values used for the
host variables for this open of the query follow: &2.

The host variables values displayed above may have been special values. An
explanation of the special values follow:

v DBCS data is displayed in hex format.

v *N denotes a value of NULL.

v *Z denotes a zero length string.

v *L denotes a value too long to display in the replacement text.

v *U denotes a value that could not be displayed.

Recovery Text: None

Performance and query optimization 303

CPI4333 - Hashing algorithm used to process join

CPI4333

Message Text: Hashing algorithm used to process join.

Cause Text:

The hash join method is typically used for longer running join queries. The original
query will be subdivided into hash join steps.

Each hash join step will be optimized and processed separately. Debug messages
which explain the implementation of each hash join step follow this message in the
joblog.

The list below shows the names of the files or the table functions used in this query.
If the entry is for a file, the format of the entry in this list is the number of the hash
join step, the filename as specified in the query, the member name as specified in the
query, the filename actually used in the hash join step, and the member name
actually used in the hash join step. If the entry is for a table function, the format of
the entry in this list is the number of the hash join step and the function name as
specified in the query.

If there are two or more files or functions listed for the same hash step, then that
hash step is implemented with nested loop join.

Recovery Text:
The hash join method is usually a good implementation choice, however, if you
want to disallow the use of this method specify ALWCPYDTA(*YES).

CPI4334 - Query implemented as reusable ODP

CPI4334

Message Text: Query implemented as reusable ODP.

Cause Text:

The query optimizer built the access plan for this query such that a reusable open
data path (ODP) will be created. This plan will allow the query to be run repeatedly
for this job without having to rebuild the ODP each time. This normally improves
performance because the ODP is created only once for the job.

Recovery Text: Generally, reusable ODPs perform better than non-reusable ODPs.

CPI4335 - Optimizer debug messages for hash join step &1 follow

CPI4335

Message Text: Optimizer debug messages for hash join step &1 follow

Cause Text:
This join query is implemented using the hash join algorithm. The optimizer debug
messages that follow provide the query optimization information about hash join
step &1.

Recovery Text:
Refer to “Data access on DB2 UDB for iSeries: data access paths and methods” on
page 8 for more information about hashing algorithm for join processing.

CPI4336 - Group processing generated

CPI4336

Message Text: Group processing generated.

Cause Text:
Group processing (GROUP BY) was added to the query step. Adding the group
processing reduced the number of result records which should, in turn, improve the
performance of subsequent steps.

Recovery Text:
For more information refer to “Data access on DB2 UDB for iSeries: data access
paths and methods” on page 8

304 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

CPI4337 - Temporary hash table build for hash join step &1

CPI4337

Message Text: Temporary hash table built for hash join step &1.

Cause Text:

A temporary hash table was created to contain the results of hash join step &1. This
process took &2 minutes and &3 seconds. The temporary hash table created contains
&4 records. The total size of the temporary hash table in units of 1024 bytes is &5. A
list of the fields which define the hash keys follow:

Recovery Text:
Refer to “Data access on DB2 UDB for iSeries: data access paths and methods” on
page 8 for more information about hashing algorithm for join processing.

CPI4338 - &1 Access path(s) used for bitmap processing of file &2

CPI4338

Message Text: &1 Access path(s) used for bitmap processing of file &2.

Cause Text:

Bitmap processing was used to access records from member &4 of file &2 in library
&3.

Bitmap processing is a method of allowing one or more access path(s) to be used to
access the selected records from a file. Using bitmap processing, record selection is
applied against each access path, similar to key row positioning, to create a bitmap.
The bitmap has marked in it only the records of the file that are to be selected. If
more than one access path is used, the resulting bitmaps are merged together using
boolean logic. The resulting bitmap is then used to reduce access to just those
records actually selected from the file.

Bitmap processing is used in conjunction with the two primary access methods:
arrival sequence (CPI4327 or CPI4329) or keyed access (CPI4326 or CPI4328). The
message that describes the primary access method immediately precedes this
message.

When the bitmap is used with the keyed access method then it is used to further
reduce the number of records selected by the primary access path before retrieving
the selected records from the file.

When the bitmap is used with arrival sequence then it allows the sequential scan of
the file to skip records which are not selected by the bitmap. This is called skip
sequential processing.

The list below shows the names of the access paths used in the bitmap processing:

If file &2 in library &3 is a logical file then member &7 of physical file &5 in library
&6 is the actual file being accessed.

Recovery Text:
Refer to “Data access on DB2 UDB for iSeries: data access paths and methods” on
page 8 for more information about bitmap processing.

The optimizer chooses to use one or more indexes, in conjunction with the query selection (WHERE
clause), to build a bitmap. This resulting bitmap indicates which rows will actually be selected.

Conceptually, the bitmap contains one bit per row in the underlying table. Corresponding bits for
selected rows are set to '1'. All other bits are set to '0'.

Once the bitmap is built, it is used, as appropriate, to avoid mapping in rows from the table not selected
by the query. The use of the bitmap depends on whether the bitmap is used in combination with the
arrival sequence or with a primary index.

Performance and query optimization 305

When bitmap processing is used with arrival sequence, either message CPI4327 or CPI4329 will precede
this message. In this case, the bitmap will help to selectively map only those rows from the table that the
query selected.

When bitmap processing is used with a primary index, either message CPI4326 or CPI4328 will precede
this message. Rows selected by the primary index will be checked against the bitmap before mapping the
row from the table.

CPI433D - Query options used to build the i5/OS query access plan

CPI433D

Message Text: Query options used to build the i5/OS query access plan.

Cause Text:
The access plan that was saved was created with query options retrieved from file
&2 in library &1.

Recovery Text: None

CPI433F - Multiple join classes used to process join

CPI433F

Message Text: Multiple join classes used to process join.

Cause Text:

Multiple join classes are used when join queries are written that have conflicting
operations or cannot be implemented as a single query.

Each join class step will be optimized and processed separately. Debug messages
detailing the implementation of each join class follow this message in the joblog.

The list below shows the file names of the files used in this query. The format of
each entry in this list is the number of the join class step, the number of the join
position in the join class step, the file name as specified in the query, the member
name as specified in the query, the file name actually used in the join class step, and
the member name actually used in the join class step.

Recovery Text: Refer to “Join optimization” on page 46 for more information about join classes.

CPI4340 - Optimizer debug messages for join class step &1 follow

CPI4340

Message Text: Optimizer debug messages for join class step &1 follow:

Cause Text:
This join query is implemented using multiple join classes. The optimizer debug
messages that follow provide the query optimization information about join class
step &1.

Recovery Text: Refer to “Join optimization” on page 46 for more information about join classes.

CPI4341 - Performing distributed query

CPI4341

Message Text: Performing distributed query.

Cause Text:
Query contains a distributed file. The query was processed in parallel on the
following nodes: &1.

Recovery Text:
For more information about processing of distributed files, refer to the Distributed
Database Programming.

306 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

CPI4342 - Performing distributed join for query

CPI4342

Message Text: Performing distributed join for query.

Cause Text:

Query contains join criteria over a distributed file and a distributed join was
performed, in parallel, on the following nodes: &1.

The library, file and member names of each file involved in the join follow: &2.

A file name beginning with *QQTDF indicates it is a temporary distributed result file
created by the query optimizer and it will not contain an associated library or
member name.

Recovery Text:
For more information about processing of distributed files, refer to the Distributed
Database Programming.

CPI4343 - Optimizer debug messages for distributed query step &1 of &2 follow:

CPI4343

Message Text: Optimizer debug messages for distributed query step &1 of &2 follow:

Cause Text:
A distributed file was specified in the query which caused the query to be processed
in multiple steps. The optimizer debug messages that follow provide the query
optimization information about distributed step &1 of &2 total steps.

Recovery Text:
For more information about processing of distributed files, refer to the Distributed
Database Programming.

CPI4345 - Temporary distributed result file &3 built for query

CPI4345

Message Text: Temporary distributed result file &3 built for query.

Cause Text:

Temporary distributed result file &3 was created to contain the intermediate results
of the query for reason code &6. The reason codes and their meanings follow:

1. Data from member &2 of &7 &8 in library &1 was directed to other nodes.

2. Data from member &2 of &7 &8 in library &1 was broadcast to all nodes.

3. Either the query contains grouping fields (GROUP BY) that do not match the
partitioning keys of the distributed file or the query contains grouping criteria
but no grouping fields were specified or the query contains a subquery.

4. Query contains join criteria over a distributed file and the query was processed
in multiple steps.

A library and member name of *N indicates the data comes from a query temporary
distributed file.

File &3 was built on nodes: &9.

It was built using partitioning keys: &10.

A partitioning key of *N indicates no partitioning keys were used when building the
temporary distributed result file.

Performance and query optimization 307

CPI4345

Recovery Text:

If the reason code is:

1. Generally, a file is directed when the join fields do not match the partitioning
keys of the distributed file. When a file is directed, the query is processed in
multiple steps and processed in parallel. A temporary distributed result file is
required to contain the intermediate results for each step.

2. Generally, a file is broadcast when join fields do not match the partitioning keys
of either file being joined or the join operator is not an equal operator. When a
file is broadcast the query is processed in multiple steps and processed in
parallel. A temporary distributed result file is required to contain the
intermediate results for each step.

3. Better performance may be achieved if grouping fields are specified that match
the partitioning keys.

4. Because the query is processed in multiple steps, a temporary distributed result
file is required to contain the intermediate results for each step. See preceding
message CPI4342 to determine which files were joined together.

For more information about processing of distributed files, refer to the Distributed
Database Programming,

CPI4346 - Optimizer debug messages for query join step &1 of &2 follow:

CPI4346

Message Text: Optimizer debug messages for query join step &1 of &2 follow:

Cause Text:
Query processed in multiple steps. The optimizer debug messages that follow
provide the query optimization information about join step &1 of &2 total steps.

Recovery Text: No recovery necessary.

CPI4347 - Query being processed in multiple steps

CPI4347

Message Text: Query being processed in multiple steps.

Cause Text

The original query will be subdivided into multiple steps.

Each step will be optimized and processed separately. Debug messages which
explain the implementation of each step follow this message in the joblog.

The list below shows the file names of the files used in this query. The format of
each entry in this list is the number of the join step, the filename as specified in the
query, the member name as specified in the query, the filename actually used in the
step, and the member name actually used in the step.

Recovery Text: No recovery necessary.

CPI4348 - The ODP associated with the cursor was hard closed

CPI4348

Message Text: The ODP associated with the cursor was hard closed.

308 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

CPI4348

Cause Text:

The Open Data Path (ODP) for this statement or cursor has been hard closed for
reason code &1. The reason codes and their meanings follow:

1. Either the length of the new LIKE pattern is zero and the length of the old LIKE
pattern is nonzero or the length of the new LIKE pattern is nonzero and the
length of the old LIKE pattern is zero.

2. An additional wildcard was specified in the LIKE pattern on this invocation of
the cursor.

3. SQL indicated to the query optimizer that the cursor cannot be refreshed.

4. The system code could not obtain a lock on the file being queried.

5. The length of the host variable value is too large for the host variable as
determined by the query optimizer.

6. The size of the ODP to be refreshed is too large.

7. Refresh of the local ODP of a distributed query failed.

8. SQL hard closed the cursor prior to the fast path refresh code.

Recovery Text:
In order for the cursor to be used in a reusable mode, the cursor cannot be hard
closed. Look at the reason why the cursor was hard closed and take the appropriate
actions to prevent a hard close from occurring.

CPI4349 - Fast past refresh of the host variables values is not possible

CPI4349

Message Text: Fast past refresh of the host variable values is not possible.

Cause Text:

The Open Data Path (ODP) for this statement or cursor could not invoke the fast
past refresh code for reason code &1. The reason codes and their meanings follow:

1. The new host variable value is not null and old host variable value is null or
the new host variable value is zero length and the old host variable value is not
zero length.

2. The attributes of the new host variable value are not the same as the attributes
of the old host variable value.

3. The length of the host variable value is either too long or too short. The length
difference cannot be handled in the fast path refresh code.

4. The host variable has a data type of IGC ONLY and the length is not even or is
less than 2 bytes.

5. The host variable has a data type of IGC ONLY and the new host variable value
does not contain an even number of bytes.

6. A translate table with substitution characters was used.

7. The host variable contains DBCS data and a CCSID translate table with
substitution characters is required.

8. The host variable contains DBCS that is not well formed. That is, a shift-in
without a shift-out or visa versa.

9. The host variable must be translated with a sort sequence table and the sort
sequence table contains substitution characters.

10. The host variable contains DBCS data and must be translated with a sort
sequence table that contains substitution characters.

11. The host variable is a Date, Time or Timestamp data type and the length of the
host variable value is either too long or too short.

Recovery Text:
Look at the reason why fast path refresh could not be used and take the appropriate
actions so that fast path refresh can be used on the next invocation of this statement
or cursor.

Performance and query optimization 309

CPI434C - The query access plan was not rebuilt

CPI434C

Message Text: The query access plan was not rebuilt.

Cause Text:

The access plan for this query was not rebuilt. The optimizer determined that this
access plan should be rebuilt for reason code &13. However, the query attributes in
the QAQQINI file disallowed the optimizer from rebuilding this access plan at this
time.

For a full explanation of the reason codes and their meanings, view the second level
text of the message CPI4323.

Recovery Text:

Since the query attributes disallowed the query access plan from being rebuilt, the
query will continue to be implemented with the existing access plan. This access
plan may not contain all of the performance benefits that may have been derived
from rebuilding the access plan.

For more information about query attributes refer to “Change the attributes of your
queries with the Change Query Attributes (CHGQRYA) command” on page 117

Related reference

“CPI4323 - The query access plan has been rebuilt” on page 291

CPI4350 - Materialized query tables were considered for optimization

CPI4350

Message Text: Materialized query tables were considered for optimization.

310 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

CPI4350

Cause Text:

The query optimizer considered usage of materialized query tables for this query.
Following each materialized query table name in the list is a reason code which
explains why the materialized query table was not used. A reason code of 0
indicates that the materialized query table was used to implement the query.

The reason codes and their meanings follow:

1. The cost to use the materialized query table, as determined by the optimizer,
was higher than the cost associated with the chosen implementation.

2. The join specified in the materialized query was not compatible with the query.

3. The materialized query table had predicates that were not matched in the query.

4. The grouping or distinct specified in the materialized query table is not
compatible with the grouping or distinct specified in the query.

5. The query specified columns that were not in the select-list of the materialized
query table.

6. The materialized query table query contains functionality that is not supported
by the query optimizer.

7. The materialized query table specified the DISABLE QUERY OPTIMIZATION
clause.

8. The ordering specified in the materialized query table is not compatible with
the ordering specified in the query.

9. The query contains functionality that is not supported by the materialized query
table matching algorithm.

10. Materialized query tables may not be used for this query.

11. The refresh age of this materialized query table exceeds the duration specified
by the MATERIALIZED_QUERY_TABLE_REFRESH_AGE QAQQINI option.

12. The commit level of the materialized query table is lower than the commit level
specified for the query.

13. The FETCH FOR FIRST n ROWS clause of the materialized query table is not
compatible with the query.

14. The QAQQINI options used to create the materialized query table are not
compatible with the QAQQINI options used to run this query.

15. The materialized query table is not usable.

16. The UNION specified in the materialized query table is not compatible with the
query.

17. The constants specified in the materialized query table are not compatible with
host variable values specified in the query.

Recovery Text:
The user may want to delete any materialized query tables that are no longer
needed.

CPI4351 - Additional reason codes for query access plan has been rebuilt.

CPI4351

Message Text: Additional reason codes for query access plan has been rebuilt.

Cause Text:

Message CPI4323 was issued immediately before this message. Because of message
length restrictions, some of the reason codes used by message CPI4323 are explained
below rather than in that message. The CPI4323 message was issued for reason code
&13. The additional reason codes and their meaning follow:

v 20 - Referential or check constraints for member &19 of file &17 in library &18
have changed since the access plan was generated.

v 21 - Materialized query tables for member &22 of file &20 in library &21 have
changed since the access plan was generated. If the file is *N then the file name is
not available.

Performance and query optimization 311

CPI4351

Recovery Text: See the prior message CPI4323 for more information.

Related reference

“CPI4323 - The query access plan has been rebuilt” on page 291

Query optimization performance information messages and open data
paths
Several of the following SQL run-time messages refer to open data paths.

An open data path (ODP) definition is an internal object that is created when a cursor is opened or when
other SQL statements are run. It provides a direct link to the data so that I/O operations can occur. ODPs
are used on OPEN, INSERT, UPDATE, DELETE, and SELECT INTO statements to perform their
respective operations on the data.

Even though SQL cursors are closed and SQL statements have already been run, the database manager in
many cases will save the associated ODPs of the SQL operations to reuse them the next time the
statement is run. So an SQL CLOSE statement may close the SQL cursor but leave the ODP available to
be used again the next time the cursor is opened. This can significantly reduce the processing and
response time in running SQL statements.

The ability to reuse ODPs when SQL statements are run repeatedly is an important consideration in
achieving faster performance.

SQL7910 - All SQL cursors closed

SQL7910

Message Text: SQL cursors closed.

Cause Text:

SQL cursors have been closed and all Open Data Paths (ODPs) have been deleted,
except those that were opened by programs with the CLOSQLCSR(*ENDJOB) option
or were opened by modules with the CLOSQLCSR(*ENDACTGRP) option. All SQL
programs on the call stack have completed, and the SQL environment has been
exited. This process includes the closing of cursors, the deletion of ODPs, the
removal of prepared statements, and the release of locks.

Recovery Text:

To keep cursors, ODPs, prepared statements, and locks available after the completion
of a program, use the CLOSQLCSR precompile parameter.

v The *ENDJOB option will allow the user to keep the SQL resources active for the
duration of the job

v The *ENDSQL option will allow the user to keep SQL resources active across
program calls, provided the SQL environment stays resident. Running an SQL
statement in the first program of an application will keep the SQL environment
active for the duration of that application.

v The *ENDPGM option, which is the default for non-Integrated Language
Environment® (ILE) programs, causes all SQL resources to only be accessible by
the same invocation of a program. Once an *ENDPGM program has completed, if
it is called again, the SQL resources are no longer active.

v The *ENDMOD option causes all SQL resources to only be accessible by the same
invocation of the module.

v The *ENDACTGRP option, which is the default for ILE modules, will allow the
user to keep the SQL resources active for the duration of the activation group.

This message is sent when the job's call stack no longer contains a program that has run an SQL
statement.

312 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

Unless CLOSQLCSR(*ENDJOB) or CLOSQLCSR(*ENDACTGRP) was specified, the SQL environment for
reusing ODPs across program calls exists only until the active programs that ran the SQL statements
complete.

Except for ODPs associated with *ENDJOB or *ENDACTGRP cursors, all ODPs are deleted when all the
SQL programs on the call stack complete and the SQL environment is exited.

This completion process includes closing of cursors, the deletion of ODPs, the removal of prepared
statements, and the release of locks.

Putting an SQL statement that can be run in the first program of an application keeps the SQL
environment active for the duration of that application. This allows ODPs in other SQL programs to be
reused when the programs are repeatedly called. CLOSQLCSR(*ENDJOB) or
CLOSQLCSR(*ENDACTGRP) can also be specified.

SQL7911 - ODP reused

SQL7911

Message Text: ODP reused.

Cause Text:

An ODP that was previously created has been reused. There was a reusable Open
Data Path (ODP) found for this SQL statement, and it has been used. The reusable
ODP may have been from the same call to a program or a previous call to the
program. A reuse of an ODP will not generate an OPEN entry in the journal.

Recovery Text: None

This message indicates that the last time the statement was run or when a CLOSE statement was run for
this cursor, the ODP was not deleted. It will now be used again. This should be an indication of very
efficient use of resources by eliminating unnecessary OPEN and CLOSE operations.

SQL7912 - ODP created

SQL7912

Message Text: ODP created.

Cause Text:

An Open Data Path (ODP) has been created. No reusable ODP could be found. This
occurs in the following cases:

v This is the first time the statement has been run.

v A RCLRSC has been issued since the last run of this statement.

v The last run of the statement caused the ODP to be deleted.

v If this is an OPEN statement, the last CLOSE of this cursor caused the ODP to be
deleted.

v The Application Server (AS) has been changed by a CONNECT statement.

Recovery Text:

If a cursor is being opened many times in an application, it is more efficient to use a
reusable ODP, and not create an ODP every time. This also applies to repeated runs
of INSERT, UPDATE, DELETE, and SELECT INTO statements. If ODPs are being
created on every open, see the close message to determine why the ODP is being
deleted.

No ODP was found that could be used again. The first time that the statement is run or the cursor is
opened for a process, an ODP will always have to be created. However, if this message appears on every
run of the statement or open of the cursor, the tips recommended in “Retaining cursor positions for
non-ILE program calls” on page 173 should be applied to this application.

Performance and query optimization 313

SQL7913 - ODP deleted

SQL7913

Message Text: ODP deleted.

Cause Text:

The Open Data Path (ODP) for this statement or cursor has been deleted. The ODP
was not reusable. This could be caused by using a host variable in a LIKE clause,
ordering on a host variable, or because the query optimizer chose to accomplish the
query with an ODP that was not reusable.

Recovery Text: See previous query optimizer messages to determine how the cursor was opened.

For a program that is run only once per job, this message could be normal. However, if this message
appears on every run of the statement or open of the cursor, then the tips recommended in “Retaining
cursor positions for non-ILE program calls” on page 173 should be applied to this application.

SQL7914 - ODP not deleted

SQL7914

Message Text: ODP not deleted.

Cause Text:
The Open Data Path (ODP) for this statement or cursor has not been deleted. This
ODP can be reused on a subsequent run of the statement. This will not generate an
entry in the journal.

Recovery Text: None

If the statement is rerun or the cursor is opened again, the ODP should be available again for use.

SQL7915 - Access plan for SQL statement has been built

SQL7915

Message Text: Access plan for SQL statement has been built.

Cause Text:

SQL had to build the access plan for this statement at run time. This occurs in the
following cases:

v The program has been restored from a different release and this is the first time
this statement has been run.

v All the files required for the statement did not exist at precompile time, and this is
the first time this statement has been run.

v The program was precompiled using SQL naming mode, and the program owner
has changed since the last time the program was called.

Recovery Text:
This is normal processing for SQL. Once the access plan is built, it will be used on
subsequent runs of the statement.

The DB2 UDB for iSeries precompilers allow the creation of the program objects even when required
tables are missing. In this case the binding of the access plan is done when the program is first run. This
message indicates that an access plan was created and successfully stored in the program object.

SQL7916 - Blocking used for query

SQL7916

Message Text: Blocking used for query.

314 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

SQL7916

Cause Text:

Blocking has been used in the implementation of this query. SQL will retrieve a
block of records from the database manager on the first FETCH statement.
Additional FETCH statements have to be issued by the calling program, but they do
not require SQL to request more records, and therefore will run faster.

Recovery Text:
SQL attempts to utilize blocking whenever possible. In cases where the cursor is not
update capable, and commitment control is not active, there is a possibility that
blocking will be used.

SQL will request multiple rows from the database manager when running this statement instead of
requesting one row at a time.

SQL7917 - Access plan not updated

SQL7917

Message Text: Access plan not updated.

Cause Text:

The query optimizer rebuilt the access plan for this statement, but the program
could not be updated. Another job may be running the program. The program
cannot be updated with the new access plan until a job can obtain an exclusive lock
on the program. The exclusive lock cannot be obtained if another job is running the
program, if the job does not have proper authority to the program, or if the program
is currently being saved. The query will still run, but access plan rebuilds will
continue to occur until the program is updated.

Recovery Text:
See previous messages from the query optimizer to determine why the access plan
has been rebuilt. To ensure that the program gets updated with the new access plan,
run the program when no other active jobs are using it.

The database manager rebuilt the access plan for this statement, but the program could not be updated
with the new access plan. Another job is currently running the program that has a shared lock on the
access plan of the program.

The program cannot be updated with the new access plan until the job can obtain an exclusive lock on
the access plan of the program. The exclusive lock cannot be obtained until the shared lock is released.

The statement will still run and the new access plan will be used; however, the access plan will continue
to be rebuilt when the statement is run until the program is updated.

SQL7918 - Reusable ODP deleted

SQL7918

Message Text: Reusable ODP deleted. Reason code &1.

Performance and query optimization 315

SQL7918

Cause Text:

An existing Open Data Path (ODP) was found for this statement, but it could not be
reused for reason &1. The statement now refers to different files or uses different
override options than are in the ODP. Reason codes and their meanings are:

1. Commitment control isolation level is not compatible.

2. The statement contains SQL special register USER or CURRENT TIMEZONE,
and the value for one of these registers has changed.

3. The PATH used to locate an SQL function has changed.

4. The job default CCSID has changed.

5. The library list has changed, such that a file is found in a different library. This
only affects statements with unqualified table names, when the table exists in
multiple libraries.

6. The file, library, or member for the original ODP was changed with an override.

7. An OVRDBF or DLTOVR command has been issued. A file referred to in the
statement now refers to a different file, library, or member.

8. An OVRDBF or DLTOVR command has been issued, causing different override
options, such as different SEQONLY or WAITRCD values.

9. An error occurred when attempting to verify the statement override information
is compatible with the reusable ODP information.

10. The query optimizer has determined the ODP cannot be reused.

11. The client application requested not to reuse ODPs.

Recovery Text:
Do not change the library list, the override environment, or the values of the special
registers if reusable ODPs are to be used.

A reusable ODP exists for this statement, but either the job's library list or override specifications have
changed the query.

The statement now refers to different tables or uses different override specifications than are in the
existing ODP. The existing ODP cannot be reused, and a new ODP must be created. To make it possible
to reuse the ODP, avoid changing the library list or the override specifications.

SQL7919 - Data conversion required on FETCH or embedded SELECT

SQL7919

Message Text: Data conversion required on FETCH or embedded SELECT.

316 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

SQL7919

Cause Text:

Host variable &2 requires conversion. The data retrieved for the FETCH or
embedded SELECT statement cannot be directly moved to the host variables. The
statement ran correctly. Performance, however, would be improved if no data
conversion was required. The host variable requires conversion for reason &1

v Reason 1 - host variable &2 is a character or graphic string of a different length
than the value being retrieved.

v Reason 2 - host variable &2 is a numeric type that is different than the type of the
value being retrieved.

v Reason 3 - host variable &2 is a C character or C graphic string that is
NUL-terminated, the program was compiled with option *CNULRQD specified,
and the statement is a multiple-row FETCH.

v Reason 4 - host variable &2 is a variable length string and the value being
retrieved is not.

v Reason 5 - host variable &2 is not a variable length string and the value being
retrieved is.

v Reason 6 - host variable &2 is a variable length string whose maximum length is
different than the maximum length of the variable length value being retrieved.

v Reason 7 - a data conversion was required on the mapping of the value being
retrieved to host variable &2, such as a CCSID conversion

v Reason 8 - a DRDA connection was used to get the value being retrieved into host
variable &2. The value being retrieved is either null capable or varying-length, is
contained in a partial row, or is a derived expression.

v Reason 10 - the length of host variable &2 is too short to hold a TIME or
TIMESTAMP value being retrieved.

v Reason 11 - host variable &2 is of type DATE, TIME or TIMESTAMP, and the
value being retrieved is a character string.

v Reason 12 - too many host variables were specified and records are blocked. Host
variable &2 does not have a corresponding column returned from the query.

v Reason 13 - a DRDA connection was used for a blocked FETCH and the number
of host variables specified in the INTO clause is less than the number of result
values in the select list.

v Reason 14 - a LOB Locator was used and the commitment control level of the
process was not *ALL.

Recovery Text:
To get better performance, attempt to use host variables of the same type and length
as their corresponding result columns.

When mapping data to host variables, data conversions were required. When these statements are run in
the future, they will be slower than if no data conversions were required. The statement ran successfully,
but performance could be improved by eliminating the data conversion. For example, a data conversion
that would cause this message to occur would be the mapping of a character string of a certain length to
a host variable character string with a different length. You could also cause this error by mapping a
numeric value to a host variable that is a different type (decimal to integer). To prevent most conversions,
use host variables that are of identical type and length as the columns that are being fetched.

SQL7939 - Data conversion required on INSERT or UPDATE

SQL7939

Message Text: Data conversion required on INSERT or UPDATE.

Performance and query optimization 317

SQL7939

Cause Text:

The INSERT or UPDATE values cannot be directly moved to the columns because
the data type or length of a value is different than one of the columns. The INSERT
or UPDATE statement ran correctly. Performance, however, would be improved if no
data conversion was required. The reason data conversion is required is &1.

v Reason 1 is that the INSERT or UPDATE value is a character or graphic string of a
different length than column &2.

v Reason 2 is that the INSERT or UPDATE value is a numeric type that is different
than the type of column &2.

v Reason 3 is that the INSERT or UPDATE value is a variable length string and
column &2 is not.

v Reason 4 is that the INSERT or UPDATE value is not a variable length string and
column &2 is.

v Reason 5 is that the INSERT or UPDATE value is a variable length string whose
maximum length is different that the maximum length of column &2.

v Reason 6 is that a data conversion was required on the mapping of the INSERT or
UPDATE value to column &2, such as a CCSID conversion.

v Reason 7 is that the INSERT or UPDATE value is a character string and column
&2 is of type DATE, TIME, or TIMESTAMP.

v Reason 8 is that the target table of the INSERT is not a SQL table.

Recovery Text:
To get better performance, try to use values of the same type and length as their
corresponding columns.

The attributes of the INSERT or UPDATE values are different than the attributes of the columns receiving
the values. Since the values must be converted, they cannot be directly moved into the columns.
Performance could be improved if the attributes of the INSERT or UPDATE values matched the attributes
of the columns receiving the values.

PRTSQLINF message reference
The following are the messages returned from PRTSQLINF.

SQL400A - Temporary distributed result file &1 was created to contain join result

SQL400A

Message Text:
Temporary distributed result file &1 was created to contain join result. Result file
was directed

Cause Text:
Query contains join criteria over a distributed file and a distributed join was
performed in parallel. A temporary distributed result file was created to contain the
results of the distributed join.

Recovery Text:
For more information about processing of distributed files, refer to the Distributed
Database Programming information.

SQL400B - Temporary distributed result file &1 was created to contain join result

SQL400B

Message Text:
Temporary distributed result file &1 was created to contain join result. Result file
was broadcast

Cause Text:
Query contains join criteria over a distributed file and a distributed join was
performed in parallel. A temporary distributed result file was created to contain the
results of the distributed join.

Recovery Text:
For more information about processing of distributed files, refer to the Distributed
Database Programming information.

318 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

SQL400C - Optimizer debug messages for distributed query step &1 and &2 follow

SQL400C

Message Text: Optimizer debug messages for distributed query step &1 and &2 follow.

Cause Text:
A distributed file was specified in the query which caused the query to be processed
in multiple steps. The optimizer debug messages that follow provide the query
optimization information about the current step.

Recovery Text:
For more information about processing of distributed files, refer to the Distributed
Database Programming information.

SQL400D - GROUP BY processing generated

SQL400D

Message Text: GROUP BY processing generated

Cause Text:
GROUP BY processing was added to the query step. Adding the GROUP BY
reduced the number of result rows which should, in turn, improve the performance
of subsequent steps.

Recovery Text: For more information refer to the SQL Programming topic.

SQL400E - Temporary distributed result file &1 was created while processing
distributed subquery

SQL400E

Message Text:
Temporary distributed result file &1 was created while processing distributed
subquery

Cause Text:
A temporary distributed result file was created to contain the intermediate results of
the query. The query contains a subquery which requires an intermediate result.

Recovery Text:

Generally, if the fields correlated between the query and subquery do not match the
partition keys of the respective files, the query must be processed in multiple steps
and a temporary distributed file will be built to contain the intermediate results.

For more information about the processing of distributed files, refer to the
Distributed Database Programming information.

SQL4001 - Temporary result created

SQL4001

Message Text: Temporary result created.

Cause Text:

Conditions exist in the query which cause a temporary result to be created. One of
the following reasons may be the cause for the temporary result:

v The table is a join logical file and its join type (JDFTVAL) does not match the
join-type specified in the query.

v The format specified for the logical file refers to more than one physical table.

v The table is a complex SQL view requiring a temporary table to contain the results
of the SQL view.

v The query contains grouping columns (GROUP BY) from more than one table, or
contains grouping columns from a secondary table of a join query that cannot be
reordered.

Recovery Text:
Performance may be improved if the query can be changed to avoid temporary
results.

Performance and query optimization 319

SQL4002 - Reusable ODP sort used

SQL4002

Message Text: Reusable ODP sort used

Cause Text:

Conditions exist in the query which cause a sort to be used. This allowed the open
data path (ODP) to be reusable. One of the following reasons may be the cause for
the sort:

v The query contains ordering columns (ORDER BY) from more than one table, or
contains ordering columns from a secondary table of a join query that cannot be
reordered.

v The grouping and ordering columns are not compatible.

v DISTINCT was specified for the query.

v UNION was specified for the query.

v The query had to be implemented using a sort. Key length of more than 2000
bytes, more than 120 ordering columns, or an ordering column containing a
reference to an external user-defined function was specified for ordering.

v The query optimizer chose to use a sort rather than an index to order the results
of the query.

Recovery Text:
A reusable ODP generally results in improved performance when compared to a
non-reusable ODP.

SQL4003 - UNION

SQL4003

Message Text: UNION

Cause Text:

A UNION, EXCEPT, or INTERSECT operator was specified in the query. The
messages preceding this keyword delimiter correspond to the subselect preceding
the UNION, EXCEPT, or INTERSECT operator. The messages following this
keyword delimiter correspond to the subselect following the UNION, EXCEPT, or
INTERSECT operator.

Recovery Text: None

SQL4004 - SUBQUERY

SQL4004

Message Text: SUBQUERY

Cause Text:
The SQL statement contains a subquery. The messages preceding the SUBQUERY
delimiter correspond to the subselect containing the subquery. The messages
following the SUBQUERY delimiter correspond to the subquery.

Recovery Text: None

SQL4005 - Query optimizer timed out for table &1

SQL4005

Message Text: Query optimizer timed out for table &1

Cause Text:

The query optimizer timed out before it could consider all indexes built over the
table. This is not an error condition. The query optimizer may time out in order to
minimize optimization time. The query can be run in debug mode (STRDBG) to see
the list of indexes which were considered during optimization. The table number
refers to the relative position of this table in the query.

320 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

SQL4005

Recovery Text:

To ensure an index is considered for optimization, specify the logical file of the
index as the table to be queried. The optimizer will first consider the index of the
logical file specified on the SQL select statement. Note that SQL created indexes
cannot be queried. An SQL index can be deleted and recreated to increase the
chances it will be considered during query optimization. Consider deleting any
indexes no longer needed.

SQL4006 - All indexes considered for table &1

SQL4006

Message Text: All indexes considered for table &1

Cause Text:

The query optimizer considered all index built over the table when optimizing the
query. The query can be run in debug mode (STRDBG) to see the list of indexes
which were considered during optimization. The table number refers to the relative
position of this table in the query.

Recovery Text: None

SQL4007 - Query implementation for join position &1 table &2

SQL4007

Message Text: Query implementation for join position &1 table &2

Cause Text:
The join position identifies the order in which the tables are joined. A join position of
1 indicates this table is the first, or left most, table in the join order. The table
number refers to the relative position of this table in the query.

Recovery Text:
Join order can be influenced by adding an ORDER BY clause to the query. Refer to
“Join optimization” on page 46 for more information about join optimization and
tips to influence join order.

SQL4008 - Index &1 used for table &2

SQL4008

Message Text: Index &1 used for table &2

Cause Text:

The index was used to access rows from the table for one of the following reasons:

v Row selection

v Join criteria.

v Ordering/grouping criteria.

v Row selection and ordering/grouping criteria.

v The table number refers to the relative position of this table in the query.

The query can be run in debug mode (STRDBG) to determine the specific reason the
index was used

Recovery Text: None

SQL4009 - Index created for table &1

SQL4009

Message Text: Index created for table &1

Performance and query optimization 321

SQL4009

Cause Text:

A temporary index was built to access rows from the table for one of the following
reasons:

v Perform specified ordering/grouping criteria.

v Perform specified join criteria.

The table number refers to the relative position of this table in the query.

Recovery Text:

To improve performance, consider creating a permanent index if the query is run
frequently. The query can be run in debug mode (STRDBG) to determine the specific
reason the index was created and the key columns used when creating the index.
Note: If permanent index is created, it is possible the query optimizer may still
choose to create a temporary index to access the rows from the table.

SQL401A - Processing grouping criteria for query containing a distributed table

SQL401A

Message Text: Processing grouping criteria for query containing a distributed table

Cause Text:

Grouping for queries that contain distributed tables can be implemented using either
a one or two step method. If the one step method is used, the grouping columns
(GROUP BY) match the partitioning keys of the distributed table. If the two step
method is used, the grouping columns do not match the partitioning keys of the
distributed table or the query contains grouping criteria but no grouping columns
were specified. If the two step method is used, message SQL401B will appear
followed by another SQL401A message.

Recovery Text:
For more information about processing of distributed tables, refer to the Distributed
Database Programming information.

SQL401B - Temporary distributed result table &1 was created while processing
grouping criteria

SQL401B

Message Text: Temporary distributed result table &1 was created while processing grouping criteria

Cause Text:

A temporary distributed result table was created to contain the intermediate results
of the query. Either the query contains grouping columns (GROUP BY) that do not
match the partitioning keys of the distributed table or the query contains grouping
criteria but no grouping columns were specified.

Recovery Text:
For more information about processing of distributed tables, refer to the Distributed
Database Programming information.

SQL401C - Performing distributed join for query

SQL401C

Message Text: Performing distributed join for query

Cause Text:
Query contains join criteria over a distributed table and a distributed join was
performed in parallel. See the following SQL401F messages to determine which
tables were joined together.

Recovery Text:
For more information about processing of distributed tables, refer to the Distributed
Database Programming information.

322 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

SQL401D - Temporary distributed result table &1 was created because table &2
was directed

SQL401D

Message Text: Temporary distributed result table &1 was created because table &2 was directed

Cause Text:
Temporary distributed result table was created to contain the intermediate results of
the query. Data from a distributed table in the query was directed to other nodes.

Recovery Text:

Generally, a table is directed when the join columns do not match the partitioning
keys of the distributed table. When a table is directed, the query is processed in
multiple steps and processed in parallel. A temporary distributed result file is
required to contain the intermediate results for each step.

For more information about processing of distributed tables, refer to the Distributed
Database Programming information.

SQL401E - Temporary distributed result table &1 was created because table &2
was broadcast

SQL401E

Message Text: Temporary distributed result table &1 was created because table &2 was broadcast

Cause Text:
Temporary distributed result table was created to contain the intermediate results of
the query. Data from a distributed table in the query was broadcast to all nodes.

Recovery Text:

Generally, a table is broadcast when join columns do not match the partitioning keys
of either table being joined or the join operator is not an equal operator. When a
table is broadcast the query is processed in multiple steps and processed in parallel.
A temporary distributed result table is required to contain the intermediate results
for each step.

For more information about processing of distributed tables, refer to the Distributed
Database Programming information.

SQL401F - Table &1 used in distributed join

SQL401F

Message Text: Table &1 used in distributed join

Cause Text:
Query contains join criteria over a distributed table and a distributed join was
performed in parallel.

Recovery Text:
For more information about processing of distributed tables, refer to the Distributed
Database Programming information.

SQL4010 - Table scan access for table &1

SQL4010

Message Text: Table scan access for table &1

Cause Text:
Table scan access was used to select rows from the table. The table number refers to
the relative position of this table in the query.

Recovery Text:
Table scan is generally a good performing option when selecting a high percentage
of rows from the table. The use of an index, however, may improve the performance
of the query when selecting a low percentage of rows from the table.

Performance and query optimization 323

SQL4011 - Index scan-key row positioning used on table &1

SQL4011

Message Text: Index scan-key row positioning used on table &1

Cause Text:

Index scan-key row positioning is defined as applying selection against the index to
position directly to ranges of keys that match some or all of the selection criteria.
Index scan-key row positioning only processes a subset of the keys in the index and
is a good performing option when selecting a small percentage of rows from the
table.

The table number refers to the relative position of this table in the query.

Recovery Text:
Refer to “Data access on DB2 UDB for iSeries: data access paths and methods” on
page 8 for more information about index scan-key row positioning.

SQL4012 - Index created from index &1 for table &2

SQL4012

Message Text: Index created from index &1 for table &2

Cause Text:

A temporary index was created using the specified index to access rows from the
queried table for one of the following reasons:

v Perform specified ordering/grouping criteria.

v Perform specified join criteria.

The table number refers to the relative position of this table in the query.

Recovery Text:

Creating an index from an index is generally a good performing option. Consider
creating a permanent index for frequently run queries. The query can be run in
debug mode (STRDBG) to determine the key columns used when creating the index.
NOTE: If a permanent index is created, it is possible the query optimizer may still
choose to create a temporary index to access the rows from the table.

SQL4013 - Access plan has not been built

SQL4013

Message Text: Access plan has not been built

Cause Text:

An access plan was not created for this query. Possible reasons may include:

v Tables were not found when the program was created.

v The query was complex and required a temporary result table.

v Dynamic SQL was specified.

Recovery Text:
If an access plan was not created, review the possible causes. Attempt to correct the
problem if possible.

SQL4014 - &1 join column pair(s) are used for this join position

SQL4014

Message Text: &1 join column pair(s) are used for this join position

Cause Text:

The query optimizer may choose to process join predicates as either join selection or
row selection. The join predicates used in join selection are determined by the final
join order and the index used. This message indicates how many join column pairs
were processed as join selection at this join position. Message SQL4015 provides
detail on which columns comprise the join column pairs.

If 0 join column pairs were specified then index scan-key row positioning with row
selection was used instead of join selection.

324 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

SQL4014

Recovery Text:

If fewer join pairs are used at a join position than expected, it is possible no index
exists which has keys matching the desired join columns. Try creating an index
whose keys match the join predicates.

If 0 join column pairs were specified then index scan-key row positioning was used.
Index scan-key row positioning is normally a good performing option. Message
SQL4011 provides more information about index scan-key row positioning.

SQL4015 - From-column &1.&2, to-column &3.&4, join operator &5, join predicate
&6

SQL4015

Message Text: From-column &1.&2, to-column &3.&4, join operator &5, join predicate &6

Cause Text:

Identifies which join predicate was implemented at the current join position. The
replacement text parameters are:

v &1: The join 'from table' number. The table number refers to the relative position
of this table in the query.

v &2: The join 'from column' name. The column within the join from table which
comprises the left half of the join column pair. If the column name is *MAP, the
column is an expression (derived field).

v &3: The join 'to table' number. The table number refers to the relative position of
this table in the query.

v &4. The join 'to column' name. The column within the join to column which
comprises the right half of the join column pair. If the column name is *MAP, the
column is an expression (derived field).

v &5. The join operator. Possible values are EQ (equal), NE (not equal), GT (greater
than), LT (less than), GE (greater than or equal), LE (less than or equal), and CP
(cross join or cartesian product).

v &6. The join predicate number. Identifies the join predicate within this set of join
pairs.

Recovery Text: Refer to “Join optimization” on page 46 for more information about joins.

SQL4016 - Subselects processed as join query

SQL4016

Message Text: Subselects processed as join query

Cause Text:
The query optimizer chose to implement some or all of the subselects with a join
query. Implementing subqueries with a join generally improves performance over
implementing alternative methods.

Recovery Text: None

SQL4017 - Host variables implemented as reusable ODP

SQL4017

Message Text: Host variables implemented as reusable ODP

Cause Text:

The query optimizer has built the access plan allowing for the values of the host
variables to be supplied when the query is opened. This query can be run with
different values being provided for the host variables without requiring the access
plan to be rebuilt. This is the normal method of handling host variables in access
plans. The open data path (ODP) that will be created from this access plan will be a
reusable ODP.

Performance and query optimization 325

SQL4017

Recovery Text:
Generally, reusable open data paths perform better than non-reusable open data
paths.

SQL4018 - Host variables implemented as non-reusable ODP

SQL4018

Message Text: Host variables implemented as non-reusable ODP

Cause Text:
The query optimizer has implemented the host variables with a non-reusable open
data path (ODP).

Recovery Text:
This can be a good performing option in special circumstances, but generally a
reusable ODP gives the best performance.

SQL4019 - Host variables implemented as file management row positioning
reusable ODP

SQL4019

Message Text: Host variables implemented as file management row positioning reusable ODP

Cause Text:
The query optimizer has implemented the host variables with a reusable open data
path (ODP) using file management row positioning.

Recovery Text: Generally, a reusable ODP performs better than a non-reusable ODP.

SQL402A - Hashing algorithm used to process join

SQL402A

Message Text: Hashing algorithm used to process join

Cause Text:

The hash join algorithm is typically used for longer running join queries. The
original query will be subdivided into hash join steps.

Each hash join step will be optimized and processed separately. Access plan
implementation information for each of the hash join steps is not available because
access plans are not saved for the individual hash join dials. Debug messages
detailing the implementation of each hash dial can be found in the joblog if the
query is run in debug mode using the STRDBG CL command.

Recovery Text:

The hash join method is usually a good implementation choice, however, if you
want to disallow the use of this method specify ALWCPYDTA(*YES).

Refer to “Data access on DB2 UDB for iSeries: data access paths and methods” on
page 8 for more information about hashing algorithm for join processing.

SQL402B - Table &1 used in hash join step &2

SQL402B

Message Text: Table &1 used in hash join step &2

326 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

SQL402B

Cause Text:

This message lists the table number used by the hash join steps. The table number
refers to the relative position of this table in the query.

If there are two or more of these messages for the same hash join step, then that step
is a nested loop join.

Access plan implementation information for each of the hash join step are not
available because access plans are not saved for the individual hash steps. Debug
messages detailing the implementation of each hash step can be found in the joblog
if the query is run in debug mode using the STRDBG CL command.

Recovery Text:
Refer to “Data access on DB2 UDB for iSeries: data access paths and methods” on
page 8 for more information about hashing

SQL402C - Temporary table created for hash join results

SQL402C

Message Text: Temporary table created for hash join results

Cause Text:

The results of the hash join were written to a temporary table so that query
processing could be completed. The temporary table was required because the query
contained one or more of the following:

v GROUP BY or summary functions

v ORDER BY

v DISTINCT

v Expression containing columns from more than one table

v Complex row selection involving columns from more than one table

Recovery Text:
Refer to “Data access on DB2 UDB for iSeries: data access paths and methods” on
page 8 for more information about the hashing algorithm for join processing.

SQL402D - Query attributes overridden from query options file &2 in library &1

SQL402D

Message Text: Query attributes overridden from query options file &2 in library &1

Cause Text: None

Recovery Text: None

SQL4020 - Estimated query run time is &1 seconds

SQL4020

Message Text: Estimated query run time is &1 seconds

Cause Text: The total estimated time, in seconds, of executing this query.

Recovery Text: None

SQL4021 - Access plan last saved on &1 at &2

SQL4021

Message Text: Access plan last saved on &1 at &2

Cause Text:
The date and time reflect the last time the access plan was successfully updated in
the program object.

Recovery Text: None

Performance and query optimization 327

SQL4022 - Access plan was saved with SRVQRY attributes active

SQL4022

Message Text: Access plan was saved with SRVQRY attributes active

Cause Text:
The access plan that was saved was created while SRVQRY was active. Attributes
saved in the access plan may be the result of SRVQRY.

Recovery Text:
The query will be re-optimized the next time it is run so that SRVQRY attributes will
not be permanently saved.

SQL4023 - Parallel table prefetch used

SQL4023

Message Text: Parallel table prefetch used

Cause Text:
The query optimizer chose to use a parallel prefetch access method to reduce the
processing time required for the table scan.

Recovery Text:

Parallel prefetch can improve the performance of queries. Even though the access
plan was created to use parallel prefetch, the system will actually run the query only
if the following are true:

v The query attribute degree was specified with an option of *IO or *ANY for the
application process.

v There is enough main storage available to cache the data being retrieved by
multiple I/O streams. Normally, 5 megabytes would be a minimum. Increasing
the size of the shared pool may improve performance.

For more information about parallel table prefetch, refer to “Data access on DB2
UDB for iSeries: data access paths and methods” on page 8

SQL4024 - Parallel index preload access method used

SQL4024

Message Text: Parallel index preload access method used

Cause Text:
The query optimizer chose to use a parallel index preload access method to reduce
the processing time required for this query. This means that the indexes used by this
query will be loaded into active memory when the query is opened.

Recovery Text:

Parallel index preload can improve the performance of queries. Even though the
access plan was created to use parallel preload, the system will actually use parallel
preload only if the following are true:

v The query attribute degree was specified with an option of *IO or *ANY for the
application process.

v There is enough main storage to load all of the index objects used by this query
into active memory. Normally, a minimum of 5 megabytes would be a minimum.
Increasing the size of the shared pool may improve performance.

For more information about parallel index preload, refer to the “Data access on DB2
UDB for iSeries: data access paths and methods” on page 8.

SQL4025 - Parallel table preload access method used

SQL4025

Message Text: Parallel table preload access method used

328 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

SQL4025

Cause Text:
The query optimizer chose to use a parallel table preload access method to reduce
the processing time required for this query. This means that the data accessed by this
query will be loaded into active memory when the query is opened.

Recovery Text:

Parallel table preload can improve the performance of queries. Even though the
access plan was created to use parallel preload, the system will actually use parallel
preload only if the following are true:

v The query attribute degree must have been specified with an option of *IO or
*ANY for the application process.

v There is enough main storage available to load all of the data in the file into active
memory. Normally, 5 megabytes would be a minimum. Increasing the size of the
shared pool may improve performance.

For more information about parallel table preload, refer to “Data access on DB2 UDB
for iSeries: data access paths and methods” on page 8.

SQL4026 - Index only access used on table number &1

SQL4026

Message Text: Index only access used on table number &1

Cause Text:

Index only access is primarily used in conjunction with either index scan-key row
positioning index scan-key selection. This access method will extract all of the data
from the index rather than performing random I/O to the data space.

The table number refers to the relative position of this table in the query.

Recovery Text:
Refer to “Data access on DB2 UDB for iSeries: data access paths and methods” on
page 8 for more information about index only access.

SQL4027 - Access plan was saved with DB2 UDB Symmetric Multiprocessing
installed on the system

SQL4027

Message Text:
Access plan was saved with DB2 UDB Symmetric Multiprocessing installed on the
system

Cause Text:

Text: The access plan saved was created while the system feature DB2 UDB
Symmetric Multiprocessing was installed on the system. The access plan may have
been influenced by the presence of this system feature.

Having this system feature installed may cause the implementation of the query to
change.

Recovery Text:
For more information about how the system feature DB2 UDB Symmetric
Multiprocessing can influence a query, refer to “Control parallel processing for
queries” on page 135.

SQL4028 - The query contains a distributed table

SQL4028

Message Text: The query contains a distributed table

Performance and query optimization 329

SQL4028

Cause Text:

A distributed table was specified in the query which may cause the query to be
processed in multiple steps. If the query is processed in multiple steps, additional
messages will detail the implementation for each step. Access plan implementation
information for each step is not available because access plans are not saved for the
individual steps.

Debug messages detailing the implementation of each step can be found in the
joblog if the query is run in debug mode using the STRDBG CL command.

Recovery Text:
For more information about how a distributed table can influence the query
implementation refer to the Distributed Database Programming information.

SQL4029 - Hashing algorithm used to process the grouping

SQL4029

Message Text: Hashing algorithm used to process the grouping

Cause Text:
The grouping specified within the query was implemented with a hashing
algorithm.

Recovery Text:

Implementing the grouping with the hashing algorithm is generally a performance
advantage since an index does not have to be created. However, if you want to
disallow the use of this method simply specify ALWCPYDTA(*YES).

Refer to “Data access on DB2 UDB for iSeries: data access paths and methods” on
page 8 for more information about the hashing algorithm.

SQL4030 - &1 tasks specified for parallel scan on table &2.

SQL4030

Message Text: &1 tasks specified for parallel scan on table &2.

Cause Text:

The query optimizer has calculated the optimal number of tasks for this query based
on the query attribute degree.

The table number refers to the relative position of this table in the query.

Recovery Text:

Parallel table or index scan can improve the performance of queries. Even though
the access plan was created to use the specified number of tasks for the parallel
scan, the system may alter that number based on the availability of the pool in
which this job is running or the allocation of the table's data across the disk units.

Refer to “Data access on DB2 UDB for iSeries: data access paths and methods” on
page 8 for more information about parallel scan.

SQL4031 - &1 tasks specified for parallel index create over table &2

SQL4031

Message Text: &1 tasks specified for parallel index create over table &2

Cause Text:

The query optimizer has calculated the optimal number of tasks for this query based
on the query attribute degree.

The table number refers to the relative position of this table in the query.

330 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

SQL4031

Recovery Text:

Parallel index create can improve the performance of queries. Even though the
access plan was created to use the specified number of tasks for the parallel index
build, the system may alter that number based on the availability of the pool in
which this job is running or the allocation of the table's data across the disk units.

Refer to “Data access on DB2 UDB for iSeries: data access paths and methods” on
page 8 for more information about parallel index create.

SQL4032 - Index &1 used for bitmap processing of table &2

SQL4032

Message Text: Index &1 used for bitmap processing of table &2

Cause Text:

The index was used, in conjunction with query selection, to create a bitmap. The
bitmap, in turn, was used to access rows from the table.

This message may appear more than once per table. If this occurs, then a bitmap
was created from each index of each message. The bitmaps were then combined into
one bitmap using boolean logic and the resulting bitmap was used to access rows
from the table.

The table number refers to the relative position of this table in the query.

Recovery Text:

The query can be run in debug mode (STRDBG) to determine more specific
information.

Also, refer to “Data access on DB2 UDB for iSeries: data access paths and methods”
on page 8 for more information about bitmap processing.

SQL4033 - &1 tasks specified for parallel bitmap create using &2

SQL4033

Message Text: &1 tasks specified for parallel bitmap create using &2

Cause Text:
The query optimizer has calculated the optimal number of tasks to use to create the
bitmap based on the query attribute degree.

Recovery Text:

Using parallel index scan to create the bitmap can improve the performance of
queries. Even though the access plan was created to use the specified number of
tasks, the system may alter that number based on the availability of the pool in
which this job is running or the allocation of the file's data across the disk units.

Refer to “Data access on DB2 UDB for iSeries: data access paths and methods” on
page 8 for more information about parallel scan.

SQL4034 - Multiple join classes used to process join

SQL4034

Message Text: Multiple join classes used to process join

Performance and query optimization 331

SQL4034

Cause Text:

Multiple join classes are used when join queries are written that have conflicting
operations or cannot be implemented as a single query.

Each join class will be optimized and processed as a separate step of the query with
the results written out to a temporary table.

Access plan implementation information for each of the join classes is not available
because access plans are not saved for the individual join class dials. Debug
messages detailing the implementation of each join dial can be found in the joblog if
the query is run in debug mode using the STRDBG CL command.

Recovery Text: Refer to “Join optimization” on page 46 for more information about join classes.

SQL4035 - Table &1 used in join class &2

SQL4035

Message Text: Table &1 used in join class &2

Cause Text:

This message lists the table numbers used by each of the join classes. The table
number refers to the relative position of this table in the query.

All of the tables listed for the same join class will be processed during the same step
of the query. The results from all of the join classes will then be joined together to
return the final results for the query.

Access plan implementation information for each of the join classes are not available
because access plans are not saved for the individual classes. Debug messages
detailing the implementation of each join class can be found in the joblog if the
query is run in debug mode using the STRDBG CL command.

Recovery Text: Refer to “Join optimization” on page 46 for more information about join classes.

Code license and disclaimer information
IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS
PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR
ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:
1. LOSS OF, OR DAMAGE TO, DATA;
2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR
3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS
OR EXCLUSIONS MAY NOT APPLY TO YOU.

332 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|
|
|

|
|

|

|
|

|

|
|
|

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1998, 2006 333

Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,
IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© IBM Corp, 2006. Portions of this code are derived from IBM Corp. Sample Programs. © Copyright IBM
Corp. 1998, 2006. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

334 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

|
|
|

Programming Interface Information
This Database performance and query optimization publication documents intended Programming
Interfaces that allow the customer to write programs to obtain the services of IBM i5/OS.

Trademarks
The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

DB2
DB2 Universal Database
DRDA
i5/OS
IBM
iSeries
Language Environment
Net.Data
SP
WebSphere

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions
Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE
PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix. Notices 335

|
|
|
|
|
|
|
|
|
|

336 IBM Systems - iSeries: DB2 Universal Database for iSeries Database Performance and Query Optimization

����

Printed in USA

	Contents
	Performance and query optimization
	What's new for V5R4
	Printable PDF
	Query Engine Overview
	SQE and CQE Engines
	Query Dispatcher
	Statistics Manager
	Plan Cache

	Data access on DB2 UDB for iSeries: data access paths and methods
	Permanent objects and access methods
	Table
	Radix index
	Encoded vector index

	Temporary objects and access methods
	Temporary hash table
	Temporary sorted list
	Temporary list
	Temporary row number list
	Temporary bitmap
	Temporary index
	Temporary buffer
	Queue

	Objects processed in parallel
	Spreading data automatically

	Processing queries: Overview
	How the query optimizer makes your queries more efficient
	General query optimization tips
	Access plan validation
	Single table optimization
	Join optimization
	Nested loop join implementation
	Join optimization algorithm
	Join order optimization
	Cost estimation and index selection for join secondary dials
	Predicates generated through transitive closure
	Look ahead predicate generation (LPG)
	Tips for improving performance when selecting data from more than two tables
	Multiple join types for a query
	Sources of join query performance problems
	Tips for improving the performance of join queries

	Distinct optimization
	Grouping optimization
	Grouping hash implementation
	Index grouping implementation
	Optimizing grouping by eliminating grouping columns
	Optimizing grouping by adding additional grouping columns
	Optimizing grouping by using index skip key processing
	Optimizing grouping by removing read triggers

	Ordering optimization
	View implementation
	View composite implementation
	View materialization implementation

	Materialized query table optimization
	MQT supported function
	Using MQTs during Query optimization
	MQT examples
	Details on the MQT matching algorithm
	Determining unnecessary MQTs
	Summary of MQT query recommendations

	Recursive query optimization
	Recursive query example
	Multiple initialization and iterative fullselects
	Predicate Pushing
	Specifying SEARCH consideration
	Specifying CYCLE considerations
	SMP and recursive queries

	Optimizing query performance using query optimization tools
	Verify the performance of SQL applications
	Examine query optimizer debug messages in the job log
	Gather information about embedded SQL statements with the PRTSQLINF command
	Viewing the plan cache with iSeries Navigator
	Monitoring your queries using memory-resident database monitor
	Memory-resident database monitor external API description
	Memory-resident database monitor external table description
	Sample SQL queries
	Memory-resident database monitor row identification

	Using iSeries Navigator with summary monitors
	Starting a summary monitor
	Analyzing summary monitor information
	Importing a monitor

	Monitoring your queries using Start Database Monitor (STRDBMON)
	Start Database Monitor (STRDBMON) command
	End Database Monitor (ENDDBMON) command
	Database monitor performance rows
	Database monitor examples

	Using iSeries Navigator with detailed monitors
	Starting a detailed monitor
	Analyze detailed monitor data
	Comparing monitor data
	Viewing statements in a monitor
	Importing a monitor

	Query optimizer index advisor
	Display index advisor information
	Index advisor columns
	Querying database monitor view 3020 - Index advised

	View the implementation of your queries with Visual Explain
	Starting Visual Explain
	Overview of information available from Visual Explain

	Change the attributes of your queries with the Change Query Attributes (CHGQRYA) command
	Control queries dynamically with the query options file QAQQINI
	Set resource limits with the Predictive Query Governor
	Control parallel processing for queries

	Collecting statistics with the Statistics Manager
	Automatic statistics collection
	Automatic statistics refresh
	Viewing statistics requests
	Indexes versus column statistics
	Monitoring background statistics collection
	Replication of column statistics with CRTDUPOBJ versus CPYF
	Determining what column statistics exist
	Manually collecting and refreshing statistics
	Statistics Manager APIs

	Display information with Database Health Center
	Show Materialized Query Table columns
	Manage Check Pending Constraints columns
	Query optimization tools: Comparison table

	Creating an index strategy
	Binary radix indexes
	Specifying PAGESIZE on CRTPF or CRTLF commands
	General index maintenance

	Encoded vector indexes
	How the EVI works
	When to create EVIs
	EVI maintenance
	Recommendations for EVI use

	Comparing Binary radix indexes and Encoded vector indexes
	Indexes and the optimizer
	Instances where an index is not used
	Determining unnecessary indexes
	Show index for a table
	Manage index rebuilds

	Indexing strategy
	Reactive approach to tuning
	Proactive approach to tuning

	Coding for effective indexes
	Avoid numeric conversions
	Avoid arithmetic expressions
	Avoid character string padding
	Avoid the use of like patterns beginning with % or _

	Using indexes with sort sequence
	Using indexes and sort sequence with selection, joins, or grouping
	Using indexes and sort sequence with ordering

	Examples of indexes
	Index example: Equals selection with no sort sequence table
	Index example: Equals selection with a unique-weight sort sequence table
	Index example: Equal selection with a shared-weight sort sequence table
	Index example: Greater than selection with a unique-weight sort sequence table
	Index example: Join selection with a unique-weight sort sequence table
	Index example: Join selection with a shared-weight sort sequence table
	Index example: Ordering with no sort sequence table
	Index example: Ordering with a unique-weight sort sequence table
	Index example: Ordering with a shared-weight sort sequence table
	Index example: Ordering with ALWCPYDTA(*OPTIMIZE) and a unique-weight sort sequence table
	Index example: Grouping with no sort sequence table
	Index example: Grouping with a unique-weight sort sequence table
	Index example: Grouping with a shared-weight sort sequence table
	Index example: Ordering and grouping on the same columns with a unique-weight sort sequence table
	Index example: Ordering and grouping on the same columns with ALWCPYDTA(*OPTIMIZE) and a unique-weight sort sequence table
	Index example: Ordering and grouping on the same columns with a shared-weight sort sequence table
	Index example: Ordering and grouping on the same columns with ALWCPYDTA(*OPTIMIZE) and a shared-weight sort sequence table
	Index example: Ordering and grouping on different columns with a unique-weight sort sequence table
	Index example: Ordering and grouping on different columns with ALWCPYDTA(*OPTIMIZE) and a unique-weight sort sequence table
	Index example: Ordering and grouping on different columns with ALWCPYDTA(*OPTIMIZE) and a shared-weight sort sequence table

	Application design tips for database performance
	Use live data
	Reduce the number of open operations
	Retain cursor positions
	Retaining cursor positions for non-ILE program calls
	Retaining cursor positions across ILE program calls
	General rules for retaining cursor positions for all program calls

	Programming techniques for database performance
	Use the OPTIMIZE clause
	Use FETCH FOR n ROWS
	Improve SQL blocking performance when using FETCH FOR n ROWS

	Use INSERT n ROWS
	Control database manager blocking
	Optimize the number of columns that are selected with SELECT statements
	Eliminate redundant validation with SQL PREPARE statements
	Page interactively displayed data with REFRESH(*FORWARD)

	General DB2 UDB for iSeries performance considerations
	Effects on database performance when using long object names
	Effects of precompile options on database performance
	Effects of the ALWCPYDTA parameter on database performance
	Tips for using VARCHAR and VARGRAPHIC data types in databases

	Database monitor: Formats
	Database monitor SQL table format
	Optional database monitor SQL view format
	Database monitor view 1000 - SQL Information
	Database monitor view 3000 - Table Scan
	Database monitor view 3001 - Index Used
	Database monitor view 3002 - Index Created
	Database monitor view 3003 - Query Sort
	Database monitor view 3004 - Temp Table
	Database monitor view 3005 - Table Locked
	Database monitor view 3006 - Access Plan Rebuilt
	Database monitor view 3007 - Optimizer Timed Out
	Database monitor view 3008 - Subquery Processing
	Database monitor view 3010 - HostVar & ODP Implementation
	Database monitor view 3014 - Generic QQ Information
	Database monitor view 3015 - Statistics Information
	Database monitor view 3018 - STRDBMON/ENDDBMON
	Database monitor view 3019 - Rows retrieved
	Database monitor view 3020 - Index advised (SQE)
	Database monitor view 3021 - Bitmap Created
	Database monitor view 3022 - Bitmap Merge
	Database monitor view 3023 - Temp Hash Table Created
	Database monitor view 3025 - Distinct Processing
	Database monitor view 3026 - Set operation
	Database monitor view 3027 - Subquery Merge
	Database monitor view 3028 - Grouping
	Database monitor view 3030 - Materialized query tables
	Database monitor view 3031 - Recursive common table expressions

	Memory Resident Database Monitor: DDS
	External table description (QAQQQRYI) - Summary Row for SQL Information
	External table description (QAQQTEXT) - Summary Row for SQL Statement
	External table description (QAQQ3000) - Arrival sequence
	External table description (QAQQ3001) - Using existing index
	External table description (QAQQ3002) - Index created
	External table description (QAQQ3003) - Query sort
	External table description (QAQQ3004) - Temporary table
	External table description (QAQQ3007) - Optimizer information
	External table description (QAQQ3008) - Subquery processing
	External table description (QAQQ3010) - Host variable and ODP implementation
	External table description (QAQQ3030) - Materialized query table implementation

	Query optimizer messages reference
	Query optimization performance information messages
	CPI4321 - Access path built for &18 &19
	CPI4322 - Access path built from keyed file &1
	CPI4323 - The query access plan has been rebuilt
	CPI4324 - Temporary file built for file &1
	CPI4325 - Temporary result file built for query
	CPI4326 - &12 &13 processed in join position &10
	CPI4327 - File &12 &13 processed in join position &10
	CPI4328 - Access path of file &3 was used by query
	CPI4329 - Arrival sequence access was used for &12 &13
	CPI432A - Query optimizer timed out for file &1
	CPI432B - Subselects processed as join query
	CPI432C - All access paths were considered for file &1
	CPI432D - Additional access path reason codes were used
	CPI432F - Access path suggestion for file &1
	CPI4330 - &6 tasks used for parallel &10 scan of file &1
	CPI4331 - &6 tasks used for parallel index created over file
	CPI4332 - &1 host variables used in query
	CPI4333 - Hashing algorithm used to process join
	CPI4334 - Query implemented as reusable ODP
	CPI4335 - Optimizer debug messages for hash join step &1 follow
	CPI4336 - Group processing generated
	CPI4337 - Temporary hash table build for hash join step &1
	CPI4338 - &1 Access path(s) used for bitmap processing of file &2
	CPI433D - Query options used to build the i5/OS query access plan
	CPI433F - Multiple join classes used to process join
	CPI4340 - Optimizer debug messages for join class step &1 follow
	CPI4341 - Performing distributed query
	CPI4342 - Performing distributed join for query
	CPI4343 - Optimizer debug messages for distributed query step &1 of &2 follow:
	CPI4345 - Temporary distributed result file &3 built for query
	CPI4346 - Optimizer debug messages for query join step &1 of &2 follow:
	CPI4347 - Query being processed in multiple steps
	CPI4348 - The ODP associated with the cursor was hard closed
	CPI4349 - Fast past refresh of the host variables values is not possible
	CPI434C - The query access plan was not rebuilt
	CPI4350 - Materialized query tables were considered for optimization
	CPI4351 - Additional reason codes for query access plan has been rebuilt.

	Query optimization performance information messages and open data paths
	SQL7910 - All SQL cursors closed
	SQL7911 - ODP reused
	SQL7912 - ODP created
	SQL7913 - ODP deleted
	SQL7914 - ODP not deleted
	SQL7915 - Access plan for SQL statement has been built
	SQL7916 - Blocking used for query
	SQL7917 - Access plan not updated
	SQL7918 - Reusable ODP deleted
	SQL7919 - Data conversion required on FETCH or embedded SELECT
	SQL7939 - Data conversion required on INSERT or UPDATE

	PRTSQLINF message reference
	SQL400A - Temporary distributed result file &1 was created to contain join result
	SQL400B - Temporary distributed result file &1 was created to contain join result
	SQL400C - Optimizer debug messages for distributed query step &1 and &2 follow
	SQL400D - GROUP BY processing generated
	SQL400E - Temporary distributed result file &1 was created while processing distributed subquery
	SQL4001 - Temporary result created
	SQL4002 - Reusable ODP sort used
	SQL4003 - UNION
	SQL4004 - SUBQUERY
	SQL4005 - Query optimizer timed out for table &1
	SQL4006 - All indexes considered for table &1
	SQL4007 - Query implementation for join position &1 table &2
	SQL4008 - Index &1 used for table &2
	SQL4009 - Index created for table &1
	SQL401A - Processing grouping criteria for query containing a distributed table
	SQL401B - Temporary distributed result table &1 was created while processing grouping criteria
	SQL401C - Performing distributed join for query
	SQL401D - Temporary distributed result table &1 was created because table &2 was directed
	SQL401E - Temporary distributed result table &1 was created because table &2 was broadcast
	SQL401F - Table &1 used in distributed join
	SQL4010 - Table scan access for table &1
	SQL4011 - Index scan-key row positioning used on table &1
	SQL4012 - Index created from index &1 for table &2
	SQL4013 - Access plan has not been built
	SQL4014 - &1 join column pair(s) are used for this join position
	SQL4015 - From-column &1.&2, to-column &3.&4, join operator &5, join predicate &6
	SQL4016 - Subselects processed as join query
	SQL4017 - Host variables implemented as reusable ODP
	SQL4018 - Host variables implemented as non-reusable ODP
	SQL4019 - Host variables implemented as file management row positioning reusable ODP
	SQL402A - Hashing algorithm used to process join
	SQL402B - Table &1 used in hash join step &2
	SQL402C - Temporary table created for hash join results
	SQL402D - Query attributes overridden from query options file &2 in library &1
	SQL4020 - Estimated query run time is &1 seconds
	SQL4021 - Access plan last saved on &1 at &2
	SQL4022 - Access plan was saved with SRVQRY attributes active
	SQL4023 - Parallel table prefetch used
	SQL4024 - Parallel index preload access method used
	SQL4025 - Parallel table preload access method used
	SQL4026 - Index only access used on table number &1
	SQL4027 - Access plan was saved with DB2 UDB Symmetric Multiprocessing installed on the system
	SQL4028 - The query contains a distributed table
	SQL4029 - Hashing algorithm used to process the grouping
	SQL4030 - &1 tasks specified for parallel scan on table &2.
	SQL4031 - &1 tasks specified for parallel index create over table &2
	SQL4032 - Index &1 used for bitmap processing of table &2
	SQL4033 - &1 tasks specified for parallel bitmap create using &2
	SQL4034 - Multiple join classes used to process join
	SQL4035 - Table &1 used in join class &2

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and conditions

