In-

System i

Networking
Cryptographic hardware

Version 5 Release 4

Note
Before using this information and the product it supports, read the information in
-ae 289.

Eighth Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of IBM i5/0S (product number 5722-SSI) and to all
subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all
reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2006.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Cryptography

What's new for V5R4

Printable PDF . e

Cryptography concepts.

4764 and 4758 Cryptographic Coprocessors .
Cryptographic hardware concepts
Features
Cryptographic Coprocessor scenarios .
Planning for the Cryptographic Coprocessor
Configuring the Cryptographic Coprocessor
Migrating to the Cryptographic Coprocessor
Managing the Cryptographic Coprocessor .

Troubleshooting the Cryptographic Coprocessor

© Copyright IBM Corp. 1998, 2006

O NI NN - =,

11

.15
. 20
97

. 124

269

Reinitializing the Cryptographic Coprocessor 270

Using the Hardware Service Manager 277
2058 Cryptographic Accelerator283
Features284
Scenario: Enhancing system SSL performance 284

Planning for the 2058 Cryptographic Accelerator 285
Configuring the 2058 Cryptographic Accelerator 285
Related information for cryptographic hardware 286

Appendix. Notices 289

Trademarks29
Terms and conditions.291
iii

iv System i: Networking Cryptographic hardware

Cryptography

IBM® offers i5/0S® cryptography solutions for customers who require a high level of security. A
comprehensive cryptography solution is an important part of a successful security strategy. IBM offers a
family of cryptographic hardware options for protecting data and for securing transaction processing, as
well as a set of cryptographic services APIs that customers can use to customize their programs.

You can make cryptography an integral part of your security solution by installing cryptographic
hardware in your system. To ensure that you understand how cryptographic hardware works and how
you can implement it in your system, review these topics:

Note: This information includes programming examples. Read the [‘Code license and disclaimer]
[information” on page 287 for important legal information.

* What's new for V5R4 highlights the new features or functions available for this release of the system.

* Printable PDF provides a link to the PDF version of this information and explains the printing options
that are available to you.

* Cryptography concepts provides a basic understanding of cryptographic functions, as well as an
overview of the system’s cryptographic services.

¢ Cryptographic hardware:

— Cryptographic hardware concepts explain some basic concepts regarding the cryptographic
hardware available for your system, enabling you to better understand how to maximize your usage
of cryptography and cryptographic hardware options with your system.

* Usage scenarios offer some example configurations or uses of cryptographic hardware:
— Cryptographic hardware scenario: Protect private keys with cryptographic hardware

— Cryptographic hardware scenario: Write an i5/0OS application to use the IBM Cryptographic
Coprocessors

* Choosing the best cryptographic hardware for your system:

— Cryptographic Coprocessors includes planning and configuration information for the IBM 4764 and
4758 Cryptographic Coprocessors.

— 2058 Cryptographic Accelerator includes planning and configuration information for the 2058
Cryptographic Accelerator.

* Related information points to other sources of cryptographic information, as well as related product
information sites.

What’s new for V5R4

This topic provides the latest information regarding new cryptographic software and hardware, and
added features to the existing cryptographic hardware options for your system running the i5/0S
operating system.

IBM 4764 Cryptographic Coprocessor added

The IBM 4764 Cryptographic Coprocessor joins the IBM family of cryptographic hardware options. You
can order the 4764 Cryptographic Coprocessor by specifying a Hardware Feature code 4806. See
[‘Requirements” on page 15| for prerequisites, in addition to the list of systems with which you can use
this coprocessor.

© Copyright IBM Corp. 1998, 2006 1

5722-AC3 Cryptographic Access Provider withdrawn

The Cryptographic Access Provider (5722-AC3) product is no longer required to enable data encryption
on systems running the i5/0S V5R4 operating system. The Cryptographic Access Provider product has
been withdrawn and its functions are now part of the i5/0S operating system. This means that this
product is no longer a prerequisite for some of the tasks included in this information.

Cryptographic Services APIs function added

Key management function has been added to the i5/0S V5R4MO0 Cryptographic Services APIs which help
you securely store and handle cryptographic keys. See the |API documentation| for more information.

How to see what’s new or changed

To help you see where technical changes have been made, this information uses:
* The # image to mark where new or changed information begins.

¢ The 4% image to mark where new or changed information ends.

To find other information about what’s new or changed this release, see the

Printable PDF

Use this information to view and print the entire topic of cryptography in i5/0S as a PDF file.

You can view or download the PDF version of this information. The [Cryptographic hardware] PDF (about
756 KB or 298 pages) contains all of the information regarding IBM cryptographic hardware supported
for the system at V5R4.

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).
2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDFE.
4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free

copy from the [Adobe Web site| (www.adobe.com /products/acrobat/readstep.html) 3.

Cryptography concepts

This topic provides a basic understanding of cryptographic function and an overview of the
cryptographic services for the systems running the i5/0S operating system.

Cryptography

Cryptographic services help ensure data privacy, maintain data integrity, authenticate communicating
parties, and prevent repudiation (when a party refutes having sent a message).

Basic encryption allows you to store information or to communicate with other parties while preventing
non-involved parties from understanding the stored information or understanding the communication.

Encryption transforms understandable text (plaintext) into an unintelligible piece of data (ciphertext).

2 System i: Networking Cryptographic hardware

http://www.adobe.com/products/acrobat/readstep.html

Decryption restores the understandable text from the unintelligible data. Both functions involve a
mathematical formula (the algorithm) and secret data (the key).

Cryptographic algorithms

There are two types of cryptographic algorithms:

1. With a secret or symmetric key algorithm, the key is a shared secret between two communicating
parties. Encryption and decryption both use the same key. The Data Encryption Standard (DES) and
the Advanced Encryption Standard (AES) are examples of symmetric key algorithms.

There are two types of symmetric key algorithms:

Block ciphers
In a block cipher, the actual encryption code works on a fixed-size block of data. Normally,
the user’s interface to the encrypt/decrypt operation will handle data longer than the block
size by repeatedly calling the low-level encryption function. If the length of data is not on a
block size boundary, it must be padded.

Stream ciphers
Stream ciphers do not work on a block basis, but convert 1 bit (or 1 byte) of data at a time.

2. With a public key (PKA) or asymmetric key algorithm, a pair of keys is used. One of the keys, the
private key, is kept secret and not shared with anyone. The other key, the public key, is not secret and
can be shared with anyone. When data is encrypted by one of the keys, it can only be decrypted and
recovered by using the other key. The two keys are mathematically related, but it is virtually
impossible to derive the private key from the public key. The RSA algorithm is an example of a public
key algorithm.

Public key algorithms are slower than symmetric key algorithms. Applications typically use public
key algorithms to encrypt symmetric keys (for key distribution) and to encrypt hashes (in digital
signature generation).

Together, the key and the cryptographic algorithm transform the data. All of the supported algorithms are
in the public domain. Therefore it is the key that controls access to the data. You must safeguard the keys
to protect the data.

Cryptographic operations

Different cryptographic operations may use one or more algorithms. You choose the cryptographic
operation and algorithm(s) depending on your purpose. For example, for the purpose of ensuring data
integrity, you might want to use a MAC (message authentication code) operation with the AES algorithm.

The system provides several API sets that support cryptographic operations. See the System
cryptography overview information at the bottom of this topic for more information.

Data privacy
Cryptographic operations for the purpose of data privacy (confidentiality) prevent an unauthorized

person from reading a message. The following operations are included in data privacy:

Encrypt and Decrypt
The encrypt operation changes plaintext data into ciphertext through the use of a cipher
algorithm and key. To restore the plaintext data, the decrypt operation must employ the same
algorithm and key.

Encryption and decryption may be employed at any level of the operating system. There are
three levels:

Cryptography 3

Field level encryption
With field level encryption, the user application explicitly requests cryptographic services.
The user application completely controls key generation, selection, distribution, and what
data to encrypt.

Session level encryption
With encryption at the session layer, the system requests cryptographic services instead of
an application. The application may or may not be aware that encryption is happening.

Link level encryption
Link level encryption is performed at the lowest level of the protocol stack, usually by
specialized hardware.

The Cryptographic Coprocessors and the 2058 Cryptographic Accelerator may be used for both
field level encryption and Secure Sockets Layer (SSL) session establishment encryption. While
VPN is supported in i5/0S, it does not use either coprocessor or the accelerator. Furthermore, the
system does not support SNA session level encryption at all.

Translate
The translate operation decrypts data from encryption under one key and encrypts the data
under another key. This is done in one step to avoid exposing the plaintext data within the
application program.

Data integrity, authenticity, and non-repudiation

Encrypted data does not mean the data can not be manipulated (e.g. repeated, deleted, or even altered).
To rely on data, you need to know that it comes from an authorized source and is unchanged. Additional
cryptographic operations are required for these purposes.

Hash (Message Digest)
A cryptographic hash operation produces a fixed-length output string (often called a digest) from
a variable-length input string. For all practical purposes, the following statements are true of a
good hash function:

* Collision resistant: If any portion of the data is modified, a different hash will be generated.

* One-way: The function is irreversible. That is, given a digest, it is not possible to find the data
that produces it.

These properties make hash operations useful for authentication purposes. For example, you can
keep a copy of a digest for the purpose of comparing it with a newly generated digest at a later
date. If the digests are identical, the data has not been altered.

MAC (Message Authentication Code)
A MAC operation uses a secret key and cipher algorithm to produce a value (the MAC) which
later can be used to ensure the data has not been modified. Typically, a MAC is appended to the
end of a transmitted message. The receiver of the message uses the same MAC key, and
algorithm as the sender to reproduce the MAC. If the receiver’'s MAC matches the MAC sent
with the message, the data has not been altered.

The MAC operation helps authenticate messages, but does not prevent unauthorized reading
because the transmitted data remains as plaintext. You must use the MAC operation and then
encrypt the entire message to ensure both data privacy and integrity.

HMAC (Hash MAC)
An HMAC operation uses a cryptographic hash function and a secret shared key to produce an
authentication value. It is used in the same way a MAC is used.

Sign/Verify
A sign operation produces an authentication value called a digital signature. A sign operation
works as follows:

1. The data to be signed is hashed, to produce a digest.

4 System i: Networking Cryptographic hardware

2. The digest is encrypted using a PKA algorithm and a private key, to produce the signature.

The verify operation works as follows:

1. The signature is decrypted using the sender’s PKA public key, to produce digest 1.

2. The data that was signed is hashed, to produce digest 2.

3. If the two digests are equal, the signature is valid.

Theoretically, this also verifies the sender because only the sender should posses the private key.

However, how can the receiver verify that the public key actually belongs to the sender?
Certificates are used to help solve this problem.

Key and random number generation

Many security-related functions rely on random number generation, for example, salting a password or
generating an initialization vector. An important use of random numbers is in the generation of
cryptographic key material. Key generation has been described as the most sensitive of all computer
security functions. If the random numbers are not cryptographically strong, the function will be subject to
attack.

The i5/0S operating system contains a pseudorandom number generator (PRNG). The PRNG is used by
many system functions and is available for application use through the Cryptographic Services API set.

The PRNG is composed of two parts: pseudorandom number generation and seed management.
Pseudorandom number generation is performed using the FIPS 186-1 algorithm. Cryptographically strong
pseudorandom numbers rely on good seed. The FIPS 186-1 key and seed values are obtained from a
system seed digest. The system automatically generates seed using data collected from system
information or by using the random number generator function on a cryptographic coprocessor if one is
available. System-generated seed can never be truly unpredictable. If a cryptographic coprocessor is not
available, you should add your own random seed to the system seed digest. This should be done as soon
as possible any time the Licensed Internal Code is installed.

Key management

Key management is the secure handling and storage of cryptographic keys. This includes key storage and
retrieval, key encryption and conversions, and key distribution.

Key storage

Key storage on the system includes the following:

* Cryptographic Services key store

* Digital certificate manager certificate store

* CCA key store (used with the Cryptographic Coprocessors)
* JCE key store

In addition, keys can also be stored on the Cryptographic Coprocessors themselves.
Key Encryption and Conversions

Keys must be encrypted prior to sending or storing them outside the secured system environment. In
addition, keys should be handled in encrypted form within the system as much as possible to reduce the
risk of exposure. The management of encrypted keys is often done via a hierarchical key system.

* At the top is a master key (or keys). The master key is the only clear key value and must be stored in a
secure fashion.

* Key-encrypting keys (KEKs) are used to encrypt other keys. Typically, a KEK is used to encrypt a
stored key, or a key that is sent to another system. KEKs are normally encrypted under a master key.

Cryptography 5

* Data keys are keys used directly on user data (such as to encrypt or MAC). A data key may be
encrypted under a KEK or under a master key.

Various uses of a key will require the key to be in different forms. For example, keys received from other
sources will normally be converted to an internal format. Likewise, keys sent out of the system are
converted to a standard external format before sending. Certain key forms are standard, such as an
ASN.1 BER-encoded form, and others are peculiar to a cryptographic service provider, such as the
Cryptographic Coprocessors.

Key Distribution

Typically, data encryption is performed using symmetric key algorithms. The symmetric keys are
distributed using asymmetric key algorithms. Consider these examples:

* RSA - An RSA public key is used to encrypt a symmetric key which is then distributed. The
corresponding private key is used to decrypt it.

* Diffie-Hellman - The communicating parties generate and exchange D-H parameters which are then
used to generate key pairs. The public keys are exchanged and each party is then able to compute the
symmetric key independently.

System cryptography overview

Cryptographic Service Providers
A cryptographic service provider (CSP) is the software or hardware that implements a set of
cryptographic operations. The system supports several CSPs:

* 4758 Cryptographic Coprocessor
* 4764 Cryptographic Coprocessor
* 2058 Cryptographic Accelerator
+ i5/0S LIC
* Java" Cryptography Extensions
Cryptographic API sets
User applications can utilize cryptographic services indirectly via i5/0S functions such as SSL,

VPN IPSec, and LDAP. User applications can also access cryptographic services directly via the
following APIs:

 CCA

The Common Cryptographic Architecture (CCA) API set is provided for running cryptographic
operations on a Cryptographic Coprocessor.

* i5/0S Cryptographic Services

The i5/0S Cryptographic Services API set is provided for running cryptographic operations
within the Licensed Internal Code or optionally on the 2058 Cryptographic Accelerator.

* Java Cryptography
Java Cryptography Extension (JCE) is a standard extension to the Java Software Development
Kit.

* Network Authentication Service

GSS (Generic Security Services), Java GSS, and Kerberos APIs are part of the Network
Authentication Service which provides authentication and security services. These services
include session level encryption capability.

* i5/0S SSL and JSSE
i5/06S SSL and JSSE support the Secure Sockets Layer Protocol. APIs provide session level
encryption capability.

* SQL
Structured Query Language is used to access or modify information in a database. SQL
supports encryption/decryption of database fields.

6 System i: Networking Cryptographic hardware

This table indicates what CSPs are used under each user interface.

Table 1. CSPs used under each user interface

CSP APIs i5/0S LIC JCE 4764 and 4758 2058
CCA X
i5/0S Cryptographic X X
Services
Java Cryptography X
Network X X
Authentication
Service
i5/0S SSL and JSSE X X X X
SQL X

Related concepts

[“Initializing a key store file” on page 140

A key store file is a database file that stores operational keys, i.e. keys encrypted under the master
key. This topic provides information on how to keep records of your DES and PKA keys on systems
running the i5/0S operating system.

[4764 and 4758 Cryptographic Coprocessors”]

IBM offers two Cryptographic Coprocessors, which are available on a variety of system models.
Cryptographic Coprocessors contain hardware engines, which perform cryptographic operations used
by i5/0S application programs and i5/0S SSL transactions.

4764 and 4758 Cryptographic Coprocessors|

IBM offers two Cryptographic Coprocessors, which are available on a variety of system models.
Cryptographic Coprocessors contain hardware engines, which perform cryptographic operations used
by i5/0S application programs and i5/0OS SSL transactions.

Related information

[Digital Certificate Manager|
[Cryptographic Services API set]
[Certificate Stores|

[lava Cryptography Extension|

4764 and 4758 Cryptographic Coprocessors

IBM offers two Cryptographic Coprocessors, which are available on a variety of system models.
Cryptographic Coprocessors contain hardware engines, which perform cryptographic operations used by
i5/0S application programs and i5/0OS SSL transactions.

The IBM 4764 Cryptographic Coprocessor is available on System i5 " and eServer " i5 models as hardware
feature code 4806. Depending on the model you have, the following table shows the maximum number
of Cryptographic Coprocessors supported:

Table 2. Supported number of 4764 Cryptographic Coprocessors

System models Maximum per system Maximum per partition
System i5 Models 570 8/12/16W, 595 32 8
eServer i5 Models 520, 550, 570 2/4W 8 8

The IBM 4758-023 Cryptographic Coprocessor is available on System i5 and eServer i5 systems as
hardware feature code 4801. Depending on the model you have, the following number of Cryptographic
Coprocessors are supported:

Cryptography 7

Table 3. Supported number of 4758 Cryptographic Coprocessors

System models Maximum per system Maximum per partition
eServer Models 840, 870, 890 32 8
andSystem i5 Models 570 8/12/16W,
595
eServer Models 810, 820, 825, 830 8 8
and eServer i5 Models 520, 550, 570
2/4W
eServer i5 Model 800 4 4
eServer i5 Model 270 3 3

The Cryptographic Coprocessors can be used to augment your system in the following ways:

You can use a Cryptographic Coprocessor to implement a broad range of i5/0S based applications.
Examples are applications for performing financial PIN transactions, bank-to-clearing-house
transactions, EMV transactions for integrated circuit (chip) based credit cards, and basic SET block
processing. To do this, you or an applications provider must write an application program, using a
security programming interface (SAPI) to access the security services of your Cryptographic
Coprocessor. The SAPI for the Cryptographic Coprocessor conforms to IBM’s Common Cryptographic
Architecture (CCA). The SAPI is contained in the CCA Cryptographic Service Provider (CCA CSP)
which is delivered as i5/0S Option 35.

To meet capacity and availability requirements, an application can control up to eight Coprocessors.
The application must control access to individual Coprocessor by using the
Cryptographic_Resource_Allocate (CSUACRA) and Cryptographic_Resource_Deallocate (CSUACRD)
CCA APIs.

You can use a Cryptographic Coprocessor along with DCM to generate and store private keys
associated with SSL digital certificates. A Cryptographic Coprocessor provides a performance assist
enhancement by handling SSL private key processing during SSL session establishment.

When using multiple Coprocessors, DCM configuration gives you the following options for using
hardware to generate and store the private key associated with a digital certificate.

1. Private key generated in hardware and stored (i.e., retained) in hardware. With this option the
private key never leaves the Coprocessor, and thus the private key cannot be used or shared with
another Coprocessor. This means that you and your application have to manage multiple private
keys and certificates.

2. Private key generated in hardware and stored in software (i.e., stored in a key store file). This
option allows a single private key to be shared amongst multiple Coprocessors. A requirement is
that each Coprocessor must share the same master key—you can use “Clone master keys” to set up
your Coprocessors to have the same master key. The private key is generated in one of the
Coprocessors and is then saved in the key store file, encrypted under the master key of that
Coprocessor. Any Coprocessor with an identical master key can use that private key.

See “Manage multiple Cryptographic Coprocessors” on page 175 for more information regarding the
management of multiple cryptographic coprocessors. [Links to related pages here:]

8

Features: Cryptographic Coprocessors contain hardware engines, which perform cryptographic
operations used by i5/0S application programs and i5/0S SSL transactions. Each IBM Cryptographic
Coprocessor contains a tamper-resistant hardware security module (HSM) which provides secure
storage for store master keys. The HSM is designed to meet FIPS 140 security requirements. To meet
your capacity and high availability needs, multiple Cryptographic Coprocessors are supported. The
features information describes in greater detail what the Cryptographic Coprocessors and CCA CSP
have to offer.

Requirements: Your system must meet some requirements before you can install and use a
Cryptographic Coprocessor. Use the requirements page to determine whether you are ready to install
and use a Cryptographic Coprocessor on your system.

System i: Networking Cryptographic hardware

* Cryptography concepts: Depending on your familiarity with cryptography, you may need more
information about a term or concept. This page introduces you to some basic cryptographic concepts.

* Related information: See Related information for additional sources of cryptography information
recommended by IBM.

Related concepts

[‘Cryptography concepts” on page 2|
This topic provides a basic understanding of cryptographic function and an overview of the
cryptographic services for the systems running the i5/0OS operating system.

Cryptographic hardware concepts

To better understand how to maximize your usage of cryptography and cryptographic hardware options
with your system running the i5/OS operating system, this topic provides basic concepts regarding
cryptographic hardware.

Note: These concepts do not pertain to the IBM 2058 Cryptographic Accelerator hardware.

Key types associated with the Cryptographic Coprocessor
Your Coprocessor uses various key types. Not all DES or Triple DES keys can be used for all
symmetric key operations. Likewise, not all public key algorithm (PKA) keys can be used for all
asymmetric key operations. This is a list of the various key types which the Coprocessor uses:

Master key
This is a clear key, which means that no other key encrypted it. The Coprocessor uses the
master key to encrypt all operational keys. The Coprocessor stores the master key in a
tamper-responding module. You cannot retrieve the master key from the Coprocessor. The
Coprocessor responds to tamper attempts by destroying the master key and destroying its
factory certification. The coprocessors have two master keys: one for encrypting DES keys
and one for encrypting PKA keys.

Double-length key-encrypting keys
Your Coprocessor uses this type of Triple-DES key to encrypt or decrypt other DES or
Triple DES keys. Key-encrypting-keys are generally used to transport keys between
systems. However, they can also be used for storing keys offline for backup. If
key-encrypting-keys are used to transport keys, the clear value of the key-encrypting-key
itself must be shared between the two systems. Exporter key-encrypting keys are used for
export operations where a key encrypted under the master key is decrypted and then
encrypted under the key-encrypting key. Importer key-encrypting keys are used for
import operations where a key encrypted under the key-encrypting key is decrypted and
then encrypted under the master key.

Double-length PIN keys
Your Coprocessor uses this type of key to generate, verify, encrypt, and decrypt PINs
used in financial operations. These are Triple DES keys.

MAC keys
Your Coprocessor uses this type of key to generate Message Authentication Codes (MAC).
These can be either DES or Triple DES keys.

Cipher keys
Your Coprocessor uses this type of key to encrypt or decrypt data. These can be either
DES or Triple DES keys.

Single-length compatibility keys
Your Coprocessor uses this type of key to encrypt or decrypt data and generate MACs.

These are DES keys and are often used when encrypted data or MACs are exchanged
with systems that do not implement the Common Cryptographic Architecture.

Cryptography 9

Private keys
Your Coprocessor uses private keys for generating digital signatures and for decrypting
DES or Triple DES keys encrypted by the public key.

Public keys
Your Coprocessor uses public keys for verifying digital signatures, for encrypting DES or
Triple DES keys, and for decrypting data encrypted by the private key.

Key forms

The Coprocessor works with keys in one of four different forms. The key form, along with the
key type, determines how a cryptographic process uses that key. The four forms are:

Clear form
The clear value of the key is not protected by any cryptographic means. Clear keys are
not usable by the Coprocessor. The clear keys must first be imported into the secure
module and encrypted under the master key and then stored outside the secure module.

Operational form
Keys encrypted under the master key are in operational form. They are directly usable for
cryptographic operations by the Coprocessor. Operational keys are also called internal
keys. All keys that are stored in the system key store file are operational keys. However,
you do not need to store all operational keys in the key store file.

Export form
Keys encrypted under an exporter key-encrypting key as the result of an export operation
are in export form. These keys are also called external keys. A key in export form can also
be described as being in import form if an importer key-encrypting key with the same
clear key value as the exporter key-encrypting key is present. You may store keys in
export form in any manner you choose except in key store files.

Import form
Keys encrypted under an importer key-encrypting key are in import form. Only keys in
import form can be used as the source for an import operation. These keys are also called
external keys. A key in import form can also be described as being in export form if an
exporter key-encrypting key with the same clear key value as the importer
key-encrypting key is present. You may store keys in import form in any manner you
choose except in key store files.

Function control vector

IBM provides a digitally signed value known as a function control vector. This value enables the
cryptographic application within the Coprocessor to yield a level of cryptographic service
consistent with applicable import regulations and export regulations. The function control vector
provides your Coprocessor with the key length information necessary to create keys.

Control vectors

A control vector, different from a function control vector, is a known value associated with a key
that governs the following:

* Key type

* What other keys this key can encrypt

* Whether your Coprocessor can export this key
¢ Other allowed uses for this key

The control vector is cryptographically linked to a key and can not be changed without changing
the value of the key at the same time.

Key store file

10

An i5/0S database file that is used to store keys which you encrypted under the master key of
the Coprocessor.

System i: Networking Cryptographic hardware

Key token
A data structure that can contain a cryptographic key, a control vector, and other information
related to the key. Key tokens are used as parameters on most of the CCA API verbs that either
act on or use keys.

Features

Cryptographic Coprocessors provide cryptographic processing capability and a means to securely store
cryptographic keys. You can use the Coprocessors with i5/0S SSL or with i5/0S application programs
written by you or an application provider. Cryptographic functions supported include encryption for
keeping data confidential, message digests and message authentication codes for ensuring that data has
not been changed, and digital signature generation and verification. In addition, the Coprocessors provide
a rich set of basic services for financial PIN, EMV, and SET applications.

IBM 4758 and 4764 Cryptographic Coprocessors

The primary benefit of the IBM Cryptographic Coprocessors is their provision of a secure environment
for executing cryptographic functions and managing cryptographic keys. Master keys are stored in a
battery backed-up, tamper-resistant hardware security module (HSM). The HSM is designed to meet
Federal Information Processing Standard (FIPS) PUB 140 security requirements.

You can use the Coprocessors with i5/0S SSL or with i5/0S application programs written by you or an
application provider. The 4764 Cryptographic Coprocessor offers improved performance over that of the
4758 Cryptographic Coprocessor.

SSL application features

Establishment of secure sockets layer (SSL) or transport layer security (TLS) sessions requires
computationally intensive cryptographic processing. When the Cryptographic Coprocessors are used with
i5/0S, SSL can offload this intensive cryptographic processing, and free the system CPU for application
processing. The Cryptographic Coprocessors also provide hardware-based protection for the private key
that is associated with the system’s SSL digital certificate.

When configured with SSL, the Cryptographic Coprocessor can be used to create and store a private key
in the FIPS 140 certified HSM. Or it can be used to create a private key, encrypt it with the master key —
all performed within the HSM - and then store the encrypted private key via system software in a key
store file. This enables a given private key to be used by multiple Cryptographic Coprocessor cards.
Master keys are always stored in the FIPS 140 certified hardware module.

i5/0S CCA application features

You can use your Cryptographic Coprocessor to provide a high-level of cryptographic security for your
applications. To implement i5/0S applications using the facilities of a Cryptographic Coprocessor you or
an applications provider must write an application program using a security application programming
interface (SAPI) to access the security services of your Cryptographic Coprocessor. The SAPI for the
Cryptographic Coprocessor conforms to the IBM Common Cryptographic Architecture (CCA) and is
supplied by i5/0S Option 35 CCA Cryptographic Service Provider (CCA CSP).

With i5/0S the Cryptographic Coprocessor SAPI supports application software that is written in ILE C,
RPG, and Cobol. Application software via the SAPI can call on CCA services to perform a wide range of
cryptographic functions, including Tripe-Data Encryption Standard (T-DES), RSA, MD5, SHA-1, and
RIPEMD-160 algorithms. Basic services supporting financial PIN, EMV2000 (Europay, MasterCard, Visa)
standard, and SET (Secure Electronic Transaction) block processing are also available. In support of an
optional layer of security the Cryptographic Coprocessor provides a role-based access control facility,
which allows you to enable and control access to individual cryptographic operations that are supported
by the Coprocessor. The role-based access controls define the level of access that you give to your users.

Cryptography 11

The SAPI is also used to access the key management functions of the Coprocessor. Key-encrypting keys
and data encryption keys can be defined. These keys are generated in the Cryptographic Coprocessor and
encrypted under the master key so that you can store these encrypted keys outside of your Coprocessor.
You store these encrypted keys in a key store file, which is an i5/0S database file. Additional key
management functions include the following:

* Create keys using cryptographically secure random-number generator.
* Import and export encrypted T-DES and RSA keys securely.
* Clone a master key securely.

Multiple Cryptographic Coprocessor cards can be used to meet your performance capacity and/or
high-availability requirements. See [Manage multiple Cryptographic Coprocessors| for more information.

Security APIs for the 4758 and 4764 Cryptographic Coprocessors are documented in the IBM PCI
Cryptographic Coprocessor CCA Basic Services Reference and Guide, Release 3.23. You can find these
and other publications in the [[BM PCI Cryptographic Coprocessor documentation library]

Cryptographic Coprocessor scenarios

To give you some ideas of how you can use this cryptographic hardware with your system running the
i5/0S operating system, read these usage scenarios.

Scenario: Protecting private keys with cryptographic hardware
This scenario might be useful for a company that needs to increase the security of the system digital
certificate private keys that are associated with the i5/0S SSL-secured business transactions.

Situation:

A company has a system dedicated to handling business-to-business (B2B) transactions. This company’s
system specialist, Sam, has been informed by management of a security requirement from its B2B
customers. The requirement is to increase the security of the system’s digital certificate private keys that
are associated with the SSL-secured business transactions that Sam’s company performs. Sam has heard
that there is a cryptographic hardware option available for systems that both encrypts and stores private
keys associated with SSL transactions in tamper-responding hardware: a Cryptographic Coprocessor card.

Sam researches the Cryptographic Coprocessor, and learns that he can use it with the i5/0S Digital
Certificate Manager (DCM) to provide secure SSL private key storage, as well as increase system
performance by off-loading from the system those cryptographic operations which are completed during
SSL-session establishment.

Note: To support load balancing and performance scaling, Sam can use multiple Cryptographic
Coprocessors with SSL on the system.

Sam decides that the Cryptographic Coprocessor meets his company’s requirement to increase the
security of his company’s system.

Details:

1. The company’s system has a Cryptographic Coprocessor installed and configured to store and protect
private keys.

2. Private keys are generated by the Cryptographic Coprocessor.
3. Private keys are then stored on the Cryptographic Coprocessor.
4. The Cryptographic Coprocessor resists both physical and electronic hacking attempts.

Prerequisites and assumptions:

1. The system has a Cryptographic Coprocessor installed and configured properly. Planning for the
Cryptographic Coprocessor includes getting SSL running on the system.

12 System i: Networking Cryptographic hardware

http://www.ibm.com/security/cryptocards/library.shtml

Note: To use multiple Cryptographic Coprocessor cards for application SSL handshake processing,
and securing private keys, Sam will need to ensure that his application can manage multiple
private keys and certificates.

2. Sam’s company has Digital Certificate Manager (DCM) installed and configured, and uses it to
manage public Internet certificates for SSL communications sessions.

3. Sam’s company obtain certificates from a public Certificate Authority (CA).

4. The Cryptographic Coprocessor is varied on prior to using DCM. Otherwise, DCM will not provide a
page for selecting a storage option as part of the certificate creation process.

Configuration steps:

Sam needs to perform the following steps to secure private keys with cryptographic hardware on his
company’s system:
1. Ensure that the prerequisites and assumptions for this scenario have been met.

2. Use the IBM Digital Certificate Manager (DCM) to create a new digital certificate, or renew a current
digital certificate:

a. Select the type of certificate authority (CA) that is signing the current certificate.

b. Select the Hardware as your storage option for certificate’s private key.

c. Select which cryptographic hardware device you want to store the certificate’s private key on.
d. Select a public CA to use.

The private key associated with the new digital certificate is now stored on the Cryptographic
Coprocessor specified in Step 2.c. Sam can now go into the configuration for his company’s web server
and specify that the newly created certificate be used. Once he restarts the web server, it will be using the
new certificate.

Related concepts

["Managing multiple Cryptographic Coprocessors” on page 181

You can have up to eight Cryptographic Coprocessors per partition. The maximum number of
Cryptographic Coprocessors supported per system is dependent on the system mode. This topic
provides information on using multiple coprocessors with SSL in systems running the i5/OS operating
system.

[‘Planning for the Cryptographic Coprocessor” on page 15|
This information is pertinent to those planning to install an IBM Cryptographic Coprocessor in their
system running the i5/0S operating system.

[‘Configuring the Cryptographic Coprocessor” on page 20|

Configuring your Cryptographic Coprocessor allows you to begin to use all of its cryptographic
operations. To configure the Cryptographic Coprocessor on your system running the i5/0S operating
system, you can either use the Cryptographic Coprocessor configuration web—based utility or write
your own application.

[‘Configuring the Cryptographic Coprocessor for use with i5/0S applications” on page 97|
This topic lists the steps needed to make Cryptographic Coprocessors ready for use with an i5/0S
application.

Related information

[Managing public Internet certificates for SSL. communications sessions|

Scenario: Writing an i5/0S application to use the Cryptographic Coprocessor

This scenario could help an i5/0S programmer reason through the process of writing a program that
calls the Cryptographic Coprocessor to verify user data such as financial personal identification numbers
(PINSs), which are entered at automatic teller machines (ATMs).

Cryptography 13

Situation:

Suppose you are a system programmer for a large financial Credit Union. You have been assigned the
task of getting a Cryptographic Coprocessor PCI card that is installed in the Credit Union system to
verify members’ financial personal identification numbers (PINs) when they are entered at automatic
teller machines (ATMs).

You decide to write an i5/0S application program using the CCA CSP (cryptographic service provider)

APIs that are a part of Option 35 to access the cryptographic services in the Cryptographic Coprocessors
to verify members’ PINs. i5/0S application programs written for the Cryptographic Coprocessor utilize
the coprocessor to perform security-sensitive tasks and cryptographic operations.

Note: Multiple Cryptographic Coprocessors can be used via the CCA CSP. The application must control
access to individual Coprocessor by using the Cryptographic_Resource_Allocate (CSUACRA) and
Cryptographic_Resource_Deallocate (CSUACRD) CCA APIs.

Details:

1. A Credit Union member enters his or her PIN at an ATM.

2. The PIN is encrypted at the ATM, and then sent along the network to the Credit Union’s system.
3. The system recognizes the transaction request, and calls a program to verify the member’s PIN.
4

. The program sends a request containing the encrypted PIN, member’s account number,
PIN-generating key, and PIN encrypting key to the Cryptographic Coprocessor.

o

The Cryptographic Coprocessor confirms or denies the validity of the PIN.
6. The program sends the Cryptographic Coprocessor’s results to the ATM.

a. If the PIN is confirmed, the member can successfully complete a transaction with the Credit
Union.

b. If the PIN is denied, the member is unable to complete a transaction with the Credit Union.

Prerequisites and assumptions:

1. Your company has a system with a properly installed and configured Cryptographic Coprocessor.
Refer to the following information:

a. [Plan for the Cryptographic Coprocessor|

b. [Configure the Cryptographic Coprocessor

c. |Configure the Cryptographic Coprocessor for use with i5/0S applications|

2. You are familiar with Option 35: The Common Cryptographic Architecture Cryptographic Service
Provider (CCA CSP). It is packaged as i5/0OS Option 35, and provides a security application
programming interface (SAPI) to which you can write applications that allow you to access the
cryptographic services of the Cryptographic Coprocessor.

3. You have access to the [CCA Basic Services Guide 9 , where you can find Financial Services Support
verbs to use in your application.

Configuration steps:

One way to accomplish your objective of using the Cryptographic Coprocessor to validate PINs is to
write two i5/0S applications:

1. Write a program that loads the both the PIN verification keys, and PIN encrypting keys, and stores
them in a key store file. Assuming that clear key parts are used, you need to use the following APlIs:

¢ Logon_Control (CSUALCT)

* Key_Part_Import (CSNBKPI)

* Key_Token_Build (CSNBKTB)

* Key_Record_Create (CSNBKRC)

14 System i: Networking Cryptographic hardware

http://www-306.ibm.com/security/cryptocards/pdfs/CCA_Basic_Services_241_Revised_20030918.pdf

* Key_Record_Write (CSNBKRW)
* Optional APIL: KeyStore_Designate (CSUAKSD)

2. Write a second program that calls the Encrypted_PIN_Verify (CSNBPVR) API to verify encrypted
PINs, and then reports their valid or invalid status back to the ATM.

Related concepts

[Secure access” on page 16|

Access control restricts the availability of system resources to only those users you have authorized to
interact with the resources. The system allows you to control authorization of users to system
resources.

[‘Configuring the Cryptographic Coprocessor” on page 20|

Configuring your Cryptographic Coprocessor allows you to begin to use all of its cryptographic
operations. To configure the Cryptographic Coprocessor on your system running the i5/0S operating
system, you can either use the Cryptographic Coprocessor configuration web-based utility or write
your own application.

Planning for the Cryptographic Coprocessor

This information is pertinent to those planning to install an IBM Cryptographic Coprocessor in their
system running the i5/OS operating system.

Before you install

It is important that you take ensure your system meets the requirements necessary for the Cryptographic
Coprocessor, prior to installing it. These requirements include hardware and software prerequisites.
Additionally, you need to ensure the secure access of your system’s resources prior to installing a
Cryptographic Coprocessor. Lastly, familiarize yourself with the object authorities that are required for
the security APIs (SAPI). [link to related topics here]

* Requirements
* Secure access
* Object authorities required for SAPI

Related concepts

[‘Scenario: Protecting private keys with cryptographic hardware” on page 12|
This scenario might be useful for a company that needs to increase the security of the system digital
certificate private keys that are associated with the i5/0OS SSL-secured business transactions.

Requirements
Your system must run the i5/0S operating system and must meet these requirements before you install
and use any of the Cryptographic Coprocessors.

4764 Cryptographic Coprocessor requirements

The 4764 Cryptographic Coprocessor can be ordered by specifying Hardware Feature Code 4806, which is
supported on the following models:

* IBM System i5 520, 550, 570, and 595
* 1/0 Expansion units 5074, 5088, 5095, 0595, 5294, and 5790

Your Cryptographic Coprocessor is a PCI card, and requires the following software:

e i5/06S (5722-S51): The 4764 Cryptographic Coprocessor requires i5/0S Version 5 Release 3 Modification
0 or later.

Note: For systems running V5R3MO, the Cryptographic Access Provider 128-bit (5722-AC3) licensed
program product must also be installed to enable the cryptographic functions in the hardware.

* i5/06S Option 35 Common Cryptographic Architecture Cryptographic Service Provider (CCA CSP)
provides the SAPL

Cryptography 15

* i5/06S 5733-CY1 Cryptographic Device Manager provides the CCA firmware for the 4764
Cryptographic Coprocessor.

* i5/0S Option 34 Digital Certificate Manager (if you are planning on using the Cryptographic
Coprocessor configuration web-based utility).

* i5/06 5722-TC1 TCP/IP Connectivity Ultilities (if you are planning on using the Cryptographic
Coprocessor configuration web-based utility).

e i5/06 5722-DG1 IBM HTTP Server (if you are planning on using the Cryptographic Coprocessor
configuration web-based utility).

4758 Cryptographic Coprocessor requirements

The 4758 Cryptographic Coprocessor can be ordered by specifying a Hardware Feature code 4801, which
is supported on the following hardware:

* System i5 520, 550, 570, and 595
* eServer i5 250 and 270 (250 requires the 7102 expansion unit), 810, 820, 825, 830, 840, 870, and 890
* Expansion units 5074, 5075, 5078, 5079, 5088, 5094, 5095, 5294, and 5790

Your Cryptographic Coprocessor is a PCI card. Install the card as described in the eServer PCI adapter
installation manual. See the PCI Adapter PDF for more information.

Your Cryptographic Coprocessor requires the following software:

¢ i5/0S: The 4758 Cryptographic Coprocessors requires i5/0S Version 5 Release 3 Modification 0 or
later.

Note: For systems running V5R3MO, the Cryptographic Access Provider 128-bit (5722-AC3) licensed
program product must also be installed to enable the cryptographic functions in the hardware.
* i5/06S Option 35 Common Cryptographic Architecture Cryptographic Service Provider (CCA CSP).
+ i5/0S Option 34 Digital Certificate Manager (if you are planning on using the Cryptographic
Coprocessor configuration web-based utility).
* i5/06 5722-TC1 TCP/IP Connectivity Ultilities (if you are planning on using the Cryptographic
Coprocessor configuration web-based utility).

e i5/06 5722-DG1 IBM HTTP Server (if you are planning on using the Cryptographic Coprocessor
configuration web-based utility).

Software note:With i5/0S V5R4MO the 5722-AC3 Cryptographic Access Provider Product is no longer
required to enable data encryption. The 5722-AC3 product has been withdrawn and its function has been
incorporated into i5/0OS. When installing i5/0OS V5R4MO any previously installed 5722-ACx products will
automatically be deleted.

Hardware note: The Cryptographic Coprocessors destroy their factory certification if allowed to cool
below -15 degrees C (5 degrees F). If your Coprocessor destroys its factory certification, you can no
longer use the card, and you must contact your hardware service provider to order a new Cryptographic
Coprocessor.

Related concepts

4764 and 4758 Cryptographic Coprocessors|

IBM offers two Cryptographic Coprocessors, which are available on a variety of system models.
Cryptographic Coprocessors contain hardware engines, which perform cryptographic operations used
by i5/0S application programs and i5/0OS SSL transactions.

Secure access
Access control restricts the availability of system resources to only those users you have authorized to
interact with the resources. The system allows you to control authorization of users to system resources.

16 System i: Networking Cryptographic hardware

Your organization should identify each system resource in the organization’s security hierarchy. The
hierarchy should clearly delineate the levels of access authorization users have to resources.

All of the service programs in i5/0OS Option 35 are shipped with *EXCLUDE authority for *PUBLIC. You
must give users *USE authority for the service program that they need to use. In addition, you must also
give users *USE authority to the QC6SRV service program in library QCCA.

Users who take part in setting up a Cryptographic Coprocessor must have *IOSYSCFG special authority
to use the Master_Key_Process (CSNBMKP), Access_Control_Initialize (CSUAACI), or
Cryptographic_Facility_Control (CSUACFC) security application programming interfaces (SAPIs). These
three SAPIs are used to perform all configuration steps for the Cryptographic Coprocessors. For all
SAPIs, users may require additional object authorities.

For the most secure environments, consider assigning the role of Coprocessor Administrators to a set of
users who do not have *ALLOB]J special authority. This way, users with *ALLOB] special authority cannot
alter the configuration of the Coprocessor because they will not be able to log on to an administrative
role on the Coprocessor. They can, however, control object authority to the SAPI service programs,
preventing misuse by the administrators.

In order to use the Cryptographic Coprocessor configuration web utility, users must have *SECADM
special authority.

Cryptographic Coprocessors have separate access controls which are unrelated to the access controls of
the system. The Cryptographic Coprocessor access controls allow you to control access to the
Cryptographic Coprocessor hardware commands.

For even more security, limit the capabilities of the default role within your Cryptographic Coprocessor.
Assign capabilities among other roles to require two or more people to perform security-sensitive
functions, like changing the master key. You can do this when you work with roles and profiles.

Note: You should consider some standard physical security measures as well, such as keeping your
system behind a locked door.

Related concepts

[‘Creating and defining roles and profiles” on page 22|

Cryptographic Coprocessors on systems running the i5/0S operating system use role-based access
control. In a role-based system, you define a set of roles, which correspond to the classes of
Coprocessor users. You can enroll each user by defining an associated user profile to map the user to
one of the available roles.

[‘Configuring the Cryptographic Coprocessor for use with DCM and SSL” on page 96|
This topic provides information on how to make the Cryptographic Coprocessor ready for use with
SSL in i5/08S.

[‘Scenario: Writing an i5/0S application to use the Cryptographic Coprocessor” on page 13|

This scenario could help an i5/0S programmer reason through the process of writing a program that
calls the Cryptographic Coprocessor to verify user data such as financial personal identification
numbers (PINs), which are entered at automatic teller machines (ATMs).

Related reference

[‘Object authorities that are required for SAPI”|

Refer to the table for information regarding the object authorities that SAPI requires for restricting the
availability of system resources by setting up the Cryptographic Coprocessor on your system running
the i5/0S operating system.

Object authorities that are required for SAPI:

Cryptography 17

Refer to the table for information regarding the object authorities that SAPI requires for restricting the

availability of system resources by setting up the Cryptographic Coprocessor on your system running the
i5/0S operating system.

SAPI *USE for *USE for *CHANGE |*USE for *USE for *CHANGE | *USE for
device DES for DES DES PKA for PKA PKA
keystore keystore Keystore keystore keystore Keystore
Library Library
CSNBCKI Y Y Y
CSNBCKM Y Y! Y
CSNBCPA Y Y! Y!
CSNBCPE Y Y! Y!
CSNBCSG Y Y! Y!
CSNBCSV Y Y! Y!
CSNBCVE Y Y! Y!
CSNBCVG
CSNBCVT Y Y! Y!
CSNBDEC Y Y! Y!
CSNBDKG Y Y! Y!
CSNBDKM Y Y? Y? Y!
CSNBDKX Y Y! Y!
CSNBENC Y Y! Y!
CSNBEPG Y Y! Y!
CSNBKET Y Y! Y!
CSNBKEX Y Y! Y!
CSNBKGN Y Y? Y? Y!
CSNBKPI Y Y! Y!
CSNBKRC Y Y Y
CSNBKRD Y Y Y
CSNBKRL Y Y Y
CSNBKRR Y Y Y
CSNBKRW Y Y Y
CSNBKSI Y Y? Y? Y? Y?
CSNBKTC Y Y Y
CSNBKTP
CSNBKTR Y Y Y!
CSNBKYT Y Y! Y!
CSNBKYTX* |Y Y! Y!
CSNBMDG Y
CSNBMGN Y Y! Y!
CSNBMKP Y
CSNBOWH
CSNBPCU Y Y! Y!
CSNBPEX Y Y! Y!

18 System i: Networking Cryptographic hardware

SAPI

*USE for
device

*USE for
DES
keystore

*CHANGE
for DES
keystore

*USE for
DES
Keystore
Library

*USE for
PKA
keystore

*CHANGE
for PKA
keystore

*USE for
PKA
Keystore
Library

CSNBPEXX*

Yl

Yl

CSNBPGN

Yl

Yl

CSNBSPN

Yl

Yl

CSNBPTR

Yl

Yl

CSNBPVR

Yl

Yl

CSNBSKY

Yl

Yl

CSNBTRV

Y

Y

CSNDDSG

Yl

CSNDDSV

<= =]=T=]=<]=]=]=

Yl

CSNDKRC

CSNDKRD

CSNDKRL

CSNDKRR

CSNDKRW

CSNDKTC

Yl

CSNDPKB

CSNDPKG

Yl

Y‘l

CSNDPKH

CSNDPKI

Yl

Yl

Yl

CSNDPKR

CSNDPKX

Yl

Yl

CSNDRKD

CSNDRKL

CSNDSBC

Yl

Yl

CSNDSBD

Yl

Yl

CSNDSYG

Yl

Yl

CSNDSYI

Yl

Yl

Yl

Yl

CSNDSYX

Yl

Yl

Yl

Yl

CSUAACI

CSUAACM

CSUACFC

CSUACFQ

CSUACRA

CSUACRD

< === =<]=]==<]=<]=<]=<[=<]=<]=<]=<]=<]=

CSUAKSD

CSUALCT

<

CSUAMKD

'Use of Data Encryption Standard (DES) or public key algorithm (PKA) keystore for this API is optional.

Cryptography 19

*More than one parameter may optionally use keystore. The authority requirements differ on each of
those parameters.

The Key_Store_Initialize SAPI does not require authority to both files simultaneously.

“These SAPIs pertain only to 4764 Coprocessors.
Related concepts

[“Secure access” on page 16|

Access control restricts the availability of system resources to only those users you have authorized to
interact with the resources. The system allows you to control authorization of users to system
resources.

Configuring the Cryptographic Coprocessor

Configuring your Cryptographic Coprocessor allows you to begin to use all of its cryptographic
operations. To configure the Cryptographic Coprocessor on your system running the i5/0OS operating
system, you can either use the Cryptographic Coprocessor configuration web-based utility or write your
own application.

The easiest and fastest way to configure your Cryptographic Coprocessor is to use the Cryptographic
Coprocessor configuration web-based utility found off of the System Tasks page at http:/ /server-
name:2001 (specify another port if you have changed it from port 2001). The utility includes the Basic
configuration wizard that is used for configuring (and initializing) a Coprocessor that has not been
previously configured. If HTTP and SSL have not been previously configured, you will need to do the
following before using the Configuration Wizard.

* Start the HTTP Administrative server.

* Configure the HTTP Administrative server to use SSL.

* Use DCM to create a certificate, specifying that the private key be generated and stored in software.
* Use DCM to receive the signed certificate.

* Associate the certificate with the HTTP Administrative server application ID.

* Restart the HTTP Administrative server to enable it for SSL processing.

If the Cryptographic Coprocessor has already been configured, then click on the Manage configuration
option to change the configuration for specific portions of the Coprocessor.

If you would prefer to write your own application to configure the Coprocessor, you can do so by using
the Cryptographic_Facility_Control (CSUACFC), Access_Control_Initialize (CSUAACI),
Master_Key_Process (CSNBMKP), and Key_Store_Initialize (CSNBKSI) API verbs. Many of the pages in
this section include one or more program examples that show how to configure the Coprocessor via an
application. Change these programs to suit your specific needs.

Whether you choose to use the Cryptographic Coprocessor configuration utility or write your own
applications, the following outlines the steps you must take to properly configure your Cryptographic
Coprocessor:

Related concepts

[“Scenario: Protecting private keys with cryptographic hardware” on page 12|
This scenario might be useful for a company that needs to increase the security of the system digital
certificate private keys that are associated with the i5/0S SSL-secured business transactions.

[“Configuring the Cryptographic Coprocessor for use with DCM and SSL” on page 96|
This topic provides information on how to make the Cryptographic Coprocessor ready for use with
SSL in i5/0S.

[‘Scenario: Writing an i5/0S application to use the Cryptographic Coprocessor” on page 13|
This scenario could help an i5/0S programmer reason through the process of writing a program that

20 System i: Networking Cryptographic hardware

calls the Cryptographic Coprocessor to verify user data such as financial personal identification
numbers (PINs), which are entered at automatic teller machines (ATMs).

Creating a device description

The device description specifies a default location for key storage. You can create a device description
with or without naming any key store files for the Cryptographic Coprocessor on your system running
the i5/0S operating system.

About this task

You must create a device description for your Cryptographic Coprocessor on your system. The device
description is used by CCA CSP to help direct cryptographic requests to the Coprocessor. Additionally,
the device description gives your Coprocessor a default location for key store file storage. The Basic
configuration wizard in the Cryptographic Coprocessor configuration utility, found off of the System
Tasks page at http://server-name:2001, can create a device description for you, or you can create a device
description yourself by using the Create Device Crypto CL command.

To create a device description using the Basic configuration wizard, follow these steps:
Point your web browser to the System Tasks page: http://server-name:2001

Click on Cryptographic Coprocessor configuration.

Click on the button labeled Start secure session.

Click Basic configuration wizard.

Click continue on the Welcome page.

Click on the list entry with the device name set to *CREATE for the resource you want to use.

N o o~ N~

Continue as instructed by the Basic configuration wizard.

Create a device desription using CL:
About this task

To create a device description using the CL command, follow these steps:
1. Type CRTDEVCRP at the CL command line

2. Specify a name for the device as prompted. If you want to set up a default device, name the device
CRPO1. Otherwise, each application you create must use the Cryptographic Resource Allocate
(CSUACRA) API in order to access your device description.

Specify the name of a default PKA key store file or let the parameter default to *NONE.
Specify the name of a default DES key store file or let the parameter default to *NONE.
Optional: Specify a description as prompted.

Use either the Vary Configuration (VRYCFG) or the Work with Configuration Status (WRKCFGSTS)
CL commands to vary on the device once you have created the device description. This typically takes
one minute, but it may take ten minutes to complete.

o oA~ W

Results

Note: The APPTYPE defaults to *CCA, so you do not need to specify it on the Create command.
However, if you have changed it to another value, you need to change it back to *CCA before the
device can vary on.

You have now completed creation of the device description.

Naming files to key store file
Before you can perform any operation in i5/0S using a key store file or key stored in a key store file,
you must name the key store file.

Cryptography 21

You can name two types of key store files. One type stores Data Encryption Standard (DES) keys and
Triple-DES keys. DES and Triple DES are symmetric cryptographic algorithms; the Cryptographic
Coprocessor uses the same key to encrypt and decrypt. The other type stores public key algorithm (PKA)
keys. Public key algorithms are asymmetric; keys are created in pairs. Cryptographic Coprocessors use
one key to encrypt and the other to decrypt. Cryptographic Coprocessors support the RSA public key
algorithm.

You can name a key store file explicitly by using a program, or you can name it by configuring it on the
device description. To name a key store file from a program, use the Key_Store_Designate (CSUKSD)
security application programming interface (SAPI). If you name key store files that use a program, your
Cryptographic Coprocessor only uses the names for the job that ran the program. However, by naming
key store files explicitly in your program, you can use separate key store files from other users. If you
name key store files on the device description, you do not have to name them in your program. This may
help if you are trying to maintain the same program source across multiple IBM platforms. It is also
useful if you are porting a program from another implementation of Common Cryptographic
Architecture.

You need to store your cryptographic keys in a secure form so that you can use them over time and
exchange them with other users and systems, as appropriate. You can store your cryptographic keys by
using your own methods, or you can store them in a key store file. You can have as many key store files
as you want, and you can create multiple key store files for each type of key. You can place as many
cryptographic keys in your key store files as you want.

Since each key store file is a separate system object, you can authorize different users to each file. You can
save and restore each key store file at different times. This depends on how often the file’s data changes
or which data it is protecting.

Creating and defining roles and profiles

Cryptographic Coprocessors on systems running the i5/0S operating system use role-based access
control. In a role-based system, you define a set of roles, which correspond to the classes of Coprocessor
users. You can enroll each user by defining an associated user profile to map the user to one of the
available roles.

The capabilities of a role are dependent on the access control points or cryptographic hardware
commands that are enabled for that role. You can then use your Cryptographic Coprocessor to create
profiles that are based on the role you choose.

A role-based system is more efficient than one in which the authority is assigned individually for each
user. In general, you can separate the users into just a few different categories of access rights. The use of
roles allows you to define each of these categories just once, in the form of a role.

The role-based access control system and the grouping of permissible commands that you can use are
designed to support a variety of security policies. In particular, you can set up Cryptographic
Coprocessors to enforce a dual-control, split-knowledge policy. Under this policy no one person should be
able to cause detrimental actions other than a denial-of-service attack, once the Cryptographic
Coprocessor is fully activated. To implement this policy, and many other approaches, you need to limit
your use of certain commands. As you design your application, consider the commands you must enable
or restrict in the access-control system and the implications to your security policy.

Every Cryptographic Coprocessor must have a role called the default role. Any user that has not logged
on to the Cryptographic Coprocessor will operate with the capabilities defined in the default role. Users
who only need the capabilities defined in the default role do not need a profile. In most applications, the
majority of the users will operate under the default role, and will not have user profiles. Typically, only
security officers and other special users need profiles.

22 System i: Networking Cryptographic hardware

When Cryptographic Coprocessors are in an un-initialized state, the default role has the following access
control points enabled:

PKA96 One Way Hash

Set Clock

Re-initialize Device

Initialize access control system roles and profiles
Change the expiration data in a user profile
Reset the logon failure count in a user profile
Read public access control information

Delete a user profile

Delete a role

The default role is initially defined such that the functions permitted are those functions that are related
to access control initialization. This guarantees that the Cryptographic Coprocessor will be initialized
before you do any useful cryptographic work. The requirement prevents security "accidents” in which
someone might accidentally leave authority intact when you put the Coprocessor into service.

Note: Read the [‘Code license and disclaimer information” on page 287] for important legal information.

Related concepts

[‘Secure access” on page 16|

Access control restricts the availability of system resources to only those users you have authorized to
interact with the resources. The system allows you to control authorization of users to system
resources.

[‘Loading a function control vector” on page 72|

The function control vector tells the Cryptographic Coprocessor for the system running the i5/0S
operating system what key length to use to create keys. You cannot perform any cryptographic
functions without loading a function control vector.

Related reference

[“Example: ILE C program for creating roles and profiles for your Coprocessor” on page 26|
Change this i5/0S ILE C program example to suit your needs for creating a role or a profile for your
Coprocessor.

“Example: ILE C program for enabling all access control points in the default role for your]
Coprocessor” on page 38|

Change this i5/0S ILE C program example to suit your needs for enabling all access control points in
the default role for your Coprocessor.

[“Example: ILE RPG program for creating roles or profiles for your Coprocessor” on page 43|
Change this i5/0S ILE RPG program example to suit your needs for creating roles and profiles for
your Coprocessor.

“Example: ILE RPG program for enabling all access control points in the default role for your
Coprocessor” on page 52|

Change this i5/0S ILE RPG program example to suit your needs for enabling all access control points
in the default role for your Coprocessor.

[“Example: ILE C program for changing an existing profile for your Coprocessor” on page 56|
Change this i5/0S program example to suit your needs for changing an existing profile for your
Coprocessor.

[“Example: ILE RPG program for changing an existing profile for your Coprocessor” on page 58|
Change this i5/0S ILE RPG program example to suit your needs for changing an existing profile for
your Coprocessor.

Defining roles: The easiest and fastest way to define new roles (and redefine the default role) is to use
the Cryptographic Coprocessor configuration web-based utility found off of the System Tasks page at

Cryptography 23

http:/ /server-name:2001. The utility includes the Basic configuration wizard that is used when the
Coprocessor is in an un-initialized state. The Basic configuration wizard can define either 1 or 3
administrative roles along with redefining the default role. If the Coprocessor already has been initialized,
then click on Manage configuration and then click on Roles to define new roles or change or delete
existing ones.

If you would prefer to write your own application to manage roles, you can do so by using the
Access_Control_Initialization (CSUAACI) and Access_Control_Maintenance (CSUAACM) API verbs. To
change the default role in your Coprocessor, specify "DEFAULT” encoded in ASCII into the proper
parameter. You must pad this with one ASCII space character. Otherwise, there are no restrictions on the
characters that you may use for role IDs or profile IDs.

Defining profiles: After you create and define a role for your Coprocessor, you can create a profile to
use under this role. A profile allows users to access specific functions for your Coprocessor that may not
be enabled for the default role.

The easiest and fastest way to define new profiles is to use the Cryptographic Coprocessor configuration
web-based utility, located on the System Tasks page at http://server-name:2001. The utility includes the
Basic configuration wizard that is used when the Coprocessor is in an un-initialized state. The Basic
configuration wizard can define either one or three administrative profiles. If the Coprocessor has already
been initialized, click Manage configuration » Profiles to define new profiles or change or delete existing
ones.

If you want to write your own application to manage profiles, you can use the
Access_Control_Initialization (CSUAACI) and Access_Control_Maintenance (CSUAACM) API verbs.

Coprocessor for SSL: If you will be using the Coprocessor for SSL, the default role must at least be
authorized to the following access control points:

 Digital Signature Generate
* Digital Signature Verify

* PKA Key Generate

* PKA Clone Key Generate
* RSA Encipher Clear Data
* RSA Decipher Clear Data
* Delete Retained Key

* List Retain Keys

The Basic configuration wizard in the Cryptographic Coprocessor configuration utility automatically
redefines the default role such that it can be used for SSL without any changes.

To avoid security hazards, consider denying the following access control points (also called cryptographic
hardware commands) for the default role, after you have set up all of the roles and profiles:

Note: You should enable only those access control points that are necessary for normal operations. At a
maximum, you should only enable specifically required functions. To determine which access
control points are required, refer to the CCA Basic Services Guide. Each API lists the access control
points that are required for that APL If you do not need to use a particular API, consider disabling
the access control points that are required for it.

* Load first part of Master Key

* Combine Master Key Parts

* Set Master Key

* Generate Random Master Key
e Clear New Master Key Register

24 System i: Networking Cryptographic hardware

Clear Old Master Key Register
Translate CV
Set Clock

Attention: If you intend to disable the Set Clock access control point from the default role, ensure
that the clock is set before you disable access. The clock is used by the Coprocessor when users try to
log on. If the clock is set incorrectly, users can not log on.

Re-initialize device

Initialize access control system

Change authentication data (for example, pass phrase)

Reset password failure count

Read Public Access Control Information

Delete user profile

Delete role

Load Function Control Vector

Clear Function Control Vector

Force User Logoff

Set EID

Initialize Master Key Cloning Control

Register Public Key Hash

Register Public Key, with Cloning

Register Public Key

PKA Clone Key Generate (Access control point required for SSL)
Clone-Information Obtain Parts 1, 2, 3, 4, 5, 6,7, 8,9, 10, 11, 12, 13, 14, 15
Clone-Information Install Parts 1, 2, 3, 4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15
Delete retained key (Access control point required for SSL)

List retained keys (Access control point required for SSL)
Encipher Under Master Key

Data Key Export

Data Key Import

Re-encipher to Master Key

Re-encipher from Master Key

Load First Key Part

Combine Key Parts

Add Key Part

Complete Key part

For the most secure environment, consider locking the access-control system after initializing it. You can
render the access-control system unchangeable by deleting any profile that would allow use of the Access
Control Initialization or the Delete Role access control point. Without these access control points, further
changes to any role are not possible. With authority to use either the Initialize Access Control or Delete
Role access control points, one can delete the DEFAULT role.

Deleting the DEFAULT role will cause the automatic recreation of the initial DEFAULT role. The initial
DEFAULT role permits setting up any capabilities. Users with access to these access control points have
unlimited authority through manipulation of the access-control system. Before the Coprocessor is put into
normal operation, the access-control setup can be audited through the use of the
Access_Control_Maintenance (CSUAACM) and Cryptographic_Facility_Query (CSUACFQ) API verbs.

Cryptography 25

If for any reason the status response is not as anticipated, the Coprocessor should not be used for
application purposes until it has been configured again to match your security policy. If a role contains
permission to change a pass phrase, the pass phrase of any profile can be changed. You should consider
if passphrase changing should be permitted and, if so, which role(s) should have this authority.

If any user reports an inability to log on, this should be reported to someone other than (or certainly in
addition to) an individual with pass phrase changing permission. Consider defining roles so that
dual-control is required for every security sensitive operation to protect against a malicious insider acting
on his/her own. For example, consider splitting the following groups of access control points between
two or more roles. It is recommended that one person should not be able to use all of the commands in
the Master key group, because this could represent a security risk.

The Master key group consists of these access control points:
* Load 1st part of Master Key

* Combine Master Key Parts

* Set Master Key

* Generate Random Master Key

* Clear New Master Key Register

* Clear Old Master Key Register

By the same token, one person should not be authorized to all of the commands in the Cloning key

group.

The Cloning key group consists of these access control points:

* Initialize Master Key Cloning Control

* Register Public Key Hash

* Register Public Key, with Cloning

* Register Public Key

* PKA Clone Key Generate

¢ Clone-Information Obtain Parts 1, 2, 3,4, 5,6, 7,8, 9, 10, 11, 12, 13, 14, 15
* Clone-Information Install Parts 1, 2, 3,4, 5,6, 7,8, 9, 10, 11, 12, 13, 14, 15

After you create and define a profile for your Coprocessor, you must load a function control vector for
your Coprocessor. Without the function control vector, your Coprocessor cannot perform any
cryptographic functions.

Example: ILE C program for creating roles and profiles for your Coprocessor:

Change this i5/0S ILE C program example to suit your needs for creating a role or a profile for your
Coprocessor.

Note: Read the [‘Code license and disclaimer information” on page 287| for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security
reasons, IBM recommends that you individualize these program examples rather than using the
default values provided.

J e m e e e e */
/% CRTROLEPRF */
/* */
/* Sample program to create roles and profiles in the */

/* cryptographic adapter. */
/* */
/* */
/* COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007 */

26 System i: Networking Cryptographic hardware

/*

/* This material contains programming source code for your

/* consideration. These examples have not been thoroughly

/* tested under all conditions. IBM, therefore, cannot

/* guarantee or imply reliability, serviceability, or function
/* of these program. A1l programs contained herein are

/* provided to you "AS IS". THE IMPLIED WARRANTIES OF

/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

/* ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
/* these programs and files.

/*

/*

/* Note: Input format is more fully described in Chapter 2 of
/* IBM CCA Basic Services Reference and Guide

/* (SC31-8609) publication.

/*

/* Parameters:

/* none.

/*

/* Example:

/* CALL PGM(CRTROLEPRF)

/*

/* Use these commands to compile this program on the system:

/* CRTCMOD MODULE(CRTROLEPRF) SRCFILE(SAMPLE)

/* CRTPGM PGM(CRTROLEPRF) MODULE (CRTROLEPRF)

/* BNDSRVPGM(QCCA/CSUAACI QCCA/CSNBOWH)

/*

/* Note: Authority to the CSUAACI and CSNBOWH service programs
/* in the QCCA library is assumed.

/*

/* The Common Cryptographic Architecture (CCA) verbs used are
/* Access_Control_Initialization (CSUAACI) and

/* One_Way_Hash (CSNBOWH).

/*

/* Note: This program assumes the device you want to use is

/* already identified either by defaulting to the CRPO1
/* device or has been explicitly named using the

/* Cryptographic_Resource Allocate verb. Also this

/* device must be varied on and you must be authorized

/* to use this device description.

/*

/* Note: Before running this program, the clock in the must be
/* set using Cryptographic_Facility Control (CSUACFC) in order
/* to be able to logon afterwards.

/*
e
#include "csucincl.h" /* header file for CCA Cryptographic

Service Provider
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main(int argc, char *argv[]) {

#define ERROR -1
#define OK 0
#define WARNING 4

long return_code;

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/

*/
*/

Cryptography 27

long reason_code;

long exit_data_length;
char exit_data[2];

char rule_array[4][8];
long rule_array_count;
long verb_datal_Tength;
long verb_data2_length;
long hash_length;

long text_length;

char *text;

char chaining_vector[128];
long chaining_vector_length;

J == === —— o ... */
/* Definitions for profiles */
gy */
typedef struct
{
char version[2]; /* Profile structure version =/
short length; /* length of structure */
char comment [20] ; /* Description */
short checksum;
char Togon_failure_count;
char reserved;
char userid[8]; /* Name for this profile */
char role[8]; /* Role that profile uses */
short act_year; /* Activation date - year */
char act_month; /* Activation date - month */
char act_day; /* Activation date - day */
short exp_year; /* Expiration date - year */
char exp_month; /* Expiration date - month */
char exp_day; /* Expiration date - day */
short total_auth_data_length;
short field_type;
short auth_data_length_1;
short mechanism; /* Authentication mechanism =/
short strength; /* Strength of mechanism */
short mech_exp_years; /* Mechanism expiration - yearx/
char mech_exp_month; /* Mech. expiration - month x/
char mech_exp_day; /* Mechansim expiration - day =*/
char attributes[4];
char auth_data[20]; /* Secret data */

} profile T;

typedef struct
{
long number; /* Number profiles in struct =/
long reserved;
profile T profile[3];
} aggregate profile;

aggregate_profile * verb_datal; /* Aggregate structure for */
/* defining profiles */

2y */

/* Definitions for roles */

e */

Sy */

/* Default role - access control points list - */

/* authorized to everything EXCEPT: */

/* 0x0018 - Load 1st part of Master Key */

/* 0x0019 - Combine Master Key Parts */

/* 0x001A - Set Master Key */

/* 0x0020 - Generate Random Master Key */

/* 0x0032 - Clear New Master Key Register */

/* 0x0033 - Clear 01d Master Key Register */

/* 0x0053 - Load 1st part of PKA Master Key */

28 System i: Networking Cryptographic hardware

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

0x0054
0x0057
0x0060
0x0061
0x0110
0x0111
0x0112
0x0113
0x0114
0x0115
0x0116
0x0117
0x0118
0x0119
0x011A
0x011B
0x0200
0x0201
0x0202
0x0203
0x0204
0x0211

/* For access

char default_bitmap[] =

{ 0x00, 0x03, O0xFO, Ox1D, 0x00, 0x00, 0x00, 0x00,
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, Ox0A, 0x80, 0x00, 0x88, 0x2F, 0x71, 0x10,
0x10, 0x04, 0x03, 0x31, 0x80, 0x00, 0x00, 0x00,
OxFF, Ox7F, 0x40, 0x6B, 0x80};

Combine PKA Master Key Parts

Set PKA Master Key

Clear New PKA Master Key Register
Clear 01d PKA Master Key Register

Set Clock

Reinitialize device

Initialize access control system
Change user profile expiration date
Change authentication data (eg. passphrase)
Reset password failure count

Read Public Access Control Information
Delete user profile

Delete role

Load Function Control Vector

Clear Function Control Vector

Force User Logoff

Register PKA Public Key Hash

Register PKA Public Key, with cloning
Register PKA Public Key

Delete Retained Key

PKA Clone Key Generate

0x21F - Clone information - obtain 1-15

control points 0x01 - 0x127 =/

/* For access control points 0x200 - 0x23F */
char default2_bitmap[] =
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, OXE6, OXOF };

/* role #1 - authorized to same as default plus also

/*

/*

/* 0x0018
/* 0x0020
/* 0x0032
/* 0x0053
/* 0x0060
/* 0x0119
/* 0x0201
/* 0x0202
/* 0x0203
/* 0x0204
/* 0x0211
[+ 0x0221
/*

authorized to:

Load 1st part of Master Key

Generate Random Master Key

Clear New Master Key Register

Load 1st part of PKA Master Key

Clear New PKA Master Key Register

Load Function Control Vector

Register PKA Public Key, with cloning
Register PKA Public Key

Delete Retained Key

PKA Clone Key Generate

0x215 - Clone information - obtain 1-5
0x225 - Clone information - install 1-5

char rolel bitmap[] =

{ 0x00, 0x03, OxFO, 0x9D, 0x80, 0x00, 0x20, 0x00,
0x80, 0x00, 0x10, Ox00, 0x80, 0x00, 0x00, 0x00,
0x00, OxO0A, 0x80, 0x00, 0x88, Ox1F, 0x71, 0x10,
0x10, 0x04, 0x03, 0x11, 0x80, 0x00, 0x00, 0x00,
OxFF, Ox7F, 0x00, Ox4F, 0x80};

char rolel bitmap2[] =

{ 0x78, 0x00, 0x7C, 0x00, 0x7C, 0x00, OXE6, OXOF };

/* role #2 - authorized to same as default plus also

/*
/*
/* 0x0019
/* 0x001A
/* 0x0033
/* 0x0054

authorized to:

Combine Master Key Parts

Set Master Key

Clear 01d Master Key Register
Combine PKA Master Key Parts

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

Cryptography 29

/* 0x0057 - Set PKA Master Key */

/* 0x0061 - Clear 01d Master Key Register */
/* 0x011A - Clear Function Control Vector */
/* 0x0200 - Register PKA Public Key Hash */
/* 0x0201 - Register PKA Public Key, with cloning */
/* 0x0203 - Delete Retained Key */
/* 0x0204 - PKA Clone Key Generate */
/* 0x0216 - 0x21A - Clone information - obtain 6-10 */
/* 0x0226 - 0x22A - Clone information - install 6-10 */
T S S S S Sy YRS */

char role2_bitmap[] =
{ 0x00, 0x03, OxFO, 0x7D, 0x80, 0x00, 0x10, 0x00,
0x80, 0x00, 0x09, 0x00, 0x40, 0x00, 0x00, 0x00,
0x00, Ox0A, 0x80, 0x00, 0x88, Ox1F, 0x71, 0x10,
0x10, 0x04, 0x03, 0x31, 0x80, 0x00, 0x00, 0x00,
OxFF, Ox7F, 0x00, Ox2F, 0x80};
char role2 bitmap2[] =
{ 0xD8, 0x00, 0x03, OxEQ, 0x03, OxEOQ, OxE6, OxXOF };

2y */
/* role #3 - authorized to same as default plus also */
/* authorized to: */
/* 0x0110 - Set Clock */
/* 0x0111 - Reinitialize device */
/* 0x0112 - Initialize access control system */
/* 0x0113 - Change user profile expiration date */
/* 0x0114 - Change authentication data (eg. passphrase) */
/* 0x0115 - Reset password failure count */
/* 0x0116 - Read Public Access Control Information */
/* 0x0117 - Delete user profile */
/* 0x0118 - Delete role */
/* 0x011B - Force User Logoff */
/* 0x0200 - Register PKA Public Key Hash */
/* 0x0201 - Register PKA Public Key, with cloning */
/* 0x0203 - Delete Retained Key */
/* 0x0204 - PKA Clone Key Generate */
/* 0x021B - 0x21F - Clone information - obtain 11-15 */
/* 0x022B - 0x22F - Clone information - install 11-15 */
2 */

char role3_bitmap[] =
{ 0x00, 0x03, OxFO, Ox1D, 0x00, 0x00, 0x00, 0x00,
0x80, 0x00, 0x00, 0x00, 0xCO, 0x00, 0x00, 0x00,
0x00, OxOA, 0x80, 0x00, 0x88, Ox1F, 0x71, 0x10,
0x10, 0x04, 0x03, 0x31, 0x80, 0x00, 0x00, 0x00,
OxFF, Ox7F, OxFF, Ox9F, 0x80};
char role3_bitmap2[] =
{ oxD8, 0x00, 0x00, Ox1F, 0x00, Ox1F, OxE6, OXOF };

Ty */
/* Structures for defining the access control points in a role =/
Ty */
struct access_control_points_header

{

short number_segments; /* Number of segments of */

/* the access points map */
short reserved;
} access_control_points_header;

struct access_control_points_segment_header

{

short start_bit; /* Starting bit in this =/
/* segment. */
short end_bit; /* Ending bit */
short number_bytes; /* Number of bytes in */
/* this segment */
short reserved;

} access_control_points_segment_header;

30 System i: Networking Cryptographic hardware

/* Structure for defining a role x/
Ty */
struct role_header

{

char version[2];

short length;

char comment [20] ;

short checksum;

short reservedl;

char role[8];

short auth_strength;

short Tower_time;

short upper_time;

char valid_days_of_week;

char reserved?;

} role_header;

2y */
/* Structure for defining aggregate roles */
ey */
struct aggregate_role_header

long number;

long reserved;

} aggregate role_header;

char * verb_data2;

char * work_ptr;
char *bitmapl, *bitmap2;

int i; /* Loop counter */
T */
/* >>>>>>>> Start of code <<<<<<<<<<<<<<<<<< */
Ty S S Sy Sy S S Sy S SRS S S S S */
2 */
/* Allocate storage for the aggregate role structure */
2y */

verb_data2 = malloc(sizeof(aggregate role_header) +
sizeof(role_header) * 3 +
sizeof(access_control_points_header) * 3 +
sizeof (access_control_points_segment_header)
* 6 + /* 3 roles * 2 segments each */
sizeof (default_bitmap) * 3 +
sizeof(default2_bitmap) * 3);

work _ptr = verb_data2; /* Set working pointer to
start of verb data 2 storage */

aggregate_role_header.number

= 3; /* Define/replace 3 roles */
aggregate_role_header.reserved =

03
/* Copy header into verb data
2 storage. */
memcpy (work_ptr, (void*)&aggregate role_header,
sizeof(aggregate_role_header));

/* Adjust work pointer to point
after header. */
work_ptr += sizeof(aggregate role_header);

/* Fill in the fields of the role definitions. */
/* Each role is version 1, has authentication strength of 0, %/
/* has valid time from 12:00 Midnight (0) to 23:59 (x173B), */

Cryptography 31

/*
/*
/*

is valid every day of the week. (xFE is 7 bits set),
has one access control points segment that starts at bit 0
and goes to bit x11F, and has 20 spaces for a comment.

role_header.
role_header.
role_header.

role_header.

version[0]
version[1]
length
sizeof (access_control_
2 * sizeof(access_control_|
sizeof(default_bitmap) +
checksum

*/
*/
*/

= 1;

=0:

sizeof (role_header) +
points_header) +
points_segment_header) +
sizeof(default2_bitmap);
= 0;

role_header.reservedl = 0;
role_header.auth_strength = 03
role_header.lower_time 03
role_header.upper_time = 0x173B;
role_header.valid_days_of_week = OxFE;
role_header.reserved2 = 0;

memset (role_header.comment,' ', 20);

access_control_points_header.number_segments = 2;

access_control_points_header.reserved = 03
access_control_points_segment_header.reserved = 03
for (i=0; i<3; i++)
{
switch (i) {
ey */
/* Set name for ROLE1 */
e */
case 0:
memcpy (role_header.role, "ROLEl ", 8);
bitmapl = rolel_bitmap;
bitmap2 = rolel_bitmap2;
break;
Ty */
/* Set name for ROLE2 */
ey */
case 1:
memcpy (role_header.role, "ROLE2 ", 8);
bitmapl = role2_bitmap;
bitmap2 = role2_bitmap2;
break;
g */
/* Set name for ROLE3 */
g */
case 2:
memcpy (role_header.role, "ROLE3 ", 8);
bitmapl = role3_bitmap;
bitmap2 = role3_bitmap2;
1
2 */
/* Copy role header */
S S USSR Sy S S ——— */

memcpy (work_ptr, (void+)&role_header, sizeof(role_header));

/* Adjust work pointer to
point after role header.

*/
work_ptr += sizeof(role_header);

S USSR S S Sy S ——— */
/* Copy access control points header */
J e m e e e */

memcpy (work_ptr,

32 System i: Networking Cryptographic hardware

(void *)&access_control_points_header,
sizeof (access_control_points_header));

/* Adjust work pointer to
point after header. =/
work_ptr += sizeof(access_control_points_header);

K e e e e e */
/* Copy access control points segment 1 */
K e - */
access_control_points_segment_header.start_bit = 0;

access_control_points_segment_header.end_bit = 0x127;

access_control_points_segment_header.number_bytes =
sizeof (default_bitmap);
memcpy (work_ptr,
(void x)&access_control_points_segment_header,
sizeof(access_control _points_segment_header));

/* Adjust work pointer to
point after header. =*/
work_ptr += sizeof(access_control_points_segment_header);

/2y */
/* Copy access control points segment 1 bitmap */
2y */

memcpy (work_ptr, bitmapl, sizeof(default_bitmap));

/* Adjust work pointer to
point after bitmap. =/
work_ptr += sizeof(default_bitmap);

2y */
/* Copy access control points segment 2 */
K e e - */
access_control_points_segment_header.start_bit = 0x200;
access_control_points_segment_header.end bit = 0x23F;

access_control_points_segment_header.number_bytes =
sizeof (default2_bitmap);

memcpy (work_ptr,
(void *)&access_control_points_segment_header,
sizeof (access_control_points_segment_header));

/* Adjust work pointer to
point after header. =/
work_ptr += sizeof(access_control_points_segment_header);

K e e e */
/* Copy access control points segment 2 bitmap */
K e e */

memcpy (work_ptr, bitmap2, sizeof(default2_bitmap));

/* Adjust work pointer to
point after bitmap. =/
work_ptr += sizeof(default2_bitmap);

e e meeceeeeee */
/* Allocate storage for aggregate profile structure */
J 3 m — —m — — - */

verb _datal = malloc(sizeof(aggregate profile));

verb_datal->number = 3; /* Define 3 profiles */
verb_datal->reserved = 0;

Cryptography

33

/* Each profile: */

/* will be version 1, */
/* have an activation date of 1/1/00, */
/* have an expiration date of 6/30/2005, */
/* use passphrase hashed with SHA1l for the mechanism (0x0001), =/
/* will be renewable (attributes = 0x8000) */
/* and has 20 spaces for a comment */
2y */
for (i=0; i<3; i++)
{
verb_datal->profile[i].length = sizeof(profile_T);
verb_datal->profile[i].version[0] =1
verb_datal->profile[i].version[1] = 0;
verb_datal->profile[i].checksum = 0;
verb_datal->profile[i].logon _failure_count = 0;
verb_datal->profile[i].reserved = 0;
verb_datal->profile[i].act_year = 2000;
verb_datal->profile[i].act_month = 1;
verb_datal->profile[i].act_day = 1;
verb_datal->profile[i].exp_year = 2005;
verb_datal->profile[i].exp_month = 63
verb_datal->profile[i].exp_day = 30;
verb_datal->profile[i].total_auth_data_length = 0x24;
verb_datal->profile[i].field type = 0x0001;
verb_datal->profile[i].auth_data_length_1 = 0x20;
verb_datal->profile[i].mechanism = 0x0001;
verb_datal->profile[i].strength = 0;
verb_datal->profile[i].mech_exp_year = 2005;
verb_datal->profile[i].mech_exp_month = 63
verb_datal->profile[i].mech_exp_day = 30;
verb_datal->profile[i].attributes[0] = 0x80;
verb_datal->profile[i].attributes[1] = 0;
verb_datal->profile[i].attributes[2] = 0;
verb_datal->profile[i].attributes[3] = 0;
memset (verb_datal->profile[i].comment, ' ', 20);
memcpy (rule_array, "SHA-1 ", 8);
rule_array_count =1;
chaining_vector_length = 128;
hash_length = 20;
switch (i) {
/2y */
/* Set name, role, passphrase of profile 1 */
S S S S S */

case 0:
memcpy (verb_datal->profile[i].userid,"SECOFR1 ",8);
memcpy (verb_datal->profile[i].role, "ROLEl ",8);
text_length = 10;

text "Is it safe";
break;
[K m e m e e e */
/* Set name, role, passphrase of profile 2 */
2y */
case 1:

memcpy (verb_datal->profile[i].userid,"SECOFR2 ",8);
memcpy (verb_datal->profile[i].role, "ROLE2 ",8);
text_Tength = 18;

text = "I think it is safe";
break;
2y */
/* Set name, role, passphrase of profile 3 */
T S S SRS S */
case 2:

memcpy (verb_datal->profile[i].userid,"SECOFR3 ",8);
memcpy (verb_datal->profile[i].role, "ROLE3 ",8);

34 System i: Networking Cryptographic hardware

text_length = 12;

text = "Is what safe";
1
S S S S S U S S SRS Sy Sy */
/* Call One_Way Hash to hash the pass-phrase */
S */

CSNBOWH(&return_code,
&reason_code,
&exit_data_Tength,
exit_data,
&rule_array_count,
(charx)rule_array,
&text_Tength,
text,
&chaining_vector_length,
chaining_vector,
&hash_Tength,
verb_datal->profile[i].auth_data);

2y */
/* Call Access_Control Initialize (CSUAACI) to create =/
/* the roles and profiles. */
g */

rule_array_count = 2;

memcpy (rule_array, "INIT-AC REPLACE ", 16);

verb_datal length = sizeof(aggregate profile);

verb_data2 length = sizeof(aggregate role_header) +
sizeof(role_header) * 3 +
sizeof(access_control points_header) * 3 +
sizeof(access_control_points_segment_header)
* 6 + [+ 3 roles *» 2 segments each */
sizeof(default_bitmap) * 3 +
sizeof (default2_bitmap) * 3;

CSUAACI(&return_code,
&reason_code,
&exit_data_Tlength,
exit_data,
&rule_array_count,
(char *)rule_array,
(Tong *) &verb_datal Tength,
(char *) verb_datal,
(Tong *) &verb_data2_length,
(char *) verb_data2);

if (return_code > WARNING)
printf("Access_Control_Initialize failed. Return/reason codes: \
%d/%d\n",return_code, reason_code);
else
printf("The new roles and profiles were successfully created\n");

/* The Access_Control_Initialize SAPI verb needs to be */
/* called one more time to replace the DEFAULT role so that x/
/* a user that does not log on is not able to change any */

/* settings in the . */
e e e e e */
work_ptr = verb_data2; /* Set working pointer to

start of verb data 2 storage */

aggregate_role_header.number = 1; /* Define/replace 1 roles */
aggregate_role_header.reserved = 0;
memcpy (work_ptr, (void+)&aggregate_role_header,

sizeof (aggregate role_header));

Cryptography

/* Adjust work pointer to
point after header. =/
work_ptr += sizeof(aggregate role_header);

T O U S S U S S USSRy
/* Fill in the fields of the role definitions.

/* Each role is version 1, has authentication strength of 0,

/* has valid time from 12:00 Midnight (0) to 23:59 (x173B),

/* s valid every day of the week. (xFE is 7 bits set),

/* has one access control points segment that starts at bit 0
/* and goes to bit x11F, and has 20 spaces for a comment.

J e m e e e e e
role_header.version[0] =1;
role_header.version[1] = 0;

role_header.length = sizeof(role_header) +

sizeof (access_control_points_header) +
2 * sizeof(access_control_points_segment_header)
sizeof(default_bitmap) + sizeof(default2_bitmap
role_header.checksum = 0;
role_header.reservedl =

03
role_header.auth_strength = 0;
role_header.Tower_time = 0;
role_header.upper_time = 0x173B;
role_header.valid_days of week = OxFE;
role_header.reserved? = 03

memset (role_header.comment,' ', 20);

access_control_points_header.number_segments = 2;
access_control_points_header.reserved = 03
access_control_points_segment_header.reserved = 0;

/* DEFAULT role id must be in
/* ASCII representation.
memcpy (role_header.role, "\x44\x45\x46\x41\x55\x4C\x54\x20", 8);
bitmapl = default_bitmap;
bitmap2 = default2_bitmap;

S S S S S Sy S S - */
/* Copy role header */
/2y */

memcpy (work_ptr, (void*)&role_header, sizeof(role_header));

/* Adjust work pointer to
point after header. =/
work_ptr += sizeof(role_header);

/2y */
/* Copy access control points header x/
2y */

memcpy (work_ptr,
(void *)&access_control_points_header,
sizeof (access_control_points_header));

/* Adjust work pointer to
point after header. =*/
work_ptr += sizeof(access_control_points_header);

2y */
/* Copy access control points segment 1 */
/2y */
access_control_points_segment_header.start_bit = 0;

access_control_points_segment_header.end _bit = 0x127;

access_control_points_segment_header.number_bytes =
sizeof(default_bitmap
memcpy (work_ptr,
(void x)&access_control_points_segment_header,
sizeof(access_control_points_segment_header));

36 System i: Networking Cryptographic hardware

*/
*/
*/
*/
*/
*/

+

)s

*/
*/

)s

/* Adjust work pointer to
point after header. =/
work_ptr += sizeof(access_control_points_segment_header);

g */
/* Copy access control points segment 1 bitmap */
g */

memcpy (work_ptr, bitmapl, sizeof(default_bitmap));

/* Adjust work pointer to
point after bitmap. =/
work_ptr += sizeof(default_bitmap);

g */
/* Copy access control points segment 2 x/
S S Sy S Sy S S S S S S S ——— */
access_control_points_segment_header.start_bit = 0x200;
access_control_points_segment_header.end_bit = 0x23F;

access_control_points_segment_header.number_bytes =
sizeof (default2_bitmap);

memcpy (work_ptr,
(void *)&access_control_points_segment_header,
sizeof(access_control_points_segment_header));

/* Adjust work pointer to
point after header. =/
work _ptr += sizeof(access_control points_segment_header);

S S Sy S S S S S S S S S S ——— */
/* Copy access control points segment 2 bitmap */
J e m e e e e e eceeceeeee */

memcpy (work_ptr, bitmap2, sizeof(default2_bitmap));

rule_array count = 2;

memcpy (rule_array, "INIT-AC REPLACE ", 16);

verb_datal Tength = 0;

verb_data2_length = sizeof(aggregate_role_header) +
sizeof(role_header) +
sizeof(access_control_points_header) +
sizeof (access_control_points_segment_header)
* 2 +
sizeof(default_bitmap) +
sizeof (default2_bitmap);

CSUAACI(&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *)rule_array,
(Tong *) &verb_datal_length,
(char *) verb_datal,
(Tong *) &verb_data2 length,
(char *) verb_data2);

if (return_code > 4)

printf("The default role was not replaced. Return/reason code:\
%d/%d\n",return_code, reason_code);

else

printf("The default role was successfully updated.\n");

Related concepts

[‘Creating and defining roles and profiles” on page 22|

Cryptographic Coprocessors on systems running the i5/0S operating system use role-based access

Cryptography 37

control. In a role-based system, you define a set of roles, which correspond to the classes of
Coprocessor users. You can enroll each user by defining an associated user profile to map the user to
one of the available roles.

Example: ILE C program for enabling all access control points in the default role for your
Coprocessor:

Change this i5/0S ILE C program example to suit your needs for enabling all access control points in the
default role for your Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security
reasons, IBM recommends that you individualize these program examples rather than using the
default values provided.

gy */
/* SETDEFAULT */
/* */
/* Sample program to authorize the default role to all access */
/* control points in the . */

/* */
/* */
/* COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/* of these program. A1l programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* ARE EXPRESSLY DISCLAIMED. IBM provides no program services for x/
/* these programs and files. */
/* */
/* */
/* Note: Input format is more fully described in Chapter 2 of */
/* IBM CCA Basic Services Reference and Guide */

/* (SC31-8609) publication. */
/* */
/* Parameters: */
/* none. */
/* */
/* Example: */
/* CALL PGM(SETDEFAULT) */
/* */
/* Use these commands to compile this program on the system: */
/* CRTCMOD MODULE (SETDEFAULT) SRCFILE(SAMPLE) */
/* CRTPGM PGM(SETDEFAULT) MODULE (SETDEFAULT) */
/* BNDSRVPGM(QCCA/CSUAACI) */
/* */
/* Note: Authority to the CSUAACI service programs */
/* in the QCCA library is assumed. */
/* */
/* The Common Cryptographic Architecture (CCA) verb used is */
/* Access_Control _Initialization (CSUAACI). */
/* */
/* Note: This program assumes the device you want to use is */
/* already identified either by defaulting to the CRPO1 */
/* device or has been explicitly named using the */
/* Cryptographic_Resource Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
S Uy Sy S S S Sy S Sy S Sy S S S ——— */

38 System i: Networking Cryptographic hardware

#include "csucincl.h" /* header file for CCA Cryptographic
Service Provider

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

void main(int argc, char *argv[]) {

#define ERROR -1
#define OK 0
#define WARNING 4

long return_code;

long reason_code;

long exit_data_length;
char exit_data[2];

char rule_array[4][8];
long rule_array_count;
long verb_datal_length;
long verb_data2_Tlength;
char verb_datal[4];

2y */
/* Structure for defining a role */
2y */
struct role_header

{

char version[2];

short length;

char comment [20] ;

short checksum;

short reservedl;

char role[8];

short auth_strength;

char Tower_time_hour;

char Tower_time_minute;

char upper_time_hour;

char upper_time_minute;

char valid_days_of week;

char reserved?;

} role_header;

e e e e */
/* Structure for defining aggregate roles */
2y */
struct aggregate_role

long number;

long reserved;

} aggregate role_header;

ey */
/* Structures for defining the access control points in a role =/
Ty Sy S Sy S S U Sy Sy Sy S S S */
struct access_control_points_header

{

short number_segments; /* Number of segments of =*/

*/
*/
*/

*/
*/

Cryptography 39

short reserved;

} access_control_points_header;

/* the access points map x/

struct access_control_points_segment_header

{

short start_bit; /* Starting bit in this =/
/* segment. */
short end_bit; /* Ending bit */
short number_bytes; /* Number of bytes in */
/* this segment */
short reserved;

} access_control_points_segment_header;
2y
/* Default role - access control points list -

/* authorized to everything
/*
/* For access control points 0x01 - 0x127
2y
char default_bitmap[] =
{ 0x00, 0x03, 0xFO, OxFD, 0x80, 0x00, 0x30, 0x00,
0x80, 0x00, 0x19, 0x00, 0xCO, 0x00, Ox00, 0x00,
0x00, Ox0A, 0x80, 0x00, 0x88, 0x2F, 0x71, 0x10,
0x18, 0x04, 0x03, 0x31, 0x80, 0x00, 0x00, 0x00,
OxFF, Ox7F, OxFF, OxFF, 0x80};
== === - ...
/* For access control points 0x200 - 0x23F
2y
char default2 bitmap[] =
{ OxF8, 0x00, Ox7F, OxFF, Ox7F, OxFF, OxE6, OxOF };
unsigned char * verb_data2;
unsigned char = work_ptr;
int i, /* Loop counter */
2 */
/* Start of code */
2y */
T */
/* Allocate storage for the aggregate role structure */
[H e m e e e e e e */
verb_data2 = malloc(sizeof(aggregate_role_header) +
sizeof (role_header) +
sizeof(access_control _points_header) +
sizeof (access_control_points_segment_header)
* 2 +
sizeof(default_bitmap) +
sizeof (default2_bitmap));
work_ptr = verb_data2; /* Set up work pointer */
aggregate_role_header.number = 1; /* Define/replace 1 role */
aggregate role_header.reserved = 0; /* Initialize reserved field*/

/* Copy header to verb_data2
storage.

*/

memcpy (work_ptr, (void*)&aggregate_role_header,
sizeof(aggregate role_header));

work_ptr += sizeof(aggregate role_header); /* Set work pointer

40

after role header =/

System i: Networking Cryptographic hardware

*/
*/
*/
*/

/* Fill in the fields of the role definition. */

2y */
role_header.version[0] = 1; /* Version 1 role x/
role_header.version[1l] = 0;
/* Set length of the role =/
role_header.length = sizeof(role_header)
+ sizeof(access_control_points_header)
+ 2 *

sizeof(access_control_points_segment_header)
+ sizeof(default_bitmap)
+ sizeof(default2_bitmap);

role_header.checksum = 0; /* Checksum is not used */
role_header.reservedl = 0; /* Reserved must be 0 */
role_header.auth_strength = 0; /* Authentication strength */

/* is set to 0. */

/* Lower time is 00:00 */
role_header.lower_time_hour = 03

role_header.lower_time_minute = 0;
/* Upper time is 23:59 */

role_header.upper_time_hour = 23;

role_header.upper_time_minute = 59;

role header.valid_days_of week = OxFE; /* Valid every day */
/* 7 bits - 1 bit each day */

role_header.reserved2 = 0; /* Reserved must be 0 */
/* Role is DEFAULT */
/* expressed in ASCII */

memcpy (role_header.role, "\x44\x45\x46\x41\x55\x4C\x54\x20", 8);

memset(role_header.comment,' ',20); /* No description for role */

g */
/* Copy role header into verb_data2 storage */
S Sy S S S S S S S S S S ——— */

memcpy (work_ptr, (void*)&role_header, sizeof(role_header));
work_ptr += sizeof(role_header);

2y */
/* Set up access control points header and then */
/* copy it into verb data2 storage. */
[e m e e e e eeeeceeceeeee */
access_control_points_header.number_segments =23
access_control_points_header.reserved = 0;
access_control_points_segment_header.reserved = 0;

memcpy (work_ptr,
(void *)&access_control_points_header,
sizeof (access_control_points_header));

/* Adjust work_ptr to point to the
first segment */
work_ptr += sizeof(access_control_points_header);

2y */
/* Set up the segment header for segment 1 and then =/
/* copy into verb_data2 storage */
[F—————— - _________ */
access_control_points_segment_header.start_bit = 0;

access_control_points_segment_header.end_bit = 0x127;

access_control_points_segment_header.number_bytes =
sizeof(default_bitmap);
memcpy (work_ptr,
(void *)&access_control_points_segment_header,

Cryptography 41

sizeof(access_control_points_segment_header));

/* Adjust work ptr to point to the
first segment bitmap */
work_ptr += sizeof(access_control_points_segment_header);

2y */
/* Copy access control points segment 1 bitmap x/
2y */

memcpy (work_ptr, default_bitmap, sizeof(default bitmap));

/* Adjust work_ptr to point to the
second segment */
work_ptr += sizeof(default_bitmap);

ey */
/* Set up the segment header for segment 2 and then =/
/* copy into verb data2 storage */
JH e m e e e e e eeee */
access_control_points_segment_header.start_bit = 0x200;
access_control_points_segment_header.end_bit = 0x23F;

access_control_points_segment_header.number_bytes =
sizeof(default2_bitmap);

memcpy (work_ptr,
(void *)&access_control_points_segment_header,
sizeof(access_control_points_segment_header));

/* Adjust work _ptr to point to the
second segment bitmap */
work ptr += sizeof(access_control points_segment header);

J e m e e e e e eeee */
/* Copy access control points segment 2 bitmap */
2y */
memcpy (work_ptr, default2 bitmap, sizeof(default2 bitmap));
S S S S S Sy S S - */
/* Set the length of verb data 2 (Role definition) =/
/2y */

verb_data2 length = sizeof(aggregate role_header) +
role_header.length;

2y */
/* Set remaining parameters */
/2y */

rule_array_count = 2;
memcpy (rule_array, "INIT-AC REPLACE ", 16);
verb_datal_length = 0;

/Ty */
/* Call Access_Control_Initialize (CSUAACI) to set the =*/
/* default role. */
/gy */

CSUAACI(&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(unsigned char *)rule_array,
&verb_datal_Tlength,
(unsigned char *) verb datal,
&verb_data2_length,
verb_data2);

if (return_code > 4)
printf("The default role was not replaced. Return/reason code:\

42 System i: Networking Cryptographic hardware

else

%d/%d\n",return_code, reason_code);

printf("The default role was successfully updated.\n");

}

Related concepts

[‘Creating and defining roles and profiles” on page 22|

Cryptographic Coprocessors on systems running the i5/0S operating system use role-based access

control. In a role-based system, you define a set of roles, which correspond to the classes of
Coprocessor users. You can enroll each user by defining an associated user profile to map the user to
one of the available roles.

Example: ILE RPG program for creating roles or profiles for your Coprocessor:

Change this i5/0S ILE RPG program example to suit your needs for creating roles and profiles for your
Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security

reasons, IBM recommends that you individualize these program examples rather than using the

default values provided.

DR R R R

D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*

CRTROLEPRF

Sample program to create 3 roles and 3 profiles in the
and change the authority for the default role.

COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

This material contains programming source code for your
consideration. These example has not been thoroughly

tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function

of these programs. A1l programs contained herein are

provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for
these programs and files.

Note: Input format is more fully described in Chapter 2 of
IBM CCA Basic Services Reference and Guide
(SC31-8609) publication.

Parameters: None

Example:
CALL PGM(CRTROLEPRF)

Use these commands to compile this program on the system:

CRTRPGMOD MODULE(CRTROLEPRF) SRCFILE(SAMPLE)

CRTPGM PGM(CRTROLEPRF) MODULE (CRTROLEPRF)
BNDDIR(QCCA/QC6BNDDIR)

Note: Authority to the CSUAACI service program in the
QCCA Tibrary is assumed.

The Common Cryptographic Architecture (CCA) verbs used are
Access_Control_Initialize (CSUAACI)

Dxkkkxkhhkrkkhhkkkhhkkkhhhkkkhkkkhkhk *k%k *k%k kkhkkkkhkhkkhk

Cryptography

43

D* Declare variables used by CCA SAPI calls

)
D* *% Return code

DRETURNCODE S 9B 0

D* *% Reason code

DREASONCODE S 9B 0

D* *x Exit data length
DEXITDATALEN S 9B 0

D= *% Exit data

DEXITDATA S 4

D* ** Rule array count
DRULEARRAYCNT S 9B 0

D= **% Rule array

DRULEARRAY S 16

D* **% Text length

DTEXTLEN S 9B 0

D* *% Text to hash

DTEXT S 20

D* *% Chaining vector length
DCHAINVCTLEN S 9B 0 INZ(128)
D* ** Chaining vector
DCHAINVCT S 128

D= ** Hash length

DHASHLEN S 9B 0 INZ(20)
) g

D+ VERBDATAL contains the aggregate profile structure which
D*+ in turn contains 3 profiles.

) 2y gy P RS
DVERBDATALEN1 S 9B 0 INZ(278)
DVERBDATA1 DS 278

D= *x Define 3 Profiles

DNUMPROFS 9B 0 INZ(3)

D* ** Reserved field

DRESR1 9B 0 INZ(0)
DPROF1 90

DPROF2 90

DPROF3 90

D*

) g
D+ Define the profile structure

) g g
DPROFILESTRUCT DS

D* *% Version 1 struct

DPROFVERS 2 INZ(X'0100"')
D* ** Length of profile

DPROFLEN 2 INZ(X'005A")
D* *% Description of profile
DCOMMENTP 20 INZ('

D* *% Checksum is not used
DCHECKSUMP 2 INZ(X'0000")
D= ** Logon failure count

DLOGFC 1 INZ(X'00")
D* ** Reserved

DRESR?2 1 INZ(X'00')
D* *% Profile name

DUSERID 8

D= ** Role used

DROLENAME 8

D* *x% Activation year (2000)
DACTYEAR 2 INZ(X'07D0")
Dx xx Activation month (01)
DACTMONTH 1 INZ(X'01")
D* *x*x Activation day (01)

DACTDAY 1 INZ(X'01')
D* ** Expiration year (2004)
DEXPYEAR 2 INZ(X'07D4")
D* *x Expiration month (12)

System i: Networking Cryptographic hardware

DEXPMONTH
D*

DEXPDAY

D*

D*
DTOTAUTDTALEN
D*
DFIELDTYPE
D*
DAUTDATLEN
D*
DMECHANISM
D*
DSTRENGTH
D*
DMCHEXPYEAR
D*
DMCHEXPMONTH
D*
DMCHEXPDAY
D*
DATTRIBUTES
D*
DAUTHDATA
D*

%

**
%

%

%

**

**

*%

%

%

%

%

1 INZ(X'0C")
Expiration day (31)

1 INZ(X'1F")
Total authentication
data length

2 INZ(X'0024")
Field type

2 INZ(X'0001"')
Authentication data len

2 INZ(X'0020")
Authentication mechanism

2 INZ(X'0001")
Mechanism strength

2 INZ(X'0000")
Mech expiration year (2004)

2 INZ(X'07D4")
Mech expiration month (12)

1 INZ(X'0C")
Mech expiration day (31)

1 INZ(X'1F")
Attributes

4 INZ(X'80000000")

Authentication data
20 INZ('

D+ The Default role is being replaced

Dx Verb_data_2 length set to the Tength of the default role

D+ VERBDATAZ contains the aggregate role structure which

D* in turn contains 3 roles.

DVERBDATAZ2
D*
DNUMROLES
D*

DRESR3
DROLE1
DROLE2
DROLE3

D*

DROLESTRUCT
D*
DROLEVERS
D*
DROLELEN
D*
DCOMMENTR
D*
DCHECKSUMR
D*

DRESR4

D*

DROLE

D*
DAUTHSTRN
D*
DLWRTIMHR
DLWRTIMMN
D*
DUPRTIMHR
DUPRTIMMN

DS

*%

%

*%

%

%

%

**

**

*%

**

Define 3 Roles
9B 0 INZ(3)

Reserved field
9B 0 INZ(0)

109

109

109

Version 1 struct

2 INZ(X'0100")
Length of role

2 INZ(X'006D")
Description of role

20 INZ('
Checksum is not used

2 INZ(X'0000')
Reserved field

2 INZ(X'0000"')
Role Name

8

Authentication strength is set to 0

2 INZ(X'0000")
Lower time is 00:00

1 INZ(X'00")

1 INZ(X'00")
Upper time is 23:59

1 INZ(X'17")

1 INZ(X'3B")

Cryptography 45

46

D= *x \lalid days of week

DVALIDDOW 1 INZ(X'FE")

D* ** Reserved field

DRESR5 1 INZ(X'00")

D* **% 2 Access control points segments are defined
DNUMSEG 2 INZ(X'0002")

D* ** Reserved field

DRESR6 2 INZ(X'0000")

D= *% Starting bit of segment 1 is 0

DSTART1 2 INZ(X'0000")

Dx *x Ending bit of segment 1 is 295 (Hex 127).
DEND1 2 INZ(X'0127")

D= ** 37 Bytes in segment 1

DNUMBYTES1 2 INZ(X'0025")

D* ** Reserved field

DRESR7 2 INZ(X'00")

D= ** Segment 1 access control pointer
DBITMAP1A 8

DBITMAP1B 8

DBITMAPIC 8

DBITMAP1D 8

DBITMAP1E 5

D* *x Starting bit of segment 2 is 512 (Hex 200)
DSTART2 2 INZ(X'0200")

D* *x Ending bit of segment 2 is 575 (Hex 23F)
DEND2 2 INZ(X'023F")

D* *%x 8 Bytes in segment 2

DNUMBYTES?2 2 INZ(X'0008")

D* ** Reserved field

DRESR8 2 INZ(X'0000")

D= **% Segment 2 access control points

DBITMAP2 8

D*

D* gy *

D= * DEFAULT expressed in ASCII =

D* g *

DDEFAULT S 8 INZ(X'44454641554C5420")
D*

Dikxkkhkrkkhhhkkhhhkkhkhhkkhhh kA khhkkkhhkkkhhkkkhhhkkkhkkkhh*

D* Prototype for Access_Control_Initialize (CSUAACI)

DAxkxkkhkrkkhkhkkkhhhkkhkhhkrkhhhkkkhhkkkhhdkkkhkkkkhhkkkhkkxkhx

DCSUAACI
DRETCODE
DRSNCODE
DEXTDTALEN
DEXTDTA
DRARRAYCT
DRARRAY
DVRBDTALEN1
DVRBDTAL
DVRBDTALEN2
DVRBDTA2

D*

PR

9B 0

9B 0

9B 0

4

9B 0

16

9B 0
278

9B 0
335

)RR e L T

D* Prototype for One_Way Hash (CSNBOWH)

)RR R R R X e

DCSNBOWH
DRETCOD
DRSNCOD
DEXTDTALN
DEXTDT
DRARRYCT
DRARRY
DTXTLEN
DTXT
DCHNVCTLEN
DCHNVCT

PR

9B 0

9B 0

9B 0

4

9B 0
16

9B 0
20

9B 0
128

System i: Networking Cryptographic hardware

DHSHLEN 9B 0

C*
C*

to which the DEFAULT role is authorized plus the following:

DHSH 20
D*
g
D* *x Declares for sending messages to the
D* ** job log using the QMHSNDPM API
12y Sy S
DMSG S 64 DIM(3) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(64)
D DS
DMSGTEXT 1 75
DSAPI 1 7
DFAILRETC 41 44
DFAILRSNC 46 49
DMESSAGEID S 7 INZ (! ")
DMESSAGEFILE S 21 INZ(! ")
DMSGKEY S 4 INZ (! ")
DMSGTYPE S 10 INZ('*INFO ")
DSTACKENTRY S 10 INZ('* ")
DSTACKCOUNTER S 9B 0 INZ(2)
DERRCODE DS
DBYTESIN 1 4B 0 INZ(0)
DBYTESOUT 5 8B 0 INZ(0)
C*
C**
C* START OF PROGRAM *
C* *
(00 gy Ly Sy *
C* Set up roles in verb data 2 *
g *
C Set ROLE name (ROLE1)
C MOVEL 'ROLE1 ' ROLE
0
C* =* Set Access Control Points for ROLEL
C*x =
C* * DEFAULT is authorized to all access control points
C+ * except for the following:
C*x = 0x0018 - Load 1st part of Master Key
Cx = 0x0019 - Combine Master Key Parts
Cx = 0x001A - Set Master Key
Cx = 0x0020 - Generate Random Master Key
Cx = 0x0032 - Clear New Master Key Register
Cx = 0x0033 - Clear 01d Master Key Register
Cx = 0x00D6 - Translate CV
C*x = 0x0110 - Set Clock
Cx = 0x0111 - Reinitialize device
Cx = 0x0112 - Initialize access control system
Cx = 0x0113 - Change user profile expiration date
Cx = 0x0114 - Change authentication data (eg. passphrase)
Cx = 0x0115 - Reset password failure count
Cx = 0x0116 - Read Public Access Control Information
C*x = 0x0117 - Delete user profile
Cx = 0x0118 - Delete role
Cx = 0x0119 - Load Function Control Vector
Cx = 0x011A - Clear Function Control Vector
Cx = 0x011B - Force User Logoff
Cx = 0x0200 - Register PKA Public Key Hash
Cx =« 0x0201 - Register PKA Public Key, with cloning
Cx =* 0x0202 - Register PKA Public Key
Cx = 0x0203 - Delete Retained Key
Cx = 0x0204 - PKA Clone Key Generate
Cx =* 0x0211 - 0x21F - Clone information - obtain 1-15
Cx = 0x0221 - Ox22F - Clone information - install 1-15
Cx =
C+ * ROLE 1 is authorized to all access control points
*
*

Cryptography

47

C*
C*
C*

0x0113 - Change user profile expiration date
0x0114 - Change authentication data (eg. passphrase)
0x0115 - Reset password failure count

C+ * 0x0018 - Load 1lst part of Master Key
C+x = 0x0020 - Generate Random Master Key
Cx * 0x0032 - Clear New Master Key Register
C+ * 0x0053 - Load 1st part of PKA Master Key
Cx *= 0x0060 - Clear New PKA Master Key Register
C+ * 0x0119 - Load Function Control Vector
Cx = 0x0201 - Register PKA Public Key, with cloning
C+ * 0x0202 - Register PKA Public Key
Cx = 0x0203 - Delete Retained Key
Cx = 0x0204 - PKA Clone Key Generate
Cx *= 0x0211 - 0x215 - Clone information - obtain 1-5
Cx * 0x0221 - 0x225 - Clone information - install 1-5
Cx =
CF e e m e e oo
C EVAL BITMAP1A = X'0003F09D80002000"
C EVAL BITMAP1B = X'8000100080000000"
C EVAL BITMAP1C = X'000A8000881F7110"
C EVAL BITMAP1D = X'1004031180000000'
C EVAL BITMAPLE = X'FF7FO04F80'
C EVAL BITMAP2 = X'78007C007COOEGOF"
C* Copy role into aggregate structure
C MOVEL ROLESTRUCT ROLE1
C* Set ROLE name (ROLE2)
C MOVEL 'ROLE2 ' ROLE
C*k o e e e —————
C* * Set Access Control Points for ROLE2
Cx =
C+ * ROLE 2 is authorized to all access control points
C* * to which the DEFAULT role is authorized plus the following:
C*x =
Cx *= 0x0019 - Combine Master Key Parts
Cx * 0x001A - Set Master Key
Cx * 0x0033 - Clear 01d Master Key Register
C+ * 0x0054 - Combine PKA Master Key Parts
C+x = 0x0057 - Set PKA Master Key
Cx = 0x0061 - Clear 01d Master Key Register
Cx * Ox011A - Clear Function Control Vector
Cx * 0x0200 - Register PKA Public Key Hash
Cx * 0x0201 - Register PKA Public Key, with cloning
Cx * 0x0203 - Delete Retained Key
Cx *= 0x0204 - PKA Clone Key Generate
Cx = 0x0216 - 0x21A - Clone information - obtain 6-10
Cx * 0x0226 - 0x22A - Clone information - install 6-10
C*x =
0
C EVAL BITMAP1A = X'0003F07D80001000"
C EVAL BITMAP1B = X'8000090040000000'
C EVAL BITMAP1C = X'000A8000881F7110"
C EVAL BITMAP1D = X'1004031180000000'
C EVAL BITMAPLE = X'FF7FO02F80'
C EVAL BITMAP2 = X'D800O3EOO3EOE6OF'
C* Copy role into aggregate structure
C MOVEL ROLESTRUCT ROLE2
C* Set ROLE name (ROLE3)
C MOVEL 'ROLE3 ' ROLE
O gy
C* * Set Access Control Points for ROLE3
C*x =
Cx * ROLE 3 is authorized to all access control points
C+ * to which the DEFAULT role is authorized plus the following:
C*x =
C+ * 0x0110 - Set Clock
C+x *= 0x0111 - Reinitialize device
Cx *= 0x0112 - Initialize access control system
*
*
*

48 System i: Networking Cryptographic hardware

Cx *= 0x0116 - Read Public Access Control Information
C+ * 0x0117 - Delete user profile
C+ * 0x0118 - Delete role
Cx = 0x011B - Force User Logoff
Cx *= 0x0200 - Register PKA Public Key Hash
C+ * 0x0201 - Register PKA Public Key, with cloning
C+x = 0x0203 - Delete Retained Key
Cx = 0x0204 - PKA Clone Key Generate
Cx = 0x021B - 0x21F - Clone information - obtain 11-15
Cx * 0x022B - 0x22F - Clone information - install 11-15
Cx =
0
C EVAL BITMAP1A = X'0003F01D00000000"
C EVAL BITMAP1B = X'80000000C0000000"
C EVAL BITMAPIC = X'000A8000881F7110"
C EVAL BITMAP1D = X'1004021180000000'
C EVAL BITMAPLE = X'FF7FFF9F80'
C EVAL BITMAP2 = X'D800001FOO1FE6OF'
C* Copy role into aggregate structure
C MOVEL ROLESTRUCT ROLE3
(00 gy LSS *
C* Set up roles in verb data 1 *
gy *
C Set Profile name (SECOFR1)
C MOVEL 'SECOFR1 ' USERID
C* Set Role name (ROLE1)
C MOVEL 'ROLET ' ROLENAME
C Hash pass-phrase for profile 1
SETOFF
EVAL TEXT = 'Is it safe'
Z-ADD 10 TEXTLEN
EXSR HASHMSG
05 SETON

*

Copy profile into aggregate structure
MOVEL PROFILESTRUCT PROF1
Set Profile name (SECOFR2)

*

MOVEL 'SECOFR2 ' USERID

* Set Role name (ROLE2)
MOVEL '"ROLE2 ! ROLENAME

* Hash pass-phrase for profile 2
EVAL TEXT = 'I think it is safe'
Z-ADD 18 TEXTLEN
EXSR HASHMSG

05 SETON

*

Copy profile into aggregate structure
MOVEL PROFILESTRUCT PROF2
Set Profile name (SECOFR3)

*

OO0

MOVEL 'SECOFR2 ' USERID
* Set Role name (ROLE3)
MOVEL 'ROLE3 ' ROLENAME
* Hash pass-phrase for profile 3
EVAL TEXT = 'Is what safe'
Z-ADD 12 TEXTLEN
EXSR HASHMSG
05 SETON
* Copy profile into aggregate structure
MOVEL PROFILESTRUCT PROF3
Ckm e e e e e e e e e ————— *
Cx Set the keywords in the rule array *
gy gy g gy *
C MOVEL "INIT-AC ' RULEARRAY
C MOVE '"REPLACE ' RULEARRAY
C Z-ADD 2 RULEARRAYCNT

C**

C+ Call Access_Control_Initialize SAPI
C**

C CALLP CSUAACI (RETURNCODE :

05

LR

LR

LR

Cryptography

49

50

? OOOOOOO OO

C*

C*

C*

C*

C*
C*
C*
C*

? r>§>r>r>r7r7<ﬁ (@

C*
C
C*
C*
C
C*
C
C
C*
C*
C*

OOOOOOO0

REASONCODE :

EXITDATALEN:
EXITDATA:
RULEARRAYCNT :
RULEARRAY :
VERBDATALEN1:
VERBDATAL:
VERBDATALENZ:
VERBDATA2)
T e e *
* Check the return code =*
K e - ————————— *
RETURNCODE IFGT 0
K o *
* Send failure message *
K o *
MOVEL MSG(1) MSGTEXT
MOVE RETURNCODE FAILRETC
MOVE REASONCODE FAILRSNC
MOVEL 'CSUAACT' SAPI
EXSR SNDMSG
RETURN
ELSE
K e e ————— *
* Send success message *
K o *
MOVEL MSG(2) MSGTEXT
EXSR SNDMSG
ENDIF
__ *
Change the Default Role *
__ *
Set the Role name
MOVEL DEFAULT ROLE
K o o - - - -
* Set Access Control Points for DEFAULT
*
K o - -
EVAL BITMAP1A = X'0003F01D00000000"
EVAL BITMAP1B = X'8000000000000000"
EVAL BITMAPIC = X'000A8000881F7110"
EVAL BITMAP1D = X'1004021180000000'
EVAL BITMAP1E = X'FF7F406B80"
EVAL BITMAP2 = X'000000000000E6OF'

Copy role into aggregate structure
MOVEL ROLESTRUCT ROLE1

Set the new verb data 2 length

Z-ADD 117 VERBDATALEN2
Set the verb data 1 length to 0 (No profiles)

Z-ADD 0 VERBDATALEN1
Change the number of roles to 1

Z-ADD 1 NUMROLES

EE R R R R R R R R R o e R T T T T T T T T

Call Access_Control_Initialize SAPI
KKK KKKKAKRKRKRKRRRKRRRRkKRRkKRRkkhkkhkhhkkhkhkkhkhkkhkhkkhkhkkkhkkkhkhkkhkhkkhkhkkkhkk*%
CALLP CSUAACI (RETURNCODE :

REASONCODE :
EXITDATALEN:
EXITDATA:
RULEARRAYCNT:
RULEARRAY:
VERBDATALEN1:
VERBDATAL:

System i: Networking Cryptographic hardware

C VERBDATALENZ:

C VERBDATA2)
e *

C* Check the return code *

g *

C RETURNCODE IFGT 0

C* Kmmmmmmmm e — e ——————— *

C* * Send failure message *

C* Kmm e mmm e m— e ——————— *

C MOVEL MSG(1) MSGTEXT
C MOVE RETURNCODE FAILRETC
C MOVE REASONCODE FATLRSNC
C MOVEL 'CSUAACT' SAPI

C EXSR SNDMSG

C*

C ELSE

C* Hmmmmmm e ——m—————————— *

C* * Send success message *

C* T *

C MOVEL MSG(3) MSGTEXT
C EXSR SNDMSG

C*

C ENDIF

C*

C SETON LR
C*

C**

C* Subroutine to send a message
C**

C SNDMSG BEGSR

C CALL 'QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY
C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C ENDSR

C*

C**

C* Subroutine to Hash pass-phrase
C**

C HASHMSG BEGSR

C* K e e m e m e m e m e — e ———————— *

C+ =+ Set the keywords in the rule array *

C* K e e e — e ———————— *

C MOVEL 'SHA-1 ! RULEARRAY

C Z-ADD 1 RULEARRAYCNT
C* gy *

C+ =+ Call One Way Hash SAPI =*

C* Kmmmmmmm e ————— *

C CALLP CSNBOWH (RETURNCODE :
C REASONCODE :
C EXITDATALEN:
C EXITDATA:

C RULEARRAYCNT:
C RULEARRAY :

C TEXTLEN:

C TEXT:

C CHAINVCTLEN:
C CHAINVCT:

C HASHLEN:

C AUTHDATA)

CHk Fmmmm e *

Cryptography

51

C*

OOOOO
* X X *

OOOOOOOO0O

*%

CSUAACI

SECOFRI1,

* Check the return code =*

K o *

RETURNCODE IFGT 0

K o *

* Send failure message *

K *
MOVEL MSG(1) MSGTEXT
MOVE RETURNCODE FAILRETC
MOVE REASONCODE FATLRSNC
MOVEL 'CSNBOWH' SAPI
EXSR SNDMSG
SETON 05
ENDIF
ENDSR

failed with return/reason codes 9999/9999.
SECOFR2, and SECOFR3 profiles were successfully created.

The Default role was successfully changed.

Related concepts

[Creating and defining roles and profiles” on page 22|

Cryptographic Coprocessors on systems running the i5/0S operating system use role-based access
control. In a role-based system, you define a set of roles, which correspond to the classes of
Coprocessor users. You can enroll each user by defining an associated user profile to map the user to
one of the available roles.

Example: ILE RPG program for enabling all access control points in the default role for your
Coprocessor:

Change this i5/0S ILE RPG program example to suit your needs for enabling all access control points in
the default role for your Coprocessor.

Note: Read the [‘Code license and disclaimer information” on page 287] for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security
reasons, IBM recommends that you individualize these program examples rather than using the
default values provided.

DR L R R T T

D*
D*
D*
D*
D*
D*
D=*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D=*
D*
D*
D*
D*

SETDEFAULT

Sample program to authorize the default role to all access
control points in the cardX.

COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

This material contains programming source code for your
consideration. These example has not been thoroughly

tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function

of these programs. ATl programs contained herein are

provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
these programs and files.

Note: Input format is more fully described in Chapter 2 of
IBM CCA Basic Services Reference and Guide
(SC31-8609) publication.

Parameters: None

52 System i: Networking Cryptographic hardware

D+ Example:

D+ CALL PGM(SETDEFAULT)

D*

D* Use these commands to compile this program on the system:
D+ CRTRPGMOD MODULE (SETDEFAULT) SRCFILE(SAMPLE)

D+ CRTPGM PGM(SETEID) MODULE(SETDEFAULT)

D+ BNDSRVPGM(QCCA/CSUAACI)

D*

D+ Note: Authority to the CSUAACI service program in the
D* QCCA Tibrary is assumed.

D*

Dx The Common Cryptographic Architecture (CCA) verbs used are

D+ Access_Control_Initialize (CSUAACI)

D*

Dxkkkkkhkhkkkhhkkhkhhkkhkhhhrkkhhkrkhhkkhhhkrkhhkkhhhkkkkhkrkkhhkxxk

D*
DRETURNCODE
D*
DREASONCODE
D*
DEXITDATALEN
D*

DEXITDATA

D*
DRULEARRAYCNT
D*

DRULEARRAY

D*
DVERBDATALEN1
D*

DVERBDATA1

D*
DVERBDATALENZ2

D* Verbdata 2 contains the aggregate role structure which

Return code

Reason code

Exit data 1

9B 0

9B 0
ength
9B 0

Exit data
4

Rule array count
9B 0

Rule array
16

Verb data 1 length
9B 0 INZ(0)

Verb data 1
4

Verb data 2 length
9B 0 INZ(117)

Dx in turn contains 1 role - the default role

DVERBDATAZ2
D*
DNUMROLES
D*

DRESR1

D*

DVERS

D*
DROLELEN
D*
DCOMMENT
D*
DCHECKSUM
D*

DRESR2

D*

DROLE

D*
DAUTHSTRN
D*
DLWRTIMHR
DLWRTIMMN
D*
DUPRTIMHR
DUPRTIMMN
D*
DVALIDDOW

%

**

*%

*%

%

%

%

**

**

%

%

9B 0 INZ(1)

9B 0 INZ(0)

200
Define 1 Role
Reserved field
Version 1 struct
Length of roie

INZ(X'0100")

INZ(X'006D")

Description of role

20

INZ("

Checksum is not used

2
Reserved field
2

Role Name is DEFAULT expressed in ASCII
INZ(X'44454641554C5420")
Authentication strength is set to 0

8

2

INZ(X'0000")

INZ(X'0000")

INZ(X'0000")

Lower time is 00:00

1
1

INZ(X'00")
INZ(X'00")

Upper time is 23:59

1
1

INZ(X'17")
INZ(X'3B")

Valid days of week

1

INZ(X'FE')

Cryptography 53

54

D* *x Reserved field

DRESR3 1 INZ(X'00")

D* *% 2 Access control points segements are defined
DNUMSEG 2 INZ(X'0002")

D* ** Reserved field

DRESR4 2 INZ(X'0000")

D= *% Starting bit of segment 1 is 0.

DSTART1 2 INZ(X'0000")

Dx *x Ending bit of segment 1 is 295 (Hex 127).
DEND1 2 INZ(X'0127")

D* ** 37 Bytes in segment 1

DNUMBYTES1 2 INZ(X'0025")

D= ** Reserved field

DRESR5 2 INZ(X'00")

D= **% Segment 1 access control points
DBITMAP1A 8 INZ(X'0003FOFD80003000")
DBITMAP1B 8 INZ(X'80001900C0000000")
DBITMAPIC 8 INZ(X'000A8000882F7110")
DBITMAP1D 8 INZ(X'1804033180000000")
DBITMAP1E 5 INZ(X'FF7FFFFF80"')

D* xx Starting bit of segment 2 is 512 (Hex 200).
DSTART2 2 INZ(X'0200")

D* **x Ending bit of segment 2 is 575 (Hex 23F)
DEND2 2 INZ(X'023F")

D= ** 8 Bytes in segment 2

DNUMBYTES2 2 INZ(X'0008")

D* ** Reserved field

DRESR6 2 INZ(X'0000")

D= **% Segment 2 access control points

DBITMAP2 8 INZ (X'F80O7FFF7FFFE6OF ")
D*

DR R R R e

D* Prototype for Access_Control_Initialize (CSUAACI)

Dixkxkkhkrkkhkhhkkhhhkkhkhhkkhhhkkkhhkkkhhdkkhhkkkhhhrkkhkkxkhx

DCSUAACI PR

DRETCODE 9B 0

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DVRBDTALEN1 9B 0

DVRBDTAL 4

DVRBDTALEN2 9B 0

DVRBDTA2 200

D*
)y gy gy Py RS
D= *% Declares for sending messages to the
D= *% job log using the QMHSNDPM API

DF m m e e e e
DMSG S 64 DIM(2) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(64)

D DS

DMSGTEXT 1 64

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(' ")
DMESSAGEFILE S 21 INZ('

DMSGKEY S 4 INZ(' ")

DMSGTYPE S 10 INZ('*INFO ")
DSTACKENTRY S 10 INZ('~* ")
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

C*

C**

System i: Networking Cryptographic hardware

*%

C* START OF PROGRAM

C*
gy gy
C* Set the keywords in the rule array
g
C MOVEL "INIT-AC '

C MOVE 'REPLACE

C 7-ADD 2

C**

C+ Call Access_Control Initialize SAPI

RULEARRAY
RULEARRAY
RULEARRAYCNT

C """" *hkkkkhhkrhhkhhhkhkhrhhrk *khkkkkhkkhhkhhhhkk *khkkkkhhkkhhkhhhhkk
C CALLP CSUAACI (RETURNCODE :

C REASONCODE :

C EXITDATALEN:
C EXITDATA:

C RULEARRAYCNT:
C RULEARRAY :

C VERBDATALEN1:
C VERBDATAL:

C VERBDATALENZ2:
C VERBDATA2)
e *

C* Check the return code *

e g *

C RETURNCODE IFGT 4

C* K mm e mm e *

C* * Send failure message *

C* Kmmmmmmmm e ——————— *

C MOVEL MSG(1) MSGTEXT

C MOVE RETURNCODE FAILRETC

C MOVE REASONCODE FATLRSNC

C EXSR SNDMSG

C*

C ELSE

C* S *

C* * Send success message *

C* Kmmmmmmm e mm——————————— *

C MOVE MSG(2) MSGTEXT

C EXSR SNDMSG

C*

C ENDIF

C*

C SETON

C*

C**

C* Subroutine to send a message

C**

SNDMSG BEGSR
CALL 'QMHSNDPM'
PARM
PARM
PARM
PARM
PARM
PARM
PARM
PARM
PARM
ENDSR

OOOOOOOOOO0O0

MESSAGEID
MESSAGEFILE
MSGTEXT
MSGLENGTH
MSGTYPE
STACKENTRY
STACKCOUNTER
MSGKEY
ERRCODE

CSUAACI failed with return/reason codes 9999/9999.
The Default role was successfully set.

Related concepts

[‘Creating and defining roles and profiles” on page 22|

LR

Cryptographic Coprocessors on systems running the i5/0S operating system use role-based access

Cryptography 55

control. In a role-based system, you define a set of roles, which correspond to the classes of
Coprocessor users. You can enroll each user by defining an associated user profile to map the user to
one of the available roles.

Example: ILE C program for changing an existing profile for your Coprocessor:

Change this i5/0S program example to suit your needs for changing an existing profile for your
Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security
reasons, IBM recommends that you individualize these program examples rather than using the
default values provided.

gy */
/* Change certain fields in a user profile on the */
/* card. This program changes the expiration date using a new */
/* date in the form YYYYMMDD. */
/* */
/* */
/* COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/* of these program. A1l programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* ARE EXPRESSLY DISCLAIMED. IBM provides no program services for x/
/* these programs and files. */
/* */
/* */
/* Note: Input format is more fully described in Chapter 2 of */
/* IBM CCA Basic Services Reference and Guide */

/* (SC31-8609) publication. */
/* */
/* Parameters: */
/* none. */
/% */
/* Example: */
/* CALL PGM(CHG_PROF) */
/% %/
/* */
/* Note: This program assumes the card with the profile is */
/* already identified either by defaulting to the CRPO1 */
/* device or by being explicitly named using the */
/* Cryptographic_Resource Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* The Common Cryptographic Architecture (CCA) verb used is */
/* Access_Control_Initialization (CSUAACI). */
/* */
/* Use these commands to compile this program on the system: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE(CHG_PROF) SRCFILE(SAMPLE) */
/* CRTPGM PGM(CHG_PROF) MODULE (CHG_PROF) */
/% BNDSRVPGM (QCCA/CSUAACT) */
/* */
/* Note: Authority to the CSUAACI service program in the */
/* QCCA Tlibrary is assumed. */
/* */
/* The Common Cryptographic Architecture (CCA) verb used is */

56 System i: Networking Cryptographic hardware

/* Access_Control _Initialization (CSUAACI). */

/* */
2 */
#include "csucincl.h" /* header file for CCA Cryptographic */

/* Service Provider */

#include <stdio.h>

#include <string.h>
#include <stdlib.h>
#include <decimal.h>

2y */
/* standard return codes */
2 */

#define ERROR -1
#define 0K 0
#define WARNING 4

int main(int argc, char xargv[])

{
e */
/* standard CCA parameters */
2 */
Tong return_code = 0;
long reason_code = 0;

Tong exit _data length = 2;
char exit_data[4];
char rule_array[8];
Tong rule_array_count = 1;

T S */
/* fields unique to this sample program */
S S S S PSSR */

long verb_data_length;
char * verb_data;
long verb_data_length2;
char * verb _data2;

memcpy (rule_array,"CHGEXPDT",8); /* set rule array keywords =/
verb_data_length = 8;
verb_data = "SECOFR1 "; /* set the profile name */
verb_data_length2 = 8;
verb_data2 = "20010621"; /* set the new date */
/* invoke verb to change the expiration date in specified profile */

CSUAACI(&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *)rule_array,
&verb_data_length,
verb data,
&verb_data_Tlength2,
verb_data2);

Cryptography 57

if ((return_code == OK) | (return_code == WARNING))

{

printf("Profile expiration date was changed successfully");
printf(" with return/reason codes ");

printf("%1d/%1d\n\n", return_code, reason_code);
return(0K) ;

1

else
{
printf("Change of expiration date failed with return/");
printf("reason codes ");
printf(" %1d/%1d\n\n", return_code, reason_code);
return(ERROR) ;
1

Related concepts

[“Creating and defining roles and profiles” on page 22|

Cryptographic Coprocessors on systems running the i5/0S operating system use role-based access
control. In a role-based system, you define a set of roles, which correspond to the classes of
Coprocessor users. You can enroll each user by defining an associated user profile to map the user to
one of the available roles.

Example: ILE RPG program for changing an existing profile for your Coprocessor:

Change this i5/0S ILE RPG program example to suit your needs for changing an existing profile for your
Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security
reasons, IBM recommends that you individualize these program examples rather than using the
default values provided.

D******~k******~k**********~k************************************
Dx CHG_PROF

D*

D+ Change certain fields in a user profile on the

D* card. This program changes the expiration date using a new
D+ date in the form YYYYMMDD.

D*

D* COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

D*

D* This material contains programming source code for your

D+ consideration. These example has not been thoroughly

D* tested under all conditions. IBM, therefore, cannot

D* guarantee or imply reliability, serviceability, or function
D+ of these programs. All programs contained herein are

Dx provided to you "AS IS". THE IMPLIED WARRANTIES OF

Dx MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

D* ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
Dx these programs and files.

D*

D*

D* Note: Input format is more fully described in Chapter 2 of
D= IBM CCA Basic Services Reference and Guide
D* (SC31-8609) publication.

D=*

D* Parameters: Profile

D*

D* Example:

D+ CALL PGM(CHG_PROF) PARM(PROFILE)

D*

58 System i: Networking Cryptographic hardware

D+ Use these commands to compile this program on the system:

D* CRTRPGMOD MODULE (CHG_PROF) SRCFILE(SAMPLE)
D* CRTPGM PGM(CHG_PROF) MODULE (CHG_PROF)

D BNDDIR(QCCA/QC6BNDDIR)

D*

D* Note: Authority to the CSUAACI service program in the
D* QCCA Tibrary is assumed.

D*

Dx The Common Cryptographic Architecture (CCA) verbs used are

Dx Access_Control Initialize (CSUAACI)

D*

D* This program assumes the card with the profile is

D* already identified either by defaulting to the CRPO1
D* device or by being explicitly named using the

D+ Cryptographic_Resource_ Allocate verb. Also this

D* device must be varied on and you must be authorized
D* to use this device description.

DR R R R R

)y Sy Yy Sy SRSy
D* Declare variables for CCA SAPI calls
12y Sy Sy Py Y S PP
D* ** Return code
DRETURNCODE S 9B 0

D* ** Reason code
DREASONCODE S 9B 0

D* *x Exit data length
DEXITDATALEN S 9B 0

D* *x Exit data

DEXITDATA S 4

D* ** Rule array count
DRULEARRAYCNT S 9B 0

D* *% Rule array

DRULEARRAY S 16

D* *% Verb data 1 length
DVERBDATALEN1 S 9B 0 INZ(8)
D* *% Verb data 1

DVERBDATA1 S 8

D* *x Verb data 2 length
DVERBDATALEN2 S 9B 0 INZ(8)
D* *x \lerb data 2
DVERBDATA2 S 8

D*

D*

DR R

D* Prototype for Access_Control_Initialize (CSUAACI)

Dxkkkkkhhkkhkhhkkkhhkkkhhhkkhkhhkkhhhkkkhhkkhhhkkkhhkkkhhkk kK

DCSUAACI
DRETCODE
DRSNCODE
DEXTDTALEN
DEXTDTA
DRARRAYCT
DRARRAY
DVRBDTALEN1
DVRBDTA1
DVRBDTALEN2
DVRBDTAZ

D*

DMSG
DMSGLENGTH
D

DMSGTEXT
DFAILRETC

PR
*x Decla
*% job 1
S
S
DS
1
41

9B 0
9B 0
9B 0
4

9B 0
16

9B 0

res for sending messages to the
0g using the QMHSNDPM API

75 DIM(2) CTDATA PERRCD(1)

9B 0 INZ(75)

75
44

Cryptography 59

60

DFAILRSNC
DMESSAGEID
DMESSAGEFILE
DMSGKEY
DMSGTYPE
DSTACKENTRY
DSTACKCOUNTER
DERRCODE
DBYTESIN
DBYTESOUT

46 49
7 INZ(" "
21 INZ(
4 INZ(N
10 INZ('*INFO
10 INZ('=*
98 0 INZ(2)

DL uBv;m;mum,m
~——

1 4B 0 INZ(0)
5 8B 0 INZ(0)

C***********"

"""""""" hhhkhhhhhhhhhkhhhdhdhdhdrdhkrdhkrdhddhhdxx

C+ START OF PROGRAM *

C*

Chommmme e -

C* Parameter is profile to be changed. *

Chommmm e -

C *ENTRY
C

O T —

PARM VERBDATAL

Cx Set the keywords in the rule array *

Chommmme e

C
C

O

MOVEL 'CHGEXPDT' RULEARRAY
Z-ADD 1 RULEARRAYCNT

C* Set new expiration date *

O T —

C

Chommmme e

C+ Call Access_Control_Initialize SAPI *

Chommmmeme ==

OOOOOOOO0O0

[l
*

CALLP CSUAACI (RETURNCODE :
REASONCODE :
EXITDATALEN:
EXITDATA:
RULEARRAYCNT:
RULEARRAY :
VERBDATALENL:
VERBDATAL:
VERBDATALEN2:
VERBDATA2)

Cx Check the return code =*

C*
C
C*
(3
C*
C
C
C*
C
C*
C
C*

MOVE MSG(1) MSGTEXT
MOVE RETURNCODE ~ FAILRETC
MOVE REASONCODE ~ FAILRSNC
EXSR SNDMSG

MOVE MSG(2) MSGTEXT
EXSR SNDMSG

ENDIF

SETON

C**

Cx Subroutine

to send a message

C**

C SNDMSG

BEGSR

System i: Networking Cryptographic hardware

LR

C CALL "QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY
C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C ENDSR

C*

*%

CSUAACI failed with return/reason codes 9999/9999'
The request completed successfully

Related concepts

[“Creating and defining roles and profiles” on page 22|

Cryptographic Coprocessors on systems running the i5/0S operating system use role-based access
control. In a role-based system, you define a set of roles, which correspond to the classes of
Coprocessor users. You can enroll each user by defining an associated user profile to map the user to
one of the available roles.

Setting the environment ID and clock

The Cryptographic Coprocessor on your system running the i5/0OS operating system uses the EID to
verify which Coprocessor created a key token. It uses the clock for time and date stamping and to control
whether a profile can log on.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

Related reference

[“Example: ILE C program for setting the environment ID on your Coprocessor” on page 62|
Change this i5/0S ILE C program example to suit your needs for setting the environment ID on your
Coprocessor.

[“Example: ILE RPG program for setting the environment ID on your Coprocessor” on page 64
Change this i5/0S ILE RPG program example to suit your needs for setting the environment ID on
your Coprocessor.

[“Example: ILE C program for setting the clock on your Coprocessor” on page 66|
Change this i5/0S ILE C program example to suit your needs for setting the clock on your
Coprocessor.

[“Example: ILE RPG program for setting the clock on your Coprocessor” on page 69
Change this i5/0S ILE RPG program example to suit your needs for setting the clock on your
Coprocessor.

The Environment ID (EID): Your Coprocessor stores the EID as an identifier. The easiest and fastest
way to set the EID is to use the Cryptographic Coprocessor configuration web-based utility found off of
the System Tasks page at http://server-name:2001. The utility includes the Basic configuration wizard that
is used when the Coprocessor is in an un-initialized state. If the Coprocessor already has been initialized,
then click on Manage configuration and then click on Attributes to set the EID.

If you would prefer to write your own application to set the EID, you can do so by using the
Cryptographic_Facility_Control (CSUACFC) API verb. Two example programs are provided for your
consideration. One of them is written in ILE C, while the other is written in ILE RPG. Both perform the
same function.

Your Cryptographic Coprocessor copies the EID into every PKA key token that your Coprocessor creates.

The EID helps the Coprocessor identify keys that it created as opposed to keys that another Coprocessor
created.

Cryptography 61

The clock: The Coprocessor uses its clock-calendar to record time and date and to determine whether a
profile can log on. The default time is Greenwich Mean Time (GMT). Because of its function, you should
set the clock inside your Coprocessor before removing the default role’s capability of setting it.

The easiest and fastest way to set the clock is to use the Cryptographic Coprocessor configuration
web-based utility found off of the System Tasks page at http://server-name:2001. The utility includes the
Basic configuration wizard that is used when the Coprocessor is in an un-initialized state. If the
Coprocessor already has been initialized, then use click on Manage configuration and then click on
Attributes to set the clock.

If you would prefer to write your own application to set the clock, you can do so by using the
Cryptographic_Facility_Control (CSUACFC) API verb.

Example: ILE C program for setting the environment ID on your Coprocessor:

Change this i5/0S ILE C program example to suit your needs for setting the environment ID on your
Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

T S Sy S Sy S Sy S Sy S S S Sy ——— */
/* Set the environment ID on the card, based on a */

/* 16-byte sample value defined in this program. */
/* */
/* */
/* COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot %/
/* guarantee or imply reliability, serviceability, or function */
/* of these program. A1l programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* ARE EXPRESSLY DISCLAIMED. IBM provides no program services for =/
/* these programs and files. */
/* */
/* */
/* Note: Input format is more fully described in Chapter 2 of */
/* IBM CCA Basic Services Reference and Guide */

/* (SC31-8609) publication. */
/* */
/* Parameters: */
/* none. */
/* */
/* Example: */
/* CALL PGM(SETEID) */
/* */
/* */
/* Note: This program assumes the device to use is */
/* already identified either by defaulting to the CRPO1 */
/* device or by being explicitly named using the */
/* Cryptographic_Resource Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* Use these commands to compile this program on the system: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE(SETEID) SRCFILE(SAMPLE) */
/* CRTPGM PGM(SETEID) MODULE(SETEID) */
/* BNDSRVPGM(QCCA/CSUACFC) */
/* */
/* Note: Authority to the CSUACFC service program in the */
/* QCCA library is assumed. */

62 System i: Networking Cryptographic hardware

/*
/*
/*
/*

#1

#1
#i
#1

The Common Cryptographic Architecture (CCA) verb used is

Cryptographic_Facilites Control (CSUACFC).

nclude

nclude
nclude
nclude

"csucincl.h"
/* Service Provider

<stdio.h>

<string.h>

<stdlib.h>

/* header file for CCA Cryptographic

#define ERROR -1
#define OK 0
#define WARNING 4

int main(int argc, char xargv[])

{

/* standard CCA parameters

L

Tong return_code
Tong reason_code = 0;

1}
D
ws

Tong exit_data_length = 2;
char exit_data[4];

char rule_array[2][8];
long rule_array_count = 2;

/* fields unique to this sample program

2

long verb_data_length;
char * verb_data = "SOME ID data 16@";

/* set keywords in the rule array

memcpy (rule_array,"ADAPTERISET-EID ", 16);
verb_data_length = 16;

/* invoke the verb to set the environment ID

CSUACFC(&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *)rule_array,
&verb_data_Tlength,
verb_data);

if ((return_code == OK) | (return_code == WARNING))
printf("Environment ID was successfully set with ");

printf("return/reason codes %1d/%1d\n\n", return_code, reason_code);

*/
*/
*/
*/
*/

*/
*/

*/
*/

*/
*/

*/
*/
*/

Cryptography 63

return(

1

else

{
printf(
printf(

return(

}

0K) ;

"An error occurred while setting the environment ID.\n");
"Return/reason codes %1d/%1d\n\n", return_code, reason_code);
ERROR) 3

Related concepts

[“Setting the environment ID and clock” on page 61

The Cryptographic Coprocessor on your system running the i5/0S operating system uses the EID to
verify which Coprocessor created a key token. It uses the clock for time and date stamping and to
control whether a profile can log on.

Example: ILE RPG program for setting the environment ID on your Coprocessor:

Change

this i5/0S ILE RPG program example to suit your needs for setting the environment ID on your

Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

D*=*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D=*
D*
D*
D*
D*
D*
D*
D=*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D=*
D*
D=*
D*
D*
D*
D*
D*

R R R R R S R R R S R R S R R R R R R R Rt

SETEID

Set the environment ID on the card, based on a
16-byte sample value defined in this program.

COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

This material contains programming source code for your
consideration. These example has not been thoroughly

tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function

of these programs. All programs contained herein are

provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
these programs and files.

Note: Input format is more fully described in Chapter 2 of
IBM CCA Basic Services Reference and Guide
(SC31-8609) publication.

Parameters: None

Example:
CALL PGM(SETEID)

Use these commands to compile this program on the system:
CRTRPGMOD MODULE(SETEID) SRCFILE(SAMPLE)
CRTPGM PGM(SETEID) MODULE(SETEID)

BNDSRVPGM (QCCA/CSUACFC)

Note: Authority to the CSUACFC service program in the
QCCA Tibrary is assumed.

The Common Cryptographic Architecture (CCA) verbs used are
Cryptographic_Facilty Control (CSUACFC)

64 System i: Networking Cryptographic hardware

Dxkkkxkhhkkhkhhkrkhkhhhkrkhhhkrkhkhhkkkhhkkhhhkxkhhkkhhhkxkhhkkkhkhkxxk

g
D* Declare variables for CCA SAPI calls
g
D* ** Return code

DRETURNCODE S 9B 0

D* *% Reason code

DREASONCODE S 9B 0

D* ** Exit data length
DEXITDATALEN S 9B 0

D* *x Exit data

DEXITDATA S 4

D* ** Rule array count
DRULEARRAYCNT S 9B 0

D* ** Rule array

DRULEARRAY S 16

D* *% Verb data length
DVERBDATALEN S 9B 0

D* *x Verb data

DVERBDATA S 16 INZ('Card ID 01234567"')
D*

D*

D******* """"""""""" Axkhkhhhhhhhhhhhhhhhkhhkhk*k *xkkkx

Dx Prototype for Cryptographic_Facilty Control (CSUACFC)

DR T R R e

DCSUACFC PR

DRETCODE 9B 0

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DVRBDTALEN 9B 0

DVRBDTA 16

D*
gy gy
D* ** Declares for sending messages to the

D* *% job log using the QMHSNDPM API
g g
DMSG S 75 DIM(2) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(75)

D DS

DMSGTEXT 1 80

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(' ")
DMESSAGEFILE S 21 INZ("

DMSGKEY S 4 INZ(' ")

DMSGTYPE S 10 INZ('*INFO ")
DSTACKENTRY S 10 INZ('* ")
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

C*

C******* """"""""""" khkkkhkhkkrhhkkhhhhhhkhrhhxk *khkkkkkhkkxk
C* START OF PROGRAM *
C* *
g *
C* Set the keyword in the rule array *
00y gy Ly *
C MOVEL "ADAPTER1' RULEARRAY

C MOVE 'SET-EID ' RULEARRAY

C Z-ADD 2 RULEARRAYCNT
g *
C* Set the verb data length to 16 *
gy gy gy *

Cryptography 65

*%

C Z-ADD 16

VERBDATALEN

C**

C* Call Cryptographic Facilty Control SAPI

C**** """""""""""" khhkkkhhhkrhhkhkhhhhhkhrhhrk ER R R R
C CALLP CSUACFC (RETURNCODE :
C REASONCODE:
C EXITDATALEN:
C EXITDATA:

C RULEARRAYCNT:
C RULEARRAY :

C VERBDATALEN:
C VERBDATA)
(O *

C* Check the return code *

e *

C RETURNCODE IFGT 4

C* Hmmmmmm e ——m———————— *

C* * Send error message *

C* Ty *

C MOVEL MSG (1) MSGTEXT

C MOVE RETURNCODE FAILRETC

C MOVE REASONCODE FATLRSNC

C EXSR SNDMSG

C*

C ELSE

C* Hememeccmccccccccnc—a—— *

C* * Send success message *

C* Kmmmmmmmm e ——————— *

C MOVE MSG(2) MSGTEXT

C EXSR SNDMSG

C*

C ENDIF

C*

C SETON

C*

C**

C* Subroutine to send a message

C**

SNDMSG BEGSR
CALL
PARM
PARM
PARM
PARM
PARM
PARM
PARM
PARM
PARM
ENDSR

' QMHSNDPM'

OOOOOOOOOO0O0

MESSAGEID
MESSAGEFILE
MSGTEXT
MSGLENGTH
MSGTYPE
STACKENTRY
STACKCOUNTER
MSGKEY
ERRCODE

CSUACFC failed with return/reason codes 9999/9999.
The Environment ID was successfully set.

Example: ILE C program for setting the clock on your Coprocessor:

Related concepts

[‘Setting the environment ID and clock” on page 61|

LR

The Cryptographic Coprocessor on your system running the i5/0S operating system uses the EID to
verify which Coprocessor created a key token. It uses the clock for time and date stamping and to

control whether a profile can log on.

Change this i5/0S ILE C program example to suit your needs for setting the clock on your Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

66

System i: Networking Cryptographic hardware

/* Set the clock on the card, based on a string from */
/* the command Tine. The command line string must be of */
/* form YYYYMMDDHHMMSSWW, where WW is the day of week (01 */
/* means Sunday and 07 means Saturday). */
/* */
/* */
/* COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/* of these program. A1l programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* ARE EXPRESSLY DISCLAIMED. IBM provides no program services for */
/* these programs and files. */
/* */
/* */
/* Note: Input format is more fully described in Chapter 2 of */
/* IBM CCA Basic Services Reference and Guide */
/* (SC31-8609) publication. */
/* */
/* Parameters: */
/* char * new time 16 characters */
/* */
/* Example: */
/* CALL PGM(SETCLOCK) PARM('1999021011375204') */
/* */
/* */
/* Note: This program assumes the device to use is */
/* already identified either by defaulting to the CRPO1 */
/* device or by being explicitly named using the */
/* Cryptographic_Resource_Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* Use these commands to compile this program on the system: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (SETCLOCK) SRCFILE(SAMPLE) */
/* CRTPGM PGM(SETCLOCK) MODULE (SETCLOCK) */
/* BNDSRVPGM(QCCA/CSUACFC) */
/* */
/* Note: Authority to the CSUACFC service program in the */
/* QCCA Tibrary is assumed. */
/* */
/* The Common Cryptographic Architecture (CCA) verb used is */
/* Cryptographic_Facilities_Control (CSUACFC). */
/* */
ey */
#include "csucincl.h" /* header file for CCA Cryptographic */
/* Service Provider */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

2 */
/* standard return codes */
2 */

#define ERROR -1
#define 0K 0
#define WARNING 4

Cryptography 67

void help(void)

{ printf("\n\nThis program Toads the time and date into the card.\n");
printf("It requires a single command Tine parameter containing the \n");
printf("new date and time in the form YYYYMMDDHHMMSSWW, where WW is the\n");
printf("day of the week, 01 meaning Sunday and 07 meaning Saturday.\n\n");

}

int main(int argc, char xargv[])

{
2y */
/* standard CCA parameters */
2 */

Tong return_code
long reason_code = 0;

Tong exit_data_length = 2;
char exit_data[4];

char rule_array[2][8];
Tong rule_array_count = 2;

]
(<]
we

2 */
/* fields unique to this sample program */
S S S S PSS */

long verb_data_length;
char = verb_data;

if (argc != 2)
{

help();

return (ERROR) ;
1

if (strlen(argv[1]) !'= 16)
{
printf("Your input string is not the right Tength.");

help();
return(ERROR) ;
1
/* set keywords in the rule array */

memcpy (rule_array,"ADAPTERISETCLOCK",16);

verb_data_length = 16;

/* copy keyboard input for new time */
verb_data = argv[l];

/* Set the clock to the time the user gave us */

CSUACFC(&return_code,
&reason_code,

68 System i: Networking Cryptographic hardware

&exit_data_Tength,
exit_data,
&rule_array_count,
(char *)rule_array,
&verb_data_length,
verb_data);
if ((return_code == OK) | (return_code == WARNING))
{
printf("Clock was successfully set.\nReturn/");
printf("reason codes %1d/%1d\n\n", return_code, reason_code);

return(0K) ;

else
printf("An error occurred while setting the clock.\nReturn");
printf("/reason codes %1d/%1d\n\n", return_code, reason_code);

return (ERROR) ;

Related concepts

[‘Setting the environment ID and clock” on page 61|

The Cryptographic Coprocessor on your system running the i5/0S operating system uses the EID to

verify which Coprocessor created a key token. It uses the clock for time and date stamping and to

control whether a profile can log on.

Example: ILE RPG program for setting the clock on your Coprocessor:

Change this i5/0S ILE RPG program example to suit your needs for setting the clock on your

Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

D***
D* SETCLOCK

D*

D* Set the clock on the card, based on a string from

D* the command Tine. The command Tine string must be of

D+ form YYYYMMDDHHMMSSWW, where WW is the day of week (01

D* means Sunday and 07 means Saturday).

D*

D*

Dx COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

D*

D+ This material contains programming source code for your

D* consideration. These example has not been thoroughly

D* tested under all conditions. IBM, therefore, cannot

D* guarantee or imply reliability, serviceability, or function
D* of these programs. A1l programs contained herein are

D* provided to you "AS IS". THE IMPLIED WARRANTIES OF

D+ MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

D* ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
D* these programs and files.

D*

D*

D* Note: Input format is more fully described in Chapter 2 of
D* IBM CCA Basic Services Reference and Guide

D~ (SC31-8609) publication.

D*

D* Parameters:

Cryptography

69

D= char * new time 16 characters

D*

D* Example:

Dx CALL PGM(SETCLOCK) PARM('2000061011375204')

D*

D* Use these commands to compile this program on the system:
D* CRTRPGMOD MODULE(SETCLOCK) SRCFILE(SAMPLE)

Dx CRTPGM PGM(SETCLOCK) MODULE(SETCLOCK)

D* BNDSRVPGM(QCCA/CSUACFC)

D*

D+ Note: Authority to the CSUACFC service program in the
D* QCCA Tibrary is assumed.

D*

D* The Common Cryptographic Architecture (CCA) verbs used are
D* Cryptographic_Facilty Control (CSUACFC)
D*

D**

) g g g
D* *%x Return code
DRETURNCODE S 9B 0
D* ** Reason code
DREASONCODE S 9B 0
D= ** Exit data length
DEXITDATALEN S 9B 0
D* *% Exit data
DEXITDATA S 4

D* *% Rule array count
DRULEARRAYCNT S 9B 0
D= *% Rule array
DRULEARRAY S 16

D* *x \lerb data length
DVERBDATALEN S 9B 0
D* *x \lerb data
DVERBDATA S 16

D*

DR e T

D* Prototype for Cryptographic_Facilty_Control (CSUACFQ)

(DR L e e X T

DCSUACFC PR

DRETCODE 9B 0

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DVRBDTALEN 9B 0

DVRBDTA 16

D*

) g
D* *x Declares for sending messages to the

Dx *+ job log using the QMHSNDPM API
)y gy U
DMSG S 75 DIM(6) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(75)

D DS

DMSGTEXT 1 80

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(")
DMESSAGEFILE S 21 INZ('

DMSGKEY S 4 INZ(" ")

DMSGTYPE S 10 INZ('*INFO ")
DSTACKENTRY S 10 INZ ("'~ ")
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

System i: Networking Cryptographic hardware

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

C*

C """" khhkkkrhkhkkhhkhhhhhrhhrk khhkkkkhhkhhhhdhhdhhhhhhrhhhhhhhrhhxsk
C* START OF PROGRAM

C*

C *ENTRY PLIST

C PARM VERBDATA

C* *
gy *
C* Check the number of parameters passed in *
G m e e e e e e e e *
C IF (%PARMS < 1)

C* K e e e m e m e ————————— *
C* * Send message describing the format of the parameter =
C* K e e m e —— e ————————— *
C MOVEL MSG(3) MSGTEXT

C EXSR SNDMSG

C MOVEL MSG(4) MSGTEXT

C EXSR SNDMSG

C MOVEL MSG(5) MSGTEXT

C EXSR SNDMSG

C MOVEL MSG(6) MSGTEXT

C EXSR SNDMSG

C RETURN

C ENDIF

C*

(00 gy Ly Sy *
C* Set the keyword in the rule array *
g *
C MOVEL "ADAPTERL' RULEARRAY

C MOVE 'SETCLOCK' RULEARRAY

C Z-ADD 2 RULEARRAYCNT
g gy gy *
C* Set the verb data Tength to 16 *
gy gy *
C Z-ADD 16 VERBDATALEN

C**

C* Call Cryptographic Facilty Control SAPI

C**

C CALLP CSUACFC (RETURNCODE :
C REASONCODE :
C EXITDATALEN:
C EXITDATA:

C RULEARRAYCNT:
C RULEARRAY :

C VERBDATALEN:
C VERBDATA)
(O *

C* Check the return code *

Chmmmm e - *

C RETURNCODE IFGT 4

C* [Ty *

C* * Send error message *

C* [Ty *

C MOVEL MSG(1) MSGTEXT

C MOVE RETURNCODE FAILRETC

C MOVE REASONCODE FATLRSNC

C EXSR SNDMSG

C*

C ELSE

C* [y *

C* * Send success message *

C* [Ty *

C MOVE MSG(2) MSGTEXT

C EXSR SNDMSG

Cx

Cryptography 71

C ENDIF

C*

C SETON LR
C*

Chkxdkkdkkkhkdkhkdkhkhkhhkkhkhhkkhrkhhkhrkhrkhhkhrkhhhhkrhhkhkkhkhhkhkhrdhrkk

C* Subroutine to send a message
C**

C SNDMSG BEGSR

C CALL 'QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY
C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C ENDSR

%

CSUACFC failed with return/reason codes 9999/9999.

The request completed successfully.

This program loads the time and date into the card.

It requires a single command Tine parameter containing the

new date and time in the form YYYYMMDDHHMMSSWW, where WW is the
day of the week, 01 meaning Sunday and 07 meaning Saturday.

Related concepts

[“Setting the environment ID and clock” on page 61

The Cryptographic Coprocessor on your system running the i5/0OS operating system uses the EID to
verify which Coprocessor created a key token. It uses the clock for time and date stamping and to
control whether a profile can log on.

Loading a function control vector

The function control vector tells the Cryptographic Coprocessor for the system running the i5/0S
operating system what key length to use to create keys. You cannot perform any cryptographic functions
without loading a function control vector.

After you create and define role and profile, you must load a function control vector (FCV) for your
Cryptographic Coprocessor. Without it, your Coprocessor will be unable to perform any cryptographic
operations.

A function control vector is a digitally signed value stored in a file provided by IBM. When you install
i5/0S Option 35, the file is stored in the root file system with a path of /QIBM/ProdData/CAP/FCV.CRT.
This value enables the cryptographic application within the Coprocessor to yield a level of cryptographic
service consistent with applicable import and export regulations.

The easiest and fastest way to load the FCV is to use the Cryptographic Coprocessor configuration
web-based utility found off of the Tasks page at http:/ /server-name:2001. The utility includes the Basic
configuration wizard that is used when the Coprocessor is in an un-initialized state. If the Coprocessor
has already been initialized, then click on Manage configuration and then click on Attributes to load the
FCV.

If you would prefer to write your own application to load the FCV, you can do so by using the
Cryptographic_Facility_Control (CSUACFC) API verb.

Two other example programs are provided that show how to clear the function control vector. One of
them is written in ILE C, while the other is written in ILE RPG.

After you load a function control vector for your Coprocessor, you can load and set a master key using
master key to use to encrypt keys.

72 System i: Networking Cryptographic hardware

| Note: Read the [“Code license and disclaimer information” on page 287| for important legal information.

Related concepts

[“Creating and defining roles and profiles” on page 22|

Cryptographic Coprocessors on systems running the i5/0S operating system use role-based access
control. In a role-based system, you define a set of roles, which correspond to the classes of
Coprocessor users. You can enroll each user by defining an associated user profile to map the user to

one of the available roles.

[‘Loading and setting a master key” on page 84|

After you load a function control vector, load and set the master key. The master key is used to
encrypt other keys. It is a special key-encrypting key stored within the Coprocessor secure module on

systems running the i5/0OS operating system.

| Example: ILE C program for loading a function control vector for your Cryptographic Coprocessor:

| Change this i5/0S ILE C program example to suit your needs for loading a function control vector for
| your Cryptographic Coprocessor.

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Load the Function Control Vector into the card. */
The Function Control Vector enables the cryptographic
functions of the card and is shipped with the */
Cryptographic Access Provider products.

COPYRIGHT 5769-SS1 (c) IBM Corp 1999, 2007

This material contains programming source code for your
consideration. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or functionx/

of these programs. A1l programs contained herein are
provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

*/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

EXPRESSLY DISCLAIMED. IBM provides no program services fors/

these programs and files.

Note: The Function Control Vector is stored in an IFS
file owned by the system. The format of this
vector is described in an appendix of the
IBM CCA Basic Services Reference and Guide */
(SC31-8609) publication.

Parameters:

none.

Example:

CALL PGM(LOAD_FCV)
Note: This program assumes the device you want to load is

already identified either by defaulting to the CRPO1
device or has been explicitly named using the
Cryptographic_Resource_Allocate verb. Also this
device must be varied on and you must be authorized
to use this device description.

Use the following commands to compile this program:

ADDLIBLE LIB(QCCA)

CRTCMOD MODULE (LOAD_FCV) SRCFILE(SAMPLE) SYSIFCOPT(*IFSIO)

CRTPGM PGM(LOAD_FCV) MODULE(LOAD_FCV) +
BNDSRVPGM(QCCA/CSUACFC)

Note: Authority to the CSUACFC service program in the

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Note: Read the [‘Code license and disclaimer information” on page 287] for important legal information.

Cryptography 73

/* QCCA library is assumed. */

/* */
/* Common Cryptographic Architecture (CCA) verbs used: */
/* Cryptographic_Facility Control (CSUACFC) */
/* */
2y */

#include <stdlib.h>
#include <stdio.h>

#include <string.h>
#include <decimal.h>

#include "csucincl.h" /* header file for CCA Cryptographic
Service Provider */
2y */
/* function to translate ASCII to EBCDIC and/or EBCDIC to ASCII */
S S S Sy S Sy S SRy S Sy S S S Sy */

#pragma linkage(QDCXLATE, 0S, nowiden)
void QDCXLATE(decimal(5,0)=,

char *,

char *,

char *);

int main(void)

{

== === - ... */
/% standard return codes */
2y */

#define ERROR -1
#define OK 0

gy */
/* standard CCA parameters */
gy */

long return_code;
long reason_code;
long exit_data_length;
char exit_data[2];
char rule_array[4][8];
long rule_array_count;

J == ==~ ... */
/* fields unique to this sample program */
gy */

long verb_data_length;

char *verb_data;

char buffer[1000];

char description[81];
decimal(5,0) descr_length = 80;
int num_bytes;

FILE *fcv;

J e m e e e e */
/* retrieve FCV from IBM supplied file %/
J == == -~ ... */

fcv = fopen("/QIBM/ProdData/CAP/FCV.CRT", "rb");
if (fcv==NULL)
{

printf("Function Control Vector file not available\n\n");
return ERROR; /* File not found or not authorized =/

}

74 System i: Networking Cryptographic hardware

num_bytes = fread(buffer,1,1000,fcv);
fclose(fcv);

if (num_bytes != 802)

printf("Function Control Vector file has wrong size\n\n");

return ERROR; /* Incorrect number of bytes read =*/
}
ey */
/* extract fields in FCV needed by card */
/* Note: use offsets and Tengths from CCA publication Tisted earlier x/
Ly S L PR */

memcpy (description, &buffer[390],80);

description[80] = 0;

QDCXLATE (&descr_length, description, "QEBCDIC ", "QSYS ")s
printf("Loading Function Control Vector: %s\n",description);

verb_data_length = 204;
verb_data = &buffer[470];

rule_array count = 2;
memcpy ((char*)rule_array,"ADAPTER1LOAD-FCV",16);

2 */
/* Load the card with the FCV just retrieved */
2 */

CSUACFC(&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char*)rule_array,
&verb_data_length,
verb_data);

if (return_code != 0)
{
printf("Function Control Vector rejected for reason %d/%d\n\n",
return_code, reason_code);
return ERROR; /* Operation failed. */
}
else
{
printf("Loading Function Control Vector succeeded\n\n");
printf("SAPI returned %1d/%1d\n\n", return_code, reason_code);
return 0K;
}
}

Example: ILE RPG program for loading a function control vector for your Coprocessor:

Change this i5/0S ILE RPG program example to suit your needs for loading a function control vector for
your Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

D*k*"k*****k***'k**‘k*~k*'k****"k*k*"k*****k*"k***************************
Dx LOAD_FCV

D*

D* Load the Function Control Vector into the card.

D* The Function Control Vector enables the cryptographic

D* functions of the card and is shipped with the

D* Cryptographic Access Provider products.

Cryptography 75

D*

D* The Function Control Vector is contained within a stream

D+ file. Before compiling and running this program, you

D* must copy the contents of the stream file to a database

D* member. An example of how to do this is shown in the

D* instructions below for compiling and running this program.
D*

D* COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

D*

D* This material contains programming source code for your

D+ consideration. These example has not been thoroughly

D* tested under all conditions. IBM, therefore, cannot

D* guarantee or imply reliability, serviceability, or function
D* of these programs. All programs contained herein are

Dx provided to you "AS IS". THE IMPLIED WARRANTIES OF

Dx MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

D* ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
D* these programs and files.

D*

D*

Dx Note: Input format is more fully described in Chapter 2 of
D* IBM CCA Basic Services Reference and Guide
D* (SC31-8609) publication.

D*

D* Parameters: None

D*

D+ Example:

D+ CALL PGM(LOAD_FCV)

D*

D* Use these commands to compile this program on the system:
D*
D* CRTRPGMOD MODULE(LOAD_FCV) SRCFILE(SAMPLE)

D*

D* CRTPGM PGM(LOAD_FCV) MODULE (LOAD_FCV)

D* BNDSRVPGM(QCCA/CSUACFC)

D*

D+ Note: Authority to the CSUACFC service program in the
D* QCCA Tlibrary is assumed.

D*

D* The Common Cryptographic Architecture (CCA) verbs used are
D* Cryptographic_Facilty Control (CSUACFC)
D*

D******~k******~k**********~k*****~k*-k*****************************

)y
D= ** Return code

DRETURNCODE S 9B 0

D= ** Reason code

DREASONCODE S 9B 0

D= ** Exit data length

DEXITDATALEN S 9B 0

D* *x Exit data

DEXITDATA S 4

D* *% Rule array count

DRULEARRAYCNT S 9B 0

D= *% Rule array

DRULEARRAY S 16

D= *x Verb data length

DVERBDATALEN S 9B 0 INZ(204)

D= ** Verb data

DVERBDATA S 204

)
D* Declare variables for working with files
)y
D* **% File descriptor

DFILED S 9B 0

System i: Networking Cryptographic hardware

D* *+x File path

DPATH S 80 INZ('/QIBM/ProdData/CAP/FCV.CRT")
D ** Open Flag - Open for Read only

DOFLAGR S 101 0 INZ(1)

D ** Structure of Funciton control vector file
DFLD1 DS

DFLDDTA 802

DDESCR 391 470

DFNCCTLVCT 471 674

D* *% Length of data read from file

DINLEN S 9B 0

D* *% Declares for calling QDCXLATE API

DXLTTBL S 10 INZ('QEBCDIC ')

DTBLLIB S 10 INZ('QSYS ")

DDESCLEN S 5P © INZ(80)

D* ** Index into a string

DINDEX S 5B 0

D* ** Variable to hold temporary character value
DCHAR S 1

D*

DR R L L L T e

D+ Prototype for Cryptographic_Facilty Control (CSUACFC)

Dk sk ke sk ke ok ke ok *kkkkok
DCSUACFC PR

DRETCODE 9B 0
DRSNCODE 9B 0
DEXTDTALEN 9B 0
DEXTDTA 4
DRARRAYCT 9B 0
DRARRAY 16
DVRBDTALEN 9B 0
DVRBDTA 204

D*

Dxkkkxkhkhkkhkhhhkkhhkkkhhhkkhhhkkhhhkkkhhkkhhhkkkhhkxkhhdrxk

Dx Prototype for open()

D**
D* value returned = file descriptor (0K), -1 (error)

Dopen PR 9B O EXTPROC('open')

D path name of file to be opened.

D 128 OPTIONS (*VARSIZE)

D Open flags

D 9B 0 VALUE

DES (OPTIONAL) mode - access rights

D 10U © VALUE OPTIONS (*NOPASS)
D~ (OPTIONAL) codepage

D 10U © VALUE OPTIONS (*NOPASS)
D*

Dxkkkkkhhkkhkhhkkhkhhkkhkhhhrkhkhhkkhkhhkkhhhkkkhhkkhhhkkkhhdrkkhkkrkkhkrkkkhk

Dx Prototype for read()

D**
D* value returned = number of bytes actually read, or -1

Dread PR 9B O EXTPROC('read')
D+ File descriptor returned from open()

D 9B 0 VALUE

D* Input buffer

D 2500 OPTIONS (*VARSIZE)

D* Length of data to be read
D 9B 0 VALUE

D*
D***
Dx Prototype for close()

D***
D* value returned = 0 (0K), or -1

Dclose PR 9B 0 EXTPROC('close')
D+ File descriptor returned from open()

D 9B 0 VALUE

D*

Cryptography

77

78

DM
DM
D

DM

Declares for sending messages to the

job Tog using the QMHSNDPM API

SG S
SGLENGTH S

SGTEXT

DFAILRETC
DFATLRSNC

DM
DM
DM
DM

DSTACKENTRY
DSTACKCOUNTER

DE
DB
DB
C*

ESSAGEID
ESSAGEFILE
SGKEY
SGTYPE

[e I T I T RV IV I]

RRCODE
YTESIN
YTESOUT

80 DIM(4) CTDATA PERRCD(1)
9B 0 INZ(80)
1 80
41 44
46 49
7 INZ("
21 INZ("
4 INZ(N
10 INZ('*INFO ")
10 INZ('=* D!
98 0 INZ(2)
1 4B 0 INZ(0)
5 88 0 INZ(0)

C**

C*
C*
C*
C*
C*
C*
C*
C*
C

C*
C*
C*
C

C*
C*
C*
C

C*
C*
C*
C

C

C

C*
C

C*
C*
C*
C

C

C

C*
C*
(3

START OF PROGRAM

_____________ *
te path name =
_____________ *
EVAL %SUBST(PATH:27:1) = X'00'
_______ *
*
_______ *
EVAL FILED = open(PATH: OFLAGR)
________ *
worked *
________ *
IFEQ -1
________________________ *
, send an error message *
________________________ *
MOVEL MSG(1) MSGTEXT
EXSR SNDMSG
RETURN

Z-ADD 802 INLEN
EVAL INLEN = read(FILED: FLDDTA:
CALLP close (FILED)
_________________________ *

d operation was 0K *
_________________________ *

IFEQ -1

MOVEL MSG(2) MSGTEXT
EXSR SNDMSG

RETURN

ENDIF

System i: Networking Cryptographic hardware

INLEN)

C* Convert description to EBCDIC and display it *

gy *
C CALL 'QDCXLATE'

C PARM DESCLEN

C PARM DESCR

C PARM XLTTBL

C PARM TBLLIB

C MOVEL DESCR MSGTEXT

C Z-ADD 80 INDEX
gy *
C* Replace trailing null characters in description *
C* with space characters. *
gy g gy g g ey *
C SETOFF 50
C DOU *IN50

C EVAL CHAR = %SUBST(MSGTEXT:INDEX:1)

C CHAR IFNE X'00'

C SETON 50
C ELSE

C EVAL %SUBST (MSGTEXT: INDEX:1) = '

C SUB 1 INDEX

C INDEX IFEQ 0

C SETON 50
C ENDIF

C ENDIF

C ENDDO

C EXSR SNDMSG

(00 gy Ly Sy *
C* Set the keywords in the rule array *
g *
C MOVEL "ADAPTERL' RULEARRAY

C MOVE "LOAD-FCV' RULEARRAY

C Z-ADD 2 RULEARRAYCNT
C*k**k*k****k**k*k*************k‘k******‘k******************************
C* Call Cryptographic Facilty Control SAPI */
C**
C CALLP CSUACFC (RETURNCODE :

C REASONCODE :

C EXITDATALEN:

C EXITDATA:

C RULEARRAYCNT:

C RULEARRAY :

C VERBDATALEN:

C VERBDATA)

Ck Fomm e *

C* * Check the return code =*

C*k Hmmm e e *

C RETURNCODE IFGT 0

C* Kmm e mmm e — e ——————— *

C* * Send failure message *

C* Kmmmmmmm e m———————————— *

C MOVEL MSG(3) MSGTEXT

C MOVE RETURNCODE FAILRETC

C MOVE REASONCODE FAILRSNC

C EXSR SNDMSG

C*

C ELSE

C*

C* K m e m *

C* * Send success message *

C* Kmmmmmmmm e — e ——————— *

C MOVEL MSG(4) MSGTEXT

C EXSR SNDMSG

C ENDIF

C*

C SETON LR
C*

Cryptography 79

*%

C**

C* Subroutine to send a message

C**

SNDMSG BEGSR
CALL 'QMHSNDPM'
PARM
PARM
PARM
PARM
PARM
PARM
PARM
PARM
PARM
ENDSR

OOOOOOOOOO0O0

Error trying to open FCV file.
Error reading data from FCV file.
CSUACFC failed with return/reason codes 9999/9999.
The Function Control Vector was successfully loaded.

MESSAGEID
MESSAGEFILE
MSGTEXT
MSGLENGTH
MSGTYPE
STACKENTRY
STACKCOUNTER
MSGKEY
ERRCODE

Example: ILE C program for clearing a function control vector from your Coprocessor:

Change this i5/0S ILE C program example to suit your needs for clearing a function control vector from
your Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

S Sy S S Sy Sy S Sy S S S S S S - */
/* Clear the Function Control Vector from the card. */

/* The Function Control Vector enables the cryptographic */
/* functions of the card. Clearing it from the x/

/* disabled the cryptographic functions. */
/* */
/* COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or */
/* functions of these program. All programs contained x/
/* herein are provided to you "AS IS". THE IMPLIED */
/* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A */
/* PARTICULAR PURPOSE ARE ARE EXPRESSLY DISCLAIMED. IBM */
/* provides no program services for these programs and files.*/
/* */
/* */
/* Note: Input format is more fully described in Chapter 2 of =/
/* IBM CCA Basic Services Reference and Guide */

/* (SC31-8609) publication. x/
/* */
/* Parameters: */
/* none. */
/* */
/* Example: */
/* CALL PGM(CLEARFCV) */
/* */
/* */
/* Use the following command to compile this program: */
/* CRTCMOD MODULE (CLEARFCV) SRCFILE(SAMPLE) */
/* CRTPGM PGM(CLEARFCV) MODULE (CLEARFCV) */
/* BNDSRVPGM(QCCA/CSUACFC) */
/* */
/* Common Cryptographic Architecture (CCA) verbs used: %/
/* - Cryptographic_Facility_Control (CSUACFC) */
/* */
80 System i: Networking Cryptographic hardware

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "csucincl.h"

void main(void)
{
long return_code;
long reason_code;
long exit_data_length;
char exit_data[2];
char rule_array[4][8];
long rule_array_count;
long verb_data_length;
char *verb data;
char buffer[4];

Ly S L P */
/* No verb data is needed for this option. */
ey */
verb_data_Tlength = 0;
verb_data = buffer;
2 */
/* Rule array has two elements or rule array keywords */
2 */
rule_array_count = 2;
memcpy ((char*)rule_array,"ADAPTERICLR-FCV ",16);
J e m e e e e */
/* Clear the Function control vector from the card */
Ty */

CSUACFC (&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(charx)rule_array,
&verb_data_length,
verb data);

if (return_code != 0)

printf("Operation failed: return code %d : reason code %d \n",

return_code, reason_code);
else
printf("FCV is successfullly cleared\n");

Example: ILE RPG program for clearing a function control vector from your Coprocessor:

Change this i5/0S ILE RPG program example to suit your needs for clearing a function control vector

from your Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

DR R L T

D+ CLEARFCV
D*

D* Clear the Function Control Vector from the card.
D* The Function Control Vector enables the cryptographic

D* functions of the card. Clearing it from the
D+ disabled the cryptographic functions.
D*

Cryptography 81

D*
D*
D*
D*
D*
D*
D*
D*

COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

This material contains programming source code for your
consideration. These example has not been thoroughly
tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function

of these programs.

A11 programs contained herein are

D* provided to you "AS IS".

THE IMPLIED WARRANTIES OF

Dx MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
D+ ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
D* these programs and files.

D*

D*

Dx Note: Input format is more fully described in Chapter 2 of
D* IBM CCA Basic Services Reference and Guide
D* (SC31-8609) publication.

D*

D+ Parameters: None

D*

D* Example:

Dx CALL PGM(CLEARFCV)

D*

D* Use these commands to compile this program on the system:
Dx CRTRPGMOD MODULE (CLEARFCV) SRCFILE(SAMPLE)
Dx CRTPGM PGM(CLEARFCV) MODULE (CLEARFCV)

D* BNDSRVPGM(QCCA/CSUACFC)

D=*

D* Note: Authority to the CSUACFC service program in the
D* QCCA Tibrary is assumed.

D*

D* The Common Cryptographic Architecture (CCA) verbs used are
D* Cryptographic_Facilty Control (CSUACFC)

D*
D**
)2y
D+ Declare variables used on CCA SAPI calls
) gy iy
D *% Return code

DRETURNCODE S 9B 0

D* *% Reason code

DREASONCODE S 9B 0

D= *% Exit data length

DEXITDATALEN S 9B 0

D* *x Exit data

DEXITDATA S 4

D* *%x Rule array count

DRULEARRAYCNT S 9B 0

D* *x Rule array

DRULEARRAY S 16

D= ** \erb data length

DVERBDATALEN S 9B 0

D* *% Verb data

DVERBDATA S 16

D*

D*

D**

D* Prototype for Cryptographic_Facilty_Control (CSUACFQ)

(DR T

82

DCSUACFC PR

DRETCODE 9B 0
DRSNCODE 9B 0
DEXTDTALEN 9B 0
DEXTDTA 4
DRARRAYCT 9B 0
DRARRAY 16
DVRBDTALEN 9B 0

System i: Networking Cryptographic hardware

DVRBDTA
D*

DMSG
DMSGLENGTH

D

DMSGTEXT
DFAILRETC
DFATLRSNC

D*
DMESSAGEID
DMESSAGEFILE
DMSGKEY
DMSGTYPE
DSTACKENTRY
DSTACKCOUNTER
DERRCODE
DBYTESIN
DBYTESOUT

D*

C****-k***

**

DDLU L;m;mun,m

C+ START OF PROGRAM

C*
g gy gy gy
C* Set the keyword in the rule array
gy gy gy
C MOVEL "ADAPTERL' RULEARRAY

C MOVE '"CLR-FCV ' RULEARRAY

C Z-ADD 2 RULEARRAYCNT
g
Cx Set the verb data length to 0
g
C Z-ADD 0 VERBDATALEN

CFm e e e e e e e e ——————
C* Call Cryptographic Facilty Control SAPI

Ckm e e e e e e e e ——————
C CALLP CSUACFC (RETURNCODE :

C REASONCODE:

C EXITDATALEN:

C EXITDATA:

C RULEARRAYCNT:

C RULEARRAY :

C VERBDATALEN:

C VERBDATA)
(g *

C* Check the return code

Chmm e e e *

C RETURNCODE IFGT 0

C* K m e mm e m e *

C* * Send a failure message *

C* Kmmmmmmm e —— *

C MOVE MSG(1) MSGTEXT

C MOVE RETURNCODE FAILRETC

C MOVE REASONCODE FAILRSNC

C EXSR SNDMSG

C*

C ELSE

C* Kmmm e e m e m e — *

C* * Send a Success message *

C* Kmm e mm e ———— *

C MOVE MSG(2) MSGTEXT

C EXSR SNDMSG

C*

C ENDIF

Declares for sending messages to the
job Tog using the QMHSNDPM API

75
9B 0
1 75
41 44
46 49
Variables
7
21
4
10
10
9B 0
1 4B 0
5 8B 0

DIM(2) CTDATA PERRCD(1)
INZ(75)

required for the QMHSNDPM API

INZ(" "
INZ("

INZ(" "
INZ (' *INFO
INZ('*

INZ(2)

~——

INZ(0)
INZ(0)

Cryptography 83

C SETON LR

Cohkkdkkhkdk sk ok ko k ko k kK &Kk ok kA ek ok ok o ok ok ok ok ok ok ok o ok ok ok %k Sk kkrkkkEr

C* Subroutine to send a message
C**

C SNDMSG BEGSR

C CALL 'QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY
C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C ENDSR

C*

*%

CSUACFC failed with return/reason codes 9999/9999'
The request completed successfully

Loading and setting a master key

After you load a function control vector, load and set the master key. The master key is used to encrypt
other keys. It is a special key-encrypting key stored within the Coprocessor secure module on systems
running the i5/0S operating system.

After you load a function control vector, you can load and set a master key. The Coprocessor uses the
master key to encrypt all operational keys. The master key is a special key-encrypting key stored in the
clear (not encrypted) within the Coprocessor secure module. Your Coprocessor uses the master key to
encrypt other keys so that you can store those keys outside of your Coprocessor. The master key is a
168-bit key formed from at least two 168-bit parts exclusive ORed together.

Note: Read the |[“Code license and disclaimer information” on page 287] for important legal information.

Related concepts

[‘Loading a function control vector” on page 72|

The function control vector tells the Cryptographic Coprocessor for the system running the i5/0S
operating system what key length to use to create keys. You cannot perform any cryptographic
functions without loading a function control vector.

Related reference

[“Example: ILE C program for loading a master key into your Cryptographic Coprocessor” on page 85|

Change this i5/0S ILE C program example to suit your needs for loading a new master key into your
Cryptographic Coprocessor.

“Example: ILE RPG program for loading a master key into your Cryptographic Coprocessor” on page

5
Change this i5/0S ILE RPG program example to suit your needs for loading a new master key into
your Cryptographic Coprocessor.

[“Example: ILE C program for re-encrypting keys for your Cryptographic Coprocessor” on page 91|
Change this i5/0S ILE C program example to suit your needs for re-encrypting keys for your
Cryptographic Coprocessor.

Related information

[[[BM PCI Cryptographic Coprocessor documentation library]|

Loading a master key: There are three registers for your master keys: New, Current®, and Old. The new
master key register is used to hold a pending master key while it is being built. It is not used to encrypt
any keys. The Current master key register holds the master key that is currently being used to encrypt

84 System i: Networking Cryptographic hardware

http://www.ibm.com/security/cryptocards/library.shtml

newly generated/imported/re-enciphered keys. The old master key register holds the previous master
key. It is used to recover keys after a master key change has occurred. When you load a master key, the
Coprocessor places it into the New master key register. It remains there until you set the master key.

Choose one of these three ways to create and load a master key, based on your security needs:

¢ Load the first key parts and the subsequent key parts separately to maintain split knowledge of the
key as a whole. This is the least secure method, but you can increase security by giving each key part
to a separate individual.

* Use random key generation, which will remove any human knowledge of the key. This is the most
secure method for loading a master key, but you will need to clone this randomly generated master
key into a second Cryptographic Coprocessor in order to have a copy of it.

¢ Use a pre-existing master key by cloning it from another Coprocessor.

Setting a master key: Setting the master key causes the key in the Current master key register to move
to the Old master key register. Then, the master key in the New master key register moves to the Current
master key register.

Note: It is vital for retrieval of data encrypted by the master key that you have a backup copy of the
master key at all times. For example write it on a piece of paper, and make sure that you store the
backup copy with appropriate security precautions. Or, clone the master key to another
Coprocessor.

The easiest and fastest way to load and set master keys is to use the Cryptographic Coprocessor
configuration web-based utility found off of the System Tasks page at http:/ /server-name:2001. The utility
includes the Basic configuration wizard that is used when the Coprocessor is in an un-initialized state. If
the Cryptographic Coprocessor already has been initialized, then click on Manage configuration and then
click on Master keys to load and set master keys.

If you would prefer to write your own application to load and set master keys, you can do so by using
the Master_Key_Process (CSNBMKP) API verb.

Re-encrypting keys: When you set a master key, you should re-encrypt all keys that were encrypted
under the former master key to avoid losing access to them. You must do this before you change and set
the master key.

You can re-encrypt keys in key store by using the Cryptographic Coprocessor configuration web-based
utility found off of the System Tasks page at http:/ /server-name:2001. The Cryptographic Coprocessor
must have already been initialized. Click on "Manage configuration” and then click on either "DES keys”
to re-encrypt DES keys, or "PKA keys” to re-encrypt PKA keys.

If you have keys that are not in key store or if you would prefer to write your own application to
re-encrypt keys, you can do so by using the Key_Token_Change (CSNBKTC) or PKA_Key_Token_Change
(CSNDKTC) API verbs.

An example program is provided for your consideration.

Example: ILE C program for loading a master key into your Cryptographic Coprocessor:

Change this i5/0S ILE C program example to suit your needs for loading a new master key into your
Cryptographic Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

Cryptography 85

If you choose to use this program example, change it to suit your specific needs. For security
reasons, IBM recommends that you individualize these program examples rather than using the
default values provided.

2 */
/* Load a new master key on the card. */
/* */
/* */
/* COPYRIGHT 5769-SS1, 5722-SS1 (C) IBM CORP. 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/* of these program. A1l programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for =/
/* these programs and files. */
/% x/
/* x/
/% x/
/* Parameters: */
/* OPTION (FIRST, MIDDLE, LAST, CLEAR, SET) */
/* KEYPART (24 bytes entered in hex -> X'O1F7C4....") */
/* Required for FIRST, MIDDLE, and LAST */
/* */
/* Example: */
/* CALL PGM(LOAD_KM) */
/* (FIRST X'0123456789ABCDEFFEDCBA98765432100123456789ABCDEF') =/
/* */
/* Note: This program assumes the device to use is */
/* already identified either by defaulting to the CRPO1 */
/* device or by being explicitly named using the */
/* Cryptographic_Resource_Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* */
/* Use these commands to compile this program on the system: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (LOAD KM) SRCFILE(SAMPLE) */
/* CRTPGM PGM(LOAD_KM) MODULE(LOAD_KM) */
/* BNDSRVPGM(QCCA/CSNBMKP QCCA/CSNBRNG) */
/* */
/* Note: Authority to the CSNBMKP and CSNBRNG service programs */
/* in the QCCA library is assumed. */
/* */
/* The main Common Cryptographic Architecture (CCA) verb used */
/* is Master_Key Process (CSNBMKP). */
/* */
ey */
#include "csucincl.h" /* header file for CCA Cryptographic */
/* Service Provider */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

J e m e e e e */
/* standard return codes */
[== ===~ ... */

#define ERROR -1
#define OK 0
#define WARNING 4

86 System i: Networking Cryptographic hardware

int main(int argc, char xargv[])

{

J e m e e e e e eeeemcemmeeaee */
/* standard CCA parameters */
L */

Tong return_code = 0;

long reason_code = 0;

Tong exit_data length = 2;
char exit_data[4];

char rule_array[2][8];
Tong rule_array_count = 1;

2 */
/* parameters unique to this program */
S S S S Sy S S S RS ——— */
char keypart[24]; /* Dummy parm for SET and CLEAR x/

e */
/* Process the parameters */
2 */

if (argc < 2)

printf("Option parameter must be specified.\n");
return(ERROR) ;
}

if (argc < 3 && memcmp(argv[1],"CLEAR",5) != 0 &&
memcmp (argv[1],"SET",3) != 0)
{

printf("KeyPart parameter must be specified.\n");
return(ERROR) ;

}
2y */
/* Set the keywords in the rule array */
2 */

memset(rule_array,' ',8);
memcpy (rule_array,argv[l],
(strlen(argv[1]) > 8) ? 8 : strlen(argv[1]));

Ty */
/* Call Master Key Process SAPI */
g */

CSNBMKP (' &return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(unsigned char *)rule_array,
(argc == 3) ? argv[2] : keypart);

2 */
/* Check the return code and display the results */
S S S S S PSSP */
if ((return_code == OK) | (return_code == WARNING))

{

printf("Request was successful with return/reason codes: %d/%d \n",
return_code, reason_code);
return(0K) ;

else

{
printf("Request failed with return/reason codes: %d/%d \n",
return_code, reason_code);

Cryptography 87

return (ERROR) ;

}

Related concepts

[‘Loading and setting a master key” on page 84|

After you load a function control vector, load and set the master key. The master key is used to
encrypt other keys. It is a special key-encrypting key stored within the Coprocessor secure module on
systems running the i5/0OS operating system.

Example: ILE RPG program for loading a master key into your Cryptographic Coprocessor:

Change this i5/0S ILE RPG program example to suit your needs for loading a new master key into your
Cryptographic Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security
reasons, IBM recommends that you individualize these program examples rather than using the
default values provided.

DAxkxkkhkkkhkhkkkhhhkkhkhhkkhhhdkhkhhkkkhhdkkhhkkkhhkkkkhkkxkhhrxk

D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D=*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D=*
D*

LOAD_KM

Load a new master key on the card.

COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

This material contains programming source code for your
consideration. These example has not been thoroughly

tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function

of these programs. ATl programs contained herein are

provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
these programs and files.

Note: Input format is more fully described in Chapter 2 of
IBM CCA Basic Services Reference and Guide
(SC31-8609) publication.

Parameters:
OPTION (FIRST, MIDDLE, LAST, CLEAR, SET)
KEYPART (24 bytes entered in hex -> X'O1F7C4....')
Required for FIRST, MIDDLE, and LAST

The master key is Toaded in 3 or more parts. Specify FIRST
when Toading the first part, MIDDLE when Toading all parts
between the first and the Tast, and LAST when loading the final
part of the master key.

As the master key parts are entered, they are Exclusively OR'ed
with the current contents of the master key register. After the
last master key, if the contents do not have odd parity in every
byte, a non-zero return/reason code will be returned. In order

to ensure that the final result has odd parity, each key part
should have odd parity in every byte. This is assuming that there
is an odd number of key parts. (If there is an even number of

key parts, then one of the key parts should have even parity).

A byte has odd parity if is contains:

88 System i: Networking Cryptographic hardware

D*
D*
D*
D*
D*
D=
D*
D*
D*
D*
D*
D*
D*

an odd parity nibble : 1,

1, 2, 4,7, 8, B, D, or E AND
an even parity nibble: 0, 3, 5, 6, 9, A, C, or F.
For example 32, A4, 1F, and 75 are odd parity bytes because
they contain both an odd parity and an even parity

nibble.

05, 12, 6C, and E7 are even parity bytes because
they contain either two even parity nibbles or
two odd parity nibbles.

The New master key register must be empty before the first part
of a master key can be entered. Use CLEAR to ensure that the

D+ New master key register is empty before loading the master key
D* parts.

D*

D* After Toading the master key, use SET to move the master key from
D* the New-master-key register to the Current-master-key register.
D* Cryptographic keys are encrypted under the master key in the
D* the Current-master-key register.

D*

D+ Example:

D+ CALL PGM(LOAD_KM) (CLEAR)

D*

D+ CALL PGM(LOAD_KM)

D* (FIRST X'0123456789ABCDEFFEDCBA98765432100123456789ABCDEF ")
D*

D* CALL PGM(LOAD_KM)

D (MIDDLE X'1032A873458010F7EF3438373132F1F2F4F8B3CDCDCDCEF1")
D*

Dx CALL PGM(LOAD KM)

Dx* (LAST X'2040806789ABCDEFFEDC3434346432100123456789FEDCBA")
D*

D+ CALL PGM(LOAD_KM) (SET)

D*

D*

D*

D* Use these commands to compile this program on the system:

D+ CRTRPGMOD MODULE (LOAD_KM) SRCFILE(SAMPLE)

D* CRTPGM PGM(LOAD_KM) MODULE (LOAD_KM)

D BNDSRVPGM (QCCA/CSNBMKP)

D*

D+ Note: Authority to the CSNBMKP service program in the

D* QCCA Tibrary is assumed.

D*

D+ The Common Cryptographic Architecture (CCA) verbs used are

D* Master Key Process (CSNBMKP)

D*
D**
gy

D* Declare variables for CCA SAPI calls

) Ty Sy Yy Sy S RSy Sy

D ** Return code

DRETURNCODE S 9B 0

D ** Reason code

DREASONCODE S 9B 0

D* *% Exit data length

DEXITDATALEN S 9B 0

D* **% Exit data

DEXITDATA S 4

D* *x Rule array count

DRULEARRAYCNT S 9B 0

D* ** Rule array

DRULEARRAY S 16

D x%x QOption (Rule Array Keyword)

DOPTION S 8

D* ** Master key part parameter on program

Cryptography

89

90

DMASTERKEYPART S 24

D= *% Master key part parameter on CSNBMKP
DKEYPART S 24 INZ(*ALLX'00")

D*

(DR e T

D* Prototype for Master_Key Process (CSNBMKP)

DR L L e T

DCSNBMKP PR

DRETCODE 9B 0

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DMSTRKEY 24 OPTIONS (*NOPASS)

D*

) gy gy
D= ** Declares for sending messages to the

D* *% job log using the QMHSNDPM API

) g g
DMSG S 75 DIM(2) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(75)

D DS

DMSGTEXT 1 75

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(' ")
DMESSAGEFILE S 21 INZ('

DMSGKEY S 4 INZ(' ")

DMSGTYPE S 10 INZ('*INFO ")
DSTACKENTRY S 10 INZ('~* ")
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

D*

[T L T R T *k ok ok ok kok ok k% *kk
C* START OF PROGRAM *
C* *
C *ENTRY PLIST

C PARM OPTION

C PARM MASTERKEYPART

C* *
CFm e e e e e e e e —————— *
C* Set the keyword in the rule array *
CHm e e e e e e e e e ————— *
C MOVEL OPTION RULEARRAY

C Z-ADD 1 RULEARRAYCNT

C*

G mm m e e e e e e *
C* Check for FIRST, MIDDLE, or LAST *
Chm e e e e e e e e *
C OPTION IFEQ "FIRST'

C OPTION OREQ '"MIDDLE'

C OPTION OREQ "LAST!

C* Kmmm e mm e ——————— *

C* * Copy keypart parameter *

C* Kmmm e mm e ————————— *

C MOVEL MASTERKEYPART KEYPART

C ENDIF

C*

G mm m e e e e e - *

C* Call Master Key Process SAPI *
(g *

C CALLP CSNBMKP (RETURNCODE :

C REASONCODE :

C EXITDATALEN:

System i: Networking Cryptographic hardware

C EXITDATA:
C RULEARRAYCNT:
C RULEARRAY :
C KEYPART)
g *

C* Check the return code *

Ckmmm e mmemememee e *

C RETURNCODE IFGT 0

C* Kmmmmmmmm e ——————————— *

C* * Send error message *

C* Kmmmmmmmm—mm——————————— *

C MOVE MSG(1) MSGTEXT

C MOVE RETURNCODE FAILRETC

C MOVE REASONCODE FATLRSNC

C EXSR SNDMSG

C*

C ELSE

Cx Hmmm e e *

C* * Send success message *

C* T *

C MOVE MSG(2) MSGTEXT

C EXSR SNDMSG

C*

C ENDIF

C*

C SETON LR
Cx

C**
C* Subroutine to send a message

[R e T T E T T A kg Tkk ok kKK
C SNDMSG BEGSR

C CALL "QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY

C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C ENDSR

C*

*%

CSNBMKP failed with return/reason codes 9999/9999
The request completed successfully

Related concepts

[‘Loading and setting a master key” on page 84|

After you load a function control vector, load and set the master key. The master key is used to
encrypt other keys. It is a special key-encrypting key stored within the Coprocessor secure module on
systems running the i5/OS operating system.

Example: ILE C program for re-encrypting keys for your Cryptographic Coprocessor:

Change this i5/0S ILE C program example to suit your needs for re-encrypting keys for your
Cryptographic Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security
reasons, IBM recommends that you individualize these program examples rather than using the
default values provided.

Cryptography 91

/* Description: Re-enciphers key store files using the current =/

/* master key. */
/* */
/* COPYRIGHT 5769-SS1 (c) IBM Corp 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. 1IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function =/
/* of these programs. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */

/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* EXPRESSLY DISCLAIMED. IBM provides no program services for */

/* these programs and files. */
/* */
/* Parameters: */
/* char * keysto_type, choices are "DES" or "PKA" */
/* (If omitted, the default is "PKA".) */
/* Examples: */
/* CALL PGM(REN_KEYSTO) PARM(DES) */
/* CALL PGM(REN_KEYSTO) */
/* */
/* Note: The CCA verbs used in the this program are more fully =/
/* described in the IBM CCA Basic Services Reference =/

/* and Guide (SC31-8609) publication. */
/* */
/* Note: This program assumes the card you want to use is */
/* already identified either by defaulting to the CRPO1 */
/* device or has been explicitly named using the */
/* Cryptographic_Resource Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* This program also assumes the key store file you will */
/* use is already identified either by being specified on =/
/* the cryptographic device or has been explicitly named */
/* using the Key Store Designate verb. Also you must be */
/* authorized to update records in this file. */
/* */
/* Use the following commands to compile this program: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE(REN_KEYSTO) SRCFILE(SAMPLE) */
/* CRTPGM PGM(REN_KEYSTO) MODULE(REN_KEYSTO) */
/* BNDSRVPGM(QCCA/CSNBKTC QCCA/CSNBKRL */
/* QCCA/CSNDKTC QCCA/CSNDKRL) */
/* */
/* Note: authority to the CSNDKTC, CSNDKRL, CSNBKTC, and CSNBKRL */
/* service programs in the QCCA library is assumed. */
/* */
/* Common Cryptographic Architecture (CCA) verbs used: */
/* PKA_Key Token_Change (CSNDKTC) */
/* DES_Key_Token_Change (CSNBKTC) */
/* PKA_Key Record_List (CSNDKRL) */
/* DES_Key Record List (CSNBKRL) */
ey */

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include "csucincl.h" /* header file for CCA Cryptographic
Service Provider */

/* Define the acceptable file types */

#define PKA 1
#define DES 0

92 System i: Networking Cryptographic hardware

int re_encipher(FILE *key rec, long rec_length, int key type);

int main(int argc, char =argv[])

{
e L L */
/* standard return codes */
2y */

#define ERROR -1
#define OK 0

2 */
/* standard CCA parameters */
S S S S S S S Sy */

Tong return_code = 0;

Tong reason_code = 0;

Tong exit_data_length = 0;
char exit_data[2];

Tong rule_array_count = 0;
char rule_array[1][8];

JH e = e e e cecemecmmeaeee */
/* fields unique to this sample program */
L */

char key label[65] =
Tk ok ok ok % % * "
Tong data_set name_length = 0;
char data_set_name[65];
char security_server_name[9] = " ..

FILE *krl;
int keysto_type = PKA;

/* Check whether the user requested to re-encipher a DES or =/
/* a PKA keystore file. Default to PKA if key file type is =/
/* not specified. */

if (argc >= 2)
{

if ((strcmp(argv[1],"DES")==0))
{
printf("\nDES ");
keysto_type = DES;

}

else if ((strcmp(argv[1],"PKA")==0))
printf("\nPKA ");

else

{
printf("\nKeystore type parm incorrectly specified.\n");
printf("Acceptable choices are PKA or DES.\n");
printf("The default is PKA.\n");
return ERROR;

}

else

}

{
printf("\nPKA ");
1

if (keysto_type == DES)
{

Cryptography 93

/* Invoke the verb to create a DES Key Record List */

CSNBKRL(&return_code,
&reason_code,
&exit_data_length,
exit_data,
key Tabel,

&data_set _name_length,
data_set_name,
security server_name);

1

else

{
2y */
/* Invoke the verb to create a PKA Key Record List */
2y */

CSNDKRL(&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *) rule_array,
key Tabel,

&data_set _name_Tlength,
data_set_name,
security server name);

}
if ((return_code != 0) || (reason_code != 0))
{
printf("Key Record List generation was unsuccessful. ");

printf("Return/reason code = %d/%d\n",return_code, reason_code);

else

{
printf("Key Record List generation was successful. ");
printf("Return/reason codes = %d/%d\n",return_code, reason_code);
data_set_name[data_set_name_length] = '\0';

printf("data_set _name = %s\n",data_set name);

/* Open the Key Record List file. */
kr1 = fopen(data_set name, "rb");

if (krl == NULL) /* Open failed. x/
{
printf("The open of the Key Record List file failed\n");
return ERROR;
}
else /* Open was successful. */
{
char headerl[77];
int num_rec, i;
long rec_length, offset_recl;

/* Read the first part of the KRL header. =/
fread(headerl,1,77,krl);

/* Get the number of key records in the file. */
num_rec = atoi(&header1[50]);
printf("Number of key records = %d\n",num_rec);

/* Get the length for the key records. */
rec_length = atol(&headerl[58]);

/* Get the offset for the first key record. */
offset_recl = atol(&headerl[62]);

94 System i: Networking Cryptographic hardware

/* Set the file pointer to the first key record. x*/
fseek(krl, offset recl, SEEK SET);

/* Loop through the entries in the KRL and re-encipher. =*/
for (i = 1; i <= num_rec; i++)

{

int result;
result = re_encipher(krl, rec_length, keysto_type);
if (result !=0)

fclose(krl);
return ERROR;

}

printf("Key store file re-enciphered successfully.\n\n");
fclose(krl);
return 0K;

}

} /* end of main() */

int re_encipher(FILE *key rec, long rec_length, int key type)

{

L */
/* standard CCA parameters */
/gy */

Tong return_code;
long reason_code;
Tong exit_data_length
char exit_data[2];
Tong rule_array count
char rule_array[1][8];

"
(<]

1}
—
.o

/* fields unique to this function */
2 */
Tong key_identifier_length = 64;

char key identifier[64];

char key_record[154];

fread(key_record, 1, rec_length, key rec);
memcpy (key_identifier, &key record[3], 64);
memcpy (rule_array, "RTCMK ",8);

if (key_type == DES)
{

CSNBKTC (&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *) rule_array,
key_identifier);

1
else if (key_type == PKA)

{

CSNDKTC (&return_code,
&reason_code,
&exit_data_Tength,
exit_data,
&rule_array_count,
(char *) rule_array,

Cryptography 95

&key identifier_length,
key identifier);

1
else
{

printf("re_encipher() called with an invalid key type.\n");

return ERROR;
1

printf("Re-enciphering for key label = %.64s",key identifier);
printf("completed with return/reason codes of ");
printf("%d/%d\n",return_code,reason_code);

return return_code;

}/* end of re_encipher() */
Related concepts

[“Loading and setting a master key” on page 84|

After you load a function control vector, load and set the master key. The master key is used to
encrypt other keys. It is a special key-encrypting key stored within the Coprocessor secure module on
systems running the i5/OS operating system.

Configuring the Cryptographic Coprocessor for use with DCM and SSL
This topic provides information on how to make the Cryptographic Coprocessor ready for use with SSL
in i5/08S.

The following section lists the steps needed to make the Cryptographic Coprocessor ready for use with
SSL.

Using your Coprocessor with DCM and SSL

To install the Cryptographic Coprocessor and prerequisite software, you must do the following:
* Install the Coprocessor in your system.

For feature 4801, install your Cryptographic Coprocessor, as instructed in the 4801 PCI Cryptographic
Coprocessor Card Instructions that are shipped with your Cryptographic Coprocessor.

¢ Install i5/0S Option 35 CCA CSP.
* Set i5/0S object authorities for secure access.
* Use your web browser to go to the System Tasks page at http:/ /server-name:2001.

* Configure the Coprocessor.

The Cryptographic Coprocessor is now ready to be used to create private keys for SSL certificates.
* Use DCM to create a certificate, specifying that the private key be generated by the hardware.
» Use DCM to receive the signed certificate.

Note: If you plan to use multiple cards for SSL, see ["Managing multiple Cryptographic Coprocessors” on|
fpage 181]and [“Cloning master keys” on page 192

Related concepts

[“Managing multiple Cryptographic Coprocessors” on page 181]|

You can have up to eight Cryptographic Coprocessors per partition. The maximum number of
Cryptographic Coprocessors supported per system is dependent on the system mode. This topic
provides information on using multiple coprocessors with SSL in systems running the i5/0S operating
system.

[“Secure access” on page 16|

Access control restricts the availability of system resources to only those users you have authorized to
interact with the resources. The system allows you to control authorization of users to system
resources.

96 System i: Networking Cryptographic hardware

[‘Configuring the Cryptographic Coprocessor” on page 20|

Configuring your Cryptographic Coprocessor allows you to begin to use all of its cryptographic
operations. To configure the Cryptographic Coprocessor on your system running the i5/0OS operating
system, you can either use the Cryptographic Coprocessor configuration web-based utility or write
your own application.

Configuring the Cryptographic Coprocessor for use with i5/0S applications
This topic lists the steps needed to make Cryptographic Coprocessors ready for use with an i5/0S
application.

Using the Cryptographic Coprocessor for i5/0S applications

To install the Cryptographic Coprocessor and prerequisite software, you must do the following:
¢ Install the Coprocessor in your system.

For feature 4801, install your Cryptographic Coprocessor, as instructed in the 4801 PCI Cryptographic
Coprocessor Card Instructions that are shipped with your Cryptographic Coprocessor.

* Install i5/0S Option 35 CCA CSP.

* Set i5/0S object authorities for secure access.

¢ Use your web browser to go to the System Tasks page at http://server-name:2001.
* Configure the Coprocessor.

¢ Write your application to use the Cryptographic Coprocessor.

Note: If you plan to use multiple cards for your i5/0S applications, see |“Managing multiple|
[Cryptographic Coprocessors” on page 181

Related concepts

[‘Scenario: Protecting private keys with cryptographic hardware” on page 12|
This scenario might be useful for a company that needs to increase the security of the system digital
certificate private keys that are associated with the i5/0OS SSL-secured business transactions.

Migrating to the Cryptographic Coprocessor

If you have worked with cryptography before, you may have a requirement to migrate from a previous
cryptography product to the 4764 or 4758 Cryptographic Coprocessor.

Note: Migrating from the 4758 to the 4764:

If you are replacing your 4758 Cryptographic Coprocessor with the newer 4764 Cryptographic
Coprocessor, then ensure that the roles and profiles for the 4764 Coprocessor are setup similar to
those used with the 4758 Coprocessor. Both the 4758 and 4764 Cryptographic Coprocessors can use
the same CCA APIs and key store files.

You may have cryptographic cross-domain files from Cryptographic Support for OS/400® (5722-CR1). Or
you may have key store files from the IBM Common Cryptographic Architecture Services for OS/400
(5799-FRF) product. If this is the case, you can migrate their contents to your new Cryptographic
Coprocessor. There is an example migration program available for each cryptographic product:

* Cryptographic Support for AS/400° or i5/0S (5769-CR1 or 5722-CR1): Cryptographic Support is a
software-only product that encrypts cross-domain keys under a host master key. Cryptographic
Support then stores the cross-domain keys in a file. You can migrate cross-domain key files from
Cryptographic Support for AS/400 or i5/0S to your Cryptographic Coprocessor. See
[Cryptographic Support for AS/400 cross-domain key files|

e IBM CCA Services (5799-FRF) PRPQ: This product provides cryptographic function on cryptographic
hardware by using Data Encryption Standard (DES). The CCA Services PRPQ requires that you have a
cryptographic processor, hardware feature number 2620 or 2628, installed on your system. You can

Cryptography 97

migrate key store files from the IBM CCA Services to your Cryptographic Coprocessor. See
[store files from the IBM CCA Services for OS/400 PRPQ

Migrating key store files from the IBM CCA Services for 0S/400 PRPQ

If you currently use the Common Cryptographic Architecture (CCA) Services for OS/400 (5799-FRF), you
can migrate the keys in the key store file so that your Cryptographic Coprocessor can use them. The
Coprocessor uses the migrated keys with the CCA Cryptographic Service Provider (CCA CSP, which is
packaged as i5/0S Option 35).

About this task

Note: You cannot migrate all keys because the CCA Services supports a wider range of key types than
the Cryptographic Coprocessor. For example, you cannot migrate keys that have had the
prohibit-export bit in the control vector set. Also, you cannot migrate any of the PKA keys in the
CCA Services because CCA Services provides public key algorithm (PKA) support that is
significantly different than that in the Cryptographic Coprocessor.

You need to write two programs, in order to migrate your Data Encryption Standard (DES) keys. The
CCA defines the format of the external DES key tokens and therefore is the same for both products.
Optionally, there are two program example [Example: EXPORTing keys, and [Example: IMPORTing keys]
which you can change and run to migrate the key store files. The CCA defines the format of the external
DES key tokens and therefore is the same for both products.

Use the EXPORT program in conjunction with the IMPORT program. This will migrate DES keys from
the IBM CCA Services to your Cryptographic Coprocessor and CCA CSP. You should run the EXPORT
program first to generate a file that contains the necessary key information in a secure, exportable form.
You should then transfer the file to the target system. You can then run the IMPORT program to import
the keys from the file into a key storage file that you have created. The key storage file to which you
want to import the keys must already exist before you run the program.

Note: If you choose to use the program examples provided, change them to suit your specific needs. For
security reasons, IBM recommends that you individualize these program examples rather than
using the default values provided.

To change the program examples, follow these steps.

1. Import the same clear key value for a key-encrypting key into both products. For the CCA Services,
the key-encrypting key must be an EXPORTER, and for CCA CSP it must be an IMPORTER.

2. Run the Key_Export (CSNBKEX) CCA API in the CCA Services for each key you want to migrate.
This causes the program example to call an APIL

3. Import the outputted external key token into CCA CSP and your Cryptographic Coprocessor by using
the Key_Import (CSNBKIM) CCA APIL Remember to change the program to do this for each key.

Results

Once you change the program to address each key, you can run the program. Remember to run EXPORT
first and then IMPORT.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

Example: EXPORTing keys:

Change this i5/0S program example to suit your needs for migrating the key store files.

This is step one. Once you run this program, use [“Example: IMPORTing keys” on page 103[to complete
the migration process.

98 System i: Networking Cryptographic hardware

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

If you choose to use this program example, change it to suit your specific needs. For security
reasons, IBM recommends that you individualize these program examples rather than using the

default values provided.

Description: One of two programs used to migrate DES keys
from a key store file used with the 2620 to a
key store file for use with the card.

Note: This program is intended to be used in conjunction with

IMPORT_TSS to migrate DES keys from 2620 to card.
EXPORT_TSS should be run first to generate a file
containing the needed key information in a secure,
exportable form. The file should then be transferred
to the target system. IMPORT_TSS can then be run using
the file to import the keys into a previously created
key storage file.

COPYRIGHT 5769-SS1 (c) IBM Corp 1999, 2007

This material contains programming source code for your
consideration. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function
of these programs. All programs contained herein are
provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
EXPRESSLY DISCLAIMED. IBM provides no program services for
these programs and files.

Parameters: File to contain exported key information

Examples:
CALL PGM(EXPORT_TSS) PARM('File_for Exported Keys')
Use the following commands to compile this program:

ADDLIBLE LIB(QTSS)
CRTCMOD MODULE (EXPORT_TSS) SRCFILE(SAMPLE)
CRTPGM PGM(EXPORT_TSS) MODULE (EXPORT_TSS)

Note: authority to the functions CSNBKEX, CSNBKPI, CSNBKRL,
and CSNBKTB is assumed

Common Cryptographic Architecture (CCA) verbs used:

Key Export CSNBKEX
Key_Part_Import CSNBKPI
Key Record List CSNBKRL
Key_Token_Build CSNBKTB

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include "MIPTRNAM.H"
#include "csucincl.h"

/* needed to resolve function ptrs

Service Provider

int main(int argc, char xargv[])

/* standard return codes */

/* header file for CCA Cryptographic

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

Cryptography 99

#define ERROR -1
#define OK 0

T U S S S Sy S S ST, */
/* Declare function pointers (see csucincl.h) */
/2y */

T_CSNBKEX *CSNBKEX;
T_CSNBKRL *CSNBKRL;
T_CSNBKPI *CSNBKPI;
T_CSNBKTB *CSNBKTB;

/2y */
/* standard CCA parameters */
/2y */

long return_code;

Tong reason_code;

long exit_data_length = 0;
char exit_data[2];

Tong rule_array count = 03
char rule_array[2][8];

/2y */
/* additional parameters needed for CSNBKRL */
2y */

char key label[64];
long data_set_name_length = 0;
char data_set_name[65];

char security server name[9] = " ",

J e m e e */
/* additional parameters needed for CSNBKEX */
/2y */

char key type[8];

char source_key identifier[64];
char exporter key identifier[64];
char target_key token[64];

2 */
/* additional parameters needed for CSNBKTB */
2 */

char key_token[64];

char key value[64];

long master_key verification_pattern = 0;
long reserved_int;

char reserved str[8];

char control_vector[16];

/2y */
/* additional parameters needed for CSNBKPI */
2y */

char key part[16];
char key identifier[64];

Ty S S S S S y SSRSSp— */
/* Other variables */
T S S S S S S S ST S, */

char headerl[77];

long num_rec, i;

long num_successful = 0;

long rec_length, offset_recl;
char key_record[154];

FILE *krl, *export_file;

100 System i: Networking Cryptographic hardware

/* Check input parm x/
if (argc < 2)
{

printf("File for storing the exported key data not specified.\n");
return ERROR;

1

K e - */
/* Resolve function pointers */
J e m e e e eeeeeae */

_1ib_qualify (CSNBKEX,QTSS)
_Tib_qualify(CSNBKRL,QTSS)
“1ib_qualify (CSNBKPI,QTSS)
"1ib_qualify(CSNBKTB,QTSS)

memset (key_Tlabel,' ',64);
memcpy (key_Tabel,"*.x.x . %" 9);

S Sy S Sy S S S S S S S S */
/* Invoke the verb to create a DES Key Record List */
[m e e s */

CSNBKRL(&return_code,
&reason_code,
&exit_data_length,
exit_data,
key Tabel,
&data_set_name_Tlength,
data_set_name,
security_server_name);

if ((return_code != 0) || (reason_code != 0))

{
printf("Key Record List generation was unsuccessful. ");
printf("Return/reason code = %d/%d\n",return_code, reason_code);
return ERROR;

1

printf("Key Record List generation was successful. ");
printf("Return/reason codes = %d/%d\n",return_code, reason_code);
data_set _name[data_set_name_length] = '\0';

printf("data_set name = %s\n\n",data_set name);

/* Generate a clear key for export use. x/
/* The same key will be used for import. */
memcpy (key_type,"EXPORTER",8);
rule_array_count = 2;

memcpy (rule_array[0],"INTERNAL",8);

memcpy (rule_array[1],"KEY-PART",8);

CSNBKTB(&return_code,
&reason_code,
&exit_data_length,
exit_data,
key token,
key_type,
&rule_array_count,
(char *) rule_array,
key_value,
&master_key verification_pattern,
&reserved_int,

Cryptography 101

reserved_str,
control_vector,
reserved_str,
&reserved_int,
reserved_str,
reserved_str);

if (return_code != 0) {
printf("Building of the export
printf("Key Token Build failed
printf("Return/reason codes =
return ERROR;

1

/* Import the key parts to be use
rule_array_count = 1;

key failed.\n");
.II);

%d/%d\n",return_code, reason_code);

d. =/

memcpy (rule_array[0],"FIRST ",8);

memset (key_part,'\x01',16);

for(i=1;i<=2;i++) {

CSNBKPI(&return_code,
&reason_code,
&exit_data_length,
(char *) exit_data,
&rule_array_count,
(char *) rule_array,
key part,
key token);

if (return_code != 0) {
printf("Building of the exp
printf("Key Part Import fai
printf("Return/reason codes
return ERROR;

}

memcpy (rule_array[0],"LAST
/* Set key part to the clear k
/* Note: It may not be desira

ort key failed.\n");
led.");
= %d/%d\n",return_code, reason_code);

"98);
ey to be used. */
ble to hard-code this. */

memcpy (key_part,"Cl1Ear.KEY.hErE!!",16);

}

/* Export key built successfully.
/* Open the Key Record List file.
krl = fopen(data_set _name, "rb");

if (krl == NULL)

{ /x Open failed. */
printf("The open of the Key Re
return ERROR;

}

/* Key record list open was succe
/* Open the file to save key info
export_file = fopen(argv[1l], "wb"
if (export_file == NULL)

{
printf("Opening of key export
fclose(krl);
return ERROR;

}

/* Write num_successful to the e
fwrite(&num_successful,sizeof(Ton

*/
*/

cord List file failed.\n");

ssful. =/
. */
)s

file failed.\n");

xport file to hold a place for it. */
g),1l,export_file);

102 System i: Networking Cryptographic hardware

}

/* Read the first part of the KRL header. */
fread(headerl,1,77,krl);

/* Get the number of key records in the file. */
num_rec = atoi(&headerl[50]);
printf("Number of key records = %d\n",num_ rec);

/* Get the length for the key records. */
rec_length = atol(&headerl[58]);

/* Get the offset for the first key record. =*/
offset_recl = atol(&headerl[62]);

/* Set the file pointer to the first key record. */
fseek(krl, offset _recl, SEEK SET);

/* Set the key type to TOKEN. */
memcpy (key_type,"TOKEN ~ ",8);

/* Loop through the entries in the KRL and EXPORT. x/
for (i = 1; i <= num_rec; i++)

fread(key record, 1, rec_length, krl);
memcpy (source_key_identifier, &key record[3], 64);

CSNBKEX (&return_code,
&reason_code,
&exit_data_length,
exit_data,
key_type,
source_key_identifier,
key_token,
/* exporter_key identifier, */
target_key_token);

printf("Exporting of key = %.64s",source_key identifier);
printf("completed with return/reason codes of ");
printf("%d/%d\n",return_code,reason_code);

if (return_code == 0)

{
++num_successful;
fwrite(source_key_identifier, 1, 64, export_file);
fwrite(target_key token, 1, 64, export file);

1

} /* end of for loop */

printf("Key store file exported successfully.\n");

printf("%d key(s) successfully exported.\n\n",num_successful);

/* Write out the number of exported keys and close the file. %/

fseek(export_file,0,SEEK SET);
fwrite(&num_successful,sizeof(long),1,export file);

/* Close the files and return. */
fclose(krl);

fclose(export_file);

return 0K;

Example: IMPORTing keys:

Change this i5/0S program example to suit your needs for completing the migration of the key store
files.

Cryptography 103

This is step two. If you have not already done so, run the [“Example: EXPORTing keys” on page 98|
program to begin the migration process.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security
reasons, IBM recommends that you individualize these program examples rather than using the
default values provided.

g */
/* Description: One of two programs used to migrate DES keys */
/* from a key store file used with the 2620 to a */
/* key store file for use with the card. */
/* */
/* Note: This program is intended to be used in conjunction with */
/* EXPORT_TSS to migrate DES keys from 2620. */
/* EXPORT_TSS should be run first to generate a file */
/* containing the needed key information in a secure, */
/* exportable form. The file should then be transferred =/
/* to the target system. IMPORT_TSS can then be run using =/
/* the file to import the keys into a previously created =/
/* key storage file. */
/* */
/* */
/* COPYRIGHT 5769-SS1 (c) IBM Corp 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function =/
/* of these programs. A1l programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */

/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* EXPRESSLY DISCLAIMED. IBM provides no program services for =/

/* these programs and files. */
/* */
/* Parameters: File containing exported key information */
/* */
/* Examples: */
/* CALL PGM(IMPORT_TSS) PARM('Exported Key File') */
/* */
/* Note: The CCA verbs used in the this program are more fully =*/
/* described in the IBM CCA Basic Services Reference =/

/* and Guide (SC31-8609) publication. */
/* */
/* Note: This program assumes the card you want to use is */
/* already identified either by defaulting to the CRPO1 */
/* device or has been explicitly named using the */
/* Cryptographic_Resource Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* This program also assumes the key store file you will */
/* use is already identified either by being specified on =/
/* the cryptographic device or has been explicitly named =/
/* using the Key Store Designate verb. Also you must be */
/* authorized to update records in this file. */
/* */
/* Use the following commands to compile this program: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (IMPORT_TSS) SRCFILE(SAMPLE) */
/* CRTPGM PGM(IMPORT_TSS) MODULE(IMPORT_TSS) */
/* BNDSRVPGM(QCCA/CSNBKRC QCCA/CSNBKIM QCCA/CSNBKPI) x/
/* */
/* Note: authority to the CSNBKIM, CSNBKPI, and CSNBKRC */
/* service programs in the QCCA library is assumed. */

104 System i: Networking Cryptographic hardware

/* */
/* Common Cryptographic Architecture (CCA) verbs used: */
/* Key_Import CSNBKIM */
/* Key Record_Create CSNBKRC */
/* Key_Part_Import CSNBKPI */
g */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "csucincl.h"

/* header file for CCA Cryptographic

Service Provider */
f = = —m — o _____ */
/* Structure defining the DES key token for internal keys. This */
/* structure is used in the creation of the importer key- */
/* encrypting key. For more information on the fields in this =/
/* structure, see the IBM CCA Basic Services Reference and =/
/* Guide (SC31-8609-01), Appendix B and C. */
2y */
struct DES_key token {
char type; /* Set to 0x01 for 'internal' */
char resvl; /* Reserved (set to binary zero) */
char mkvp[2] ; /* Master Key Verification Pattern =/
char version; /* Version. Will be set to 0x03. */
char resv?; /* Reserved (set to binary zero) */
char flag; /* Flag */
char resv3; /* Reserved (set to binary zero) */
char resv4[8]; /* Reserved (set to binary zero) */
char keyl[8]; /* Single Tength encrypted key or
left half of double Tength
encrypted key. */
char key2[8]; /* Null or right half of double
Tength encrypted key */
int cvb1[2]; /* Control-vector base */
int cvb2[2]; /* Null or control vector base for
the 2nd eight-byte portion of a
16-byte key */
char resv5[12]; /* Reserved (set to binary zero) */
int tvv; /* Token-validation value */
1
int main(int argc, char xargv[])
{
gy */
/* standard return codes */
2y */
#define ERROR -1
#define OK 0
L */
/* standard CCA parameters x/
Ty */
long return_code;
Tong reason_code;
long exit_data_length = 0;
char exit_data[2];
Tong rule_array _count = 0;
char rule_array[2][8];
2y */
/* additional parameters required for CSNBKRC and CSNBKIM */
2y */

Cryptography 105

char import_key label[64];
char import_key token[64];

2y */
/* additional parameters required for CSNBKPI */
K m m e e */

struct DES_key_token importer_kt;

char importer_key token[64];
char key type[8];
char key part[16];

2y */
/* Other variables */
2 */

long num_rec = 0, 1;
long num_imported = 0;

FILE *import_file;

printf("\n\n");
/* Check input parm x/
if (argc < 2)

printf("File containing the exported key data not specified.\n");
return ERROR;
}

/* Generate a clear key for import use. */

/* Initialize the importer key token. =%/

memset (&importer_kt,0x00,sizeof(struct DES_key token));
importer_kt.type = 0x01;

importer_kt.version = 0x03;

importer_kt.flag = 0x40; /+ Indicates control vector is present */
importer_kt.cvb1[0] = 0x00427d00;

importer_kt.cvbl[1] = 0x03480000;

importer_kt.cvb2[0] = 0x00427d00;

importer_kt.cvbh2[1] = 0x03280000;

importer_kt.tvv = 0x0af53a00;

/* Initialize parameters for the first pass */
rule_array_count = 1;

memcpy (rule_array[0],"FIRST ",8);

memset (key _part,0x01,16);

for(i=1;i<=2;i++) {

CSNBKPI(&return_code,
&reason_code,
&exit_data_length,
(char *) exit_data,
&rule_array_count,
(char *) rule_array,
key part,

(char *) &importer kt);

if (return_code != 0) {
printf("Building of the importer key failed.\n");
printf("Key Part Import failed.");
printf("Return/reason codes = %d/%d\n",return_code, reason_code);
return ERROR;
}
else if (i ==1) {
/* Init variables for the final pass */
memcpy (rule_array[0],"LAST ",8);

106 System i: Networking Cryptographic hardware

/* Set key part to the clear key to be used. */
memcpy (key_part,"Cl1Ear.KEY.hErE!!",16);

}

/* Import key built successfully. =/
printf("Importer key built successfully.\n\n");

/* Open the Exported Key file. */
import_file = fopen(argv[1], "rb");

if (import_file == NULL)

{ /x Open failed. */
printf("The open of the Exported Key file failed\n");
return ERROR;

}

/* Import Key file open was successful. */
fread(&num_rec,sizeof (num_rec),1,import_file);

/* Loop through the entries in the import file and create key records.

for (i = 1; i <= num_rec; i++)

{

fread(import_key Tabel, 1, 64, import_file);
fread(import_key token, 1, 64, import file);

printf("Importing DES key:\n");
printf(" \"%.64s\"\n",import_key label);

/* Create a key record. =*/

CSNBKRC (&return_code,
&reason_code,
&exit_data_length,
exit_data,
import_key Tabel);

if (return_code != 0)
{

printf(" Key record creation failed. ");

*/

printf("Return/reason codes = %d/%d\n\n",return_code,reason_code);

continue;

}

/* Else, key record created successfully so import the key. */
memcpy (key_type,"TOKEN ~ ",8);

CSNBKIM(&return_code,
&reason_code,
&exit_data_length,
exit_data,
key_type,
import_key_token,
(char *) &importer_kt,
import_key Tlabel);

if (return_code != 0)

{
printf(" Key import failed. ");
printf("Return/reason codes = %d/%d\n\n",return_code,reason_code);
continue;

}

/* else, Key import was a success. */

printf(" Key imported successfully. ");

printf("Return/reason codes = %d/%d\n\n",return_code,reason_code);
++num_imported;

Cryptography

107

} /* end of for Toop */

printf("\nCompleted key import procedure.\n");

printf("%d of %d key(s) successfully imported.\n\n",num_imported,num_rec);
fclose(import_file);

return 0K;

}

Migrating Cryptographic Support for system cross-domain key files

If you have worked with cryptography before on your system running the i5/0S operating system, you
may have cryptographic cross-domain files from Cryptographic Support (5769-CR1). You can migrate
existing cross-domain keys to your new Cryptographic Coprocessor.

The Cryptographic Support for OS/400 product (5769-CR1 or 5722-CR1) encrypts its cross-domain keys
under the host master key and stores them in a file. Common Cryptographic Architecture (CCA) cannot
use them in this form, but you can migrate them from the Cryptographic Support product for the CCA to
use with your Coprocessor. You must consider a number of things before completing this task:

* Encryption of cross-domain keys by cross-domain keys: Cryptographic Support supports importing
clear key values for cross-domain keys and encrypting data keys under cross-domain keys. However, it
does not support encrypting cross-domain keys under cross-domain keys, nor does it support returning
the clear key value of any cross-domain key. Because of this, migrating cross-domain keys is
considerably more involved than just performing an export and import operation.

* Single-length keys versus double-length keys: All keys in Cryptographic Support are single-length
keys. In CCA, all key-encrypting keys and PIN keys are double-length keys. Although the key lengths
are different, you can build a double-length key from a single-length key and have that double-length
key behave like the single-length key. If both halves of a double-length key are the same, the result of
any encryption operation will be the same as if a single-length key was used. Therefore, when you
migrate keys from Cryptographic Support to CCA, you will need to copy the key value of the
cross-domain key into both halves of the key value for a CCA key.

* CCA control vectors versus master key variants: In CCA, when a key is said to be encrypted under a
key-encrypting key, it is really encrypted under a key that is formed by an exclusive OR operation of
the key-encrypting key and a control vector. For Cryptographic Support, cross-domain keys are
encrypted under one of three different master key variants. A master key variant is the result of the
exclusive OR operation of the host master key with either 8 bytes of hexadecimal 22, 44, or 88. Both
control vectors and master key variants provide key separation and thereby restrict keys to their
intended use. In CCA, the value of the control vector determines its use. In Cryptographic Support
how a key is used determines which master key variant will be used to decrypt it. In both cases, any
attempt to use the key for other than its intended use will result in an error. Although control vectors
and master key variants may work similarly, the values used to form master key variants are not the
same as control vectors.

¢ Asymmetry of CCA control vectors for double-length keys: Double-length keys behave like
single-length keys only when both halves of the double-length key are identical. Control vectors for
double-length keys are asymmetric. Any double-length key that is exclusive ORed with a control vector
will not result in a key with identical halves. This double-length key will not behave like a single
length key.

You can choose one of two methods for migrating the keys.
Related tasks
[“Using IMPORTER key-encrypting keys” on page 110|
This topic provides a summary of all the importer key-encrypting keys that are needed to import all
of the cross-domain keys. This information also describes how to create the importer key-encrypting
keys on systems running the i5/0S operating system.

Migrating keys: Method 1 (recommended):

108 System i: Networking Cryptographic hardware

This method provides some solutions to the considerations for migrating cryptographic support for
system cross-domain key files and is the recommended method to use on your system running the i5/0S
operating system.

About this task

To migrate the cross-domain keys from Cryptographic Support to CCA, you will need to use a
key-encrypting key that is common to both. You can use the Cryptographic Support host master key as
the common key between Cryptographic Support and CCA (in CCA, the host master key is known as the
master key). Import the Cryptographic Support host master key clear value into CCA as an IMPORTER
key-encrypting key. Because you enter the host master key in two separate parts, you should consider
importing it into CCA as two parts using the Key_Part_Import (CSNBKPI) CCA API. If you had dual
responsibility for the Cryptographic Support host master key, you should maintain this dual
responsibility for this key-encrypting key. Alternatively, if you know both parts of the host master key,
you could also perform an exclusive OR of the two parts and import the key in just one part. The
program example uses this method of importing the host master key. You may want to consider
importing the host master key in a completely separate process instead of combining it with the
migration of all cross-domain keys like the program example does.

There are three types of cross-domain keys:
* Receiving cross-domain keys
* Sending cross-domain keys

¢ PIN cross-domain keys

The CCA equivalent of receiving cross-domain keys are IMPORTER key-encrypting keys. Both are used
for receiving or importing an encrypted key.

Sending-cross-domain keys are used for both a) encrypting data keys, which can then be sent to another
system, and b) translating encrypted personal identification numbers (PIN). CCA has stricter key
separation than the Cryptographic Support product, so you cannot generate or import a key that
provides both functions. If the key is used as both an EXPORTER key-encrypting key and an OPINENC
(outbound PIN encrypting) key, you need to import sending-cross-domain keys twice into two different
keys with two different key types.

You may use PIN-cross-domain keys for generating PINs and verifying PINs. CCA separates these two
usage’s into PINGEN (PIN generation) and PINVER (PIN verification) keys. If the key is used for both
generating and verifying PINs, you need to import PIN-cross-domain keys twice, as well.

While the host master key encrypts data keys, different master key variants encrypt cross-domain keys.

* Master key variant 1 encrypts sending cross-domain keys. Variant 1 is the result of an exclusive-OR
operation of the host master key with 8 bytes of hexadecimal 88.

* Master key variant 2 encrypts receiving cross-domain keys. Variant 2 is the result of an exclusive-OR
operation of the host master key and 8 bytes of hexadecimal 22.

* Master key variant 3 encrypts PIN cross-domain keys. Variant 3 is the result of an exclusive-OR
operation of the host master key and 8 bytes of hexadecimal 44.

Note: If you only import the clear key value of the host master key into CCA, you will not be able to
migrate any keys. You need to factor in which master key variant encrypts the key in order to
migrate it.

The 8 byte values for creating master key variants are analogous to control vectors. The process of
migrating keys can be thought of as changing control vectors on a key. The [BM PCI Cryptographid

[Coprocessor CCA Basic Services Reference and Guide|ﬁ" describes a method for this process. The
method is the pre-exclusive-OR technique. If the clear key value of a key-encrypting key (the host master

Cryptography 109

http://www.ibm.com/security/cryptocards/library.shtml
http://www.ibm.com/security/cryptocards/library.shtml

key, in this case) is ‘exclusive-ORed” with control vector information before importing the key, you can
effectively change the control vector for any key that this key-encrypting key imports.

The "pre-exclusive-OR" technique works well if you are working with single-length keys. For
double-length keys, the technique must be changed because the control vector for the right half of a CCA
key is different than the control vector for the left half. To overcome this difference, import the key twice,
as follows:

1. Create a 16 byte value such that each 8 byte half is identical to the left half of the control vector of the
key you want to import. Use this 16 byte value in the pre-exclusive-OR technique to create an
importer key-encrypting key that you can refer to as the "left-importer.” Only the left half of keys that
are imported using this key-encrypting key will be valid.

2. Create another 16 byte value such that each 8 byte half is identical to the right half of the control
vector of the key you want to import. Use this 16 byte value in the pre-exclusive-OR technique to
create an importer key-encrypting key. Using this importer key-encrypting key, only the right half of
the keys that are imported will be valid

3. Import the cross-domain key, twice:
a. First use the key-encrypting key created in step 1 and save the left half of the result.
b. Then use the key-encrypting key created in step 2 and save the right half of the result.

4. In the final step, concatenate the left half of the result from step A with the right half of the result
from step B. Place the combined results in a new key token.

Results

You now have a CCA double-length key that behaves like the cross-domain key from the Cryptographic
Support product. See [Using IMPORTER key-encrypting keys] for a summary of all the importer
key-encrypting keys that are needed to import all of the cross-domain keys, as well as the steps required
to create the importer key-encrypting keys.

Using IMPORTER key-encrypting keys:

This topic provides a summary of all the importer key-encrypting keys that are needed to import all of
the cross-domain keys. This information also describes how to create the importer key-encrypting keys on
systems running the i5/OS operating system.

About this task

To import all types of cross-domain keys you will need the following IMPORTER key-encrypting keys:
1. A KEK for importing the left half of exporter keys

Create this key using the clear host master key, the left half of an exporter key-encrypting key
control vector, and 16 bytes of hex 88.

2. A KEK for importing the right half of exporter keys

Create this key using the clear host master key, the right half of an exporter key-encrypting key
control vector, and 16 bytes of hex 88.

3. A KEK for importing the left half of importer keys.

Create this key using the clear host master key, the left half of an importer key-encrypting key
control vector, and 16 bytes of hex 22.

4. A KEK for importing the right half of importer ke ys.

Create this key using the clear host master key, the right half of an importer key-encrypting key
control vector, and 16 bytes of hex 22.

5. A KEK for importing the left half of OPINENC keys.

Create this key using the clear host master key, the left half of an OPINENC key control vector, and
16 bytes of hex 88.

110 System i: Networking Cryptographic hardware

6. A KEK for importing the right half of OPINENC keys.

Create this key using the clear host master key, the right half of an OPINENC key control vector,
and 16 bytes of hex 88.

7. A KEK for importing the left half of IPINENC keys .

Create this key using the clear host master key, the left half of an IPINENC key control vector, and
16 bytes of hex 44.

8. A KEK for importing the right half of IPINENC keys.

Create this key using the clear host master key, the right half of an IPINENC key control vector, and
16 bytes of hex 44.

9. A KEK for importing the left half of PINGEN keys.

Create this key using the clear host master key, the left half of a PINGEN key control vector, and 16
bytes of hex 44.

10. A KEK for importing the right half of PINGEN keys.

Create this key using the clear host master key, the left half of a PINGEN key control vector, and 16
bytes of hex 44.

11. A KEK for importing the left half of PINVER keys .

Create this key using the clear host master key, the left half of a PINVER key control vector, and 16
bytes of hex 44.

12. A KEK for importing the right half of PINVER ke ys.

Create this key using the clear host master key, the left half of a PINVER key control vector, and 16
bytes of hex 44.

Related concepts

[“Migrating Cryptographic Support for system cross-domain key files” on page 108|

If you have worked with cryptography before on your system running the i5/0S operating system,
you may have cryptographic cross-domain files from Cryptographic Support (5769-CR1). You can
migrate existing cross-domain keys to your new Cryptographic Coprocessor.

Migrating keys: Method 2:

You should only use this method if you feel comfortable with the security of your environment and your

system running the i5/0S operating system. This method is easier than the recommended method, but it

presents a greater security risk for your cross-domain key files, since the cross-domain keys will be in

clear form in application storage.

1. Import the host master key into CCA as a data key by using the Clear_Key_Import (CSNBCKI) CCA
APIL Remember to perform an exclusive OR operation on the key with the values needed to produce
data keys equivalent to the master key variants as follows:

a. Master key variant 1 encrypts sending cross-domain keys. Variant 1 is the result of an
exclusive-OR operation of the host master key with 8 bytes of hexadecimal 88.

b. Master key variant 2 encrypts receiving cross-domain keys. Variant 2 is the result of an
exclusive-OR operation of the host master key and 8 bytes of hexadecimal 22.

C. Master key variant 3 encrypts PIN cross-domain keys. Variant 3 is the result of an exclusive-OR
operation of the host master key and 8 bytes of hexadecimal 44.
You will have 3 different data keys after this step.

2. Use the Decrypt (CSNBDEC) CCA API to decrypt the cross-domain keys to return the clear key
values. Use the correct data key to decrypt it.

3. Use the Key_Part_Import (CSNBKPI) CCA API to import the clear key into CCA.

Cryptography 111

Results

You should not consider this method to be secure. All of the keys will have been in clear form in
application storage at some time during this method.

Congratulations! You are now qualified to write a program to migrate cross-domain keys, or you can
change the following program example to suit your needs for migrating Cryptographic Support
cross-domain key files to your Cryptographic Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

Example

/***********~k***********************~k*********************************/
/* This program migrates keys stored in the file QACRKTBL in Tibrary x/
/* QUSRSYS to key storage for Option 35 - CCA Cryptographic Service =*/
/* Provider. The QACRKTBL file contains cross domain keys that are =*/
/* used for the Cryptographic Support licensed program, 5722-CR1. */

/* */
/* COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/* of these program. A1l programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/+* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* ARE EXPRESSLY DISCLAIMED. IBM provides no program services for x/
/* these programs and files. */
/* */
/* */
/* */
/* The keys are migrated by the following steps: */
/* */
/* 1 - The master key used for 5722-CR1 passed as a parameter. */
/* 2 - Build importer keys using the master key, 8 bytes of a mask =/
/* to create a variant, and a control vector. */
/* 3 - The file QACRKTBL is opened for input. */
/* 4 - A record is read. */
/* 5 - Import the key using the pre-exclusive OR process. CCA uses =*/
/* control vectors while non-CCA implementations don't. 5722-CR1*/
/* creates master key variants similar to what 4700 finance */
/* controllers do. Since the control vector and master key */
/* variant material affect how the key is enciphered, the pre- */
/* exclusive OR process "fixes" the importer key so that it can =/
/* correctly import a key. */

/* - *SND keys are imported twice as an EXPORTER and OPINENC keys. =/
/* - *PIN keys are imported twice as a PINGEN and IPINENC keys. */

/* - *RCV keys are imported as a IMPORTER key. */
/* 6- A key record is created with a similar name as in QACRKTBL. */
/* For key names Tonger than 8 characters, a '.' will be */
/* inserted between the 8th and 9th characters. Also a 1 byte =/
/* extension is appended that describes the key type. */
/* For example, MYKEY *RCV ----> MYKEY.R */
/* MYKEKOOOO1 *RCV ----> MYKEK000.01.R */
/* */
/* For *SND and *PIN keys, a second key record is also created. =/
/* For example, MYKEY *SND ----> MYKEY.S */
/% MYKEY.O */
/* MYPINKEY ~ #PIN ----> MYPINKEY.P */
/* MYPINKEY.I */
/* */
/* 7 - The key is written out to key store. */
/* */

112 System i: Networking Cryptographic hardware

/* 8 - Steps 4 through 7 are repeated until all keys have been */

/* migrated. */
/* */
/* */
/* */
/* Note: Input format is more fully described in Chapter 2 of */
/* IBM CCA Basic Services Reference and Guide */

/* (SC31-8609) publication. */
/* */
/* Parameters: */
/* nonCCA master key - 8 bytes */
/* */
/* Example: */
/* CALL PGM(MIGRATECR) PARM(X'1C23456789ABCDEF") */
/* */
/* */
/* Note: This program assumes the device to be used is */
/* already identified either by defaulting to the CRPO1 */
/* device or by being explicitly named using the */
/* Cryptographic_Resource_Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* */
/* Use these commands to compile this program on the system: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (MIGRATECR) SRCFILE(SAMPLE) */
/* CRTPGM PGM(MIGRATECR) MODULE (MIGRATECR) */
/* BNDSRVPGM(QCCA/CSNBKIM QCCA/CSNBKPI QCCA/CSNBKRC */
/* QCCA/CSNBDEC QCCA/CSNBKRW) */
/* */
/* Note: Authority to the CSNBKIM, CSNBKPI, CSNBKRC, and CSNBKRW */
/* service programs in Tibrary QCCA is assumed. */
/* */
/* */
/* The Common Cryptographic Architecture (CCA) verbs used are: */
/* */
/* Key Import (CSNBKIM) */
/* Key Part_ Import (CSNBKPI) */
/* Key Record Create (CSNBKRC) */
/* Key_Record Write (CSNBKRW) */
/* */
/* */
[kK ke ke k kK e e o o ok ok ok ok o o o ok ok ok o e e o o o o e ok ko ok o ek ok ok o o ok ok ok ke kK *%/

/***/

/* Retrieve various structures/utilities that are used in program. */
/***/

#include <stdio.h> /* Standard I/0 header. */
#include <stdlib.h> /* General utilities. */
#include <stddef.h> /* Standard definitions. */
#include <string.h> /* String handling utilities. */
#include "miptrnam.h" /* MI templates for pointer */

/* resolution instructions. */
#include "csucincl.h" /* Header file for security API */

/***/

/* Declare function prototype to build tokens to import keys */
/***/

int buildImporter(char * token,

char * clearkey,
char * preXORcv,
char * variant);

/***/

Cryptography 113

/* Declare function prototype to import a non-CCA key and put it */
/* into key store. */
/***/

int importNonCCA(char * label,

char * left_importer,
char * right_importer,
char * cv,

char * encrypted key);

/***/

/* Declares for working with files */
/***/
#include <xxfdbk.h> /* Feedback area structures. */
#include <recio.h> /* Record I/0 routines */
_RFILE *dbfptr; /* Pointer to database file. */
RIOFB T *db_fdbk; /* 1/0 Feedback - data base file */
TXXOPFB_T xdb_opfb;

/***/
/* Define the record for cross domain key file QACRKTBL */
/***/
struct

{

char Tlabel[10];

char key_type;

char key value[8];

} key rec;

/***/
/* Define the structure for key tokens */
/***/
typedef struct

{

char tokenType;

char reservedl;

char MasterKeyVerifPattern[2];

char version;

char reserved?;

char flagBytel;

char flagByte2;

char reserved3[8];

char leftHalfKey[8];

char rightHalfKey[8];

char controlVectorBase[8];

char rightControlVector[8];

char reserved4[12];

char tvv[4];

} key token T;

/***/

/* Declare control vectors used for building keys */
/***/
char pingen_cv[16] = { 0x00, 0x22, Ox7E, 0x00,

0x03, 0x41, 0x00, 0x00,
0x00, 0x22, O0x7E, 0x00,
0x03, 0x21, 0x00, 0x00};

char ipinenc_cv[16] = { 0x00, 0x21, Ox5F, 0x00,
0x03, 0x41, 0x00, 0x00,
0x00, 0x21, Ox5F, 0x00,
0x03, 0x21, 0x00, 0x00};
char opinenc_cv[16] = { 0x00, 0x24, 0x77, 0x00,

0x03, 0x41, 0x00, 0x00,
0x00, 0x24, 0x77, 0x00,
0x03, 0x21, 0x00, 0x00};

114 System i: Networking Cryptographic hardware

char importer_cv[16] = { 0x00, 0x42, 0x7D, 0x00,
0x03, 0x41, 0x00, 0x00,
0x00, 0x42, 0x7D, 0x00,
0x03, 0x21, 0x00, 0x00};

1}
—_

0x00, 0x41, 0x7D, 0x00,
0x03, 0x41, 0x00, 0x00,
0x00, 0x41, 0x7D, 0x00,
0x03, 0x21, 0x00, 0x00};

char exporter_cv[16]

char importer_cv_part[16] = { 0x00, 0x42, 0x7D, 0x00,
0x03, 0x48, 0x00, 0x00,
0x00, 0x42, 0x7D, 0x00,
0x03, 0x28, 0x00, 0x00};

char exporter_cv_part[16] = { 0x00, 0x41, 0x7D, 0x00,
0x03, 0x48, 0x00, 0x00,
0x00, 0x41, 0x7D, 0x00,
0x03, 0x28, 0x00, 0x00};

/***/

/* Start of mainline code. */
[kK ddk ke kkk ke dk ko k ok ok k ok ok dok ok ok ke k ok kA FkKEF I KRR Khhh IR AR ***Kh Kk KKk Kk kkkhh kK k *%/

int main(int argc, char xargv[])

{

Tong 1,3,k /* Indexes for loops x/
char key_Tabel[64]; /* label of new key */
char key labell[64]; /* label of new key */
JEZZET TR kK rx I IR hhhhh kR xhhh kKK * % kK xx I I IR Khh ko rhhh kK Kk k *xkk [

/* Declare importer keys - two keys are needed for each type */
/***/

char EXPORTER_importerL[64] ;
char EXPORTER_importerR[64] ;
char OPINENC_importerL[64];
char OPINENC importerR[64];
char IMPORTER _importerL[64] ;
char IMPORTER importerR[64];
char PINGEN_importerL[64];

char PINGEN_importerR[64];

char IPINENC_importerL[64];
char IPINENC_importerR[64];

/**/
/* Declare variables to hold bit strings to generate master key */

/* variants. */
/**/
char variant1[16];
char variant2[16];
char variant3[16];

/***/
/* Build the key tokens for each of the importer keys using */
/* Key Token Build. Each key is built by using a variant, a control =/
/* vector, and the clear key. Master key variant 1 is the result of x/
/* an exlusive OR of the master key with hex '8888888888888888', */

/* Master key variant 2 is the result of an exclusive OR of the */
/* master key with hex '2222222222222222', and Master key varient 3 */
/* is the result of an exclusive OR of the master key with hex */
/* '4444444444444444" . During the import operation, the control */

/* vector is exclusive OR'ed with the importer key. The effect of */
/* the control vector is overcome by including the control vector as x/
/* key part. Then when the import operation is done, the exclusive =*/
/* OR operation will result in the original key. For double keys, */
/* the Teft and right half of the control vector is not the same and */
/* therefore, XORing with the control vector will not result in the */

Cryptography 115

/* original key - only one half of it will be valid. So two keys arex/
/* needed - one for each half. */
/***/

memset (variantl, 0x88, 16);
memset (variant2, 0x22, 16);
memset (variant3, 0x44, 16);

if (buildImporter(EXPORTER importerL, argv[1],
exporter_cv, variantl) [

buildImporter(EXPORTER importerR, argv[1],
&exporter_cv[8], variantl) [

buildImporter (IMPORTER importerL, argv[1],
importer cv, variant?2) [

buildImporter(IMPORTER importerR, argv[1],
&importer_cv[8], variant2) [

buildImporter(PINGEN importerL, argv[1l],
pingen_cv, variant3) [

buildImporter(PINGEN_importerR, argv[l],
&pingen_cv[8], variant3) [

buildImporter(IPINENC importerL, argv[1],
ipinenc_cv, variant3) [

buildImporter(IPINENC importerR, argv[1],
&ipinenc_cv[8], variant3) [

buildImporter(OPINENC importerL, argv[1],
opinenc_cv, variantl) [

buildImporter (OPINENC importerR, argv[1],
&opinenc_cv[8], variantl))

printf("An error occured creating the importer keys\n");
return;

}

/***/

/* Open database file. */

/***/

/* Open the input file. =/

/* If the file pointer, =/

/* dbfptr is not NULL, =/

/* then the file was */

/* successfully opened. =/
if ((dbfptr = _Ropen("QUSRSYS/QACRKTBL", "rr riofb=n"))

1= NULL)
db_opfb = Ropnfbk(dbfptr); /* Get pointer to the */
/* File open feedback */
/* area. */
Jj = db_opfb->num_records; /* Save number of recordsx/

/**/

/* Read keys and migrate to key storage. */
[Fkdkk ke kk ok deok ok kK ok ko K R 2 2 R R R R R T T TSI T e Kk Kk rhhh kK kA /
for (i=1; i<=j; i++) /* Repeat for each record */
/* Read a record */

db_fdbk = Rreadn(dbfptr, &key rec,
sizeof(key_rec), _ DFT);

116 System i: Networking Cryptographic hardware

yRr——— s e o ok ok ok ok ok o ok ok ook st o e ok o ok o o ok o o ok o ok o ok ok o ok ok

/* Generate a key label for the imported keys.
/* The key label will be similar to the label that was used for

/* the QACRKTBL file. If the label is longer than 8 characters,

/* then a period '.' will be inserted at position 8 to make it
/* conform to Tabel naming conventions for CCA. Also one
/* one character will be added to the end to indicate what type

*/
*/
*/
*/
*/
*/

/* of key. 5722-CR1 does not require unique key names across allx/

/* key types. CCA requires unique labels for all keys.

*/

/**/

memset ((char *)key label,' ',64); /x Initialize key label
/* to all blanks.

/* Copy first bytes of Tabel
memcpy ((char *)key_Tlabel, (char *)key rec.label,8);

*/
*/

*/

/+ If label is longer than 8 characters, add a second elementx/

if (key_rec.label[8] != ' ')
{

key_label[8] "

key Tabel[9] = key rec.label[8];
key_label[10] = key_rec.label[9];
}

/* *SND keys and *PIN keys need to be imported twice so
/* make a second label

if (key_rec.key_type != 'R'")

memcpy ((char *)key labell, (char *)key label,64);

/* Add keytype to label name. Search until a space is found

/* and if less than 8, add the 1 character keytype. If it
/* is greater than 8, add a second element with the keytype
/* 'R' is *RCV key, 'S' is *SND key, 'P' is *PIN key,

/* 'I' is an IPINENC key and '0' is OPINENC key

for (k=1; k<=11; k++)

{
if (key_label[k] == ' ')

if (k !=8)
{
key_Tabel[k] = key_rec.key_type;

/* If this is a *SND or *PIN key, update the keytype
/* in the second label as well
if (key_rec.key type != 'R')

memcpy ((char *)key labell, (char *)key label,64);
if (key_rec.key_type == 'S'")

key labell[k] = '0';
else

key labell[k] = 'I';

else
{
key Tabel[8] = '.';
key Tabel[9] = key_rec.key_type;

/* If this is a *SND or *PIN key, update the keytype
/* in the second label as well
if (key_rec.key type != 'R')

{

memcpy ((char *)key_labell, (char *)key label,64);
if (key_rec.key_type == 'S")

*/
*/

*/
*/
*/
*/
*/

*/
*/

*/
*/

Cryptography 117

key Tabel1[9]
else
key Tabell[9] = 'I';

1}
o

1
k = 11;
}
1
[F ke ko ek ok kok ok k ok ok ok k ok ok ke kok ok R L Kkkkkkkkkkkk [
/* Check for the type of key that was in the QACRKTBL file */
/* - S for SENDER key will become two keys - EXPORTER and OPINENC=*/
/* - R for RECEIVER key will become IMPORTER key */
/* - P for PIN will become two keys - PINGEN and IPINENC */
/* Set the key id to the key token that contains the key under =/
/* which the key in QACRKTBL is enciphered. */

/* Set the key_type SAPI parameter for the Secure_Key Import verbx/

/**/

if (key_rec.key type == 'S')
{

/* Import the exporter key */

if(importNonCCA(key_Tlabel,
EXPORTER_importerL,
EXPORTER_importerR,
exporter_cv,
key_rec.key value))

{
printf("An error occured importing an exporter key\n");
break;
}
/* Import the OPINENC key */

if (importNonCCA(key_ Tlabell,
OPINENC_importerL,
OPINENC_ importerR,
opinenc_cv,
key rec.key value))

{
printf("An error occured importing an opinenc key\n");
break;
}
}
else
if (key_rec.key type == 'R'")
{
/* Import the importer key */

if (importNonCCA(key Tabel,
IMPORTER_importerL,
IMPORTER importerR,
importer_cv,
key rec.key value))

{
printf("An error occured importing an importer key\n");
break;
}

}

else
{
/* Import the PINGEN key */

if(importNonCCA(key Tlabel,
PINGEN_importerL,
PINGEN_importerR,
pingen_cv,
key_rec.key_value))
{
printf("An error occured importing a PINGEN key\n");

118 System i: Networking Cryptographic hardware

break;

}

/* Import the IPINENC key */
if(importNonCCA(key Tabell,
IPINENC importerL,
IPINENC_importerR,
ipinenc_cv,
key _rec.key value))
{
printf("An error occured importing an ipinenc key\n");
break;

}

} /* End Toop repeating for each record */

/***/

/* Close database file. */
/***/
if (dbfptr != NULL) /* Close the file. */
_Rclose(dbfptr);
} /* End if file open leg */
else

printf("An error occured openning the QACRKTBL file.\n");

} /* End of main() */

/***/
/* buildImporter creates an importer token from a clearkey exclusivex/
/* OR'ed with a variant and a control vector. The control vector */
/* is XOR'ed in order to import non-CCA keys. The variant is XOR'edx/
/* in order to import from implementations that use different */
/* master key variants to protect keys as does 5722-CRI. */
/***/
int buildImporter(char * token,

char * clearkey,
char * preXORcv,
char * variant)

{

/**/

/* Declare variables used by the SAPI's */

/**/

char rule_array[16];
Tong rule_array_count;
Tong return_code;

Tong reason_code;

Tong exit_data_length;
char exit_data[4];
char keyvalue[16];
char keytype[8];

char ctl_vector[16];
key_token_T *token_ptr;

/***/

/* Build an IMPORTER token */

JEZZETITEL Fkkxx I IR hKhhhh kI *h* Kk kK * % *kKxx IRk hh kAR KRR /
memset (token, 0, 64); /* Initialize token to all 0's %/
token_ptr = (key_token_T *)token;
token_ptr->tokenType = 0x01; /* 01 is internal token */
token_ptr->version = 0x03; /* Version 3 token */

Cryptography 119

token_ptr->flagBytel = 0x40; /* High order bit is 0 so key
/* is not present. The 40

*/
*/

/* bit means that CV is present*/

/* Copy control vector into
/* the token.

memcpy (token_ptr->controlVectorBase, importer cv_part, 16);
/* Copy TVV into token. This
/* was calculated manually by
/* setting all the fields and
/* then adding each 4 bytes of
/* the token (excluding the
/* TVV) together.

memcpy (token_ptr->tvv,"\x0A\xF5\x3A\x00", 4);

/********************************* """"""""""" *khkkkkhhxk */
/* Import the control vector as a key part using Key Part Import =*/
/***/

exit_data_length = 0;

rule_array _count = 1;

memcpy (ct1_vector, preXORcv, 8);

memcpy (&ct1_vector[8], preXORcv, 8); /* Need to copy the

control vector into the
second 8 bytes as wellx*/

memcpy (rule_array, "FIRST ", 8);
CSNBKPI(&return_code, &reason_code, &exit data_length,
(char *) exit_data,
(Tong *) &rule_array_count,
(char *) rule_array,
(char *) ctl_vector,
(char *) token);

if (return_code > 4)
{
printf("Key_Part_Import failed with return/reason codes \
%d/%d \n",return_code, reason_code);
return 1;

}

/***/
/* Import the variant as a key part using Key Part Import */
/***/
memcpy (rule_array, "MIDDLE ", 8);
CSNBKPI(&return_code, &reason_code, &exit_data_length,
(char *) exit_data,
(Tong *) &rule_array_count,
(char *) rule_array,
(char *) variant,
(char =) token);

if (return_code > 4)
{
printf("Key Part_Import failed with return/reason codes \
%d/%d \n",return_code, reason_code);
return 1;

}

/***/
/* Import the clear key as a key part using Key_Part_Import */
/***/
memcpy (keyvalue, clearkey, 8);
memcpy (&keyvalue[8], clearkey, 8); /x Make key double length=*/
memcpy (rule_array, "LAST ", 8);
CSNBKPI(&return_code, &reason _code, &exit data length,
(char) exit_data,
(Tong *) &rule_array_count,
(char *) rule_array,

120 System i: Networking Cryptographic hardware

*/
*/

*/
*/
*/
*/
*/
*/

(char =) keyvalue,
(char =) token);

if (return_code > 4)
{
printf("Key_Part_Import failed with return/reason codes \
%d/%d \n",return_code, reason_code);
return 1;

}

return 0;

}

/**/
/* importNonCCA imports a double Tength key into CCA from the */
/* non-CCA implementation */
/**/

int importNonCCA(char * label,

char * Teft_importer,
char = right_importer,
char * cv,

char * encrypted_key)

{

/**/

/* Declare vaiables used by the SAPIs */

/**/

long return_code, reason_code;
char exit_data[4];
Tong exit_data_length;
Tong rule_array count;
char rule_array[24];
char keytoken[64];
char externalkey[64];
char keyvalue[16];
char keytype[8];

char *importer;

char mkvp[2] ;
key_token_T *token_ptr;

int tvv, tvv_part;
char *tvv_pos;

/**/

/* Build an external key token to IMPORT from x/

/**/
memset ((void *)externalkey,'\00',64);
token_ptr = (key token_ T *)externalkey;

token_ptr->tokenType = 0x02; /* 02 is external token
token_ptr->version = 0x00; /* Version 0 token
token_ptr->flagBytel = 0xCO; /* High order bit is 1 so

/* key is present. The
/* 40 bit means that CV
/* is present

memcpy (token_ptr->controlVectorBase, cv, 16); /* Copy control
vector into token
memcpy (token_ptr->leftHalfKey,encrypted key, 8); /* Copy key
into Teft half
memcpy (token_ptr->rightHalfKey,encrypted key, 8); /* Copy key
into right half

/**/
/* Calculate the TVV by adding every 4 bytes =/
/**/
tvv_pos = externalkey;

tvw = 0;

while (tvv_pos < (externalkey + 60))

*/
*/
*/
*/
*/
*/

*/

*

/

Cryptography 121

{
memcpy ((void*)&tvv_part,tvv_pos,4);
tvv += tvv_part;
tvv_pos += 4;
}
memcpy (token_ptr->tvv, (voidx)&tvv, 4);

/***/

/* Import the left half of the key using Key Import and */
/* the importer built with left half of the control vector */
/***/
exit_data_Tength = 0;
memcpy (keytype, "TOKEN ", 8);
memset ((void *)keytoken,'\00',64);
CSNBKIM(&return_code, &reason_code, &exit_data_length,
(char *) exit_data,
(char =) keytype,
(char =) externalkey,
(char *) left_importer,
(char =) keytoken);

if (return_code > 4)
{
printf("Key Import failed with return/reason codes \
%d/%d \n",return_code, reason_code);
return 1;

[Fk gk dkk ok ok ok k ok ok k ok ok k ok k ok ko k ko kok ok *%/
/* Save left half of key out of key token */

/**/

memcpy (keyvalue, &keytoken[16], 8);

/***/
/* Import the right half of the key using Key_Import and */
/* the importer built with right half of the control vectorx/
/***/
memcpy (keytype, "TOKEN ", 8);
memset ((void *)keytoken,'\00',64);
CSNBKIM(&return_code, &reason_code, &exit_data_length,
(char *) exit_data,
(char =) keytype,
(char =) externalkey,
(char *) right_importer,
(char =) keytoken);

if (return_code > 4)
{
printf("Key Import failed with return/reason codes \
%d/%d \n",return_code, reason_code);
return 1;

}

/***/
/* Save right half of key out of key token =*/
/***/

memcpy (&keyvalue[8], &keytoken[24], 8);

/**/

/* Get master key verification pattern from the last key token built =/
/**/

mkvp[0] = keytoken[2];
mkvp[1] = keytoken[3];

122 System i: Networking Cryptographic hardware

/**/
/* Build an internal key token using both key halves just */
/* imported and using the master key verification pattern */
/**/

memset ((void *)keytoken,'\00',64);

exit_data_Tlength = 0;

token_ptr = (key_token T =*)keytoken;

token_ptr->tokenType = 0x01; /* 01 is internal token
token_ptr->version = 0x03; /* Version 3 token
token_ptr->flagBytel = 0xCO; /* High order bit is 1 so

/* key is present. The
/* 40 bit means that CV is
/* present

/* Set the first byte of

/* Master key verification

/* pattern.
token_ptr->MasterKeyVerifPattern[0] = mkvp[0];

/* Set the second byte of

/* Master key verification

/* pattern.
token_ptr->MasterKeyVerifPattern[1] = mkvp[1];

*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/

/* Copy control vector intox/

/* token
memcpy (token_ptr->controlVectorBase, cv, 16);
memcpy (token_ptr->leftHalfKey, keyvalue, 16); /*Copy key to token

/* Calculate the TVV by adding every 4 bytes =/

/**/
tvv_pos = externalkey;

tvv = 0;
while (tvv_pos < (externalkey + 60))
{

memcpy ((void*)&tvv_part,tvv_pos,4);
tvv += tvv_part;
tvv_pos += 4;

memcpy (token_ptr->tvv, (voidx)&tvv, 4);

[kK ke ke k kK e e o o ok ok ok ok o o o ok ok ok o Kkkkkkkkkkk
/* Create a Key Record in Key Store */
/**/
exit_data_length = 0;
CSNBKRC((1ong *) &return_code,
(Tong *) &reason_code,
(Tong *) &exit data_length,
(char *) exit_data,
(char =) label);

if (return_code > 4)

printf("Key_Record_Create failed with return/reason codes \
%d/%d \n",return_code, reason_code);
return 1;

}

/**/
/* Write the record out to Key Store */
/**/
CSNBKRW((Tong *) &return_code,
(Tong *) &reason_code,
(Tong *) &exit_data_length,

*/
*/

Cryptography 123

(char *) exit_data,
(char =) keytoken,
(char =) label);

if (return_code > 4)

printf("Key_Record Write failed with return/reason codes \
%d/%d \n",return_code, reason_code);
return 1;

}

return 0;

}

Managing the Cryptographic Coprocessor

After you set up your Cryptographic Coprocessor, you can begin writing programs to make use of your
Cryptographic Coprocessor’s cryptographic functions. This section is mainly for i5/0S application use of
the Cryptographic Coprocessor.

Note: Many of the pages in this section include one or more program examples. Change these programs
to suit your specific needs. Some require that you change only one or two parameters while others
require more extensive changes. For security reasons, IBM recommends that you individualize
these program examples rather than using the default values provided.

Logging on or off of the Cryptographic Coprocessor
You can log on or off the Cryptographic Coprocessor by working with role-restricted i5/0S APIs.

Logging on

You need to log on only if you wish to use an API that uses an access control point that is not enabled in
the default role. Log on with a profile that uses a role that has the access control point you want to use
enabled.

After you log on to your Cryptographic Coprocessor, you can run programs to utilize the cryptographic
functions for your Cryptographic Coprocessor. You can log on by writing an application that uses the
Logon_Control (CSUALCT) API verb.

Logging off

When you have finished with your Cryptographic Coprocessor, you should log off of your Cryptographic
Coprocessor. You can log off by writing an application that uses the Logon_Control (CSUALCT) API verb.

Note:

Read the [“Code license and disclaimer information” on page 287] for important legal information

Related concepts

[‘Creating DES and PKA keys” on page 145|
You can create DES and PKA keys and store them in a DES key store. The DES and PKA keys can be
created by writing i5/0S programs.

Example: ILE C program for logging on to your Cryptographic Coprocessor:

Change this i5/0S ILE C program example to suit your needs for logging on to your Cryptographic
Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

124 System i: Networking Cryptographic hardware

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

#i

#1
#i
#1

#d
#d
#d

If you choose to use this program example, change it to suit your specific needs. For security
reasons, IBM recommends that you individualize these program examples rather than using the

default values provided.

Log on to the card using your profile and passphrase.

COPYRIGHT 5769-SS1, 5722-SS1 (C) IBM CORP. 1999, 2007

This material contains programming source code for your
consideration. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function
of these program. All programs contained herein are
provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

ARE EXPRESSLY DISCLAIMED. IBM provides no program services for

these programs and files.

Note: This verb is more fully described in Chapter 2 of
IBM CCA Basic Services Reference and Guide
(SC31-8609) publication.

Parameters:

none.
Example:
CALL PGM(LOGON)
Note: This program assumes the card with the profile is

already identified either by defaulting to the CRPO1
device or by being explicitly named using the
Cryptographic_Resource_Allocate verb. Also this
device must be varied on and you must be authorized
to use this device description.

Use these commands to compile this program on the system:
ADDLIBLE LIB(QCCA)

CRTCMOD MODULE (LOGON) SRCFILE(SAMPLE)

CRTPGM PGM(LOGON) MODULE (LOGON) BNDSRVPGM(QCCA/CSUALCT)

Note: Authority to the CSUALCT service program in the
QCCA Tibrary is assumed.

The Common Cryptographic Architecture (CCA) verb used is
Logon_Control (CSUALCT).

nclude "csucincl.h" /* header file for CCA Cryptographic
/* Service Provider

nclude <stdio.h>

nclude <string.h>

nclude <stdlib.h>

efine ERROR -1
efine OK 0
efine WARNING 4

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/
*/

Cryptography 125

int main(int argc, char xargv[])

{

126

Tong return_code = 0;

long reason_code = 0;

Tong exit_data_length = 2;
char exit_data[4];

char rule_array[2][8];
Tong rule_array _count = 2;

char profile[8];

Tong auth_parm_length;
char auth_parm[4];
Tong auth_data_length;
char auth_data[256];

/* set rule array keywords
memcpy (rule_array,"LOGON PPHRASE ", 16);

/* Check for correct number of parameters
if (argc < 3)
{
printf("Usage: CALL LOGON (profile 'pass phrase')\n");
return(ERROR) ;
}

/* Set profile and pad out with blanks
memset (profile, ' ', 8);
if (strlen(argv[1l]) > 8)
{
printf("Profile is limited to 8 characters.\n");
return(ERROR) ;
}
memcpy (profile, argv[1], strlen(argv[1]));

/* Authentication parm length must be 0 for logon
auth_parm_length = 0;

/* Authentication data length is Tength of the pass-phrase
auth_data_length = strlen(argv([2]);

/* invoke verb to log on to the card

CSUALCT(&return_code,
&reason_code,
&exit_data_Tength,
exit_data,
&rule_array_count,
(char *)rule_array,
profile,
&auth_parm_Tength,
auth_parm,
&auth_data_Tength,
argv[2]);

if (return_code != 0OK)

System i: Networking Cryptographic hardware

*/
*/

{

printf("Log on failed with return/reason codes %1d/%1d\n\n",

}

else

return_code, reason_code);

printf("Logon was successful\n");

Example: ILE RPG program for logging on to your Cryptographic Coprocessor:

Change this i5/0S ILE RPG program example to suit your needs for logging on to your Cryptographic
Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security

reasons, IBM recommends that you individualize these program examples rather than using the

default values provided.

D******* """"""""""" khhkkkhkhkhkrhhkhhhhhhhhrhhxk *kkkkkkk %
D+ LOGON

D*

D* Log on to the Cryptographic Coprocessor.

D*

D*

Dx COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

D*

D* This material contains programming source code for your

D+ consideration. These example has not been thoroughly

Dx tested under all conditions. IBM, therefore, cannot

D* guarantee or imply reliability, serviceability, or function
D+ of these programs. A1l programs contained herein are

D+ provided to you "AS IS". THE IMPLIED WARRANTIES OF

D+ MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
D* ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
D* these programs and files.

D*

D*

D* Note: Input format is more fully described in Chapter 2 of
D IBM CCA Basic Services Reference and Guide

D (SC31-8609) publication.

D*

D+ Parameters: Profile

D* Pass-phrase

D*

D+ Example:

Dx CALL PGM(LOGON) PARM(PROFILE PASSPRHASE)

D*

D* Use these commands to compile this program on the system:
Dx CRTRPGMOD MODULE (LOGON) SRCFILE(SAMPLE)

Dx CRTPGM PGM(LOGON) MODULE (LOGON)

D* BNDDIR(QCCA/QC6BNDDIR)

D*

D* Note: Authority to the CSUALCT service program in the

D* QCCA Tibrary is assumed.

D*

Dx The Common Cryptographic Architecture (CCA) verbs used are
D* Cryptographic_Facilty Control (CSUACFC)

D*

D* This program assumes the card with the profile is

D* already identified either by defaulting to the CRPO1

D+ device or by being explicitly named using the

D+ Cryptographic_Resource_Allocate verb. Also this

D* device must be varied on and you must be authorized

D* to use this device description.

Cryptography

127

128

Dixkxkkhkrkkhkhkkkhkhhkkhhhkkhhhkkhhhkrkkhdkkhhhkkhkhkkkkhhkxkhkrkkh*

) g
D* Declare variables for CCA SAPI calls

) g
D* *% Return code

DRETURNCODE S 9B 0

D= *%* Reason code

DREASONCODE S 9B 0

D= *% Exit data length
DEXITDATALEN S 9B 0

D= **% Exit data

DEXITDATA S 4

D= **% Rule array count
DRULEARRAYCNT S 9B 0

D= **% Rule array

DRULEARRAY S 16

D* **% Userid parm

DUSERID S 8

D* *% Authentication parameter length
DAUTHPARMLEN S 9B 0 INZ(0)

D= ** Authentication parameter
DAUTHPARM S 10

D= ** Authentication data Tength
DAUTHDATALEN S 9B 0 INZ(0)

D= *% Authentication data
DAUTHDATA S 50

D*

)RR e X T

D* Prototype for Logon Control (CSUALCT)

D) ok ko o ok ke o ok ok ko ok ok ke ok ok ok ok ok ok ok k ook ko ok ke ko ok ok ok o ok ok ok ok ok ok ok ok o ok ook ke ko ok ok kK
DCSUALCT PR

DRETCODE 9B 0

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DUSR 8

DATHPRMLEN 9B 0

DATHPRM 10

DATHDTALEN 9B 0

DATHDTA 50

D*

D) ok ko o ok ke ke o ok ok ke ke ok ok ok o o ok ok o o ok ok ok o ok Kk kkhhkkhhhkhhhkhhhkhhhkkhhhkhhhxk

D* Declares for sending messages to job log
D**

D= *% Declares for sending messages to the

D= *% job log using the QMHSNDPM API

DF m m e e e e
DMSG S 75 DIM(2) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(75)

D DS

DMSGTEXT 1 75

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(' ")
DMESSAGEFILE S 21 INZ('

DMSGKEY S 4 INZ(' ")

DMSGTYPE S 10 INZ('*INFO ")
DSTACKENTRY S 10 INZ('~* ")
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

D*

C**

System i: Networking Cryptographic hardware

C*

C*

C*

C*

START OF PROGRAM *
*
__ *
*ENTRY PLIST

PARM USERID

PARM AUTHDATA
__ *
Set the keywords in the rule array *
__ *

MOVEL "LOGON ' RULEARRAY

MOVE 'PPHRASE ' RULEARRAY

Z-ADD 2 RULEARRAYCNT
__ *
Get the length of the passphrase *
__ *

EVAL AUTHDATALEN = %LEN(%TRIM(AUTHDATA))

C**

C*

Call Logon Control SAPI

C**

OOOOOOOOOOO0O

C
C*
C*
C*
C
C
C
C
C*
C
C*
C*
C*
C
C
C*
C
C*
C
C*

CALLP CSUALCT

_______________________ *
Check the return code =*
_______________________ *
RETURNCODE IFGT 0
R e T *
* Send error message *
e T *
MOVE MSG(1)
MOVE RETURNCODE
MOVE REASONCODE
EXSR SNDMSG
ELSE
O T T *
* Send success message *
K o o *
MOVE MSG(2)
EXSR SNDMSG
ENDIF
SETON

(RETURNCODE :
REASONCODE :
EXITDATALEN:
EXITDATA:
RULEARRAYCNT:
RULEARRAY:
USERID:
AUTHPARMLEN:
AUTHPARM:
AUTHDATALEN:
AUTHDATA)

MSGTEXT
FAILRETC
FAILRSNC

MSGTEXT

C**

C*

Subroutine to send a message

C**

OOOOOOOOO0

SNDMSG BEGSR
CALL 'QMHSNDPM'
PARM
PARM
PARM
PARM
PARM
PARM
PARM
PARM

MESSAGEID
MESSAGEFILE
MSGTEXT
MSGLENGTH
MSGTYPE
STACKENTRY
STACKCOUNTER
MSGKEY

LR

Cryptography

129

C PARM ERRCODE
C ENDSR
C

*
* %

CSUALCT failed with return/reason codes 9999/9999'
The request completed successfully

Example: ILE C program for logging off of your Cryptographic Coprocessor:

Change this i5/0S ILE C program example to suit your needs for logging off of your Cryptographic
Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security
reasons, IBM recommends that you individualize these program examples rather than using the
default values provided.

gy */
/* Log off the Cryptographic CoProcessor */

/* */
/* */
/* COPYRIGHT 5769-SS1, 5722-SS1 (C) IBM CORP. 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/* of these program. A1l programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* ARE EXPRESSLY DISCLAIMED. 1IBM provides no program services for x/
/* these programs and files. */
/* */
/* */
/* Note: This verb is more fully described in Chapter 2 of */
/* IBM CCA Basic Services Reference and Guide */

/* (SC31-8609) publication. */
/* */
/* Parameters: */
/* none. */
/* */
/* Example: */
/* CALL PGM(LOGOFF) */
/* */
/* */
/* Note: This program assumes the card with the profile is */
/* already identified either by defaulting to the CRPO1 */
/* device or by being explicitly named using the */
/* Cryptographic_Resource_Allocate verb. Also this */
/* device must be varied on and you must be authorized x/
/* to use this device description. */
/* */
/* */
/* Use these commands to compile this program on the system: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (LOGOFF) SRCFILE(SAMPLE) */
/* CRTPGM PGM(LOGOFF) MODULE (LOGOFF) BNDSRVPGM(QCCA/CSUALCT) */
/* */
/* Note: Authority to the CSUALCT service program in the */
/* QCCA Tibrary is assumed. */
/* */
/* The Common Cryptographic Architecture (CCA) verb used is */
/* Logon_Control (CSUALCT). */
/* */
gy */

130 System i: Networking Cryptographic hardware

#include "csucincl.h" /* header file for CCA Cryptographic
/* Service Provider

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define ERROR -1
#define OK 0

int main(int argc, char xargv[])
{

/* standard CCA parameters

K e m e e e

Tong return_code = 0;

Tong reason_code = 0;

Tong exit_data_length = 2;
char exit_data[4];

char rule_array[2][8];
long rule_array_count = 1;

char profile[8];

Tong auth_parm_length;

char * auth_parm = " ";

Tong auth_data_length = 256;
char auth_data[300];

/* set rule array keywords to log off
memcpy (rule_array,"LOGOFF ",8);

rule_array_count = 1;

/* Both Authenication parm and data Tengths must be 0

auth_parm_length = 0;
auth_data_length = 0;

/* Invoke verb to log off the Cryptographic CoProcessor

CSUALCT(&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *)rule_array,
profile,
&auth_parm_Tength,
auth_parm,
&auth_data_length,
auth_data);

if (return_code != 0OK)

printf("Log off failed with return/reason codes %1d/%1d\n\n",

return_code, reason_code);
return (ERROR) ;
}

*/

*/

*/

*/

*/
*/
*/
*/
*/

*/

Cryptography 131

else

{
printf("Log off successful\n");

return(0K) ;
1
1

Example: ILE RPG program for logging off of your Cryptographic Coprocessor:

Change this i5/0S ILE RPG program example to suit your needs for logging off of your Cryptographic
Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security
reasons, IBM recommends that you individualize these program examples rather than using the
default values provided.

D) e e o o o ok ook ke ke ke ke o ok o ok ok ok ek ko ke ke ke ok ok o ok ok ok ok ok ok ok ok ok ke ke ok ok o Sk kkkhkhkh kK

Dx LOGOFF

Dx Log off from the Cryptographic Coprocessor.

D* COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

D* This material contains programming source code for your

D+ consideration. These example has not been thoroughly

D* tested under all conditions. IBM, therefore, cannot

D* guarantee or imply reliability, serviceability, or function

D+ of these programs. All programs contained herein are

Dx provided to you "AS IS". THE IMPLIED WARRANTIES OF

Dx MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

D* ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
D* these programs and files.

D*

D*

D* Note: Input format is more fully described in Chapter 2 of
D* IBM CCA Basic Services Reference and Guide
D* (SC31-8609) publication.

D*

D* Parameters: None

D*

D+ Example:

Dx CALL PGM(LOGOFF)

D*

D* Use these commands to compile this program on the system:
D+ CRTRPGMOD MODULE (LOGOFF) SRCFILE(SAMPLE)
Dx CRTPGM PGM(LOGOFF) MODULE (LOGOFF)

D* BNDDIR(QCCA/QC6BNDDIR)

D*

D+ Note: Authority to the CSUALCT service program in the
D* QCCA Tibrary is assumed.

D*

D* The Common Cryptographic Architecture (CCA) verbs used are
D* Cryptographic_Facilty Control (CSUACFC)

D* This program assumes the card with the profile is

D+ already identified either by defaulting to the CRPO1

D* device or by being explicitly named using the

Dx Cryptographic_Resource_Allocate verb. Also this

D* device must be varied on and you must be authorized

D* to use this device description.
D**

D* Declare variables for CCA SAPI calls

132 System i: Networking Cryptographic hardware

D*
DRETURNCODE
D*
DREASONCODE
D*
DEXITDATALEN
D*

DEXITDATA

D*
DRULEARRAYCNT
D*
DRULEARRAY
D*

DUSERID

D*
DAUTHPARMLEN
D*

DAUTHPARM

D*
DAUTHDATALEN
D*

DAUTHDATA

D*

** Return code

S 9B 0

** Reason code

S 9B 0

** Exit data length

S 9B 0

*% Exit data

S 4

*% Rule array count

S 9B 0

*% Rule array

S 16

*% Userid parm

S 8

% Authentication parameter length
S 9B 0 INZ(0)
** Authentication parameter
S 8

** Authentication data Tength
S 9B 0 INZ(0)
** Authentication data

S 8

DR T R R e

Dx Prototype for Logon Control (CSUALCT)

Dxkkkxkhkhkkhkhhhkhkhhkkkhhhkkhhhkkhhhkkkhhkkhhhkkkhhkxkhkhdrxk

DCSUALCT PR

DRETCODE 9B 0

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DUSR 8

DATHPRMLEN 9B 0

DATHPRM 8

DATHDTALEN 9B 0

DATHDTA 8
12y S
D* *% Declares for sending messages to the

D* *% job log using the QMHSNDPM API
gy gy
DMSG S 75 DIM(2) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(75)

D DS

DMSGTEXT 1 75

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ (! ")
DMESSAGEFILE S 21 INZ(' ")
DMSGKEY S 4 INZ(! ")

DMSGTYPE S 10 INZ('*INFO ")
DSTACKENTRY S 10 INZ('* ")
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

D*
C**
C* START OF PROGRAM *
C* *
gy *
C* Set the keywords in the rule array *
g *
C MOVEL '"LOGOFF ' RULEARRAY

C Z-ADD 1 RULEARRAYCNT

Cryptography

133

*%

C*

C**

C* Call Logon Control SAPI

[L B T T hkkkkhkkkk
C CALLP CSUALCT (RETURNCODE :
C REASONCODE :
C EXITDATALEN:
C EXITDATA:

C RULEARRAYCNT:
C RULEARRAY :

C USERID:

C AUTHPARMLEN:
C AUTHPARM:

C AUTHDATALEN:
C AUTHDATA)
(O *

C* Check the return code *

Chommmmmm e mcccmemm e *

C RETURNCODE IFGT 0

C* T *

C* * Send error message *

C* T *

C MOVE MSG (1) MSGTEXT

C MOVE RETURNCODE FAILRETC

C MOVE REASONCODE FATLRSNC

C EXSR SNDMSG

C*

C ELSE

C* [Ty *

C* * Send success message *

C* [Ty —— *

C MOVE MSG(2) MSGTEXT

C EXSR SNDMSG

C*

C ENDIF

C*

C SETON

C*

C**

Cx Subroutine to send a message
C**

C SNDMSG BEGSR

C CALL 'QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY
C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C ENDSR

C*

CSUALCT failed with return/reason codes 9999/9999'
The request completed successfully

Query status or request information
You can query the Cryptographic Coprocessor on your system running the i5/0S operating system to

determine characteristics such as which algorithms are enabled, the key lengths it supports, the status of
the master key, the status of cloning, and the clock setting.

134

System i: Networking Cryptographic hardware

LR

The easiest and fastest way to query the Cryptographic Coprocessor is to use the Cryptographic
Coprocessor configuration web-based utility. Click on Display configuration and then select a device,
then select items you want to display.

If you would prefer to write your own application to query the Coprocessor, you can do so by using the
Cryptographic_Facility_Query (CSUACFQ) API verb. The [[BM PCI Cryptographic Coprocessor CCA Basid
[Services Reference and Guide|ﬁ’ describes the Cryptographic_Facility_Query (CSUACFQ) security
application programming interface, the types of information that you can request, and the format of the
information that is returned.

Example: Querying the status of your Cryptographic Coprocessor:

Change this i5/0S program example to suit your needs for querying the status of your Cryptographic
Coprocessor. This program uses the STATEID and TIMEDATE keywords.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security
reasons, IBM recommends that you individualize these program examples rather than using the
default values provided.

Ty */
/* Query the card for status or other information. x/

/* This sample program uses the STATEID and TIMEDATE keywords. */
/* */
/* */
/* COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/* of these program. A1l programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* ARE EXPRESSLY DISCLAIMED. IBM provides no program services for */
/* these programs and files. */
/* */
/* */
/* Note: This verb is more fully described in Chapter 2 of */
/* IBM CCA Basic Services Reference and Guide */

/* (SC31-8609) publication. */
/* */
/* Parameters: */
/* none. */
/* */
/* Example: */
/* CALL PGM(QUERY) */
/* */
/* */
/* Note: This program assumes the device to use is */
/* already identified either by defaulting to the CRPO1 */
/* device or by being explicitly named using the */
/* Cryptographic_Resource Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* Use these commands to compile this program on the system: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE(QUERY) SRCFILE(SAMPLE) */
/* CRTPGM PGM(QUERY) MODULE (QUERY) BNDSRVPGM(QCCA/CSUACFQ) */
/* */
/* Note: Authority to the CSUACFQ service program in the */
/* QCCA library is assumed. */

Cryptography 135

http://www.ibm.com/security/cryptocards/library.shtml
http://www.ibm.com/security/cryptocards/library.shtml

/* */

/* The Common Cryptographic Architecture (CCA) verb used is */

/* Cryptographic_Facility Query (CSUACFQ). */

/% x/

J e m e e e */

#include "csucincl.h" /* header file for CCA Cryptographic */
/* Service Provider */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

J == === —— o ... */

/* standard return codes */

gy */

#define ERROR -1

#define OK 0

#define WARNING 4

#define IDSIZE 16 /* number of bytes in environment ID */

#define TIMEDATESIZE 24 /% number of bytes in time and date */

int main(int argc, char xargv[])

{

long return_code = 0;

Tong reason_code = 0;

long exit_data_length = 2;
char exit_data[4];

char rule_array[2][8];
Tong rule_array count = 2;
char rule_array2[3][8];

Tong verb_data_length = 0; /* currently not used by this verb

char * verb_data =" "

/* set keywords in the rule array

memcpy (rule_array, "ADAPTERISTATEID ",16);

/* get the environment ID from the card

CSUACFQ(&return_code,

&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *)rule_array,
&verb_data_Tlength,
verb_data);

if ((return_code == OK) | (return_code == WARNING))

{

printf("Environment ID was successfully returned.\n");

printf("Return/reason codes ");

136

System i: Networking Cryptographic hardware

*/
*/
*/

*/

*/

printf("%1d/%1d\n\n", return_code, reason_code);
printf("ID = %.16s\n", rule_array);
}
else
printf("An error occurred while getting the environment ID.\n");
printf("Return/reason codes ");
printf("%1d/%1d\n\n", return_code, reason_code);

/* return(ERROR) */;
}

/* set count to number of bytes of returned data */

rule_array_count = 2;

return_code = 0;
reason_code = 0;
/* set keywords in the rule array */

memcpy (rule_array2,"ADAPTERITIMEDATE",16);
/* get the time from the card */

CSUACFQ(&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *)rule_array2,
&verb_data Tength,
verb_data);

if ((return_code == OK) | (return_code == WARNING))
printf("Time and date was successfully returned.\n");
printf("Return/reason codes ");

printf("%1d/%1d\n\n", return_code, reason_code);

printf("DATE = %.8s\n", rule_array2);

printf("TIME = %.8s\n", &rule_array2[1]);

printf("DAY of WEEK = %.8s\n", &rule_array2[2]);
}

else
printf("An error occurred while getting the time and date.\n");
printf("Return/reason codes ");
printf("%1d/%1d\n\n", return_code, reason_code);
return(ERROR) ;

}

Example: Requesting information from your Cryptographic Coprocessor:

Cryptography 137

Change this i5/0S program example to suit your needs for requesting information from your
Cryptographic Coprocessor. This program prompts the user for the second required keyword.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security
reasons, IBM recommends that you individualize these program examples rather than using the
default values provided.

gy */
/* Query the card for status or other information. */
/* This sample program prompts the user for the second required */
/* keyword. (ADAPTER1 keyword is assumed.) */
/* */
/* */
/* COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot %/
/* guarantee or imply reliability, serviceability, or function */
/* of these program. A1l programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* ARE EXPRESSLY DISCLAIMED. IBM provides no program services for =/
/* these programs and files. */
/* */
/* */
/* Note: This verb is more fully described in Chapter 2 of */
/* IBM CCA Basic Services Reference and Guide */
/* (SC31-8609) publication. */
/* */
/* Parameters: */
/* char * keyword2 upto 8 bytes */
/* */
/* Example: */
/* CALL PGM(CFQ) TIMEDATE */
/* */
/* */
/* Note: This program assumes the device to use is */
/* already identified either by defaulting to the CRPO1 */
/* device or by being explicitly named using the */
/* Cryptographic_Resource_Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* Use these commands to compile this program on the system: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (CFQ) SRCFILE(SAMPLE) */
/* CRTPGM PGM(CFQ) MODULE(CFQ) BNDSRVPGM(QCCA/CSUACFQ) */
/* */
/* Note: Authority to the CSUACFQ service program in the */
/* QCCA T1ibrary is assumed. */
/* */
/* The Common Cryptographic Architecture (CCA) verb used is */
/* Cryptographic_Facility_Query (CSUACFQ). */
/* */
2 */
#include "csucincl.h" /* header file for CCA Cryptographic */
/* Service Provider */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

138 System i: Networking Cryptographic hardware

2 */
/* standard return codes */
2 */
#define ERROR -1
#define OK 0
#define WARNING 4
int main(int argc, char xargv[])
{
2 */
/* standard CCA parameters */
2 */
Tong return_code = 0;
Tong reason_code = 0;
Tong exit_data_length = 2;
char exit_data[4];
char rule_array[18][8];
Tong rule_array_count = 2;
S S S S S PSSR */
/* fields unique to this sample program */
e m e e e e e eeeemcmmmeeaee */
Tong verb_data_length = 0; /* currently not used by this verb */
char * verb_data = " ";
int i;
/* check the keyboard input */
if (argc != 2)
{
printf("You did not enter the keyword parameter.\n");
printf("Enter one of the following: STATCCA, STATCARD, ");
printf("STATDIAG, STATEXPT, STATMOFN, STATEID, TIMEDATE\n");
return (ERROR) ;
}
if ((strlen(argv[1]) > 8) | (strlen(argv[1]) < 7))
{
printf("Your input string is not the right Tength.\n");
printf("Input keyword must be 7 or 8 characters.\n");
printf("Enter one of the following: STATCCA, STATCARD, ");
printf("STATDIAG, STATEXPT, STATMOFN, STATEID, TIMEDATE\n");
return(ERROR) ;
1
/* set keywords in the rule array */
memcpy (rule_array, "ADAPTER1 ",16);
memcpy (&rule_array[1], argv[1l], strlen(argv[1]));
/* get the requested data from the card %/

CSUACFQ(&return_code,

Cryptography

139

&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *)rule_array,
&verb_data_length,
verb_data);

if ((return_code == OK) | (return_code == WARNING))
{

printf("Requested data was successfully returned.\n");
printf("Return/reason codes ");
printf("%1d/%1d\n\n", return_code, reason_code);
printf("%s data = ", argv[1]);
for (i = 0; i <8 * rule_array_count; i++)
printf("%c", rule_array[i / 8][i % 8]);

printf("\n");

}

else
printf("An error occurred while getting the requested data.\n");
printf("You requested %s\n", argv[1]);
printf("Return/reason codes ");
printf("%1d/%1d\n\n", return_code, reason_code);

return(ERROR) ;
1

}

Initializing a key store file

A key store file is a database file that stores operational keys, i.e. keys encrypted under the master key.
This topic provides information on how to keep records of your DES and PKA keys on systems running
the i5/0S operating system.

You can initialize two different types of key stores for your Cryptographic Coprocessor. The
Cryptographic Coprocessor uses one type to store PKA keys and the other to store DES keys. You need to
initialize a key store file if you plan to store keys in it. Even though retain keys are not stored in a key
store file, one is still required because CCA searches for labels in key store files before it searches for
labels in the coprocessor.

The CCA CSP creates a DB2® key store file, if one does not already exist. If a key store file already exists,
the CCA CSP deletes the file and recreates a new one.

To initialize a key store, you can use the Cryptographic Coprocessor configuration utility. Click on
Manage configuration and then click on either DES keys or PKA keys depending upon what key store

file you wish to initialize. With the utility, you can only initialize a file if it does not already exist.

If you would rather write your own application to initialize a key store file, you can do so by using the
KeyStore_Initialize (CSNBKSI) API verb.

After you create a key store for your Cryptographic Coprocessor, you can generate DES and PKA keys to
store in your key store files.

140 System i: Networking Cryptographic hardware

Related concepts

[‘Cryptography concepts” on page 2|

This topic provides a basic understanding of cryptographic function and an overview of the
cryptographic services for the systems running the i5/0S operating system.

[‘Creating DES and PKA keys” on page 145|

You can create DES and PKA keys and store them in a DES key store. The DES and PKA keys can be
created by writing i5/0S programs.

Example: ILE C program for initializing a key store for your Cryptographic Coprocessor:

Change this i5/0S ILE C program example to suit your needs for initializing a key store for your
Cryptographic Coprocessor.

Note: Read the [‘Code license and disclaimer information” on page 287] for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security
reasons, IBM recommends that you individualize these program examples rather than using the
default values provided.

[e m e e e e e e cmmccmmcmmceeeem */
/* Create key store files for PKA keys. */
/* */
/* COPYRIGHT 5769-SS1 (c) IBM Corp 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot %/
/* guarantee or imply reliability, serviceability, or function =/
/* of these programs. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */

/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* EXPRESSLY DISCLAIMED. IBM provides no program services for =/

/* these programs and files. */
/* */
/* Parameters: */
/* Qualified File Name */
/* */
/* Examples: */
/* CALL PGM(INZPKEYST) PARM('QGPL/PKAFILE") */
/* */
/* */
/* Use the following commands to compile this program: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (INZPKEYST) SRCFILE(SAMPLE) */
/* CRTPGM PGM(INZPKEYST) MODULE (INZPKEYST) + */
/* BNDSRVPGM(QCCA/CSNBKST) */
/* */
/* Note: authority to the CSNBKSI service program in the */
/* QCCA library is assumed. */
/* */
/* Common Cryptographic Architecture (CCA) verbs used: */
/* Keystore Initialize (CSNBKSI) */
/* */
ey */

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include "csucincl.h" /* header file for CCA Cryptographic
Service Provider */

int main(int argc, char xargv[])

{

Cryptography 141

#define ERROR -1
#define OK 0

long return_code;
long reason_code;
long exit_data_length;
char exit_data[2];
char rule_array[4][8];
long rule_array_count;

long file_name_length;
unsigned char description[4];
long description_length = 0;
unsigned char masterkey[8];

printf("File name was not specified.\n");
return ERROR;

rule_array_count = 2;
memcpy ((char*)rule_array,"CURRENT PKA ",16);
file_name_length = strlen(argv[1]);

CSNBKSI (&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(charx)rule_array,
&file_name_length,
argv[1],
&description_length,
description,
masterkey);

if (return_code != 0)

printf("Request failed with return/reason codes: %d/%d\n",

return_code, reason_code);
return ERROR;
}

142 System i: Networking Cryptographic hardware

*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/

else

{

printf("Key store file created\n");
return 0K;

}
}

Example: ILE RPG program for initializing a key store for your Cryptographic Coprocessor:

Change this i5/0S ILE RPG program example to suit your needs for initializing a key store for your

Cryptographic Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security

reasons, IBM recommends that you individualize these program examples rather than using the

default values provided.

Dok o o ook e e ke ke ke ke ke ok o o ok ok ok ok ok ok ok ok kK Kk ek kK Kk kK Kk kK Kk kK kK Kk * %Kk kK Kk

D*
D*
D*
D*
D*
D*
D*
D*
D=
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*

INZPKAST

Create key store files for PKA keys.

COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

This material contains programming source code for your
consideration. These example has not been thoroughly

tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function

of these programs. A1l programs contained herein are

provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
these programs and files.

Note: Input format is more fully described in Chapter 2 of
IBM CCA Basic Services Reference and Guide
(SC31-8609) publication.

Parameters: None

Example:
CALL PGM(INZPKEYST) ('QGPL/PKAKEYS')

Use these commands to compile this program on the system:

CRTRPGMOD MODULE (INZPKAST) SRCFILE (SAMPLE)

CRTPGM PGM(INZPKEYST) MODULE(INZPKEYST)
BNDSRVPGM(QCCA/CSNBKST)

Note: Authority to the CSNBKSI service program in the
QCCA Tibrary is assumed.

The Common Cryptographic Architecture (CCA) verbs used are
Key_Store_Initialize (CSNBKSI)

D**

D*

*% Return code

DRETURNCODE S 9B 0

D*

*x Reason code

DREASONCODE S 9B 0

D*

** Exit data length

Cryptography

143

DEXITDATALEN S 9B 0

D= *% Exit data
DEXITDATA S 4

D* ** Rule array count
DRULEARRAYCNT S 9B 0
D= **% Rule array
DRULEARRAY S 16

D* **% File name length
DFILENAMELEN S 9B 0
D ** File name
DFILENAME S 21

D* *% Description length
DDESCRIPLEN S 9B 0
D= ** Description
DDESCRIP S 16

D= ** Master key part
DMASTERKEY S 24

D*

(DR L X T

D* Prototype for Key Store_Initialize (CSNBKSI)

()RR L e L T

DCSNBKSI PR

DRETCODE 9B 0

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DFILENMLN 9B 0

DFILENM 21

DDSCPLN 9B 0

DDSCRP 16

DMSTRKY 24

D*

D m e e e e e
D= *% Declares for sending messages to the

D= *% job log using the QMHSNDPM API
)y iy
DMSG S 75 DIM(2) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(75)

D DS

DMSGTEXT 1 75

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(' ")
DMESSAGEFILE S 21 INZ('

DMSGKEY S 4 INZ(' ")

DMSGTYPE S 10 INZ('*INFO ")
DSTACKENTRY S 10 INZ('* ")
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

D=*
C**
C* START OF PROGRAM *
C**
C *ENTRY PLIST

C PARM FILENAME
gy gy gy g gy gy *
C* Set the keyword in the rule array *
gy gy *
C MOVEL 'PKA ! RULEARRAY

C MOVE "CURRENT ' RULEARRAY

C Z-ADD 2 RULEARRAYCNT

Gk mm e e e e e e *
C* Set the description length *

144 System i: Networking Cryptographic hardware

*%

C Z-ADD 0 DESCRIPLEN
T N R N s *
C* Find the file name length *
g *
C EVAL FILENAMELEN = %LEN(%TRIM(FILENAME))
C**
C* Call Key Store Initialize SAPIL *
C**
C CALLP CSNBKSI (RETURNCODE :

C REASONCODE :

C EXITDATALEN:

C EXITDATA:

C RULEARRAYCNT :

C RULEARRAY:

C FILENAMELEN:

C FILENAME:

C DESCRIPLEN:

C DESCRIP:

C MASTERKEY)

Ck Hmmm e e *

C* * Check the return code =*

C*k o e e - *

C RETURNCODE IFGT 4

C* Hememmmmmem——emcccm————— *

C* * Send failure message *

C* T *

C MOVEL MSG(1) MSGTEXT

C MOVE RETURNCODE FAILRETC

C MOVE REASONCODE FAILRSNC

C EXSR SNDMSG

C RETURN

C ENDIF

C*

C* Kmm e *

C* * Send success message *

C* Ko mmmmmm e *

C MOVEL MSG(2) MSGTEXT

C EXSR SNDMSG

C*

C SETON

C*

C**

C* Subroutine to send a message
C**

C SNDMSG BEGSR

C CALL 'QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY
C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C ENDSR

CSNBKSI failed with return/reason codes 9999/9999.
The file was succesully initialized.

Creating DES and PKA keys
You can create DES and PKA keys and store them in a DES key store. The DES and PKA keys can be
created by writing i5/0S programs.

LR

You can use your Cryptographic Coprocessor to create two types of cryptographic keys.

Cryptography 145

* Data Encryption Standard (DES) keys base their content on a symmetric algorithm. This means that
cryptography uses the same key value to encrypt and decrypt data. Use DES keys to encrypting or
decrypting files, working with PINS, and managing keys.

To create DES keys with your Cryptographic Coprocessor, write a program.

* DPublic key algorithm (PKA) keys base their content on an asymmetric algorithm, meaning that
cryptography uses different keys for encryption and decryption. Use PKA keys for signing files with
digital signatures and for managing keys.

To create PKA keys with your Cryptographic Coprocessor, write a program.

Note: If you choose to use the program examples provided, change them to suit your specific needs. For
security reasons, IBM recommends that you individualize these program examples rather than
using the default values provided.

Store your DES and PKA keys in the key store file you created for them using a key store file. You can
also store PKA keys in your Cryptographic Coprocessor. See the information at

[http:/ /www.ibm.com /security / cryptocards /library.shtml| P for more information on storing your keys
in the hardware.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

Related concepts

[“Logeing on or off of the Cryptographic Coprocessor” on page 124|
You can log on or off the Cryptographic Coprocessor by working with role-restricted i5/0OS APIs.

[‘Generating and verifying a digital signature” on page 172|

You can protect data from undetected changes by including a proof of identity value called a digital
signature. You can write programs to generate and verify a digital signature for the Cryptographic
Coprocessor on your system running the i5/0S operating system.

[“Initializing a key store file” on page 140|

A key store file is a database file that stores operational keys, i.e. keys encrypted under the master
key. This topic provides information on how to keep records of your DES and PKA keys on systems
running the i5/0S operating system.

Related tasks

[“Working with PINs” on page 159|

A financial institution uses personal identification numbers (PINs) to authorize personal financial
transactions for its customers. A PIN is similar to a password except that a PIN consists of decimal
digits and is normally a cryptographic function of an associated account number. You can use the
Cryptographic Coprocessor of your system running the i5/0S operating system to work with PINs.

Related information

[[Encrypting or decrypting a file|
One of the more practical uses for the Cryptographic Coprocessor on your system running the i5/0S
operating system is encrypting and decrypting data files.

Example: Creating a DES key with your Cryptographic Coprocessor:

Change this i5/0S program example to suit your needs for creating a DES key with your Cryptographic
Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security
reasons, IBM recommends that you individualize these program examples rather than using the
default values provided.

146 System i: Networking Cryptographic hardware

http://www.ibm.com/security/cryptocards/library.shtml

/* Generate DES keys in key store. */
/* */
/* COPYRIGHT 5769-SS1 (c) IBM Corp 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function =/
/* of these programs. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */

/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* EXPRESSLY DISCLAIMED. IBM provides no program services for =/

/* these programs and files. */
/* */
/* Parameters: */
/* char * key label, 1 to 64 characters */
/* char * key store name, 1 to 21 characters in form 'lTib/file' =/
/* (optional, see second note below) */
/* */
/* Examples: */
/* CALL PGM(KEYGEN) PARM('TEST.LABEL.1') */
/* */
/* CALL PGM(KEYGEN) PARM('MY.OWN.LABEL' 'QGPL/MYKEYSTORE") */
/* */
/* Note: This program assumes the device you want to use is */
/* already identified either by defaulting to the CRPO1 */
/* device or has been explicitly named using the */
/* Cryptographic_Resource_Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* If the key store name parameter is not provided, this =/

/* program assumes the key store file you will use is */
/* already identifed either by being specified on the */
/* cryptographic device or has been previously named */
/* using the Key Store_Designate verb. Also you must be */
/* authorized to add and update records in this file. */
/* */
/* Use the following commands to compile this program: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE(KEYGEN) SRCFILE(SAMPLE) */
/* CRTPGM PGM(KEYGEN) MODULE(KEYGEN) + */
/* BNDSRVPGM(QCCA/CSUAKSD QCCA/CSNBKRC QCCA/CSNBKGN) */
/* */
/* Note: authority to the CSUAKSD, CSNBKRC and CSNBKGN service =*/
/* programs in the QCCA Tibrary is assumed. */
/* */
/* Common Cryptographic Architecture (CCA) verbs used: */
/* Key Store Designate (CSUAKSD) x/
/* DES_Key Record Create (CSNBKRC) */
/* Key Generate (CSNBKGN) */
/* */
f R — ——m — o _____ */

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include "csucincl.h" /* header file for CCA Cryptographic
Service Provider */

int main(int argc, char xargv[])

2y */
/* standard return codes */
2 */

Cryptography 147

#define ERROR -1
#define OK 0

J e m e e e */
/* standard CCA parameters */
J == ==~ ... */

long return_code;
long reason_code;
long exit_data_length;
char exit_data[2];
long rule_array_count;

2y */
/* fields unique to this sample program */
S S S Sy S Sy S SRy S Sy S S S Sy */

long file_name_length;
char key label[64];

2 */
/* See if the user wants to specify which key store file to use */
T S Sy S Sy S Sy S Sy S S S Sy ——— */

if(argc > 2)
{
file_name_length = strlen(argv[2]);

if((file_name_length > 0) &&
(file_name_length < 22))
{

rule_array_count = 1;

CSUAKSD(&return_code,
&reason_code,
&exit_data_length,

exit_data,
&rule_array_count,
"DES ", /* rule_array, we are working with

DES keys in this sample program =/
&file_name_length,
argv[2]); /* key store file name x/

if (return_code != 0)
printf("Key store designate failed for reason %d/%d\n\n",

return_code, reason_code);
return ERROR;

}
else
{
printf("Key store designated\n");
printf("SAPI returned %1d/%1d\n", return_code, reason_code);
}
}
else

printf("Key store file name is wrong length");
return ERROR;

}
}
else; /* let key store file name default */
2y */
/* Create a record in key store */
2 */

148 System i: Networking Cryptographic hardware

memset (key label, ' ', 64);
memcpy (key Tlabel, argv[l], strlen(argv[l]));

CSNBKRC (&return_code,
&reason_code,
&exit_data_length,
exit_data,
key label);

if (return_code != 0)
{
printf("Record could not be added to key store for reason %d/%d\n\n",
return_code, reason_code);
return ERROR;
}
else
{
printf("Record added to key store\n");
printf("SAPI returned %1d/%1d\n", return_code, reason_code);

Ty S S S S S S PSS S */
/* Generate a key */
J e m e e e e */

CSNBKGN (&return_code,
&reason_code,
&exit_data_length,

exit_data,
"op ", /* operational key is requested */
"SINGLE ", /* single length key requested */
"DATA ", /* Data encrypting key requested */
" " /* second value must be blanks when
key form requests only one key =/
"\0", /* key encrypting key is null for
operational keys */
"\0", /* key encrypting key is null since
only one key is being requested */
key Tlabel, /* store generated key in key storex/
"\0"); /* no second key is requested */

if (return_code != 0)

{
printf("Key generation failed for reason %d/%d\n\n",

return_code, reason_code);

return ERROR;

}

else

{
printf("Key generated and stored in key store\n");
printf("SAPI returned %1d/%1d\n\n", return_code, reason_code);
return 0K;

}

1

Example: Creating a PKA key with your Cryptographic Coprocessor:

Change this i5/0S program example to suit your needs for creating a PKA key with your Cryptographic
Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

Cryptography 149

If you choose to use this program example, change it to suit your specific needs. For security
reasons, IBM recommends that you individualize these program examples rather than using the
default values provided.

2y */
/* Generate PKA keys in key store. */
/* */
/* COPYRIGHT 5769-SS1 (c) IBM Corp 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function =/
/* of these programs. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */

/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* EXPRESSLY DISCLAIMED. IBM provides no program services for /

/* these programs and files. */
/% */
/* Parameters: */
/* char * key label, 1 to 64 characters */
/% */
/* Examples: */
/* CALL PGM(PKAKEYGEN) PARM('TEST.LABEL.1'") */
/* */
/* Note: This program assumes the card you want to load is */
/* already identifed either by defaulting to the CRPO1 */
/* device or has been explicitly named using the */
/* Cryptographic_Resource Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device descrption. x/
/* */
/* This program also assumes the key store file you will */
/* use is already identifed either by being specified on %/
/* the cryptographic device or has been explicitly named =/
/* using the Key Store Designate verb. Also you must be */
/* authorized to add and update records in this file. */
/* */
/* Use the following commands to compile this program: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (PKAKEYGEN) SRCFILE(SAMPLE) */
/* CRTPGM PGM(PKAKEYGEN) MODULE (PKAKEYGEN) + */
/* BNDSRVPGM(QCCA/CSNDKRC QCCA/CSNDPKG) */
/* */
/* Note: authority to the CSNDKRC and CSNDPKG service programs */
/* in the QCCA library is assumed. */
/* */
/* Common Cryptographic Architecture (CCA) verbs used: */
/* PKA_Key Record_Create (CSNDKRC) */
/* PKA Key Generate (CSNDPKG) */
/* */
ey */

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include "csucincl.h" /* header file for CCA Cryptographic
Service Provider */

int main(int argc, char xargv[])

[== ===~ ... */
/* standard return codes */
gy */

#define ERROR -1

150 System i: Networking Cryptographic hardware

#define 0K 0

2 */
/* standard CCA parameters */
J e m e e e e e e */

long return_code;
long reason_code;
long exit_data_length;
char exit_data[2];
char rule_array[4][8];
long rule_array_count;

Ly S L PR */
/* fields unique to this sample program */
Ty */
char key label[64]; /* identify record in key store to
hold generated key */

#pragma pack (1)

typedef struct rsa_key token header section {
char token_identifier;
char version;
short key_token_struct_Tlength;
char reserved_1[4];
} rsa_key token_header_section;

typedef struct rsa_private key 1024 bit section {
char section_identifier;
char version;
short section_length;
char hash_of _private_key[20];
short reserved_1;
short master_key verification_pattern;
char key format_and_security;
char reserved_2;
char hash_of key name[20];
char key usage_flag;
char rest_of_private_key[312];
} rsa_private_key 1024 bit section;

typedef struct rsa_public_key section {
char section_identifer;
char version;
short section_length;
short reserved_1;
short exponent_field_length;
short modulus_length;
short modulus_Tlength_in_bytes;
char exponent;
} rsa_public_key section;

struct {
rsa_key token_header_section rsa_header;
rsa_private_key 1024_bit_section rsa_private_key;
rsa_public_key section rsa_public_key;

} key_token;

struct {
short modlen;
short modlenfld;
short pubexplen;
short prvexplen;
long pubexp;

} prvPubl;

Cryptography 151

#pragma pack ()

long key_struct_Tlength;
long zero = 0;
long key_token_length;

long regen_data_length;
long generated_key_id_length;

gy */
/* Create record in key store */
ey */

rule_array_count = 0;
key token_length = 0
memset (key Tabel, ' ', 64);

memcpy (key Tabel, argv[1], strlen(argv[1]));

CSNDKRC (&return_code,

&reason_code,

&exit_data_length,

exit_data,

&rule_array_count,

"\o", /* rule_array */
key Tabel,

&key_token_length,

"\0"); /* key token */

if (return_code != 0)
{
printf("Record could not be added to key store for reason %d/%d\n\n",
return_code, reason_code);
return ERROR;
}
else
{
printf("Record added to key store\n");
printf("SAPI returned %1d/%1d\n", return_code, reason_code);

memset (&key_token, 0X00, sizeof(key token));

key_token.rsa_header.token_identifier = OX1E; /* external token =*/
key token.rsa_header.key token_struct length = sizeof(key_token);

key token.rsa_private_key.section_identifier =
0X02; /* RSA private key x/
key_token.rsa_private_key.section_length =
sizeof(rsa_private_key 1024 bit_section);
key token.rsa_private_key.key usage_flag = 0X80;

key_token.rsa public_key.section_identifer = 0X04; /* RSA public key =*/
key_token.rsa_public_key.section_length =

sizeof(rsa_public_key section);
key_token.rsa_public_key.exponent_field_length = 1;
key_token.rsa_public_key.modulus_length = 512;
key token.rsa_public_key.exponent = 0x03;
key token_length = sizeof(key token);

printf("Key token built\n");

/* Generate a key */

152 System i: Networking Cryptographic hardware

/

}

rule_array _count = 1;
regen_data_length = 0;
* key token_length = 64; */

generated_key id_length = 2500;

CSNDPKG (&return_code,

&reason_code,

&exit_data_length,

exit_data,
&rule_array_count,
"MASTER ", /*
®en_data_length,

II\OII, /*
&key_token_Tength, /*

(char *)&key token, /*

II\OII)

/*

XPORT keys
&generated_key id_Tength,

key Tlabel);

/*

if (return_code != 0)

{

rule_array

regeneration_data, none needed
skeleton_key_token_length
skeleton_key token built above
transport_id, only needed for
*
/

*/
*/
*/

generated_key id, store generated
key in key store */

printf("Key generation failed for reason %d/%d\n\n",
return_code, reason_code);

return ERROR;

}

else

{

printf("Key generated and stored in key store\n");

printf("SAPI returned %1d/%1d\n\n", return_code, reason_code);

return 0K;

}

Encrypting or decrypting a file
One of the more practical uses for the Cryptographic Coprocessor on your system running the i5/0S
operating system is encrypting and decrypting data files.

You can use one of these cryptographic methods to protect a file:

* Treat the whole file as a string of bytes (which is the method the program example uses).

* Encrypt each record or part of each record.

Write your own program protect data in many different formats, not just data files.

Example: Encrypting data with your Cryptographic Coprocessor:

Change this i5/0S program example to suit your needs for encrypting data with your Cryptographic
Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

/*
/*
/*
/*

If you choose to use this program example, change it to suit your specific needs. For security
reasons, IBM recommends that you individualize these program examples rather than using the
default values provided.

Sample C program for enciphering data in a file.

COPYRIGHT

5769-SS1 (c) IBM Corp 1999, 2007

*/
*/
*/
*/

Cryptography 153

/* */

/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/* of these programs. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* EXPRESSLY DISCLAIMED. IBM provides no program services for */
/* these programs and files. */
/* */
/* Parameters: */
/* char * key label, 1 to 64 characters */
/* char = input file name, 1 to 21 characters (1ib/file) */
/* char * output file name, 1 to 21 characters (1ib/file) */
/* */
/* Example: */
/* CALL PGM(ENCFILE) PARM('MY.KEY.LABEL' 'QGPL/MYDATA' + */
/* 'QGPL/CRYPTDATA') */
/* */
/* Note: This program assumes the device you want to use is */
/* already identified either by defaulting to the CRPO1 */
/* device or has been explicitly named using the */
/* Cryptographic_Resource Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* This program assumes the key store file you will use is */
/* already identifed either by being specified on the */
/* cryptographic device or has been previously named */
/* using the Key Store Designate verb. Also you must be */
/* authorized to add and update records in this file. */
/* */
/* The output file should NOT have key fields since all */
/* data in the file will be encrypted and therefore trying */
/* to sort the data will be meaningless. */
/* (This is NOT checked by the program) */
/* */
/* Use the following commands to compile this program: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE(ENCFILE) SRCFILE(SAMPLE) */
/* CRTPGM PGM(ENCFILE) MODULE(ENCFILE) + */
/* BNDSRVPGM(QCCA/CSNBENC) */
/* */
/* Note: authority to the CSNBENC service program in the */
/* QCCA Tibrary is assumed. */
/* */
/* Common Cryptographic Architecture (CCA) verbs used: */
/* Encipher (CSNBENC) */
/* */
gy */
J == === —— o ... */
/* Retrieve various structures/utilities that are used in program. x/
gy */
#include <stdio.h> /* Standard I1/0 header. */
#include <stdlib.h> /* General utilities. */
#include <stddef.h> /* Standard definitions. */
#include <string.h> /* String handling utilities. */
#include "csucincl.h" /* header file for CCA Cryptographic
Service Provider
2y */
/* Declares for working with files. */
2 */

154 System i: Networking Cryptographic hardware

#include
#include
_RFILE
_RFILE
RIOFB_T
XXOPFB
XXOPFB

#include
#include
#include
#define
#define
#define
#define
#define

char

char

struct {

int
int
char
char
char
} error_

char
char

char
char

char

#define
#define

long
long
long
char
long

<xxfdbk.h> /* Feedback area structures. */
<recio.h> /* Record I/0 routines */
dbfptr; / Pointer to database file. */
xdbfptre; /* Pointer to database file. */
db_fdbk; / 1/0 Feedback - data base file */
T «db_opfb;
T *db_opfbe;
___ */
res for working with user space objects. */
___ */
"qusptrus.h"
"quscrtus.h"
"qusdltus.h"
USSPC_ATTR "PF "
USSPC_INIT_VAL 0x40
USSPC_AUTH "xEXCLUDE "
USSPC_TEXT "Sample user space"
USSPC_REPLACE "xYES "
space_name[21] = "PLAINTXT QTEMP "s /* Name of user
space for plain text */
cipher _name[21] = "CIPHER QTEMP "s /* Name for user
space containing ciphertext */
/* Error code structure required for x/
/* the User Space API's. */
in_len; /* the length of the error code. */
out_len; /* the length of the exception data. */
excp_id[7]; /* the Exception ID. */
rev; /* Reserved Field. */
excp_data[120]; /* the output data associated */
code; /* the exception ID. */
ext_atr[11] USSPC_ATTR; /* Space attribute */

initial_val = USSPC_INIT VAL;

/* Space initial value =/

auth[11] = USSPC_AUTH;
/* Space authority */
desc[51] = USSPC_TEXT;
/* Space text */
replace[11] = USSPC_REPLACE;
/*Space replace attributex/
___ */
of mainline code. */
___ */
(int argc, char *argv[])
___ */
ard return codes */
___ */
ERROR -1
0K 0
___ */
ard CCA parameters */
___ */

return_code;
reason_code;
exit_data_length;
exit_data[2];
rule_array_count;

Cryptography 155

char *user_space_ptr;

char *user_space;

char *cipher_spc;

Tong file_bytes;

long i

Tong Js

char key Tabel[64];

long text_len, pad_character;

char initial_vector[8];

char chaining_vector[18];
J == === —— o ... */
/* Open database files. */
gy */

if (argc < 4) /* were the correct number

of parameters passed? */

printf("This program needs 3 parameters - ");
printf("key label, input file name, output file name\n");

return ERROR;

1
else
{

file_bytes = 0; /* Set initial number of

bytes to encipher to 0 */

/* Open the input file. If the file pointer, dbfptr is not

NULL, then the file was successfully opened. */
if ((dbfptr = _Ropen(argv[2], "rr riofb=n"))
1= NULL)

{
2 */
/* Determine the number of bytes that will be enciphered. */
2y */

db_opfb = _Ropnfbk(dbfptr); /* Get pointer to the File
open feedback area. */

file_bytes = db_opfb->num_records *

db_opfb->pgm_record_Ten

+ 1; /* 1 is added to prevent an
end of space error */
Jj = db_opfb->num_records; /* Save number of recordsx/
e */
/* Create user space and get pointer to it. */
2y */
error_code.in_len = 136; /* Set length of error x/
/* structure. */

QUSDLTUS (space_name,&error_code); /* Delete the user space
if it already exists. */

/* Create the plaintext user space object =/
QUSCRTUS (space_name,ext_atr,file_bytes,
&initial_val,auth,
desc, replace,&error _code);

error_code.in_len = 48; /* Set length of error
structure */

156 System i: Networking Cryptographic hardware

QUSPTRUS (space_name, /* Retrieve a pointer to =*/
(void *)&user_space, /* the user space. */
(char*)g&error_code) ;

user_space_ptr = user_space; /* Make copy of pointer */

error_code.in_len = 136; /* Set length of error */
/* structure. */

QUSDLTUS (cipher_name,&error _code); /* Delete cipher space
if already exists. */

/* Create ciphertext user space object =*/
QUSCRTUS (cipher_name,ext_atr,
file_bytes,&initial_val,auth,
desc, replace,&error_code);

error_code.in_len = 48; /* Set length of error */
/* structure */
QUSPTRUS (cipher_name, /* Retrieve pointer to */

(void *)&cipher_spc, /* ciphertext user space */
(char*)g&error_code);

T S Sy S S USSRy Sy Sy Sy S Uy S S S S S - */
/* Read file and fill space */
[e m e e e */
for (i=1; i<=j; i++) /* Repeat for each record */

{
/* Read a record and place in user space. */

db_fdbk = Rreadn(dbfptr, user_space_ptr,
db_opfb->pgm _record len, _ DFT);

/* Move the user space ahead the length of a record =/
user_space_ptr = user_space_ptr +
db_opfb->pgm_record_len;
}

if (dbfptr != NULL) /* Close the file. =*/

_Rclose(dbfptr);
e */
/* Encrypt data in space */
Ty */

memset ((char *)key_label,' ',64); /+ Initialize key label
to all blanks. */
memcpy ((char *)key label, /* Copy key label parm */

argv[1],strlen(argv[1]));

text_len = file_bytes - 1;
rule_array _count = 1;
pad_character = 40;
exit_data_length = 0;
memset ((char *)initial_vector,'\0',8);

/* Encipher data in ciphertext user space */
CSNBENC (&return_code,

&reason_code,

&exit_data_length,

exit_data,

key Tabel,

&text_Ten,

user_space,

initial_vector,

&rule_array_count,

"CBC ", /* rule_array */

&pad_character,

chaining_vector,

Cryptography 157

cipher_spc);

if (return_code == 0) {

e */
/* Open output file */
ey */

if ((dbfptre = Ropen(argv[3],
"wr riofb=n")) != NULL)

db_opfbe = Ropnfbk(dbfptr); /* Get pointer to
the File open feedback
area. */

if(text_len % db_opfbe->pgm_record _len != 0)

{

printf("encrypted data will not fit into ");
printf("an even number of records\n");

if (dbfptre != NULL) /* Close the file. */
_Rclose(dbfptre);

ey */
/* Delete both user spaces. */
S */

error_code.in_len = 136; /* Set length of
error structure. */

QUSDLTUS (space_name,&error_code); /* Delete the
user space */

QUSDLTUS (cipher_name,&error_code); /* Delete
ciphertext space */

return ERROR;

}
2y */
/* Write data from space to file. */
2y */

user_space_ptr = cipher_spc; /* Save pointer to

cipher space. */

j = text_len / db_opfbe->pgm_record_len; /* find
how many records
are needed to store
result in output
file */
for (i=1; i<=j; i++) /* Repeat for each
record */
{

/* Write data to output file */
db_fdbk = Rwrite(dbfptre, user_space_ptr,
db_opfbe->pgm _record len);

/* Advance pointer ahead the Tength of a record
user_space_ptr = user_space_ptr +
db_opfbe->pgm_record_Ten;

}
if (dbfptre != NULL) /* Close the file =/
_Rclose(dbfptre);

} /* end of open open
output file */
else
printf("Output file %s could not be opened\n",
argv[3]);

/* Delete both user spaces. */

158 System i: Networking Cryptographic hardware

error_code.in_len = 136; /* Set length of

0 */

error structure. */
QUSDLTUS (space_name,&error_code); /* Delete the
user space */
QUSDLTUS (cipher_name,&error_code); /* Delete
ciphertext space */
return ERROR;
}
} /* If return code =
else
printf("Bad return/reason code : %d/%d \n",
return_code,reason_code) ;
Sy */
/* Delete both user spaces. */
Sy */
error_code.in_Ten = 136; /* Set length of
error structure. */
QUSDLTUS (space_name,&error_code); /+ Delete the
user space */
QUSDLTUS (cipher_name,&error_code); /* Delete
ciphertext space */
return ERROR;

}
Ty */
/* Delete both user spaces. */
ey */

error_code.in_len = 136; /* Set length of

error structure. */

QUSDLTUS (space_name,&error_code) ; /* Delete the user

space */

QUSDLTUS (cipher_name,&error_code); /* Delete ciphertext

space */
} /* End of open
input file */
else
{
printf("Input file %s could not be opened\n", argv[2]);
return ERROR;
}
} /* argv[] == null */
return 0K;

}
Working with PINs

A financial institution uses personal identification numbers (PINs) to authorize personal financial
transactions for its customers. A PIN is similar to a password except that a PIN consists of decimal digits
and is normally a cryptographic function of an associated account number. You can use the
Cryptographic Coprocessor of your system running the i5/0S operating system to work with PINs.

About this task

To work with PINs, write a program.
Related concepts
[‘Creating DES and PKA keys” on page 145|

You can create DES and PKA keys and store them in a DES key store. The DES and PKA keys can be

created by writing i5/0S programs.

Example: Working with PINs on your Cryptographic Coprocessor:

Cryptography 159

Change this i5/0S program example to suit your needs for working with PINs on your Cryptographic
Coprocessor.

| Note: Read the [“Code license and disclaimer information” on page 287| for important legal information.

If you choose to use this program example, change it to suit your specific needs. For security
reasons, IBM recommends that you individualize these program examples rather than using the
default values provided.

R R e X T T

160

F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F=*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*
F*

PINSAMPLE

Sample program that shows the use of the appropriate
CCA Security API (SAPI) verbs for generating and verifying
PINS

The keys are created by first building a key token

and then importing key parts using Key Part Import.

Four keys are created each with a different

key type - PINGEN, PINVER, IPINENC, and OPINENC. The
PINGEN key will be used to generate a Clear PIN with the
Clear_PIN_Generate verb. The OPINENC key will be used

to encrypt the PIN with the Clear_PIN_Encrypt verb.

The Encrypted PIN Verify with verify that the PIN is good
using the IPINENC key (to decrypt) and the PINVER key

to verify the PIN.

COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007

This material contains programming source code for your
consideration. These example has not been thoroughly

tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function

of these programs. All programs contained herein are

provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
these programs and files.

Note: Input format is more fully described in Chapter 2 of
IBM CCA Basic Services Reference and Guide
(SC31-8609) publication.

Parameters:
none.

Example:
CALL PGM(PINSAMPLE)

Use these commands to compile this program on the system:
CRTRPGMOD MODULE (PINSAMPLE) SRCFILE(SAMPLE)
CRTPGM PGM(PINSAMPLE) MODULE (PINSAMPLE)
BNDSRVPGM(QCCA/CSNBKPI QCCA/CSNBPGN +
QCCA/CSNBCPE QCCA/CSNBPVR)

Note: Authority to the CSNBKPI, CSNBPGN, CSNBCPE, and
CSNBPVR service programs in the QCCA library is assumed.

The Common Cryptographic Architecture (CCA) verbs used are
Key_Part_Import (CSNBKPI), Clear PIN Generate (CSNBPGN),
Clear_PIN_Encrypt (CSNBCPE), and Encrypted PIN Verify (CSNBPVR).

Note: This program assumes the card you want to Toad is
already identifed either by defaulting to the CRPO1
device or has been explicitly named using the

System i: Networking Cryptographic hardware

Fx Cryptographic_Resource Allocate verb. Also this

F* device must be varied on and you must be authorized
Fx to use this device descrption.
F*

F**
F+ Declare parameters that are common to all of the CCA verbs
F*

Frxkkkdkxkhhkrkkhhhkkhhhkkhhhkkhhhkkhhhkxkhhkkkhhkkkhkkkkhhkxkhhxx

DRETURNCODE S 9B 0
DREASONCODE S 9B 0
DEXITDATALEN S 9B 0
DEXITDATA S 4
DRULEARRAYCNT S 9B 0
DRULEARRAY S 16

D*

D******* """"""""""" khkhkkkhkhkkrhhkkhhhdhhkhrhhxk *khkkkkkkxk
D* Declare Key tokens used by this program
D*
D**
DIPINKEY S 64
DOPINKEY S 64
DPINGENKEY S 64
DPINVERKEY S 64
DKEYTOKEN DS

DKEYFORM 1 1
DKEYVERSION 5 5
DKEYFLAG1 7 7
DKEYVALUE 17 32
DKEYCV 33 48
DKEYTVV 61 64B 0
DTOKENPART1 1 16
DTOKENPART?2 17 32
DTOKENPART3 33 48
DTOKENPART4 49 64
DKEYTVV1 1 4B 0
DKEYTVV2 5 8B 0
DKEYTVV3 9 12B 0
DKEYTVV4 13 16B 0
DKEYTVV5 17 20B 0
DKEYTVV6 21 24B 0
DKEYTVV7 25 28B 0
DKEYTVV8 29 32B 0
DKEYTVV9 33 36B 0
DKEYTVV10 37 40B 0
DKEYTVV11 41 44B 0
DKEYTVV12 45 48B 0
DKEYTVV13 49 52B 0
DKEYTVV14 53 56B 0
DKEYTVV15 57 60B 0
D*

D************************************** """"""""""""
D* Declare parameters unique to Key_ Part_ Import

D*

DR R R R R R Rk E E E T T T T
DCLEARKEY S 16

D*

D**
D+ Declare parameters unique to Clear_PIN_Generate,
D+ Clear_PIN_Encrypt, and Encrypted PIN_ Verify

Dxkkkkkhhkkhhhkkhkhhkkhhhkkhhhkxhhhkkkhhkkkhhkkkhhkkkhhkkkhhkxxk

DPINLEN S 9B 0
DPINCKL S 9B 0
DSEQNUMBER S 9B 0
DCPIN S 16
DEPIN S 16
DPAN S 12
DDATAARRAY DS

Cryptography 161

DDECTABLE 1 16

DVALDATA 17 32
DCLRPIN 33 48
DPROFILE DS

DPINFORMAT 1 8
DFORMATCONTROL 9 16
DPADDIGIT 17 24
D*

D**
D* Declare variables used for creating a control vector and

D* clear key.
D**

DBLDKEY DS

DLEFTHALF 1 8
DLEFTHALFA 1 4B 0
DLEFTHALFB 5 8B 0
DRIGHTHALF 9 16

D*

D*

DAxkxkkdhkkkhhkkkhhhkkhhhkkhhhkkhhhkkhhhkkhhhkxkhhrxx

D* Prototype for Key Part Import (CSNBKPI)

DAxkxkkkdkkkkhhkkhhhrkkhkhhkkkhhrkhkhhkkkhhdkkhhkxkhkhrxkx

DCSNBKPI PR

DRETCODE 9B 0
DRSNCODE 9B 0
DEXTDTALEN 9B 0
DEXTDTA 4
DRARRAYCT 9B 0
DRARRAY 16
DCLRKEY 16
DIMPKEY 64

D*

DR T T T T e

D* Prototype for Clear PIN Generate (CSNBPGN)

(DR X T T

DCSNBPGN PR

DRETCODE 9B 0
DRSNCODE 9B 0
DEXTDTALEN 9B 0
DEXTDTA 4
DPINGEN 64
DRARRAYCT 9B 0
DRARRAY 16
DPINL 9B 0
DPINCHKLEN 9B 0
DDTAARRY 48
DRESULT 16

D*

(DR R X X T

D* Prototype for Clear PIN Encrypt (CSNBCPE)

Dok ok ok ok ok ke ok ok ok ok ke ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok kkkkkkkkkkhkkkkkkkkhkk
DCSNBCPE PR

DRETCODE 9B 0
DRSNCODE 9B 0
DEXTDTALEN 9B 0
DEXTDTA 4
DPINENC 64
DRARRAYCT 9B 0
DRARRAY 16
DCLRPIN 16
DPINPROFILE 24
DPANDATA 12
DSEQN 9B 0
DEPINBLCK 8

D*

(DR T T T T T T

D* Prototype for Encrypted PIN Verify (CSNBPVR)

162 System i: Networking Cryptographic hardware

Dxkkkxkhkhkkkhhkkhkhhkrkhkhhkkkhhkkkhhkkkkhkkkkhdrkkhkx

DCSNBPVR PR

DRETCODE 9B 0
DRSNCODE 9B 0
DEXTDTALEN 9B 0
DEXTDTA 4
DPINENC 64
DPINVER 64
DPINPROFILE 24
DPANDATA 12
DEPINBLCK 8
DRARRAYCT 9B 0
DRARRAY 16
DCHECKLEN 9B 0
DDTAARRAY 24

D*

D**

D* Declares for sending messages to job log
D**

DFAILMESSAGE S 50

DGOODMESSAGE S 50

DFAILMSG DS

DFAILMSGTEXT 1 50

DFAILRETC 41 44

DFAILRSNC 46 49

DRETSTRUCT DS

DRETCODE 1 41 0

DSLASH 5 5 INZ('/")

DRSNCODE 6 91 0

DFAILMSGLENGTH S 9B 0 INZ(49)

DGOODMSGLENGTH S 9B 0 INZ(29)

DMESSAGEID S 7 INZ(' ")

DMESSAGEFILE S 21 INZ(" D)
DMSGKEY S 4 INZ(" D)

DMSGTYPE S 10 INZ('*INFO "
DSTACKENTRY S 10 INZ (' ")

DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 88 0 INZ(0)

C EVAL FAILMESSAGE = 'x*xx*x* failed with return+
C /reason codes 9999/9999'
C EVAL GOODMESSAGE = 'PIN Validation was successful'
C """" R R R R R R R R R R R R R R R R R KA KR KKK *hhhhhhhhhhhhhhhhhhhhhhdhkx*

C+ START OF PROGRAM *

C* *

C**
C* Build a PINGEN key token

C*
C**

C* Zero out the key token to start with

C*

C Z-ADD 0 KEYTVV1

C Z-ADD 0 KEYTVV2

C Z-ADD 0 KEYTVV3

C Z-ADD 0 KEYTVV4

C MOVE TOKENPART1 TOKENPART2
C MOVE TOKENPART1 TOKENPART3
C MOVE TOKENPART1 TOKENPART4
C*

C* Set the form, version, and flag byte

C*

C BITON '7' KEYFORM

C BITON '67' KEYVERSION
C BITON 1! KEYFLAG1
C*

C+ The control vector for a PINGEN key that has the key part

Cryptography

163

C+ flag set is (in hex):

C*

C* 00227E00 03480000 00227E00 03280000

C*

Cx If each 4 byte hex part is converted to decimal you get:
C*

C* 2260480 55050240 2260480 52953088

C*

C* Build the control vector by placing the decimal number in
C* the appropriate half of the control vector field.

Crrkkkrkhhkrkhhrkhhkrkkhhkrkrkhrx ook ok o ok ok ko ok ok ok ok ok ok ok ok o ok ok ok ok ok Kok kkkkkkkok
C Z-ADD 2260480 LEFTHALFA

C Z-ADD 55050240 LEFTHALFB

C MOVEL LEFTHALF KEYCV

C Z-ADD 2260480 LEFTHALFA

C Z-ADD 52953088 LEFTHALFB

C MOVE LEFTHALF KEYCV

C*

C* Calculate the Token Validation value by adding every 4 bytes
C* and storing the result in the last 4 bytes.

C*

C ADD KEYTVV1 KEYTVV
C ADD KEYTVV2 KEYTVV
C ADD KEYTVV3 KEYTVV
C ADD KEYTVV4 KEYTVV
C ADD KEYTVV5 KEYTVV
C ADD KEYTVV6 KEYTVV
C ADD KEYTVV7 KEYTVV
C ADD KEYTVV8 KEYTVV
C ADD KEYTVV9 KEYTVV
C ADD KEYTVV10 KEYTVV
C ADD KEYTVV11 KEYTVV
C ADD KEYTVV12 KEYTVV
C ADD KEYTVV13 KEYTVV
C ADD KEYTVV14 KEYTVV
C ADD KEYTVV15 KEYTVV
C*

C* Copy token to PINGENKEY

C*

C MOVE KEYTOKEN PINGENKEY
C*

C**
C* Build a PINVER key token

C*

C* The control vector for a PINVER key that

C* has the key part flag set is (in hex):

C*

C* 00224200 03480000 00224200 03280000

C*

Cx If each 4 byte hex part is converted to decimal you get:
C*

C* 2260480 55050240 2260480 52953088

C*

C* Build the control vector by placing the decimal number in
C* the appropriate half of the control vector field.

C Z-ADD 2245120 LEFTHALFA
C Z-ADD 55050240 LEFTHALFB
C MOVEL LEFTHALF KEYCV

C Z-ADD 2245120 LEFTHALFA
C Z-ADD 52953088 LEFTHALFB
C MOVE LEFTHALF KEYCV

C*

C* Calculate the Token Validation value by adding every 4 bytes
C* and storing the result in the last 4 bytes.

C*
C Z-ADD 0 KEYTVV
C ADD KEYTVV1 KEYTVV

164 System i: Networking Cryptographic hardware

OOOOOOOOOOOOO0O0

C*
C*
C*
C

C*
C*

ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD

Copy token to PINVERKEY

MOVE

KEYTVV2
KEYTVV3
KEYTVV4
KEYTVV5
KEYTVV6
KEYTVV7
KEYTVV8
KEYTVV9
KEYTVV10
KEYTVV11
KEYTVV12
KEYTVV13
KEYTVV14
KEYTVV15

KEYTOKEN

KEYTVV
KEYTVV
KEYTVV
KEYTVV
KEYTVV
KEYTVV
KEYTVV
KEYTVV
KEYTVV
KEYTVV
KEYTVV
KEYTVV
KEYTVV
KEYTVV

PINVERKEY

C**

C* Build an IPINENC key token

C*
C*
C*
C*
C*
C*
C*
C*
C*
C*

The control vector for an IPINENC key that
has the key part flag set is (in hex):

00215F00 03480000 00215F00 03280000

If each 4 byte hex part is converted to decimal you get:

2187008 55050240 2187008

52953088

C**
C* Build the control vector by placing the decimal number in

C+ the appropriate half of the control vector field.
C**

OOOOOO0O
*

C*
C*

(]
*

OOOOOOOOOOOOOOOOO0OOn
*

C*
C*

Cx

Z-ADD
Z-ADD
MOVEL
Z-ADD
Z-ADD
MOVE

2187008
55050240
LEFTHALF
2187008
52953088
LEFTHALF

LEFTHALFA
LEFTHALFB
KEYCV
LEFTHALFA
LEFTHALFB
KEYCV

Calculate the Token Validation value by adding every 4 bytes
and storing the result in the Tast 4 bytes.

Z-ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD

Copy token to IPINENC

MOVE

0
KEYTVV1
KEYTVV2
KEYTVV3
KEYTVV4
KEYTVV5
KEYTVV6
KEYTVV7
KEYTVV8
KEYTVV9
KEYTVV10
KEYTVV11
KEYTVV12
KEYTVV13
KEYTVV14
KEYTVV15

KEYTOKEN

KEYTVV
KEYTVV
KEYTVV
KEYTVV
KEYTVV
KEYTVV
KEYTVV
KEYTVV
KEYTVV
KEYTVV
KEYTVV
KEYTVV
KEYTVV
KEYTVV
KEYTVV
KEYTVV

IPINKEY

Cryptography 165

166

C*
C**
C* Build an OPINENC key token

C*

C* The control vector for an OPINENC key that

C* has the key part flag set is (in hex):

C*

C* 00247700 03480000 00247700 03280000

C*

C+ If each 4 byte hex part is converted to decimal you get:

C*

C* 2389760 55050240 2389760 52953088

C*
C**
C* Build the control vector by placing the decimal numbers in
C* the appropriate half of the control vector field.
C***********************~k**************************************

C Z-ADD 2389760 LEFTHALFA
C Z-ADD 55050240 LEFTHALFB
C MOVEL LEFTHALF KEYCV

C Z-ADD 2389760 LEFTHALFA
C Z-ADD 52953088 LEFTHALFB
C MOVE LEFTHALF KEYCV

C*

Cx Calculate the Token Validation value by adding every 4 bytes
C* and storing the result in the last 4 bytes.

C*

C Z-ADD 0 KEYTVV
C ADD KEYTVV1 KEYTVV
C ADD KEYTVV2 KEYTVV
C ADD KEYTVV3 KEYTVV
C ADD KEYTVV4 KEYTVV
C ADD KEYTVV5 KEYTVV
C ADD KEYTVV6 KEYTVV
C ADD KEYTVV7 KEYTVV
C ADD KEYTVV8 KEYTVV
C ADD KEYTVV9 KEYTVV
C ADD KEYTVV10 KEYTVV
C ADD KEYTVV11 KEYTVV
C ADD KEYTVV12 KEYTVV
C ADD KEYTVV13 KEYTVV
C ADD KEYTVV14 KEYTVV
C ADD KEYTVV15 KEYTVV
C*

C* Copy token to OPINENC

C*

C MOVE KEYTOKEN OPINKEY
C*

C*

O
g: Clear key value for PINGEN/PINVER form will be:

g: 01234567 01765432 01234567 01765432

E: The key will be imported into two parts that get exclusived
C* OR'ed together. This program uses as key parts:

g: 00224466 00775533 00224466 00775533 and

g: 01010101 01010101 01010101 01010101

E: Converting these to decimal results in

g: 2245734 7820595 2245734 7820595 and

g: 16843009 16843009 16843009 16843009

System i: Networking Cryptographic hardware

C*
C* In this example, the left half of the key is the same as
C* the right half. PIN keys in CCA are double length keys.

C* However, some implementation of DES (including Cryptographic

Cx Support/400) use single length keys for PINs. If both

C* halves of a double are the same, then they produce the

C* same output as a single length key, thereby allowing you

C* to exchange data with non-CCA systems.
C**

C* Import the PINGEN key

CHaxrrrs R KKK
C MOVEL "FIRST ' RULEARRAY
C Z-ADD 1 RULEARRAYCNT

C**
C* Build the next clear key part by placing the decimal numbers
C* in the appropriate half of the clear key field.

C**

C Z-ADD 16843009 LEFTHALFA
C Z-ADD 16843009 LEFTHALFB
C MOVEL LEFTHALF CLEARKEY
C MOVE LEFTHALF CLEARKEY

C**

C+ Call Key Part Import the first time for the PINGEN key

C**

C CALLP CSNBKPI (RETURNCODE :
C REASONCODE :
C EXITDATALEN:
C EXITDATA:

C RULEARRAYCNT:
C RULEARRAY:

C CLEARKEY:

C PINGENKEY)

C RETURNCODE IFGT 4

C MOVEL 'CSNBKPI' FAILMESSAGE
C EXSR SNDFAILMSG

C SETON

C ENDIF

C**
C* Build the clear key part by placing the decimal number in
C* the appropriate half of the clear key field.

c**

C Z-ADD 2245734 LEFTHALFA
C Z-ADD 7820595 LEFTHALFB
C MOVEL LEFTHALF CLEARKEY
C MOVE LEFTHALF CLEARKEY

C**

C* Call Key Part Import the second time for the PINGEN key

C**

C MOVEL "LAST ! RULEARRAY

C CALLP CSNBKPI (RETURNCODE :

C REASONCODE :

C EXITDATALEN:
C EXITDATA:

C RULEARRAYCNT :
C RULEARRAY :

C CLEARKEY:

C PINGENKEY)

C RETURNCODE IFGT 4

C MOVEL "CSNBKPI' FATLMESSAGE

C EXSR SNDFAILMSG

C SETON

C ENDIF

C******* """"""""""" khkhkkkhkhkkhkrhhkkhhkhhhhkhrhhrk *khkkkkhkxk
C* Import the PINVER key =*

C*************************

C MOVEL "FIRST ! RULEARRAY

C Z-ADD 1 RULEARRAYCNT

LR

LR

Cryptography

167

168

C Z-ADD 16843009 LEFTHALFA
C Z-ADD 16843009 LEFTHALFB
C MOVEL LEFTHALF CLEARKEY
C MOVE LEFTHALF CLEARKEY

C**

Cx Call Key Part Import the first time for the PINVER key

C**

C CALLP CSNBKPI (RETURNCODE :
C REASONCODE :
C EXITDATALEN:
C EXITDATA:

C RULEARRAYCNT:
C RULEARRAY:

C CLEARKEY:

C PINVERKEY)

C RETURNCODE IFGT 4

C MOVEL 'CSNBKPI' FATLMESSAGE
C EXSR SNDFAILMSG

C SETON

C ENDIF

C**
C* Build the clear key part by placing the decimal number in
C* the appropriate half of the clear key field.

C**

C Z-ADD 2245734 LEFTHALFA
C Z-ADD 7820595 LEFTHALFB
C MOVEL LEFTHALF CLEARKEY
C MOVE LEFTHALF CLEARKEY

C**

C+ Call Key Part Import the second time for the PINVER key

C**

C MOVEL "LAST ! RULEARRAY

C CALLP CSNBKPI (RETURNCODE :
C REASONCODE :
C EXITDATALEN:
C EXITDATA:

C RULEARRAYCNT:
C RULEARRAY:

C CLEARKEY:

C PINVERKEY)

C RETURNCODE IFGT 4

C MOVEL "CSNBKPI' FAILMESSAGE
C EXSR SNDFAILMSG

C SETON

C ENDIF

C**
C* Clear key value for IPINENC/OPINENC key pair will be:

C* 012332EF 01020408 012332EF 01020408

C*

C* The key will be imported into two parts that get exclusived
C* OR'ed together. This program uses as key parts:

C*

C* 002233EE 00030509 002233EE 00030509 and

C*

C* 01010101 01010101 01010101 01010101

C*

C* Converting these to decimal results in

C*

C* 2241518 197897 2241518 197897 and

C*

C* 16843009 16843009 16843009 16843009
C**
C* Import the PINVER key *

C*************************

C MOVEL "FIRST ! RULEARRAY

C Z-ADD 1 RULEARRAYCNT

C**

System i: Networking Cryptographic hardware

LR

LR

C* Build the clear key part by placing the decimal number in
C+ the appropriate half of the clear key field.

C**

C Z-ADD 16843009 LEFTHALFA
C Z-ADD 16843009 LEFTHALFB
C MOVEL LEFTHALF CLEARKEY
C MOVE LEFTHALF CLEARKEY

C**

C+ Call Key Part Import the first time for the IPINENC key

C**

C CALLP CSNBKPI (RETURNCODE :

C REASONCODE :

C EXITDATALEN:
C EXITDATA:

C RULEARRAYCNT:
C RULEARRAY:

C CLEARKEY:

C IPINKEY)

C RETURNCODE IFGT 4

C MOVEL 'CSNBKPT' FAILMESSAGE

C EXSR SNDFAILMSG

C SETON LR
C ENDIF

C**
C* Build the clear key part by placing the decimal number in
C* the appropriate half of the clear key field.

C**

C Z-ADD 2241518 LEFTHALFA
C Z-ADD 197897 LEFTHALFB
C MOVEL LEFTHALF CLEARKEY
C MOVE LEFTHALF CLEARKEY

C**

C* Call Key Part Import the second time for the IPINENC key

C**

C MOVEL "LAST ! RULEARRAY

C CALLP CSNBKPI (RETURNCODE :

C REASONCODE :

C EXITDATALEN:
C EXITDATA:

C RULEARRAYCNT:
C RULEARRAY:

C CLEARKEY:

C IPINKEY)

C RETURNCODE IFGT 4

C MOVEL "CSNBKPI' FAILMESSAGE

C EXSR SNDFAILMSG

C SETON LR
C ENDIF

C**

C* Import the OPINENC key *

Craxrrrs HERKRKKK KK HHH KR R
C MOVEL "FIRST ' RULEARRAY
C Z-ADD 1 RULEARRAYCNT

C**
C* Build the clear key part by placing the decimal number in
C* the appropriate half of the clear key field.

C**

C Z-ADD 16843009 LEFTHALFA
C Z-ADD 16843009 LEFTHALFB
C MOVEL LEFTHALF CLEARKEY
C MOVE LEFTHALF CLEARKEY

C**

C+ Call Key Part Import the first time for the OPINENC key

C**

C CALLP CSNBKPI (RETURNCODE :
C REASONCODE :
C EXITDATALEN:

Cryptography

169

170

C EXITDATA:

C RULEARRAYCNT:
C RULEARRAY:

C CLEARKEY:

C OPINKEY)

C RETURNCODE IFGT 4

C MOVEL "CSNBKPI' FAILMESSAGE

C EXSR SNDFAILMSG

C SETON

C ENDIF

C*********** """"""""" kkkkkkhhkkhhkkhhkkhhhkhhhhhkh% kkkkkkhkhkkk

C* Build the clear key part by placing the decimal number in
C* the appropriate half of the clear key field.

C**

C Z-ADD 2241518 LEFTHALFA
C Z-ADD 197897 LEFTHALFB
C MOVEL LEFTHALF CLEARKEY
C MOVE LEFTHALF CLEARKEY

C**

C+ Call Key Part Import the second time for the OPINENC key

C**

C MOVEL "LAST ! RULEARRAY

C CALLP CSNBKPI (RETURNCODE :

C REASONCODE:

C EXITDATALEN:
C EXITDATA:

C RULEARRAYCNT:
C RULEARRAY :

C CLEARKEY:

C OPINKEY)

C RETURNCODE IFGT 4

C MOVEL "CSNBKPTI' FAILMESSAGE

C EXSR SNDFAILMSG

C SETON

C ENDIF

C*

Chkkhkkdkhhkrkhhhrkkhhrkkhhrkkhhrkkkhhkkhhkkkhhkkkhkxkhkx Fkkkkhkkkhhkk

Cx Generate a Clear PIN with CSNBPGN (Clear PIN Generate)
C+ Rule_array_count =1

C* Rule_array = "IBM-PIN " (Same as Crypto Support/400)
C+ PIN length = 8

Cx PIN Check length = 8 (But is ignored for IBM-PIN)

C+ Data array:

C* Dec. table set to 0123456789123456

C* validation dta = 1111222233334444

C* clear PIN = 1ignored
C**
C Z-ADD 1 RULEARRAYCNT

C MOVEL "IBM-PIN ' RULEARRAY

C Z-ADD 8 PINLEN

C Z-ADD 8 PINCKL

C MOVEL '01234567" DECTABLE

C MOVE '89123456" DECTABLE

C MOVEL '11112222" VALDATA

C MOVE 33334444 VALDATA

C**
Cx Call Clear PIN Generate
C**
C CALLP CSNBPGN (RETURNCODE:
REASONCODE :
EXITDATALEN:
EXITDATA:
PINGENKEY:
RULEARRAYCNT:
RULEARRAY :

PINLEN:

PINCKL:

OOOOOOO0

System i: Networking Cryptographic hardware

LR

LR

C DATAARRAY:

C CPIN)

C RETURNCODE IFGT 4

C MOVEL "CSNBPGN' FATLMESSAGE

C EXSR SNDFAILMSG

C SETON LR
C ENDIF

C*

C*

C**
C+ Encrypt the clear PIN using CSNBCPE (Clear_PIN Encrypt)

C+* Rule_array_count =1

C+ Rule_array = "ENCRYPT "

C* PIN Profile = "3624 NONE F"

Cx PAN data is ignored

C* Sequence number is ignored but set to 99999 anyway
C**

C Z-ADD 1 RULEARRAYCNT
C MOVEL "ENCRYPT RULEARRAY

C MOVEL 3624 ! PINFORMAT

C MOVE "NONE ! FORMATCONTROL
C MOVE ' F! PADDIGIT

C Z-ADD 99999 SEQNUMBER

C**

C+ Call Clear PIN Encrypt

C**

C CALLP CSNBCPE (RETURNCODE :

C REASONCODE :

C EXITDATALEN:
C EXITDATA:

C OPINKEY:

C RULEARRAYCNT:
C RULEARRAY :

C CPIN:

C PROFILE:

C PAN:

C SEQNUMBER:

C EPIN)

C RETURNCODE IFGT 4

C MOVEL "CSNBCPE' FATLMESSAGE

C EXSR SNDFAILMSG

C SETON LR
C ENDIF

C*

C*

C**

Cx Verify encrypted PIN using CSNBPVR (Encrypted PIN Verify)

C**

C MOVEL 'IBM-PIN ' RULEARRAY

C

C CALLP CSNBPVR (RETURNCODE :

C REASONCODE :

C EXITDATALEN:
C EXITDATA:

C IPINKEY:

C PINVERKEY:

C PROFILE:

C PAN:

C EPIN:

C RULEARRAYCNT:
C RULEARRAY:

C PINCKL:

C DATAARRAY)

C RETURNCODE IFGT 4

C MOVEL 'CSNBPVR' FAILMESSAGE

C EXSR SNDFAILMSG

C SETON LR

Cryptography

171

C ENDIF
C*
(R R R R R R R T L R T R T P T TPy

C* Send successful completion message
C**

C CALL "QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE

C PARM GOODMESSAGE

C PARM GOODMSGLENGTH
C PARM MSGTYPE

C PARM STACKENTRY

C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C*

C SETON LR
C*

C**

C* Subroutine to send a failure message
C**

C SNDFAILMSG BEGSR

C MOVE FAILMESSAGE ~ FAILMSGTEXT
C MOVE RETURNCODE FAILRETC

C MOVE REASONCODE FAILRSNC

C CALL 'QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
C PARM FAILMSG

C PARM FAILMSGLENGTH
C PARM MSGTYPE

C PARM STACKENTRY

C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C ENDSR

Generating and verifying a digital signature

You can protect data from undetected changes by including a proof of identity value called a digital
signature. You can write programs to generate and verify a digital signature for the Cryptographic
Coprocessor on your system running the i5/0S operating system.

Generating a digital signature

A digital signature relies on hashing and public key cryptography. When you sign data, you hash the
data and encrypt the results with your private key. The encrypted hash value is called a digital signature.

If you change the original data, a different digital signature will be generated.

To use a PKA key to sign a file, write a program.

Verifying a digital signature

Verifying a digital signature is the opposite of signing data. Verifying a signature will tell you if the
signed data has changed or not. When a digital signature is verified, the signature is decrypted using the

public key to produce the original hash value. The data that was signed is hashed. If the two hash values
match, then the signature has been verified. To do this, write a program.

Read the [“Code license and disclaimer information” on page 287 for important legal information.

Related concepts

172 System i: Networking Cryptographic hardware

Example: Signing a file with your Cryptographic Coprocessor:

[Creating DES and PKA keys” on page 145|

You can create DES and PKA keys and store them in a DES key store. The DES and PKA keys can be

created by writing i5/0S programs.

Change this i5/0S program example to suit your needs for signing a file with your Cryptographic
Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

If you choose to use this program example, change it to suit your specific needs. For security
reasons, IBM recommends that you individualize these program examples rather than using the

default values provided.

Description: Digitally signs a streams file.
COPYRIGHT 5769-SS1 (c) IBM Corp 1999, 2007

This material contains programming source code for your
consideration. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function
of these programs. All programs contained herein are
provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
EXPRESSLY DISCLAIMED. IBM provides no program services for
these programs and files.

Parameters: File to be signed
File to contain signature
Key label of key to use
Examples:
CALL PGM(SIGNFILE) PARM('file _to_sign' 'file_to_hold_sign'
'key_Tlabel');
Note: The CCA verbs used in the this program are more fully

described in the IBM CCA Basic Services Reference =*/
and Guide (SC31-8609) publication.

Note: This program assumes the card you want to use is
already identified either by defaulting to the CRPO1
device or has been explicitly named using the
Cryptographic_Resource_Allocate verb. Also this
device must be varied on and you must be authorized
to use this device description.

Use the following commands to compile this program:
ADDLIBLE LIB(QCCA)

CRTCMOD MODULE (SIGNFILE) SRCFILE(SAMPLE) SYSIFCOPT(*IFSIO)

CRTPGM PGM(SIGNFILE) MODULE(SIGNFILE)
BNDSRVPGM(QCCA/CSNDDSG QCCA/CSNBOWH)

Note: authority to the CSNDDSG and CSNBOWH service programs
in the QCCA library is assumed.

Common Cryptographic Architecture (CCA) verbs used:
Digital_Signature_Generate (CSNDDSG)
One_Way Hash (CSNBOWH)

#include <stdlib.h>
#include <stdio.h>

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

Cryptography 173

#include <string.h>

#include "csucincl.h" /* header file for CCA Cryptographic
Service Provider */

[m e e e */

/* standard return codes */

L */

#define ERROR -1
#define 0K 0

int hash_file(long h_len, char h_out[128], FILE *t_in);

int main(int argc, char xargv[])

{

Tong return_code;
Tong reason_code;
Tong exit_data_length
char exit_data[2];
Tong rule_array_count
char rule_array[1][8];

]
(<]
—

we

n
(<]
—

..

Tong PKA_private_key_identifier_length = 64;
char PKA_private_key_ identifier[64];

long hash_length = 16L;

char hash[128];

long signature_field_Tength = 128L;

long signature_bit_length = OL;

char signature_field[256];

char key label[64];

Tong key token length = 2500L;

char key_token[2500];

FILE *file2sign;
FILE *signature;
int hash_return;

if (argc < 2)

{
printf("Name of file to be signed is missing.");
return ERROR;

}

else if (argc < 3)

printf("Name of file where the signature should ");
printf("be written is missing.");
return ERROR;

}

else if (argc < 4)

printf("Key label for the key to be used for signing is missing
return ERROR;
}

if ((strlen(argv[3])) > 64)
{

printf("Invalid Key Label. Key label Tonger than 64.");
return ERROR;
}

else

{

174 System i: Networking Cryptographic hardware

M)

memset (PKA_private key identifier, ' ', 64);
memcpy (PKA_private_key identifier, argv[3],strlen(argv[3]));
}

/* Open the file that is being signed. */
if ((file2sign = fopen(argv[1],"rb")) == NULL)
{
printf("Opening of file %s failed.",argv[1]);
return ERROR;
}

/* Obtain a hash value for the file. */
hash_return = hash_file(hash_length, hash, file2sign);

/* Close the file. */
fclose(file2sign);

if (hash_return != 0K)

printf("Signature generation failed due to hash error.\n");

else

/* Use CSNDDSG to generate the signature. */
CSNDDSG (&return_code,

&reason_code,

&exit_data_length,

exit_data,

&rule_array_count,

(char *) rule_array,

&PKA private_key_identifier_Tlength,
PKA_private_key identifier,
&hash_Tength,

hash,

&signature_field length,
&signature_bit_length,

signature _field);

}

if (return_code != 0)

printf("Signature generation failed with return/reason code %1d/%1d",

return_code, reason_code);
return ERROR;
}

else

{

printf("Signature generation was successful.");

printf("Return/Reason codes = %1d/%1d\n", return_code, reason_code);
printf("Signature has length = %1d\n",signature_field_length);

signature = fopen(argv[2],"wb");
if (signature == NULL)
{

printf("Open of file %s failed.",argv[2]);
printf("Signature was not saved.");
return ERROR;

}

fwrite(signature_field, 1, signature_field_length, signature);

fclose(signature);

printf("Signature was saved successfully in %s.", argv[2]);

return 0K;

}

Cryptography

175

}

int hash_file(Tong h_len, char h_out[128], FILE *t_in)
{

Tong return_code;

long reason_code;

Tong exit_data_length = 0;
char exit_data[2];
Tong rule_array_count
char rule_array[2][8];

n
N
wse

long text_length;

char text[1024];

long chaining_vector_Tlength = 128;
char chaining_vector[128];

long file_length;
fseek(t_in, 0, SEEK _END);
file_length = ftell(t_in);

rewind(t_in);

text_length = fread(text, 1, 1024, t_in);

memcpy (rule_array[0], "MD5 ", 8);
if (file_length <= 1024) {
memcpy (rule_array[1], "ONLY ", 8);
}
else {

memcpy (rule_array[1], "FIRST ", 8);
1

while (file_length > 0)

CSNBOWH (&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *) rule_array,
&text_Tength,
text,
&chaining_vector_length,
chaining_vector,
&h_Ten,
h_out);

if (return_code != 0)
break;

printf("Hash iteration worked.\n");
file_length -= text_Tength;

if (file_length > 0)

{ text_length = fread(text, 1, 1024, t_in);

if (file_length <= 1024) {
memcpy (rule_array[1], "LAST ", 8);

176 System i: Networking Cryptographic hardware

}

printf("Hash function failed with return/reason code %1d/%1d\n",

}

else {

memcpy (rule_array[1], "MIDDLE ", 8);
}

}

if (return_code != 0)

return_code, reason_code);

return ERROR;

}

else

{

printf("Hash completed successfully.\n");
printf("hash Tength = %1d\n", h_len);
printf("hash = %.32s\n\n", h_out);

return 0K;

}

Example: Verifying a digital signature with your Cryptographic Coprocessor:

}

Change this i5/0S program example to suit your needs for verifying a digital signature with your
Cryptographic Coprocessor

Note: Read the [‘Code license and disclaimer information” on page 287] for important legal information.

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Description: Verifies the digital signature of an IFS file
produced by the SIGNFILE sample program.

COPYRIGHT 5769-SS1 (c) IBM Corp 1999, 2007

This material contains programming source code for your
consideration. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function
of these programs. All programs contained herein are
provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
EXPRESSLY DISCLAIMED. IBM provides no program services for

these programs and files.
Parameters: Signed file
File containing the signature
Key label of the key to use
Examples:
CALL PGM(VERFILESIG) PARM('name_of_signed file' +
'name_of_file_w_signature' +
'key_Tabel');
Note: The CCA verbs used in the this program are more fully

described in the IBM CCA Basic Services Reference =*/
and Guide (SC31-8609) publication.

Note: This program assumes the card you want to use is
already identified either by defaulting to the CRPO1
device or has been explicitly named using the
Cryptographic_Resource Allocate verb. Also this
device must be varied on and you must be authorized
to use this device description.

Use the following commands to compile this program:

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Cryptography 177

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

#i
#1
#i
#1

#d
#d

in

in

{

ADDLIBLE LIB(QCCA) */
CRTCMOD MODULE (VERFILESIG) SRCFILE(SAMPLE) SYSIFCOPT(*IFSIQ)=/
CRTPGM PGM(SIGNFILE) MODULE(SIGNFILE) + */
BNDSRVPGM(QCCA/CSNDDSV QCCA/CSNBOWH) */

*/

Note: authority to the CSNDDSV and CSNBOWH service programs */
in the QCCA Tibrary is assumed. */

*/

Common Cryptographic Architecture (CCA) verbs used: */
Digital Signature Verify (CSNDDSV) */
One_Way Hash (CSNBOWH) */
___ */

nclude <stdlib.h>

nclude <stdio.h>

nclude <string.h>

nclude "csucincl.h" /* header file for CCA Cryptographic
Service Provider */

efine ERROR -1
efine OK 0

t hash_file(Tong h_len, char h_out[128], FILE *t_in);

t main(int argc, char =*argv[])

Tong return_code;
long reason_code;
Tong exit_data_length
char exit_data[2];
long rule_array count = OL;
char rule_array[1][8];

oL;

2y */
/* parameters unique to this sample program x/
2 */

Tong PKA_public_key_identifier_length = 64;
char PKA public_key_ identifier[64];

long hash_length = 16L;

char hash[128];

long signature_field_Tlength;

char signature_field[256];

char key label[64];

FILE *file2verify;
FILE *signature;
int hash_return;

if (argc < 2)

{
printf("Name of file to be verified is missing.\n");
return ERROR;

}

else if (argc < 3)

{
printf("Name of file containing the signature is missing.\n");
return ERROR;

}

else if (argc < 4)

{

178 System i: Networking Cryptographic hardware

printf("Key Tabel for the key to be used for verification is missing.\n");
return ERROR;
}

if (strlen(argv[3]) > 64)
{

printf("Invalid Key Label. Key Tabel longer than 64 bytes.");
return ERROR;
}

else

memset (PKA_public_key identifier, ' ', 64);
memcpy (PKA_public_key identifier, argv[3], strlen(argv[3]));
}

/* Open the file that is being verified. */
if ((file2verify = fopen(argv[1],"rb")) == NULL)

printf("Opening of file %s failed.",argv[1]);
return ERROR;
}

/* Obtain a hash value for the file. */
hash_return = hash_file(hash_length, hash, file2verify);

/* Close the file. */
fclose(file2verify);

if (hash_return != OK)

printf("Signature verification failed due to hash error.\n");
return ERROR;
}
else
{
signature = fopen(argv[2],"rb");
if (signature == NULL)

{
printf("Open of signature file %s failed.",argv[2]);
printf("Signature was not verified.");
return ERROR;

}

memset (signature_field, ' ', 256);

fseek(signature, 0, SEEK END);
signature_field length = ftell(signature);
rewind(signature);

fread(signature_field, 1, signature_field_length, signature);
fclose(signature);

/* Use CSNDDSV to verify the signature. x/
CSNDDSV (&return_code,

&reason_code,

&exit_data_length,

exit_data,

&rule_array_count,

(char *) rule_array,
&PKA_public_key_identifier_length,
PKA public_key identifier,
&hash_Tlength,

hash,

&signature_field_length,

signature _field);

}

Cryptography 179

if (return_code != 0)
{
printf("Signature verification failed with return/reason code %1d/%1d",
return_code, reason_code);
return ERROR;
}
else
{
printf("Signature verification was successful.");
printf("Return/Reason codes = %1d/%1d\n", return_code, reason_code);

int hash_file(long h_len, char h_out[128], FILE *t_in)
{

Tong return_code;
Tong reason_code;
Tong exit_data_length
char exit_data[2];
Tong rule_array_count
char rule_array[2][8];

]
(<]

I
N
.o

long text_length;

char text[1024];

Tong chaining_vector_length = 128;
char chaining vector[128];

Tong file_length;

fseek(t_in, 0, SEEK_END);
file length = ftell(t_in);
rewind(t_in);

text_length = fread(text, 1, 1024, t_in);
memcpy (rule_array[0], "MD5 ", 8);

if (file_length <= 1024) {
memcpy (rule_array[1], "ONLY ", 8);
}

else {
memcpy (rule_array[1], "FIRST ", 8);
1

while (file_length > 0)
{

CSNBOWH (&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,

(char *) rule_array,
&text_Tength,

text,
&chaining_vector_length,

180 System i: Networking Cryptographic hardware

chaining_vector,
&h_len,
h _out);

if (return_code != 0)
break;

printf("Hash iteration worked.\n");
file_length -= text _Tength;

if (file_length > 0)
{
text_length = fread(text, 1, 1024, t_in);

if (file_length <= 1024) {
memcpy (rule_array[1], "LAST ", 8);
}

else {
memcpy (rule_array[1], "MIDDLE ", 8);
}

}
}

if (return_code != 0)

printf("Hash function failed with return/reason code %1d/%1d\n",
return_code, reason_code);
return ERROR;

}

else

{
printf("Hash completed successfully.\n");
printf("hash Tength = %1d\n", h_len);
printf("hash = %.32s\n\n", h_out);
return 0K;

}
}

Managing multiple Cryptographic Coprocessors

You can have up to eight Cryptographic Coprocessors per partition. The maximum number of
Cryptographic Coprocessors supported per system is dependent on the system mode. This topic provides
information on using multiple coprocessors with SSL in systems running the i5/0S operating system.

Spreading the work across multiple Cryptographic Coprocessors and multiple jobs gives you better
performance provided that they are all configured the same. Only one Coprocessor (cryptographic device
description) may be allocated to a job at one time. However, the job can switch between Coprocessors by
deallocating the current Coprocessor and allocating a new one. For the i5/0S SSL user, the allocation and
deallocation of the Coprocessors is managed by the system if the SSL configuration in DCM indicates that
more than one Coprocessor is to be used for SSL session establishment.

If you configure all of the Coprocessors the same, then all operational keys will work identically on all of
the Coprocessors. Any data encrypted on one Coprocessor can be decrypted on a different Coprocessor.
All key store files will work interchangeably with any of the Coprocessors. The most important part of
configuring the Coprocessors identically is the master keys. If you entered the master key in parts for one
Coprocessor, you must enter the same master key parts for all of the other Coprocessors if you want
them to work interchangeably. If a random master key was generated inside of the Coprocessor, then you
must clone the master key to the other Coprocessors if you want all of the Coprocessors to work
interchangeably.

There may be certain situations where you do not want all of the Coprocessors to be configured the
same. They could all have different configurations or they could be set up in groups where the

Cryptography 181

configuration within a group is the same but between groups is different. For these cases, all operational
keys may not work identically on all of the Coprocessors. Data encrypted on one Coprocessor may not be
able to be recovered on a different Coprocessor. Also, the keystore files may not work interchangeably
among Coprocessors. For these situations, you must keep track of which keystore files and operational
keys will work for a given Coprocessor. While configuring the Coprocessors differently may limit the
scalability of cryptographic applications, it can provide more granularity in terms of security. For
example, you can grant different object authorities to different cryptographic device descriptions.

If you use retained PKA keys then the Coprocessors are also not interchangeable. Retained keys can not
be exported in any manner outside of the Coprocessor. Therefore, any cryptographic request that uses
that retained key must be sent to the Coprocessor that stores the retained key.

The following material is only applicable if you are using i5/OS applications:

Related concepts

{4764 and 4758 Cryptographic Coprocessors|

IBM offers two Cryptographic Coprocessors, which are available on a variety of system models.
Cryptographic Coprocessors contain hardware engines, which perform cryptographic operations used
by i5/0S application programs and i5/0S SSL transactions.

[‘Scenario: Protecting private keys with cryptographic hardware” on page 12|
This scenario might be useful for a company that needs to increase the security of the system digital
certificate private keys that are associated with the i5/0S SSL-secured business transactions.

[‘Configuring the Cryptographic Coprocessor for use with DCM and SSL” on page 96|
This topic provides information on how to make the Cryptographic Coprocessor ready for use with
SSL in i5/08S.

Related reference

[“Example: ILE C program for allocating a Coprocessor”|
Change this i5/0S ILE C program example to suit your needs for allocating a Coprocessor.

[“Example: ILE RPG program for allocating a Coprocessor” on page 184]
Change this i5/0S ILE RPG program example to suit your needs for allocating a Coprocessor.

[“Example: ILE C program for deallocating a Coprocessor” on page 187]
Change this i5/0S ILE C program example to suit your needs for deallocating a Coprocessor.

[“Example: ILE RPG program for deallocating a Coprocessor” on page 189
Change this i5/0S ILE RPG program example to suit your needs for deallocating a Coprocessor.

Allocating a device: The Cryptographic_Resource_Allocate (CSUACRA) API verb is used to explicitly
allocate a cryptographic device to your job so that the system can determine how to route all subsequent
cryptographic requests. If you use any of the CCA API verbs without first explicitly using the
Cryptographic_Resource_Allocate (CSUACRA) API verb, the system will attempt to allocate the default
cryptographic device. The default device is the cryptographic device named CRPO1. It must be created by
either using the Basic Configuration wizard or the Create Device Crypto (CRTDEVCRP) CL command.
You only need to use CSUACRA when you wish to use a device other than the default cryptographic
device. A device allocated to a job, either explicitly or implicitly, remains allocated until either the job
ends or the device is deallocated using the Cryptographic_Resource_Deallocate (CSUACRD) API verb.

Deallocating a device: When you have finished using a Cryptographic Coprocessor, you should
deallocate the Cryptographic Coprocessor by using the Cryptographic_Resource_Deallocate (CSUACRD)
API verb. A cryptographic device description can not be varied off until all jobs using the device have
deallocated it.

Example: ILE C program for allocating a Coprocessor:

Change this i5/0S ILE C program example to suit your needs for allocating a Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

182 System i: Networking Cryptographic hardware

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Allocate a crypto device to the job.

COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

This

material contains programming source code for your

consideration. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function

of these program. A1l programs contained herein are
provided to you "AS IS". THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

ARE EXPRESSLY DISCLAIMED. IBM provides no program services for

these programs and files.

Note: Input format is more fully described in Chapter 2 of

IBM CCA Basic Services Reference and Guide
(SC31-8609) publication.

Parameters:
none.

Example:
CALL PGM(CRPALLOC) (CRP0O2)

The Common Cryptographic Architecture (CCA) verb used is
Cryptographic_Resource_Allocate (CSUACRA).

Use these commands to compile this program on the system:

ADDLIBLE LIB(QCCA)
CRTCMOD MODULE (CRPALLOC) SRCFILE (SAMPLE)
CRTPGM PGM(CRPALLOC) MODULE (CRPALLOC)

Note:

BNDSRVPGM(QCCA/CSUACRA)

Authority to the CSUACRA service program in the
QCCA Tibrary is assumed.

#include <string.h>
#include <stdio.h>
#include "csucincl.h"

#define ERROR -1
#define 0K 0
#define WARNING 4

int main(int argc, char xargv[])

{

long
long
long
char
char
long
Tong

return_code = 0;
reason_code = 0;
exit_data_length = 2;
exit_data[4];
rule_array[2][8];
rule_array_count = 2;
resource_name_length;

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

Cryptography ~ 183

/* Process the parameters */
T */
if (argc < 1)

{

printf("Device parameter must be specified.\n");
return(ERROR) ;

T S S S S PSS */
/* Set the keyword in the rule array */
[e m e e e e e e e */

memcpy (rule_array,"DEVICE ",8);
rule_array_count = 1;

gy */
/* Set the resource name length */
2y */
resource_name_length = strlen(argv[1]);

gy */
/* Call Cryptographic Resource Allocate SAPI */
gy */

CSUACRA(&return_code, &reason_code, &exit data length,
(char *)exit_data,
(Tong *) &rule_array_count,
(char *) rule_array,
(Tong *) &resource_name_length,

(char =) argv[1]); /* resource name */
S S S S PSS */
/* Check the return code and display the results */
J e m e e e e e eemceeeeaee */

if ((return_code == OK) | (return_code == WARNING))
{

printf("Request was successful\n");

return(0K) ;

}
else

{

printf("Request failed with return/reason codes: %d/%d \n",

return_code, reason_code);
return (ERROR) ;
1

Related concepts

[“Managing multiple Cryptographic Coprocessors” on page 181]|

You can have up to eight Cryptographic Coprocessors per partition. The maximum number of
Cryptographic Coprocessors supported per system is dependent on the system mode. This topic
provides information on using multiple coprocessors with SSL in systems running the i5/0S operating
system.

Example: ILE RPG program for allocating a Coprocessor:

Change this i5/0S ILE RPG program example to suit your needs for allocating a Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

D‘k*************‘k**k****k‘k**k‘k******k‘k**k***************************
D* CRPALLOC

D*

D+ Sample program that allocates a crypto device to the job.
D*

D*

D* COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

184 System i: Networking Cryptographic hardware

D*

D* This material contains programming source code for your

D* consideration. These example has not been thoroughly

D* tested under all conditions. IBM, therefore, cannot

D* guarantee or imply reliability, serviceability, or function

D+ of these programs. A1l programs contained herein are

D* provided to you "AS IS". THE IMPLIED WARRANTIES OF

D+ MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

D+ ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
D* these programs and files.

D*

D*

D* Note: Input format is more fully described in Chapter 2 of
D= IBM CCA Basic Services Reference and Guide

D* (SC31-8609) publication.

D*

D* Parameters:

D+ Device Name

D*

D+ Example:

Dx CALL PGM(CRPALLOC) PARM(CRP02)

D*

D* Use these commands to compile this program on the system:
Dx CRTRPGMOD MODULE(CRPALLOC) SRCFILE(SAMPLE)

Dx CRTPGM PGM(CRPALLOC) MODULE (CRPALLOC)

D* BNDSRVPGM(QCCA/CSUACRA)

D*

D* Note: Authority to the CSUACRA service program in the
D QCCA library is assumed.

D*

Dx The Common Cryptographic Architecture (CCA) verbs used are
D+ Cryptographic_Resource_Allocate (CSUACRA)

D*
gy
D* Declare variables for CCA SAPI calls
gy
D* ** Return code
DRETURNCODE S 9B 0

D* *% Reason code
DREASONCODE S 9B 0

D* *% Exit data length
DEXITDATALEN S 9B 0

D* *% Exit data

DEXITDATA S 4

D* ** Rule array count
DRULEARRAYCNT S 9B 0

D* *x Rule array
DRULEARRAY S 16

D* ** Resource name length
DRESOURCENAMLEN S 9B 0

D ** Resource name
DRESOURCENAME S 10

D*

DR R L L L X T T

D+ Prototype for Cryptographic_Resource Allocate (CSUACRA)

DA xkkkhxkkkhkkkkhrkhxhkkHkh* *hkhkkhkhrhdxkhkhkkhxhkx *hkhkKk
DCSUACRA PR

DRETCODE 9B 0

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DRSCNAMLEN 9B 0

DRSCNAM 10

D*
gy gy

Cryptography 185

186

D*
D*

DMSG
DMSGLENGTH

D

DMSGTEXT
DFAILRETC
DFAILRSNC
DMESSAGEID
DMESSAGEFILE
DMSGKEY
DMSGTYPE
DSTACKENTRY
DSTACKCOUNTER
DERRCODE
DBYTESIN
DBYTESOUT

D*

Kk
*%
S
S
DS
1
41
46
S
S
S
S
S
S
DS
1
5

75

9B 0 INZ(75
75

44

49

7 INZ(
21 INZ("
4 INZ(
10 INZ('=*
10 INZ('*
9B 0 INZ(2)
4B 0 INZ(0)
8B 0 INZ(0)

Declares for sending messages to the
job log using the QMHSNDPM API

DIM(2) CTDATA PERRCD(1)

)

")

')
INFO

~——

C**

C+ START OF PROGRAM

C* *
g *
C *ENTRY PLIST

C PARM RESOURCENAME 10
C* *
T N N Nl *
C* Set the keyword in the rule array *
gy gy *
C MOVEL 'DEVICE ' RULEARRAY

C Z-ADD 1 RULEARRAYCNT

C*

gy gy gy *

C* Set the resource name length *
g *

C Z-ADD 10 RESOURCENAMLEN

C*
gy gy *
C* Call Cryptographic Resource Allocate SAPI *
gy gy *
C CALLP CSUACRA (RETURNCODE :

C REASONCODE :

C EXITDATALEN:

C EXITDATA:

C RULEARRAYCNT:

C RULEARRAY :

C RESOURCENAMLEN:

C RESOURCENAME)
(O *

C* Check the return code *

(O *

C RETURNCODE IFGT 4

C* T - *

C* * Send error message *

(3 g *

C MOVE MSG(1) MSGTEXT

C MOVE RETURNCODE FAILRETC

C MOVE REASONCODE FATLRSNC

C EXSR SNDMSG

C*

C ELSE

C*

C* Ko m e e e *

C* * Send success message *

C* gy *

C MOVE MSG(2) MSGTEXT

C EXSR SNDMSG

System i:

Networking Cryptographic hardware

**

C*

C ENDIF
C*
C SETON
C*

C**

C* Subroutine to send a message
C**

SNDMSG BEGSR
CALL
PARM
PARM
PARM
PARM
PARM
PARM
PARM
PARM
PARM
ENDSR

OOOOOOOOOOOOO

*

"QMHSNDPM'
MESSAGEID
MESSAGEFILE
MSGTEXT
MSGLENGTH
MSGTYPE
STACKENTRY
STACKCOUNTER
MSGKEY
ERRCODE

CSUACRA failed with return/reason codes 9999/9999"

The request completed successfully

Related concepts

[“Managing multiple Cryptographic Coprocessors” on page 181

LR

You can have up to eight Cryptographic Coprocessors per partition. The maximum number of
Cryptographic Coprocessors supported per system is dependent on the system mode. This topic
provides information on using multiple coprocessors with SSL in systems running the i5/0S operating

system.

Example: ILE C program for deallocating a Coprocessor:

Change this i5/0S ILE C program example to suit your needs for deallocating a Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Deallocate a crypto device from a job.

COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

This material contains programming source code for your
consideration. These examples have not been thoroughly

tested under all conditions.

IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function
of these program. A1l programs contained herein are

provided to you "AS IS". THE

IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
ARE EXPRESSLY DISCLAIMED. IBM provides no program services for

these programs and files.

Note: Input format is more fully described in Chapter 2 of
IBM CCA Basic Services Reference and Guide */

(SC31-8609) publication.

Parameters:
none.

Example:
CALL PGM(CRPDEALLOC) (CRPO2)

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

Cryptography 187

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

The Common Cryptographic Architecture (CCA) verb used is
Cryptographic_Resource Deallocate (CSUACRD).

Use these commands to compile this program on the system:

ADDLIBLE LIB(QCCA)

CRTCMOD MODULE(CRPALLOC) SRCFILE(SAMPLE)

CRTPGM PGM(CRPALLOC) MODULE (CRPALLOC)
BNDSRVPGM(QCCA/CSUACRD)

Note: Authority to the CSUACRD service program in the
QCCA Tibrary is assumed.

#include <string.h>
#include <stdio.h>
#include "csucincl.h"

#define ERROR -1
#define 0K 0
#define WARNING 4

int main(int argc, char xargv[])

{

long return_code =
long reason_code =
Tong exit_data_leng
char exit_data[4];
char rule_array[2][8];
Tong rule_array_count = 2;
Tong resource_name_length;

0;
0;
th = 2;

if (argc < 1)
{
printf("Device parameter must be specified.\n");
return(ERROR) ;

memcpy (rule_array,"DEVICE ",8);
rule_array_count = 1;

CSUACRD(&return_code, &reason_code, &exit_data_length,
(char *)exit_data,
(Tong *) &rule_array_count,
(char *) rule_array,
(Tong *) &resource_name_length,

188 System i: Networking Cryptographic hardware

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/

(char =) argv[1]); /* resource name */

T S */
/* Check the return code and display the results */
J e m e e e e e eeeemcemmeeaee */

if ((return_code == OK) | (return_code == WARNING))
{

printf("Request was successful\n");
return(0K) ;
}

else

printf("Request failed with return/reason codes: %d/%d \n",
return_code, reason_code);

return(ERROR) ;

}

Related concepts

[“Managing multiple Cryptographic Coprocessors” on page 181

You can have up to eight Cryptographic Coprocessors per partition. The maximum number of
Cryptographic Coprocessors supported per system is dependent on the system mode. This topic

provides information on using multiple coprocessors with SSL in systems running the i5/0S operating

system.

Example: ILE RPG program for deallocating a Coprocessor:

Change this i5/0S ILE RPG program example to suit your needs for deallocating a Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

D***
D+ CRPDEALLOC

D*

D+ Sample program that deallocates a crypto device to the job.
D*

D*

Dx COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

D*

D* This material contains programming source code for your

D* consideration. These example has not been thoroughly

D+ tested under all conditions. IBM, therefore, cannot

D* guarantee or imply reliability, serviceability, or function
D+ of these programs. A1l programs contained herein are

D* provided to you "AS IS". THE IMPLIED WARRANTIES OF

D+ MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

D+ ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
D+ these programs and files.

D*

D*

D* Note: Input format is more fully described in Chapter 2 of
D* IBM CCA Basic Services Reference and Guide

D* (SC31-8609) publication.

D*

D* Parameters:

D+ Device name

D*

D* Example:

Dx CALL PGM(CRPDEALLOC) PARM(CRP02)

D*

D* Use these commands to compile this program on the system:
Dx CRTRPGMOD MODULE (CRPDEALLOC) SRCFILE(SAMPLE)

Dx CRTPGM PGM(CRPDEALLOC) MODULE (CRPDEALLOC)

D* BNDSRVPGM(QCCA/CSUACRD)

D*

D* Note: Authority to the CSUACRD service program in the

Cryptography

189

D= QCCA Tibrary is assumed.

D*

D* The Common Cryptographic Architecture (CCA) verbs used are
D* Cryptographic_Resource_Deallocate (CSUACRD)

D*

D*
)y Ly Y P
D* Declare variables for CCA SAPI calls
)y
D* *% Return code
DRETURNCODE S 9B 0

D* *% Reason code
DREASONCODE S 9B 0

D* *x Exit data length
DEXITDATALEN S 9B 0

D* *x Exit data

DEXITDATA S 4

D* ** Rule array count
DRULEARRAYCNT S 9B 0

D= **% Rule array
DRULEARRAY S 16

D= *% Resource name length
DRESOURCENAMLEN S 9B 0

D* *% Resource name
DRESOURCENAME S 10

D*

DAxkxkkhhkkhkhhkkhhhkkhkhhkkhhhkkkhhkkkhhkkkhhkxkhhhkkkhkkxkkhx

D* Prototype for Cryptographic_Resource Deallocate (CSUACRD)

DAxkxkkhkkkkhhkkkhhhkkhhkkkhhhkkhhkkkhhdkkkhkkkkhdkkkhdkxkkkx

DCSUACRD PR

DRETCODE 9B 0

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DRSCNAMLEN 9B 0

DRSCNAM 10

D*
)2y Py U
D= *% Declares for sending messages to the

D= *% job log using the QMHSNDPM API

)2y gy
DMSG S 75 DIM(2) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(75)

D DS

DMSGTEXT 1 75

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(' ")
DMESSAGEFILE S 21 INZ('

DMSGKEY S 4 INZ(' ")

DMSGTYPE S 10 INZ('*INFO ")
DSTACKENTRY S 10 INZ('~* ")
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

D*
C**
C* START OF PROGRAM *
C* *
g *
C *ENTRY PLIST

C PARM RESOURCENAME

Gk mm e e e e e e *
C* Set the keyword in the rule array *

190 System i: Networking Cryptographic hardware

*%

C MOVEL 'DEVICE ' RULEARRAY

C Z-ADD 1 RULEARRAYCNT

C*
gy *
C* Set the resource name length *
0y Uy PP *
C Z-ADD 10 RESOURCENAMLEN
C*
gy *
C* Call Cryptographic Resource Deallocate SAPI *
gy *
C CALLP CSUACRD (RETURNCODE :

C REASONCODE :

C EXITDATALEN:

C EXITDATA:

C RULEARRAYCNT:
C RULEARRAY :

C RESOURCENAMLEN:
C RESOURCENAME)
Ckmmm e mmememe e *

C* Check the return code *

Chmmmm e - *

C RETURNCODE IFGT 4

C* Ko m e m e *

C* * Send error message *

C* g *

C MOVE MSG(1) MSGTEXT

C MOVE RETURNCODE FAILRETC

C MOVE REASONCODE FAILRSNC

C EXSR SNDMSG

C*

C ELSE

C*

C* S *

C* * Send success message *

C* Hmmm e e *

C MOVE MSG(2) MSGTEXT

C EXSR SNDMSG

C*

C ENDIF

C*

C SETON

C*

C**

C* Subroutine to send a message
C**

C SNDMSG BEGSR

C CALL "QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY
C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C ENDSR

C*

CSUACRD failed with return/reason codes 9999/9999'
The request completed successfully

Related concepts

["Managing multiple Cryptographic Coprocessors” on page 181

LR

You can have up to eight Cryptographic Coprocessors per partition. The maximum number of

Cryptography

191

Cryptographic Coprocessors supported per system is dependent on the system mode. This topic
provides information on using multiple coprocessors with SSL in systems running the i5/OS operating
system.

Cloning master keys

Master key cloning is a method for securely copying a master key from one Cryptographic Coprocessor
to another without exposing the value of the master key. If you are using multiple coprocessors with SSL
on your system running the i5/OS operating system, use the Cryptographic Coprocessor configuration
web-based utility to clone master keys.

About this task

This is performed by a process of splitting the master key into n shares, where 7 is a number from 1 to
15. m shares are required to rebuild the master key in another Coprocessor, where m is a number from 1
to 15 and less than or equal to n.

The term "cloning” is used to differentiate the process from "copying” because no one share, or any
combination of fewer than m shares, provide sufficient information needed to rebuild the master key.

The Coprocessor containing the master key to be cloned is referred to as either the master-key-share
source node or the Sender. The Sender must generate a retained RSA key pair. This private key must also
have been marked as suitable for use with cloning when it was generated. The key is known as either the
Coprocessor Share Signing key or the Sender key. The Coprocessor that will receive the master key is
referred to as either the master-key-share target node or the Receiver. The Receiver must also generate a
retained RSA key pair and must also have been marked as suitable for use with cloning. This key is
known as either the Coprocessor Share Receiving key or simply the Receiver key.

Both the Sender and Receiver public keys must be digitally signed or certified by a retained private key
in a Coprocessor, referred to as the public key certifying node or the Certifier. This retained private key is
the Certifier key. It is also referred to as the Share Administration key. The associated public key must be
registered in both the Sender and the Receiver before shares can be generated and received. A
Cryptographic Coprocessor can take on the role of Certifier only, or can it be both Certifier and Sender, or
it can be both Certifier and Receiver.

As each share is generated it is signed by the Coprocessor using the Sender private key and encrypted by
a newly generated triple DES key. The triple DES key is then wrapped or encrypted by the Receiver
public key.

As each share is received, the signature on the share is verified using the Sender public key, the triple
DES key is unwrapped or decrypted using the Receiver private key, and the share decrypted using the
triple DES key. When m number of shares have been received, the cloned master key will be complete
within the new master key register of the Receiver.

The easiest and fastest way to clone master keys is to use the Cryptographic Coprocessor configuration
web-based utility. The utility includes the Master key cloning advisor. To start the master key cloning
advisor, follow these steps:

1. Click on Manage configuration on the Cryptographic Coprocessor configuration page.
2. Click on Master keys.

3. Select a device.
4. Enter a valid Coprocessor profile and password.
5. Click on the Clone button.

192 System i: Networking Cryptographic hardware

Results

If you would prefer to write your own application to clone master keys, you can do so by using the
following API verbs:

Cryptographic_Facility_Control (CSUACFC)

PKA_Key_Token_Build (CSNDPKB) (may not be needed depending upon how you write your

application)

PKA_Key_Generate (CSNDPKG)
PKA_Public_Key_Register (CSNDPKR)
One_Way_Hash (CSNBOWH)
Digital_Signature_Generate (CSNDDSG)
Master_Key_Distribution (CSUAMKD)

Example programs

Nine pairs of example programs are provided for your consideration. Each pair contains a program

written in ILE C and a program written in ILE RPG. Both perform the same function.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

Related concepts
4764 and 4758 Cryptographic Coprocessors|

IBM offers two Cryptographic Coprocessors, which are available on a variety of system models.
Cryptographic Coprocessors contain hardware engines, which perform cryptographic operations used

by i5/0S application programs and i5/0OS SSL transactions.
Related information

[[BM PCI Cryptographic Coprocessor CCA Basic Services Reference and Guide

Example: ILE C program for setting the min and max values for master key shares in your
Cryptographic Coprocessor:

Change this i5/0S ILE C program example to suit your needs for setting the min and max values for
master key shares in your Cryptographic Coprocessor.

Note: Read the [‘Code license and disclaimer information” on page 287] for important legal information.

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Set the M-of-N values in the Coprocessor. These values are
used in cloning of the master key. The master key is
cryptographically split into N number of parts and M number of
parts are needed to recover it.

COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007

This material contains programming source code for your
consideration. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function
of these program. All programs contained herein are
provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

ARE EXPRESSLY DISCLAIMED. IBM provides no program services for

these programs and files.

Note: Input format is more fully described in Chapter 2 of
IBM CCA Basic Services Reference and Guide
(SC31-8609) publication.

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

Cryptography 193

http://www.ibm.com/security/cryptocards/library.shtml

/* Parameters: */

/* none. */
/* */
/* Example: */
/* CALL PGM(SETMOFN) PARM(5 15) */
/* */
/* */
/* Note: This program assumes the device to use */
/* already identified either by defaulting to the CRPO1 */
/* device or by being explicitly named using the */
/* Cryptographic_Resource Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* Use these commands to compile this program on the system: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE(SETMOFN) SRCFILE(SAMPLE) */
/* CRTPGM PGM(SETMOFN) MODULE (SETMOFN) */
/* BNDSRVPGM(QCCA/CSUACFC) */
/* */
/* Note: Authority to the CSUACFC service program in the */
/* QCCA Tibrary is assumed. */
/* */
/* The Common Cryptographic Architecture (CCA) verb used is */
/* Cryptographic_Facilites_Control (CSUACFC). */
/* */
2y */
#include "csucincl.h" /* header file for CCA Cryptographic */

/* Service Provider */

#include <stdio.h>

#include <string.h>
#include <stdlib.h>
#include "decimal.h"

gy */
/* standard return codes */
ey */
#define ERROR -1
#define OK 0

#define WARNING 4

int main(int argc, char xargv[])

{

long return_code =
Tong reason_code =
Tong exit_data_leng
char exit_data[4];
char rule_array[2][8];
Tong rule_array_count = 2;

0;
0;
th = 2;

decimal(15,5) mparm, nparm;
Tong verb_data[2];
Tong verb_data_length = 8;

/* Process parameters. Numeric parms from the command line are
/* passed in decimal 15,5 format. The parms need to be converted

194 System i: Networking Cryptographic hardware

/* to int format.

memcpy (&mparm,argv[1],sizeof (mparm));
memcpy (&nparm,argv[2],sizeof(nparm));
verb_data[0] = mparm;

-

verb_data[l] = nparm;
2
/* Set keywords in the rule array
S S S S S PSSR

CSUACFC(&return_code,
&reason_code,
&exit_data_Tlength,
exit_data,
&rule_array_count,

(char *)rule_array,
&verb_data_length,
(unsigned char *)verb data);

if ((return_code == OK) | (return_code == WARNING))

{

printf("M of N values were successfully set with ");

printf("return/reason codes %1d/%1d\n\n",
return_code, reason_code);

return(0K) ;

else
{
printf("An error occurred while setting the M of N values.\n");
printf("Return/reason codes %1d/%1d\n\n",
return_code, reason_code);
return(ERROR) ;

}

Example: ILE RPG program for setting the min and max values for master key shares in your

Cryptographic Coprocessor:

*/
*/

*/
*/
*/

*/
*/
*/

*/
*/

Change this i5/0S ILE RPG program example to suit your needs for setting the min and max values for

master key shares in your Cryptographic Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

Dk kkkkdkkkhkdkhkkhkhhkhkhhdkhkkhkhhdkhkhhkhhkkhhkhrkhrkhhkhrkhrkkhkrkhrkkhrkhx
D+ SETMOFN
D*

D* Set the M-of-N values in the Cryptographic Coprocessor. These values

D* are used in cloning of the master key. The master key is

D* cryptographically split into N number of parts and M number of
D* parts are needed to recover it.

D*

D*

Dx COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

D*

D+ This material contains programming source code for your

D* consideration. These example has not been thoroughly

D* tested under all conditions. IBM, therefore, cannot

Cryptography

195

196

D* guarantee or imply reliability, serviceability, or function

D* of these programs. All programs contained herein are

Dx provided to you "AS IS". THE IMPLIED WARRANTIES OF

Dx MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

D* ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
D* these programs and files.

D*

D*

D+ Note: Input format is more fully described in Chapter 2 of
D* IBM CCA Basic Services Reference and Guide
D* (SC31-8609) publication.

D*

D* Parameters: M and N

D*

D* Example:

Dx CALL PGM(SETMOFN) PARM(5 10)

D*

D* Use these commands to compile this program on the system:
Dx CRTRPGMOD MODULE (SETMOFN) SRCFILE(SAMPLE)
Dx CRTPGM PGM(SETMOFN) MODULE (SETMOFN)

D* BNDDIR(QCCA/QC6BNDDIR)

D*

D* Note: Authority to the CSUACFC service program in the
D= QCCA Tibrary is assumed.

D*

D* The Common Cryptographic Architecture (CCA) verbs used are
D* Cryptographic_Facilty_Control (CSUACFC)

D=*
D**
)
D* Declare variables used on CCA SAPI calls
)
D* *%x Return code

DRETURNCODE S 9B 0

D* *%x Reason code

DREASONCODE S 9B 0

D= ** Exit data length
DEXITDATALEN S 9B 0

D* *% Exit data

DEXITDATA S 4

D* *% Rule array count
DRULEARRAYCNT S 9B 0

D= *% Rule array

DRULEARRAY S 16

D* *x Verb data length
DVERBDATALEN S 9B 0

Dx % Verb data contain M (minimum) and N (maximum)
DVERBDATA DS 8

DM 9B 0

DN 9B 0

D*

(DR T

D* Prototype for Cryptographic_Facilty_Control (CSUACFC)

)RR e L T

DCSUACFC PR

DRETCODE 9B 0

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DVRBDTALEN 9B 0

DVRBDTA 8

D*

) g
D* *x Declares for sending messages to the
Dx #+* job log using the QMHSNDPM API

System i: Networking Cryptographic hardware

DMSG S 75 DIM(2) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(75)

D DS

DMSGTEXT 1 80

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ("
DMESSAGEFILE S 21 INZ('

DMSGKEY S 4 INZ(! ")

DMSGTYPE S 10 INZ('*INFO ")
DSTACKENTRY S 10 INZ ('~ ')
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

C*
C**
C+ START OF PROGRAM *
g gy gy gy *
C *ENTRY PLIST

C PARM MVALUE 15
C PARM NVALUE 15
gy *
C* Set the keyword in the rule array *
gy *
C MOVEL "ADAPTER1' RULEARRAY

C MOVE 'SET-MOFN' RULEARRAY

C Z-ADD 2 RULEARRAYCNT
g *
C* Set the verb data length to 8 *
Ckm e e e e e e e e ————— *
C Z-ADD 8 VERBDATALEN
g gy gy *
Cx Set the M and N value (Convert from decimal 15 5 to binary)=
gy gy *
C EVAL M = MVALUE

C EVAL N = NVALUE

C**

C* Call Cryptographic Facilty Control SAPI

c**

C CALLP CSUACFC (RETURNCODE :
C REASONCODE :
C EXITDATALEN:
C EXITDATA:

C RULEARRAYCNT:
C RULEARRAY :

C VERBDATALEN:
C VERBDATA)
e *

C* Check the return code *

L *

C RETURNCODE IFGT 0

C* Kmmmmmmmm e ——————— *

C* * Send error message *

C* Kmmmmmmmm e m e ——————— *

C MOVEL MSG(1) MSGTEXT

C MOVE RETURNCODE FAILRETC

C MOVE REASONCODE FATLRSNC

C EXSR SNDMSG

C*

C ELSE

C* *ok ok kokkok ok ok ok ok ok ok ok Kk ok k ok k ok ok

C* * Send success message *

C* dhkkkhkhkhhkhkhhhhhhhhhhkrhhkd

C MOVEL MSG(2) MSGTEXT

C EXSR SNDMSG

*/

Cryptography 197

C*

C ENDIF

C*

C SETON LR
C*

C**

C* Subroutine to send a message
C**

C SNDMSG BEGSR

C CALL 'QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY
C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C ENDSR

*%

CSUACFC failed with return/reason codes 9999/9999.
The request completed successfully.

Example: ILE C program for generating a retained key pair for cloning master keys:

Change this i5/0S ILE C program example to suit your needs for generating a retained key pair for
cloning master keys.

Note: Read the [‘Code license and disclaimer information” on page 287] for important legal information.

gy */
/* GENRETAIN */
/* */
/* Sample program to generate a retained key to be used for */
/* master key cloning. */
/* */
/* COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot %/
/* guarantee or imply reliability, serviceability, or function */
/* of these program. A1l programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* ARE EXPRESSLY DISCLAIMED. IBM provides no program services for =/
/* these programs and files. */
/* */
/* */
/* Note: Input format is more fully described in Chapter 2 of */
/* IBM CCA Basic Services Reference and Guide */

/* (SC31-8609) publication. */
/* */
/* Parameters: RETAINED KEY_ NAME */
/* */
/* Example: */
/* CALL PGM(GENRETAIN) PARM(TESTKEY) */
/* */
/* */
/* Note: This program assumes the card with the profile is */
/* already identified either by defaulting to the CRPO1 */
/* device or by being explicitly named using the */
/* Cryptographic_Resource Allocate verb. Also this */

198 System i: Networking Cryptographic hardware

/* device must be varied on and you must be authorized

/* to use this device description.

/*

/* The Common Cryptographic Architecture (CCA) verbs used are
/* PKA_Key Token Build (CSNDPKB) and PKA Key Generate (CSNDPKG).

/*

/* Use these commands to compile this program on the system:

/* ADDLIBLE LIB(QCCA)

/* CRTCMOD MODULE(GENRETAIN) SRCFILE(SAMPLE)

/* CRTPGM PGM(GENRETAIN) MODULE (GENRETAIN)

/* BNDDIR(QCCA/QC6BNDDIR)

/*

/* Note: Authority to the CSNDPKG and CSNDPKB service programs

/* in the QCCA Tibrary is assumed.

/*
Ty

#include <stdio.h>
#include <string.h>
#include "csucincl.h"

int main(int argc, char xargv[])

/* Declares for CCA parameters

i

long return_code = 0;
long reason_code = 03
long exit_data_length = 0;
char exit_data[4];
char rule_array[24];
long rule_array count;
long token_len = 2500;
char token[2500];
char regen_data[4];
char transport_key id[4];
struct {
short modlen;
short modlenfld;
short pubexplen;
short prvexplen;
long pubexp;
} key_struct;
long key struct_Tength;
long zero = 0;

long pub_sec_Ten;
long prv_sec_len;
long cert_sec_len;
long info_subsec_len;
long offset;

long tempOffset;

long templLength;

long templLenl, templLen2;
char pub_token[2500] ;
long pub_token len;
long name_len;

char name[64];

int i;
FILE *fp;

if (argc < 2)
{

/* Key structure for PKA Key Token Build

/*
/*

Public section length

Private section Tength
Certificate section length
Information subsection Tength

0ffset into token

(Another) Offset into token

Length variable

temporary Tength variables

Loop counter
File pointer

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

Check the number of parameters passed */

Cryptography 199

printf("Need to enter a private key name\n");
return 1;

}

memset (token,0,2500) ; /* Initialize token to 0O */
memcpy ((void*)rule_array,"RSA-PRIVKEY-MGMT",16); /* Set rule array */
rule_array_count = 2;

memset (name,' ', 64); /* Copy key name parameter */
memcpy (name, argv[1], strlen(argv[1]));
name_len = 64;

TS */

/* Initialize key structure =*/

S */

memset ((voidx)&key struct, 0, sizeof(key struct));

key struct.modlen = 1024; /* Modulus length is 1024 */
key_struct.pubexplen = 3;

key_struct.pubexp = 0x01000100; /* Public exponent is 65537 */

key_struct_Tlength = sizeof(key struct);

/***/

/* Call PKA Key Token_ Build SAPI */

[F kg ke kk Kk k ok dok ko ok Fkkkkkkkhkkkhkkhhkxk [

CSNDPKB(&return_code, &reason code, &exit data length,
exit_data,

&rule_array_count,
rule_array,
&key_struct_length,
(unsigned char =*)&key struct,
&name_Ten,

name,

&zero, /x 1 %/
NULL,

&zero, [* 2 */
NULL,

&zero, /* 3 */
NULL,

&zero, [* 4 %/
NULL,

&zero, [* 5 */
NULL,

&token_len,

token);

if (return_code != 0)

{

printf("PKA Key Token Build Failed : return code %d : reason code %d\n",
return_code, reason_code);

return 1;
/**/
/* Build certificate */

/**/

/* Determine length of token from length */

/* bytes at offset 2 and 3. */
token _len = ((256 * token[2]) + token[3]);

/* Determine length of private key */

/* section from length bytes at offset =/

/* 10. */

((256 * token[10]) + token[11]);
/* Determine length of public key sectionx/
/* section from length bytes at offset =/
/* 10 + private section length */

pub_sec_len = ((256 * token[prv_sec_len + 10]) +

token[prv_sec_len + 11]);

prv_sec_len

200 System i: Networking Cryptographic hardware

/* Calculate the signature section Tengthx/

cert_sec_len = 328 + /* from the signature subsection length, x/
20 + /* EID subsection length, */
12 + /* Serial number subsection Tlength, */
4+ /* Information subsection header length, =/
pub_sec_len + /* Public key subsection length, =/
4, /* and the certificate section hdr lengthx/

offset = token_len; /* 0ffset for additions to token */

/* Fill in certicate section header */

tempLenl = cert_sec_len;

tempLenl >>= 8;

token[offset++] = 0x40;

token[offset++] = 0x00;

token[offset++] = templenl;

token[offset++] = cert_sec_len;

/* Fill in public key subsection */

token[offset++] = 0x41;

for (i =1 ; i < pub_sec_len ; i ++)

{

/* Copy public key to certificate */

token[offset++]

}

= token[prv_sec_len +(i+8)];

/* Fi1l Optional Information Subsection Header */

info_subsec_len

20 + /* Length of EID section */
12 + /* Length of serial number section */
4, /* Length of Info subsection header */

tempLenl = info_subsec_len;
tempLenl >>= 8;
token[offset++] = 0x42;
token[offset++] = 0x00;
token[offset++] = templenl;
token[offset++] = info_subsec_len;
/* Fill in Public Key Certficate EID subsection */
token[offset++] = 0x51;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x14;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;

/* Public key Certificate Serial Number TLV %/
token[offset++] = 0x52;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x0c;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;

Cryptography 201

token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;
token[offset++] = 0x00;

/* Fill in Signature Subsection */
token[offset++] = 0x45;
token[offset++] = 0x00;
token[offset++] = 0x01;
token[offset++] = 0x48;
token[offset++] = 0x01;
token[offset++] = 0x01;

for (i =0 ; i <64 jitt)
{
/* Copy private key name out of private key name section */
/* into certificate */
token[offset++] =
token[prv_sec_len + pub_sec_len + 12 + i];
}

token_len = offset + 258; /* add 258 to allow for digtal sig. */
token[3] = token_len; /% Set new token length =/
token[2] = token_len >> 8;

/**/
/* Generate Retained key using PKA token with certificate */

memcpy ((void*)rule_array,"RETAIN CLONE ",16);
rule_array_count = 2;

memset (pub_token,0,2500) ;

pub_token_len = 2500;

memset (transport_key id,0,4);

/* Call PKA Key Generate SAPI */

/***/

202

CSNDPKG(&return_code, &reason_code, &exit_data_length,
exit_data,
&rule_array_count,
rule_array,
&zero, /* regenerated data length */
regen_data,
&token_Ten,
token,
transport_key_id,
&pub_token_len,
pub_token);

if (return_code != 0)

{

printf("PKA Key Generate Failed : return code %d :reason code %d\n",
return_code, reason_code);

return 1;
1
/**/
/* Write public key token out to file */
/**/

/* Append ".PUB" to key name */

memcpy ((void*)&name[strlen(argv[1])],".PUB",5);
fp = fopen(name,"wb"); /* Open the file */
if (!fp)

{

System i: Networking Cryptographic hardware

printf("File open failed\n");

else

{
fwrite(pub_token,pub_token_len,1,fp); /* Write token to file %/

fclose(fp); /* Close the file */
printf("Public token written to file %s.\n",name);

}

name[strien(argv[1])] = 0; /* Convert name to string */
printf("Private key %s is retained in the hardware\n",name);
return 0;

}

Example: ILE RPG program for generating a retained key pair for cloning master keys:

Change this i5/0S ILE RPG program example to suit your needs for generating a retained key pair for

cloning master keys.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

D***
D+ GENRETAIN

D*

D+ Sample program to generate a retained key to be used for

D* master key cloning.

D*

D*

Dx COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

D*

D+ This material contains programming source code for your

D* consideration. These example has not been thoroughly

D* tested under all conditions. IBM, therefore, cannot

D* guarantee or imply reliability, serviceability, or function
D+ of these programs. A1l programs contained herein are

D* provided to you "AS IS". THE IMPLIED WARRANTIES OF

D+ MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

D+ ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
D+ these programs and files.

D*

D*

D* Note: Input format is more fully described in Chapter 2 of
D* IBM CCA Basic Services Reference and Guide
D* (SC31-8609) publication.

D*

D+ Parameters: RETAINED KEY NAME

D*

D* Example:

D= CALL PGM(GENRETAIN) PARM(TESTKEY)

D*

D* Use these commands to compile this program on the system:
Dx CRTRPGMOD MODULE (GENRETAIN) SRCFILE(SAMPLE)
D+ CRTPGM PGM(GENRETAIN) MODULE(GENRETAIN)

D* BNDDIR(QCCA/QC6BNDDIR)

D*

D* Note: Authority to the CSNDPKG and CSNDPKB service programs
D* in the QCCA Tibrary is assumed.

D*

Dx The Common Cryptographic Architecture (CCA) verbs used are
D+ PKA Key Token Build (CSNDPKB) and PKA Key Generate (CSNDPKG).
D*

DR e X T

D* Declare variables used by CCA SAPI calls

Cryptography

203

204

D*
DRETURNCODE
D*
DREASONCODE
D*
DEXITDATALEN
D*
DEXITDATA
D*
DRULEARRAYCNT
D*
DRULEARRAY
D*
DTOKENLEN
D*

DTOKEN
DTOKENARRAY
D*
DREGENDATA
D*
DTRANSPORTKEK
D*

DGENKEY

D*
DGENKEYLEN
D*

DKEYNAME
DKEYNAMEL
D*
DKEYSTRUCT
DMODLEN
DMODLENFLD
DPUBEXPLEN
DPRVEXPLEN
DPUBEXP

D*

DZERO
DNULLPTR

D*
DKEYSTRUCTLEN
D*

D*
DLENSTRUCT
DMSB

DLSB
DLENGTH

D*
DPRVSECLEN
D*
DPUBSECLEN
D*

DINDEX

D=*
DNAMEPTR1
DNAME1
DNAMEPTR2
DNAME2

D*

DI

D*

DFILED

D*

DPATH
DPATHLEN

D*

D*

%

*%

*%
*%

DS

*%
%

Return code
9B 0
Reason code
9B 0
Exit data Tength
9B 0
Exit data
4
Rule array count
9B 0
Rule array
16
Token Tength
9B 0 INZ(2500)
Token and array for subscripting
2500
1 DIM(2500)
Regeneration data
4 INZ(X'00000000")
Transport key encrypting key
4 INZ(X'00000000")
Generated keyid
2500
Generated keyid length
9B 0 INZ(2500)
Key name and Tength
64
9B 0 INZ(64)
Key structure

1 2B 0
3 4B 0
5 6B 0
7 8B 0
9 12B 0

Null parms needed for CSNDPKB and CSNDPKG

9B 0 INZ(0)

% INZ(*NULL)
Key structure Tength

9B 0 INZ(12)

Data structure for aligning 2 bytes into

a 2 bytes integer

2
1 1
2 2
1 2B 0
Private key section length
9B 0
PubTic key section length
9B 0
Index into Token array
9B 0

Declares for copying private key name

*

64 BASED (NAMEPTR1)
*
64 BASED (NAMEPTR2)
Loop counter
9B 0
File descriptor
9B 0
File path and length
80 INZ(*ALLX'00")
9B 0

Open flag - Create on open, open for writing,

and clear if exists

System i: Networking Cryptographic hardware

for PKA Key Token Build

DOFLAG S 101 O INZ(X'4A')
D*
D¥kkkkkkkhkdkhkhkhkkhkhkhhkkhkhhkhkhkhhkhkhkkhkhkhhkhkhhkhrkhx

D* Prototype for PKA_Key Token_Build (CSNDPKB)

DR L X T

DCSNDPKB PR

DRETCODE 9B 0
DRSNCODE 9B 0
DEXTDTALEN 9B 0
DEXTDTA 4
DRARRAYCT 9B 0
DRARRAY 16
DKEYSTRLEN 9B 0
DKEYSTR 10

DKEYNML 9B 0
DKEYNM 64

DRSRVLN1 9B 0
DRSRV1 * VALUE
DRSRVLNZ2 9B 0
DRSRV2 * VALUE
DRSRVLN3 9B 0
DRSRV3 * VALUE
DRSRVLN4 9B 0
DRSRV4 * VALUE
DRSRVLN5 9B 0
DRSRV5 * VALUE
DTKNLEN 9B 0

DTKN 2500 OPTIONS(xVARSIZE)
D*

Dk s ok ke o o ok ke ke o ok ok ok o ok ok ok o ok ok ok o ok ok ok ok ook ko ok ok ko ok ok ko ok ok ok ok ok ok ok ok o ok Kkkk koK

Dx Prototype for PKA Key Generate (CSNDPKG)

DR R R R T e e

DCSNDPKG PR

DRETCOD 9B 0

DRSNCOD 9B 0

DEXTDTALN 9B 0

DEXTDT 4

DRARRYCT 9B 0

DRARRY 16

DREGDTAL 9B 0

DREGDTA 20 OPTIONS (*VARSIZE)
DSKTKNL 9B 0

DSKTKN 2500 OPTIONS(*VARSIZE)
DTRNKEK 64 OPTIONS (*VARSIZE)
DGENKEYL 9B 0

DGENKEY 2500 OPTIONS (*VARSIZE)
D*

Dxkkkkkhkhkkhkhhkkkhhhkkhhhkrkhkhhkkhhhkkkhhkkkhhkkkhhkxkhhkxxk

Dx Prototype for open()

D**
D* value returned = file descriptor (0K), -1 (error)

Dopen PR 9B O EXTPROC('open')

D= path name of file to be opened.

D 128 OPTIONS(*VARSIZE)

D* Open flags

D 9B 0 VALUE

D~ (OPTIONAL) mode - access rights

D 10U © VALUE OPTIONS (*NOPASS)
D~ (OPTIONAL) codepage

D 10U © VALUE OPTIONS (*NOPASS)
D*

Dxkkkkkhkhkkkhhkkhkhhhrkkhhhkkhhhkkhhkkhhhkkkhhdkkhhhkkhhdkkkhkkkkhkrkkkhk

D* Prototype for write()

D**

D* value returned = number of bytes actually written, or -1
Dwrite PR 9B O EXTPROC('write')

D= File descriptor returned from open()

Cryptography

205

D 9B 0 VALUE
D* Data to be written

D 1200 OPTIONS(*VARSIZE)
D= Length of data to write

D 9B 0 VALUE

D*

(DR L T T

D* Prototype for close()

D***
D* value returned = 0 (0K), or -1

Dclose PR 9B 0 EXTPROC('close')

D* File descriptor returned from open()

D 9B 0 VALUE

D*

g gy
D= ** Declares for sending messages to the

D* *% job log using the QMHSNDPM API

) g
DMSG S 75 DIM(4) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(75)

D DS

DMSGTEXT 1 75

DSAPI 1 7

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(' ")
DMESSAGEFILE S 21 INZ(' ")
DMSGKEY S 4 INZ(' ")

DMSGTYPE S 10 INZ (' *INFO ")
DSTACKENTRY S 10 INZ ('~ ")
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

C*
C**
C* START OF PROGRAM *
C* *
C *ENTRY PLIST

C PARM KEYNAMEPARM 50
C* g *

Cx * Initialize tokens to O =*

C* gy *

C MOVEL *ALLX'00' TOKEN

C MOVEL *ALLX'00" GENKEY

C* Kmmmmm e ——— e ———————— *

C+x * Initialize key struct =

C* g *

C Z-ADD 1024 MODLEN

C Z-ADD 0 MODLENFLD

C Z-ADD 3 PUBEXPLEN

C Z-ADD 0 PRVEXPLEN

C EVAL PUBEXP = 65537 * 256

C* Kmmmmmmm e — e — *

C+ =+ Copy key name from parm*

C* K m e mm e m e — *

C MOVEL KEYNAMEPARM KEYNAME

C* K mm e mm e mm e mm e mm e ——————————— *

Cx * Set the keywords in the rule array *

C* g *

C MOVEL '"RSA-PRIV' RULEARRAY

C MOVE "KEY-MGMT"' RULEARRAY

C Z-ADD 2 RULEARRAYCNT

C**

C+ Call PKA_Key_Token_Build SAPI

C**

C CALLP CSNDPKB (RETURNCODE :

206 System i: Networking Cryptographic hardware

OO0

OOOOOO0O0O
*

REASONCODE :

EXITDATALEN:
EXITDATA:
RULEARRAYCNT:
RULEARRAY:
KEYSTRUCTLEN:
KEYSTRUCT:
KEYNAMEL :
KEYNAME :
ZERO:
NULLPTR:
ZERO:
NULLPTR:
ZERO:
NULLPTR:
ZERO:
NULLPTR:
ZERO:
NULLPTR:
TOKENLEN:
TOKEN)
R T *
* Check the return code =
e T T e *
RETURNCODE IFGT 0
K o *
* Send failure message *
K o *
MOVEL MSG(1) MSGTEXT
MOVE RETURNCODE FAILRETC
MOVE REASONCODE FAILRSNC
MOVEL 'CSNDPKB' SAPI
EXSR SNDMSG
RETURN
ENDIF
__ *
Build the certificate *

Get the private section length. The length is at position 11
of the token

EVAL MSB = TOKENARRAY (10+1)
EVAL LSB = TOKENARRAY (11+1)
MOVE LENGTH PRVSECLEN

Get the public section length. The length is at position
(11 + Private key section Tength).

EVAL MSB = TOKENARRAY (10 + PRVSECLEN + 1)
EVAL LSB = TOKENARRAY (11 + PRVSECLEN + 1)
MOVE LENGTH PUBSECLEN

Calculate the certificate section Tength
Cert Section Tength = Signature Tength (328) +
EID section length (20) +
Serial number length (12) +
Info subsection header length (4) +
PubTic Key section length +
Cert section header length (4)

EVAL LENGTH = 328 + 20 + 12 + 4 + PUBSECLEN + 4
Fill Certificate section header

MOVE TOKENLEN INDEX

EVAL TOKENARRAY (INDEX +1) = X'40'

EVAL TOKENARRAY (INDEX +2) = X'00'

EVAL TOKENARRAY (INDEX +3) = MSB

EVAL TOKENARRAY (INDEX +4) = LSB
Fill in public key subsection

EVAL TOKENARRAY (INDEX +5) = X'41'

ADD 5 INDEX

Z-ADD 1 I

Cryptography

207

C* Copy the public key section of the token into the public key
C* subsection of the certificate section.

C I DOWLT PUBSECLEN

C EVAL TOKENARRAY (INDEX + I) =

C TOKENARRAY (PRVSECLEN + I + 8 + 1)
C 1 ADD I I

C ENDDO

C EVAL INDEX = INDEX + PUBSECLEN - 1
C* FiT1l in Optional Information subsection header

C Z-ADD 36 LENGTH

C EVAL TOKENARRAY (INDEX +1) = X'42'
C EVAL TOKENARRAY (INDEX +2) = X'00'
C EVAL TOKENARRAY (INDEX +3) = MSB
C EVAL TOKENARRAY (INDEX +4) = LSB
C* Fill in Public Key Certficate EID

C EVAL INDEX = INDEX + 4

C EVAL TOKENARRAY (INDEX +1) = X'51'
C EVAL TOKENARRAY (INDEX +4) = X'14'
C* Fill in Public Key Certficate Serial Number TLV

C EVAL INDEX = INDEX + 20

C EVAL TOKENARRAY (INDEX +1) = X'52'
C EVAL TOKENARRAY (INDEX +4) = X'OC'
C* FiTll in Signature Subsection

C EVAL INDEX = INDEX + 12

C EVAL TOKENARRAY (INDEX +1) = X'45'
C EVAL TOKENARRAY (INDEX +3) = X'01'
C EVAL TOKENARRAY (INDEX +4) = X'48'
C EVAL TOKENARRAY (INDEX +5) = X'01'
C EVAL TOKENARRAY (INDEX +6) = X'01'
C* Fill in private key name

C EVAL INDEX = INDEX + 6

C EVAL NAMEPTR1 = %ADDR(TOKENARRAY (INDEX +1))
C EVAL NAMEPTR2 =

C %ADDR (TOKENARRAY (PRVSECLEN+PUBSECLEN+12+1))
C MOVEL NAME2 NAME 1

Cx Adjust token length

C EVAL LENGTH = INDEX + 64 + 258
C MOVE MSB TOKENARRAY (3)
C MOVE LSB TOKENARRAY (4)
C EVAL TOKENLEN = LENGTH

C* gy *

Cx * Set the keywords in the rule array *

C* gy gy *

C MOVEL '"RETAIN ' RULEARRAY

C MOVE '"CLONE ' RULEARRAY

C Z-ADD 2 RULEARRAYCNT
C

g gy gy g *
C+ Call PKA_Key_Generate SAPI *
G mm m e e e e e e *
C CALLP CSNDPKG (RETURNCODE :

C REASONCODE :

C EXITDATALEN:
C EXITDATA:

C RULEARRAYCNT:
C RULEARRAY :

C ZERO:

C REGENDATA:

C TOKENLEN:

C TOKEN:

C TRANSPORTKEK:
C GENKEYLEN:

C GENKEY)
(g *

C* Check the return code *

(O *

C RETURNCODE IFGT 0

208 System i: Networking Cryptographic hardware

C* K m e - *

C* * Send failure message *

C* g *

C MOVEL MSG(1) MSGTEXT

C MOVE RETURNCODE FAILRETC

C MOVE REASONCODE FAILRSNC

C MOVEL "CSNDPKG' SAPI

C EXSR SNDMSG

C RETURN

C ENDIF

C*

C* g *

C* * Send success message *

C* Kmmmmmmm e ——————— *

C MOVEL MSG(2) MSGTEXT

C EXSR SNDMSG

C*

O *

C* Write certificate out to file *
g *

C *% Build path name

C EVAL PATHLEN = %LEN(%TRIM(KEYNAMEPARM))
C PATHLEN SUBST KEYNAMEPARM: 1 PATH

C EVAL %SUBST (PATH:PATHLEN+1:4) = '.PUB'
C*

C* **% Open the file

C*

C EVAL FILED = open(PATH: OFLAG)

C*

C* ** Check if open worked

C*

C FILED IFEQ -1

C*

C* ** Open failed, send an error message

C*

C MOVEL MSG(3) MSGTEXT

C EXSR SNDMSG

C*

C ELSE

C*

C* ** Open worked, write certificate out to file and close file
C*

C CALLP write (FILED:

C GENKEY:

C GENKEYLEN)

C CALLP close (FILED)

C*

C* ** Send completion message

C*

C MOVEL MSG(4) MSGTEXT

C EVAL %SUBST (MSGTEXT: 32: PATHLEN + 4) =
C %SUBST(PATH: 1: PATHLEN + 4)
C EXSR SNDMSG

C ENDIF

C*

C SETON LR
C*

C**

C* Subroutine to send a message
C**

C SNDMSG BEGSR

C CALL 'QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

Cryptography

209

C PARM STACKENTRY

C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C ENDSR

C*

*%

CSNDPKB failed with return/reason codes 9999/9999.
The retained key was successfully created.

The file could not be opened.

The certificate was written to

Example: ILE C program for registering a public key hash:

Change this i5/0S ILE C program example to suit your needs for registering a hash of a public key
certificate.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

2 */
/* REGHASH %/
/* */
/* Sample program to register the hash of a CCA public key */
/* certificate. */
/* */
/* COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/* of these program. A1l programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE x/
/* ARE EXPRESSLY DISCLAIMED. IBM provides no program services for */
/* these programs and files. */
/* */
/* */
/* Note: Input format is more fully described in Chapter 2 of */
/* IBM CCA Basic Services Reference and Guide */

/* (SC31-8609) publication. */
/* */
/* Parameters: Stream file containing public key certificate */
/* */
/* Example: */
/* CALL PGM(REGHASH) PARM(CERTFILE) */
/* */
/* */
/* Note: This program assumes the card with the profile is */
/* already identified either by defaulting to the CRPO1 x/
/* device or by being explicitly named using the */
/* Cryptographic_Resource_Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* The Common Cryptographic Architecture (CCA) verbs used are */
/* PKA_Public_Key Hash_Register (CSNDPKH) and One_Way_ Hash WH). =/
/* (CSNBOWH) . */
/* */
/* Use these commands to compile this program on the system: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE (REGHASH) SRCFILE(SAMPLE) */
/* CRTPGM PGM(REGHASH) MODULE (REGHASH) */
/% BNDDIR(QCCA/QC6BNDDIR) */
/* */
/* Note: Authority to the CSNDPKH and CSNBOWH service programs */

210 System i: Networking Cryptographic hardware

/* in the QCCA library is assumed.
/*

#include <stdio.h>
#include <string.h>
#include "csucincl.h"

int main(int argc, char xargv[])

0:
0;
t

long return_code = 0;
h =0;

long reason_code =

long exit_data_leng
char exit_data[4];

char rule_array[24];

long rule_array_count;

long token_len = 2500;

char token[2500];

long chaining_vector_length = 128;

long hash_length = 20;

long text_length;

unsigned char chaining_vector[128];
unsigned char hash[20];

gy

long pub_sec_Ten; /* Public section length

long cert_sec_len; /* Certificate section length

long offset; /* 0ffset into token

long tempOffset; /* (Another) Offset into token

char name[64]; /* Registered key name

long count; /* Number of bytes read from file

FILE *fp; /* File pointer

if (argc < 2) /* Check the number of parameters passed
{

printf("Need to enter a public key name\n");
return 1;

}

memset (name,' ',64); /* Copy key name (and pad) to a 64 byte

/* field.
memcpy (name,argv[1],strlen(argv[1]));

fp = fopen(argv[1],"rb"); /* Open the file for reading
if (!fp)

{

printf("File %s not found.\n",argv[1]);

return 1;

}

memset (token,0,2500) ; /* Initialize the token to 0

count = fread(token,1,2500,fp); /* Read the token from the file

fclose(fp); /* Close the file

/* Determine length of token from length

/* bytes at offset 2 and 3.
token_len = ((256 * token[2]) + token[3]);

if (count < token_len) /* Check if whole token was read in
{
printf("Incomplete token in file\n");
return 1;

}

*/
*/
*/
*/
*/
*/
*/

*/
*/

*/
*/

*/
*/
*/

*/
*/

*/

Cryptography 211

/**/

/* Find the certificate offset in the token */
/* */
/* The Tayout of the token is */
/* */
/* - Token header - 8 bytes - including 2 Tength bytes */
/* - Public key section - length bytes at offset 10 overall */
/* - Private key name - 68 bytes */
/* - Certificate section x/
/* */
/*************** """"""""" ****************************/

pub_sec_len = ((256 * token[10]) + token[11]);

offset = pub_sec_len + 68 + 8; /x Set offset to certiicate section x/

/* Determine certificate section

/* length from the length bytes at

/* offset 2 of the section.
cert_sec_len = ((256 * token[offset + 2]) + token[offset + 3]);
tempOffset = offset + 4; /* Set offset to first subsection

/* Parse each subsection of the certificate until the =x/
/* signature subsection is found or the end is reached.*/
/* (Identifier for signature subsection is Hex 45.) */

while(token[tempOffset] != Ox45 &&
tempOffset < offset + cert_sec_len)

{

tempOffset += 256 * token[tempOffset + 2] + token[tempOffset+3];

}
JH e e e e */
/* Check if no signature was found before the end of =*/
/* the certificate section. */
T */
if (token[tempOffset] != 0x45)

{

printf("Invalid certificate\n");

return 1;

}

/**/

/* Hash the certificate */

/**/

text_length = tempOffset - offset + 70; /* Text length is length
/* of certificate subsection.

memcpy ((void*)rule_array,"SHA-1 ",8); /* Set rule array
rule_array count = 1;

chaining_vector_length = 128;

hash_Tength = 20;

CSNBOWH(&return_code, &reason_code, &exit_data_length,
exit_data,
&rule_array_count,
(unsigned char*)rule_array,
&text_length,
&token[offset],
&chaining_vector_length,
chaining_vector,
&hash_Tength,
hash) ;

if (return_code != 0)

{

printf("One_Way Hash Failed : return reason %d/%d\n",

212 System i: Networking Cryptographic hardware

*/
*/
*/

*/

*/
*/

return_code, reason_code);
return 1;

}

/**/

/* Register the Hash «/
/**/
/* Set the rule array */

memcpy ((voidx)rule_array,"SHA-1 ~ CLONE ",16);
rule_array count = 2;
/* Build the name of the retained =*/
/* key from the file and "RETAINED"*/
memcpy (&name[strlen(argv[1])],".RETAINED",9);

CSNDPKH(&return_code, &reason_code, &exit data_length,
exit_data,
&rule_array_count,
(unsigned char*)rule_array,
name,
&hash_Tength,
hash) ;

if (return_code != 0)
{
printf("Public Key Register_Hash Failed : return reason %d/%d\n",
return_code, reason_code);
return 1;

}

name[strlen(argv[1]) + 9] = 0; /* Convert name to a string */
printf("Hash registered for %s.\n",name);

}

Example: ILE RPG program for registering a public key hash:

Change this i5/0S ILE RPG program example to suit your needs for registering a hash of a public key

certificate.

Change this program example to suit your needs for registering a hash of a public key certificate.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

D***
D+ REGHASH

D*

D+ Sample program to register the hash of a CCA public key

D* certificate.

D*

D*

Dx COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

D*

D+ This material contains programming source code for your

D* consideration. These example has not been thoroughly

D* tested under all conditions. IBM, therefore, cannot

D* guarantee or imply reliability, serviceability, or function
D+ of these programs. A1l programs contained herein are

D* provided to you "AS IS". THE IMPLIED WARRANTIES OF

D+ MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

D+ ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
D* these programs and files.

D*

D*

D+ Note: Input format is more fully described in Chapter 2 of
D= IBM CCA Basic Services Reference and Guide

DES (SC31-8609) publication.

Cryptography

213

214

D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
D*
C*
D*

Parameters: Stream file containing public key certificate

Example:
CALL PGM(REGHASH) PARM(CERTFILE)

Use these commands to compile this program on the system:

CRTRPGMOD MODULE (REGHASH) SRCFILE(SAMPLE)

CRTPGM PGM(REGHASH) MODULE (REGHASH)
BNDDIR(QCCA/QC6BNDDIR)

Note: Authority to the CSNDPKH and CSNBOWH service programs
in the QCCA Tibrary is assumed.

The Common Cryptographic Architecture (CCA) verbs used are
PKA_Public_Key Hash_Register (CSNDPKH) and One_Way_Hash
(CSNBOWH) .

)RR L T T

) g
D* Declare variables used by CCA SAPI calls
)y g gy
D* ** Return code

DRETURNCODE S 9B 0

D= ** Reason code

DREASONCODE S 9B 0

D= *% Exit data length
DEXITDATALEN S 9B 0

D* **% Exit data

DEXITDATA S 4

D= *% Rule array count
DRULEARRAYCNT S 9B 0

D* *%x Rule array

DRULEARRAY S 16

D= *% Token length

DTOKENLEN S 9B 0 INZ(2500)
D= ** Token and array for subscripting token
DTOKEN DS 2500

DTOKENARRAY 1 DIM(2500)
D* *%x Chaining vector Tength
DCHAINVCTLEN S 9B 0 INZ(128)
D= *% Chaining vector

DCHAINVCT S 128

D= ** Hash length

DHASHLEN S 9B 0 INZ(20)

D* ** Hash

DHASH S 20

D* **% Text length

DTXTLENGTH S 9B 0

D* *% Name of retained key

DNAME S 64

D* *% Structure used for aligning 2 bytes into a
D* *x 2 byte integer.

DLENSTRUCT DS 2

DMSB 1 1

DLSB 2 2

DLENGTH 1 2B 0

D*

D= *x Certificate section length
DCRTSECLEN S 9B 0

D* *%x Public key section Tength
DPUBSECLEN S 9B 0

D* *% Index into PKA key token
DTKNINDEX S 9B 0

D* *% Index into PKA key token
DTMPINDEX S 9B 0

D* **% File descriptor

System i: Networking Cryptographic hardware

DFILED S 9B 0

D* ** File path and path Tength
DPATH S 80 INZ (*ALLX'00")
DPATHLEN S 9B 0

D ** Open Flag - Open for Read only
DOFLAG S 101 0 INZ(1)

D*

Dxkkkxkhkhkkkhhhkkhkhkkkhhhkkhkhhkkhhhkkkhhkkkhhkkkhhkxkhhhrxk

D* Prototype for PKA_Public_Key Hash_Register (CSNDPKH)

D**

DCSNDPKH PR

DRETCOD 9B 0
DRSNCOD 9B 0
DEXTDTALN 9B 0
DEXTDT 4
DRARRYCT 9B 0
DRARRY 16
DKYNAM 64
DHSHL 9B 0
DHSH 20 OPTIONS (*VARSIZE)
D*

Dxkkkxkkhkkkhhhkkhhkrkkhhhkkhkhhkkkhhkkkhhkkkhhkkkhhkrkkhhkrxk

D+ Prototype for One_Way Hash (CSNBOWH)

D**

DCSNBOWH PR

DRETCOD 9B 0
DRSNCOD 9B 0
DEXTDTALN 9B 0
DEXTDT 4
DRARRYCT 9B 0
DRARRY 16
DTXTLEN 9B 0
DTXT 500 OPTIONS (*VARSIZE)
DCHNVCTLEN 9B 0
DCHNVCT 128
DHSHLEN 9B 0
DHSH 20

D*

D=

D**
D* Prototype for open()
D**
DES value returned = file descriptor (0K), -1 (error)

Dopen PR 9B O EXTPROC('open')

D path name of file to be opened.

D 128 OPTIONS (*VARSIZE)

D~ Open flags

D 9B 0 VALUE

D= (OPTIONAL) mode - access rights

D 10U O VALUE OPTIONS(*NOPASS)
D (OPTIONAL) codepage

D 10U O VALUE OPTIONS(*NOPASS)
D*

DR R L X T

Dx Prototype for read()

D******* """"""""""" khkkkhkhkkrhhkkhhhhhhkhrhhxk *khkkkk
D* value returned = number of bytes actually read, or -1
Dread PR 9B 0 EXTPROC('read')

D~ File descriptor returned from open()

D 9B 0 VALUE

D Input buffer

D 2500 OPTIONS (*VARSIZE)

D* Length of data to be read

D 9B 0 VALUE

D*

DR R e X T

D* Prototype for close()

Cryptography

215

216

D***
D* value returned = 0 (OK), or -1

Dclose PR 9B O EXTPROC('close')

D* File descriptor returned from open()

D 9B 0 VALUE

D*
)y gy gy PR
D= *% Declares for sending messages to the

D= *% job log using the QMHSNDPM API

) gy
DMSG S 75 DIM(6) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(75)

D DS

DMSGTEXT 1 80

DSAPI 1 7

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(' ")
DMESSAGEFILE S 21 INZ(' ")
DMSGKEY S 4 INZ(D)

DMSGTYPE S 10 INZ('*INFO)
DSTACKENTRY S 10 INZ (' ")
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

C*
C**
C+ START OF PROGRAM *
C* *
C *ENTRY PLIST

C PARM FILEPARM 50

C**

C* Open certificate file
C**

C* - *

C* % Build path name *

C* Hmmmmmmm—mm——————————— *

C EVAL PATHLEN = %LEN(%TRIM(FILEPARM))
C PATHLEN SUBST FILEPARM:1 PATH

C* T - *

C+ =+ Open the file *

C* - *

C EVAL FILED = open(PATH: OFLAG)

C* Hemmmemememe——c———————— *

Cx * Check if open worked =

C* Kmmmmmmm e ————— *

C FILED IFEQ -1

C* g *

Cx * Open failed, send an error message *

C* K e — —— ——————— —————————————————— *

C MOVEL MSG(1) MSGTEXT

C EXSR SNDMSG

C RETURN

C*

C ENDIF

C* g Sy g *
C* * Open worked, read certificate and close the file *
C* Sy S U S Sy R S S SRSy *
C EVAL TOKENLEN = read(FILED: TOKEN: TOKENLEN)
C CALLP close (FILED)

C*

C* gy *

C* * Check if read operation was 0K *

C* gy *

C TOKENLEN IFEQ -1

C MOVEL MSG(2) MSGTEXT

System i: Networking Cryptographic hardware

C*
C*
C*
C*

C*

EXSR SNDMSG
RETURN
ENDIF

* Check if certificate length is valid =*
* The length bytes start at position 3 =*

K *
EVAL MSB = TOKENARRAY (3)
EVAL LSB = TOKENARRAY (4)
LENGTH IFLT TOKENLEN
K *
* Certificate length is not valid =
K o *
MOVEL MSG(3) MSGTEXT
EXSR SNDMSG
RETURN
ENDIF

C**

C*
C*
C*
C*
C*
C*
C*
C*
C*
C*

Find the certificate in the token
The Tayout of the token is

- Token header - 8 bytes - including 2 Tength bytes

- Public key section - length bytes at position 3 (11 overall)
- Private key name - 68 bytes

Certificate section

Note: 1 is added because RPG arrays start at 1.

C**

C
C
C
C
C*
C*
C*
C*
C*
C*
C
C
C
C
C*
C*
C*
C*
C*
C*

C
C
C
C
C
C
C*

C*
C*
C*
C*

OOOO0O

EVAL MSB = TOKENARRAY(11)

EVAL LSB = TOKENARRAY(12)

EVAL PUBSECLEN = LENGTH

EVAL TKNINDEX = PUBSECLEN + 68 + 8 + 1
K o - *

* Determine length of certificate section *
* Length bytes are at position 2 of the =*

* section.

I e e e T e *
EVAL MSB = TOKENARRAY (TKNINDEX + 2)
EVAL LSB = TOKENARRAY (TKNINDEX + 3)
EVAL CRTSECLEN = LENGTH
EVAL TMPINDEX = TKNINDEX + 4

K o *

* Parse each subsection of the certificate until the =
* signature subsection is found or the end is reached.*

% (Identifier for signature subsection is Hex 45.) *
K o o - *
DOW (TOKENARRAY (TMPINDEX) <> X'45') AND
(TMPINDEX < TKNINDEX + CRTSECLEN)
EVAL MSB = TOKENARRAY (TMPINDEX + 2)
EVAL LSB = TOKENARRAY (TMPINDEX + 3)
TMPINDEX ADD LENGTH TMPINDEX
ENDDO
Ko o o *
* Check if no signature was found before the end of =
* the certificate section. *
L L L L L T T T L *
IF TOKENARRAY (TMPINDEX) <> X'45'
MOVEL MSG(4) MSGTEXT
EXSR SNDMSG
RETURN
ENDIF

Cryptography 217

218

C*
C**
C* Hash the certificate

C*********** """"""""" KAXXAKAKA KAk *hhhkhhhhhhhhhhkhhhhkhkhkhdkx
C* K e *

Cx * Calculate the Tength to hash *

C* K o *

C EVAL TXTLENGTH = TMPINDEX - TKNINDEX + 70
C* K *

Cx * Set the keywords in the rule array *

C* K *

C MOVEL 'SHA-1 ! RULEARRAY

C Z-ADD 1 RULEARRAYCNT
C* Kmmmmmmm e —————— *

Cx * Call One Way Hash SAPI =

C* K m e mm e ————— *

C CALLP CSNBOWH (RETURNCODE :

C REASONCODE :

C EXITDATALEN:
C EXITDATA:

C RULEARRAYCNT:
C RULEARRAY :

C TXTLENGTH:

C TOKENARRAY (TKNINDEX) :
C CHAINVCTLEN:
C CHAINVCT:

C HASHLEN:

C HASH)

CHk Fomm e *

C* = Check the return code =

Ck Feomm e *

C RETURNCODE IFGT 0

C* K mm e m e *

C* * Send failure message *

C* Ko m e m *

C MOVEL MSG(5) MSGTEXT

C MOVE RETURNCODE FAILRETC

C MOVE REASONCODE FAILRSNC

C MOVEL "CSNBOWH' SAPI

C EXSR SNDMSG

C RETURN

C ENDIF

C*

Crrrkkkhrhkhhkrkhhkkhkhrkkhkhrkx ek Kok ok ok ok ok ok ok ok ok ok ok *kkkkhhkkh

C* Register the certificate hash
C**

C* K e mm e m e m— e ———————— *

C+ =+ Set the keywords in the rule array *

C* K e e e —— e — e ———————— *

C MOVEL 'SHA-1 ! RULEARRAY

C MOVE '"CLONE ! RULEARRAY

C Z-ADD 2 RULEARRAYCNT

C* g *

Cx * Build the key name (FILENAME.RETAINED) =*

(3 gy g *

C EVAL %SUBST(NAME: 1: PATHLEN) =

C %SUBST (PATH: 1: PATHLEN)
C EVAL %SUBST (NAME : PATHLEN+1:9) = '.RETAINED'
C* gy *

C+x =+ Call PKA Public Key Hash Register =*

C* gy *

C CALLP CSNDPKH (RETURNCODE :

C REASONCODE :

C EXITDATALEN:

C EXITDATA:

C RULEARRAYCNT:

System i: Networking Cryptographic hardware

%
Th
Th
Th
Th
CS
Th

C RULEARRAY :
C NAME :

C HASHLEN:

C HASH)
e s *

C* * Check the return code =*

Ck Hmmm e e *

C RETURNCODE IFGT 0

Cx 3 *

C* * Send failure message *

C* Ko mm e m e mmm e *

C MOVEL MSG(5) MSGTEXT

C MOVE RETURNCODE FAILRETC

C MOVE REASONCODE FATLRSNC

C MOVEL 'CSNDPKH' SAPI

C EXSR SNDMSG

C ELSE

Cx Ko mm e m e *

C* * Send success message *

C* K e —mm———am *

C MOVEL MSG(6) MSGTEXT

C EVAL %SUBST(MSGTEXT: 41: PATHLEN + 9) =
C %SUBST(NAME: 1: PATHLEN +
C EXSR SNDMSG

C ENDIF

C*

C SETON

C*

C**

C* Subroutine to send a message
C**

C SNDMSG BEGSR

C CALL 'QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY
C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C ENDSR

e file could not be opened.

ere was an error reading from the file.

e length of the certificate is not valid.

e certificate is not valid.

NBOWH failed with return/reason codes 9999/9999.
e hash was successfully registered as

Example: ILE C program for registering a public key certificate:

9)

LR

Change this i5/0S ILE C program example to suit your needs for registering a public key certificate.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

/*
/*
/*
/*
/*
/*
/*
/*
/*

REGPUBKEY

Sample program to register a CCA public key certificate
COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007

This material contains programming source code for your

consideration. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot

*/
*/
*/
*/
*/
*/
*/
*/
*/

Cryptography 219

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

guarantee or imply reliability, serviceability, or function

of these program. A1l programs contained herein are

provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
these programs and files.

Note: Input format is more fully described in Chapter 2 of
IBM CCA Basic Services Reference and Guide */
(SC31-8609) publication.

Parameters: Stream file containing public key certificate

Example:
CALL PGM(REGPUBKEY) PARM(CERTFILE)

Note: This program assumes the card with the profile is
already identified either by defaulting to the CRPO1
device or by being explicitly named using the
Cryptographic_Resource_Allocate verb. Also this
device must be varied on and you must be authorized
to use this device description.

The Common Cryptographic Architecture (CCA) verb used is
PKA_Public_Key Register (CSNDPKR).

Use these commands to compile this program on the system:

ADDLIBLE LIB(QCCA)

CRTCMOD MODULE (REGPUBKEY) SRCFILE(SAMPLE)

CRTPGM PGM(REGPUBKEY) MODULE (REGPUBKEY)
BNDDIR(QCCA/QC6BNDDIR)

Note: Authority to the CSNDPKR service program
in the QCCA Tibrary is assumed.

#include <stdio.h>
#include <string.h>
#include "csucincl.h"

int main(int argc, char xargv[])

Tong return_code = 0;

Tong reason_code = 0;

Tong exit_data_length = 0;
char exit_data[4];

char rule_array[24];

Tong rule_array_count;
long token_len = 2500;
char token[2500];

2y
Tong pub_sec_len; /* Public section length

Tong cert_sec_len; /* Certificate section length

long offset; /* 0ffset into token

Tong tempOffset; /* (Another) Offset into token

char name[64]; /* Registered key name

long count; /* Number of bytes read from file

FILE *fp; /* File pointer

220 System i: Networking Cryptographic hardware

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

if (argc < 2) /* Check the number of parameters passed x/

{
printf("Need to enter a public key name\n");
return 1;
}
memset (name, ' ',64); /* Copy key name (and pad) to a 64 byte =x/
/* field. */
memcpy (name,argv[1],strlen(argv[1]));
fp = fopen(argv[1],"rb"); /* Open the file for reading */
if (!fp)
{
printf("File %s not found.\n",argv[1]);
return 1;
}
memset (token,0,2500) ; /* Initialize the token to 0 */
count = fread(token,1,2500,fp); /* Read the token from the file */
fclose(fp); /* Close the file */
/* Determine length of token from length x/
/* bytes at offset 2 and 3. */
token_len = ((256 * token[2]) + token[3]);
if (count < token_len) /* Check if whole token was read in */
{
printf("Incomplete token in file\n");
return 1;

}

/**/

/* Find the certificate length in the token */
/* */
/* The Tayout of the token is */
/* */
/* - Token header - 8 bytes - including 2 Tength bytes */
/* - Public key section - length bytes at offset 2 */
/* - Private key name - 68 bytes */
/* - Certificate section */

/**/

pub_sec_len = ((256 * token[10]) + token[11]);

offset = pub_sec_len + 68 + 8; /* Set offset to certiicate section */
/* Determine certificate section */
/* length from the length bytes at =/
/* offset 2 of the section. */

cert_sec_len = ((256 * token[offset + 2]) + token[offset + 3]);

/**/

/* Register the Public Key */
/**/
memcpy ((void*)rule_array,"CLONE ",8); /* Set rule array */

rule_array_count = 1;
/* Build the name of the retained =*/
/* key from the file and "RETAINED"*/
memcpy (&name[strlen(argv[1])],".RETAINED",9);

CSNDPKR(&return_code, &reason_code, &exit data_length,
exit_data,
&rule_array_count,
(unsigned char*)rule_array,
name,
&cert_sec_Ten,
&token[offset]);

if (return_code != 0)

Cryptography 221

{

printf("Public Key Register Failed : return reason %d/%d\n",

return_code, reason_code);

return 1;

}

name[strlen(argv[1]) + 9] = 0; /* Convert name to a string */
printf("Public key registered for %s.\n",name);

}

Example: ILE RPG program for registering a public key certificate:

Change this i5/0S ILE RPG program example to suit your needs for registering a public key certificate.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

222

D***
D* REGPUBKEY

D*

D+ Sample program to register a CCA public key

D+ certificate.

D*

D*

D* COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

D*

D+ This material contains programming source code for your

D* consideration. These example has not been thoroughly

D+ tested under all conditions. IBM, therefore, cannot

D* guarantee or imply reliability, serviceability, or function
D+ of these programs. All programs contained herein are

Dx provided to you "AS IS". THE IMPLIED WARRANTIES OF

D* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

D+ ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
D* these programs and files.

D*

D*

Dx Note: Input format is more fully described in Chapter 2 of
D* IBM CCA Basic Services Reference and Guide

D* (SC31-8609) publication.

D*

D+ Parameters: Stream file containing public key certificate
D*

D* Example:
D CALL PGM(REGPUBKEY) PARM(CERTFILE)
D*

D* Use these commands to compile this program on the system:
Dx CRTRPGMOD MODULE (REGPUBKEY) SRCFILE(SAMPLE)
D* CRTPGM PGM(REGPUBKEY) MODULE (REGPUBKEY)

D* BNDDIR(QCCA/QC6BNDDIR)

D*

D* Note: Authority to the CSNDPKR service program
D* in the QCCA Tibrary is assumed.

D*

D* The Common Cryptographic Architecture (CCA) verbs used are
D* PKA Public_Key Register (CSNDPKR).
D*

(DR R T

)y ey gy Sy Sy iy gy Yy Ay Ry Sy S ey
D* *x Return code

DRETURNCODE S 9B 0

D *% Reason code

DREASONCODE S 9B 0

D= *% Exit data length

DEXITDATALEN S 9B 0

System i: Networking Cryptographic hardware

D* *x Exit data

DEXITDATA S 4

D* *% Rule array count
DRULEARRAYCNT S 9B 0

D* *% Rule array

DRULEARRAY S 16

D* *%x Token Tength

DTOKENLEN S 9B 0 INZ(2500)

D* ** Token and array for subscripting token
DTOKEN DS 2500

DTOKENARRAY 1 DIM(2500)

D* ** Name of retained key

DNAME S 64

D* *% Structure used for aligning 2 bytes into a
D* *% 2 byte integer.

DLENSTRUCT DS 2

DMSB 1 1

DLSB 2 2

DLENGTH 1 2B 0

D* *% Certificate section Tength
DCRTSECLEN S 9B 0

D* *% Public key section length
DPUBSECLEN S 9B 0

D* *% Index into PKA key token
DTKNINDEX S 9B 0

D* *x Index into PKA key token
DTMPINDEX S 9B 0

D* ** File descriptor

DFILED S 9B 0

D* ** File path and path length
DPATH S 80 INZ (*ALLX'00")
DPATHLEN S 9B 0

D* ** Open Flag - Open for Read only
DOFLAG S 101 0 INZ(1)

D*

D**

D+ Prototype for PKA_Public_Key Register (CSNDPKR)

DR L X T

DCSNDPKR PR

DRETCOD 9B 0
DRSNCOD 9B 0
DEXTDTALN 9B 0
DEXTDT 4
DRARRYCT 9B 0
DRARRY 16
DKYNAM 64
DCRTLEN 9B 0
DCRT 500 OPTIONS (*VARSIZE)
D*

D**

D* Prototype for open()

D**
D* value returned = file descriptor (0K), -1 (error)

Dopen PR 9B © EXTPROC('open')

D= path name of file to be opened.

D 128 OPTIONS(*VARSIZE)

D* Open flags

D 9B 0 VALUE

D~ (OPTIONAL) mode - access rights

D 10U 0 VALUE OPTIONS(*NOPASS)
D= (OPTIONAL) codepage

D 10U 0 VALUE OPTIONS(*NOPASS)
D*

D***

D* Prototype for read()

D**
D* value returned = number of bytes actually read, or -1

Cryptography

223

224

Dread PR 9B O EXTPROC('read')

Dx File descriptor returned from open()

D 9B 0 VALUE

D= Input buffer

D 2500 OPTIONS (*VARSIZE)
D* Length of data to be read

D 9B 0 VALUE

D*

DR R e o L

D* Prototype for close()

D*********** """"""""" dhhkkkhkhhkrhhkhhhhhhhdrhhrhhhhhhdhhhdrhdhrhhrd
D* value returned = 0 (0K), or -1

Dclose PR 9B 0 EXTPROC('close')

Dx File descriptor returned from open()

D 9B 0 VALUE

D*

) gy gy
D= ** Declares for sending messages to the

D* *% job log using the QMHSNDPM API

) g g
DMSG S 75 DIM(5) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(75)

D DS

DMSGTEXT 1 80

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(D)
DMESSAGEFILE S 21 INZ(' D)
DMSGKEY S 4 INZ(D)

DMSGTYPE S 10 INZ('*INFO ")
DSTACKENTRY S 10 INZ('~* ")
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

C*

[T L T R T *k ok ok ok kok ok k% *kk
C+ START OF PROGRAM *
C* *
C *ENTRY PLIST

C PARM FILEPARM 50

C**
C* Open certificate file

C**** """""""""""" khhkkkhhhkkhhkhhhhdhrhdhrhhhhhhdhhhdhrkhdkx
C* L Ry S —— *

C* % Build path name *

C* Kmmmmmmm e — e — *

C EVAL PATHLEN = %LEN(%TRIM(FILEPARM))
C PATHLEN SUBST FILEPARM:1 PATH

C* Ty p——— *

C+ =+ Open the file *

C* L IO TR S S *

C EVAL FILED = open(PATH: OFLAG)

C* Kmmmmm e m e ————— *

C+ * Check if open worked =

C* Sy *

C FILED IFEQ -1

C* K e —— —— —————————————— e ——————— *

Cx * Open failed, send an error message *

C* ey *

C MOVEL MSG(1) MSGTEXT

C EXSR SNDMSG

C RETURN

C*

C ENDIF

C* S S S S Sy S S S SRSy *
C* * Open worked, read certificate and close the file *

System i: Networking Cryptographic hardware

C* gy Ry *

C EVAL TOKENLEN = read(FILED: TOKEN: TOKENLEN)
C CALLP close (FILED)
C*

C* g gy *

C* * Check if read operation was 0K *

C* K m e mm e m e mm e — e ———————— *

C TOKENLEN IFEQ -1

C MOVEL MSG(2) MSGTEXT
C EXSR SNDMSG

C RETURN

C ENDIF

C*

C* K e e mmm e mm e mm e — e ——————— *

C* * Check if certificate length is valid *

C* * The length bytes start at position 3 =*

C* g gy *

C EVAL MSB = TOKENARRAY (3)

C EVAL LSB = TOKENARRAY (4)

C LENGTH IFLT TOKENLEN

C* K m e mmm e mm e mm e m e —————————— *

C* * Certificate length is not valid =

C* K e e mmm e m e m— e m— e —————————— *

C MOVEL MSG(3) MSGTEXT
C EXSR SNDMSG

C RETURN

C ENDIF

C*

C**
C* Find the certificate in the token

C*

C* The layout of the token is

C*

C* - Token header - 8 bytes - including 2 length bytes

Cx - Public key section - length bytes at position 3 (11 overall)
C* - Private key name - 68 bytes

C* - Certificate section

C*

C* Note: 1 is added because RPG arrays start at 1.
C**

C EVAL MSB = TOKENARRAY (11)

C EVAL LSB = TOKENARRAY (12)

C EVAL PUBSECLEN = LENGTH

C EVAL TKNINDEX = PUBSECLEN + 68 + 8 + 1
C*

C* K e m — m— ——— ———————————————————————— *

C* * Determine Tength of certificate section *

C* * Length bytes are at position 2 of the =*

C* * section.

C* gy gy *

C EVAL MSB = TOKENARRAY (TKNINDEX + 2)
C EVAL LSB = TOKENARRAY (TKNINDEX + 3)
C EVAL CRTSECLEN = LENGTH

C*

C**

C* Register the public key

C**

C* K ———————— *

Cx * Set the keywords in the rule array *

C* gy, *

C MOVEL '"CLONE ! RULEARRAY

C Z-ADD 1 RULEARRAYCNT

C* gy *

C+ % Build the key name (FILENAME.RETAINED) =

C* K e ————— *

C EVAL %SUBST(NAME: 1: PATHLEN) =

C %SUBST (PATH: 1: PATHLEN)

Cryptography

225

C EVAL %SUBST (NAME : PATHLEN+1:9) = '.RETAINED'

C* Ko —————————— *

C+ =« Call PKA Public Key Register =*

C* L S S RSy *

C CALLP CSNDPKR (RETURNCODE :

C REASONCODE :

C EXITDATALEN:

C EXITDATA:

C RULEARRAYCNT:

C RULEARRAY :

C NAME :

C CRTSECLEN:

C TOKENARRAY (TKNINDEX))
Ck Fmmm e *

C* = Check the return code =*

Ck Fomm e *

C RETURNCODE IFGT 0

C* K mmm e m e *

C* * Send failure message *

C* Kmmm e mm e ——————— *

C MOVEL MSG (4) MSGTEXT

C MOVE RETURNCODE FAILRETC

C MOVE REASONCODE FATLRSNC

C EXSR SNDMSG

C ELSE

C* g *

C* * Send success message *

C* gy *

C MOVEL MSG(5) MSGTEXT

C EVAL %SUBST (MSGTEXT: 41: PATHLEN + 9) =
C %SUBST(NAME: 1: PATHLEN + 9)
C EXSR SNDMSG

C ENDIF

C*

C SETON LR

C*
Chkkkkkhkkhrhhhrkhhhhhhhkhkhhkhrhhhrhhhrkhhhkhkhkhrkhhhrhhhrhhhrkhkhxk

C* Subroutine to send a message
C**

C SNDMSG BEGSR

C CALL 'QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY
C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C ENDSR

**

The file could not be opened.

There was an error reading from the file.

The length of the certificate is not valid.
CSNDPKR failed with return/reason codes 9999/9999.
The hash was successfully registered as

Example: ILE C program for certifying a public key token:

Change this i5/0S ILE C program example to suit your needs for certifying a CCA public key certificate
to be used for master key cloning.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

226 System i: Networking Cryptographic hardware

/* CERTKEY */
/* */
/* Sample program to certify a CCA public key certificate to be */
/* used for master key cloning. */
/* */
/* COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/* of these program. A1l programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* ARE EXPRESSLY DISCLAIMED. IBM provides no program services for */
/* these programs and files. */
/* */
/* */
/* Note: Input format is more fully described in Chapter 2 of */
/* IBM CCA Basic Services Reference and Guide */

/* (SC31-8609) publication. */
/* */
/* Parameters: FILENAME - File containing public key token =*/
/* RETAINED_KEY_NAME - Name of key to certify token */
/* */
/* Example: */
/* CALL PGM(CERTKEY) PARM(MYKEY.PUB CERTKEY) */
/* */
/* */
/* Note: This program assumes the card with the profile is */
/* already identified either by defaulting to the CRPO1 */
/* device or by being explicitly named using the */
/* Cryptographic_Resource_Allocate verb. Also this */
/* device must be varied on and you must be authorized */
/* to use this device description. */
/* */
/* The Common Cryptographic Architecture (CCA) verbs used are */
/* Digital_Signature_Generate (CSNDDSG) and One_Way Hash (CSNBOWH). */
/* */
/* Use these commands to compile this program on the system: */
/* ADDLIBLE LIB(QCCA) */
/* CRTCMOD MODULE(CERTKEY) SRCFILE(SAMPLE) */
/* CRTPGM PGM(CERTKEY) MODULE (CERTKEY) */
/* BNDDIR(QCCA/QC6BNDDIR) */
/% x/
/* Note: Authority to the CSNDDSG and CSNBOWH service programs */
/* in the QCCA library is assumed. */
/* */
e */

#include <stdio.h>
#include <string.h>
#include "csucincl.h"
#include "decimal.h"

extern void QDCXLATE(decimal(5,0), char =, char*, char =);
#pragma linkage (QDCXLATE, 0S, nowiden)

int main(int argc, char xargv[])

{

L LR */
/* Declares for CCA parameters */
Ty */

long return_code = 0;

long reason_code = 0;

long exit_data_length = 0;
char exit_data[4];

Cryptography 227

char rule_array[24];

Tong rule_array_count;

Tong token len = 2500;

char token[2500];

Tong chaining_vector_length = 128;
Tong hash_length = 20;

Tong text_length;

unsigned char chaining_vector[128];
unsigned char hash[20];

Tong signature_length = 256;

Tong signature_bit_length;

e m e e e e */
/* Declares for working with a PKA token */
ey L */
Tong pub_sec_Ten; /* Public section length */
Tong cert_sec_len; /* Certificate section length */
long offset; /* 0ffset into token */
Tong tempOffset; /* (Another) Offset into token */
Tong tempLength; /* Length variable */
char name[64]; /* Private key name */
char SAname[64]; /* Share administration or certifying */

/* key name. */
char SAnameASCII[64]; /* Share admin key name in ASCII */
Tong SAname_length = 64; /* Length of Share admin key name */
long count; /* Number of bytes read from file */
decimal(5,0) xlate length = 64; /* Packed decimal variable */

/* needed for call to QDCXLATE. */
FILE *fp; /* File pointer */
if (argc < 3) /* Check the number of parameters passed */

printf("Need to enter a public key name and SA key\n");
return 1;

1

name[0] = 0; /* Make copy of name parameters x/
strcpy (name,argv[1]);

memset (SAname, ' ', 64); /* Make copy of Share Admin key name */

memcpy (SAname,argv[2],strlen(argv[2]));

fp = fopen(name,"rb"); /* Open the file containing the token */
if (!fp)
{
printf("File %s not found.\n",argv[1]);
return 1;
}
memset (token,0,2500) ; /* Read the token from the file */
count = fread(token,1,2500,fp);
fclose(fp);
/* Determine length of token from length x/
/* bytes at offset 2 and 3. */
token_len = ((256 * token[2]) + token[3]);
if (count < token_len) /* Check if whole token was read in */

printf("Incomplete token in file\n");
return 1;

}

/**/

/* Find the certificate offset in the token x/
/* */
/* The layout of the token is */
/* */
/* - Token header - 8 bytes - including 2 length bytes */
/* - Public key section - length bytes at offset 10 overall */
/* - Private key name - 68 bytes */

228 System i: Networking Cryptographic hardware

/* - Certificate section */
/* */
/**/

pub_sec_len = ((256 * token[10]) + token[11]);

offset = pub_sec_len + 68 + 8; /* Set offset to certiicate section

/* Determine certificate section
/* length from the length bytes at

/* offset 2 of the section.

cert_sec_len = ((256 * token[offset + 2]) + token[offset + 3]);
tempOffset = offset + 4; /* Set offset to first subsection

/* Parse each subsection of the certificate until the =*/
/* signature subsection is found or the end is reached.x/
/* (Identifier for signature subsection is Hex 45.) */

while(token[tempOffset] != 0x45 &&
tempOffset < offset + cert_sec_len)

{

tempOffset += 256 * token[tempOffset + 2] + token[tempOffset+3];

}
g */
/* Check if no signature was found before the end of =/
/* the certificate section. */
2y */
if (token[tempOffset] != 0x45)

{

printf("Invalid certificate\n");

return 1;

}

/***/
/* Replace Private key name in certificate with the */
/* Share admin key name (expressed in ASCII). */
/***/
text_length = tempOffset - offset + 70;

memcpy (SAnameASCII,SAname, 64) ;

2y */
/* Convert the Share Admin key name to ASCII */
T P */
QDCXLATE(x1ate_length, SAnameASCII, "QASCII ", "QSYS s

memcpy (&token[tempOffset + 6], SAnameASCII, 64);

/**/

/* Hash the certificate

/**/

memcpy ((void*)rule_array,"SHA-1 ",8);
rule_array_count = 1;
chaining_vector_length = 128;
hash_length = 20;

CSNBOWH(&return_code, &reason_code, &exit data_length,
exit_data,
&rule_array_count,
(unsigned char*)rule_array,
&text_length,
&token[offset],
&chaining_vector_length,
chaining_vector,
&hash_Tlength,
hash);

if (return_code != 0)

{

*/
*/
*/

Cryptography 229

printf("One_Way Hash Failed : return reason %d/%d\n",
return_code, reason_code);
return 1;

}

/**/
/* Create a signature */
/**/
memcpy ((void*)rule_array,"I1S0-9796",8);

rule_array count = 1;

CSNDDSG(&return_code, &reason_code, &exit_data_length,
exit_data,
&rule_array_count,
(unsigned char*)rule_array,
&SAname_length,

SAname,

&hash_length,

hash,
&signature_Tlength,
&signature_bit_length,
&token[tempOffset+70]);

if (return_code != 0)

printf("Digital Signature Generate Failed : return reason %d/%d\n",

return_code, reason_code);

return 1;

}
S S S S SRS */
/* Check if the new signature is longer than the */
/* original signature */
/g */

if((token[tempOffset + 2] * 256 + token[tempOffset + 3]) - 70 !=
signature_length)
{
printf("Signature Length change from %d to %d.\n",
token[tempOffset + 2] * 256 + token[tempOffset + 3] - 70,
signature_length);

/* Adjust Tength in signature subsection */
token[tempOffset + 2] = signature_length >> 8;
token[tempOffset + 3] = signature_length;

/* Adjust length in certificate section x/
token[offset + 2] = (text_length + signature_length) >> 8;
token[offset + 3] = text_length + signature_length;

/* Adjust Tength in token header section */

tempLength = 8 + pub_sec_Ten + 68 + text_length +
signature_length;

token[2] = tempLength >> 8;

token[3] = tempLength;

}

else templLength = token[2] * 256 + token[3];

/**/

/* Write certified public key out to a file */

/**/

strcat(name,".CRT"); /* Append .CRP to filename
fp = fopen(name,"wb"); /* Open the certificate file
if (1fp)
{

printf("File open failed for output\n");
}

else

230 System i: Networking Cryptographic hardware

*/
*/

{

fwrite(token, 1, tempLength, fp);

fclose(fp);

printf("Public token written to file %s.\n",name);

}
}

Example: ILE RPG program for certifying a public key token:

Change this i5/0S ILE RPG program example to suit your needs for certifying a CCA public key

certificate to be used for master key cloning.

Note: Read the [‘Code license and disclaimer information” on page 287] for important legal information.

D************************************** """"""""""""
D* CERTKEY

D*

D+ Sample program to certify a CCA public key certificate to be
D* used for master key cloning.

D*

D*

Dx COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

D*

D* This material contains programming source code for your

D* consideration. These example has not been thoroughly

D* tested under all conditions. IBM, therefore, cannot

D* guarantee or imply reliability, serviceability, or function
D* of these programs. A1l programs contained herein are

D* provided to you "AS IS". THE IMPLIED WARRANTIES OF

D+ MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

D+ ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
D* these programs and files.

D*

D*

D* Note: Input format is more fully described in Chapter 2 of
D IBM CCA Basic Services Reference and Guide

D~ (SC31-8609) publication.

D*

D+ Parameters: FILENAME - File containing public key token
D* RETAINED_KEY_NAME - Name of key to certify token
D*

D* Example:

Dx CALL PGM(CERTKEY) PARM(MYKEY.PUB CERTKEY)

D*

D+ Use these commands to compile this program on the system:
Dx CRTRPGMOD MODULE (CERTKEY) SRCFILE(SAMPLE)
D+ CRTPGM PGM(CERTKEY) MODULE(CERTKEY)

D BNDDIR(QCCA/QC6BNDDIR)

D*

D* Note: Authority to the CSNDDSG and CSNBOWH service programs
D* in the QCCA Tlibrary is assumed.

D*

Dx The Common Cryptographic Architecture (CCA) verbs used are
D+ Digital Signature Generate (CSNDDSG) and One_Way Hash (CSNBOWH).

D*
D**
gy S
D* Declare variables used by CCA SAPI calls
) gy gy S g
D* ** Return code

DRETURNCODE S 9B 0

D* ** Reason code

DREASONCODE S 9B 0

D ** Exit data length

DEXITDATALEN S 9B 0

Cryptography

231

D *x Exit data

DEXITDATA S 4

D= *% Rule array count

DRULEARRAYCNT S 9B 0

D* *% Rule array

DRULEARRAY S 16

D* *%x Token Tength

DTOKENLEN S 9B 0 INZ(2500)

D= *% Token and array for subscripting token
DTOKEN DS 2500

DTOKENARRAY 1 DIM(2500)

D* *% Chaining vector length

DCHAINVCTLEN S 9B 0 INZ(128)

D* ** Chaining vector

DCHAINVCT S 128

D= ** Hash length

DHASHLEN S 9B 0 INZ(20)

D* ** Hash

DHASH S 20

D* **% Text length

DTXTLENGTH S 9B 0

D= *% Signature length

DSIGLENGTH S 9B 0 INZ(256)

D= *% Signature length in bits

DSIGBITLEN S 9B 0
)y S Sy Sy Sy S RSy
D* Declare variables for working with tokens
)y Sy PSSy
D= *% NAMEPTR and NAME are used for copying
D= *% private key name

DNAMEPTR S *

DNAME S 64 BASED (NAMEPTR)

D* *x% Share administrator (certifying key) name length
DSANAMELEN S 9B 0

D* xx Share administrator (certifying key) name
DSANAME S 64

D= *%* Share administrator name expressed in ASCII
DSANAMEASC S 64

D= **% Certificate section Tength

DCRTSECLEN S 9B 0

D= *% Public key section Tength

DPUBSECLEN S 9B 0

D= *% Index into PKA key token

DTKNINDEX S 9B 0

D* *% Index into PKA key token

DTMPINDEX S 9B 0

D* *% Structure used for aligning 2 bytes into a
D= *% 2 byte integer.

DLENSTRUCT DS 2

DMSB 1 1

DLSB 2 2

DLENGTH 1 2B 0

D* ** File descriptor

DFILED S 9B 0

D* **% File path and path length

DPATH S 80 INZ(*ALLX'00")
DPATHLEN S 9B 0

D= ** Open flag - Create on open, open for writing,
D* *k and clear if exists
DOFLAGW S 101 O INZ(X'4A')

D= ** Open Flag - Open for Read only

DOFLAGR S 101 0 INZ(1)

D= ** Declares for calling QDCXLATE API
DXTABLE S 10 INZ('QASCII ")
DLIB S 10 INZ('QSYS ")
DXLATLEN S 5 0 INZ(64)

D

232 System i: Networking Cryptographic hardware

D*

DR R L X e e

D+ Prototype for Digital Signature Generate (CSNDDSG)

DR L R R

DCSNDDSG PR

DRETCOD 9B 0

DRSNCOD 9B 0

DEXTDTALN 9B 0

DEXTDT 4

DRARRYCT 9B 0

DRARRY 16

DKEYIDLEN 9B 0

DKEYID 2500 OPTIONS (*VARSIZE)
DHSHL 9B 0

DHSH 20 OPTIONS (*VARSIZE)
DSIGFLDL 9B 0

DSIGBTL 9B 0

DSIGFLD 256 OPTIONS (*VARSIZE)
D*

Dxkkkxkhhkkhkhhhkkhhkkkhhhkkhhkkkhhhkkkhhkkkhhkkkhhkxkhhdxxk

D* Prototype for One_Way Hash (CSNBOWH)

Dxkkkxkkhkkkhhhkkhhkrkkhhhkkhkhhkkkhhkkkhhkkkhhkkkhhkrkkhhkrxk

DCSNBOWH PR

DRETCOD 9B 0
DRSNCOD 9B 0
DEXTDTALN 9B 0
DEXTDT 4
DRARRYCT 9B 0
DRARRY 16
DTXTLEN 9B 0
DTXT 500 OPTIONS (*VARSIZE)
DCHNVCTLEN 9B 0
DCHNVCT 128
DHSHLEN 9B 0
DHSH 20

D*

D*

DR L X T

Dx Prototype for open()

D**
D* value returned = file descriptor (0K), -1 (error)

Dopen PR 9B © EXTPROC('open')

D* path name of file to be opened.

D 128 OPTIONS(*VARSIZE)

D Open flags

D 9B 0 VALUE

D= (OPTIONAL) mode - access rights

D 10U O VALUE OPTIONS(*NOPASS)
D* (OPTIONAL) codepage

D 10U O VALUE OPTIONS(*NOPASS)
D*

DR L X T

D* Prototype for read()

D**
D* value returned = number of bytes actually read, or -1

Dread PR 9B 0 EXTPROC('read')
D~ File descriptor returned from open()

D 9B 0 VALUE

D* Input buffer

D 2500 OPTIONS (*VARSIZE)
D* Length of data to be read

D 9B 0 VALUE

D*

D***

D* Prototype for write()

D**
D* value returned = number of bytes written, or -1

Cryptography

233

Dwrite PR 9B © EXTPROC('write')

Dx File descriptor returned from open()

D 9B 0 VALUE

D= Qutput buffer

D 2500 OPTIONS (*VARSIZE)
D= Length of data to be written

D 9B 0 VALUE

D*

(DR R o L R

D* Prototype for close()

D*********** """"""""" dhkkkhkhkrhhkhkhhhhhhhrhhxk *khkkkkkhkhkrhhkkhhkkkx
D* value returned = 0 (0K), or -1

Dclose PR 9B 0 EXTPROC('close')

Dx File descriptor returned from open()

D 9B 0 VALUE

D*

) gy gy
D= ** Declares for sending messages to the

D* *% job log using the QMHSNDPM API

) g g
DMSG S 75 DIM(7) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(75)

D DS

DMSGTEXT 1 75

DSAPI 1 7

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(" "
DMESSAGEFILE S 21 INZ(')
DMSGKEY S 4 INZ("

DMSGTYPE S 10 INZ ('*INFO ")
DSTACKENTRY S 10 INZ('*)
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

C*
C**
Cx START OF PROGRAM *
C**
C *ENTRY PLIST

C PARM FILEPARM 32
C PARM CKEY 32
C**** """""""""""" dhkkkhkhkkhkrhhkhkhhkhhhhkhrhhxk *khkkkkhkkkhhkkk

C* Open certificate file
C**

C* Kmmmmmmm e — e — *

C+ *% Build path name *

C* L *

C EVAL PATHLEN = %LEN(%TRIM(FILEPARM))
C PATHLEN SUBST FILEPARM:1 PATH

C* L IO TR S S *

Cx * Open the file *

C* Kmmmmmmm e ——— *

C EVAL FILED = open(PATH: OFLAGR)
C* Sy *

C* * Check if open worked *

C* K e e ———— *

C FILED IFEQ -1

C* ey *

C* * Open failed, send an error message *

C* Sy *

C MOVEL MSG(1) MSGTEXT
C EXSR SNDMSG

C RETURN

C*

C ENDIF

234 System i: Networking Cryptographic hardware

C* ey Ly s g *
C* * Open worked, read certificate and close the file =
C* gy iy gy *
C EVAL TOKENLEN = read(FILED: TOKEN: TOKENLEN)
C CALLP close (FILED)

C*

C* K m e mm e m e m e ——————————— *

C* * Check if read operation was 0K *

C* gy *

C TOKENLEN IFEQ -1

C MOVEL MSG(2) MSGTEXT

C EXSR SNDMSG

C ENDIF

C*

C* gy g *

C* * Check if certificate length is valid *

C* Sy Sy *

C EVAL MSB = TOKENARRAY (3)

C EVAL LSB = TOKENARRAY (4)

C LENGTH IFLT TOKENLEN

C* K m e mmm e mm e mm e m e —————————— *

C* * Certificate length is not valid =

C* K e e *

C MOVEL MSG(3) MSGTEXT

C EXSR SNDMSG

C RETURN

C ENDIF

C*

C**
C* Find the certificate in the token

C*

C* The layout of the token is

C*

C* - Token header - 8 bytes - including 2 length bytes

C* - Public key section - length bytes at offset 2

C* - Private key name - 68 bytes

Cx - Certificate section

C*

C**

C* K *
C* * Certificate starts after the public key header section *
C* K *
C EVAL MSB = TOKENARRAY (11)

C EVAL LSB = TOKENARRAY (12)

C EVAL PUBSECLEN = LENGTH

C EVAL TKNINDEX = PUBSECLEN + 68 + 8 + 1
C*

C* K *

C* * Determine Tength of certificate section *

C* K e mm e m e m e — e ———————— *

C EVAL MSB = TOKENARRAY (TKNINDEX + 2)

C EVAL LSB = TOKENARRAY (TKNINDEX + 3)

C EVAL CRTSECLEN = LENGTH

C EVAL TMPINDEX = TKNINDEX + 4

C*

C* K *

C* * Parse each subsection of the certificate until the =

C* * signature subsection is found or the end is reached.*

C* % (Identifier for signature subsection is Hex 45.) *

C* K *

C DOW (TOKENARRAY (TMPINDEX) <> X'45') AND
C (TMPINDEX < TKNINDEX + CRTSECLEN)
C EVAL MSB = TOKENARRAY (TMPINDEX + 2)

C EVAL LSB = TOKENARRAY (TMPINDEX + 3)

C TMPINDEX ADD LENGTH TMPINDEX

C ENDDO

C*

Cryptography 235

C* oy ey gy *
C* * Check if no signature was found before the end of =*

C* * the certificate section. *

C* K *

C IF TOKENARRAY (TMPINDEX) <> X'45'

C MOVEL MSG(4) MSGTEXT

C EXSR SNDMSG

C RETURN

C ENDIF

C*

C*********** """"""""" AXKXKA*A**hhkhkdhhhhhhhhhhhhkhk*k ER R T

C* Sign the Certificate

C**

C* K *
C* * Convert the Certifying Keyname to ASCII *
C* K e *
C EVAL SANAMELEN = %LEN(%TRIM(CKEY))
C SANAMELEN SUBST CKEY:1 SANAME

C MOVEL SANAME SANAMEASC

C CALL 'QDCXLATE"

C PARM XLATLEN

C PARM SANAMEASC

C PARM XTABLE

C PARM LIB

C* K *
C* * Replace the private key name in the certificate *
C* K *
C EVAL NAMEPTR = %ADDR(TOKENARRAY (TMPINDEX + 6))
C MOVEL SANAMEASC NAME

C* K *
C* * Calculate length of data to hash *
Cx * TKNINDEX is the start of the certificate, *
C* * TMPINDEX is start of signature subsection, *
C* * signature subsection header is 70 bytes Tong *
C* K e *
C EVAL TXTLENGTH = TMPINDEX - TKNINDEX + 70
C* K e e m e m e m e mm e mm e ———————————— *

C* * Set the keywords in the rule array *

C* K o m m —— — ——— — — ———— ————— e — e ——————————— *

C MOVEL 'SHA-1 ! RULEARRAY

C Z-ADD 1 RULEARRAYCNT

C* Kmm e mm e —— e ————————— *

C* * Call One Way Hash SAPI =

C* Kmmm e mm e m— e —————————— *

C CALLP CSNBOWH (RETURNCODE :

C REASONCODE:

C EXITDATALEN:

C EXITDATA:

C RULEARRAYCNT:

C RULEARRAY :

C TXTLENGTH:

C TOKENARRAY (TKNINDEX) :
C CHAINVCTLEN:

C CHAINVCT:

C HASHLEN:

C HASH)

Ck Fommm e *

C* = Check the return code =*

Ck Feommm e *

C RETURNCODE IFGT 0

C* Kmmmmmmmm e ——————— *

C* * Send failure message *

C* Kmmm e mm e ——————— *

C MOVEL MSG(5) MSGTEXT

C MOVE RETURNCODE FAILRETC

C MOVE REASONCODE FAILRSNC

C MOVEL "CSNBOWH' SAPI

236 System i: Networking Cryptographic hardware

OOOO0O
* %

C*

C*
C*
C*
C*

C*
C*
C*

C*
C*

o
*

OOOOOOOOOOOO 00O

C*

EXSR SNDMSG

RETURN
ENDIF
K o *
* Set the keywords in the rule array *
Ko o - *
MOVEL '1S0-9796' RULEARRAY
Z-ADD 1 RULEARRAYCNT
K o *
* Adjust TMPINDEX to where signature starts=*
* in the certificate *
K *
TMPINDEX ADD 70 TMPINDEX
K *
* Set the Key name Tength *
K o *
Z-ADD 64 SANAMELEN
K o *
* Call Digital Signature Generate SAPI =
K o *
CALLP CSNDDSG (RETURNCODE :
REASONCODE :
EXITDATALEN:
EXITDATA:
RULEARRAYCNT :
RULEARRAY:
SANAMELEN:
SANAME :
HASHLEN:
HASH:
SIGLENGTH:
SIGBITLEN:

TOKENARRAY (TMPINDEX))

RETURNCODE IFGT 0

K e ————— *

* Send failure message *

K e e e ————————— *
MOVEL MSG(5) MSGTEXT
MOVE RETURNCODE FAILRETC
MOVE REASONCODE FAILRSNC
MOVEL 'CSNDDSG' SAPI
EXSR SNDMSG
RETURN
ENDIF

* Check if the new signature is Tonger than the *
* original signature *

*% Adjust TMPINDEX back the start of the subsection

TMPINDEX SUB 70 TMPINDEX
*x Get two byte length of subsection
EVAL MSB = TOKENARRAY (TMPINDEX + 2)
EVAL LSB = TOKENARRAY (TMPINDEX + 3)
** Subtract length of subsection header
LENGTH SUB 70 LENGTH
*% Compare old Tength with new length
LENGTH IFNE SIGLENGTH
K e e e e e —————— *
* Adjust certificate lengths *
K o *
*% Adjust signature length
EVAL LENGTH = SIGLENGTH
EVAL TOKENARRAY (TMPINDEX + 2) = MSB

Cryptography 237

C EVAL TOKENARRAY (TMPINDEX + 3) = LSB
C* **% Adjust certificate section length

C EVAL LENGTH = LENGTH + TXTLENGTH

C EVAL TOKENARRAY (TKNINDEX + 2) = MSB
C EVAL TOKENARRAY (TKNINDEX + 3) = LSB
Cx *% Adjust length in token header section

C EVAL LENGTH = LENGTH + 8 + PUBSECLEN + 68
C EVAL TOKENARRAY (3) = MSB

C EVAL TOKENARRAY (4) = LSB

C Z-ADD LENGTH TOKENLEN

C ENDIF

C*

C**

C* Write certified public key out to a file

C**
C* **% Build path name

C EVAL %SUBST (PATH:PATHLEN+1:4) = '.CRT'
C*

C* **% Open the file

C*

C EVAL FILED = open(PATH: OFLAGW)

C*

C* ** Check if open worked

C*

C FILED IFEQ -1

C*

C* ** Open failed, send an error message

C*

C MOVEL MSG(6) MSGTEXT

C EXSR SNDMSG

C*

C ELSE

C*

C* ** Open worked, write certificate out to file and close file
C*

C CALLP write (FILED:

C TOKEN:

C TOKENLEN)

C CALLP close (FILED)

C*

C* ** Send completion message

C*

C MOVEL MSG(7) MSGTEXT

C EVAL %SUBST (MSGTEXT: 41: PATHLEN + 4) =
C %SUBST(PATH: 1: PATHLEN + 4)
C EXSR SNDMSG

C ENDIF

C*

C SETON

C*

C*********** """"""""" khkkkhkhhkrhhkhkhhkhhhhkhrhhxk *khkkkkkkhhkkk

C* Subroutine to send a message
C**

C SNDMSG BEGSR

C CALL 'QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY
C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C ENDSR

C*

*%

238 System i: Networking Cryptographic hardware

The input file could not be opened.

There was an error reading from the file.

The Tength of the certificate is not valid.

The certificate is not valid.

CSNBOWH failed with return/reason codes 9999/9999.
The output file could not be opened.

The certified token was written to file

Example: ILE C program for obtaining a master key share:

Change this i5/0S ILE C program example to suit your needs for obtaining a master key share.

Note: Read the [‘Code license and disclaimer information” on page 287] for important legal information.

/* GETSHARE

/*

/* Sample program to obtain a master key share as part of the
/* master key cloning process.

/*

/* COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007

/*

/* This material contains programming source code for your
/* consideration. These examples have not been thoroughly
/* tested under all conditions. IBM, therefore, cannot

/* guarantee or imply reliability, serviceability, or function
/* of these program. A1l programs contained herein are

/* provided to you "AS IS". THE IMPLIED WARRANTIES OF

/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

/* ARE EXPRESSLY DISCLAIMED. IBM provides no program services for

/* these programs and files.

/*

/*

/* Note: Input format is more fully described in Chapter 2 of
/* IBM CCA Basic Services Reference and Guide

/* (SC31-8609) publication.

/*

/* Parameters: Share number

/* Name of share sender private key

/* Name of certifying key

/* Stream file containing receiver certificate
/*

/*

/* Example:

/* CALL PGM(GETSHARE) PARM(2 SENDR SAKEY RECVR.PUB)
/*

/*

/* Note: This program assumes the card with the profile is

/* already identified either by defaulting to the CRPO1
/* device or by being explicitly named using the

/* Cryptographic_Resource_Allocate verb. Also this

/* device must be varied on and you must be authorized
/* to use this device description.

/*

/* The Common Cryptographic Architecture (CCA) verbs used is
/* Master_Key Distribution (CSUAMKD).

/*

/* Use these commands to compile this program on the system:
/* ADDLIBLE LIB(QCCA)

/* CRTCMOD MODULE(GETSHARE) SRCFILE(SAMPLE)

/* CRTPGM PGM(GETSHARE) MODULE (GETSHARE)

/* BNDDIR(QCCA/QC6BNDDIR)

/*

/* Note: Authority to the CSUAMKD service program

/* in the QCCA Tibrary is assumed.

/*

= m m e e e e e

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Cryptography 239

#include <stdio.h>
#include <string.h>
#include "csucincl.h"
#include "decimal.h"

extern void QDCXLATE(decimal(5,0), char *, char*, char *);
#pragma linkage (QDCXLATE, 0S, nowiden)

int main(int argc, char xargv[])

Ty */
/* Declares for CCA parameters */
e */

Tong return_code = 0;

Tong reason_code = 0;

Tong exit_data_length = 0;
char exit_data[4];

char rule_array[24];

Tong rule_array_count;

Tong token_len = 2500;

char token[2500];

long clonelnfoKeylLength = 500;
unsigned char cloneInfoKey[500];
long clonelnfolLength = 400;
unsigned char cloneInfo[400];
long shareldx;

char name[64];

char SAname[64];

i */
/* Declares for working with a PKA token */
S S S S S Sy S USSRy */
Tong pub_sec_Ten; /* Public section length */
Tong prv_sec_len; /* Private section length */
Tong cert_sec_len; /* Certificate section length */
Tong info_subsec_Ten; /* Information subsection length */
long offset; /* Offset into token */
Tong tempOffset; /* (Another) Offset into token */
Tong tempLength; /* Length variable */
Tong templLenl, templLen2; /* temporary length variables */
char cloneShare[] = "cloneShare00"; /* Base cloning share filename */
Tong count; /* Number of bytes read in from file */

decimal(15,5) shareParm; /* Packed 15 5 var used for converting =/
/* from packed 15 5 to binary. Numeric =/
/* parms on system are passed as dec 15 5%/
FILE *fp; /* File pointer */

if (argc < 5) /* Check the number of parameters passed x/

printf("Need to Share index, Sender name, SA name, and cert\n");
return 1;

}

/* Convert the packed decimal 15 5 parm */
/* to binary. */
memcpy (&shareParm,argv[1],sizeof(shareParm));
shareldx = shareParm;

memset (name,' ',64); /* Copy the Private key name parm to a */
memcpy (name,argv[2],strlen(argv(2])); /* 64 byte space padded var. =/
memset (SAname, ' ',64); /* Copy the Share Admin name parm to a */

memcpy (SAname,argv[3],strlen(argv[3]));/* 64 byte space padded var. =/

fopen(argv[4],"rb"); /* Open the file containing the token */

fp =
f (!fp)

i

printf("File %s not found.\n",argv[4]);
return 1;

240 System i: Networking Cryptographic hardware

}

memset (token,0,2500) ; /* Read the token from the file
count = fread(token,1,2500,fp);

fclose(fp); /* Close the file
/* Determine length of token from length

/* bytes at offset 2 and 3.
token_len = ((256 * token[2]) + token[3]);

if (count < token_len) /* Check if whole token was read in
{
printf("Incomplete token in file\n");
return 1;

}

/**/

/* Find the certificate offset in the token */
/* */
/* The Tayout of the token is */
/* */
/* - Token header - 8 bytes - including 2 Tength bytes */
/* - Public key section - length bytes at offset 10 overall =/
/* - Private key name - 68 bytes */
/* - Certificate section */
/* */

/**/

pub_sec_len = ((256 * token[10]) + token[11]);

offset = pub_sec_len + 68 + 8; /* Set offset to certiicate section */

/* Determine certificate section

/* length from the length bytes at

/% offset 2 of the section.
cert_sec_len = ((256 * token[offset + 2]) + token[offset + 3]);

JEZEIIIED ok kxx I IR KRRk hhkkxhhh kKK k% kKK xR I IR KRRk hhkkrhhh Kk kK ko k *kkkkk [
/* Obtain a share */

/**/
memcpy ((voidx)rule_array,"OBTAIN ",8); /* Set rule array
rule_array _count = 1;

CSUAMKD(&return_code, &reason_code, &exit data length,
exit_data,
&rule_array_count,
(unsigned char*)rule_array,
&shareldx,
name,

SAname,
&cert_sec_Ten,
&token[offset],
&clonelnfoKeylLength,
clonelnfoKey,
&clonelnfolength,
clonelnfo);

if (return_code != 0)
{
printf("Master Key Distribution Failed : return reason %d/%d\n",
return_code, reason_code);

return 1;
else
/**/
/* Write signed token out to a file */

/**/

*/
*/
*/

*/

Cryptography 241

printf("Master Key Distribution worked\n");

/* Build file path name */
if (shareldx < 9) cloneShare[11] = '0' + shareldx;
else
{
cloneShare[10] = '1';
cloneShare[11] = '0' + shareldx - 10;
}
fp = fopen(cloneShare,"wb"); /* Open the file */
if (!fp)
{
printf("File %s not be opened for output.\n",cloneShare);
return 1;
}
/* Write out the length of KEK */
fwrite((charx)&cloneInfoKeylLength,1,4,fp);
/* Write out the KEK */
fwrite((charx)cloneInfoKey,1,cloneInfoKeylLength,fp);
/* Write out the length of info */
fwrite((charx)&cloneInfolLength,1,4,fp);
/* Write out the clone info */

fwrite((charx)clonelnfo,1,cloneInfolLength,fp);
printf("CLone share %d written to %s.\n",shareldx,cloneShare);

fclose(fp); /* Close the file */
return 0;

}

Example: ILE RPG program for obtaining a master key share:

Change this i5/0S ILE RPG program example to suit your needs for obtaining a master key share.

Note: Read the [‘Code license and disclaimer information” on page 287] for important legal information.

242

D***
Dx GETSHARE

D*

D+ Sample program to obtain a master key share as part of the
D* master key cloning process.

D*

D*

D* COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

D=*

D* This material contains programming source code for your

D* consideration. These example has not been thoroughly

D* tested under all conditions. IBM, therefore, cannot

D* guarantee or imply reliability, serviceability, or function
D* of these programs. All programs contained herein are

Dx provided to you "AS IS". THE IMPLIED WARRANTIES OF

Dx MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

Dx ARE EXPRESSLY DISCLAIMED. IBM provides no program services for

D* these programs and files.

D*

D*

D* Note: Input format is more fully described in Chapter 2 of
D= IBM CCA Basic Services Reference and Guide

Dx (SC31-8609) publication.

D*

D* Parameters: Share number

D* Name of share sender private key

D* Name of certifying key

System i: Networking Cryptographic hardware

D*
D*
D* Example:

Path name of stream file containing receiver certificate

D+ CALL PGM(GETSHARE) PARM(2 SENDR SAKEY RECVR.PUB)

D*

D* Use these commands to compile this program on the system:
Dx CRTRPGMOD MODULE (GETSHARE) SRCFILE(SAMPLE)
D+ CRTPGM PGM(GETSHARE) MODULE (GETSHARE)

D+ BNDDIR(QCCA/QC6BNDDIR)

D*

D+ Note: Authority to the CSUAMKD service program
D* in the QCCA Tibrary is assumed.

D*

Dx The Common Cryptographic Architecture (CCA) verbs used is
D+ Master Key Distribution (CSUAMKD).

D*

D**~k***

D*
DRETURNCODE
D*
DREASONCODE
D*
DEXITDATALEN
D*
DEXITDATA
D*
DRULEARRAYCNT
D*
DRULEARRAY
D*
DTOKENLEN
D*

DTOKEN
DTOKENARRAY
D*

DPRVNAME

D*

DCERTKEY

D*

DLSTRUCT

D*

D*
DCLONEKEKL
DCLONEKEKLC
D*

D*
DCLONEINFOLEN
DCLONEINFOLENC
D*
DCLONEKEK
D*
DCLONEINFO
D*
DSHAREIDX
D*

D*
DLENSTRUCT
DMSB

DLSB
DLENGTH

D*
DCRTSECLEN
D*
DPUBSECLEN

DS

%
%

*%

%

%

%

%

**
%

DS

%

%

Return code

9B 0
Reason code

9B 0
Exit data Tength

9B 0
Exit data

4
Rule array count

9B 0
Rule array

16
Token Tength

9B 0 INZ(2500)
Token and array for subscripting

2500

1 DIM(2500)
Private key name

64
Certifying key name

64

Clone KEK length - one is binary form and the
other is used for reading the value from a file
9B 0 INZ(500)
1 4
Clone info length - one is binary form and the
other is used for reading the value from a file
9B 0 INZ(400)
5 8
Cloning key-encrypting-key
500
Cloning info
400
Share index
9B 0
Data structure for aligning 2 bytes into
a 2 bytes integer

2
1 1
2 2
1 2B 0
Certificate section length
9B 0
Public key section length
9B 0

Cryptography

243

244

D= **% Index into Token array

DTKNINDEX S 9B 0

D= *% Number of bytes to write out to a file
DOUTLEN S 9B 0

D* **% File descriptor

DFILED S 9B 0

D= ** File path and length

DPSTRUCT DS

DPATH 80 INZ(*ALLX'00")

DSIDX 11 12B 0

DPATHLEN S 9B 0

D* *% Open Flag - Open for Read only

DOFLAGR S 101 0 INZ(1)

D= ** Open flag - Create on open, open for writing,
D* *k and clear if exists

DOFLAGW S 101 O INZ(X'4A')

D* ** Base name of file to store cloning share
DSHAREFILE S 12 INZ('cloneShare00")

D*

DAkxkkhkkkhkhhkkhhhkkhkhhkkhhhkkkhhkkkhhkkkhhkxkhhkkkkhkkxkhx

D* Prototype for Master Key Distribution (CSUAMKD)

DAxkxkkhkkkhkhkkkkhhhkhkhhhrkkhhkkkhhhkkhhdkkkhkkkkhdkkkhkkxkkhx

DCSUAMKD PR

DRETCOD 9B 0

DRSNCOD 9B 0

DEXTDTALN 9B 0

DEXTDT 4

DRARRYCT 9B 0

DRARRY 16

DSHRINDX 9B 0

DKYNAM 64

DCRTKYNAM 64

DCRTL 9B 0

DCRT 2500 OPTIONS (*VARSIZE)
DCLNKEKL 9B 0

DCLNKEK 1200 OPTIONS(*VARSIZE)
DCLNL 9B 0

DCLN 400 OPTIONS (*VARSIZE)
D*

D**
D* Prototype for open()
D**
D* value returned = file descriptor (0K), -1 (error)

Dopen PR 9B O EXTPROC('open')

D* path name of file to be opened.

D 128 OPTIONS(*VARSIZE)

D= Open flags

D 9B 0 VALUE

Dx (OPTIONAL) mode - access rights

D 10U 0 VALUE OPTIONS(*NOPASS)
D* (OPTIONAL) codepage

D 10U O VALUE OPTIONS(*NOPASS)
D*

DR L T T

D* Prototype for write()

D**
D* value returned = number of bytes written, or -1

Dwrite PR 9B 0 EXTPROC('write')
D* File descriptor returned from open()

D 9B 0 VALUE

D* Output buffer

D 2500 OPTIONS (*VARSIZE)
D= Length of data to be written

D 9B 0 VALUE

D*

DR L L T T

D* Prototype for read()

System i: Networking Cryptographic hardware

D**
D* value returned = number of bytes actually read, or -1

Dread PR 9B 0 EXTPROC('read')
D+ File descriptor returned from open()

D 9B 0 VALUE

D* Input buffer

D 2500 OPTIONS(*VARSIZE)
D Length of data to be read

D 9B 0 VALUE

D*

R R R L R T

Dx Prototype for close()

Ddkkkkkhhkkhhhkkhkhhkkhhhkkhhhkkhhhdkkhhkkkhhkkkhhkkkhhkkkhhkkkkhkxkh Kk

D* value returned = 0 (OK), or -1

Dclose PR 9B 0 EXTPROC('close')

D* File descriptor returned from open()

D 9B 0 VALUE

D*
2y Sy Sy PSS Sy .
D* ** Declares for sending messages to the

D* *% job log using the QMHSNDPM API
gy gy g gy,
DMSG S 75 DIM(6) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(80)

D DS

DMSGTEXT 1 80

DSAPI 1 7

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ(" ")
DMESSAGEFILE S 21 INZ(! ")
DMSGKEY S 4 INZ(! ")

DMSGTYPE S 10 INZ('*INFO ")
DSTACKENTRY S 10 INZ('* ")
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

C*
C**
C+ START OF PROGRAM *
C* *
C *ENTRY PLIST

C PARM SINDEX 15 5
C PARM PRVKEY 32
C PARM SAKEY 32
C PARM FILEPARM 32

C**

C* Open certificate file
C**

C* Kmmmm e ————— *

C* *% Build path name *

C* Ty *

C EVAL PATHLEN = %LEN(%TRIM(FILEPARM))
C PATHLEN SUBST FILEPARM: 1 PATH

C* Ry *

C* =+ Open the file *

C* Kmmmm e ——————— *

C EVAL FILED = open(PATH: OFLAGR)
C* Ty *

C+ * Check if open worked *

C* Ty Sy *

C FILED IFEQ -1

C* Sy *

C* * Open failed, send an error message *

C* Aememecmcmescccccccscscsscsesass————— *

C MOVEL MSG(1) MSGTEXT

Cryptography

245

C EXSR SNDMSG

C RETURN

C*

C ENDIF

C* AemmmecccsesccsmcscscscsssseECssRcsssesesss————— *
C* * Open worked, read certificate and close file *
C* K e e m e mm e mm e —— e ————————— *
C EVAL TOKENLEN = read(FILED: TOKEN: TOKENLEN)
C CALLP close (FILED)

C*

C* K mm i m e m e mm e mm e ———————————— *

C* * Check if read operation was 0K *

C* Ty *

C TOKENLEN IFEQ -1

C MOVEL MSG(2) MSGTEXT

C EXSR SNDMSG

C ENDIF

C*

C* Nememeccccesmccsscccscsesscsescsssse———— *

C* * Check if certificate length is valid *

C* * The length bytes start at position 3 =*

C* Sy *

C EVAL MSB = TOKENARRAY(3)

C EVAL LSB = TOKENARRAY (4)

C LENGTH IFLT TOKENLEN

C* Nememeccccecccsmcccccscscssessssm——— *

C* * Certificate length is not valid =*

C* K m e mm e mm e mm e — e —————————— *

C MOVEL MSG(3) MSGTEXT

C EXSR SNDMSG

C RETURN

C ENDIF

C*

C**
C* Find the certificate in the token

C*

C* The layout of the token is

C*

C* - Token header - 8 bytes - including 2 length bytes

Cx - Public key section - length bytes at position 3 (11 overall)
C* - Private key name - 68 bytes

C* - Certificate section

C*

C* Note: 1 is added because RPG arrays start at 1.
C**

C EVAL MSB = TOKENARRAY(11)

C EVAL LSB = TOKENARRAY(12)

C EVAL PUBSECLEN = LENGTH

C EVAL TKNINDEX = PUBSECLEN + 68 + 8 + 1
C*

C* K m e —— e — e —————————— *

C* * Determine length of certificate section *

C* * Length bytes are at position 2 of the =*

C* * section.

(3 gy gy *

C EVAL MSB = TOKENARRAY (TKNINDEX + 2)
C EVAL LSB = TOKENARRAY (TKNINDEX + 3)
C EVAL CRTSECLEN = LENGTH

C*

C**

C* Obtain a certificate
C**

C* gy *
Cx * Set share index number *
C+ = (Convert from packed 15 5 to binary) *
C* Ty S Sy S S TS Sy Sy *
C Z-ADD SINDEX SHAREIDX

246 System i: Networking Cryptographic hardware

C*
C*
C*

C*
C*
C*

C*
C*
C*

C*
C*

o0
*

OO0

L T e e L T *
EVAL LENGTH = %LEN(%TRIM(PRVKEY))
LENGTH SUBST PRVKEY:1 PRVNAME
L e *
* Set certifying key name *
e e e e T *
EVAL LENGTH = %LEN(%TRIM(SAKEY))
LENGTH SUBST SAKEY:1 CERTKEY
K o *
* Set the keywords in the rule array *
L *
MOVEL 'OBTAIN ' RULEARRAY
7-ADD 1 RULEARRAYCNT
K o *
* Call Master Key Distribution SAPI =
K o *
CALLP CSUAMKD (RETURNCODE :
REASONCODE :
EXITDATALEN:
EXITDATA:
RULEARRAYCNT:
RULEARRAY:
SHAREIDX:
PRVNAME :
CERTKEY:
CRTSECLEN:
TOKENARRAY (TKNINDEX) :
CLONEKEKL:
CLONEKEK:
CLONEINFOLEN:
CLONEINFO)
K o o -
* Check the return code
K o o -
RETURNCODE IFGT 0
K e ————— *
* Send failure message *
K e e e ————————— *
MOVEL MSG(4) MSGTEXT
MOVE RETURNCODE FAILRETC
MOVE REASONCODE FAILRSNC
MOVEL 'CSUAMKD' SAPI
EXSR SNDMSG
RETURN
ENDIF

C**

C* Write share out to a file

""" *khkkhkhkhkk

"""" kkhkkhkhkhkkhhhhkhhkkhkkxx

**% Build path name

SIDX
SHAREIDX
SIDX

MOVEL
MOVEL
ADD
IFGE
ADD
ENDIF

**% Open the file

**% Check if open worked

FILED

EVAL

IFEQ

*ALLX'00"
SHAREFILE
SHAREIDX
10

246

FILED = o

PATH
PATH
SIDX

SIDX

pen(PATH: OFLAGW)

Cryptography 247

C* ** Open failed, send an error message

C*

C MOVEL MSG(5) MSGTEXT

C EXSR SNDMSG

C*

C ELSE

C*

C* ** Open worked, write certificate out to file and close file
C*

C Z-ADD 4 OUTLEN

C CALLP write (FILED:

C CLONEKEKLC:

C OUTLEN)

C CALLP write (FILED:

C CLONEKEK:

C CLONEKEKL)

C CALLP write (FILED:

C CLONEINFOLENC:
C OUTLEN)

C CALLP write (FILED:

C CLONEINFO:

C CLONEINFOLEN)
C CALLP close (FILED)

C*

C* ** Send completion message

C*

C MOVEL MSG(6) MSGTEXT

C EVAL %SUBST (MSGTEXT: 32: 12) =

C %SUBST (PATH: 1: 12)
C EXSR SNDMSG

C ENDIF

C*

C SETON LR
C*

C**
C* Subroutine to send a message

[T L T R T *hkhkkkkhk *h*
C SNDMSG BEGSR

C CALL "QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY

C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C ENDSR

C*

*%

The input file could not be opened.

There was an error reading from the file.

The Tength of the certificate is not valid.
CSUAMKD failed with return/reason codes 9999/9999.
The output file could not be opened.

The share was written to file

Example: ILE C program for installing a master key share:

Change this i5/0S ILE C program example to suit your needs for installing a master key share.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

gy */
/* PUTSHARE */
/* */

248 System i: Networking Cryptographic hardware

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

#i
#1
#i
#i

ex
#p

in

/
/
1
1
1
c

Sample program to install a master key share as part of the
master key cloning process.

COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007

This material contains programming source code for your
consideration. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function
of these program. A1l programs contained herein are
provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

ARE EXPRESSLY DISCLAIMED. IBM provides no program services for

these programs and files.

Note: Input format is more fully described in Chapter 2 of
IBM CCA Basic Services Reference and Guide
(SC31-8609) publication.

Parameters: Share number
Name of share receiver private key
Name of certifying key
Stream file containing sender certificate
Example:
CALL PGM(PUTSHARE) PARM(2 RECVR SAKEY SNDR.PUB)
Note: This program assumes the card with the profile is

already identified either by defaulting to the CRPO1
device or by being explicitly named using the
Cryptographic_Resource_Allocate verb. Also this
device must be varied on and you must be authorized
to use this device description.

The Common Cryptographic Architecture (CCA) verbs used is
Master Key Distribution (CSUAMKD).

Use these commands to compile this program on the system:

ADDLIBLE LIB(QCCA)

CRTCMOD MODULE(PUTSHARE) SRCFILE(SAMPLE)

CRTPGM PGM(PUTSHARE) MODULE (PUTSHARE)
BNDDIR(QCCA/QC6BNDDIR)

Note: Authority to the CSUAMKD service program
in the QCCA library is assumed.

nclude <stdio.h>
nclude <string.h>
nclude "csucincl.h"
nclude "decimal.h"

tern void QDCXLATE(decimal(5,0), char *, charx, char *);
ragma linkage (QDCXLATE, 0S, nowiden)

t main(int argc, char xargv[])

* Declares for CCA parameters

K o o

ong return_code = 0;

ong reason_code = 0;

ong exit_data_length = 0;
har exit_data[4];

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

Cryptography 249

char rule_array[24];

Tong rule_array_count;

Tong token len = 2500;

char token[2500];

long clonelInfoKeylLength = 500;
unsigned char cloneInfoKey[500];
long clonelnfolLength = 400;
unsigned char cloneInfo[400];
long shareldx;

char name[64];

char SAname[64];

e m e e e e */
/* Declares for working with a PKA token */
ey L */
Tong pub_sec_Ten; /* Public section length */
long prv_sec_len; /* Private section length */
Tong cert_sec_len; /* Certificate section length */
Tong info_subsec_Ten; /* Information subsection length */
long offset; /* 0ffset into token %/
Tong tempOffset; /* (Another) Offset into token */
Tong tempLength; /* Length variable */
Tong templLenl, tempLen2; /* temporary length variables */
char cloneShare[] = "cloneShare00"; /* Base cloning share filename */
long count; /* Number of bytes read in from file */

decimal(15,5) shareParm; /* Packed 15 5 var used for converting =/
/* from packed 15 5 to binary. Numeric x/
/* parms on system are passed as dec 15 5%/
FILE *fp; /* File pointer */

if (argc < 5) /* Check number of parameters passed in */

printf("Need Share index, Receiver name, SA name, and cert\n");
return 1;

}

/* Convert the packed decimal 15 5 parm */
/* to binary. */
memcpy (&shareParm,argv[1],sizeof(shareParm));
shareldx = shareParm;

memset (name,' ',64); /* Copy the Private key name parm to a */
memcpy (name,argv[2],strlen(argv[2])); /* 64 byte space padded var. =/
memset (SAname, ' ',64); /* Copy the Share Admin name parm to a */

memcpy (SAname,argv[3],strlen(argv[3]));/* 64 byte space padded var. */

fp = fopen(argv[4],"rb"); /* Open the file containing the token %/
if (!fp)
{

printf("File %s not found.\n",argv[4]);

return 1;
}
memset (token,0,2500) ; /* Read the token from the file */
count = fread(token,1,2500,fp);
fclose(fp); /* Close the file */
/* Determine length of token from length x/
/* bytes at offset 2 and 3. */
token_len = ((256 * token[2]) + token[3]);
if (count < token_len) /* Check if whole token was read in */

printf("Incomplete token in file\n");
return 1;

}

/**/

250 System i: Networking Cryptographic hardware

/* Find the certificate offset in the token */

/* */
/* The layout of the token is */
/* */
/* - Token header - 8 bytes - including 2 Tength bytes */
/* - Public key section - Tength bytes at offset 10 overall x/
/* - Private key name - 68 bytes */
/* - Certificate section */
/* */

/**/

pub_sec_len = ((256 * token[10]) + token[11]);

offset = pub_sec_len + 68 + 8; /* Set offset to certiicate section */

/* Determine certificate section

/* length from the length bytes at

/* offset 2 of the section.
cert_sec_len = ((256 * token[offset + 2]) + token[offset + 3]);

/**/
/* Open and read the clone file */
/**/
/* Build path name from the base
/* file name and the index
if (shareldx < 9) cloneShare[11] = '0' + shareldx;
else

cloneShare[10]
cloneShare[11]
1

Ill;
'0' + shareldx - 10;

fp = fopen(cloneShare,"rb"); /* Open the file with the share
if (!fp)
{

printf("Clone share file %s not found.\n",cloneShare);
return 1;

}
/* Read in the length of the KEK
count = fread((char=)&cloneInfoKeylLength,1,4,fp);

if (count < 4) /* Check if there was an error

printf("Clone share file %s contains invalid data.\n",
cloneShare) ;
fclose(fp);
return 1;
1
/* Read in the Key encrypting key
count = fread((charx)cloneInfoKey,1,clonelnfoKeyLength,fp);

if (count < clonelnfoKeyLength) /* Check for an error reading

printf("Clone share file %s contains invalid data.\n",
cloneShare);

fclose(fp);

return 1;

1
/* Read in the length of the clone info
count = fread((char*)&cloneInfolLength,1,4,fp);
if (count < 4) /* Check for an error
printf("Clone share file %s contains invalid data.\n",

cloneShare) ;
fclose(fp);

*/
*/
*/

*/
*/

*/

Cryptography 251

return 1;

}

/* Read in the clone info */
count = fread((charx)cloneInfo,1,clonelnfolLength,fp);

if (count < cloneInfolLength) /* Check for an error */
{
printf("Clone share file %s contains invalid data.\n",
cloneShare) ;

fclose(fp);

return 1;

1

fclose(fp); /* Close the file */

/**/
/* Install the share */
/**/
memcpy ((void*)rule_array,"INSTALL ",8); /* Set rule array */

rule_array_count = 1;

CSUAMKD(&return_code, &reason_code, &exit_data_length,
exit_data,
&rule_array_count,
(unsigned charx)rule_array,
&shareldx,
name,

SAname,
&cert_sec_Ten,
&token[offset],
&cloneInfoKeylLength,
cloneInfoKey,
&clonelnfolength,
clonelnfo);

if (return_code > 4)
{
printf("Master Key Distribution Failed : return reason %d/%d\n",
return_code, reason_code);
return 1;

}

else
printf("Master Key share %d successfully installed.\n",shareldx);
printf("Return reason codes %d/%d\n",return_code, reason_code);
return 0;

}
}

Example: ILE RPG program for installing a master key share:

Change this i5/0S ILE RPG program example to suit your needs for installing a master key share.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

D***
Dx PUTSHARE

D*

D+ Sample program to install a master key share as part of

D+ the master key cloning process.

D=*

D*

D* COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

D*

D* This material contains programming source code for your

252 System i: Networking Cryptographic hardware

D* consideration.

These example has not been thoroughly

D* tested under all conditions. IBM, therefore, cannot
D* guarantee or imply reliability, serviceability, or function

D* of these programs.

A1l programs contained herein are

D* provided to you "AS IS". THE IMPLIED WARRANTIES OF

D+ MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

D+ ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
D+ these programs and files.

D*

D*

D* Note: Input format is more fully described in Chapter 2 of
D* IBM CCA Basic Services Reference and Guide

D (SC31-8609) publication.

D*

D+ Parameters:
D*

D*

D*

D*

D+ Example:

Share

number

Name of share receiver private key
Name of certifying key
Path name of stream file containing sender certificate

D+ CALL PGM(PUTSHARE) PARM(2 RECVR SAKEY SENDER.PUB)

D*

D* Use these commands to compile this program on the system:
Dx CRTRPGMOD MODULE (PUTSHARE) SRCFILE(SAMPLE)
Dx CRTPGM PGM(PUTSHARE) MODULE (PUTSHARE)

D* BNDDIR(QCCA/QC6BNDDIR)

D*

D* Note: Authority to the CSUAMKD service program
D in the QCCA library is assumed.

D*

Dx The Common Cryptographic Architecture (CCA) verbs used is
D+ Master Key Distribution (CSUAMKD).

D*

Dxkkkkkhhkkhkhhkkhkhhkrkhhhkkhkhhkkhhhdkhhhkxkhhkkhhhkkkhhkrkkhhkxxk

D*
DRETURNCODE
D*
DREASONCODE
D*
DEXITDATALEN
D*

DEXITDATA

D*
DRULEARRAYCNT
D*
DRULEARRAY
D*

DTOKENLEN

D*

DTOKEN
DTOKENARRAY
D*

DPRVNAME

D*

DCERTKEY

D*

DLSTRUCT

D*

D*
DCLONEKEKL
DCLONEKEKLC
D*

D*
DCLONEINFOLEN

DS

%
*%

**
%

Return code

9B 0
Reason code

9B 0
Exit data Tength

9B 0
Exit data

4
Rule array count

9B 0
Rule array

16
Token Tength

9B 0 INZ(2500)
Token and array for subscripting

2500

1 DIM(2500)
Private key name

64
Certifying key name

64

Clone KEK Tength - one is binary form and the
other is used for reading the value from a file
9B 0 INZ(500)
1 4
Clone info Tength - one is binary form and the
other is used for reading the value from a file
9B 0 INZ(400)

Cryptography

253

DCLONEINFOLENC 5 8

D= *% Cloning key-encrypting-key
DCLONEKEK S 500

D= *% Cloning info

DCLONEINFO S 400

D* *%* Share index

DSHAREIDX S 9B 0

D= *% Data structure for aligning 2 bytes into
D= ** a 2 bytes integer

DLENSTRUCT DS 2

DMSB 1 1

DLSB 2 2

DLENGTH 1 2B 0

D* **% Certificate section Tength
DCRTSECLEN S 9B 0

D= *% Public key section length
DPUBSECLEN S 9B 0

D* *% Index into Token array

DTKNINDEX S 9B 0

D= *% Number of bytes to read from a file
DINLEN S 9B 0

D* **% File descriptor

DFILED S 9B 0

D* *% File path and Tength

DPSTRUCT DS

DPATH 80 INZ (*ALLX'00")
DSIDX 11 12B 0

DPATHLEN S 9B 0

D* **% Open Flag - Open for Read only
DOFLAGR S 101 0 INZ(1)

D= ** Base name of file to store cloning share
DSHAREFILE S 12 INZ('cToneShare00")
D*

Dixkxkkhkrkkhkhhkkhhhkkhkhhkkhhhkkkhhkkkhhdkkhhkkkhhhrkkhkkxkhx

D* Prototype for Master Key Distribution (CSUAMKD)

D**

DCSUAMKD PR

DRETCOD 9B 0

DRSNCOD 9B 0

DEXTDTALN 9B 0

DEXTDT 4

DRARRYCT 9B 0

DRARRY 16

DSHRINDX 9B 0

DKYNAM 64

DCRTKYNAM 64

DCRTL 9B 0

DCRT 2500 OPTIONS (*VARSIZE)
DCLNKEKL 9B 0

DCLNKEK 1200 OPTIONS(*VARSIZE)
DCLNL 9B 0

DCLN 400 OPTIONS (*VARSIZE)
D*

D**
D* Prototype for open()
D**
D* value returned = file descriptor (0K), -1 (error)

Dopen PR 9B O EXTPROC('open')

D* path name of file to be opened.

D 128 OPTIONS (*VARSIZE)

D* Open flags

D 9B 0 VALUE

D* (OPTIONAL) mode - access rights

D 10U 0 VALUE OPTIONS(*NOPASS)
D* (OPTIONAL) codepage

D 10U O VALUE OPTIONS(*NOPASS)
D*

254 System i: Networking Cryptographic hardware

Dxkkkkkhkhkkhkhhkkhkhhkrkhkhhhkhkhhkkkhhkkhhhkkkhhdkkhhkkkkhdkkkhkkkkhkrkkkhk

Dx Prototype for read()

D**
D* value returned = number of bytes actually read, or -1

Dread PR 9B 0 EXTPROC('read')
D* File descriptor returned from open()

D 9B 0 VALUE

D Input buffer

D 2500 OPTIONS (*VARSIZE)
D* Length of data to be read

D 9B 0 VALUE

D*

Ddkkkkkhhkkhhhkkhkhhkkhhhkkhhhkkhhhdkkhhkkkhhkkkhhkkkhhkkkhhkkkkhkxkh Kk

Dx Prototype for close()

D***
D value returned = 0 (0K), or -1

Dclose PR 9B O EXTPROC('close')

D* File descriptor returned from open()

D 9B 0 VALUE

D*
12y Sy U
D* *% Declares for sending messages to the

D* *%* job log using the QMHSNDPM API
gy
DMSG S 75 DIM(7) CTDATA PERRCD(1)

D DS

DMSGTEXT 1 80

DSAPI 1 7

DFAILRETC 41 44

DFATLRSNC 46 49

DMSGLENGTH S 9B 0 INZ(80)

DMESSAGEID S 7 INZ(! ")
DMESSAGEFILE S 21 INZ (! ")
DMSGKEY S 4 INZ (! ")

DMSGTYPE S 10 INZ('*INFO ")
DSTACKENTRY S 10 INZ('* ")
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

C*
C**
C* START OF PROGRAM *
C* *
C *ENTRY PLIST

C PARM SINDEX 15 5
C PARM PRVKEY 32
C PARM SAKEY 32
C PARM FILEPARM 32

C**

C* Open certificate file
C**

C* Ty *

C* % Build path name *

C* Ay *

C EVAL PATHLEN = %LEN(%TRIM(FILEPARM))
C PATHLEN SUBST FILEPARM:1 PATH

C* Ry *

C* =+ Open the file *

C* L Ty - *

C EVAL FILED = open(PATH: OFLAGR)
C* Ty Sy *

C+ « Check if open worked *

C* Sy *

C FILED IFEQ -1

C* Aememecmcmescccccccscscsscsesass————— *

C* * Open failed, send an error message *

Cryptography

255

256

C*

C*

C*
C*
C*

C*
C*
C*

C*
C*

C*

K o - *
MOVEL MSG(1) MSGTEXT
EXSR SNDMSG
RETURN
ENDIF
K o *
* Open worked, read certificate from file and close file *
K o *
EVAL TOKENLEN = read(FILED: TOKEN: TOKENLEN)
CALLP close (FILED)
K *
* Check if read operation was OK *
I e e e T TP *
TOKENLEN IFEQ -1
MOVEL MSG(2) MSGTEXT
EXSR SNDMSG
ENDIF
K *

* Check if certificate length is valid =*
* The Tength bytes start at position 3 *

K o e e *
EVAL MSB = TOKENARRAY(3)
EVAL LSB = TOKENARRAY (4)
LENGTH IFLT TOKENLEN
K *
* Certificate length is not valid =
K o *
MOVEL MSG(3) MSGTEXT
EXSR SNDMSG
RETURN
ENDIF

C**
Find the certificate in the token

C*
C*
C*
C*
C*
C*
C*
C*
C*
C*

C
C
C
C
C*
C*
C*
(3
C*
C*
C
C
C
C*

The Tayout of the token is

Token header - 8 bytes - including 2 length bytes

Public key section - length bytes at position 2 (11 overall)
Private key name - 68 bytes

Certificate section

Note: 1 is added because RPG arrays start at 1.
C**

EVAL MSB = TOKENARRAY (11)

EVAL LSB = TOKENARRAY(12)

EVAL PUBSECLEN = LENGTH

EVAL TKNINDEX = PUBSECLEN + 68 + 8 + 1
K o *

* Determine length of certificate section *
* Length bytes are at position 2 of the =*

* section.

K o e e - *
EVAL MSB = TOKENARRAY (TKNINDEX + 2)
EVAL LSB = TOKENARRAY (TKNINDEX + 3)
EVAL CRTSECLEN = LENGTH

C**

C* Open and read the clone file
C**

C*
C*
C*

K o o o - *
* Set share index number *
* (Convert from packed 15 5 to binary) *

System i: Networking Cryptographic hardware

C*

C*

C*
C*

C*
C*

C*
C*
C*

C*
C*
C*

C*
C*
C*

C*

C*
C*
C*

C*
C*
C*

(el
*

*

*

*

OO0

OO0
* % X X

OOOOOOOO
* *

(]
*

01

01

01

01

Z-ADD SINDEX SHAREIDX
*% Build path name
MOVEL *ALLX'00' PATH

MOVEL SHAREFILE PATH
** Adjust two digits on file name by adding to their
** character value
SIDX ADD SHAREIDX SIDX
*% [f the index is greater than or equal to 10
*x then add 246 to force the first character to change

SHAREIDX IFGE 10
SIDX ADD 246 SIDX
ENDIF

**% Open the file

EVAL FILED = open(PATH: OFLAGR)
**% Check if open worked
FILED IFEQ -1

** Open failed, send an error message

MOVEL MSG(4) MSGTEXT
EXSR SNDMSG
ELSE

** Open worked, read in the clone information and close file

SETON 01
Z-ADD 4 INLEN
EVAL INLEN = read(FILED: CLONEKEKLC: INLEN)
R T e T] *
* Check if read operation was 0K *
K e e ———————————— *
INLEN IFNE 4
MOVEL MSG(5) MSGTEXT
EXSR SNDMSG
SETOFF 01
ENDIF
EVAL INLEN = read(FILED: CLONEKEK: CLONEKEKL)
INLEN IFNE CLONEKEKL
MOVEL MSG(5) MSGTEXT
EXSR SNDMSG
SETOFF 01
ENDIF
Z-ADD 4 INLEN
EVAL INLEN = read(FILED: CLONEINFOLENC: INLEN)
K o o *
* Check if read operation was 0K *
K o *
INLEN IFNE 4
MOVEL MSG(5) MSGTEXT
EXSR SNDMSG
SETOFF 01
ENDIF
EVAL INLEN = read(FILED: CLONEINFO: CLONEINFOLEN)
I e e T] *

Cryptography

257

C* * Check if read operation was 0K *

C* K e m e mmm e mm e m e m— e — e ——————— *

C OLINLEN IFNE CLONEINFOLEN

C MOVEL MSG(5) MSGTEXT
C EXSR SNDMSG

C SETOFF

C ENDIF

C*

C CALLP close (FILED)
C Noi1 SETON

C*

C**

Cx Obtain a certificate
C**

258

C* gy ey *

C* =+ Set share index number *

C* T gy *

C Z-ADD SINDEX SHAREIDX

C* Sy S S TS Sy Sy *

C+ =+ Set private key name *

C* K e e m e m e ———————— *

C EVAL LENGTH = %LEN(%TRIM(PRVKEY))
C LENGTH SUBST PRVKEY:1 PRVNAME

C* gy *

Cx * Set certifying key name *

C* Ty S S S TS S Sy Sy *

C EVAL LENGTH = %LEN(%TRIM(SAKEY))
C LENGTH SUBST SAKEY:1 CERTKEY

C* gy ey *

Cx * Set the keywords in the rule array *

C* gy *

C MOVEL "INSTALL ' RULEARRAY

C Z-ADD 1 RULEARRAYCNT
C* g *

C+x =+ Call Master Key Distribution SAPI =

C* S ey *

C CALLP CSUAMKD (RETURNCODE :
C REASONCODE :
C EXITDATALEN:
C EXITDATA:

C RULEARRAYCNT:
C RULEARRAY :

C SHAREIDX:

C PRVNAME :

C CERTKEY:

C CRTSECLEN:

C TOKENARRAY (TKNINDEX) :
C CLONEKEKL:

C CLONEKEK:

C CLONEINFOLEN:
C CLONEINFO)
(0 *

C* * Check the return code =*
Oy *

C RETURNCODE IFGT 4

C* Kmmm e mmm e m e ——————— *

C* * Send failure message *

C* Kmmmmmmmm e —— e ———————— *

C MOVEL MSG(6) MSGTEXT

C MOVE RETURNCODE FAILRETC

C MOVE REASONCODE FATLRSNC

C MOVEL 'CSUAMKD' SAPI

C EXSR SNDMSG

C RETURN

C ENDIF

C* [Ry *

C* * Send success message *

System i: Networking Cryptographic hardware

*%

C*

MOVEL
EVAL

EXSR
ENDIF

SETON

MSG(7) MSGTEXT
%SUBST (MSGTEXT: 32: 12) =

%SUBST (PATH: 1: 12)
SNDMSG

C**

C* Subroutine to send a message
C**

SNDMSG

OOOOOOOOOOO0O0

*

BEGSR
CALL
PARM
PARM
PARM
PARM
PARM
PARM
PARM
PARM
PARM
ENDSR

'QMHSNDPM'
MESSAGEID
MESSAGEFILE
MSGTEXT
MSGLENGTH
MSGTYPE
STACKENTRY
STACKCOUNTER
MSGKEY
ERRCODE

The certificate file could not be opened.

There was an error reading from the certificate file.

The length of the certificate is not valid.

The clone share file could not be opened.

The clone share file either could not be read or has invalid data.
CSUAMKD failed with return/reason codes 9999/9999.

The share was successfully installed.

Example: ILE C program for listing retained keys:

Change this i5/0S program example to suit your needs for listing retained keys.

LR

Note: Read the [‘Code license and disclaimer information” on page 287] for important legal information.

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

List the names of the RSA private keys retained.

COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

This material contains programming source code for your
consideration. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function
of these program. A1l programs contained herein are
provided to you "AS IS".
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
ARE EXPRESSLY DISCLAIMED.

these programs and fi

les.

THE IMPLIED WARRANTIES OF

IBM provides no program services for

Note: Input format is more fully described in Chapter 2 of
IBM CCA Basic Services Reference and Guide */
(SC31-8609) publication.

Parameters:
none.

Example:
CALL PGM(LISTRETAIN)

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

Cryptography 259

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

#1
#i
#i

Vo

{

Tong retain_key_count;

long key_label_count = 500;

int ks

[H e e e e mmc e mec e mmcmemc e m— e ————
/* Set up Tabel mask, ie. which key name to retrieve.

[* x % % % % % .« is a wildcard for all keys.

K m mm e e e e e e
memset (key_Tabel, 0x00, sizeof(key_label));
memset (key label mask, ' ', sizeof(key Tabel mask));

memcpy (key Tabel mask,"*.%.% % % . %" 13);

Note: This program assumes the card with the profile is
already identified either by defaulting to the CRPO1
device or by being explicitly named using the
Cryptographic_Resource_Allocate verb. Also this
device must be varied on and you must be authorized
to use this device description.

The Common Cryptographic Architecture (CCA) verb used is
Access_Control_Initialization (CSUAACI).

Use these commands to compile this program on the system:

ADDLIBLE LIB(QCCA)

CRTCMOD MODULE (LISTRETAIN) SRCFILE(SAMPLE)

CRTPGM PGM(LISTRETAIN) MODULE(LISTRETAIN)
BNDSRVPGM(QCCA/CSNDRKL)

Note: Authority to the CSNDRKL service program in the
QCCA Tlibrary is assumed.

The Common Cryptographic Architecture (CCA) verb used is
Retained_Key List (CSNDRKL).

nclude <string.h>
nclude <stdio.h>
nclude "csucincl.h"

id main(void)

[K mmm e e e e
/* standard CCA parameters
2y
long return_code;

long reason_code;

Tong exit_data_length;

unsigned char exit_data[2];

Tong rule_array_count;

unsigned char rule_array[2][8];

unsigned char key_label mask[64];
unsigned char key_Tabel[500][64];

rule_array _count = 0;

CSNDRKL (&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(unsigned char*)rule_array,

260 System i: Networking Cryptographic hardware

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/
*/

*/
*/

key Tabel_mask,
&retain_key_count,

&key Tabel count,

(unsigned char*)key_label);

2y */
/* Check the results */
2y */
if (return_code != 0)

{

printf("Retained Key List failed with return/reason %d/%d \n",
return_code, reason_code);

return;

1

else
S S S S SRS S S S RS S */
/* Display number of keys retained/returned. */
[e m e e e meeeeee */

printf("Retained key count [%d]\n",retain_key count);
printf("No. of key labels returned [%d]\n",key label count);
if (key_label_count > 0)

{

S S Sy S S S RS S S SSpS - */
/* Display the names of each key returned. */
J e m e e e cemeccnceeem */

printf("Retain Tist = \n");

for (k = 0 ;k < key_label _count; k++)
{
printf("[%.64s]\n",key_Tabel[k]);
1

}

1
1

Example: ILE RPG program for listing retained keys:

Change this i5/0S ILE RPG program example to suit your needs for listing retained keys.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

D***
D*

D+ List the names of the RSA private keys retained within the
D* .

D*

D*

Dx COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

D*

D+ This material contains programming source code for your

D* consideration. These example has not been thoroughly

Dx tested under all conditions. IBM, therefore, cannot

D* guarantee or imply reliability, serviceability, or function
D* of these programs. A1l programs contained herein are

D* provided to you "AS IS". THE IMPLIED WARRANTIES OF

D+ MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

D+ ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
D* these programs and files.

D*

D*

D* Note: Input format is more fully described in Chapter 2 of
D IBM CCA Basic Services Reference and Guide

D= (SC31-8609) publication.

D*

D+ Parameters: None

D*

D* Example:

Cryptography

261

Dx CALL PGM(LISTRETAIN)

D*

D* Use these commands to compile this program on the system:
Dx CRTRPGMOD MODULE (LISTRETAIN) SRCFILE(SAMPLE)

D* CRTPGM PGM(LISTRETAIN) MODULE(LISTRETAIN)

D* BNDSRVPGM(QCCA/CSNDRKL)

D*

D* The Common Cryptographic Architecture (CCA) verbs used are
D* Retained_key List (CSNDRKL)

D*

D+ Note: Authority to the CSNDRKL service program in the
D* QCCA Tibrary is assumed.

D*

D*

D* Note: This program assumes the card with the profile is
D* already identified either by defaulting to the CRPO1
D* device or by being explicitly named using the

D= Cryptographic_Resource_Allocate verb. Also this
D* device must be varied on and you must be authorized
D* to use this device description.

D*
D***
) g

D+ Declare variables for CCA SAPI calls

) g g

D* *% Return code

DRETURNCODE S 9B 0

D= ** Reason code

DREASONCODE S 9B 0

D= ** Exit data length

DEXITDATALEN S 9B 0

D= *% Exit data

DEXITDATA S 4

D* *% Rule array count

DRULEARRAYCNT S 9B 0

D= *% Rule array

DRULEARRAY S 16

D* *% Key label mask

DKEYLBLMASK S 64

D* ** Key count

DKEYCOUNT S 9B 0

D= ** Label count

DLABELCOUNT S 9B 0

D* *% Label 1ist and Tabel array
DLABELLIST DS 3200

DLABELS 64 DIM(50)

D* *% Loop counter

DI S 9B 0

D*

D**

Dx Prototype for Retained_Key List

(DR T

DCSNDRKL PR

DRETCODE 9B 0

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DKYLBLMSK 64

DKYCOUNT 9B 0

DLBLCOUNT 9B 0

DLBLS 64

D*

) g
D* *x Declares for sending messages to the
Dx #+* job log using the QMHSNDPM API

System i: Networking Cryptographic hardware

DMSG S 75 DIM(4) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(75)

D DS

DMSGTEXT 1 75

DNUMKEYS 1 3

DNUMLABELS 25 26

DDSPLBL 2 65

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID 7 INZ(D)
DMESSAGEFILE 21 INZ(!

DMSGKEY 4 INZ(D)
DMSGTYPE 10 INZ('*INFO
DSTACKENTRY 10 INZ('*
DSTACKCOUNTER 9B 0 INZ(2)
DERRCODE
DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

D*
Cohkkkkrrkkdksdksdkkkkkhhkhrkddkhkdkdsdkokhkhhkhrrdkdkdkkdhkkhhhrrrkkkkkkkkkk

C* START OF PROGRAM *

C* *

[e I T I T R Ve IV I]
~——

Chmm e e e mm e e ———— *
C* No rule array keywords *
g *
C Z-ADD 0 RULEARRAYCNT
(00 gy Ly Sy *
C* Get up to 50 labels *
g *
C Z-ADD 50 LABELCOUNT
CHemmmm e e e e meccmemmee e mccmcmmee - *
Cx Set the mask to everything *
N N N s *
C MOVEL P! KEYLBLMASK
T N N N s *
C* Call Retained Key List SAPI *
Chmmmmm e e m e mmm e e m e ———— *
CALLP CSNDRKL (RETURNCODE :
REASONCODE :
EXITDATALEN:
EXITDATA:
RULEARRAYCNT:
RULEARRAY :
KEYLBLMASK:
KEYCOUNT:
LABELCOUNT:
LABELLIST)

OOOOOOOOOO0
*

C* Check the return code *

C MOVE MSG(1) MSGTEXT
C MOVE RETURNCODE FAILRETC
C MOVE REASONCODE FAILRSNC
C EXSR SNDMSG

C* * Check number of keys =*

Cryptography 263

C* * Send message saying there are no keys *

C* Ry *
C MOVE MSG(2) MSGTEXT

C EXSR SNDMSG

C*

C ELSE

C*

C* ey *

C* * Send message with number of keys *

C* gy *

C MOVE MSG(3) MSGTEXT

C MOVE KEYCOUNT NUMKEYS

C MOVE LABELCOUNT NUMLABELS

C EXSR SNDMSG

C*

C* e *

C* * Display each key label up to 50 *

C* K e ————— *

C MOVE MSG(4) MSGTEXT

C FOR I=1 BY 1 TO LABELCOUNT

C MOVEL LABELS(I) DSPLBL

C EXSR SNDMSG

C ENDFOR

C*

C ENDIF

C ENDIF

C*

C SETON LR
C*

[T L T R Kok k ok ok ok ok kK *kk

C* Subroutine to send a message
C**

C SNDMSG BEGSR

C CALL 'QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY
C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C ENDSR

*%

CSNDRKL failed with return/reason codes 9999/9999
There are no retained keys
000 keys were found and 00 Tabels returned

[]

Example: ILE C program for deleting retained keys:

Change this i5/0S ILE C program example to suit your needs for deleting retained keys.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

2y */
/* Delete a retained key */
/* */
/* */
/* COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/* of these program. A1l programs contained herein are */

264 System i: Networking Cryptographic hardware

/* provided to you "AS IS". THE IMPLIED WARRANTIES OF
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

/* ARE EXPRESSLY DISCLAIMED. IBM provides no program services for

/* these programs and files.

/*

/*

/* Note: Input format is more fully described in Chapter 2 of
/* IBM CCA Basic Services Reference and Guide

/* (SC31-8609) publication.

/*

/* Parameters:

/* none.

/*

/* Example:

/* CALL PGM(DLTRTNKEY) (SSLPRIV.KEY.ONE)

/*

/*

/* Note: This program assumes the card with the profile is

/* already identified either by defaulting to the CRPO1
/* device or by being explicitly named using the

/* Cryptographic_Resource_Allocate verb. Also this

/* device must be varied on and you must be authorized

/* to use this device description.

/*

/* The Common Cryptographic Architecture (CCA) verb used is
/* Retained_Key Delete (CSNDRKD).

/*

/* Use these commands to compile this program on the system:
/* ADDLIBLE LIB(QCCA)

/* CRTCMOD MODULE (DLTRTNKEY) SRCFILE(SAMPLE)

/* CRTPGM PGM(DLTRTNKEY) MODULE(DLTRTNKEY)

/* BNDSRVPGM(QCCA/CSNDRKD)

/*

/* Note: Authority to the CSNDRKD service program in the

/* QCCA Tibrary is assumed.

/*

/*

#include <string.h>
#include <stdio.h>
#include "csucincl.h"

#define OK 0
#define WARNING 4

void main(int argc, char * argv[1])

{

2y
/* standard CCA parameters

K e e e
long return_code;

long reason_code;

Tong exit_data_length;

unsigned char exit_data[2];

long rule_array_count = 0;

unsigned char rule_array[1][8];
unsigned char key label[64];

*/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

Cryptography 265

if (argc < 1)
{

printf("Key label parameter must be specified.\n");

return;

}
2y */
/* Set up the key label */
Ty */

memset (key Tabel, ' ', 64);
memcpy (key_Tabel, argv[l], strlen(argv[l]));

gy */
/* Call the Retained Key List SAPI */
2y */

CSNDRKD (&return_code,
&reason_code,
&exit_data_Tlength,
exit_data,
&rule_array_count,
(unsigned char*)rule_array,
key_Tlabel);

2y */
/* Check the return code and display the results */
2 */
if ((return_code == OK) || (return_code == WARNING))
{
printf("Request was successful\n");
return;
}
else

printf("Request failed with return/reason codes: %d/%d \n",
return_code, reason_code);
return;

}

}

Example: ILE RPG program for deleting retained keys:

Change this i5/0S ILE RPG program example to suit your needs for deleting retained keys.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

D***
Dx DLTRTNKEY

D*

D+ Sample program to delete a retained key

D*

D*

D* COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

D*

D* This material contains programming source code for your

D* consideration. These example has not been thoroughly

D* tested under all conditions. IBM, therefore, cannot

D* guarantee or imply reliability, serviceability, or function
D* of these programs. All programs contained herein are

Dx provided to you "AS IS". THE IMPLIED WARRANTIES OF

Dx MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

Dx ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
D* these programs and files.

D*

D*

266 System i: Networking Cryptographic hardware

D+ Note: Input format is more fully described in Chapter 2 of

D= IBM CCA Basic Services Reference and Guide
DES (SC31-8609) publication.
D*

D* Parameters:
D+ Retained key Tabel name

D= (64 chacters - pad with blanks on the right)
D*

D* Example:

D*

D+ CALL DLTRTNKEY +

D+ 'PKA.RETAINED.KEY.123

D*

D* Use these commands to compile this program on the system:
Dx CRTRPGMOD MODULE (DLTRTNKEY) SRCFILE(SAMPLE)

Dx CRTPGM PGM(DLTRTNKEY) MODULE(DLTRTNKEY)

D* BNDSRVPGM(QCCA/CSNDRKD)

D*

D* Note: Authority to the CSNDRKD service program in the
D* QCCA Tibrary is assumed.

D*

Dx The Common Cryptographic Architecture (CCA) verbs used are
D+ Retained_Key Delete (CSNDRKD)

D*
D**
Dy Yy Sy SRSy SRy
D* Declare variables for CCA SAPI calls
12y Sy Sy Py S PR
D* ** Return code

DRETURNCODE S 9B 0

D* ** Reason code

DREASONCODE S 9B 0

D* *x Exit data length
DEXITDATALEN S 9B 0

D* *x Exit data

DEXITDATA S 4

D* ** Rule array count
DRULEARRAYCNT S 9B 0

D* *% Rule array

DRULEARRAY S 16

D* *% Retained key Tlabel

DKEYNAME S 64

D*

DR R

D* Prototype for Retained_Key Delete (CSNDRKD)

Dxkkkkkhhkkhkhhkkkhhkkkhhhkkhkhhkkhhhkkkhhkkhhhkkkhhkkkhhkk kK

DCSNDRKD PR

DRETCODE 9B 0

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DKEYNAM 64

D*
g
D* ** Declares for sending messages to the
D* *%* job log using the QMHSNDPM API
2y Sy Sy S PRy Sy .
DMSG S 75 DIM(2) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(75)

D DS

DMSGTEXT 1 75

DFAILMSGTEXT 1 50

DFAILRETC 41 44

DFAILRSNC 46 49

DMESSAGEID S 7 INZ (! ")

Cryptography 267

DMESSAGEFILE
DMSGKEY
DMSGTYPE
DSTACKENTRY
DSTACKCOUNTER
DERRCODE
DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

D*
[e R L T
C* START OF PROGRAM *
C* *
C *ENTRY PLIST

C PARM KEYNAME

C* *

21 INZ(" N
4 INZ(N
10 INZ('*INFO
10 INZ('=*
98 0 INZ(2)

e RVRVRV NV N
NN

C CALLP CSNDRKD (RETURNCODE :
C REASONCODE :

C EXITDATALEN:
C EXITDATA:

C RULEARRAYCNT:
C RULEARRAY:

C KEYNAME)

C RETURNCODE IFGT 4

C* [Ty *

C* * Send error message *

C* Ty *

C MOVE MSG(1) MSGTEXT
C MOVE RETURNCODE FAILRETC
C MOVE REASONCODE FAILRSNC
C EXSR SNDMSG

C*

C ELSE

C* Ty *

C* * Send success message *

C* [O TRy Ry —— *

C MOVE MSG(2) MSGTEXT
C EXSR SNDMSG

C*

C ENDIF

C*

C SETON

C*
C**

C* Subroutine to send a message
C**

C SNDMSG BEGSR

C CALL "QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY
C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C ENDSR

268 System i: Networking Cryptographic hardware

C*

*%

CSNDRKD failed with return/reason codes 9999/9999'
The request completed successfully

Troubleshooting the Cryptographic Coprocessor

Use these troubleshooting methods to tackle some of the basic problems that may occur with the
Cryptographic Coprocessor on your system running the i5/OS operating system. If the troubleshooting
information does not address your problem, contact your service representative.

Always assure that you have applied all current PTFs for the relevant products and programs.
Using return codes

The primary method for detecting and troubleshooting problems is by monitoring return codes and
reason codes.

* A return code of 0 indicates successful completion. To provide some additional information, the
Cryptographic Coprocessor associates some non-zero reason codes with this return code.

* A return code of 4 indicates that the application programming interface (API) has completed
processing, but an unusual event occurred. It could be related to a problem created by the application
program, or it could be a normal occurrence based on data that is supplied to the API.

* A return code of 8 indicates that the API did not complete successfully. An application programming
error most likely caused this.

* A return code of 12 normally indicates some type of problem in the setup or configuration of your
Coprocessor. This code means that the processing of the API did not complete successfully.

* A return code of 16 normally indicates a severe error in Common Cryptographic Architecture
Cryptographic Service Provider (CCA CSP), system licensed internal code, or the Cryptographic
Coprocessor licensed internal code. For these types of errors, you should contact your service
representative.

You can also troubleshoot problems by analyzing the messages that appear in the job log or in the system
operator (QSYSOPR) queue. Generally, any event that sends a message to the job log also returns an
associated return code and a reason code to the calling programming. Messages sent to the system
operator message, if reporting a severe problem, will normally point to a source of additional information
about the problem. Such information is intended for IBM service, and therefore you may not necessarily
find them useful for problem determination.

Common errors

You should watch out for these common errors:

* Did you vary on the device? You cannot send any requests to your Cryptographic Coprocessor until
you vary on the device.

* Is the CCA finding a device? If you do not explicitly use the Cryptographic_Resource_Allocate API,
you must name the cryptographic device CRP01. If you do not name it that, the CCA cannot select any
device. Either name the device CRP01 or change your program to use the
Cryptographic_Resource_Allocate CCA API to select the device.

* Are you selecting the correct device? If you have a default device (for example, a device named
CRPO01) and an additional device, the Cryptographic Coprocessor will select the default device, unless
you use Cryptographic_Resource_Allocate.

¢ Is the Cryptographic Coprocessor finding a key store file? If you do not explicitly use the
Key_Store_Designate SAPI, the CCA CSP support will attempt to use the files named on the device
description. If you have named no files on the device description, the Cryptographic Coprocessor will
not find any files.

Cryptography 269

* Have you loaded and set a master key? The Cryptographic Coprocessor will not complete any
cryptographic requests other than those for configuring your Cryptographic Coprocessor, unless you
load a master key.

* Does the Old master key register contain a key? The Cryptographic Coprocessor cannot re-encrypt
keys under the Current master key unless the Old master key register contains a value.

* Does your default role have authority to use a given hardware command? If not, you will need to log
on by using a profile that uses a role that has the correct authority.

* Does any role have authority to use a given hardware command? If your Cryptographic Coprocessor
requires the hardware command and you have not authorized a role to use that command, you must
reinitialize your Cryptographic Coprocessor. Do this by using either the Cryptographic_Facility_Control
API or the Hardware Service Manager that is found in System Service Tools. Using the
Cryptographic_Facilty_Control API requires that you authorize a role to the hardware command that
reinitializes the Cryptographic Coprocessor. If no such role exists, you must use the Hardware Service
Manager.

* Is a function control vector loaded? Your Cryptographic Coprocessor cannot run any cryptographic
operations other than configuration until you load a function control vector.

* If you are loading a master key, did you begin by clearing out the new master key register? If your
Cryptographic Coprocessor has a partially loaded new master key register, you cannot load the first
part of a master key.

* Did you remember to set the clock in your Coprocessor before removing the authority to do so from
the DEFAULT role? If not, you must reinitialize your Cryptographic Coprocessor by using either the
Cryptographic_Facility_Control API or the Hardware Service Manager found in System Service Tools.
Using the Cryptographic_Facilty_Control API requires that you authorize a role to the hardware
command that reinitializes the Cryptographic Coprocessor. If no such role exists, you must use the
Hardware Service Manager.

* Did you set the EID before trying to generate public-private key pairs? You must set the EID before
you can generate RSA keys.

* Did you correctly initialize the first byte of a null key token to binary 0? If not, the CCA support
may try to use it as a key label. CCA Support will either report it as a bad label format or report that it
could find the key record.

* Do you use the same name for a label in a PKA key store file and a retained PKA key? If so, your
Cryptographic Coprocessor will never find the retained key because the Cryptographic Coprocessor
always searches the key store file first.

* Do you have EBCDIC data in any fields in a skeleton PKA key token? The Cryptographic
Coprocessor specifically checks for ASCII data in a number of the fields and will return an error if it
finds EBCDIC data.

Reinitializing the Cryptographic Coprocessor

If you set up your Cryptographic Coprocessor incorrectly, you can end up with an unusable
configuration with which you cannot perform any cryptographic functions and cannot use any of the
APIs to recover. For example, you can configure it such that you have no role authorized to set the
master key and no role authorized to change or create new roles or profiles. You can call the hardware
command for reinitializing the card by using the Cryptographic_Facility_Control (CSUACFC) SAPL

However, in some cases, there may not be a role that is authorized to any hardware command. In this
case, you must reload the Licensed Internal Code by using the function that is provided in Hardware
Service Manager in System Service Tools.

Updating the Licensed Internal Code in the Cryptographic Coprocessor

Loading the Licensed Internal Code in your Cryptographic Coprocessor erases the master key, all private
keys, and all roles and profiles that are stored in your Cryptographic Coprocessor. Because of this, the

system does not automatically load PTFs for the Licensed Internal Code in the Cryptographic

270 System i: Networking Cryptographic hardware

Coprocessor, and the PTFs always require action on your part to enable them. Before you load the
Licensed Internal Code, take appropriate actions to ensure that you can recover, such as ensuring that
you have a hard copy of your master key.

Note: If you randomly generated your master key, you will need to clone that key into a second
Cryptographic Coprocessor. If you do not, you will lose all your encrypted keys when you

reinitialize your Cryptographic Coprocessor.
Related tasks
[“Using the Hardware Service Manager” on page 277

Hardware service manager is a tool for displaying and working with the i5/0S system hardware from
both a logical and a packaging viewpoint, an aid for debugging Input/Output (I/O) processors and
devices, and is also used to reinitialize the Cryptographic Coprocessor (set it back to an un-initialized

state).

Example: ILE C program for reinitializing the Cryptographic Coprocessor
Change this i5/0S ILE C program example to suit your needs for reinitializing your Cryptographic
Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

If you choose to use the program example that is provided, change it to suit your specific needs.
For security reasons, IBM recommends that you individualize these program examples rather than

using the default values provided.

Clear the card (reset to manufactured state).

COPYRIGHT 5769-SS1 (C) IBM CORP. 1999, 2007

This material contains programming source code for your
consideration. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function
of these program. A1l programs contained herein are
provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

ARE EXPRESSLY DISCLAIMED. IBM provides no program services for

these programs and files.

Note: This verb is more fully described in Chapter 2 of
IBM CCA Basic Services Reference and Guide
(SC31-8609) publication.

Parameters:

none.
Example:
CALL PGM(REINIT)
Note: This program assumes the device to use is

already identified either by defaulting to the CRPO1
device or by being explicitly named using the
Cryptographic_Resource_Allocate verb. Also this
device must be varied on and you must be authorized
to use this device description.

Use these commands to compile this program on the system:
ADDLIBLE LIB(QCCA)

CRTCMOD MODULE (REINIT) SRCFILE(SAMPLE)

CRTPGM PGM(REINIT) MODULE(REINIT) BNDSRVPGM(QCCA/CSUACFC)

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Cryptography 271

/*

/* Note: Authority to the CSUACFC service program in the

/* QCCA Tibrary is assumed.

/*

/* The Common Cryptographic Architecture (CCA) verb used is
/* Cryptographic_Facilitiess_Control (CSUACFC).

/*

#include "csucincl.h" /* header file for CCA Cryptographic
/* Service Provider

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

Sy S Sy S S Sy Sy Sy S Uy S Sy S S S S -
/* standard return codes

[e m e e e
#define ERROR -1

#define OK 0

#define WARNING 4

#define TOKENSIZE 8 /* number of bytes in random token

int main(int argc, char xargv[])

{

Tong return_code = 0;

long reason_code = 0;

Tong exit_data length = 2;
char exit_data[4];

char rule_array[2][8];
Tong rule_array_count = 2;

Tong verb_data_length = TOKENSIZE;
char verb_data[TOKENSIZE];

char verb_data2[TOKENSIZE];

int i;

/* set keywords in the rule array
memcpy (rule_array,"ADAPTERIRQ-TOKEN",16);
/* get a random token from the card - returned in verb_data

CSUACFC(&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *)rule_array,
&verb_data_length,
(char *)verb_data);

if ((return_code == OK) | (return_code == WARNING))

272 System i: Networking Cryptographic hardware

*/

{

printf("Random token was successfully returned.\n");
printf("Return/reason codes ");

printf("%1d/%1d\n\n", return_code, reason_code);

/* get the one's complement of token and store in verb_data2.
/* operate on one byte at a time

for(i = 0; i < TOKENSIZE; i++)
{

}

/* change keyword in rule array

verb_data2[i] = “~verb_data[i];

memcpy (&rule_array[1],"RQ-REINT",8);
/* invoke the verb to reset the card

CSUACFC(&return_code,
&reason_code,
&exit_data_length,
exit_data,
&rule_array_count,
(char *)rule_array,
&verb_data_length,
verb_data?2);

if ((return_code == OK) | (return_code == WARNING))
{

printf("card successfully cleared/reset.\n");

printf("Return/reason codes ");

printf("%1d/%1d\n\n", return_code, reason_code);
} return(0K) ;

else

{

printf("An error occurred while clearing the card");

printf("card.\n Return/");

*/
*/

printf("reason codes %1d/%1d\n\n", return_code, reason_code);

return(ERROR) ;
}
}
else
printf("An error occurred while getting the random token.\n");
printf("Return/reason codes ");
printf("%1d/%1d\n\n", return_code, reason_code);

return(ERROR) ;

Cryptography 273

Example: ILE RPG program for reinitializing your Cryptographic Coprocessor
Change this i5/0S ILE RPG program example to suit your needs for reinitializing your Cryptographic
Coprocessor.

Note: Read the [“Code license and disclaimer information” on page 287] for important legal information.

If you choose to use the program example that is provided, change it to suit your specific needs.
For security reasons, IBM recommends that you individualize these program examples rather than
using the default values provided.

D***
D+ REINIT

D*

D* Clear the card (reset to manufactured state).

D*

D*

D* COPYRIGHT 5769-SS1 (C) IBM CORP. 2000, 2007

D*

D* This material contains programming source code for your

D* consideration. These example has not been thoroughly

D* tested under all conditions. IBM, therefore, cannot

D* guarantee or imply reliability, serviceability, or function
D+ of these programs. All programs contained herein are

D* provided to you "AS IS". THE IMPLIED WARRANTIES OF

Dx MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

Dx ARE EXPRESSLY DISCLAIMED. IBM provides no program services for
Dx these programs and files.

D*

D*

D* Note: Input format is more fully described in Chapter 2 of
D* IBM CCA Basic Services Reference and Guide
DL (SC31-8609) publication.

D*

D* Parameters:

D* char * new time 16 characters

D*

D* Example:

Dx CALL PGM(REINIT)

D*

D* Use these commands to compile this program on the system:
D* CRTRPGMOD MODULE(REINIT) SRCFILE(SAMPLE)
D* CRTPGM PGM(REINIT) MODULE(REINIT)

D* BNDSRVPGM(QCCA/CSUACFC)

D*

D* Note: Authority to the CSUACFC service program in the
D= QCCA Tibrary is assumed.

D=*

D* The Common Cryptographic Architecture (CCA) verbs used are
D* Cryptographic_Facilty_Control (CSUACFC)

D*
D**
)y Sy Y S PSS S Sy S RSy
D* Declare variables for CCA SAPI calls
)y Oy Ly P
D* *% Return code

DRETURNCODE S 9B 0

D* *% Reason code

DREASONCODE S 9B 0

D* *x Exit data length
DEXITDATALEN S 9B 0

D* *x Exit data

DEXITDATA S 4

D* ** Rule array count
DRULEARRAYCNT S 9B 0

D* *% Rule array

DRULEARRAY S 16

274 System i: Networking Cryptographic hardware

D* *% Verb data length
DVERBDATALEN S 9B 0
D* *% Verb data
DVERBDATA S 8

D*

DBUFFER DS
DAl

DA2

DA3

DA4

D*

DWORKBUFF DS
DINT4

DINT2 3 4

D*

D*
D**
D* Prototype for Cryptographic_Facilty Control (CSUACFC)

Dxkkkxkkhkkkhhhkkhhkrkkhhhkkhkhhkkkhhkkkhhkkkhhkkkhhkrkkhhkrxk

~N oW
o= N

—
~
w
o

DCSUACFC PR

DRETCODE 9B 0

DRSNCODE 9B 0

DEXTDTALEN 9B 0

DEXTDTA 4

DRARRAYCT 9B 0

DRARRAY 16

DVRBDTALEN 9B 0

DVRBDTA 8

D*
2y Sy Sy S PRy Sy .
D* *% Declares for sending messages to the

D* *% job log using the QMHSNDPM API
gy gy
DMSG S 75 DIM(3) CTDATA PERRCD(1)
DMSGLENGTH S 9B 0 INZ(64)

D DS

DMSGTEXT 1 80

DFAILRETC 41 44

DFATLRSNC 46 49

DMESSAGEID S 7 INZ (! ")
DMESSAGEFILE S 21 INZ('

DMSGKEY S 4 INZ(! ")

DMSGTYPE S 10 INZ('*INFO ")
DSTACKENTRY S 10 INZ('* ")
DSTACKCOUNTER S 9B 0 INZ(2)

DERRCODE DS

DBYTESIN 1 4B 0 INZ(0)

DBYTESOUT 5 8B 0 INZ(0)

C*
C**
C* START OF PROGRAM *
C* *
C* *
gy *
Cx Set the keyword in the rule array *
g *
C MOVEL "ADAPTERL' RULEARRAY

C MOVE "RQ-TOKEN' RULEARRAY

C Z-ADD 2 RULEARRAYCNT
gy *
C* Set the verb data length to 8 *
g *
C Z-ADD 8 VERBDATALEN

C**

Cryptography 275

276

C+ Call Cryptographic Facilty Control SAPI */

C**

C CALLP CSUACFC (RETURNCODE :

C REASONCODE :

C EXITDATALEN:

C EXITDATA:

C RULEARRAYCNT:

C RULEARRAY:

C VERBDATALEN:

C VERBDATA)
(O *

C* Check the return code *

(O *

C RETURNCODE IFGT 4

C* gy *

C* * Send error message *

C* gy *

C MOVEL MSG(1) MSGTEXT

C MOVE RETURNCODE FAILRETC

C MOVE REASONCODE FAILRSNC

C EXSR SNDMSG

C RETURN

C ENDIF

C*

C* K e ——————————————— *

C* * Send success message for the 1lst step *

C* gy *

C MOVEL MSG(2) MSGTEXT

C EXSR SNDMSG

C*
gy *
C* Set the keyword in the rule array for 2nd step *
Gk mm e e e e e e *
C MOVE '"RQ-REINT' RULEARRAY

C*
g gy gy *
C* Convert the token into the one's complement of it *
gy gy *
C MOVE VERBDATA BUFFER

C Z-ADD 0 INT4

C MOVE Al INT2

C EVAL INT4 = 65535 - INT4

C MOVE INT2 Al

C MOVE A2 INT2

C EVAL INT4 = 65535 - INT4

C MOVE INT2 A2

C MOVE A3 INT2

C EVAL INT4 = 65535 - INT4

C MOVE INT2 A3

C MOVE Ad INT2

C EVAL INT4 = 65535 - INT4

C MOVE INT2 A4

C MOVE BUFFER VERBDATA

C*
C**
C* Call Cryptographic Facilty Control SAPI */
C**
C CALLP CSUACFC (RETURNCODE :

C REASONCODE :

C EXITDATALEN:

C EXITDATA:

C RULEARRAYCNT:

C RULEARRAY :

C VERBDATALEN:

C VERBDATA)
(O *

C* Check the return code *

System i: Networking Cryptographic hardware

C RETURNCODE IFGT 4

C* Ko e e —m———am *

C* * Send error message *

C* T *

C MOVEL MSG(1) MSGTEXT
C MOVE RETURNCODE FAILRETC
C MOVE REASONCODE FAILRSNC
C EXSR SNDMSG

C*

C ELSE

C* T *

C* * Send success message *

C* Kmmmmmmmm e — e ——————— *

C MOVE MSG(3) MSGTEXT
C EXSR SNDMSG

C*

C ENDIF

C SETON LR
C*

C**
C* Subroutine to send a message

C******* """"""""""" kkkhkkkkhkkhkkhkhkkhhkkkhhkkhkkkhkh% kkkkhkkkkhkkk
C SNDMSG BEGSR

C CALL 'QMHSNDPM'

C PARM MESSAGEID

C PARM MESSAGEFILE
C PARM MSGTEXT

C PARM MSGLENGTH

C PARM MSGTYPE

C PARM STACKENTRY

C PARM STACKCOUNTER
C PARM MSGKEY

C PARM ERRCODE

C ENDSR

**

CSUACFC failed with return/reason codes 9999/9999.
Random token was successfully returned.
The Cryptographic Coprocessor successfully cleared/reset.

Using the Hardware Service Manager

Hardware service manager is a tool for displaying and working with the i5/OS system hardware from
both a logical and a packaging viewpoint, an aid for debugging Input/Output (I/O) processors and
devices, and is also used to reinitialize the Cryptographic Coprocessor (set it back to an un-initialized
state).

About this task

When the Cryptographic Coprocessor is re-initialized, the Cryptographic Coprocessor Licensed Internal
Code is reloaded into the Coprocessor. Some but not all program temporary fixes (PTFs) for the
Coprocessor licensed internal code may require the use of hardware service manager to activate them.
This extra step is included to allow you to prepare for recovery because reloading certain segments of the
licensed internal code will cause any configuration data including master keys, retained RSA private
keys, roles, and profiles to be lost.

There may be situations where the Cryptographic Coprocessor must be reset back to an unintialized state.
For example, if the Coprocessor is not configured correctly, there could be a scenario where the
Coprocessor cannot perform any useful function and cannot be corrected using the Cryptographic
Coprocessor configuration utility or a user-written application. Another example is if the passwords for
the administrative profiles are forgotten and no other profile uses a role that is authorized to change
passwords.

Cryptography 277

Hardware service manager is found in System Service Tools. To use the Hardware service manager,
proceed as follows:

1. Use the Start System Service Tools (STRSST) CL command by typing STRSST at the CL command line

and pressing enter. The System Service Tools Signon display should be shown.

F3=Exit
-

Start Service Tools (STRSST) Sign On

SYSTEM:
Type choice, press Enter.

Service tools user
Service tools password . . .

F9=Change Password F12=Cancel

~

2. Enter the service tools user profile name and password. The System Service Tools display should

appear.
-

. Work
. Work
. Work
. Work
. Work

DO WN =

Selection
1

F3=Exit

-

System Service Tools (SST)

Select one of the following:

. Start a service tool

with active service tools
with disk units

with diskette data recovery
with system partitions

with system capacity

F10=Command entry F12=Cancel

3. Select 1 to start a service tool and press Enter. The Start a Service Tool display will be shown.

278 System i: Networking Cryptographic hardware

Start a Service Tool

Warning: Incorrect use of this service tool can cause damage
to data in this system. Contact your service representative
for assistance.

Select one of the following:

Product activity Tog

Trace Licensed Internal Code
Work with communications trace
Display/Alter/Dump

Licensed Internal Code log
Main storage dump manager
Hardware service manager

NOoO O WN =

Selection
7

\\F3=Ex1t F12=Cancel F16=SST menu

%

Select 7 to start Hardware Service Manager. The Hardware Service Manager screen will be displayed
showing the menu of available options.

-

Hardware Service Manager
Attention: This utility is provided for service representative use only.

System unit : 9406-270 10-4314M
Release : V5RIMO (1)

Select one of the following:

1. Packaging hardware resources (systems, frames, cards,...)
2. Logical hardware resources (buses, IOPs, controllers,...)
3. Locate resource by resource name
4. Failed and non-reporting hardware resources
5. System power control network (SPCN)
6. Work with service action Tog
7. Display label Tocation work sheet
8. Device Concurrent Maintenance
Selection
2
F3=Exit F6=Print configuration F9=Display card gap information
F10=Display resources requiring attention F12=Cancel

~

Select 2 to work with logical hardware resources.

Cryptography 279

Logical Hardware Resources
Select one of the following:

1. System bus resources

2. Processor resources

3. Main storage resources

4. High-speed link resources

Selection
1

\f3=Ex1t F6=Print configuration F12=Cancel

6. From the Logical Hardware Resources screen, select 1 to show system bus resources.

s
Logical Hardware Resources on System Bus
System bus(es) to work with *ALL *ALL, *SPD, *PCI, 1-511
Subset byo oo *CRP *ALL, *STG, *WS, *CMN, *CRP

Type options, press Enter.
2=Change detail 4=Remove 5=Display detail 6=1/0 Debug

8=Associated packaging resource(s) 9=Resources associated with IOP
Resource
Opt Description Type-Model Status Name
_ HSL I/0 Bridge 2249- Operational BCO2
_ Bus Expansion Adapter - Operational BCCO2
System Bus 2249- Operational LBO1
Multi-Adapter Bridge 2249- Operational PCIO1D
_ Combined Function IOP * < 284D-001 Operational CMBO1
_ HSL I/0 Bridge 283B- Operational BCO1
Bus Expansion Adapter - Operational BCCO3
More...

F3=Exit F5=Refresh F6=Print F8=Include non-reporting resources
F9=Failed resources F10=Non-reporting resources
\\F11=Disp1ay serial/part numbers F12=Cancel

7. 1f you know which IOP contains the Cryptographic Coprocessor, type 9 next to the IOP. Otherwise,

subset the list by typing *CRP for Subset by field and then type 9 next to the IOP containing the

Cryptographic Coprocessor. You should then see the Logical Hardware Resources Associated with IOP

display.

280 System i: Networking Cryptographic hardware

Logical Hardware Resources Associated with IOP

Type options, press enter.

2=Change detail 4=Remove 5=Display detail 6=1/0 Debu

7=Verify 8=Associated packaging resource(s)
Opt Description Type-Model Status
Combined function IOP * < 284D-001 Operational
_ Cryptography Adapter 4758-023 Operational
6 Cryptography Device 4758-023 Operational
~ Workstation IOA 2746-001 Operational
Display Station 3477-0FC Operational
Display Station 3477-0FC Operational
Communications IOA 2745-001 Operational
_ Communications Port 2745-001 Operational
Communications Port 2745-001 Operational
Communications IOA 2744-001 Operational
Communications Port 2744-001 Operational
F3=Exit F5=Refresh F6=Print F8=Include non-reporting re

F9=Failed resources F10=Non-reporting resources
F11=Display serial/part numbers F12=Cancel

9

Resource
Name
CMBO1
CRPCTLO1
CRPO1
CTLO1
DSPOO1
DSP0O2
LINO1
CMNO1
CMNO2
LINO3
CMNO3
More...
sources

Type 6 next to the cryptography device that you want to reinitialize, and then press Enter.

Ve
Select Cryptography Debug Function

Select one of the following:

1. Reinitialize Flash Memory
2. Select IOP Debug Function

Selection
1

F3=Exit

F12=Cancel
o

Select 1 to reinitialize flash memory (reload the Cryptographic Coprocessor Licensed Internal Code). A

confirmation screen will be displayed. If you are applying

a PTF ensure that you have taken the

necessary precautions regarding your encrypted data and keys, and have a backup of the master key.

Press Enter to continue.

Cryptography 281

/ N

Reinitialize Flash Memory Function
DANGER:
Performing this initialization of the flash memory on the cryptography
device will cause ALL key information stored on the device to be
DESTROYED. This will cause all data encrypted using this device to be
rendered unusable.

WARNING:

Performing this initialization of the flash memory on the cryptography
device will take an estimated 10 minutes.

Press Enter to proceed.

F3=Exit F12=Cancel
\

| Results

| The following screen showing status of the reinitialization will be displayed and updated until

| reinitialization is complete.
4 N

Reinitialize Flash Memory Status

Flash memory reinitialization in progress...

Estimated time: 10.0 minutes

Elapsed time: 2.5 minutes

- J

| When reinitialization is complete, a message will be displayed.

282 System i: Networking Cryptographic hardware

4 N
Select Cryptography Debug Function

Select one of the following:

1. Reinitialize Flash Memory
2. Select IOP Debug Function

Selection

F3=Exit F12=Cancel
Reinitialization of cryptography device was successful.

What to do next

After reinitialization is complete, exit all the way out of system service tools by pressing function key F3
on each screen as necessary.

Related concepts

[“Reinitializing the Cryptographic Coprocessor” on page 270

If you set up your Cryptographic Coprocessor incorrectly, you can end up with an unusable
configuration with which you cannot perform any cryptographic functions and cannot use any of the
APIs to recover. For example, you can configure it such that you have no role authorized to set the
master key and no role authorized to change or create new roles or profiles. You can call the hardware
command for reinitializing the card by using the Cryptographic_Facility_Control (CSUACFC) SAPL

2058 Cryptographic Accelerator

The 2058 Cryptographic Accelerator provides a competitive option to customers who do not require the
high security of a Cryptographic Coprocessor, but do need the high cryptographic performance that
hardware acceleration provides to offload a host processor. The 2058 Cryptographic Accelerator is
available for customers to use with a V5R2 (or later) system running the i5/0S operating system.

The 2058 Cryptographic Accelerator has been designed to improve the performance of those SSL
applications that do not require secure key storage. You can also use the 2058 Cryptographic Accelerator
to offload processing for DES, Triple DES, SHA-1, and RSA encryption methods, when using
Cryptographic Services APIs. See the |Cryptographic Services APIg| for more information.

The 2058 Cryptographic Accelerator does not provide tamper-resistant storage for keys, like the
Cryptographic Coprocessor hardware. Depending on the model of system you have, you can install up to
a maximum of eight Cryptographic Accelerators. You can install a maximum of four Cryptographic
Accelerators per partition.

The 2058 Cryptographic Accelerator provides special hardware which is optimized for RSA encryption
(modular exponentiation) with data key lengths up to 2048 bits. It also provides functions for DES, TDES,
and SHA-1 encryption methods. The 2058 Accelerator uses multiple RSA (Rivest, Shamir and Adleman
algorithm) engines.

Related information

Cryptography 283

(= IiSeries Performance|

Features

This topic provides information about the features of the 2058 Cryptographic Accelerator on your system
running the i5/0S operating system.

Some features of the 2058 Cryptographic Accelerator include:

* Single card high performance cryptographic adapter (standard PCI card)
* Designed and optimized for RSA encryption

* Onboard hardware-based RNG (random number generator)

* Five mounted IBM UltraCypher Cryptographic Engines

Scenario: Enhancing system SSL performance

In this scenario, a company orders and installs 2058 Cryptographic Accelerator is a PCI (Peripheral
Component Interconnect) card. This card is specially designed to accelerate the very compute intensive
processing required when establishing a SSL/TLS session. The scenario specifies the steps this company
makes to get the card configured to enhance the SSL performance of its system running the i5/0S
operating system.

Situation:

A company’s system handles thousands of secured Internet transactions per day. The company’s
transactions utilize the Secure Sockets layer and Transport Layer Security protocols (SSL and TLS) — a
common method for securing Internet transactions. This company’s system administrator, Sue, wants to
free up system resources for additional application processing, including the ability to support even more
SSL transactions. Sue is looking for a solution that fits these objectives:

* A sizeable increase in the available system resources for application processing, including additional
SSL transactions

* Minimal installation and configuration effort

* Minimal resource management requirements

Based on these objectives, Sue orders and installs an IBM 2058 e-Business Cryptographic Accelerator.
(hereafter referred to as a 2058 Cryptographic Accelerator). The 2058 Cryptographic Accelerator is a PCI
(Peripheral Component Interconnect) card, which is specially designed to accelerate the very compute
intensive processing required when establishing a SSL/TLS session. You can obtain the IBM 2058
Cryptographic Accelerator by ordering hardware feature code 4805.

Details:
1. The system has a 2058 Cryptographic Accelerator installed and configured.
2. The system receives a high number of SSL transaction requests from the network.

3. The 2058 Cryptographic Accelerator performs the cryptographic processing in the initiation of SSL
transactions, and caches the private keys that are associated with the digital certificates for SSL
transactions.

Prerequisites and assumptions:
This scenario assumes that Sue has planned for the installation of the 2058 Cryptographic Accelerator,

and then configured the card properly. This scenario also assumes that Sue has already set up a digital
certificate for SSL.

284 System i: Networking Cryptographic hardware

http://www.ibm.com/servers/eserver/iseries/perfmgmt/

Configuration steps:

Sue completes the following steps to enhance the SSL performance of her company’s system:
1. Order Hardware Feature code 4805, which provides the 2058 Cryptographic Accelerator.

2. Install the 2058 Cryptographic Accelerator.

3. Create a device description for the 2058 Cryptographic Accelerator, and vary-on the device.

Related concepts

[“Planning for the 2058 Cryptographic Accelerator”]

Depending on the system model you have, you can install up to a maximum of eight IBM
Cryptographic Accelerators. You must ensure that your system meets the hardware and software
requirements to use the Cryptographic Accelerator.

Related tasks

[“Configuring the 2058 Cryptographic Accelerator”|

You must create a device description so that i5/0OS SSL can direct RSA cryptographic operations to the
2058 Cryptographic Accelerator. You can create a device description by using the Create Device
Description (Crypto) (CRTDEVCRP).

Planning for the 2058 Cryptographic Accelerator

Depending on the system model you have, you can install up to a maximum of eight IBM Cryptographic
Accelerators. You must ensure that your system meets the hardware and software requirements to use the
Cryptographic Accelerator.

Hardware requirements

The IBM e-Business Cryptographic Accelerator (orderable feature code 4805, and hereafter referred to as
the 2058 Cryptographic Accelerator). The 4805 feature is a standard PCI card, and is supported on the
following models:

e eServer i5 520, 550, 570, and 595
e eServer i5 270, 810, 820, 825, 830, 840, 870, and 890
* eServer i5 expansion units 5074, 5075, 5078, 5079, 5088, 5094, 5095, 5294, and 5790

i5/0S and SSL requirements

The 2058 Cryptographic Accelerator requires OS/400 V5R2MO (Version 5 Release 2 Modification 0)
software, or subsequent i5/0S software.

Note: For systems running V5R3MO, the Cryptographic Access Provider 128-bit (5722-AC3) licensed
program product must also be installed to enable the cryptographic functions in the software that
SSL also uses.

Related concepts

[‘Scenario: Enhancing system SSL performance” on page 284|

In this scenario, a company orders and installs 2058 Cryptographic Accelerator is a PCI (Peripheral
Component Interconnect) card. This card is specially designed to accelerate the very compute
intensive processing required when establishing a SSL/TLS session. The scenario specifies the steps
this company makes to get the card configured to enhance the SSL performance of its system running
the i5/0S operating system.

Configuring the 2058 Cryptographic Accelerator

You must create a device description so that i5/0S SSL can direct RSA cryptographic operations to the
2058 Cryptographic Accelerator. You can create a device description by using the Create Device
Description (Crypto) (CRTDEVCRP).

Cryptography 285

About this task

To create a device description using the CL command, follow these steps:
Type CRTDEVCRP at the command line.

Specify a name for the device as prompted.

Accept the default name of the PKA key store: *NONE.

Accept the name default of the DES key store: *NONE.

Specify an APPTYPE of *NONE.

Optional: Specify a description as prompted.

Use either the Vary Configuration (VRYCFG) or the Work with Configuration Status (WRKCFGSTS)
CL commands to vary on the device once you have created the device description.

N O~

Results

For digital certificates that are generated by software, and stored in software, i5/0S SSL automatically
starts using the 2058 Cryptographic Accelerator once the device is varied-on. The private key processing
associated with SSL and TLS session establishment is off-loaded to the 2058 Cryptographic Accelerator.
When the device is varied-off, i5/0S SSL switches back to software based encryption for establishing SSL
and TLS sessions, thereby placing the private key processing load back on the system.

Note: This is only true for certificates and private keys that were not created by the Cryptographic
Coprocessor. If a certificate was generated using the Cryptographic Coprocessor, the Cryptographic
Coprocessor has to be used for those SSL or TLS sessions which use that particular certificate.

Related concepts

[“Scenario: Enhancing system SSL performance” on page 284|

In this scenario, a company orders and installs 2058 Cryptographic Accelerator is a PCI (Peripheral
Component Interconnect) card. This card is specially designed to accelerate the very compute
intensive processing required when establishing a SSL/TLS session. The scenario specifies the steps
this company makes to get the card configured to enhance the SSL performance of its system running
the i5/0S operating system.

Related information for cryptographic hardware

This topic provides information about product manuals and IBM Redbooks® (in PDF format), Web sites,
and information center topics that relate to the i5/0S cryptographic hardware topic. You can view or
print any of the PDFs.

The following resources provide additional information relating to cryptographic concepts or hardware:

IBM Sources

* The|[IBM Cryptographic hardware|° (http:/ /www.ibm.com/security/cryptocards) contains
information on the 4758 Cryptographic Coprocessor hardware solution.

+ [IBM PCI Cryptographic Coprocessor documentation libraryl 9 (http:/ /www.ibm.com /security /|
cryptocards/library.shtml) contains the CCA 3.2x Basic Services Manual for the 4764 Cryptographic
Coprocessor, in addition to the 2.5x CCA Basic Services manuals for the 4758 Cryptographic
Coprocessor. These downloadable PDF documents are intended for systems and applications analysts
and application programmers who will evaluate or create CCA programs.

* The CCA Basic Services Manual is intended for systems and applications analysts and application
programmers who will evaluate or create programs for the IBM Common Cryptographic Architecture
(CCA) support. Go to the

* [IBM Cryptographic Coprocessor Library] D for a downloadable PDF of this manual.

286 System i: Networking Cryptographic hardware

http://www.ibm.com/security/cryptocards
http://www.ibm.com/security/cryptocards/library.shtml
http://www.ibm.com/security/cryptocards/library.shtml
http://www.ibm.com/security/cryptocards/library.shtml
http://www.ibm.com/security/cryptocards/library.shtml

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).
2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free

copy from the [Adobe Web site| (www.adobe.com/products/acrobat/readstep.html) 3.

Related concepts

{4764 and 4758 Cryptographic Coprocessors|

IBM offers two Cryptographic Coprocessors, which are available on a variety of system models.
Cryptographic Coprocessors contain hardware engines, which perform cryptographic operations used
by i5/0S application programs and i5/0OS SSL transactions.

Code license and disclaimer information

IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS
PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR
ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF OR DAMAGE TO, DATA;

2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC
CONSEQUENTIAL DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.
SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS
OR EXCLUSIONS MAY NOT APPLY TO YOU.

Cryptography 287

http://www.adobe.com/products/acrobat/readstep.html

288 System i: Networking Cryptographic hardware

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1998, 2006 289

Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N

Rochester, MN 55901

US.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,
IBM License Agreement for Machine Code, or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS
PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR
ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL
DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR
CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS
MAY NOT APPLY TO YOU.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. _enter the year or years_. All rights reserved.

290 System i: Networking Cryptographic hardware

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

DB2

developerWorks

IBM

iSeries

Operating System/400
0S/400

pSeries

Redbooks

xSeries

zSeries

SET and the SET Logo are trademarks owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE
PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix. Notices 291

292 System i: Networking Cryptographic hardware

Printed in USA

	Contents
	Cryptography
	What's new for V5R4
	Printable PDF
	Cryptography concepts
	4764 and 4758 Cryptographic Coprocessors
	Cryptographic hardware concepts
	Features
	Cryptographic Coprocessor scenarios
	Scenario: Protecting private keys with cryptographic hardware
	Scenario: Writing an i5/OS application to use the Cryptographic Coprocessor

	Planning for the Cryptographic Coprocessor
	Requirements
	Secure access

	Configuring the Cryptographic Coprocessor
	Creating a device description
	Naming files to key store file
	Creating and defining roles and profiles
	Setting the environment ID and clock
	Loading a function control vector
	Loading and setting a master key
	Configuring the Cryptographic Coprocessor for use with DCM and SSL
	Configuring the Cryptographic Coprocessor for use with i5/OS applications

	Migrating to the Cryptographic Coprocessor
	Migrating key store files from the IBM CCA Services for OS/400 PRPQ
	Migrating Cryptographic Support for system cross-domain key files

	Managing the Cryptographic Coprocessor
	Logging on or off of the Cryptographic Coprocessor
	Query status or request information
	Initializing a key store file
	Creating DES and PKA keys
	Encrypting or decrypting a file
	Working with PINs
	Generating and verifying a digital signature
	Managing multiple Cryptographic Coprocessors
	Cloning master keys

	Troubleshooting the Cryptographic Coprocessor
	Reinitializing the Cryptographic Coprocessor
	Example: ILE C program for reinitializing the Cryptographic Coprocessor
	Example: ILE RPG program for reinitializing your Cryptographic Coprocessor

	Using the Hardware Service Manager

	2058 Cryptographic Accelerator
	Features
	Scenario: Enhancing system SSL performance
	Planning for the 2058 Cryptographic Accelerator
	Configuring the 2058 Cryptographic Accelerator

	Related information for cryptographic hardware

	Appendix. Notices
	Trademarks
	Terms and conditions

