[[n]] ma 2

IBM Systems - iSeries
Problem Management APIs

Version 5 Release 4

Note
Before using this information and the product it supports, be sure to read the information in

[“Notices,” on page 141

Sixth Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of IBM i5/0S (product number 5722-SS1) and to all
subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all
reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2006.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Problem Management APIs
Filtering . .

Working with a Problem

Key Groups.

APIs . . .

Problem Logging APIs .

Add Problem Log Entry (stAddProblemLogEntry)

APT .

Authorltles and Locks .
Required Parameter Group
Rules for Key Usage .
Error Messages .

Change Problem Log Entry

(QsxChangeProblemLogEntry) API .
Authorities and Locks .

Required Parameter Group
Format of the Keys .
Rules for Key Usage.
Error Messages .

Create Problem Log Entry

(QsxCreateProblemLogEntry) API .
Authorities and Locks . .
Required Parameter Group .
Format of the Keys .

Rules for Key Usage
Error Messages .

Delete Problem Log Entry

(QsxDeleteProblemLogEntry) APT .
Authorities and Locks .

Required Parameter Group .
Format of the Key Groups
Rules for Key Usage

Error Messages .

End Problem Log Seerces

(QsxEndProblemLogServices) APT .
Authorities and Locks .

Required Parameter
Error Messages .

Log Software Error (QPDLOGER) API
Authorities and Locks . .
Required Parameter Group .
Optional Parameter Group 1.
Optional Parameter Group 2.
Usage Notes .

Error Messages .

Report Software Error (deReportSoftwareError)

APT . S

Authorities and Locks

Required Parameter Group . .o

Problem Description Records Format .

Field Descriptions .

Keys.

Formats of Spec1f1c Problem Descrlptlon Records

Field Descriptions .
Usage Notes .
Error Messages .

© Copyright IBM Corp. 1998, 2006

.
»—\»—\»—l)—\»—\—l

AN WWNN

. 18
.18
.18
.19
.19
. 20

. 20
. 20
.21
.21
.21
.22
.22
.24
.24
.24
.25

. 25
. 26
. 26
. 26
. 26
. 26

27

.32
. 35
. 35

Retrieve Problem Log Entry
(QsxRetrieveProblemLogEntry) API
Authorities and Locks .
Required Parameter Group .
Format of the Key Groups
Rules for Key Usage
Error Messages .
Start Problem Log Services
(QsxStartProblemLogServices) API.
Authorities and Locks .
Required Parameter
Error Messages . . .
Work with Problem (QPDWRKPB) API .
Authorities and Locks .
Required Parameter Group .
Optional Parameter Group
Error Messages .
Service APIs .

Change Contact Informatlon (QEDCHGIN) API .

Authorities and Locks .

Required Parameter Group .

CNTCO0100 Format .

Field Descriptions .

Error Messages . . .
Collect Hung Job Service Documentatlon
(QPDETHNG) APT .

Authorities and Locks .

Required Parameter Group .

Error Messages . .

Convert Format of Service Informatron
(QPDETCVT) API .

Authorities and Locks .

Required Parameter Group . .

CVTRO100 - Format for receiver varlable

CVTS0100 - Format for LIC Log conversion

CVTS0200 - Format for message conversion

(STRWCH) o

CVTS0300 - Format for message conversion

(QGYOLMSG) o

CVTS0400 - Format for message conversion

(QGYOLJBL) .

Field Descriptions .

Error Messages . .

Filter Problem (QSXFTRPB) API

Required Parameter Group .

Authorities and Locks .

Format for the Problem Log Ident1f1er

Field Descriptions .

Error Messages .

Retrieve Contact Informatron (QEDRTVCI) API

Authorities and Locks . .

Required Parameter Group .

CNTIO100 Format

Field Descriptions .

Error Messages . .
Retrieve Policy Data (QPDETRTV) API .

. 35
. 36
. 36
.37
. 37
. 38

. 38
. 39
. 39
. 39
. 39
. 40
. 40
. 42
. 42
. 43
.43
. 43
. 43
. 44
. 45
. 47

. 47
. 48
. 48
. 48

. 48
. 49
. 49
. 50
. 50

. 51

. 52

. 53
. 54
. 60
. 61
. 61
. 61
. 61
. 61
. 61
. 62
. 62
. 62
. 63
. 63
. 65
. 65

iii

Authorities and Locks .
Required Parameter Group .
Format of Data Returned .
Field Descriptions .
Error Messages .

Retrieve Service Attrlbutes (QESRSRVA) API
Authorities and Locks .
Required Parameter Group .
Receiver Variable Format . .
Service Attribute Template Format.
Field Descriptions .
Service Attributes Format. .
Key 1—Automatic Problem Analysrs .
Field Descriptions .
Key 2—Automatic Problem Reportmg
Field Descriptions .
Key 3—Service Provider to Report Problem
Field Descriptions . .
Key 4—PTF Install Type .
Field Descriptions .
Key 5—Critical Message Rec1p1ents
Field Descriptions . o
Key 6—Send Data Packets
Field Descriptions .
Key 7—Copy PTFs .
Field Descriptions .

Key 10—System-D1sabled Reportmg Connectlon

Number .
Field Descr1pt10ns .

Key 11—System-Disabled Call Back Connectron

Number .

Field Descrlptlons . .

Key 12—Service Provider Connectlon Number
Field Descriptions .

Error Messages .

Retrieve XML Service Informatlon (QSCRXMLI) API

Authorities and Locks .
Required Parameter Group .
DEST0100 Format

Field Descriptions .
DEST0200 Format

SIRV0100 Format

Field Descriptions .

SSIF0100 Service Selection Informatron from a

Nonprogram Message Queue Format.
Field Descriptions .

SSIF0200 Service Selection lnformatlon from a

Program Message Queue of a Job Format
Field Descriptions .

Usage Notes .

Error Messages .

Send Service Request (QPDETSND) APl
Authorities and Locks . .
Required Parameter Group .
SNDRO100 - Refresh Policy File Request
SNDRO0200 - Start a Function Request.
SNDRO0300 - Stop a Function Request.
SNDRO0400 - Service Event Request

SNDRO0500 - Change Logging Levels Request .

SNDRO0600 - Handle Changed System Value
Request. . A

iv IBM Systems - iSeries: Problem Management APIs

. 66
. 66
. 66
. 67
. 67
. 68
. 68
. 68
. 69
. 70
. 70
. 70
.71
.71
.71
.71
.71
.71
.72
.72
.72
.72
.73
.73
.73
.73

.73
.73

.74
. 74
. 74
. 74

.74

.75
.75
. 76
.77
.77
.77
.77

.77
.77

. 78
. 78
.78
.78
.79
. 80
. 80
. 80
. 81
. 81
. 81
. 81

. 81

Field Descriptions .
Error Messages . .
Set User Policy (QPDETPOL) API
Authorities and Locks .
Required Parameter Group .
POLS0100 - Format for setting service mterval
policy for Service Monitor cleanup .
POLS0200 - Format for setting the level of

problem documentation sent with a problem .

POLS0300 - Format for setting maximum PTF
order size .
Field Descriptions .

Error Messages .

Monitoring APIs.

End Watch (QSCEWCH) API
Authorities and Locks .

Required Parameter Group .
Error Messages . .

Start Watch (QSCSWCH) API

Authorities and Locks .

Required Parameter Group .

Format for message information

Format for LIC log information.

Field Descriptions .

Error Messages .
Start Watch Command or API Ex1t Program
(QPDETWCH) API .

Authorities and Locks .

Required Parameter Group .

Exit Programs . .

Exit Program for Watch for Trace Event
Authorities and Locks .

Required Parameter Group .
Field Descriptions .
Related Information

Concepts .

Key Groups for Problem Log APIs
Key Use for Problem Log APIs .

Key utilization matrix . .

Key Group 0000-General Problem Log Entrres .
Key 1-problem log id . S
Key 2-problem type
Key 3-problem status.

Key 4-user assigned .

Key 5-problem origin system .
Key 6-Operational data .

Key 7—filter control .

Key 8-answer codes . .

Key Group 1000-Problem Descrlptron Entrres
Key 1001—Problem Severity .

Key 1002-Problem Description Message
Key 1003-Problem Creation Data .
Key 1004-Reporting Device .

Key 1005—Failing Resource

Key 1006-Reporting Code

Key 1007-Problem Analysis Data .
Key 1008-Fix Verification Status
Key 1009-Fix Recovery Status .
Key 1010 -Symptom String .

Key 1011-PTF Media Selection .
Key 1012-Problem Category

. 81
. 83
. 83
. 83
. 83

. 84
. 84

. 84
. 85
. 85
. 86
. 86
. 86
. 87
. 87
. 87
. 88
. 88
. 90
.90
.90
.92

.93
.93
. 93
. 94
. 94
.95
. 95
. 96
. 96
. 97
. 97
. 97
.97
. 99
. 99
.99
. 100
. 100
. 100
. 101
. 102
. 102
. 103
. 103
. 104
. 104
. 104
. 105
. 106
. 107
. 107
. 107
. 108
. 108
. 108

Key 1013-Client Information
Key 1014-First Failure Data Capture
Key 1015-Query Status
Key 1016-Hardware Location Informatlon
Key Group 2000-FRU Entries . .
Key 2000-Number of FRU Entries to Work w1th
Key 2001-Device FRU Type . .
Key 2002-Code FRU Type
Key 2003-Media FRU Type .
Key 2004-User FRU Type
Key 2005-FRU Name .
Key 2006-Attached FRU .
Key 2007-Configuration FRU .
Key 2008 - General FRU . .
Key 2009-Channel Attached FRU .
Key Group 3000-Text Entries
Key 3000-Text Entry .
Key 3001-Text Entry .
Key Group 4000-Supporting data entrles
Key 4000-Supporting Data Entries
Key 4001-Spooled File Data.

. 109
. 109
. 110
. 110

. 110
111

. 111
. 112
. 113
. 114
. 114
. 115
. 115
. 115
. 116
. 116
. 117
. 117
. 118
. 118
. 118

Key 4002-File Data .
Key Group 5000-Contact Entries .

Key 5000-Contact entries

Key 5001-Contact Information . .
Key Group 6000-Problem History Entries .

Key 6000-History Information .

Key 6001-History Information .
Key Group 7000-PTF Entries

Key 7000-PTF Entry .

Key 7001-PTF ID .

Key 7002-PTF ID .

Key Group 8000-Analyzed Error Entrles

Key Group 9000-Logical Partition ID Entries .
Field Descrlptlons for Key Groups for Problem Log
APlIs . . o o

Appendix. Notices
Programming Interface Information .
Trademarks .

Terms and Condltlons

Contents

. 119
. 119
. 119
. 120
. 121
. 121
. 121
. 122
. 122
. 122
. 123
. 124
. 124

. 124

. 14
. 142
. 143
. 144

A\

vi IBM Systems - iSeries: Problem Management APIs

Problem Management APIs

The problem management APIs offer you the ability to write problem management solutions, improve
serviceability, and manage your own applications. Problem management APIs deal directly with how the
iSeries™ server handles problems today. The problem log provides most of the operations necessary for
problem management in a network environment.

The problem management APIs are organized into the following groups:

* [“Problem Logging APIs”|

* [“Service APIs” on page 43|

* [“Monitoring APIs” on page 86|

Filtering

In the problem management APIs, a filter categorizes problem log entries into groups and performs
operations on them accordingly. The problem log applies the currently active filter to a problem log entry
whenever a problem entry is created, changed, or deleted using system-provided interfaces.

The operations supported allow you to send application notification to a user data queue and assign the
problem to a user. Your application can receive these notifications from the data queue using existing
APIs. See also [Data Queue APIs

Working with a Problem

Problem analysis is the process of finding the cause of a problem and identifying why the system is not
working. Often, this process identifies equipment or data communications functions as the source of the
problem. The [“Work with Problem (QPDWRKPB) API” on page 39| (QPDWRKPB) API allows you to
perform problem analysis on local machine-detected problems in the problem log. The Work with
Problem (QPDWRKPB) API prepares the problem in the problem log for reporting; it does not report the
problem automatically.

Key Groups
See|“Key Groups for Problem Log APIs” on page 97 for information about keys for problem log APIs.

@ | |APIs by category]

APIs
These are the APIs for this category.

Problem Logging APls

The Problem Logging APIs include:

* [“Add Problem Log Entry (QsxAddProblemLogEntry) API” on page 2| (QsxAddProblemLogEntry) adds
additional or supporting data to a problem log entry.

* [“Change Problem Log Entry (QsxChangeProblemLogEntry) API” on page 6|
(QsxChangeProblemLogEntry) updates an existing problem entry by changing the information.

© Copyright IBM Corp. 1998, 2006 1

obj2.htm
#TOP_OF_PAGE
aplist.htm

[“Create Problem Log Entry (QsxCreateProblemLogEntry) API” on page 13|
(QsxCreateProblemLogEntry) creates a problem log entry with the information provided to the
problem log entry.

[‘Delete Problem Log Entry (QsxDeleteProblemLogEntry) API” on page 18|
(QsxDeleteProblemLogEntry) deletes problem log entries or removes keys from a problem log entry.

[“End Problem Log Services (QsxEndProblemLogServices) API” on page 20|
(QsxEndProblemLogServices) ends an instance of the problem log services identified by the handle
returned when the services started.

[‘Log Software Error (QPDLOGER) API” on page 21] (QPDLOGER) logs a software problem and collects
data needed for its resolution.

[‘Report Software Error (QpdReportSoftwareError) API” on page 25| (QpdReportSoftwareError) is an
ILE program that logs problems in the problem log and sends it to a service provider.

[‘Retrieve Problem Log Entry (QsxRetrieveProblemLogEntry) API” on page 35|
(QsxRetrieveProblemLogEntry) extracts data from a specific problem log entry.

[“Start Problem Log Services (QsxStartProblemLogServices) API” on page 38
(QsxStartProblemLogServices) sets up an environment for adding, creating, changing, deleting, and
retrieving problem log entries.

* [“Work with Problem (QPDWRKPB) API” on page 39| (QPDWRKPB) analyzes and prepares a
machine-detected hardware problem for reporting.

@ | [“Problem Management APIs,” on page 1| | |APIs by category]

Add Problem Log Entry (QsxAddProblemLogEntry) API

Required Parameter Group:

1 Handle Input Binary(4)

2 Key structures Input Array of Pointers
3 Number of keys Input Binary(4)

4 Error code I/0 Char(*)

Default Public Authority: *USE
Service Program: QSXSRUPL
Threadsafe: No

The Add Problem Log Entry (QsxAddProblemLogEntry) API adds information to an existing problem log
entry.

The API supports the following data types:
* Keys 2001-2009 (field replaceable unit (FRU) entries) can be added to the problem log entry.

* Keys 4001 and 4002 (supporting data) entries can be added. Do not add duplicate information because
checking is not performed.

* Key 6001 (history information) can be added.

* Key 7001 (PTF ID) can be added to a problem log entry. If the PTF entry already exists, an error is
signalled.

Authorities and Locks

API Public Authority
*USE

2 IBM Systems - iSeries: Problem Management APIs

#TOP_OF_PAGE
aplist.htm

Required Parameter Group

Handle
INPUT; BINARY(4)

An identifier that associates the problem log services started by the Start Problem Log Services
APIL.

Key structures
INPUT; ARRAY of POINTERS

An array of pointers that has the address of each key that contains data to be written into the
problem log. The number of pointers passed in the array must equal the value passed by the
Number of keys parameter. Keys not supported for the Add Problem Log Entry API cause error
messages to be sent to the caller.

Number of keys
INPUT; BINARY(4)

Number of keys passed to the APL

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Parameter.

Rules for Key Usage
Key 1 (problem log ID) is required to identify the problem log entry to process.

Data can be added to an existing problem log entry with the Add Problem Log Entry API The types of
data that may be added with this API are:

* Keys 2001-2009 (FRU entries)

* Supporting data entries (keys 4001 and 4002 (supporting data)
* Key 6001 (history information)

¢ Key 7001 (PTF ID)

The remaining data contained in a problem can be altered using the Change API. More information on
the above keys can be found in [“Key Groups for Problem Log APIs” on page 97|

Keys for Adding FRU Records

A FRU, field replaceable unit, entry defines an object that may have a specific machine-detected problem.
FRUs have been broken into 9 types and represented by keys 2001 through 2009.

The types are:

2001 Device FRU type

2002 Code FRU type

2003 Media FRU type

2004 User FRU type

2005 FRU name

2006 Attached FRU

2007 Configuration FRU
2008 General FRU

2009 Channel attached FRU

Problem Management APIs 3

In addition, a FRU or list of FRUs are associated with a problem based upon an analysis class. The
analysis class implies the amount or type of analysis that has been done on the problem. FRUs are
associated with a problem within the context of a class.

The classes of FRUs are:

Point of failure
Partial isolation
Isolation
Verification
Recovery
Answer

N QU1 = W N -

To add FRUs for a class of FRUs, the problem log entry must be identified, the class must be chosen, and
the data must be added. These three actions need to be done for each FRU type. FRUs may be used in
any combination, to add data about individual failing elements to a maximum of 21 FRUs per class.

This API adds FRU entries to the bottom of the list. If they need to be maintained in probability order,
follow these steps:

* Retrieve the group using the Retrieve Problem Log Entry APL

* Modify the FRU records or append additional FRUs to the original list.

* Delete the existing FRU entries of that class using the Delete Problem Log Entry APIL
* Add the new or updated FRU list using the Add Problem Log Entry APL

Keys for Adding Supporting Data

The addition of supporting data is not restricted. Any number of spooled or data base files can be
associated with a problem log entry. Duplicate records are allowed. If you add a file twice, it is listed
twice.

To add supporting data, define the type of record to be added using keys 4001 and 4002 (supporting
data). They can be added in any combination.

Keys for Adding History Data

The addition of history data, or events, is restricted because specific events can occur only when the
problem is in a specific status. Some history data types are applicable to specific problem log types. Any
number of events can be associated with a problem log entry. Duplicate records are allowed since many
events can be repeated. Events are added in the sequence that you supply them on the API call. The API
makes no attempt to put them in order.

To add a history entry, use key 6001 (history information) to supply the needed data to reflect the action
that was taken. If you are adding supporting data, you can add it in any combination. The time the event
is added is entered by the API.

The history types are:

0 Problem entry closed. Only applicable when the problem has been closed. Once this status is set, the problem
can only be retrieved.

Problem entry opened. Can only be used when the problem is initially opened.

Service request received. Only applicable when a problem is received from another system.

Opened by an alert. Only applicable when the problem is opened due to an alert.

Problem analyzed. Applicable each time a problem is analyzed.

Verification test ran. Applicable each time a problem is verified.

Recovery procedure ran. Applicable each time recovery is run.

Prepared to report. Applicable each time a problem is prepared to be sent to a service provider.

N OOl W N =

4 1BM Systems - iSeries: Problem Management APIs

10
11
12
13
14
15
16
17

18

19
20
21
22
23
24

25

26
27

28

29
30

31
32
33
34
35
36
37

Service request sent. Applicable only when a problem is sent to another system. This implies that the service
request was sent, but the service provider has no solution to the problem.

Problem answered. Applicable only when a problem is sent to another system. This implies that the service
request was sent, and the service provider has a solution to the problem.

Response sent. Implies that a reply has been received from a service provider.

Reported by voice. Used when a problem is reported manually.

Fixes transmitted. Implies that fixes have been sent to a service requester.

A change request was submitted for this problem.

The change request submitted for this problem has ended.

Fix verified. Applicable each time a problem is verified.

Remote analysis. Only applicable when a problem has been analyzed by a remote service representative.
Remote verification ran. Only applicable when this system has been used to analyze a problem on another
system.

Remote recovery ran. Only applicable when this system has been used to perform recovery on another
system.

Alert created. Only applicable when the system created an alert for this problem.

APAR created. Only applicable when APAR data is created during analysis.

APAR data collected. Only applicable when APAR data is collected during analysis.

APAR data restored. Only applicable when APAR data is restored during analysis.

APAR data deleted. Only applicable when APAR data is deleted during analysis.

Changed by CHGPRB. Only applicable when the problem was changed by the CHGPRB command or the
QsxChangeProblemLogEntry API.

Deleted by DLTPRB. Only applicable when the problem was changed by the DLTPRB command or
QsxDeleteProblemLogEntry API.

This problem has occurred multiple times.

Status changed. Only applicable when querying the status of a problem that has been reported to a service
provider.

Status query sent. Only applicable when querying the status of a problem that has been reported to a service
provider.

Automatic problem analysis has completed successfully.

Auto-PAR is not complete; the SRC flag is off. Problem analysis did not occur because the SRC was turned
off.

Auto-PAR not complete, submit job to QSYSWRK failed.

Auto-PAR failed. Problem analysis failed because an unknown problem occurred.

Auto-Notify complete. Problem was sent automatically.

Auto-Notify not complete, SRC flag is off. Problem was not sent automatically, the SRC was turned off.
An attempt to automatically send the problem failed.

Auto-Notify failed.

Problem analysis failed.

See |Getting started with iSeries| for more information about SRCs.

Keys for Adding PTF Entry

PTF entries can be added to the problem log at any time. Duplicate PTF records are not allowed and
signal an exception condition. To ensure uniqueness, the PTF identifier and the product data are required.

To add a PTF record, use key 7001 (PTF ID) to add the data required. The PTF entry is added to the
bottom of existing text.

To get the PTF records in a specific order, the records must be retrieved, sorted and then replaced after
the existing PTF records are deleted.

PTF entries can be created using *ONLY*PRODUCT** as the constant for Product ID and *ONLY as the
constant for version, release, and modification level.

Problem Management APIs 5

Error Messages

Message ID Error Message Text

CPF3CIE E Required parameter &1 omitted.

CPEF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 APL
CPF7AAB E Problem &1 not found.

CPF3C4D D Length &1 for key &2 not valid.

CPF3C82 D Key &1 not valid for API &2.

CPF3C86 D Required key &1 not specified.

CPD7A82 D Value not valid for key &1. (char string)
CPD7A83 D Value not valid for key &1. (integer)
CPD7A88 D Incorrect DBCS field format found.
CPD7A8A D Key value &1 is not valid.

CPF7A89 E Incorrect handle for this activation.
CPF7A8A E Problem log services not started.

CPF7AA7 E Problem &1 not found.

CPF9821 E Not authorized to program &1 in library &?2.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFA320 E Pointer parameter is null.

API introduced: V3R1

| ["Problem Management APIs,” on page 1|

|APIs by categorzl

Change Problem Log Entry (QsxChangeProblemLogEntry) API

Required Parameter Group:

1 Handle Input Binary(4)

2 Key structures Input Array of Pointers
3 Number of keys Input Binary(4)

4 Error code I/0 Char(*)

Default Public Authority: *EXCLUDE
Service Program: QSXSRVPL
Threadsafe: No

The Change Problem Log Entry (QsxChangeProblemLogEntry) API updates an existing problem entry by
changing the information. Key 1 (problem log ID) identifies the problem to be changed. Some data in the
problem log entry can be changed on a field by field basis while other data can only be changed as a
group and some data cannot be changed.

Authorities and Locks
API Public Authority
*USE
Required Parameter Group

Handle
INPUT; BINARY(4)

An identifier that associates the problem log services started with the
QsxStartProblemLogServices APL

6 IBM Systems - iSeries: Problem Management APIs

#TOP_OF_PAGE
aplist.htm

Key structures
INPUT; ARRAY of POINTERS

An array of pointers to the key structures being passed to the API.

Number of keys
INPUT; BINARY(4)

Number of keys passed to the APL

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Paramete

Format of the Keys

The number of keys used varies depending on the type of problem log entry being changed. You must
select the keys applicable to the problem type with which you are working. If the keys provided to the
API do not match the requirements for the problem log entry type you are changing, you are notified by
the error handling procedures.

For details about the keys that can be used, see [’Key Groups for Problem Log APIs” on page 97

Rules for Key Usage
You can change the problem log data, the status, or both. The problems are categorized into the following
types:

Machine-detected problem

User-perceived hardware or software problem
PTF orders

User-perceived remote problem
Application-detected problem

Client machine-detected problem

Client user-detected problem

OO WD -

User-created general problem

Changing General Data
General data is data that can be changed for any problem type without affecting the status of the
problem. Data of this class are:

* Key 4 (user assigned). The validity of this data is not checked.
* Key 3001 (text entry) problem types 1, 2, and 4 can be changed.
* Key 6001 (history information). Use the Add Problem Log Entry (QsxAddProblemLogEntry) APL

Changing Problem Status

To change the problem status, specific data is required. The amount of data depends on the current or
requested problem log status. Data that requires a status change cannot be added unless key 3 (problem
status) is provided. An error is signaled if this occurs.

A problem can be changed to the following statuses:
* OPENED
The beginning status of a problem.
¢ OPENED-PREPARED
Problem is staged for transmission to a service provider.
* READY

Problem Management APIs 7

Problem entry has been analyzed and data is provided by keys that reflects the analysis results.
READY-PREPARED

Problem is staged for transmission to a service provider.

SENT

Problem has been sent to a service provider and a solution was not available.
SENT-PREPARED

Problem is staged for transmission to a service provider.

ANSWERED

Problem has been sent to a service provider and a solution was available.
ANSWERED-PREPARED

Problem is staged for transmission to a service provider.

VERIFIED

User has applied and tested the solution provided. The results of the testing are satisfactory. Once a
problem is moved to VERIFIED status, it cannot be returned to OPENED or READY status.

VERIFIED-PREPARED
Problem is staged for transmission to a service provider.
CLOSED

Problem is resolved and there is no longer a need for the problem entry. Once this status is set, it
cannot be returned to any other status. The problem can only be retrieved.

PREPARED, while displayed as a specific status, is actually an amplifier to the previous status of the
problem: OPENED, READY, SENT, ANSWERED or VERIFIED.

The supplemental data needed to move a problem to PREPARED status are:

Key 6 (operational data)
— Prepared for system
Required to define the system that this problem will be sent to.
Key 1001 (problem severity)
— Optional. If not provided, the API defaults it to None.
— Prohibited for PTF orders (problem type 3).
Key 1011 (PTF media selection)

Optional. Defines the media on which a program fix can be delivered. If not provided, the contact data
is used as a default. Typically this is the tape device type and model or a description of the media type
on which PTFs are delivered if the distribution size exceeds a predefined transmit size limit.

Key 5001 (contact information)
Optional. Used to override local service contact information.

A problem can be set to PREPARED status by providing the required data keys (if not already provided)
and a key 3 (problem status) code of 5.

Keys for Changing Problem Type 1 to Another Status
Problem type 1 (machine-detected problems) requires data from two additional key groups, 1000 and
2000.

Note: When changing status and FRU entries are required, use the Add Problem Log Entry API To
change status in general, you do not need the key group 2000 data.

8

Data for OPENED status

IBM Systems - iSeries: Problem Management APIs

A problem in OPENED status, with the exception of general data that does not affect a status change,
can only be changed to READY status. A problem may be changed from OPENED status to
PREPARED status if the problem is to be sent to an iSeries server that has System Manager installed.

Data for READY status
A problem can be changed from OPENED to READY status by including the following data items:
- Key 3 (problem status) indicates READY status.

- Key 1004 (reporting device) is always required to identify the product with a maintenance contract,
regardless of the problem.

— Key 1006 (reporting code) is required for problems that were, on analysis, determined to be caused
by software.

- Key 1010 (symptom string).

— Key 1007 (problem analysis data).

Data for SENT and ANSWERED status at the service requester

A problem can be changed to SENT or ANSWERED status by including the following data items:
- Key 3 (problem status) indicates SENT or ANSWERED status.

- Key 8 (answer codes).

At the service requester the answer code assigned field should be updated with the answer received
from a service provider that is not *IBMSRV.

If *IBMSRV was the service provider, the Problem number field should be updated to reflect the
problem management number that *IBMSRV has associated with the problem.

- Key 7001 (PTF ID) is used to change the Sent and Status fields.

Once the problem is in SENT or ANSWERED status, text can be added that defines the problem status.
This is data that is added as a response to a query of the problem status or as an answer the service
provider sends to the problem. This is done with key 3001 (text entry), type 3. Key 6001 (history
information) is required to indicate the action has taken place.

If the local system is acting as a service provider, the problem log entry for the service requester can be
updated to reflect the following conditions:

— A response was sent

- PTFs were sent

— An answer was added to the problem log

These actions do not require a status change. Add a history event to define the action taken.
Data for ANSWERED status at the service provider

When a service provider answers a problem, the status is changed from READY status to ANSWERED
status by including the following data items:

— Key 3 (problem status) indicates ANSWERED status.
— Key 6001 (history information) can add a number of events depending on the status change.
- Key 7001 (PTF ID) is used to change the Sent and Status fields of the PTF entry.

Once the problem is in ANSWERED status, text can be added that defines the problem status. This is
data that is added as a response to a query of the problem status or as an answer the service provider
wants to add to the problem. This is done with key 3001 (text entry), type 3. Key 6001 (history
information) is required to indicate the action has taken place.

When a response is sent to the service requester, key 6 (operational data) is used to indicate that a
response was sent. The following data items are required:

- Key 8 (answer codes) is updated to indicate the answer that was sent to the service requester.
— Key 6001 (history information) can add a number of events depending on the status change.
- Key 7001 (PTF ID) is used to change the Sent and Status fields.

If PTFs were sent or an answer was added to the problem log, these actions do not require a status
change. Add a history event to define the action taken.

Problem Management APIs 9

e Data for VERIFIED status

A problem can be changed to VERIFIED status from READY, SENT or ANSWERED status by including
the following data items:

- Key 3 (problem status) indicates VERIFIED status.
— Key 1008 (fix verification status) where the Status field and PDP field must be provided.

— Key 6001 (history information) can add a number of events depending on the status change. The
Remote verification ran field is required based on the origin system location.

— FRUs (key group 2000) are added for machine-detected problems and are added with the Add
Problem Log Entry APL

* Data for recovery

Recovery data can be added from OPENED or READY by including the following data items, and the
status is not changed:

— Key 3 (problem status) is not permitted. The status does not change as a result of running recovery
procedures.

— Key 1009 (fix recovery status) and problem determination procedures (PDP) fields must be provided.

— Key 6001 (history information) can add a number of events depending on the status change. Remote
recovery ran is required based on the origin system location.

e Data for CLOSED status

A problem can be changed to CLOSED status from any other status by including the following data
items:

— Key 3 (problem status) indicates that CLOSED status is the only key allowed.
— Key 6 (operational data) is updated by the API when the problem is closed.

Keys for Changing Problem Types 2, 4, 5, and 8
Problem types 2 (User-perceived), 4 (User-perceived remote), 5 (Application-detected), and 8
(User-created general) require the following data to achieve the following status:

 Data for OPENED status
This does not apply because these problem types are created in READY status.
e Data for READY status
This does not apply because these problems are created in READY status.
* Data for SENT and ANSWERED status at the service requester
A problem can be changed to SENT or ANSWERED status by including the following data items:
— Key 3 (problem status) indicates SENT or ANSWERED status.
— Key 8 (answer codes).

At the service requester, the Answer code assigned field should be updated with the answer
received from a service provider that is not *IBMSRV.
If *IBMSRV was the service provider, the problem management number (PMR) number field should
be updated to reflect the problem management number that *IBMSRV has associated with the
problem.

— Key 6001 (history information) can add a number of events depending on the status change.
— Key 7001 (PTF ID) is used to change the Sent and Status fields.

Once the problem is in SENT or ANSWERED status, text can be added that defines the problem status.
This is data that is added as a response to a query of the problem status or as an answer the service
provider sends to the problem. This is done with key 3001 (text entry), type 3. Key 6001 (history
information) is required to indicate the action has taken place.

If the local system is acting as a service provider, the problem log entry for the service requester can be
updated to reflect that a response was sent, PTFs were sent, or that an answer is added to the problem
log. These actions do not require a status change. Add a history event to define the action taken.

* Data for ANSWERED status at the service provider

10 1BM Systems - iSeries: Problem Management APIs

When a service provider answers a problem, the status is changed from READY status to ANSWERED
status by including the following data items:

— Key 3 (problem status) indicates ANSWERED status.
— Key 6001 (history information) can add a number of entries depending on the status change.
- Key 7001 (PTF ID) is used to change the Sent and Status fields.

Once the problem is in ANSWERED status, text can be added that defines the problem status. This is
data that is added as a response to a query of the problem status or as an answer the service provider
wants to add to the problem. This is done with key 3001 (text entry), type 3. Key 6001 (history
information) is required to indicate the action has taken place.

When a response is sent to the service requester, the problem log entry is updated to reflect that a
response was sent. The following data items are required:

- Key 8 (answer codes) is updated to indicate the answer that was sent to the service requester.
— Key 6001 (history information) can add a number of events depending on the status change.
— Key 7001 (PTF ID) is used to change the Sent and Status fields.
If PTFs were sent or an answer was added to the problem log, these actions do not require a status
change. Add a history event to define the action taken.
* Data for CLOSED status

A problem can be changed to CLOSED status from any other status by including the following data
items:

— Key 3 (problem status) indicates that CLOSED status is the only key allowed.
- Key 6 (operational data) is updated by the API when the problem is closed.

Keys for Changing Problem Type 3
Problem type 3 (PTF order) requires the following data to achieve the following status:
 Data for OPENED status
This does not apply to PTF orders (problem type 3).
* Data for READY status
This does not apply to PTF orders (problem type 3) because they are created in READY status.
e Data for SENT and ANSWERED status at the service requester
A problem can be changed to SENT or ANSWERED status by including the following data items:
- Key 3 (problem status) indicates SENT or ANSWERED status.
- Key 8 (answer codes).
At the service requester the Answer code assigned field should be updated with the answer received
from a service provider that is not *IBMSRV.

If *IBMSRV was the service provider, the Problem number field should be updated to reflect the
problem management number that *IBMSRV has associated with the problem.

— Key 6001 (history information) can add a number of events depending on the status change.

— Key 7001 (PTF ID) is used to change the Sent and Status fields. This key is also used to update the
product and VRM fields of the PTFs, especially if the default product, *ONLYPRD, and version,
*ONLY, were used during the creation of the problem or if the SNDPTFORD command used the
defaults.

Once the problem is in SENT or ANSWERED status, text can be added that defines the problem status.

This is data that is added as a response to a query of the problem status or as an answer the service

provider sends to the problem. This is done with key 3001 (text entry), type 3. Key 6001 (history

information) is required to indicate the action has taken place.

If the local system is acting as a service provider, the problem log entry for the service requester can be

updated to reflect that a response was sent, PTFs were sent, or that an answer is added to the problem

log. These actions do not require a status change. Add a history event to define the action taken.

* Data for ANSWERED status at the service provider

Problem Management APIs 11

When a service provider answers a problem, the status is changed from READY status to ANSWERED
status by including the following data items:

— Key 3 (problem status) indicates ANSWERED status.
— Key 6001 (history information) can add a number of events depending on the status change.
— Key 7001 (PTF ID) is used to change the Sent and Status fields.

Once the problem is in ANSWERED status, text can be added that defines the problem status. This is
data that is added as a response to a query of the problem status or as an answer the service provider
wants to add to the problem. This is done with key 3001 (text entry), type 3. Key 6001 (history
information) is required to indicate the action has taken place.

When a response is sent to the service requester, the problem log entry is updated to reflect that a
response was sent. The following data items are required:

— Key 8 (answer codes) is updated to indicate the answer that was sent to the service requester.

— Key 6001 (history information) can add a number of events depending on the status change.
— Key 7001 (PTF ID) is used to change the Sent and Status fields.

If PTFs were sent or an answer was added to the problem log, these actions do not require a status
change. Add a history event to define the action taken.

* Data for CLOSED status
A problem can be changed to CLOSED status from any other status by including the following data

items:

— Key 3 (problem status) indicates that CLOSED status is the only key allowed.
— Key 6 (operational data) is updated by the API when the problem is closed.

Keys for Changing Problem Types 6 and 7
Problem type 6 (client machine-detected) and problem type 7 (client user-detected) require the Problem
category field in key 1012 be set to 0 (Report) to move to PREPARED status.

Error Messages

Message 1D
CPF3CI1E E
CPF3C90 E
CPF3CF1 E
CPF3CF2 E
CPF7AAB E
CPE3C4D D
CPF3C82 D
CPF3C86 D
CPD7A82 D
CPD7A83 D
CPD7A87 D
CPD7A88 D
CPD7A8A D
CPD7A8B D
CPF7A89 E
CPF7A8A E
CPF7AA7 E
CPF9821 E
CPF9872 E
CPFA320 E

Error Message Text

Required parameter &1 omitted.

Literal value cannot be changed.

Error code parameter not valid.

Error(s) occurred during running of &1 APL
Problem &1 not found.

Length &1 for key &2 not valid.

Key &1 not valid for APT &2.

Required key &1 not specified.

Value not valid for key &1. (char string)
Value not valid for key &1. (integer)

Key &1 may be added only once.

Incorrect DBCS field format found.

Key value &1 is not valid.

Length of data not valid.

Incorrect handle for this activation.

Problem log services not started.

Problem &1 not found.

Not authorized to program &1 in library &2.
Program or service program &1 in library &2 ended. Reason code &S3.
Pointer parameter is null.

API introduced: V3R1

12 1BM Systems - iSeries: Problem Management APIs

| ['Problem Management APIs,” on page 1|

|APIs by categorﬂ

Create Problem Log Entry (QsxCreateProblemLogEntry) API

Required Parameter Group:

1 Handle Input Binary(4)

2 Problem log ID Output Char(40)

3 Key structures Input Array of Pointers
4 Number of keys Input Binary(4)

5 Error Code 1/0 Char(*)

Service Program Name: QSXSRVPL
Default Public Authority: *USE
Threadsafe: No

The Create Problem Log Entry (QsxCreateProblemLogEntry) API creates a problem log entry and adds
the information provided to the problem log files using keys. Key 1 (problem log ID) is returned to the
user that is required for other API operations.

The API allows a problem to be created with a status of OPENED, READY, or PREPARED. The difference
to the user is that the amount of data increases as the problem goes from OPENED to PREPARED.

The types of problems that may be created are:

* Machine-detected (problem type 1)

* User-perceived (problem type 2)

e PTF orders (problem type 3)

* User-perceived remote hardware or software problems (problem type 4)
* Application-detected (problem type 5)

* Client machine-detected (problem type 6)

* Client user-detected (problem type 7)

* User-created general (problem type 8)

The keys provided to create a problem are checked for validity and applicability to the problem log entry
in two ways:

* Applicability of the type

* Applicability of the field

The fields are checked to verify that they are not null. Some keys allow the user to control them (key
control). Keys without "key control” support require all fields to be filled. Fields not flagged are
ignored.(The existence of the data is verified; NOT whether or not the data is valid. The problem log
APIs do not check the validity of the data.) Operations that are unsupported or not valid, such as
creating a problem in SENT status or not providing all dependent keys, result in a diagnostic message for
each infraction found and an exception or an error notification defining it.

The key fields are checked before the problem log entry is created and an error is signalled if any
required key fields are null.

If the maximum number of problem log entries has been reached for this particular date (99999), CPF392F
E is signaled.

Problem Management APIs 13

#TOP_OF_PAGE
aplist.htm

Authorities and Locks

API Public Authority
*USE

Required Parameter Group

Handle
INPUT; BINARY(4)

An identifier that associates the problem log services started by the Start Problem Log Services
APL

Key 1 (problem log ID)
OUTPUT: CHAR(40)

This parameter contains the problem log identifier after the problem is created. If this parameter
is omitted, no problem log ID is returned.

Key structures
INPUT; ARRAY of POINTERS

An array of pointers that has the address of each key that contains data to be written into the
problem log. The number of pointers passed in the array must equal the value passed by
parameter 4, Number of keys.

Number of keys
INPUT; BINARY(4)

Defines the number of keys that are being passed to the APL

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Paramete

Format of the Keys
See ["Key Groups for Problem Log APIs” on page 97 for a description of the keys.

Rules for Key Usage

To create a problem log entry, specific data is required. The amount of data varies depending on the
status of the problem log. This section defines the data required for each problem type for statuses
OPENED and READY. Problems in OPENED or READY status may be amplified with the status of
PREPARED. The supplemental data required for this is defined once and is applicable to either OPENED
or READY.

General Keys For Problem Log Entry Data

The minimum key data for all problems types is:
* Key 1 (problem log ID)
This key must contain one of the following:
— Problem log identifier if the problem was created on another system
— The value "*LOCAL" to indicate that the problem is a local one.
* Key 2 (problem type)
This defines the type of problem log entry being created.
* Key 3 (problem status)
Defines the status to which the entry will be set. Three values are allowed:
— OPENED. Create a problem in OPENED status.

14 1BM Systems - iSeries: Problem Management APIs

— READY. Create a problem in READY status.

— PREPARED. Create a problem in READY or OPENED status and add supplemental data required
for PREPARED status.

Key 5 (problem origin system)

— Required if key 1 (problem log ID) is not *LOCAL.
— Prohibited if key 1 (problem log ID) is *LOCAL.
Key 6 (operational data)

— If key 1 (problem log ID) is *LOCAL, the Received from system field is prohibited. If it is not
*LOCAL, the Received from system field is required.

— If key 3 (problem status) indicates the problem is to be in PREPARED status the Prepared for system
field is required otherwise it is prohibited.

— The Date and time added field is automatically added by the APL
— The Date and time closed field is automatically added when the problem is closed.
Key 1002 (problem description message) or key 3001 (text entry), type 1.

Either or both are acceptable. Key 3001 is used if both are supplied. When both key 1002 and key 3001
are added, only key 3001 is available through the command interface, but both key 1002 and key 3001
can be retrieved through APIs. When the problem type is machine detected, key 1002 is required.

Key 5001 (contact information)
Required if key 1 (problem log ID) is not *LOCAL. Used to enter contact data for the remote system.
Key 6001 (history information)

This information defines the type of create action. One or more history entries are allowed. At least one
event is required.

In addition, the following information is needed based on the problem type.

Keys for Creating Problem Type 1
Machine detected problems (problem type 1) use the following keys:

Data for OPENED status are:

Key 1002 (problem description message)

Required.

Key 1003 (problem creation data)

Required.

Key 1005 (failing device)

Required to define the device and/or code that is failing.
Keys 2001-2009 (FRU entries)

At least one key of the range 2001 to 2009 is required. The keys may be provided in any order but will
be stored in probability of fix order, with the highest probability FRU record being stored first and the
least probability FRU record being stored last.

Keys 4001 and 4002 (supporting data)

Optional. Used to define the supporting data that will be associated with the problem. Multiple entries
are allowed.

Data for READY status are:

Post analysis data must be added to a machine detected problem to achieve READY status. This data is
in addition to the data added to achieve OPENED status. Data for READY status are:

Key 1004 (reporting device)
Defines the machine that will be reported to a service provider as the failing machine.
Key 1005 (failing device) This provides a description of the resource that caused the problem.

Problem Management APIs 15

* Key 1006 (reporting code)

Defines the program/product that is failing. This is required if the highest probability FRU is key 2002
(code FRU type).

* Key 1007 (problem analysis data)
Required

* Key 1010 (symptom string)
Required

* Keys 2001-2009 (FRU entries)

At least one key of the range 2001 to 2009 is required. The keys may be provided in any order but will
be stored in probability of fix order, with the highest probability FRU record being stored first and the
least probability FRU record being stored last.

Keys for Creating Problem Type 2

User-perceived hardware or software problems (problem type 2) can be created in READY and READY -
PREPARED status only. These problems require data similar to machine-detected problems (problem type
1) with the following exceptions:

* Key group 2000 (FRU records) is prohibited.
¢ Key group 3000 (problem type 1) is required if 1002 is not used.

Keys for Creating Problem Type 3
PTF orders (problem type 3) are created in READY and READY - PREPARED status only and use the
following:

* Key group 1000 (problem description entries), except key 1002 (problem description message), is
prohibited.

* Key group 2000 (FRU records) is prohibited.

* Key group 4000 (supported data records) is prohibited.
* Key 1011 is optional.

* Key group 7001 is required.

Keys for Creating Problem Type 4

User-perceived remote hardware or software problems (problem type 4) can be created in READY and
READY - PREPARED status only. These problems require data similar to machine-detected problems
(problem type 1) with the following exceptions:

* Key group 2000 (FRU records) is prohibited.
* Key group 4000 (supported data records) is prohibited.

Keys for Creating Problem Type 5

Application detected problems (problem type 5) are used to enter problems automatically detected during
the execution of a program. They can be created in READY and PREPARED status only. These problems
require data similar to machine-detected problems (problem type 1) with the following exceptions:

* Key group 2000 (FRU records) is optional.
If key group 2000 (FRU records) is specified only key 2002 (code FRU type) is permitted.
* Key group 4000 (supported data records) is optional.

Key group 4000 (supported data records) may be used to identify APAR data that is associated with
the problem.

Keys for Creating Problem Types 6 and 7

Client machine-detected (problem type 6) and user-created (problem type 7) problems are used to create
problem log entries for an attached client. These problems are generated in the READY status. The data
requirements are:

* Key 1012 is required and must be LOGONLY on the Add Problem Log Entry APL

16 1BM Systems - iSeries: Problem Management APIs

Key 1013 is required.

Key 1003 (problem creation data)

Key 1010

Keys 1001, 1002, 1003

Keys 4001 and 4002 are optional

Key 3001 (text entry) is optional

Key 6001 (history information) is optional

Keys for Creating Problem Type 8

User-created general problems (problem type 8) are used to add data of a general nature, that is not
applicable to the types already defined. The entry can be created in READY and READY - PREPARED
status only. The data requirements are:

Key group 1000 (problem description entries) is prohibited.

Key 1002 (problem description message) can be used to create text for the problem description of the
message.

Key 3001 (text entry) type 2 is required to provide a detailed description of the problem.

Key group 4000 (supported data records) can be used to identify data that is associated with the
problem.

Data for PREPARED Status
The supplemental data needed to move a problem from OPENED or READY status to PREPARED status
are:

Key 6 (operational data)

Key control

Prepared for system

Required to define the system that this problem will be sent to.
Key 1001 (problem severity)

Optional. Default is none.

Ignored for PTF Order (problem type 3).

Key 1011 (PTF media selection)

Optional. Default is the contact data base. Typically this is the tape device type and model or a
description of the media type on which PTFs are delivered if the distribution size exceeds a predefined
transmit size limit.

Key 5001 (contact information)
Optional. Used to override local service contact information.

Error Messages

Message ID Error Message Text

CPF3CIE E Required parameter &1 omitted.
CPF3C90 E Literal value cannot be changed.
CPF3CF1 E Error code parameter not valid.
CPF3CF2 E Error(s) occurred during running of &1 APL
CPF7AAB E Problem &1 not found.

CPF3C4D D Length &1 for key &2 not valid.
CPF3C82 D Key &1 not valid for API &2.

CPF3C86 D Required key &1 not specified.
CPD7A82 D Value not valid for key &1. (char string)
CPD7A83 D Value not valid for key &1. (integer)
CPD7A87 D Key &1 may be added only once.

Problem Management APIs 17

Message ID Error Message Text

CPD7A88 D Incorrect DBCS field format found.

CPD7A8A D Key value &1 is not valid.

CPD7AS8B D Length of data not valid.

CPF7A89 E Incorrect handle for this activation.

CPF7A8A E Problem log services not started.

CPF7AA7 E Problem &1 not found.

CPF9821 E Not authorized to program &1 in library &?2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &S3.
CPFA320 E Pointer parameter is null.

API introduced: V3R1

| [“Problem Management APIs,” on page 1|

|éPIs by Categorj

Delete Problem Log Entry (QsxDeleteProblemLogEntry) API

Required Parameter Group:

1 Handle Input Binary(4)

2 Key structures Input Array of Pointers
3 Number of keys Input Binary(4)

4 Error code I/0 Char(*)

Default Public Authority: *USE
Service Program: QSXSRVPL
Threadsafe: No

The Delete Problem Log Entry (QsxDeleteProblemLogEntry) API provides one of the following functions:
* Deletes a single problem log entry.
The problem log entry and all associated data is deleted.

* Removes data from a problem log entry.

The data that can be removed by the API are:

* Key group 2000 (FRU entries). Either all FRU entries or all FRU entries of a class are removed.
Individual FRU entries cannot be removed.

* Key group 4000 (supported data entries). Either all supporting data entries are removed or all entries
of a type.

* PTF entries can be deleted individually, using key 7001 (PTF ID), or they can be deleted entirely using
key 7000 (PTF entry).

Authorities and Locks
API Public Authority
*USE
Required Parameter Group

Handle
INPUT; BINARY(4)

An identifier that associates the problem log services started with the
QsxStartProblemLogServices API.

18 1BM Systems - iSeries: Problem Management APIs

#TOP_OF_PAGE
aplist.htm

Key structures
INPUT; Array of Pointers

Array of pointers to the data contained in each key being passed to the APL

Number of keys
INPUT; BINARY(4)

Tells the API how many keys are being passed to it.

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Format of the Key Groups

Depending on the type of problem entry being deleted, one or more key groups must be provided to
remove the data required or desired to the problem. You must select the keys applicable to the problem
data you are deleting. If the keys provided to the API do not match the requirements for the problem log
entry type you are deleting, you are notified by the error handling procedures.

For details about the keys that may be used see [“Key Groups for Problem Log APIs” on page 97}

Rules for Key Usage

The Delete Problem Log Entry API can be used to:

* Delete the problem log entry.

* To delete specific entries from the problem log.
The specific data that can be deleted are:
— Key 2000 (class of FRU entries) to remove all FRU entries or all FRU entries of a class
— Key 7000 (PTF entry) to remove all PTF entries

— Key group 4000 (supporting data entries) to remove all supporting data entries, or all spooled file
entries or all data file records as a group. Individual entries cannot be removed.

- Key 7001 (PTF ID) to remove a single PTF entry
Deleting the above in any combination is supported.

The status of a problem log is not changed as a result of the delete operation.

Delete a Problem Log Entry
To delete a problem log entry, provide a key 1 (problem log ID) with no other keys. This deletes the

problem log entry and all associated data. To delete the problem, it must be in CLOSED status or be
older than the period defined by system value QPRBHLDITV.

Delete FRU Entries

Individual FRU entries cannot be deleted. FRU entries are deleted by class. For example, to delete the
point of failure FRUs, use key 2000 and set the class field to 1. All point of failure FRUs are deleted.

Delete PTF Entries
PTF entries can be deleted individually, using key 7001 (PTF ID), or they can be deleted entirely using
key 7000 (PTF entry).

Delete Supporting Data
Individual supporting data entries cannot be deleted. The entry in the problem log is deleted and the
data defined by the entry is also deleted. For example, if a spooled file entry is defined, the problem log

Problem Management APIs 19

contains the name of the object to be deleted. The spooled file and the problem log entry containing the
spooled file name are both deleted. Provide the following data:

* Key 1 (problem log ID)

* Key group 4000 (supported data entries) deletes all entries or all entries of a type.

Error Messages

Message ID Error Message Text

CPF3CIE E Required parameter &1 omitted.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 APL
CPF7AAB E Problem &1 not found.

CPF3C4D D Length &1 for key &2 not valid.

CPF3C82 D Key &1 not valid for API &2.

CPF3C86 D Required key &1 not specified.

CPF7AA6 D Problem record &1 cannot be deleted.
CPD7A82 D Value not valid for key &1. (char string)
CPD7A87 D Key &1 may be added only once.

CPD7A89 D Record &1 was not deleted.

CPD7A8A D Key value &1 is not valid.

CPF7A89 E Incorrect handle for this activation.
CPF7A8A E Problem log services not started.

CPF7AA6 E Problem record &1 cannot be deleted.
CPF7AA7 E Problem &1 not found.

CPF9821 E Not authorized to program &1 in library &2.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFA320 E Pointer parameter is null.

API introduced: V3R1

| [“Problem Management APIs,” on page 1

|éPIs by categorzl

End Problem Log Services (QsxEndProblemLogServices) API
Required Parameter

1 Handle Input
2 Error code /0

Binary(4)
Char(*)

Default Public Authority: *USE
Service Program: QSXSRVPL
Threadsafe: No

The End Problem Log Services (QsxEndProblemLogServices) API ends an instance of the problem log
services identified by the handle returned when the services were started. The following are performed:

* A rollback is issued to delete any problem log entries that were not committed. This is just performed
as a precaution only. The Add, Change, Create, and Delete Problem Log Entry APIs perform a commit
or rollback.

Authorities and Locks

API Public Authority
*USE

20 1BM Systems - iSeries: Problem Management APIs

#TOP_OF_PAGE
aplist.htm

Required Parameter

Handle
INPUT; BINARY(4)

The handle that defines the instance of problem log services to end.

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Paramete

Error Messages

Message 1D Error Message Text

CPF3CI1E E Required parameter &1 omitted.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF7A89 E Incorrect handle for this activation.

CPF9821 E Not authorized to program &1 in library &?2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFA320 E Pointer parameter is null.

API introduced: V3R1

| [“Problem Management APIs,” on page 1|

|éPIs by Categorj

Log Software Error (QPDLOGER) API

Required Parameter Group:

1 Suspected program name Input Char(10)

2 Detection ID Input Char(12)

3 Message reference key Input Char(4)

4 Point of failure Input Binary(4)

5 Print job log Input Char(1)

6 Data items Input Char(*)

7 Data item offset and length Input Array of Char(*)
8 Number of data items Input Binary(4)

9 Object name Input Array of Char(*)
10 Number of object names Input Binary(4)

11 Error code 1/0 Char(*)

Optional Parameter Group 1:

12 ILE module name Input Char(10)

=
Optional Parameter Group 2:

13 Problem log entry creation Input Char(1)

b

Problem Management APIs 21

#TOP_OF_PAGE
aplist.htm

Default Public Authority: *USE
Threadsafe: Conditional; see [“Usage Notes” on page 24

The Log Software Error (QPDLOGER) API allows a program to report a software problem to the local
iSeries server and provide the data needed to resolve the problem. When this API is called, any error
data provided is spooled to one or more spooled files, a symptom string is created, an entry is created in
the problem log, and a message is sent to the QSYSOPR message queue indicating that a software error
has been detected.

Error data can be provided on the API call by using the data item offset and length and object name
parameters.

Authorities and Locks

W Authority to use the API
To use this API, you must have service (*SERVICE) special authority or must be authorized to the
Service dump function of Operating System through iSeries Navigator’s Application
Administration support.

Object Authority
Read data authority to the object to be dumped.

Locks None <%

Required Parameter Group

Suspected program name
INPUT; CHAR(10)

The name of the program in which the error is suspected. Service programs are not supported.
The Report Software Error (QpdReportSoftwareError) API must be used to report a problem
against a service program. If a service program is specified on the QPDLOGER AP], the service
program will not be found and the suspected program will be used instead.

Valid values are:

*SAME The reporting program.
*PRV The program that called the reporting program.
program name The name of the suspected program.

The suspected program name is included in the symptom string (as F/name) created when this
APl is called.

Detection ID
INPUT; CHAR(12)

A message ID or other value defined by the reporting program that further identifies the
problem. This value is included in the symptom string (as MSGdetectionid) created when this API
is called.

Message reference key
INPUT; CHAR(4)

The message key associated with the message that is being reported (if a message is being
reported). This parameter is used to verify that message CPF9999 (a function check) was not
caused by a damage exception (CPF81xx). If message CPF9999 is caused by a damage exception,
the problem will not be reported. This value is ignored if it does not contain a key for a CPF9999
message.

Note: The detection ID should not contain blanks. The API ignores characters after the first blank.

22 IBM Systems - iSeries: Problem Management APIs

Point of failure
INPUT; BINARY(4)

A return code, statement number, or other value defined by the reporting program that assists in
locating the problem. This value is converted to zoned decimal and included in the symptom
string (as RCnnnnnnnn) created when this API is called.

Print job log
INPUT; CHAR(1)

Whether the job log and other job information is to be spooled to a spooled file.

Valid values are:

Y Print the job log and job information.
N Do not print the job log and job information.
Data items

INPUT; CHAR(*)
The data to be spooled.

Data item offset and length
INPUT; ARRAY of CHAR(*)

An array of the offsets to and lengths of the data items to be spooled to a spooled file. The array
can contain up to 32 elements.

Each element has the following structure:

Data offset BINARY(4).
The offset to the data item from the start of the data.
Data length BINARY(4).

The length of this data item (must be greater than 0).

Number of data items
INPUT; BINARY(4)

The number of elements in the array of data item offsets and lengths. The number must be
between 0 and 32, inclusive.

Object name
INPUT; ARRAY of CHAR(*)

An array of object names whose contents are to be spooled to a spooled file. The array can
contain up to 32 elements.

Each element has the following structure:

Object name CHAR(30).
The name of the object to be spooled.
Library CHAR(30).

The library in which the object resides.

Valid values for the library name are:

*CURLIB
The job’s current library.

*LIBL The library list.

library name
The specific library that contains the object.

Problem Management APIs 23

Object type
CHAR(10). The object type. For a complete list of the available object types, see in
the CL topic.

Number of object names
INPUT; BINARY(4)

The number of object names in the array of object names. The number must be between 0 and 32,
inclusive.

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see
If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Optional Parameter Group 1

ILE module name
INPUT; CHAR(10)

The name of the integrated language environment (ILE) module in which the error is suspected.
This value is included in the symptom string created when this API is called.

Z

Optional Parameter Group 2

Problem log entry creation
INPUT; CHAR(1)

Whether a proble log entry is created or not.

Valid values are:

0 Unconditional - Create a problem log entry. This is the default value when this parameter is not
present.

1 Conditional - Do not create a problem log entry.

&

Usage Notes

When this API runs within a threaded job, no problem log entry is created. When the API is called, the
following occurs:

* Any error data that is provided is spooled to one or more spooled files.
* A symptom string is created.

* A message is sent to the job log and to the QSYSOPR message queue, which indicates that a software
error has been detected.

Error data can be provided on the call to the API by using the data item offset and length parameters.
(No object dumping support is available).

Also, dump job output is provided to help with problem determination.

The following parameters are ignored:
* Print job log

24 1BM Systems - iSeries: Problem Management APIs

¢ Object name

* Number of object names

Current API users do not have to make any changes.

Error Messages

Message ID
CPF3C90 E
CPF3CF1 E
CPF93C0 E
CPF93C2 E
CPF93C3 E
CPF93C4 E
CPF93C5 E
CPF9872 E
CP193B2 1
CPI93CA 1
CPI93CB I
CPI93CC I
CPI93CF I

Error Message Text

Literal value cannot be changed.

Error code parameter not valid.

Software error logging not active.

&1 is not a valid number of data items.

&1 is not a valid number of object names.

Error already logged.

Software problem logging (QPDLOGER) API error occurred.
Program or service program &1 in library &2 ended. Reason code &3.
Software problem data for &4 has been detected.

Suspected program &1 not found.

Point-of-failure value not valid.

Object &1 in library &2 not found.

Data length or data offset not valid.

API introduced: V2R3

| [“Problem Management APIs,” on page 1|

|éPIs by categorzl

Report Software Error (QpdReportSoftwareError) API

Required Parameter Group:

1
2
3

Problem description records Input
Number of problem description records Input
Error code 1I/0

Default Public Authority: *USE

Service Program: QPDSRVPG

Threadsafe: Conditional; see [“Usage Notes” on page 35

Array of Pointers
Binary(4)
Char(*)

Use the Report Software Error (QpdReportSoftwareError) API whenever your ILE program detects a
software problem that must be fixed.

The API logs the problem in the system problem log, which lets you track the problem, as well as send it
to a service provider. See the System Manager for iSeries product for more information about service
providers and service requesters.

The API also lets you specify the symptoms that identify the problem. The operating system and the
service provider use those symptoms to find a PTF that may fix the problem.

The API also lets you specify data to dump to spooled files. If neither the operating system nor the
service provider can find a PTF, you may be able to find the cause of the problem using the data the
program dumped.

Problem Management APIs 25

#TOP_OF_PAGE
aplist.htm

Authorities and Locks
Object Authority
*USE for objects in libraries
*R for objects in directories

Object Library Authority
*EXECUTE

Object Directory Authority
*RX

Locks None

Required Parameter Group

Problem description records
INPUT; ARRAY of POINTERS

This is a list of pointers to problem symptom and data description records. See
[Description Records Format”| for the format of the records.

Number of Problem description records
INPUT; BINARY(4)

The number of problem description records your program is passing to the API.

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see
If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Problem Description Records Format

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 CHAR(¥) Problem record description

Field Descriptions
Key Identifies a particular problem symptom or data. See for a list of the possible keys.

Problem record description This describes a particular symptom of the problem, or specifies data to
collect. See [“Formats of Specific Problem Description Records” on page 27 for the various problem record
description formats.

Keys

The following table lists the valid keys of the key field area of the software problem record.
Key Description
100 [“Key 100-Call Stack Counter” on page 27]
101 [“Key 101-Suspected Program” on page 27|

26 IBM Systems - iSeries: Problem Management APIs

Key Description

102 [“Key 102-Suspected Service Program” on page 28|

103 ['Key 103-Suspected Module” on page 28

104 [“Key 104-Suspected Procedure” on page 28|

105 ["Key 105-Detecting Program” on page 29|

106 [“Key 106-Detecting Service Program” on page 29|
w107 ["Key 107-Problem log entry creation” on page 29| &

200 [“Key 200-Symptom” on page 30|

201 [“Key 201-Instruction Number” on page 30|

300 [“Key 300-System Object” on page 30|

301 [“Key 301-Data” on page 30|

302 [“Key 302-Named System Object” on page 31|

303 [“Key 303-Spooled File” on page 31|

304 [’Key 304-Named Integrated File System Object” on page 31|

400 [“Key 400-Service Identifier” on page 32|

Formats of Specific Problem Description Records
Key 100-Call Stack Counter

This key specifies which invocation on the program stack is suspected of causing the error being
reported. If this key is used, you must not use keys 101, 102, 103, or 104. If neither key 100, 101, nor 102
are specified, the API assumes that the program or service program that called the API is the one that has
the problem.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Call stack counter

Key 101-Suspected Program

This key is used to identify which program is suspected of causing the error being reported. If this key is
used, you must not use key 100 or 102, but should use keys 103 and 104 if applicable. If neither key 100,
101, nor 102 are specified, the API assumes that the program or service program that called the API is the
one that has the problem.

Note: The program must exist on the system at the time the API is called.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Length of program name
8 8 BINARY(4) Length of library name
12 C CHAR(4) Reserved
16 10 POINTER Program name

Problem Management APIs 27

Offset

Dec Hex Type

Field

32 20 POINTER

Library name

Key 102-Suspected Service Program

This key is used to identify which service program is suspected of causing the error being reported. If
this key is used, you must not use key 100 or 101, but should use keys 103 and 104 if applicable. If
neither key 100, 101, nor 102 are specified, the API assumes that the program or service program that
called the API is the one that has the problem.

Note: The service program must exist on the system at the time the API is called.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Length of service program name
8 8 BINARY (4) Length of library name
12 C CHAR(4) Reserved
16 10 POINTER Service program name
32 20 POINTER Library name

Key 103-Suspected Module

This key is used to identify which module is suspected of causing the error being reported. If this key is
used, you must not use key 100, but should use keys 101 or 102.

Note: The module must exist on the system at the time the API is called.

Offset

Dec Hex Type Field

0 0 BINARY(4) Key

4 4 BINARY(4) Length of module name

8 8 BINARY(4) Length of library name
12 C CHAR(4) Reserved

16 10 POINTER Module name

32 20 POINTER Library name

Key 104-Suspected Procedure

This key is used to identify which procedure is suspected of causing the error being reported. If this key

is used, you must not use key 100, but should use key 103 and either 101 or 102.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Length of procedure name

28 IBM Systems - iSeries: Problem Management APIs

Offset
Dec Hex Type Field
8 8 CHAR(8) Reserved
16 10 POINTER Procedure name

Key 105-Detecting Program

This key identifies the program that detected the problem. If this key is used, you must not use key 106.
If neither key 105 nor 106 is specified, the API assumes that the program or service program that called
the API is the one that detected the problem.

Note: The program must exist on the system at the time the API is called.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY (4) Length of program name
8 8 BINARY(4) Length of library name
12 C CHAR(4) Reserved
16 10 POINTER Program name
32 20 POINTER Library name

Key 106-Detecting Service Program

This key identifies the service program that detected the problem. If this key is used, you must not use
key 105. If neither key 105 nor 106 is specified, the API assumes that the program or service program that
called the API is the one that detected the problem.

Note: The service program must exist on the system at the time the API is called.

Offset
Dec Hex Type Field
0 0 BINARY (4) Key
4 4 BINARY(4) Length of service program name
8 8 BINARY (4) Length of library name
12 C CHAR(4) Reserved
16 10 POINTER Service program name
32 20 POINTER Library name

Z

Key 107-Problem log entry creation

This key identifies whether a problem log entry is created or not. The valid values are ‘0" Unconditional
(problem log entry created) and "1” Conditional (problem log entry not created). The default value is "0
Unconditional.

Problem Management APIs 29

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 CHAR(1) Problem log entry creation

&

Key 200-Symptom
This key identifies the symptoms associated with the problem. Together, the symptoms form a symptom
string. i5/OS searches for a PTF that has a solution string that matches this symptom string.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Length of symptom keyword
8 8 BINARY(4) Length of symptom data
12 C CHAR(1) Type of symptom data
13 D CHAR(3) Reserved
16 10 POINTER Pointer to symptom keyword
32 20 POINTER Pointer to symptom data

Key 201-Instruction Number
This key identifies the instruction number where the problem occurred.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 CHAR(®4) Instruction number

Key 300-System Object

This key identifies system objects associated with the problem. The system objects will be dumped to
spooled files. The spooled files will be kept on an output queue in the APAR library associated with the
problem log entry. You can display the spooled files using the WRKPRB command. The combination of
this key and the other keys related to objects may be specified up to 32 times.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 CHAR(12) Reserved
16 10 PTR(SYP) Pointer to object

Key 301-Data
This key identifies data associated with the problem. The data is dumped to spooled files. This key may
be specified up to 32 times. The spooled files are kept on an output queue in the APAR library associated

30 1BM Systems - iSeries: Problem Management APIs

with the problem log entry. You can display the spooled files using the WRKPRB command. The first one
thousand bytes from the list of data items are also sent to the service provider if the problem is reported
and if the “send data packet” flag in the service attributes is on. That data resides in a file named
QAPDEFCDP in the APAR library associated with the problem log entry on the service provider.

Offset
Dec Hex Type Field
0 BINARY(4) Key
4 4 BINARY(4) Data length
8 BINARY(4) Data ID
12 C CHAR®#4) Reserved
16 10 POINTER Pointer to data

Key 302-Named System Object

This key names system objects associated with the problem. The system objects will be dumped to
spooled files. The spooled files will be kept on an output queue in the APAR library associated with the
problem log entry. You can display the spooled files using the WRKPRB command. The combination of
this key and the other keys related to objects may be specified up to 32 times.

Note: The object must exist on the system at the time the API is called.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 CHAR(30) Object name
34 22 CHAR(30) Object library
64 40 CHAR(10) Object type

Key 303-Spooled File
This key identifies spooled files associated with the problem. The job that created the spooled files must
be the current job. This key may be specified up to 32 times. The spooled files are kept on an output
queue in the APAR library associated with the problem log entry.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 CHAR(10) Spooled file name
14 E BINARY(4) Spooled file number

Key 304-Named Integrated File System Object

This key names integrated file system objects associated with the problem. The integrated file system
objects will be dumped to spooled files. The spooled files will be kept on an output queue in the APAR
library associated with the problem log entry. You can display the spooled files using the WRKPRB
command. The combination of this key and the other keys related to objects may be specified up to 32

times.

Problem Management APIs 31

Notes:
1. The object must exist on the system at the time the API is called.

2. Both absolute and relative path names are allowed. The patterns ? and * are not allowed. The home
directory of the user is not resolved, thus a tilde (~) in the first character position is not treated as the
home directory. The NLS-enabled path name structure (defined in the QLG header file) can be filled
in to specify the coded character set identifier (CCSID) the path name is in.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 CHAR(12) Reserved
16 10 POINTER NLS-enabled path name structure

Key 400-Service Identifier
This key identifies where in a particular program or service program the problem was reported. The
default service identifier is 9000.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 CHAR(4) Service identifier

Field Descriptions

Call stack counter. The number of invocations in the program stack to count from the invocation of the
program or service program that called the API, to the invocation of the program or service program that
is suspected of having the problem. Use 1, for instance, to specify the program or service program that
called the program or service program that called the API. If the call stack counter value exceeds the
number of invocations currently on the program stack, the API uses the invocation of the program or
service program that called the APL

Data ID. This number is used to identify the data that is dumped.

Data length. The length of the data that is dumped.

Instruction number. Specifies exactly where the problem occurred within the specified program or
service program.

Key. Identifies the problem description record.

Length of library name. The length of the library name. The value ranges from 1 to 10.
Length of module name. The length of the module name. The value ranges from 1 to 10.
Length of procedure name. The length of the procedure name. The value ranges from 1 to 256.
Length of program name. The length of the program name. The value ranges from 1 to 10.

Length of service program name. The length of the service program name. The value ranges from 1 to
10.

32 IBM Systems - iSeries: Problem Management APIs

Length of symptom data. This indicates how many bytes the stored data occupies. The valid range is 1
to 15. The length of the symptom data plus the length of the symptom keyword must not exceed 15.

Length of symptom keyword. The length of the symptom keyword. The valid range is 1 to 15. The
length of the symptom data plus the length of the symptom keyword must not exceed 15.

Library name. A pointer to the name of the library which contains the program, service program, or
module in which the error has occurred.

Module name. A pointer to the name of the module in which the error has occurred.

NLS-enabled path name structure. For more information on this structure, see [Path Name Format|

Object library. The library in which the object resides.

Valid values for the library name are:

*CURLIB The job’s current library.
*LIBL The library list.
library name The specific library that contains the object.

Object name. The name of the object to be dumped.

Object type. The type of object. For complete list of the available object types, see the [Control Language]
information in the iSeries Information Center.

Pointer to data. A space pointer to the data.

Pointer to object. A system pointer to a system object.

Pointer to symptom data. A pointer to the symptom data. The symptom data is a symptom of the
problem. It is concatenated to the symptom keyword. The sum of the symptom keyword length and the
symptom data length must not be longer than 15 characters.

Pointer to symptom keyword. A pointer to the system keyword. The symptom keyword is concatenated
to the symptom data. The sum of the symptom keyword length and the symptom data length must not
be longer than 15 characters. There are a limited number of keywords that can be used. The valid

keywords are:

Table 1. Symptom string keywords

Key Description

(blanks) Normally, a symptom in the symptom string consists of a keyword and data. However, for
flexibility, you may specify a symptom without a keyword.

MSG This is a message identifier associated with the problem.

RC The point of failure is a number that identifies a subroutine, block of code, or specific statement

associated with the problem. Note: This number should not be an instruction number, since the
instruction number may be different for different versions of the same program.

FLDS/ This is the name of a field associated with the problem. It may be followed by the VALU/
keyword to show what value the field contained at the time of the failure.

MOD/ MODY/ is the name of the ILE module that might have caused the problem being reported.
OPCS/ OPCS/ is the name of the command, macro, or instruction associated with the problem.
PCSS/ PCSS/ is a program label that shows generally where the problem occurred.

Problem Management APIs 33

Key Description

PRCS/ PRCS/ is a reason code or return code associated with the problem.

REGS/ This is the name of a register associated with the problem. It may be followed by the VALU/
keyword to show what value the register contained at the time of the failure.

RIDS/ RIDS/ is the name of the subroutine or the identifier of the thread in which the problem
occurred.

VALU/ VALU/ is the value of a field or register at the time the problem occurred. VALU/ must appear

after key FLDS/ or REGS/.

Procedure name. A space pointer to the name of the procedure in which the error has occurred.

u» Problem log entry creation. Identifies whether a problem log entry is generated or not. The valid
values are 0" Unconditional (problem log entry created) and '1” Conditional (problem log entry not
created). The default value is ‘0" Unconditional. <%

Program name. A pointer to the name of the program in which the error is suspected. The suspected
program name is included in the symptom string (as F/name) created when this API is called. If neither
the 100, 101, nor the 102 keys are used, then the program name in the symptom string defaults to the
caller of this APL

Reserved. Null.

Service identifier. Identifiers where in a program or service program the problem was reported. The
valid range is 1 to 8999.

Service program name. A pointer to the name of the service program in which the error is suspected.
The suspected service program name is included in the symptom string (as F/name) created when this
APl is called. If the 100, 101, or the 102 keys are not used, then the service program name in the
symptom string defaults to the caller of this APL

Spooled file name. The name of a spooled file associated with the problem.

Spooled file number. The unique number of a spooled file associated with the problem. The valid range
is 1 through 9999.

The following special values are supported for this parameter:

0 Only one spooled file from the job has the specified file name, so the number of the spooled file is not
necessary.
-1 This uses the highest numbered spooled file with the specified file name.

Type of symptom data. This indicates how the data is stored.

The possible values are:

C The data is in displayable form. It must not include blanks or characters that are not displayable.
X The data is in hexadecimal form. The API converts it to displayable characters.
Note:The length of symptom data is the number of bytes used to store the hexadecimal value.
D The data is in zoned decimal form.
p The data is in packed decimal form. The API converts it to displayable numbers.
B The data is in binary form. The API converts it to displayable numbers.
Note:The length of symptom data can only be 2 or 4 bytes if the type of symptom data is B.

34 1BM Systems - iSeries: Problem Management APIs

Usage Notes

When this API runs within a threaded job, no problem log entry is created. When the API is called, the
following occurs:

* Any error data that is provided is spooled to one or more spooled files.
* A symptom string is created.

* A message is sent to the job log and to the QSYSOPR message queue, which indicates that a software
error has been detected.

Error data can be provided on the call to the API by using the data item offset and length parameters.
(No object dumping support is available).

Also, dump job output is provided to help with problem determination.

Also, the following keys are ignored:

Key Description

300 System object

302 Named system object

303 Spooled file

400 Service identifier

Error Messages

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 APL
CPF3C82 D Key &1 not valid for API &2.

CPF3C85 D Value for key &1 not allowed with value for key &2.
CPF93C2 D &1 is not a valid number of data items.

CPF93C3 D &1 is not a valid number of object names.

CPF93C8 D Not a valid number of symptoms.

CPF93C9 D Not a valid number of spooled files.

CPF93C0 E Software error logging not active.

CPF93C4 E Error already logged.

CPF93C6 E Suspected program cannot be determined.
CPF93C7E Error in parameter &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPI93B2 1 Software problem data for &4 has been detected.

API introduced: V3R1

| ['Problem Management APIs,” on page 1|

|APIs by categorﬂ

Retrieve Problem Log Entry (QsxRetrieveProblemLogEntry) API
Required Parameter Group:

1 Handle Input Binary(4)
2 Key structures Input Array of Pointers

Problem Management APIs

35

#TOP_OF_PAGE
aplist.htm

3 Number of keys Input

4 Receiver variable Output

5 Length of receiver variable Input

6 Return information Output

7 Pointer to array of pointers to the keys returned in the =~ Output
buffer receiver variable

8 Error code I/0

Default Public Authority: *USE
Service Program: QSXSRVPL
Threadsafe: No

Binary(4)
Char(*)
Binary(4)
Char(16)
PTR(SPP)

Char(*)

The Retrieve Problem Log Entry (QsxRetrieveProblemLogEntry) API allows a user to extract data from a
specific problem log entry, which the caller identifies. The problem log entry is identified by key 1
(problem log ID). The data to be retrieved is identified by the keys passed by reference. The keys used to

identify the data to be retrieved are not changed by the API.

Data is returned in the receiver variable. If you are supplying an automatically extendable space, specify
-1 for the size of the receiver variable. You provide the size and location of this receiver variable. If the
receiver variable is not large enough to contain all the keys requested, the keys successfully retrieved to
that point are returned. The number of keys returned is set in the return information parameter (number

6).

The API can be used to:
* Read a specific key from a problem log entry
* Read a group of keys

Authorities and Locks

QSXSRVPL authority
*USE

API Public Authority
*USE

Required Parameter Group

Handle
INPUT; BINARY(4)

An identifier that associates the problem log services started with the
QsxStartProblemLogServices APL

Key structures
INPUT; ARRAY of POINTERS

List of keys defining the data to be returned.

Number of keys
INPUT; BINARY(4)

Number of keys passed to the API in the input key array.

Receiver variable
OUTPUT; CHAR(¥)

The variable that provides the output buffer.

Length of receiver variable
INPUT; BINARY(4)

36 1BM Systems - iSeries: Problem Management APIs

The size of the output buffer. If it is -1, an automatically extendable space is assumed.

Return information
OUTPUT;, CHAR(16)

* Bytes returned—BINARY(4)

* Bytes available—BINARY(4)

* Number of keys returned—BINARY(4)
* Reserved—BINARY(4)

Pointer to array of pointers to the keys returned in the buffer receiver variable
OUTPUT; PTR(SPP)

The pointer to the array of pointers to the keys returned in the buffer.

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Paramete

Format of the Key Groups
For details about the keys that can be used, see [“Key Groups for Problem Log APIs” on page 97

Rules for Key Usage

Any amount and type of data can be retrieved from the problem log. The limiting factor is the size of the
buffer that is available. The data is returned in a buffer up to the size of the buffer.

Data to be retrieved must be identified by the keys provided. Key 1 (problem log ID) is required. All
other keys are optional, but only data for valid keys defined is returned.

Data, including PTF entries, can be returned individually or in groups. Data that will be returned as a
group are:

* FRU entries

¢ Text entries

* Supporting data entries
* History entries

Retrieve PTF records
PTF data can be retrieved individually or as a group.

To retrieve all PTFs, use key 7000 (PTF entry). Key 7000 is returned and the count field states how many
Key 7001 (PTF ID) keys are returned. For key 7001, the data required includes PTF ID, product ID,
version, release, and modification level.

To retrieve individual PTFs, use key 7001 (PTF ID) and add the fields that are to be used as the key. Key
1 (problem log ID) and key 7001 (PTF ID) are required. Product data is optional, but can be required if
multiple PTFs have the same PTF identifier.

Retrieve FRU records
To retrieve a FRU group, provide key 2000 (class of FRU entries) and a class. Key 2000 (class of FRU
entries) is returned with a count of FRU entries and 2000—2009 are returned.

Problem Management APIs 37

Retrieve text records
To retrieve the text data, provide key 3000 (text entry) and the text type. Key 3000 (text entry) is returned
with a count of key 3001 (text entry) returned. Only one is returned unless all text was requested.

Retrieve supporting data
To retrieve supporting data records, provide key group 4000 (supporting data entries) and the type. Key
group 4000 is returned with a count of the entries and key 4001 (spooled file data) and 4002 are returned.

Retrieve history records

To retrieve the history data, provide key 6000 (history information) and specify last or all. Key 6000
(history information) is returned with a count of the history entries and key 6001 (history information) is
returned.

Retrieve analyzed error flag:

To retrieve the analyzed eror flag data, provide key 8000 (analyzed error flag entries). Key 8000 returns a
value that indicates whether the problem has been analyzed by System Licensed Internal Code (SLIC).

Retrieve logical partition ID:

To retrieve the logical partition ID data, provide key 9000 (logical partition ID). Key 9000 returns the
current logical partition ID on the physical machine.

Error Messages

Message ID Error Message Text

CPF3CI1E E Required parameter &1 omitted.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 APL
CPF7AAB E Problem &1 not found.

CPF3C4D D Length &1 for key &2 not valid.

CPF3C82 D Key &1 not valid for API &2.

CPF3C86 D Required key &1 not specified.

CPD7A82 D Value not valid for key &1. (char string)
CPD7A84 D Buffer area not accessible.

CPD7A87 D Key &1 may be added only once.

CPD7A8A D Key value &1 is not valid.

CPF7AA7 E Problem &1 not found.

CPF9821 E Not authorized to program &1 in library &2.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFA320 E Pointer parameter is null.

API introduced: V3R1

| [“Problem Management APIs,” on page 1|

|APIs by Categorj

Start Problem Log Services (QsxStartProblemLogServices) API
Required Parameter Group:

1 Handle Output Binary(4)
2 Error code I/0 Char(*)

38 1BM Systems - iSeries: Problem Management APIs

#TOP_OF_PAGE
aplist.htm

Default Public Authority: *USE
Service Program: QSXSRVPL
Threadsafe: No

The Start Problem Log Services (QsxStartProblemLogServices) API sets up the environment to allow
creating, changing, deleting, and retrieving problem log entries. The procedure performs the following
functions:

¢ Opens the problem log files for update.
* Starts commitment control
¢ Returns a handle that must be supplied as a parameter by the using problem log APIs.

Only one instance of the problem log services may be started from a job. Attempting to start multiple
instances of the problem log services will result in an error. Attempting to use one of the problem log
APIs without the proper handle will also result in an error.

Authorities and Locks

API Public Authority
*USE

Required Parameter

Handle
OUTPUT; BINARY(4)

This provides a means of associating the problem log services that are started with subsequent
problem log activities that will be performed.

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Paramete

Error Messages

Message ID Error Message Text

CPF3CIE E Required parameter &1 omitted.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF7A86 E Problem log services already started.

CPF9821 E Not authorized to program &1 in library &?2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFA320 E Pointer parameter is null.

API introduced: V3R1

| ['Problem Management APIs,” on page 1|

|APIs by categorﬂ

Work with Problem (QPDWRKPB) API

Required Parameter Group:

1 Display panels Input Char(10)
2 Problem ID number Input Char(10)

Problem Management APIs 39

#TOP_OF_PAGE
aplist.htm

3 Origin system Input Char(20)

4 Current problem status Input Char(10)

5 Requested problem statuses Input Array of Char(10)
6 Number of requested problem statuses Input Binary(4)

7 Service provider network identifier Input Char(8)

8 Service provider control point name Input Char(8)

9 Problem severity Input Char(1)

10 Error code I/0 Char(*)

Optional Parameter Group:

11 Note text Input Char(*)
12 Length of note text Input Binary(4)

Default Public Authority: *USE
Threadsafe: No

The Work with Problem (QPDWRKPB) API uses a problem log entry to analyze and prepare a
machine-detected hardware problem for reporting. Only local machine-detected problems that have an
OPEN, READY, PREPARED, or SENT status can be analyzed and prepared for reporting. Remote
problems that have an OPEN, READY, PREPARED, or SENT status can be prepared for reporting but
cannot be analyzed. This API does not analyze or prepare user-detected problems.

If a machine-detected problem is analyzed, the problem analysis program associated with the problem is
called to generate a problem analysis list identifying all the possible causes for the problem.

Authorities and Locks

None.

Required Parameter Group

Display panels
INPUT; CHAR(10)

Whether or not displays are shown during problem analysis. Valid values are:

*NO No displays are shown.
Note: During problem analysis, if displays are usually shown for the type of hardware associated
with the problem, then the Point of Failure list is saved. This list is only saved if no other list of
causes currently associated with the problem exists.

*YES All displays are shown. This value is not allowed if the API is called in a batch job.

Problem ID number
INPUT; CHAR(10)

The number the system generates to identify a problem.

Origin system
INPUT; CHAR(20)

The node name of the origin system (the format is network-ID.control-point-name).

Current problem status
INPUT; CHAR(10)

The current status of the problem. If the problem is found to be in a status other than what is
indicated, an error occurs. Valid values are:

*OPENED The problem was identified and a problem record was created.

40 1BM Systems - iSeries: Problem Management APIs

*READY Problem analysis information has been added to the problem record.

*PREPARED The problem has been prepared for reporting.

*SENT The problem record was sent to a service provider, and the information needed to correct the
problem was not returned.

*ANSWERED The problem has been answered.

Requested problem statuses
INPUT; ARRAY of CHAR(10)

The requested status for the problem.

Valid values are:

*READY Analyze the problem. Valid for local machine-detected problems only.

*PREPARED Prepare the problem for reporting. The service provider network identifier, service provider
control point name, and problem severity parameters and the default contact database are used.
Note: If you select *‘READY and *PREPARED, the final status is *PREPARED.

Number of requested problem statuses
INPUT; BINARY(4)

The number of statuses entered for requested problem statuses parameter.

Service provider network identifier
INPUT; CHAR(8)

The network identifier of the service provider system where the problem is to be sent.

Valid values are:

*NETATR The network identifier of this system. Use *NETATR if the control point name is *IBMSRV.

Service provider control point name
INPUT; CHAR(8)

The control point name of the service provider system where the problem is to be sent.

Valid values are:

*IBMSRV IBM service support. This value cannot be used if the problem has an *OPENED status unless you
also have a requested problem status of *READY.
Name The control point name.

Problem severity
INPUT;, CHAR(1)

The severity of the problem.

Valid values are:

1 A high severity level in which there is a critical affect on operations. A severity 1 problem requires a service
representative at the site, and the person solving the problem must work on the problem 24 hours a day until
the problem is solved or circumvented. If the problem needs more information, patching, or the problem must
be created again on the failing system, a service representative must be available to do these tasks
immediately. It is not a severity 1 if these and any other tasks cannot be performed immediately.

2 A medium severity level in which you are able to use the system, but your operations are severely restricted
by the problem.

3 A low severity level in which you are able to continue operations with some restrictions. The restrictions do
not have a critical effect on your operations.

4 The severity level is minimal because the problem causes little or no effect to your operation, or you have

found a way to circumvent the problem.

Problem Management APIs 41

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Paramete

Optional Parameter Group

Note text
INPUT; CHAR(*)

The field used to include a note stating that a problem originated with the service director. The
note will be included when the API is called.

Length of note text
INPUT; BINARY(4)

The length of the text for the note text field. The text field for the note text field can be up to 80
characters long.

Error Messages

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF7AA7 E Problem &1 not found.

CPF7A9C E Cannot work with the problem log at this time.

CPF7A9D E Problem log object &1 is missing.

CPF7A93 E Problem &2 currently in use by job &1.

CPF8C09 E &1 not defined as a service provider.

CPF8C24 E Error occurred while processing request.

CPF8C87 E Service provider &1.&2 not found.

CPF9308 E Unable to complete problem analysis. Reason code &1.
CPF931C E Problem analysis results not recorded in problem log.

CPF9310 E Problem analysis procedure was exited before it had completed.
CPF9313 E Requested procedure is not allowed.

CPF932A E Number of requested statuses is not valid.

CPF932B E *IBMSRYV not allowed as service provider for problems in OPENED status.
CPF9320 E &1 to display panels is not valid.

CPF9321 E Panels cannot be displayed in a batch job.

CPF9322 E Current status &3 does not match problem status &4.

CPF9323 E Current status &1 is not valid.

CPF9324 E Problems on a remote system cannot be analyzed.

CPF9325 E Problem &1 has a status that is not allowed.

CPF9326 E Problem selected not allowed.

CPF9327 E Problem analysis procedure was exited before it had completed.
CPF9328 E Severity &1 is not valid.

CPF9329 E Requested status &1 is not valid.

CPF7845 E Error occurred while opening file &1.

CPF7846 E Error while processing file &1 in library &2.

CPF7847 E Error occurred while closing file &1 in library &2.

CPF7872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

42 1BM Systems - iSeries: Problem Management APIs

| ['Problem Management APIs,” on page 1|

|APIs by categorﬂ

Service APIs

The Service APIs include:

* %[“Change Contact Information (QEDCHGIN) API”| (QEDCHGIN) updates the contact information
that is supplied to a service provider when a problem is reported or a PTF is requested. +,

« %|“Collect Hung Job Service Documentation (QPDETHNG) API” on page 47 (QPDETHNG) dumps
documentation associated with the hung job to help service determine the cause of the hang. <%

* W [’‘Convert Format of Service Information (QPDETCVT) API” on page 48[(QPDETCVT) allows you
convert messages and liclog information to an XML document <%

» [“Filter Problem (QSXFTRPB) API” on page 61| (QSXFTRPB) applies the currently active problem log
filter to a problem log entry.

* u[‘Retrieve Contact Information (QEDRTVCI) API” on page 62| (QEDRTVCI) returns the contact
information that is supplied to a service provider when a problem is reported or a PTF is requested.

L4

* W [‘Retrieve Policy Data (QPDETRTV) API” on page 65 (QPDETRTV) retrieves policy data. %

* [“Retrieve Service Attributes (QESRSRVA) API” on page 68| (QESRSRVA) retrieves service information
such as the service provider and whether automatic problem analysis should be performed.

* W [‘Retrieve XML Service Information (QSCRXMLI) API” on page 74| (QSCRXMLI) Lists service
information like messages from a nonprogram message queue or messages sent to the program
message queue of a job, in XML format, and optionally stores the output in a stream file. 4%

* [’Send Service Request (QPDETSND) API” on page 79| (QPDETSND) Will send the request to the
Service Monitor or to the Service Control job. %

* %[“Set User Policy (QPDETPOL) API” on page 83| (QPDETPOL) allows the changing of user policies
related to service. <%,

@ | [“Problem Management APIs,” on page 1| | |APIs by category]|

Change Contact Information (QEDCHGIN) API

Required Parameter Group:

1 Contact information Input Char(*)
2 Length of contact information Input Binary(4)
3 Format name Input Char(8)
4 Error Code 1/0 Char(*)

Default Public Authority: *EXCLUDE
Threadsafe: Yes

The Change Contact Information (QEDCHGIN) API updates the contact information that is supplied to
a service provider when a problem is reported or a PTF is requested.

Authorities and Locks

None.

Required Parameter Group

Contact information
INPUT; CHAR(¥)

Problem Management APIs 43

#TOP_OF_PAGE
aplist.htm
#TOP_OF_PAGE
aplist.htm

The contact information that is changed.

Length of contact information
INPUT; BINARY(4)

The total length in bytes of the contact information input variable.

Format name
INPUT; CHAR(8)

The format of the contact information input data. The possible values are:

CNTC0100
This format updates all of the contact information. See ['CNTC0100 Format”| for details.

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

[Paramete

CNTCO0100 Format

Use this format when changing contact information. For detailed descriptions of the fields in this table,
see [“Field Descriptions” on page 45|

Offset
Dec Hex Type Field
0 0 Char(36) Company name
36 24 Char(36) Contact name
72 48 Char(20) Primary telephone number
92 5C Char(20) Help desk or pager number
112 70 Char(20) Primary fax number
132 84 Char(20) Alternative fax number
152 98 Char(36) Street address line 1
188 BC Char(36) Street address line 2
224 EO Char(36) Street address line 3
260 104 Char(36) City or locality
296 128 Char(36) State or province
332 14C Char(20) Country or region
352 160 Char(12) Postal code
364 16C Binary(4) Offset to primary electronic mail address
368 170 Binary(4) Length of primary electronic mail address
372 174 Binary(4) Offset to alternative electronic mail address
376 178 Binary(4) Length of alternative electronic mail address
380 17C Binary(4) Media for mailing PTFs
384 180 Char(10) National language version
* * Char(*) Primary electronic mail address

44 1BM Systems - iSeries: Problem Management APIs

Offset
Dec Hex Type Field

* * Char(*) Alternative electronic mail address

Field Descriptions

Alternative electronic mail address. The electronic mail (e-mail) address where information for the
person specified for the Contact can be sent, if the primary e-mail address is not available.

*SAME The value does not change.
*NONE There is no alternative electronic mail address for the contact person.
character-value Specify the alternative electronic mail address.

Alternative fax number. The complete telephone number where information for the Contact can be faxed,
if the primary fax number is not available. This number should include the area code, exchange numbers,
and the extension.

*SAME The value does not change.
*NONE There is no alternative fax number for the contact person.
character-value Specify the alternative fax number.

City or locality. The city or locality name for the location to which you want your service provider to
send parts or assistance.

*SAME The value does not change.
character-value Specify the city or locality.

Company name. The name of the organization that owns or is responsible for this system. The name
should appear in this field as it appears on a mailing label.

*SAME The value does not change.
character-value Specify the company name.

Contact name. The name of the person in your organization who is responsible for repairs and
maintenance on the system. This person may be called by the service provider with information or
assistance for a system problem. Also, parts or PTFs may be sent to this person.

*SAME The value does not change.
character-value Specify the contact person’s name.

Country or region. The country or region where the company is located to which the service provider
should send parts or assistance.

*SAME The value does not change.
character-value Specify the country or region.

Help desk or pager number. The complete Help desk or pager number. This number should include the
area code, exchange numbers, and the extension.

*SAME The value does not change.

Problem Management APIs 45

*NONE There is no Help desk telephone number.
character-value Specify the Help desk telephone number.

Length of alternative electronic mail address. The length of the alternative electronic mail address.
Length of primary electronic mail address. The length of the primary electronic mail address.

Media for mailing PTFs. The media currently used for mailing program temporary fixes (PTFs). The
media options available are:

0 = *SAME The value does not change.
1= The system will automatically select the media to be used for sending PTFs.
*AUTOMATIC

2 = *CDROM PTFs will be sent on CD-ROM media.

National language version. The national language version code currently being used for PTF cover
letters. If the cover letter you ordered has not been translated into this language the cover letter will be
sent in U.S. English.

*SAME The value does not change.
*PRIMARY The language version for the currently installed primary national language on the system is used.
character-value Specify the preferred language version code to be used for PTF cover letters.

Offset to alternative electronic mail address. The offset to the alternative electronic mail address.
Offset to primary electronic mail address. The offset to the primary electronic mail address.

Postal code. The Postal code for the location to which the service provider should send parts or
assistance.

*SAME The value does not change.
character-value Specify the Postal code.

Primary electronic mail address. The electronic mail (e-mail) address where information for the person
specified for the Contact can be sent.

*SAME The value does not change.
*NONE There is no primary electronic mail address for the contact person.
character-value Specify the primary electronic mail address.

Primary fax number. The complete telephone number where information for the Contact can be faxed.
This number should include the area code, exchange numbers, and the extension

*SAME The value does not change.
*NONE There is no primary fax number for the contact person.
character-value Specify the primary fax number.

Primary telephone number. The complete telephone number where the person named for the Contact
may be reached most often. This number should include the area code, exchange numbers, and the
extension.

*SAME The value does not change.

46 1BM Systems - iSeries: Problem Management APIs

character-value Specify the primary telephone number.

State or province. The state or province names for the location to which you want your service provider
to send parts or assistance.

*SAME The value does not change.
*NONE There is no State or province.
character-value Specify the State or province.

Street address lines 1, 2 and 3. The postal number and street name of the location to which you want
your service provider to send parts or assistance for the problem. This should not be a post office box.

*SAME The value does not change.

*NONE No additional street address information is provided. This value is valid for lines 2 and 3, but not
for line 1.

character-value Specify the street address. Up to three lines of street address information can be specified. Each

line is a separate parameter element, which can be up to 36 characters long.

Error Messages
The following messages may be sent from this function:

Message ID Error Message Text

CPF24B4 Severe error while addressing parameter list.

CPF3CF1 Error code parameter not valid.

CPF3CF2 Error(s) occurred during running of &1 APL

CPF3C19 Error occurred with receiver variable specified.

CPF3C21 Format name &1 is not valid.

CPF3C24 Length of the receiver variable is not valid.

CPF8C83 One or more required fields to add contact information missing. See previous messages.

<% API introduced: V5R4

@ | ['Problem Management APIs,” on page 1| | |APIs by category|

Collect Hung Job Service Documentation (QPDETHNG) API

Required Parameter Group:

1 Job name Input Char(10)
2 Job user Input Char(10)
3 Job number Input Char(6)
4 Error Code I/0 Char(*)

Default Public Authority: *EXCLUDE
Threadsafe: Yes

The Collect Hung Job Service Documentation (QPDETHNG) API dumps documentation associated with
the hung job to help service determine the cause of the hang.

Problem Management APIs 47

#TOP_OF_PAGE
aplist.htm

Authorities and Locks

Authority to use the API
Special authorities needed: *JOBCTL and either *SERVICE or be authorized to the Service Dump
function of i5/0S through iSeries Navigator’s Application Administration support. The Change
Function Usage (CHGFCNUSG) command, with a function ID of QIBM_SERVICE_DUMP, can
also be used to change the list of users that are allowed to perform dump operations.

Required Parameter Group

Job name
INPUT; CHAR(10)

The name of the hung job.

Job user
INPUT; CHAR(10)

The user of the hung job.

Job number
INPUT; CHAR(6)

The number of the hung job.

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Paramete

Error Messages

The following messages may be sent from this function:

Message 1D Error Message Text

CPF3CF1 Error code parameter not valid.

CPF3CF2 Error(s) occurred during running of * APL
CPFC1D Input variable length in parameter * not valid.
CPF3C1E Required parameter * omitted.

CPF3C17 Error occurred with input data parameter.
CPF3C21 Format name * is not valid.

CPF3C4A Value not valid for field *.

CPF3C4B Value not valid for field *.

CPF3C4C Value not valid for field *.

CPF9872 Program or service program * in library * ended. Reason code *.

<% API introduced: V5R4

@l | [“Problem Management APIs,” on page 1| | |APIs by category]

Convert Format of Service Information (QPDETCVT) API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)

48 1BM Systems - iSeries: Problem Management APIs

#TOP_OF_PAGE
aplist.htm

3 Format of receiver variable Input Char(8)
4 Information to convert Input Char(¥)
5 Format of information to convert Input Char(8)
6 Error Code I/0 Char(*)

Default Public Authority: *USE
Threadsafe: Yes

The Convert Format of Service Information(QPDETCVT) API will take the data input and convert it to
a string containing an XML object.

Authorities and Locks

Authority to use the API
No authorities needed.

Required Parameter Group

Receiver Variable
OUTPUT, CHAR(*)

The receiver variable that receives the information requested. The data returned will be a
formatted XML string.

Length of receiver variable
INPUT; BINARY(4)

The size of the area to contain the information returned, in bytes.

This parameter must specify the size of the variable you use for the receiver variable parameter.
If this parameter specifies a longer size, other parts of storage could be overwritten when the API
returns the information.

To determine how much information the API actually returns in response to this call, see the
bytes returned field in the receiver variable format. To determine how much information the API
could return if space were available, see the bytes available field.

If the bytes available is greater than the length supplied, no XML data will be returned and the
bytes returned field will be set to 8.

Format of receiver variable
INPUT; CHAR(8)

The format of the information passed back to the caller of this API. The possible format names
are:

CVTRO100 The information returned to the caller of this API. For more information, see [“CVTR0100 - Format|
[for receiver variable” on page 50| for information to convert

Information to convert
INPUT; CHAR(*)

The data to be converted.

Format of information to convert
INPUT; CHAR(8)

The format of the information passed in the information to convert. The possible format names
are:

Problem Management APIs 49

The information to convert and the receiver variable are for LIC Log data typically associated with
the exit program specified in (STRWCH) command or APIL The format of the receiver
variable will be described by the XSD file specified in the returned XML object.

The information to convert and the receiver variable are for message data typically associated with
the (STRWCH) command or API exit program. The format of the receiver variable will
be described by the XSD file specified in the returned XML object.

The information to convert and the receiver variable are for message data typically associated with
the [Open List of Messages| (QGYOLMSG) API or the [List Nonprogram Messages| (QMHLSTM)
API. For more information, see [“CVTS0300 - Format for message conversion (QGYOLMSG)” on|
h_)age 5§| for information to convert. The format of the receiver variable will be described by the
XSD file specified in the returned XML object.

The information to convert and the receiver variable are for message data typically associated with
the [Open List of Job Log Messages| (QGYOLJBL) API or the [List Job Log Messages| (QMHLJOBL)
APIL. For more information, see [*CVTS0400 - Format for message conversion (QGYOLJBL)” on|
conversion, Eage 53| for information to convert. The format of the receiver variable will be described by the

(f iGYOL]BL)” on| XSD file specified in the returned XML object.
age 53

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Paramete

CVTRO0100 - Format for receiver variable

The following table shows the format of the returned information. For a detailed description of each field,
see [“Field Descriptions” on page 54

Offset
Dec Hex Type Field
0 0 BINARY(4) Bytes returned
4 4 BINARY (4) Bytes available
8 8 BINARY(4) XML data length
12 C CHAR(¥) XML data

CVTS0100 - Format for LIC Log conversion

The following table shows the input for converting a LIC Log to XML. Any data not available should be
initialized with "00"x.
For a detailed description of each field, see [“Field Descriptions” on page 54|

Offset
Dec Hex Type Field
0 0 BINARY(4) Length of watch information

50 1BM Systems - iSeries: Problem Management APIs

QGYOLMSG.htm
QMHLSTM.htm
QGYOLJBL.htm
QMHLJOBL.htm

Offset

Dec Hex Type Field
4 4 CHAR(4) LIC Log major code
CHAR(4) LIC Log minor code
12 C CHAR(8) LIC Log identifier
20 14 CHAR(8) LIC Log timestamp
28 1C CHAR(8) TDE number
36 24 CHAR(16) Task name
52 34 CHAR(30) Server type
82 52 CHAR(2) Exception ID
84 54 CHAR(10) LIC job name
94 5E CHAR(10) LIC job user name
104 68 CHAR(6) LIC job number
110 6E CHAR(4) Reserved
114 72 CHAR(8) Thread ID
122 7A CHAR(8) LIC module compile binary timestamp
130 82 CHAR(8) LIC module offset
138 8A CHAR(8) LIC module RU name
146 92 CHAR(48) LIC module name
194 DA CHAR(128) LIC module entry point name
322 142 CHAR(2) Reserved
324 144 BINARY(4) Offset to comparison data
328 148 BINARY(4) Length of comparison data
* * CHARC(*) LIC Log comparison data

CVTS0200 - Format for message conversion (STRWCH)

The following table shows the input for converting messages received from the Start Watch command or
API to XML. Any data not available should be initialized with "00x.

For a detailed description of each field, see [‘Field Descriptions” on page 54

Offset
Dec Hex Type Field
0 BINARY(4) Length of watch information
4 4 CHAR(7) Message 1D
11 B CHAR(1) Reserved
12 C CHAR(10) Message queue name
22 16 CHAR(10) Message queue library
32 20 CHAR(10) Job name
42 2A CHAR(10) Job user name
52 34 CHAR(6) Job number
58 3A CHAR(4) Reserved

Problem Management APIs 51

Offset

Dec Hex Type Field
62 3E CHAR(256) Sending program name
318 13E CHAR(10) Sending module name
328 148 BINARY(4) Offset to sending procedure name
332 14C BINARY(4) Length of sending procedure name
336 150 CHAR(10) Receiving program name
346 15A CHAR(10) Receiving module name
356 164 BINARY(4) Offset to receiving procedure name
360 168 BINARY(4) Length of receiving procedure name
364 16C BINARY(4) Message severity
368 170 CHAR(10) Symbolic message type
378 17A CHAR(8) Message timestamp
386 182 CHAR(4) Message key
390 186 CHAR(10) Message file name
400 190 CHAR(10) Message file library
410 19A CHAR(2) Reserved
412 19C BINARY (4) Offset to comparison data
416 1A0 BINARY(4) Length of comparison data
420 1A4 CHAR(10) Compare against
430 1AE CHAR(10) Reserved
432 1B0 BINARY(4) Comparison data CCSID
436 1B4 BINARY(4) Offset where comparison data was found
440 1B8 BINARY (4) Offset to message replacement data
444 1BC BINARY(4) Length of message replacement data
448 1C0 BINARY(4) Replacement data CCSID
* * CHAR(Y) Sending procedure name
* * CHAR(¥) Receiving procedure name
* * CHARC(*) Message comparison data
* * CHARC(*) Message replacement data

CVTS0300 - Format for message conversion (QGYOLMSG)

The following table shows the input for converting messages received from the Open List of Messages in
format LSTMO0100 to XML. For a detailed description of each field, For a detailed description of each

field, see [‘Field Descriptions” on page 54,

Any data not available should be initialized with "00"x.

Offset
Dec Hex Type Field
0 0 BINARY(4) Length of fixed header
4 4 BINARY(4) Offset to first message

52 1BM Systems - iSeries:

Problem Management APIs

Offset
Dec Hex Type Field
8 8 BINARY(4) Number of messages to convert
These fields repeat for | BINARY(4) Displacement to the next entry
each. message identifier BINARY(4) Displacement to fields
specified.
BINARY(4) Number of fields
BINARY (4) Message severity
CHAR(7) Message identifier
CHAR(2) Message type
CHAR(4) Message key
CHAR(10) Message file name
CHAR(10) Message file library specified at send time
CHAR(10) Message queue
CHAR(10) Message queue library used
CHAR(?7) Date sent
CHAR(6) Time Sent
CHAR(6) Microseconds
CHARC(*) Reserved
These fields repeat for each identifier field specified. | BINARY(4) Displacement to the
next field information
BINARY(4) Length of field
information
BINARY(4) Identifier field
CHAR(1) Type of data
CHAR(1) Status of data
CHAR(14) Reserved
BINARY(4) Length of data
CHAR(¥) Data
CHARC(*) Reserved

CVTS0400 - Format for message conversion (QGYOLJBL)

The following table shows the input for converting messages received from the Open list of Joblog
Messaies in format OLJL0100 to XML. For a detailed description of each field, see [“Field Descriptions”]

Any data not available should be initialized with "00x.

Offset
Dec Hex Type Field
0 0 BINARY(4) Length of fixed header
4 4 BINARY(4) Offset to first message

Problem Management APIs 53

Offset

Dec Hex Type Field
8 8 BINARY(4) Number of messages to convert
12 C CHAR(10) Job name
22 16 CHAR(10) Job user name
32 20 CHAR(6) Job number

These fields repeat for |BINARY(4)

Displacement to the next entry

each' message identifier BINARY(4)
specified.

Displacement to fields

BINARY(4) Number of fields

BINARY (4) Message severity

CHAR(?) Message identifier

CHAR(2) Message type

CHAR(4) Message key

CHAR(10) Message file name

CHAR(10) Message file library specified at send time

CHAR(?) Date sent

CHAR(6) Time sent

CHAR(6) Microseconds

CHAR(2) Message type

CHARC(*) Reserved

These fields repeat for each identifier field BINARY(4) Displacement to the next
specified. field information returned
BINARY(4) Length of field
information returned

BINARY(4) Identifier field
CHAR(1) Type of data
CHAR(1) Status of data
CHAR(14) Reserved
BINARY(4) Length of data
CHARC(¥) Data
CHAR(*) Reserved

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Compare against. The part of the message the data specified in message comparison data field was
compared against. This field is set to blanks if zero was specified for the length of comparison data field.

The possible values are:

*MSGDTA The message comparison data was compared against the message replacement data.

54 1BM Systems - iSeries: Problem Management APIs

*FROMPGM The message comparison data was compared against the sending program name.
*TOPGM The message comparison data was compared against the receiving program name.

Comparison data CCSID. The coded character set identifier (CCSID) of the message comparison data.

Data. The data associated with the specified identifier field.

Date Sent. The date on which the message was sent, in CYYMMDD (century, year, month, and day)
format.

Displacement to fields. The displayment displacement, in bytes, from the beginning of the repeating
information for each message variable to the beginning of the first repeating identifier field of the
CVTS0300 or CVTS0400 format.

Displacement to the next entry. The displacement, in bytes, from the beginning of the first message entry
to the beginning of the next message entry. If there is no next entry, this field should be set to 0.

Displacement to the next field information. The displacement, in bytes, from the beginning of the first
message entry to the beginning of the next repeating identifier field of the CVTS0300 format.

Exception ID. The exception that caused the Log entry to be requested. This is a 2-byte hexadecimal field
formed by concatenating to the high-order 1-byte exception group number a low-order 1-byte exception
subtype number. Exception identifier is binary zeros if the LIC Log entry was not requested as a result of
an exception.

Identifier field. The field returned. See QGYOLMSG - Open List of Messages, the Valid Field Identifiers for
the list of valid field identifiers.

Job name. The name of the job that sent the message.

Job number. The job number (000001-999999) to further qualify the job name and user name of the job
that sent the message

Job user name. The user name of the job that sent the message.

Length of comparison data. The length of the user specified text which was compared against the
message or LIC Log event data.

Length of data. The length of the data returned in the data field, in bytes. If no data is returned, this
value will be set to 0.

Length of field information. The total length of information in this field, in bytes.

Length of fixed header. The total length of fixed header information, in bytes. The possible values are:

12 - when using format CVTS0300
38 - when using format CVTS0400

Length of message replacement data. The length of the message replacement data, in bytes.

Length of receiving procedure name. The length of the procedure the message was sent to when the
message was sent to a procedure within an ILE program. This field is set to zero if the message was sent
to an original program model (OPM) program or when the message is sent to a nonprogram message
queue.

Problem Management APIs 55

Length of sending procedure name. The length of the procedure sending the message when the message
was sent from a procedure within an ILE program. This field is set to zero if the message was sent from
an original program model (OPM) program.

Length of watch information. The length of the Information to convert parameter , including the 4-byte
length of this field, associated with the the data in format CVTS0100 or format CVTS0200.

LIC job name. The name of the job which requested the Log entry. LIC job name is blank (hex 40s) if the
Log entry was not requested by a job.

LIC job number. The job number (000001-999999) to further qualify the job name and user name of the
job which requested the LIC Log entry. LIC job number is blank (hex 40s) if the LIC Log entry was not
requested by a job.

LIC job user name. The user name of the job which requested the LIC Log entry. LIC user name is blank
(hex 40s) if the LIC Log entry was not requested by a job.

LIC Log comparison data. The user specified text string used to compare against the entry data of the
watched for log entry. This is an optional field.

LIC Log identifier. The LIC Log entry identifier of the LIC Log that occurred. The LIC Log entry
identifier is binary zeros if the entry was not added to the LIC Log by the time this event was signalled.

LIC Log major code. The major code of the LIC Log that occurred.
LIC Log minor code. The minor code of the LIC Log that occurred.

LIC Log timestamp. The binary timestamp of when the entry was requested to be added to the LIC Log.
The format for this field is the system time-stamp format.

LIC module compile binary timestamp. The binary timestamp of when the LIC module was compiled.
The format for this field is the system time-stamp format.

LIC module entry point name. The name of the entry point which requested the LIC Log entry. If the
entry point name is greater than 128 characters, the LIC module entry point name is truncated to 128

characters.

LIC module name. The name of the module which requested the LIC Log entry. If the module name is
greater than 48 characters, the LIC module name is truncated to 48 characters.

LIC module offset. The byte offset into the LIC module text which requested the LIC Log entry.

LIC module RU name. The replaceable unit name of the module which requested the LIC Log entry. LIC
module RU name is always in upper case EBCDIC.

Message comparison data. The user specified text string used to compare against the entry data of the
watched for message ID.

Message file library. The name of the library containing the message file.
Message file library specified at send time. The name of the library containing the message file as
specified when the message was sent. If *CURLIB or *LIBL was specified for the library when the

message was sent, that value is returned as the library here.

Message file name. The name of the message file that was used to send the message.

56 1BM Systems - iSeries: Problem Management APIs

Message ID. The identifier of the message that occurred.

Message identifier. The identifying code of the message listed. If an immediate message is listed, this
field is set to blanks.

Message key. The message reference key of the message that occurred. This field is set to blanks if
*JOBLOG is specified for the message queue name.

Message queue. The name of the message queue where the message was listed.

Message queue library. The name of the library where the message queue is located. This field is set to
blanks if *JOBLOG is specified for the message queue name.

Message queue library used. The actual library that contains the message queue.

Message queue name. The name of the message queue where the message was sent. The following
special values are accepted:

Value Message Type
*JOBLOG The message ID was found in the job specified in the job name, user name and job number fields.

Message replacement data. The values for substitution variables in the message sent.
Message severity. The severity code, ranging from 00 through 99, of the message.

Message timestamp. The timestamp of when the message was sent. The format for this field is the
system time-stamp format.

Message type. The type of message listed. The possible values and their meanings follow:

Value Message Type

01 Completion

02 Diagnostic

04 Informational

05 Inquiry

06 Sender’s copy

08 Request

10 Request with prompting

14 Notify, exception already handled when API is called
15 Escape, exception already handled when API is called
16 Notify, exception not handled when API is called

17 Escape, exception not handled when API is called

21 Reply, not checked for validity

22 Reply, checked for validity

23 Reply, message default used

24 Reply, system default used

25 Reply, from system reply list

26 Reply, from exit program

Problem Management APIs 57

Microseconds. The microseconds part of the time sent.
Number of fields. The number of identifier fields provided to the application
Number of messages to convert. The number of messages provided to the application

Offset to comparison data. The offset to the field that holds the comparison data. If there was no
comparison data, this field should be set to 0.

Offset to first message. The offset , in bytes, from the beginning of the message information to convert
variable to the beginning of the first repeating message entry of the CVTS0300 or CVTS0400 format.

Offset to message replacement data. The offset to the field that holds the replacement data.

Offset to receiving procedure name. The offset to the field that holds the procedure the message was
sent to when the message was sent to a procedure within an ILE program. This field is set to zero if the
message was sent to an original program model (OPM) program or when the message is sent to a
nonprogram message queue.

Offset to sending procedure name. The offset to the field that holds the procedure sending the message
when the message was sent from a procedure within an ILE program. This field is set to zero if the
message was sent from an original program model (OPM) program.

Offset where comparison data was found. The offset in the message replacement data, the sending
program name or the receiving program name, where the message comparison data was found. This field
is set to zero if zero was specified for the length of comparison data field.

Receiving module name. The name of the module receiving the message when the message was sent to a
procedure within an ILE program. If the message was sent to an original program model (OPM)
program, this field is set to blanks. This field will be blank when the message is sent to a nonprogram
message queue.

Receiving procedure name. The name of the procedure the message was sent to when the message was
sent to a procedure within an ILE program. A nested procedure name has each procedure name
separated by a colon. The outermost procedure name is identified first followed by the procedures it
contains. The innermost procedure is identified last in the string.

Receiving program name. The name of the program the message was sent to, or the Integrated Language
Environment (ILE) program name that contains the procedure receiving the message. This field will be
blank when the message is sent to a nonprogram message queue.

Replacement data CCSID. The coded character set identifier (CCSID) that the message data is in. This
only applies to the part of the replacement data that corresponds to a convertible character data type
(*CCHAR). All other replacement data has not be converted and can be considered to have a CCSID of
65535. If there is no *CHAR replacement data, this field may be set to 65535.

For more information about message handler and its use of CCSIDS, see CCSIDS: Message Support in the
Gobalization topic. For more information about the *CCHAR field type, see the Add Message Description
(ADDMSGD) command.

Reserved. A reserved field. This field must be set to hexadecimal or binary zero.

Sending module name. The name of the module the sending message when the sender is a procedure
within an ILE program.

58 1BM Systems - iSeries: Problem Management APIs

Sending procedure name. The name of the procedure sending the message when the sender is a
procedure within an ILE program. A nested procedure name has each procedure name separated by a
colon. The outermost procedure name is identified first followed by the procedures it contains. The
innermost procedure is identified last in the string.

Sending program name. The program name or ILE program name that contains the procedure sending
the message.

Server type. The type of server that requested the LIC Log entry. Server type is blank (hex 40s) if the LIC
Log entry was not requested by a server.

Status of data. The status of the data listed for this message. Possible values and their meanings follow:

blank The data returned is complete.

A The caller of the API was not authorized to view the data. This occurs when the caller of the API is not
authorized to the message file or message file library containing a stored message being listed.

D The data was damaged. This occurs when the message file or library specified at send time for a stored
message is damaged when the API is called.

u The data was unavailable. This occurs when the message file or library specified at send time for a
stored message is exclusively used by another process when the API is called.

N The data was not found. This occurs when the message file or library specified at send time for a
stored message cannot be found or resolved when the API is called.

This field is applicable to the field identifiers that are retrieved from the message file for a stored
message. A description of the action that occurs for specific field identifiers when the status of data field
is not blank follows:

0101 When the status of data field is not blank, the alert option field identifier contains blanks.

0301, 0302 When the status of data field is not blank, these message field identifiers contain message text
about the problem encountered while attempting to access the message file. Both fields have the
replacement data substituted.

0401, 0402, 0403, | When the status of data field is not blank, these message help field identifiers contain the text of
0404 the message regarding the problem encountered while attempting to access the message file. All
fields have the replacement data substituted. The message help with formatting characters and
message help with replacement data and formatting characters field identifiers also have the
message formatting characters included.

0501 When the status of data field is not blank, the default reply field identifier contains the system
default reply.

0801 When the status of data field is not blank, the message file library used field identifier contains
blanks.

This field is also applicable to the various sending information fields (identifiers 0601, 0603) when a
problem is encountered while attempting to retrieve this information. When one of these fields cannot be
retrieved from the message:

* The status of data field is set to N.
* The length of data field is set to 0.

The status of data field is always blank for the other field identifiers. The length of data field is zero.

Symbolic message type. The type assigned to the message when it was sent. The possible values are:

*COMP Completion

Problem Management APIs 59

*DIAG Diagnostic

*ESCAPE | Escape

*INFO Informational
*INQ Inquiry
*NOTIFY | Notify

*RQS Request

*STATUS Status

Task name. The name of the task which requested the LIC Log entry. Task name is blank (hex 40s) if the
LIC Log entry was not requested by a task.

TDE number. The number of the task dispatching element (TDE) which requested the LIC Log entry.

Thread ID. The thread which requested the LIC Log entry. Thread identifier is binary zeros if the LIC
Log entry was not requested by a thread.

Time sent. The time at which the message being listed was sent, in HHMMSS (hour, minute, and second)
format.

Type of data. The type of data returned.

C The data is returned in character format.
B The data is returned in binary format.
M The data is returned in a mixed form

XML data. The XML data being returned.

XML data length. The length of the XML object being returned.

Error Messages

The following messages may be sent from this function:

Message ID Error Message Text

CPFOCC1 Error initializing the XML parser.

CPF3C21 Format name &1 is not valid.

CPF3C24 Length of the receiver variable is not valid.

CPF3C36 Number of parameters, &1, entered for this API was not valid.
CPF3CF1 Error code parameter not valid.

CPF3CF2 Error(s) occurred during running of &1 APL

L4

API introduced: V5R4
@ | Problem Management APIs I[APIs by category]

60 1BM Systems - iSeries: Problem Management APIs

#TOP_OF_PAGE
aplist.htm

Filter Problem (QSXFTRPB) API

Required Parameter Group:

1 Problem log identifier Input Char(30)
2 Error code I/0 Char(*)

Default Public Authority: *USE
Threadsafe: No

The Filter Problem (QSXFTRPB) API applies the currently active problem log filter to a problem log entry.

The system value for the problem filter (QPRBFTR) identifies the active filter currently being used.
Multiple filters can be defined, but only one can be active at a time. The QSXFTRPB API can be used at
any time.

Required Parameter Group

Problem log identifier
INPUT; CHAR(30)

The problem to be retrieved, updated, and sent through the active filter. The problem log
identifier has two parts: a problem ID number and the origin system. See ["Format for the|
[Problem Log Identifier.”|

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see
Authorities and Locks
API Public Authority

*USE

Format for the Problem Log Identifier

Offset
Dec Hex Type Field
0 0 CHAR(10) Problem ID number
10 A CHAR(20) Origin system

Field Descriptions
Origin system. The node name of the origin system (the format is network 1D.control point name).

Problem ID number. The number the system generates to identify a problem.

Error Messages

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF7AA7 E Problem &1 not found.

CPF7A82 E Error occurred while applying the problem filter.

Problem Management APIs 61

Message ID Error Message Text

CPF7A83 E Problem filter &1/&2 not found.

CPF7A93 E Problem &2 currently in use by job &1.

CPF8160 E &8 damage on &4 type &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

| ['Problem Management APIs,” on page 1|

|APIs by categorzl

Retrieve Contact Information (QEDRTVCI) API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Error Code I/0 Char(*)

Default Public Authority: *EXCLUDE
Threadsafe: Yes

The Retrieve Contact Information (QEDRTVCI) API returns the contact information that is supplied to a
service provider when a problem is reported or a PTF is requested.

Authorities and Locks

None.

Required Parameter Group

Receiver variable
OUTPUT;, CHAR(*)

The receiver variable that receives the information requested. You can specify the size of the area
to be smaller than the format requested as long as you specify the length parameter correctly. As
a result, the API returns only the data that the area can hold.

Length of receiver variable
INPUT; BINARY(4)

The length of the receiver variable provided. The length of receiver variable parameter may be
specified up to the size of the receiver variable specified in the user program. If the length of
receiver variable parameter specified is larger than the allocated size of the receiver variable
specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Format name
INPUT; CHAR(8)

The format of the contact information to be returned. The possible values are:

CNTI0100
This format returns all of the contact information. See [“CNTI0100 Format” on page 63| for
details.
Error code

1/0; CHAR(*)

62 IBM Systems - iSeries: Problem Management APIs

#TOP_OF_PAGE
aplist.htm

The structure in which to return error information. For the format of the structure, see

Paramete

CNTIO100 Format

The following information is returned by this API when CNTI0100 format. For detailed descriptions of
the fields in the table, see [“Field Descriptions”

Offset
Dec Hex Type Field
Binary(4) Bytes returned

4 4 Binary(4) Bytes available

8 8 Char(36) Company name

44 2C Char(36) Contact name

80 50 Char(20) Primary telephone number
100 64 Char(20) Help desk or pager number
120 78 Char(20) Primary fax number
140 8C Char(20) Alternative fax number
160 A0 Char(36) Street address line 1
196 C4 Char(36) Street address line 2
232 E8 Char(36) Street address line 3
268 10C Char(36) City or locality
304 130 Char(36) State or province
340 154 Char(20) Country or region
360 168 Char(12) Postal code
372 174 Binary(4) Offset to primary electronic mail address
376 178 Binary(4) Length of primary electronic mail address
380 17C Binary(4) Offset to alternative electronic mail address
384 180 Binary(4) Length of alternative electronic mail address
388 184 Binary(4) Media for mailing PTFs
392 188 Char(4) National language version

* * Char(*) Primary electronic mail address

* * Char(*) Alternative electronic mail address

Field Descriptions

Alternative electronic mail address. The electronic mail (e-mail) address where information for the
person specified for the Contact can be sent, if the primary e-mail address is not available. The e-mail is
returned as UTFS8. The following special values might be returned:

*NONE There is no alternative electronic mail address for the contact person.

Alternative fax number. The complete telephone number where information for the Contact can be faxed,
if the primary fax number is not available. This number should include the area code, exchange numbers,
and the extension. The following special values might be returned:

Problem Management APIs 63

*NONE There is no alternative fax number for the contact person.

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

City or locality. The City or locality name for the location to which you want your service provider to
send parts or assistance.

Company name. The name of the organization that owns or is responsible for this system. The name
should appear in this field as it appears on a mailing label.

Contact name. The name of the person in your organization who is responsible for repairs and
maintenance on the system. This person may be called by the service provider with information or
assistance for a system problem. Also, parts or PTFs may be sent to this person.

Country or region. The Country or region where the company is located to which the service provider
should send parts or assistassnce.

Help desk or pager number. The complete Help desk or pager number. This number should include the
area code, exchange numbers, and the extension. The following special values might be returned:

*NONE There is no Help desk or pager number.

Length of alternative electronic mail address. The length of the alternative electronic mail address.
Length of primary electronic mail address. The length of the primary electronic mail address.

Media for mailing PTFs. The media currently used for mailing program temporary fixes (PTFs). The
media options available are:

1= The system will automatically select the media to be used for sending PTFs.
*AUTOMATIC
2 = *CDROM PTFs will be sent on CD-ROM media.

National language version. The national language version code currently being used for PTF cover
letters. If the cover letter you ordered has not been translated into this language the cover letter will be
sent in U.S. English.

Offset to alternative electronic mail address. The offset to the alternative electronic mail address.
Offset to primary electronic mail address. The offset to the primary electronic mail address.

Postal code. The Postal code for the location to which the service provider should send parts or
assistance.

Primary electronic mail address. The electronic mail (e-mail) address where information for the person
specified for the Contact can be sent. The e-mail is returned as UTF8. The following special values might
be returned:

*NONE There is no primary electronic mail address for the contact person.

64 1BM Systems - iSeries: Problem Management APIs

Primary fax number. The complete telephone number where information for the Contact can be faxed.
This number should include the area code, exchange numbers, and the extension. The following special
values might be returned:

*NONE There is no primary fax number for the contact person.

Primary telephone number. The complete telephone number where the person named for the Contact
may be reached most often. This number should include the area code, exchange numbers, and the
extension.

State or province. The state or province names for the location to which you want your service provider
to send parts or assistance. The following special values might be returned:

*NONE There is no State or province.

Street address lines 1, 2 and 3. The postal number and street name of the location to which you want
your service provider to send parts or assistance for the problem. This should not be a post office box.
The following special values might be returned:

*NONE No additional street address information is provided. This value is valid for lines 2 and 3, but not
for line 1.

Error Messages
The following messages may be sent from this function:

Message ID Error Message Text

CPF24B4 Severe error while addressing parameter list.
CPF3CF1 Error code parameter not valid.

CPF3CF2 Error(s) occurred during running of &1 APL
CPF3C19 Error occurred with receiver variable specified.
CPF3C21 Format name &1 is not valid.

CPF3C24 Length of the receiver variable is not valid.
CPF8C81 No Contact Information is available.

<% API introduced: V5R4

@ | ['Problem Management APIs,” on page 1| | |APIs by category|

Retrieve Policy Data (QPDETRTV) API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Error Code 1/0 Char(*)

Default Public Authority: *EXCLUDE
Threadsafe: Yes

Problem Management APIs 65

#TOP_OF_PAGE
aplist.htm

The Retrieve Policy Data (QPDETRTV) API retrieves policy data.

Authorities and Locks
Special Authority to use the API

*SERVICE

Required Parameter Group

Receiver variable
OUTPUT; CHAR(¥)

The variable that will receive the policy information being retrieved. For the format, see
fof Data Returned.”|

Length of receiver variable
INPUT; BINARY(4)

The length of the receiver variable described in Format of data returned. If the length is larger
than the size of the receiver variable, the results may not be predictable. The minimum length is 8
bytes.

Format name
INPUT; CHAR(8)

The format of the information to be returned. You must use one of the following format names:

RPOL0100
Retrieve service cleanup interval.

RPOL0200
Retrieve problem documentation level.

RPOL0300
Retrieve maximum PTF order size.

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Format of Data Returned

The receiver variable holds the policy information returned.

RPOLO0100 - Retrieve service cleanup interval

Offset
Dec Hex Type Field
0 0 Binary(4) Bytes returned
4 4 Binary(4) Bytes available
8 8 Binary(4) Number of days

66 1BM Systems - iSeries: Problem Management APIs

RPOLO0200 - Retrieve problem documentation level

Offset
Dec Hex Type Field
0 0 Binary(4) Bytes returned
4 4 Binary(4) Bytes available
8 8 Char(10) Problem documentation level

RPOLO0300 - Retrieve maximum PTF order size

Offset
Dec Hex Type Field
0 0 Binary(4) Bytes returned
4 Binary(4) Bytes available
8 8 Binary(4) Maximum PTF order size over LAN
12 C Binary(4) Maximum PTF order size over a modem

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

Maximum PTF order size over a modem. The maximum size in megabytes for a PTF order to be
delivered over a modem. A value of -1 indicates PTF orders of any size are delivered over a modem. A
value of 100 MB (MB equals approximately 1 000 000 bytes) is used if a lower value is retrieved.

Maximum PTF order size over LAN. The maximum size in megabytes for a PTF order to be delivered
over the local area network (LAN). A value of -1 indicates PTF orders of any size are delivered over the
LAN. A value of -1 is used if a value lower than 100 MB (MB equals approximately 1 000 000 bytes) is
retrieved.

Number of days. The number of days an object covered by this policy is allowed to exist before being
deleted by the Service Monitor. Objects covered by this policy are: Service Monitor logs and Integrated
File System files created by the FFDC process.

Problem documentation level. Indicates how much problem documentation should be included when
problems are automatically reported to the service provider Only the following values are returned:

*BASE Minimal documentation is sent in the service request record. No additional data will be uploaded.

*DEFAULT | Minimal documentation will be sent in the service request record. If no fix for the problem is found,
additional documentation will be automatically uploaded. Additional documentation may include
information such as joblogs and service dumps.

Error Messages
The following messages may be sent from this function:

Problem Management APIs 67

Message ID Error Message Text

CPF3CF1 Error code parameter not valid.

CPF3CF2 Error(s) occurred during running of * APL

CPF3C1D Input variable length in parameter * not valid.

CPF3C1E Required parameter * omitted.

CPF3C17 Error occurred with input data parameter.

CPF3C21 Format name * is not valid.

CPF3C4A Value not valid for field *.

CPF3C4B Value not valid for field *.

CPF3C4C Value not valid for field *.

CPF9872 Program or service program * in library * ended. Reason code *.

<% API introduced: V5R4

@ | [“Problem Management APIs,” on page 1| | |APIs by category|

Retrieve Service Attributes (QESRSRVA) API

Required Parameter Group:

1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Number of service attribute keys Input Binary(4)

4 Service attribute keys Input Array(*) of Binary(4)
5 Error code I/0 Char(*)

Default Public Authority: *USE
Threadsafe: No

The Retrieve Service Attributes (QESRSRVA) API copies specified service attributes into the receiver
variable.

Authorities and Locks
None.

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)

The variable in which this API returns the data. See [“Receiver Variable Format” on page 69|

Length of receiver variable
INPUT; BINARY(4)

The length of the receiver variable. The length of the receiver variable is 16 times the number of
service attributes to be retrieved, plus the length of each service attribute retrieved, plus 4.

As an example, the size of the receiver variable needed to retrieve the automatic problem analysis
and automatic problem reporting attributes is (16 *2) + 1 + 1 + 4.

Note: If this value is larger than the actual size of the receiver variable, the results may not be
predictable.

Number of service attribute keys
INPUT; BINARY(4)

68 1BM Systems - iSeries: Problem Management APIs

#TOP_OF_PAGE
aplist.htm

The total number of service attributes to retrieve.

Service attribute keys
INPUT: ARRAY(*) of BINARY(4)

A list of keys that identify which service attributes to retrieve. The keys and their associated
service attributes are:

Key Service attribute

1 Automatic problem analysis

2 Automatic problem reporting

3 Service provider to report problem

4 PTF install type

5 Critical message recipients

6 Send data packets

7 Copy PTFs

10 System-disabled reporting connection number
11 System-disabled call-back connection number
12 Service provider connection number

Error code

1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Paramete

Receiver Variable Format

The format of the receiver variable is:

Offset
Dec Hex Type Field
0 0 BINARY(4) Number of service attributes retrieved
4 4 ARRAY(*) of Offsets to service attribute templates
BINARY(4)
* * CHARC(*) Service attribute templates

Field Descriptions
Number of service attributes retrieved.

The number of service attributes the API put into the receiver variable. This number will be less than the
number requested if the receiver variable is too small.

Offsets to service attribute templates. A list of values. Each value is an offset from the beginning of the
receiver variable to a service attribute template.

Service attribute templates. The templates of the requested service attributes. There is one template for
each service attribute retrieved. The formats of the templates are shown in [“Service Attribute Template]
[Format” on page 70|

Problem Management APIs 69

Service Attribute Template Format

The format of a service attribute template is:

Offset
Dec Hex Type Field
0 0 BINARY(4) Service attribute key
4 4 CHAR(1) " Data type of service attribute ¥
5 5 CHAR(1) s Status of service attribute ¥
6 6 CHAR(2) " Reserved %
8 8 BINARY (4) " Length of service attribute &
12 C CHARC(*) Service attribute

Field Descriptions
Data type of service attribute. The type of data returned.

0 The service attribute was not available.
1 The service attribute is returned in character format.
2 The service attribute is returned in binary format.

Length of service attribute. The length of the service attribute. If the service attribute was not available,
this value is 0.

Reserved. This field will contain null characters.

Service attribute. The requested service attribute. See |“Service Attributes Format”| for the formats of the
service attributes.

Service attribute key. A value that identifies the service attribute that was retrieved.

Status of service attribute. Whether the service attribute was available for retrieval.

0 The service attribute was available.
1 The service attribute was locked.

Service Attributes Format
The Service Attributes Format has the following self-explanatory keys to solve problems:

+ [“Key 1—Automatic Problem Analysis” on page 71|

* |"Key 2—Automatic Problem Reporting” on page 71|

+ ["’Key 3—Service Provider to Report Problem” on page 71|

+ [“Key 4—PTF Install Type” on page 72|

[‘Key 5—Critical Message Recipients” on page 72|

[‘Key 6—Send Data Packets” on page 73|

* % Key 7—Copy PTFs (page |“Key 7—Copy PTFs” on page 73) <%

* |"Key 10—System-Disabled Reporting Connection Number” on page 73

[‘Key 11—System-Disabled Call-Back Connection Number” on page 74|

[‘Key 12—Service Provider Connection Number” on page 74|

70 1BM Systems - iSeries: Problem Management APIs

Key 1—Automatic Problem Analysis

Offset
Dec Hex Type Field
0 0 CHAR(1) Attribute

Field Descriptions

Attribute. The problem analysis attribute specifies when to analyze problems.

0 Problems will not be analyzed when they are logged. Instead, the operator must analyze the problem from
the QSYSOPR message queue or from the Work with Problems (WRKPRB) command.
1 The system will analyze the problem as soon as the problem is logged.

Key 2—Automatic Problem Reporting

Offset
Dec Hex Type Field
0 0 CHAR(1) Attribute

Field Descriptions

Attribute. The problem reporting attribute specifies when to report problems.

0 Problems will not be reported when they are logged. Instead, the operator must report the problem from the
QSYSOPR message queue or from the Work with Problems (WRKPRB) command.
1 If the problem analysis attribute specifies that problems are to be analyzed as soon as the problem is logged,

the system will report the problem to the service provider specified in the Service provider to report problem
attribute as soon as the problem is analyzed.

Key 3—Service Provider to Report Problem

Offset
Dec Hex Type Field
0 0 CHAR(1) Name format
1 1 CHAR(17) Service provider name

Field Descriptions

Name format. This is an A’ to show that the name is an SNA node name.

Service provider name. This identifies the service provider to report problems to if the automatic
problem reporting’ attribute specifies that problems are to be reported as soon as a problem is analyzed.
If this field contains *IBMSRYV, problems will be sent to IBM. Otherwise, the first eight characters of this
field contain the control point name of the service provider. The next nine characters contain either the
network identifier of the service provider, or *LCLNETID if the network identifier of the service provider
is the same as that of the system that is reporting the problem.

Problem Management APIs 71

Key 4—PTF Install Type

Offset
Dec Hex Type Field

0 0 CHAR(10) Type of PTF install

Field Descriptions

Type of PTF install. This service attribute determines whether the immediate PTFs are applied
immediately or delayed.

*DLYIPL All PTFs will be marked for delayed apply and the system will be IPLed.

*DLYALL All PTFs will be marked for delayed apply and the system will not be IPLed.

*IMMONLY The immediate PTFs will be applied and the delayed PTFs marked for apply at the next IPL.
*IMMDLY Only the immediate PTFs will be applied and the system will not be IPLed.

Key 5—Critical Message Recipients

Offset
Dec Hex Type Field
0 0 BINARY(4) Number of entries
4 4 ARRAY(50) of User list
CHAR(10)

Field Descriptions

Number of entries. This is the number of entries in the user list.

User list. This is an ordered list of user identifiers and user classes. If the system detects a critical
condition such as a DASD failure, and the first entry in this list is a user identifier, and that user is
signed on, the system will send a break message to that user. If the first entry is a user class, the system
will try to send a break message to all the users in that class that are signed on.

If the specified user is not signed on, or none of the users in the user class are signed on, the system tries
to send the break message to the user identifier or user class in the second entry of this list.

The system keeps trying to find a user that is signed on until it reaches the end of the list.

This function is only used if problem analysis routines are run automatically at the time of failure (the
ANZPRBAUTO service attribute is *YES).

*SYSOPR All users of user class *SYSOPR will receive a message when a critical message is sent.
*SECOFR All users of user class *SECOFR will receive a message when a critical message is sent.
*SECADM All users of user class *SECADM will receive a message when a critical message is sent.
*PGMR All users of user class *PGMR will receive a message when a critical message is sent.
*USER All users of user class *USER will receive a message when a critical message is sent.

72 IBM Systems - iSeries: Problem Management APIs

Key 6—Send Data Packets

Offset
Dec Hex Type Field
0 0 CHAR(1) Attribute

Field Descriptions

Attribute. The Send data packets attribute specifies whether or not to send problem data to the service
provider.

0 Data will not be sent to the service provider.
1 Up to 2000 bytes of data will be sent to the service provider.

Key 7—Copy PTFs

Offset
Dec Hex Type Field
0 0 CHAR(1) Attribute

Field Descriptions

Attribute. The Copy PTFs attribute specifies whether or not to copy PTF save files and cover letters into
*SERVICE when PTFs are loaded from a tape or optical device. PTF save files must be in *SERVICE when
distributing PTFs to other systems or when using the Save System Information (SAVSYSINF) command.

0 PTF save files and cover letters are not copied into *SERVICE when PTFs are loaded from tape or optical.
1 PTF save files and cover letters that do not already exist are copied into *SERVICE when PTFs are loaded
from tape or optical. <%

Key 10—System-Disabled Reporting Connection Number

Offset
Dec Hex Type Field

0 0 CHAR(30) System-disabled reporting connection number

Field Descriptions

System-disabled reporting connection number. The complete electronic connection number used for
automatic reporting to external support when this system is disabled. This number should include the
entire sequence of numbers required to complete the call, including international access codes, country or
region codes, area codes, exchanges, and so on, as appropriate.

Problem Management APIs 73

Key 11—System-Disabled Call-Back Connection Number

Offset
Dec Hex Type Field

0 0 CHAR(30) System-disabled call-back connection number

Field Descriptions

System-disabled call-back connection number. The complete electronic connection number used to call
back this system from external support when this system is disabled. This number should include the
entire sequence of numbers required to complete the call, including international access codes, country or
region codes, area codes, exchanges, and so on, as appropriate.

Key 12—Service Provider Connection Number

Offset
Dec Hex Type Field

0 0 CHAR(30) Service provider connection number

Field Descriptions

Service provider connection number. The complete electronic connection number to the service provider.
This number should include the entire sequence of numbers required to complete the call, including
international access codes, country or region codes, area codes, exchanges, and so on, as appropriate.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPEF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8C50 E Key in input list not valid.

CPF8C51 E Error with receiver variable length.

CPF8C52 E Number of values in input list not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R1

[Top] | ["Problem Management APIs,” on page 1] | [APIs by category]

Retrieve XML Service Information (QSCRXMLI) API

Required Parameter Group:

1 Destination information Input Char(¥)

2 Destination format name Input Char(8)

3 Receiver variable Output Char(*)

4 Receiver format name Input Char(8)

5 Service selection Input Char(*)
information

74 1BM Systems - iSeries: Problem Management APIs

#TOP_OF_PAGE
aplist.htm

6 Service selection Input Char(8)
information format

7 Error Code I/0 Char(*)

Default Public Authority: *USE
Threadsafe: No

The Retrieve XML Service Information (QSCRXMLI) API lists service information like messages from a
nonprogram message queue or messages sent to the program message queue of a job, in XML format,
and optionally stores the output in a stream file.

The Retrieve XML Service Information API cannot be used to list messages sent to the QHST message
queue.

New messages are prevented from being added to or removed from the message queue listed during the
use of the QSCRXMLI API.

See Open List of Messages (QGYOLMSG) API or Open List of Job Log Messages (QGYOLJBL) API for
the description of the message fields returned.

Authorities and Locks

Output File Authority (if output stored in a stream file)
Authority to the path and file are determined by the open() APL For details, see the Authorities
section of the Open File API for files opened with an access mode of O_WRONLY and
O_TRUNC.

Output File Lock
*SHRNUP

Message Queue
*USE

Message Queue Library
*EXECUTE

User Space Lock
*EXCLRD

Job Authority

* *JOBCTL special authority if the job for which messages are being listed has a different user
profile from that of the job that calls the QSCRXMLI APL

¢ *ALLOB]J and *JOBCTL special authorities if the job for which messages are being retrieved has
*ALLOBJ and *JOBCTL special authority. As an alternative to having *ALLOBJ authority, the
user calling the API can be authorized to the All Object Job Log function of Operating System
through iSeries Navigator’s Application Administration support. The Change Function Usage
(CHGFCNUSG) command, with a function ID of QIBM_ACCESS_ALLOBJ_JOBLOG, can also
be used to change the list of users that are allowed to access a job log that has *ALLOB]J special
authority.

For additional information on job authorities, see [Plan and set up system security}

Required Parameter Group

Destination information
INPUT; CHAR(*)

Provides information about the destination for the generated XML output.

Problem Management APIs 75

open.htm

 If DESTO0100 is specified for the destination format name, this parameter contains a 4-byte
integer which is the size of the receiver variable (parameter 3).

 If DESTO0200 is specified for the destination format name, this parameter contains a structure
which gives the path name of the stream file where the generated XML output is to be stored.

Destination format name
INPUT; CHAR(8)

The destination format to determine where the generated XML output will be stored. Possible
values are:

“DEST0100 Format’| Return the XML output in the receiver variable.
“DEST0200 Format” on pagel ~ Return the XML output in a stream file using the path name coded in the destination
7 information parameter.

Receiver variable
OUTPUT; CHAR(*)

The variable that is to receive the generated XML output. The variable is used only when the
destination format name is DEST0100. If the receiver variable is not large enough to hold all of
the generated XML output, no XML output is returned.

Receiver format name
INPUT; CHAR(8)

The format of the generated XML output to be returned. You must use one of the following
format names:

“SIRV0100 Format” on pagd ~ The information returned to the caller of this API. For more information, see
77 [“SIRV0100 Format” on page 77

Service selection information
INPUT; CHAR(*)

The information that identifies the source of the service information to be returned. The format of
this information depends on the specified Service selection format name.

Service selection format name
INPUT; CHAR(8)

Indicates where the service information will be retrieved from. The possible values are:

“SSIF0100 Service Selection] The list of messages will be retrieved from a nonprogram message queue as specified
[nformation from af in [“SSIF0100 Service Selection Information from a Nonprogram Message Queue|
Nonprogram Message Queud [Format” on page 77

Format” on page 77|

“SSIF0200 Service Selection The list of messages will be retrieved from a program message queue of a job as
Information from a Program| specified in [“SSIF0200 Service Selection Information from a Program Message Queue
Message Queue of a Job| [of a Job Format” on page 78|

Format” on page 78|

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

DEST0100 Format

The following information needs to be supplied in the destination information parameter (parameter 1)
for the DEST0100 format.

76 1BM Systems - iSeries: Problem Management APIs

Offset
Dec Hex Type Field
0 0 BINARY(4) Length of receiver variable

Field Descriptions

Length of receiver variable. The length of the receiver variable. If the length is larger than the size of the
receiver variable, the results may not be predictable. The minimum length is 8 bytes.

DEST0200 Format

The destination information parameter (parameter 1) specifies the file path name where the generated
XML output is to be returned for the DEST0200 format. See [Path name format| for information on
specifying the output stream file path name.

SIRV0100 Format

The following information is returned in the receiver variable for the DEST0100 format.

Offset
Dec Hex Type Field
0 0 BINARY(4) Bytes returned
4 4 BINARY(4) Bytes available
8 8 BINARY(4) XML data length
12 C CHAR(*) XML data

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.
XML data. The XML output of the service information returned. If the receiver variable is not large
enough to hold the entire XML output or if an unexpected error occurs while writing to the receiver

variable, no data will be returned.

XML data length. The length of the XML data being returned.

SSIF0100 Service Selection Information from a Nonprogram Message
Queue Format

Offset
Dec Hex Type Field
0 0 CHAR(10) Message queue name
10 0A CHAR(10) Message queue library

Field Descriptions

Message queue library. The name of the library where the message queue is located.
Message queue name. The name of the message queue whose messages are to be listed.

Problem Management APIs 77

SSIF0200 Service Selection Information from a Program Message
Queue of a Job Format

Offset
Dec Hex Type Field

0 0 CHAR(26) Qualified job name

Field Descriptions

Qualified job name. The name of the job whose messages are to be listed. The qualified job name has
three parts:

Job name CHAR(10)A specific job name or one of the following special value:
* The job that this program is running in. The rest of the qualified job name parameter
must be blank.
User name CHAR(10) A specific user profile name, or blanks when the job name is the special value of *.
Job number CHAR(6) A specific job number, or blanks when the job name is the special value of *.

Usage Notes

The output file path name is represented by the 'Path name’ field in the 'Path Name Format’ structure
when using the DEST0200 destination format. The output file path name is used to store the generated
XML output. The output stream file is opened for writing only, in text-only mode, in CCSID 1208, and
allows sharing with readers only. If the output stream file exists, the file is truncated to zero length before
writing any data. If the output stream file already exists, it should have been created with a CCSID of
1208; otherwise, the resulting XML output may not be usable. If the output file does not exist, it will be
created with a CCSID of 1208 before attempting to write the XML output to it. The output file is created
so that the file owner has read and write permission to it. The output file can be replaced if the user has
the authority to do so. For more information on authority requirements for stream files, see the
Open File APl in the Integrated File System section of the APIs in the Information Center.

Error Messages

The following messages may be sent from this function:

Message ID Error Message Text

CPE3006 E Input/output error.

CPE3014 E The object name is not correct.

CPE3021 E The value specified for the argument is not correct.
CPE3025 E No such path or directory.

CPE3027 E Operation not permitted.

CPE3029 E Resource busy.

CPE3401 E Permission denied.

CPE3403 E Not a directory.

CPE3404 E No space available.

CPE3406 E Operation would have caused the process to be suspended.
CPE3407 E Interrupted function call.

CPE3408 E The address used for an argument was not correct.
CPE3436 E There is not enough buffer space for the requested operation.
CPE3440 E Operation not supported.

CPE3450 E Descriptor not valid.

CPE3452 E Too many open files for this process.

CPE3453 E Too many open files in the system.

CPE3460 E Storage allocation request failed.

78 I1BM Systems - iSeries: Problem Management APIs

open.htm

Message ID
CPE3470 E
CPE3471 E
CPE3474 E
CPE3484 E
CPE3485 E
CPE3486 E
CPE3489 E
CPE3490 E
CPE3499 E
CPE3500 E
CPE3507 E
CPE3511 E
CPE3512 E
CPE3513 E
CPE3524 E
CPFAQ9E E
CPF2207 E
CPF24B4 E
CPF2401 E
CPF2441 E
CPF2443 E
CPF3CF1 E
CPF3C19 E
CPF3C21 E
CPF3C53 E
CPF3C55 E
CPF3C58 E
CPF3C90 E
CPF6565 E
CPF8100 E
CPF9801 E
CPF9803 E
CPF9821 E
CPF9872 E
CPF2403 E
CPF2408 E
CPF2433 E

&

Error Message Text

Function not implemented.

Specified target is a directory.

Unknown system state.

A damaged object was encountered.

A loop exists in the symbolic links.

A path name is too long.

System resources not available to complete request.
Conversion error.

Object is suspended.

Object is a read only object.

Object too large.

File ID conversion of a directory failed.

A File ID could not be assigned when linking an object to directory.
File handle rejected by server.

Function not allowed.

Object in use. Object is &1.

Not authorized to use object &1 in library &3 type *&2.
Severe error while addressing parameter list.

Not authorized to library &1.

Not authorized to display job log.

Job log not displayed or listed because job has ended.
Error code parameter not valid.

Error occurred with receiver variable specified.

Format name &1 is not valid.

Job &3/&2/&1 not found.

Job &3/&2/&1 does not exist.

Job name specified is not valid.

Literal value cannot be changed.

User profile storage limit exceeded.

All CPF81xx messages could be returned. xx is from 01 to FE.
Object &2 in library &3 not found.

Cannot allocate object &2 in library &3.

Not authorized to program &1 in library &2.

Program or service program &1 in library &2 ended. Reason code &3.
Message queue &1 in &2 not found.

Not authorized to message queue &1.

Function not allowed for system log message queue &1.

API introduced: V5R4

@ | [“Problem Management APIs,” on page 1| | |[APIs by category]

Send Service Request (QPDETSND) API

Required Parameter Group:

= W N -

Request Data Input Char(*)
Length of request data Input Binary(4)
Format or request data Input Char(8)
Error Code I/0 Char(*)

Problem Management APIs

79

#TOP_OF_PAGE
aplist.htm

Default Public Authority: *USE
Threadsafe: No

The Send Service Request (QPDETSND) API will send the request to the Service Monitor or to the
Service Control job.

If the Service Control job is not active, the job will be submitted.

If the Service Monitor is not active, and the request is for a Service Monitor function, a request will be
submitted to the Service Control job to start the Service Monitor before sending the request.

Authorities and Locks

Authority to use the API
None

Required Parameter Group

Request data
INPUT; CHAR(*)

Information to use while processing the request. The format of this data is specified by the
Format of request data parameter.

Length of request data
INPUT; BINARY(4)

How long the request data is.

Format of request data. This indicates the type of request being submitted. Only the following values
are accepted:
INPUT; CHAR(8)

["'SNDRO100 - Refresh Policy File Request”| ~ Send a refresh Service Monitor policy file request

['SNDR0200 - Start a Function Request” on page 81| ~ Send a start function request

['SNDR0300 - Stop a Function Request” on page 81| ~ Send a stop function request

[“'SNDR0400 - Service Event Request” on page 81| Send a Service event request

["'SNDR0500 - Change Logging Levels Request” on page 81| ~ Send a change logging level request

['SNDR0600 - Handle Changed System Value Request” on page 81 Send a handle changed system
value request

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

SNDRO0100 - Refresh Policy File Request

Offset
Dec Hex Type Field
BINARY(4) Type of policy data
4 4 BINARY(4) Length of policy data

80 1BM Systems - iSeries: Problem Management APIs

Offset

Dec

Hex

Type

Field

CHAR(*)

Policy data

SNDRO0200 - Start a Function Request

Offset
Dec Hex Type Field
0 0 BINARY(4) Number of functions to start
4 4 Array of BIN(4) Functions to start

SNDRO0300 - Stop a Function Request

Offset
Dec Hex Type Field
0 0 BINARY(4) Number of functios to stop
4 4 Array of BIN(4) Functions to stop

SNDRO0400 - Service Event Request

Offset
Dec Hex Type Field
0 0 BINARY(4) Length of service event data
4 4 CHAR(*) Service event data

SNDRO0500 - Change Logging Levels Request

Offset

Dec

Hex

Type

Field

0

BINARY(4)

Logging Level

SNDRO0600 - Handle Changed System Value Request

Offset
Dec Hex Type Field
0 0 BINARY(4) Number of system values changed
4 4 Array of CHAR(10) System Value names

Field Descriptions

Functions to start. An array of BINARY(4) values. Each value indicates a particular function to start.

Supported values are:

1 Start the Service Monitor function

Problem Management APIs

81

2 Start the Communications Trace Analyzer Function

Functions to stop. An array of BINARY(4) values. Each value indicates a particular function to stop.
Supported values are:

1 Stop the Service Monitor function
Stop the Communications Trace Analyzer Function
3 Stop the Service Control function

Length of policy data. The length of the provided data.
Length of service event data. The length of the service event data provided.

Logging level. The logging level of the Service Monitor function. This value should only be used when
requested by IBM Support personnel. This changes the amount of data which the Service Monitor logs
for problem determination reasons. Supported values are:

No logging

Low logging
Medium logging
High logging

W N = O

Number of functions to start. How many functions to start.
Number of functions to stop. How many functions to stop.
Number of system values changed. How many system values where changed.

Policy data. The policy data. This data is in schema validated XML format. The location of the XSD file is
imbedded within the XML.

Service event data. Data about the service event being sent. This data is in schema validated XML
format. The location of the XSD file is imbedded within the XML. This format can be generated using the
Convert Format of Service Information (QPDETCVT) API with a format name of CVTS0100 or CVTS0200.

System value names. An array containing the names of the system values that were changed. Supported
values are:

QSFWERRLOG Software Error Logging

Type of policy data. The type of policy data provided. Supported values are:

The policy data provided contains the path name to an IFS file containing policy data.
1 The policy data provided contains the actual policy data.

82 1BM Systems - iSeries: Problem Management APIs

Error Messages

The following messages may be sent from this function:

CPF3CF1
CPF3CF2
CPF3C1D
CPF3C1E
CPF3C17
CPF3C19
CPF3C21
CPF3C24
CPF3C39
CPF3C4A
CPF3C4B
CPF3C4C
CPFE083
CPFE084

Error code parameter not valid.

Error(s) occurred during running of * APL
Input variable length in parameter * not valid.
Required parameter * omitted.

Error occurred with input data parameter.

Error occurred with receiver variable specified.

Format name * is not valid.

Length of receiver variable not valid.
Value for reserved field not valid.
Value not valid for field *.

Value not valid for field *.

Value not valid for field *.

Service Monitor is not running.

Value Duplicated functions requested.

<% API introduced: V5R4

@ | [Other APIs in this part| | [APIs by category]|

Set User Policy (QPDETPOL) API

Required Parameter Group:

1

2
3
4

Policy data
Length of policy data
Format of policy data
Error Code

Default Public Authority: *EXCLUDE
Threadsafe: Yes

Input
Input
Input
1/0

Char(*)
Binary(4)
Char(8)
Char(*)

The Set User Policy (QPDETPOL) API allows the changing of user policies related to service. This

includes:

* How long to retain service related information

¢ What level of information to send when the system automatically reports a problem to a service

provider

* What is the maximum size for a PTF order to be delivered electronically

Authorities and Locks

Special Authority

*SERVICE

Required Parameter Group

Policy data

INPUT; CHAR(*)

Information to use when setting the policy.

Problem Management APIs

83

#TOP_OF_PAGE
sec1.htm
aplist.htm

Length of policy data
INPUT; BINARY(4)

How long the policy data is.

Format of policy data
INPUT; CHAR(8)

Which policy to set. Only the following values are accepted.

“POLS0100 - Format for| Set service cleanup interval policy.
setting service interval polic
[for Service Monitor cleanup”|

“POLS0200 - Format for| Set problem documentation level.
setting the level of problem|
ldocumentation sent with a|

|Eroblem |

“POLS0300 - Format for] Set maximum PTF order size.
setting maximum PTF order|

size’|

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Paramete

POLS0100 - Format for setting service interval policy for Service
Monitor cleanup

The following information needs to be supplied in the policy data parameter (parameter 1) for the
POLS0100 format.

Offset
Dec Hex Type Field
0 0 BINARY(4) Number of days

POLS0200 - Format for setting the level of problem documentation
sent with a problem

The following information needs to be supplied in the policy data parameter (parameter 1) for the
POLS0200 format.

Offset
Dec Hex Type Field
0 0 CHAR(10) Problem documentation level

POLS0300 - Format for setting maximum PTF order size

The following information needs to be supplied in the policy data parameter (parameter 1) for the
POLS0300 format.

84 1BM Systems - iSeries: Problem Management APIs

Offset
Dec Hex Type Field
0 0 BINARY(4) Maximum PTF order size over LAN
4 4 BINARY(4) Maximum PTF order size over a modem

Field Descriptions

Maximum PTF order size over a modem. The maximum size in megabytes for a PTF order to be
delivered electronically over a modem. This policy is shipped with a default value of 100 MB (MB equals
approximately 1 000 000 bytes). If -1 is specified, PTF orders of any size are delivered over a modem.
This policy cannot be set to a value less than 100 MB.

Maximum PTF order size over LAN. The maximum size in megabytes for a PTF order to be delivered
electronically over the local area network (LAN). If -1 is specified, PTF orders of any size are delivered
over the LAN. This policy is shipped with a default value of -1. This policy cannot be set to a value less
than 100 MB (MB equals approximately 1 000 000 bytes).

Number of days. The number of days an object covered by this policy is allowed to exist before being
deleted by the Service Monitor. Objects covered by this policy are: Service Monitor logs and Integrated
File System files created by the FFDC process. This policy is shipped with a value of 7. This policy cannot
be set to a value less than 1.

Problem documentation level. Indicates how much problem documentation should be included when
problems are automatically reported to the service provider. Only the following values are accepted:

*BASE Minimal documentation is sent in the service request record. No additional data will be
uploaded.
*DEFAULT Minimal documentation will be sent in the service request record. If no fix for the problem is

found, additional documentation will be automatically uploaded. Additional documentation may
include information such as job logs and service dumps.

Error Messages
The following messages may be sent from this function:

Message ID Error Message Text

CPFE080 Maximum PTF order size not valid.

CPFOCC1 Error initializing the XML parser.

CPF24B4 Severe error while addressing parameter list.

CPF3CF1 Error code parameter not valid.

CPF3CF2 Error(s) occurred during running of &1 APL

CPF3CI1E Required parameter &1 omitted.

CPF3C21 Format name &1 is not valid.

CPF3C3A Value for parameter &2 for API &1 not valid.

CPF9872 Program or service program &1 in library &2 ended. Reason code &3.

<% API introduced: V5R4

@ | ["Problem Management APIs,” on page 1| | |APIs by category]

Problem Management APIs 85

#TOP_OF_PAGE
aplist.htm

Monitoring APIs

The Monitoring APIs include:

* [“End Watch (QSCEWCH) API”| (QSCEWCH) ends a watch session that was started by a STRWCH
(Start Watch) command or by the Start Watch (QSCSWCH) API. <

* »[“Start Watch (QSCSWCH) API” on page 87 (QSCSWCH) starts the watch for event function, which
notifies the user by calling a user specified program when the specified event (a message or LIC log)
occurs. +%,

* s [‘Start Watch Command or API Exit Program (QPDETWCH) API” on page 93| (QPDETWCH) can be
used as the exit program for the Start Watch (STRWCH) Command or Start Watch (QSCSWCH) APL
&

The Monitoring exit programs include:

+ »[Watch for Event exit program|is started by the STRWCH command or the Start Watch (QSCSWCH)
API, and has the capability to notify the user by calling a user exit program when the specified event
occurs. #%,

+ [“Exit Program for Watch for Trace Event” on page 94 is called while using commands to watch for
specific events, such as messages being sent to a particular queue.

@ | [“Problem Management APIs,” on page 1| | |APIs by category|

End Watch (QSCEWCH) API

Required Parameter Group:

1 Session 1D Input Char(10)
2 Error Code I/0 Char(*)

Default Public Authority: *EXCLUDE
Threadsafe: Yes

The End Watch (QSCEWCH) API ends a watch session that was started by a STRWCH (Start Watch)
command or by the Start Watch (QSCSWCH) API.

Note: A watch session can be ended from the same job that issued the start function or from a different
job.

Authorities and Locks

Authority to use the API
To use this API, you must have service (*SERVICE) special authority, or be authorized to the
Service watch function of Operating System through iSeries Navigator’s Application
Administration support. The Change Function Usage (CHGFCNUSG) command, with a function
ID of QIBM_SERVICE_WATCH, can also be used to change the list of users that are allowed to
start and end watch operations.

Authority to watch session
If ending a watch session that is watching for a message within a job log, the issuer of the API
must be running under a user profile which is the same as the job user identity of the job being
watched, or the issuer of the API must be running under a user profile which has job control
(*JOBCTL) special authority. Job control (*)OBCTL) special authority is also required when ending
a session where jobs with a generic user name are being watched.

If ending a watch session that was started specifying *ALL for the watch job name, or a generic
user name, you must have *YALLOB]J special authority, or be authorized to the Watch any job
function of Operating System through iSeries Navigator’s Application Administration support.

86 1BM Systems - iSeries: Problem Management APIs

xwchevnt.htm
#TOP_OF_PAGE
aplist.htm

The Change Function Usage (CHGFCNUSG) command, with a function ID of
QIBM_WATCH_ANY_JOB, can also be used to change the list of users that are allowed to start
and end watch operations.

Required Parameter Group

Session ID
INPUT; CHAR(10)

The session identifier for the watch to be ended. This name must match the session identifier of a
watch that had been previously started and is still active. You can use this special value for this
parameter:

*PRV The watch session most recently started by the same user who is running this API will be ended. For
example, if the job running the API is running under user profile BOB, the last watch session started
under user profile BOB is ended.

Error code
I/0; CHAR(Y)

The structure in which to return error information. For the format of the structure, see

Paramete

Error Messages

The following messages may be sent from this function:

Message ID Error Message Text

CPF24B4 Severe error while addressing parameter list.

CPF3CF1 Error code parameter not valid.

CPF39EC Cannot end watch session &1 started by &2 command.

CPF39E1 Watch session ID &1 not found.

CPF39E2 There is not any active watch session for current user profile.
CPF39E6 The user does not have the required authority.

CPF39E8 Not enough authority to watch operations.

CPF39E9 *JOBCTL special authority required.

CPF9872 Program or service program &1 in library &2 ended. Reason code &3.

& API introduced: V5R4

@ | [“Problem Management APIs,” on page 1| | |[APIs by category]

Start Watch (QSCSWCH) API

Required Parameter Group:

1 Session 1D Input Char(10)
2 Started session 1D Output Char(10)
3 Watch program Input Char(20)
4 Watch for message Input Char(*)
5 Watch for LIC log entry Input Char(*)
6 Error Code I/0 Char(*)

Default Public Authority: *EXCLUDE
Threadsafe: Yes

The Start Watch (QSCSWCH) API starts the watch for event function, which notifies the user by calling a
user specified program when the specified event (a message or LIC log) occurs.

Problem Management APIs 87

#TOP_OF_PAGE
aplist.htm

Up to 10000 watch sessions can be active at a time. The watch session continues until ended with the End
Watch (QSCEWCH) API or with the End Watch (ENDWCH) command.

Note: A watch session can be ended from the same job or a different job.

Authorities and Locks

Authority to use the API
To use this API, you must have service (*SERVICE) special authority, or be authorized to the
Service watch function of Opearting System through iSeries Navigator’s Application
Administration support. The Change Function Usage (CHGFCNUSG) command, with a function
ID of QIBM_SERVICE_WATCH, can also be used to change the list of users that are allowed to
start and end watch operations.

Authority to watch program
You must have operational (*OBJOPR) and execute (*EXECUTE) authorities to the watch program
to be called, and execute (*EXECUTE) authority to the library where the program is located.

Authority to message queue
You must have use (*USE) authority to the message queue specified in watched message queue
name field, and use (*USE) authority to the library where the message queue is located.

Authority to watched job
When a message is being watched within a job, the issuer of the API must be running under a
user profile which is the same as the job user identity of the job being watched, or the issuer of
the API must be running under a user profile which has job control (*)OBCTL) special authority.
Job control (*JOBCTL) special authority is also required if a generic user name is specified in the
watched job user name field.

If you specify *ALL for the watched job name, or a generic user name, you must have all object
(*ALLOB]J) special authority, or be authorized to the Watch any job function of Operating System
through iSeries Navigator’s Application Administration support. The Change Function Usage
(CHGFCNUSG) command, with a function ID of QIBM_WATCH_ANY_JOB, can also be used to
change the list of users that are allowed to start and end watch operations.

Required Parameter Group

Session ID
INPUT; CHAR(10)

The session identifier for this watch. This watch session identifier must be unique across all active
watche sessions on the system. You cannot specify a session identifier that starts with "QSC". You
can use this special value for this parameter:

*GEN The system will generate a unique session identifier for this watch that will be returned as output in
Started session ID parameter.

Started session ID
OUTPUT; CHAR(10)

The identifier of the watch session just started.

Watch program
INPUT; CHAR(20)

The program to be called to notify that a specified watch event occurred. The watch program will
be called after a match of a message identifier and any associated comparison data specified for
the watch for message parameter, or a match of a Licensed Internal Code (LIC) log entry and any
associated comparison data specified for the watch for LIC log entry parameter occurs.

88 1BM Systems - iSeries: Problem Management APIs

The exit program will be called once for each message id and LIC log entry specified on this API.
That is, if a message is watched on a message queue and in a job log, and the message is sent to
both locations, the exit program will be called twice.

For more information about the watch exit program interface, refer to the System API Reference
information in the iSeries Information Center at http:/ /www.iseries.ibm.com/infocenter .

The information must be in the following format:

Watch program name
CHAR(10)
The name of the user-written program to call.

Watch program library
CHAR(10)
The library where the user-written program is located. You can use one of these special
values for this field:

*LIBL All libraries in the job’s library list are searched until the first match is found.
*CURLIB The current library for the job is used to locate the program. If no library is specified as the
current library for the job, the QGPL library is used.

Watch for message
INPUT; CHAR(*)

The message identifiers which are to be watched for and where to watch for them. The
information must be in the following format:

Number of messages being watched
BINARY(4)
The total number of all of the messages to watch for within this session. Up to 100
messages might be watched at the same time by a single session.

Message information
Each message being watched contains a message id, where to watch for the message
(message queue or job log) and it may specify a message comparison data. Refer to
[“Format for message information” on page 90| for the format of this field.

Watch for LIC log entry
INPUT; CHAR(*)

The licensed internal code (LIC) log entry identifiers which are to be watched for. The watched
for condition will be met if a LIC log entry is added that matches the specified major and minor
codes and any comparison data specified. The information must be in the following format:

Number of LIC logs being watched
BINARY(4)
The total number of all of the LIC logs to watch for. Up to five LIC logs can be specified.

LIC log information
Each LIC log entry contains a major and a minor code and it may specify a LIC log
comparison data. Refer to [“Format for LIC log information” on page 90| for the format of
this field.

Error code
I/0; CHAR(*)

Problem Management APIs 89

The structure in which to return error information. For the format of the structure, see

Paramete

Format for message information

The following table shows the format for the messages to be watched for. For a detailed description of
each field, see [“Field Descriptions.”|

Offset

Dec Hex Type Field

0 0 BINARY(4) Length of message information

4 4 CHAR(?7) Message id

11 B CHAR(1) Reserved

12 C CHAR(10) Watched message queue name

22 16 CHAR(10) Watched message queue library

32 20 CHAR(10) Watched job name

42 2A CHAR(10) Watched job user name

52 34 CHAR(6) Watched job number

58 3A CHAR(6) Reserved

64 40 BINARY(4) Offset to message comparison data
68 44 BINARY (4) Length of message comparison data
72 48 CHAR(10) Compare against

82 52 CHAR(¥) Message comparison data

Format for LIC log information

The following table shows the format for the LIC logs to be watched for. For a detailed description of
each field, see [“Field Descriptions.”|

Offset

Dec Hex Type Field

0 0 BINARY(4) Length of LIC log information

4 4 CHAR(4) LIC log major code

8 8 CHAR(4) LIC log minor code

12 C BINARY (4) Offset to LIC log comparison data
16 10 BINARY(4) Length of LIC log comparison data
20 14 CHAR(*) LIC log comparison data

Field Descriptions

Compare against. The part of the message the data specified in message comparison data field is to be
compared against. You must specify blanks if zero was specified for the length of message comparison
data field. You can specify the following special values for this field:

*MSGDTA The message comparison data will be compared against the message replacement data.

90 1BM Systems - iSeries: Problem Management APIs

*FROMPGM The message comparison data will be compared against the name of the program sending the
message, or the name of the ILE program that contains the procedure sending the message.

*TOPGM The message comparison data will be compared against the name of the program the message was
sent to, or the name of the ILE program that contains the procedure the message was sent to.

Length of LIC log comparison data. The length of the text specified in LIC log comparison data field.
Valid values are 0 through 72.

Length of LIC log information. The length of the structure containing the information of the LIC log to
watch for.

Length of message comparison data. The length of the text specified in message comparison data field.
Valid values are 0 through 72.

Length of message information. The length of the structure containing the information of the message to
watch for.

LIC log comparison data. The comparison data to be used if a log entry matching the specified major
and minor codes is added to the licensed internal code (LIC) log. If this text is found in the LIC log entry
data fields of the watched for log entry, the watched for condition is true. This text is case sensitive. The
LIC log fields which can be compared are TDE number, task name, server type, job name, user ID, job
number, thread ID, exception ID, LIC module compile binary timestamp, LIC module offset, LIC module
RU name, LIC module name, LIC module entry point name. The comparison data cannot be used to
match across two fields, and can match an entire field or a substring of any field. When watching for an
exception ID, all four hexadecimal digits of the exception ID must be specified. Also, the prefix MCH
may be specified if you want to compare only against the exception ID field and avoid possible substring
matches with the other fields.

LIC log major code. The LIC log major code to be watched for. You can specify either a hexadecimal
digit or a question mark for each character in the four-digit code. A question mark is a wildcard character
that will match any digit in that position. Up to three wildcard characters can be specified. You can
specify the following special value for this field:

*ALL Any LIC log entry major code will be considered to be a match. If *ALL is specified for the major code,
you cannot specify *ALL for the LIC log entry minor code.

LIC log minor code. The LIC log minor code to be watched for. You can specify either a hexadecimal
digit or a question mark for each character in the four-digit code. A question mark is a wildcard character
that will match any digit in that position. Up to three wildcard characters can be specified. You can
specify the following special value for this field:

*ALL Any LIC log entry minor code will be considered to be a match. If *ALL is specified for the minor code,
you cannot specify *ALL for the LIC log entry major code.

Message comparison data. The comparison data to be used if a message matching the specified message
ID is added to the specified message queue or log. If the message data, the "From program” or the "To
program” includes the specified text, the watched for condition is true. This text is case sensitive.
Message id. The 7-character message identifier to be watched for.

Offset to LIC log comparison data. The offset to the field that holds the LIC log comparison data.

Offset to message comparison data. The offset to the field that holds the message comparison data.

Problem Management APIs 91

Reserved. A reserved field. This field must be set to hexadecimal or binary zero.

Watched job name. The name of the job to be watched. You must specify blanks if something different
from *JOBLOG is specified for watched message queue name field. You can specify the following special
values for this field:

generic-name The generic name of the job to be watched. A generic name is a character string of one or more
characters followed by an asterisk (*); for example, ABC*. The asterisk substitutes for any valid
characters. A generic job name specifies all jobs with job names that begin with the generic prefix.

* Only the job log of the job that issued this API is watched.

*ALL All jobs with the specified job user name are watched. *ALL for the job name is considered to be a
generic job specification because it will watch all jobs that meet the job user name qualifier that
you specified.

Watched job number. The job number (000001-999999) to further qualify the job name and user name.
You must specify blanks if a generic job name or a generic user name qualifier is specified, or if
something different from *JOBLOG is specified for watched message queue name field. You can specify
the following special value for this field:

*ALL All jobs with the specified job name and user name are watched.

Watched job user name. The user name of the job to be watched. You must specify blanks if "*’ is
specified for the watched job name field or something different from *JOBLOG is specified for watched
message queue name field. You can specify the following special value for this field:

generic-name The generic name of the user name of the job to be watched. A generic name is a character string
of one or more characters followed by an asterisk (*); for example, ABC*. The asterisk substitutes
for any valid characters. A generic user name specifies all jobs with the specified job name and
with user names that begin with the generic prefix.

*ALL All jobs with the specified job name are watched. *ALL for the job user name is considered to be a
generic job specification because it will watch all jobs that meet the job name qualifier that you
specified.

Watched message queue library. The name of the library where the message queue is located. This field
is ignored if *SYSOPR, *JOBLOG or *HSTLOG was specified in the message queue name. You can specify
the following special value for this field:

*LIBL All libraries in the job’s library list are searched until the first match is found.

Watched message queue name. The name of the message queue to watch. You can specify the following
special values for this field:

*SYSOPR Watch messages added to the system operator message queue (QSYSOPR message queue in
library QSYS).

*JOBLOG Watch messages added to the job logs of the jobs specified for the watched job field.

*HSTLOG Watch messages added to the history log (QHST message queue in library QSYS).

Error Messages

The following messages may be sent from this function:

Message ID Error Message Text
CPF24B4 Severe error while addressing parameter list.

92 IBM Systems - iSeries: Problem Management APIs

Message ID Error Message Text

CPF2401 Not authorized to library &I1.

CPF2403 Message queue &1 in &2 not found.

CPF2408 Not authorized to message queue &1.

CPF3CF1 Error code parameter not valid.

CPF3C1D Length specified in parameter &1 not valid.

CPF3C20 Error found by program &1.

CPF3C3A Value for parameter &2 for API &1 not valid.

CPF39D0 Watch for event function cannot start.

CPF39D1 Limit exceeded for jobs watching for trace events.

CPF39EA Value specified for watched job user name filed is not valid.

CPF39EB Watched job name, watched job user name or watched job number field not valid.
CPF39E3 Session ID &1 already exists.

CPF39E5 No active jobs found, watch session not started.

CPF39E6 The user does not have the required authority.

CPF39E7 Invalid session identifier.

CPF39E8 Not enough authority to watch operations.

CPF39E9 *JOBCTL special authority required.

CPF3958 Not authorized to use program &1 in library &2.

CPF9811 Program &1 in library &2 not found.

CPF9872 Program or service program &1 in library &2 ended. Reason code &3.

<% API introduced: V5R4

IEE' | [“Problem Management APIs,” on page 1| | |[APIs by category|

Start Watch Command or API Exit Program (QPDETWCH) API

Required Parameter Group:

1 Watch option setting Input Char(10)
2 Session ID Input Char(10)
3 Error detected Output Char(10)
4 Event data Input Char(*)

QSYSINC Member Name:
Exit Point Name: QPDETWCH
Exit Point Format Name: QPDETWCH

The Start Watch Command or API Exit Program (QPDETWCH) API can be used as the exit program for
the Start Watch (STRWCH) Command or Start Watch (QSCSWCH) API. See the online help for more
information about the STRWCH command, or refer to the [‘Start Watch (QSCSWCH) API” on page 87|
APL

This program takes the information supplied by the Start Watch Command or API, generates an XML
service request, and places that service request on the Service Monitor queue.

Authorities and Locks

None.

Required Parameter Group

Watch option setting
INPUT; CHAR(10)

The reason indicating why the exit program was called.

Problem Management APIs 93

#TOP_OF_PAGE
aplist.htm

The possible values are:

*MSGID A match on a message id and any associated comparison data specified on watch for message
parameter occurred.

*LICLOG A match on a LIC log and any associated comparison data specified on the watch for LIC log
entry parameter occurred.

Session ID
INPUT; CHAR(10)

The name of the session that is calling the exit program.

Length of receiver variable
INPUT; BINARY(4)

The length of the receiver variable described in Format of data returned. If the length is larger
than the size of the receiver variable, the results may not be predictable. The minimum length is 8
bytes.

Error detected
OUTPUT, CHAR(10)

Indicates if an error in the exit program was found.

The possible values are:

*ERROR Error detected by watch exit program. The watch session that was passed in Session ID parameter
will be ended. If the watch session to be ended originally specified multiple message ids or LIC
log entries, all of them will no longer be watched.

<blanks> No error detected by watch exit program.

Note: Any value other than “ERROR” or <blanks> will be considered an error and the watch
session that was passed in Session ID parameter will be ended. If the watch session to be ended
originally specified multiple message ids or LIC log entries, all of them will no longer be
watched.

Event data
INPUT; CHAR(*)

The format of the watch information depends on the Watch option setting causing the exit
program to be called.

Information about the format of the event data can be found in the Start Watch Exit Program
documentation.

<% API introduced: V5R4

@ | ['Problem Management APIs,” on page 1| | [APIs by category|

Exit Programs

These are the Exit Programs for this category.

Exit Program for Watch for Trace Event

Required Parameter Group:

1 Trace option setting Input Char(10)
2 Reserved Input Char(10)
3 Error detected Output Char(10)

94 1BM Systems - iSeries: Problem Management APIs

#TOP_OF_PAGE
aplist.htm

4 Comparison data Input Char(*)

QSYSINC/H member name: ESCWCHT

The Trace commands such as STRCMNTRC, STRTRC, TRCINT and TRCCNN have the capability to
watch for a specific event and end the trace when this event occurs. An event can be a message being
sent to a specific message queue, history log, job log, or LIClog. If specified in the TRCPGM parameter,
the watch for trace event facility will call a user-written program in the cicumstances specified in the
Trace option setting parameter.

Authorities and Locks

None.

Required Parameter Group

Trace option setting
INPUT; CHAR(10)

The reason indicating the moment at which the user-written program was called. The possible

values are:
*ON The watch for trace facility is starting.
*MSGID A match on a message id specified on WCHMSG parameter occurred.
*LICLOG A match on a LIC log specified on the WCHLICLOG parameter occurred.
*CMPDATA The major and minor code of a LIC log matched, but the comparison data did not.
*INTVAL The time interval specified on TRCPGMITV parameter is elapsed.
*WCHTIMO The length of time to watch specified on WCHTIMO is elapsed.

Error detected
OUTPUT;, CHAR(10)

Indicates if the trace event facility should stop or continue running, or if an error on the
user-written program was found. The possible values are:

*CONTINUE The trace and the watch for trace event facility will continue running
*STOP The trace and the watch for trace event facility will be ended
*ERROR Error detected by customer trace program.

Comparison data
INPUT; CHAR(*)

The format of the trace information depends on the Trace option setting causing the exit program
to be called. The format of the Comparison data is as follows if the Trace option setting is

*MSGID:
Offset
Dec Hex Type Field
0 0 BINARY (4) Length of trace information
4 4 CHAR(?7) Message 1D
1 B CHAR(©9) Reserved
20 14 BINARY(4) Offset to comparison data
24 18 BINARY(4) Length of comparison data

Problem Management APIs 95

Offset
Dec Hex Type Field

28 1C CHARC(*) Message comparison data

The format of the Comparison data is as follows if the Trace option setting is *LICLOG or

*CMPDATA:
Offset
Dec Hex Type Field
0 0 BINARY (4) Length of trace information
CHAR(4) LIC Log major code
8 8 CHAR(4) LIC Log minor code
12 C CHAR(8) LIC Log identifier
20 14 BINARY(4) Offset to comparison data
24 18 BINARY(4) Length of comparison data
28 1C CHAR(¥) LIC Log comparison data

The format of the Comparison data is as follows if the Trace option setting is *ON, *INTVAL or

*WCHTIMO:
Offset
Dec Hex Type Field
0 0 BINARY(4) Length of trace information (always 4 at this time)

Field Descriptions

Length of trace information. The length of the Comparison data parameter passed to the user-written
exit program.

Length of comparison data. The length of the user specified text to be compared against the event data.
LIC Log identifier. The LIC Log entry identifier of the LIC Log that occurred.

LIC Log major code. The major code of the LIC Log that occurred.

LIC Log minor code. The minor code of the LIC Log that occurred.

LIC Log comparison data. The user specified text string used to compare against the entry data of the
watched for log entry.

Message ID. The identifier of the message that occurred.

Message comparison data. The user specified text string used to compare against the entry data of the
watched for message ID.

Offset to comparison data. The offset to the field that holds the comparison data.

Related Information
See the following for more information:
* [Start Communications Trace] (STRCMNTRC) command

96 1BM Systems - iSeries: Problem Management APIs

. (STRTRC) command
. (TRCINT) command

» [Trace Connection| (TRCCNN) command

Exit program introduced: V5R3

@l | [Communications APIs| | |APIs by category]

Concepts

These are the concepts for this category.

Key Groups for Problem Log APIs

Key Use for Problem Log APIs

This section describes keys applicable for the following Problem Log APlIs:
* QsxAddProblemLogEntry

* QsxChangeProblemLogEntry

* QsxCreateProblemLogEntry

¢ QsxDeleteProblemLogEntry

* QsxRetrieveProblemLogEntry

Key utilization matrix

Key API
Add | Change Create | Delete Retrieve
|Group 0000 - General problem log entries|
1 Always Always Always Always Always
2 No No Yes No Yes
3 No Yes Yes No Yes
4 No Yes Yes No Yes
5 No No Yes No Yes
6 No Yes Yes No Yes
7 No Yes Yes No Yes
8 Yes Yes Yes No Yes
[“Key Group 1000-Problem Description Entries” on page 103)|

1000 No Yes Yes No Yes
1001 No Yes Yes No Yes
1002 No Yes Yes No Yes
1003 No Yes Yes No Yes
1004 No Yes Yes No Yes
1005 No Yes Yes No Yes
1006 No Yes Yes No Yes
1007 No Yes Yes No Yes
1008 No Yes Yes No Yes

Problem Management APIs

97

#TOP_OF_PAGE
comm.htm
aplist.htm
#HDRTG0000

Key API
Add Change Create Delete Retrieve
1009 No Yes Yes No Yes
1010 No Yes Yes No Yes
1011 No Yes Yes No Yes
1012 No Yes Yes No Yes
1013 No Yes Yes No Yes
1014 No Yes Yes No Yes
1015 No Yes No No Yes
1016 No Yes No No Yes
[“Key Group 2000-FRU Entries” on page 110|
2000 No No No Yes Yes
2001 Yes No Yes No No
2002 Yes No Yes No No
2003 Yes No Yes No No
2004 Yes No Yes No No
2005 Yes No Yes No No
2006 Yes No Yes No No
2007 Yes No Yes No No
2008 Yes No Yes No No
2009 Yes No Yes No No
[“Key Group 3000-Text Entries” on page 116|
3000 No No No No Yes
3001 No Yes Yes No Yes
[“Key Group 4000-Supporting data entries” on page 118|
4000 No No No Yes Yes
4001 Yes No Yes No No
4002 Yes No Yes No No
[“Key Group 5000-Contact Entries” on page 119
5000 No No No No Yes
5001 No Yes Yes No Yes
["Key Group 6000-Problem History Entries” on page 121]
6000 No No No No Yes
6001 Yes No Yes No No
[“Key Group 7000-PTF Entries” on page 122|
7000 No No No Yes Yes
7001 Yes Yes Yes Yes Yes
7002 No Yes Yes No Yes
[’Key Group 8000-Analyzed Error Entries” on page 124|
8000 | No | No | No | No | Yes
[“Key Group 9000-Logical Partition ID Entries” on page 124|
9000 | No | No | No | No | Yes
98 IBM Systems - iSeries: Problem Management APIs

Key Group 0000-General Problem Log Entries

This group is required for all problem entries.

This section contains the following keys:

* |"Key 1-problem log id”|

* [“Key 2-problem type”|

* ["Key 3-problem status” on page 100|

* ["Key 4-user assigned” on page 100|

[‘Key 5-problem origin system” on page 100|

* ["Key 6-Operational data” on page 101

[‘Key 7—filter control” on page 102|

* [“Key 8-answer codes” on page 102

For more details about the fields in the following table, see [“Field Descriptions for Key Groups forf

[Problem Log APIs” on page 124

Key 1-problem log id

Key 1 is required to identify the entry to which data will be added. Key 1 has the following uses:

* Defines whether the problem is being created for a local or remote problem.

¢ Provides the problem log identifier that is used with the Add, Change, Delete, or Retrieve Problem Log

Entry APIs.

Note: The problem log output parameter provided on the Create Problem Log Entry API is returned in

the key 1 format.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Key size
8 8 CHAR(31) Problem log identifier
39 27 CHAR(1) Reserved

Key 2-problem type
This key is used to:
* Define the type of problem log entry

¢ Return the type of problem log entry retrieved

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Key size

Problem Management APIs 99

Offset

Dec

Hex

Type

Field

BINARY (4)

Problem type. See|“Field Descriptions for Key Groups for Problem|
[Log APIs” on page 124 for a description of the problem types.

Key 3-problem status

Defines the status of the problem log. The problem statuses are OPENED, READY, SENT, ANSWERED,
VERIFIED, and CLOSED. PREPARED status implies that the problem log contains data that enables it to
be sent to a service provider. The status is incremental. This means that the problem log entry contains
the minimum level of data required for the problem to achieve such a status. PREPARED may be applied
anytime after a problem has been opened and before it is closed.

Key 6001 is required with this key to record that the problem status has been changed. The status can be
created, changed, or retrieved.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Key size
8 8 BINARY(4) Problem status

Key 4-user assigned

Defines to whom the problem has been assigned.

This entry can be created, changed, or retrieved.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Key size
8 8 CHAR(10) User assigned
18 12 CHAR(2) Reserved

Key 5-problem origin system

Defines the system on which this problem log entry originated. The system may be local (this system) or
remote (another system). If the Create location field is set to local, the Create Problem Log Entry API
automatically adds the following groups of fields:

* Origin system hardware description
* Origin system operating system

This entry can only be created and retrieved.

100 1BM Systems - iSeries: Problem Management APIs

Offset

Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Key size
8 8 BINARY(4) Create location
Note: The following fields Machine type length through Serial number pertain to the origin system hardware
description.
12 C BINARY(4) Machine type length
16 10 BINARY(4) Model length
20 14 BINARY(4) Feature length
24 18 BINARY(4) Serial number length
28 1C CHAR(16) Machine type
44 2C CHAR(16) Model
60 3C CHAR(16) Feature
76 4C CHAR(32) Serial number

Note: The following fields Product ID length through Reserved pertain to the origin system operating system.

108 6C BINARY(4) Product ID length
112 70 BINARY(4) Version length

116 74 BINARY(4) Release level length
120 78 BINARY(4) Modification level length
124 7C CHAR(15) Product ID

139 8B CHAR(5) Version

144 90 CHAR(5) Release level

149 95 CHAR(5) Modification level
154 9A CHAR(2) Reserved

156 9C CHAR(13) Create date and time
169 A9 CHAR(2) Delta level

Key 6-Operational data

This key provides operational information about the problem entry.

All fields, except the Time added field and the When closed fields, can be created, changed, deleted, or
retrieved. The time fields are added automatically by the Create and Change Problem Log Entry APIs,

respectively.
Offset
Dec Hex Type Field
BINARY(4) Key
4 4 BINARY(4) Key size
BINARY(4) Key control for key 6
12 C BINARY (4) Creator of entry
16 10 BINARY(4) Alert status
20 14 BINARY(4) Auto PAR

Problem Management APIs 101

Offset

Dec Hex Type Field
24 18 BINARY(4) Auto notify
28 1C CHAR(10) APAR Library
Note: The following fields Code and Network address are received from the system.
38 26 CHAR(1) Code
39 27 CHAR(20) Network address
Note: The following fields Code and Network address are sent to the system.
59 3B CHAR(1) Code
60 3C CHAR(20) Network address
Note: The following fields Code and Network address are prepared for the system.
80 50 CHAR(1) Code
81 51 CHAR(20) Network address
101 65 CHAR(13) Date and time added
114 72 CHAR(13) Date and time closed
127 7F CHAR(1) Reserved
128 80 BINARY(4) Mode of analysis

Key 7—filter control

Offset

Dec Hex Type Field

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Filter event

12 C CHAR(10) Filter name

22 16 CHAR(10) Filter library name
32 20 CHAR(10) Filter group assigned
42 2A CHAR(2) Reserved

Key 8-answer codes

Contains the answer that was received when the problem was sent to a service provider.

Offset

Dec Hex Type Field

0 0 BINARY(4) Key

BINARY(4) Key size

8 8 BINARY(4) Key control for key 8
12 C BINARY(4) Answer code assigned
16 10 BINARY(4) Answer code returned
20 14 CHAR(5) Problem number

102 1BM Systems - iSeries: Problem Management APIs

Offset
Dec Hex Type Field
25 19 CHAR(3) Problem branch number
28 1C CHAR(3) Problem country number

Key Group 1000-Problem Description Entries

This group creates, changes, and retrieves problem description entries.

To locate the key of your need, click one of the following:
* [“Key 1001—Problem Severity”|

+ [“Key 1002-Problem Description Message” on page 104
+ [“Key 1003-Problem Creation Data” on page 104|

[‘Key 1004-Reporting Device” on page 104|

[‘Key 1005—Failing Resource” on page 105|

[‘Key 1006-Reporting Code” on page 106|

[‘Key 1007-Problem Analysis Data” on page 107|
[“Key 1008-Fix Verification Status” on page 107|
[‘Key 1009-Fix Recovery Status” on page 107|

[‘Key 1010 -Symptom String” on page 108|
[‘Key 1011-PTF Media Selection” on page 108|
[‘Key 1012-Problem Category” on page 108|

[“Key 1013-Client Information” on page 109

[‘Key 1014-First Failure Data Capture” on page 109
[‘Key 1015-Query Status” on page 110

[‘Key 1016-Hardware Location Information” on page 110

Key 1001—Problem Severity

This key defines the impact of the problem on the environment. This key is required for PREPARED

status.

This entry can be created, changed, and retrieved.

For more details about the fields in the following table, see [“Field Descriptions for Key Groups for

[Problem Log APIs” on page 124

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Key size
8 8 BINARY(4) Problem severity

Problem Management APIs

103

Key 1002-Problem Description Message

This key may be used where a message is used to describe the problem. If a message is not used, use key
3001 (text entry) to provide a description of the problem. Either key 1002 or 3001 is required. This key is
required when the problem type is machine detected. This entry can be created, changed, or retrieved.

Offset

Dec Hex Type Field

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 CHAR(?7) Message identifier

15 F CHAR(10) Message library name
25 19 CHAR(10) Message file name

35 23 CHAR(1) Reserved

Key 1003-Problem Creation Data

This is required for machine detected problem types and is optional for other problem types. This entry
can be created, changed, or retrieved.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Key size
Note: The following fields Reference code through Reference code translate table library are part of the reference
code description data.
80 80 CHAR(2) Reference code
10 A CHAR(10) Reference code
translate table
identifier
20 14 CHAR(10) Reference code
translate table library
30 1E CHAR(?7) Reference code
description message
37 25 CHAR(10) Reference code
description file name
47 2F CHAR(10) Reference code
description library
name
57 39 CHAR(?) Error code message
identifier

Key 1004-Reporting Device

This key provides data that defines the machine that contains the failing hardware. This data is required
for a problem to achieve READY status, since it contains the machine that a problem or PTF order will be
reported against.

This entry can be created, changed, or retrieved.

104 1BM Systems - iSeries: Problem Management APIs

Offset

Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Key size
8 8 BINARY(4) Key control for key 1004

Note: The following fields Machine type length through Serial number pertain to the reporting device.

12 C BINARY(4) Machine type length
16 10 BINARY(4) Model length

20 14 BINARY(4) Feature length

24 18 BINARY(4) Serial number length
28 1C CHAR(16) Machine type

44 2C CHAR(16) Model

60 3C CHAR(16) Feature

76 4C CHAR(32) Serial number

108 6C CHAR(12) EC number

Key 1005—Failing Resource

This key contains data that defines the object that is failing. Hardware that can fail includes a machine, a

feature, or a component of the machine. To an observer they might appear the same: they both have a

type, a serial number, and a model. The major distinction is whether you have a maintenance contract.

For example, you can report a problem on a tape device 6366, but you cannot report a problem on an

IOP feature number 2615. The 2615 is part of system machine type 9406. A problem can be reported
against 9406 because it has a maintenance contract. This entry can be created, changed, or retrieved.
Where a program object is failing, the product data is also added. Otherwise it must be blank.

Offset
Dec Hex Type Field
0 BINARY(4) Key
4 4 BINARY(4) Key size
8 8 BINARY(4) Key control for key 1005
12 C BINARY(4) Type of hardware

Note: The following fields Machine type length to Serial number pertain to the failing device structure.

16 10 BINARY(4) Machine type length
20 14 BINARY(4) Model length

24 18 BINARY(4) Feature length

28 1C BINARY(4) Serial number length
32 20 CHAR(16) Machine type

48 30 CHAR(16) Model

64 40 CHAR(16) Feature

80 50 CHAR(32) Serial number

Note: The following fields Product ID length through Reserved pertain to the failing product structure.

112

70

BINARY(4)

Product ID length

Problem Management APIs

105

Offset
Dec Hex Type Field
116 74 BINARY(4) Version length
120 78 BINARY(4) Release level length
124 7C BINARY(4) Modification level length
128 80 CHAR(15) Product ID
143 8F CHAR(5) Version
148 94 CHAR(5) Release level
153 99 CHAR(5) Modification level
158 9E CHAR(2) Reserved
160 A0 CHAR(®4) Instruction
164 A4 CHAR(20) Hierarchy
184 B8 CHAR(10) Resource name
194 c2 CHAR(4) Error log identifier
198 Cé6 CHAR(10) Program

Key 1006-Reporting Code

Data that defines the program object that is failing or the object against which the problem will be
reported. For example, the licensed internal code of a feature, such as an IOA, is the product on which
the problem will be reported. It is the program object with a maintenance contract.

Offset

Dec Hex Type Field

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Key control for key 1006

Note: The following fields Product ID length through Reserved pertain to the reporting product description.

12 C BINARY(4) Product ID length

16 10 BINARY(4) Version length

20 14 BINARY(4) Release level length

24 18 BINARY(4) Modification level length
28 1C CHAR(15) Product ID

43 2B CHAR(5) Version

48 30 CHAR(5) Release level

53 35 CHAR(5) Modification level

58 3A CHAR(2) Reserved

60 3C CHAR(10) Program

70 46 CHAR(4) Probe

74 4A CHAR(2) Reserved

106 1BM Systems - iSeries: Problem Management APIs

Key 1007-Problem Analysis Data

This key contains the post problem analysis results. The reference code description data defines the
program that isolated the error and provides a reference to an object that contains detailed data
describing the failure.

This key is required to move a machine detected problem to READY status. It is optional with other
problem types. The entry can be created, changed, or retrieved.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Key size
8 8 BINARY(4) Number of times analyzed
12 C BINARY(4) Isolation status
16 10 CHAR(8) PDP

Note: The following fields Reference code through Reference code translate table library pertain to the reference
code description data.

24 18 CHAR(2) Reference code

26 1A CHAR(10) Reference code translate table identifier
36 24 CHAR(10) Reference code translate table library
46 2E CHAR(2) Exit point of the PDP

Key 1008-Fix Verification Status

The key that data that defines the status of the verification attempt.

The problem must be in SENT or ANSWERED status to append this data. This entry can be created,
changed, or retrieved.

Offset
Dec Hex Type Field
0 BINARY(4) Key
4 4 BINARY(4) Key size
8 BINARY(4) Verification status
12 C CHAR(S) PDP

Key 1009-Fix Recovery Status

This key contains data that defines status of the recovery attempt.

The problem must be in SENT or ANSWERED status to append this data. This entry can be created,

changed, or retrieved.

Offset
Dec Hex Type Field
0 0 BINARY (4) Key
4 4 BINARY (4) Key size

Problem Management APIs

107

Offset
Dec Hex Type Field
8 8 BINARY(4) Recovery status
12 C CHAR(8) PDP

Key 1010 -Symptom String

This key contains data that is used to search a data base for the existence of a problem.

The problem must be READY status to append this data. A problem cannot be moved to PREPARED
status without this key. This entry can be created, changed, or retrieved. It is not allowed on problem

type 3, PTF order.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Key size
8 8 CHAR(256) Symptom
Note: The first character position of this symptom field may not contain a blank.

Key 1011-PTF Media Selection

This key contains data that is used to define the type of media on which a PTF should be delivered. The
type of media is defined by the media type and the machine type on which the media is installed.

Note: If the machine type and model are unknown, zeros must be used for these fields.

A problem cannot be moved to PREPARED status without this key.

Offset
Dec Hex Type Field
BINARY(4) Key
4 4 BINARY(4) Key size
8 8 BINARY(4) Machine type length
12 C BINARY(4) Model length
16 10 BINARY(4) Media type
20 14 CHAR(16) Machine type
36 24 CHAR(16) Model

Key 1012-Problem Category

This key contains data that is used to define the category of a problem.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
108 1BM Systems - iSeries: Problem Management APIs

Offset
Dec Hex Type Field
4 4 BINARY(4) Key size
8 8 BINARY(4) Problem category

Key 1013-Client Information

This key contains data that defines the failing software on a personal computer.

Offset
Dec Hex Type Field
0 BINARY(4) Key
BINARY(4) Key size
8 8 BINARY(4) Path Name Length
12 C BINARY(4) Product ID length
16 10 BINARY(4) Version length
20 14 BINARY(4) Program Length
24 18 BINARY(4) Function length
28 1C BINARY(4) Client ID length
32 20 BINARY(4) Contact information length
36 24 CHAR(256) Path Name
292 124 CHAR(64) Product ID
356 164 CHAR(64) Version
420 1A4 CHAR(64) Program
484 1E4 CHAR(64) Function
548 224 CHAR(256) Client ID
804 324 CHAR(256) Contact information
1060 424 CHAR(20) Address

Key 1014-First Failure Data Capture

This key contains data that is used to indicate the number of times a problem has recurred. The data

contains the program that detected the failure and a description of the product.

Offset
Dec Hex Type Field
BINARY (4) Key
4 4 BINARY(4) Key size
BINARY(4) Key control for key 1014
12 C BINARY(4) Count
16 10 BINARY(4) Object name length
20 14 CHAR(256) Object name

Note: The following fields Product ID length through Reserved pertain to product data.

Problem Management APIs

109

Offset
Dec Hex Type Field
276 114 BINARY(4) Product ID length
280 118 BINARY(4) Version length
284 11C BINARY(4) Release level length
288 120 BINARY(4) Modification level length
292 124 CHAR(15) Product ID
307 133 CHAR(5) Version
312 138 CHAR(5) Release level
317 13D CHAR(5) Modification level
322 142 CHAR(2) Reserved

Key 1015-Query Status

An indicator of the results of a query of the problem log status.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Key size
8 8 BINARY(4) Query status

Key 1016-Hardware Location Information

This key indicates the physical location of the hardware for frame ID and device locations.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Key size
8 8 CHAR(4) Frame ID location
12 C CHAR(4) Device location
16 10 CHAR(4) Card location

Key Group 2000-FRU Entries

This key group provides information about field replaceable unit (FRU). This group can only be used
with machine-detected problem types. Keys 2001 through 2009 use a header to define the FRU type,

probability, FRU code, and message identifier for the FRU.

Click one of the following to find your key:

+ [“Key 2000-Number of FRU Entries to Work with” on page 111
+ ["Key 2001-Device FRU Type” on page 111

* [“Key 2002-Code FRU Type” on page 112|

110 1BM Systems - iSeries: Problem Management APIs

[“Key 2003-Media FRU Type” on page 113
[‘Key 2004-User FRU Type” on page 114
[“Key 2005-FRU Name” on page 114
[‘Key 2006-Attached FRU” on page 115|

[‘Key 2007-Configuration FRU” on page 115|

[“Key 2008 - General FRU” on page 115|

[‘Key 2009-Channel Attached FRU” on page 116|

Key 2000-Number of FRU Entries to Work with

This key deletes or retrieves all FRU entries or all FRU entries of a class.

For more details about the fields in the following table, see [“Field Descriptions for Key Groups forf

[Problem Log APIs” on page 124

Offset
Dec Hex Type Field
0 0 BINARY (4) Key
4 4 BINARY(4) Key size
8 8 BINARY(4) Class of FRU
12 C BINARY (4) FRU count

Key 2001-Device FRU Type

This defines the data required to create a FRU entry for a device or feature. Device here can also be a

feature code. The device data defines the device or feature.

Offset
Dec Hex Type Field
0 0 BINARY (4) Key
4 4 BINARY(4) Key size

Note: The following fields Class of FRU through Reserved pertain to the FRU header.

8 8 BINARY(4) Class of FRU

12 C BINARY(4) Probability of fix

16 10 CHAR(4) FRU code

20 14 CHAR(?7) FRU description message 1D
27 1B CHAR(1) Reserved

28 1C BINARY(4) Device location text length
32 20 BINARY(4) Coded character set identifier
36 24 BINARY(4) Rack serial number length

Note: The following fields Machine type length through Serial number pertain to device data.

40 28 BINARY(4) Machine type length
44 2C BINARY (4) Model length

48 30 BINARY(4) Feature length

52 34 BINARY(4) Serial number length
56 38 CHAR(16) Machine type

Problem Management APIs

111

Offset

Dec Hex Type Field

72 48 CHAR(16) Model

88 58 CHAR(16) Feature

104 68 CHAR(32) Serial number

136 88 CHAR(?7) Document reference message 1D
143 8F CHAR(256) Device location text
399 18F CHAR(10) Resource name

409 199 CHAR(10) Device name

419 1A3 CHAR(32) Rack serial number
451 1C3 CHAR(2) Card position

453 1C5 CHAR(2) DSA bus number
455 1C7 CHAR(4) Unit address

459 1CB CHAR(2) Port

461 1CD CHAR(3) Reserved

464 1D0 BINARY (4) Device type

Note: The following fields, Transport type through Dependent address 5, pertain to RISC device data.

468 1D4 BINARY(4) Transport type

472 1D8 BINARY(4) Bus number

476 1DC BINARY(4) Card number

480 1E0 BINARY(4) Board number

484 1E4 BINARY(4) Address type

488 1E8 BINARY(4) I/0 bus address

492 1EC BINARY(4) Dependent address 2
496 1F0 BINARY(4) Dependent address 3
500 1F4 BINARY(4) Dependent address 4
504 1F8 BINARY(4) Dependent address 5

Key 2002-Code FRU Type

This defines the data required to create a FRU entry for code. Code may be a product, a program, or a

module.
Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Key size

Note: The following fields Class of FRU through Reserved pertain to the FRU header.

8 8 BINARY(4) Class of FRU

12 C BINARY(4) Probability of fix

16 10 CHAR(4) FRU code

20 14 CHAR(7) FRU description message ID
27 1B CHAR(1) Reserved

112 1BM Systems - iSeries: Problem Management APIs

Offset
Dec Hex Type Field
Note: The following fields Product ID length through Reserved pertain to product data.

28 1C BINARY(4) Product ID length

32 20 BINARY(4) Version length

36 24 BINARY(4) Release level length

40 28 BINARY(4) Modification level length

44 2C CHAR(15) Product ID

59 3B CHAR(5) Version

64 40 CHAR(5) Release level

69 45 CHAR(5) Modification level

74 4A CHAR(2) Reserved

76 4C CHAR(®4) Primary function group

80 50 CHAR(4) Secondary function group

84 54 CHAR(10) Module name

94 5E CHAR(?7) Document reference message 1D
101 65 CHAR(3) Reserved

Key 2003-Media FRU Type

This defines the data required to create a FRU entry for media. The device data defines the device on

which the media, such as tape or diskette, was installed.

Offset

Dec Hex Type Field

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

Note: The following fields Class of FRU through Reserved pertain to the FRU header.

8 8 BINARY(4) Class of FRU

12 C BINARY(4) Probability of fix

16 10 CHAR(4) FRU code

20 14 CHAR(?7) FRU description message 1D

27 1B CHAR(1) Reserved

Note: The following fields Machine length type through Serial number pertain to the device data.

28 1C BINARY(4) Machine type length

32 20 BINARY(4) Model length

36 24 BINARY(4) Feature length

40 28 BINARY(4) Serial number length

44 2C CHAR(16) Machine type

60 3C CHAR(16) Model

76 4C CHAR(16) Feature

92 5C CHAR(32) Serial number

124 7C CHAR(?7) Document reference message 1D

Problem Management APIs

113

Offset
Dec Hex Type Field
131 83 CHAR(10) Resource name
141 8D CHAR(8) Volume ID
149 95 CHAR(3) Reserved

Key 2004-User FRU Type

This defines the data required to define a problem resulting from a user action.

Offset

Dec Hex Type Field

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

Note: The following fields Class of FRU through Reserved pertain to the FRU header.

8 8 BINARY(4) Class of FRU

12 C BINARY(4) Probability of fix

16 10 CHAR(4) FRU code

20 14 CHAR(?7) FRU description message ID

27 1B CHAR(1) Reserved

28 1C CHAR(7) Document reference message 1D
35 23 CHAR(1) Reserved

Key 2005-FRU Name

This defines the data required to create a list of up to six parts that could be failing. The parts are
identified by their part numbers and location.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Key size
Note: The following fields Class of FRU through Reserved pertain to the FRU header.
8 8 BINARY(4) Class of FRU
12 C BINARY(4) Probability of fix
16 10 CHAR(4) FRU code
20 14 CHAR(?7) FRU description message ID
27 1B CHAR(1) Reserved
28 1C CHAR(?7) Document reference message 1D
35 23 CHAR(25) Part location
60 3C CHAR(6)(12) Part number array

114 1BM Systems - iSeries: Problem Management APIs

Key 2006-Attached FRU

This defines the data required to create a list of up to six parts that could be failing. The parts are
identified by their part numbers and location.

This FRU defines parts that are attached to I/O adapters or I/O processors.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Key size
Note: The following fields Class of FRU through Reserved pertain to the FRU header.
8 8 BINARY(4) Class of FRU
12 C BINARY(4) Probability of fix
16 10 CHAR(®4) FRU code
20 14 CHAR(?7) FRU description message 1D
27 1B CHAR(1) Reserved
28 1C CHAR(?7) Document reference message 1D
35 23 CHAR(25) Part location
60 3C CHAR(6)(12) Part number array

Key 2007-Configuration FRU

This key defines an error in the configuration of a device. It provides the name of a panel that may be

displayed defining a problem.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Key size
Note: The following fields Class of FRU through Reserved pertain to the FRU header.
8 8 BINARY(4) Class of FRU
12 C BINARY(4) Probability of fix
16 10 CHAR(4) FRU code
20 14 CHAR(?7) FRU description message 1D
27 1B CHAR(1) Reserved
28 1C BINARY(4) Coded character set identifier
32 20 BINARY(4) Replacement text length
36 24 CHAR(8) Screen identifier
44 2C CHAR(30) Replacement text
74 4A CHAR(2) Reserved

Key 2008 - General FRU

This defines a FRU that is not of one of the other classes of FRUs. It provides the name of a panel that

may be displayed defining a problem.

Problem Management APIs

115

Offset

Dec Hex Type Field

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

Note: The following fields Class of FRU through Reserved pertain to the FRU header.

28 1C BINARY(4) Class of FRU

32 20 BINARY(4) Probability of fix

36 24 CHAR(4) FRU code

40 28 CHAR(?7) FRU description message ID
47 2F CHAR(1) Reserved

48 30 BINARY(4) Coded character set identifier
52 34 BINARY (4) Replacement text length

56 38 CHAR(8) Screen identifier

64 40 CHAR(30) Replacement text

94 5E CHAR(2) Reserved

Key 2009-Channel Attached FRU

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Key size
Note: The following fields Class of FRU through Reserved pertain to the FRU header.
8 8 BINARY(4) Class of FRU
12 C BINARY(4) Probability of fix
16 10 CHAR(4) FRU code
20 14 CHAR(?7) FRU description message ID
27 1B CHAR(1) Reserved
28 1C CHAR(7) Document reference message 1D
35 23 CHAR(4) Fault symptom code
39 27 CHAR(32) Sense bytes
71 47 CHAR(1) Reserved

Key Group 3000-Text Entries

This key group creates, retrieves, and changes problem text entries. It provides access to text that defines,
describes, or tracks a problem.

To get to the key of your need, click one of the following:
+ [“Key 3000-Text Entry” on page 117
* [“Key 3001-Text Entry” on page 117

116 1BM Systems - iSeries: Problem Management APIs

Key 3000-Text Entry

Retrieves text about a problem. Either all text associated with the problem or specified text can be
retrieved. The text types associated with the problem are:

* 80 character title, limit to one entry

This entry provides users with a means of describing a problem in their own words. This appears on
the problem list panel.

* Long problem description.
A detailed description of the problem.
* Problem status

Used to provide a means of tracking a problem until it is resolved, especially tracking what the
support organization is doing to resolve the problem.

* Private notes

Provides an area to keep notes about a problem that will not be made public. These notes are not sent
to another system.

* Associated problem data
This area is for general use and can be tailored to the needs of the users.

For more details about the fields in the following table, see [“Field Descriptions for Key Groups for
[Problem Log APIs” on page 124

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY (4) Key size
8 8 BINARY (4) Text type
12 C BINARY (4) Text count

Key 3001-Text Entry

Allows the user to create or change data about a problem. The user is responsible for the content and
format.

To create a text entry, provide the length of text to add. The text is referenced by a pointer and the coded
character set identifier. A pointer, defined in key 3001 (Text entry), points to the beginning of the data.

To change the data, a retrieve, although not required, should be performed first. Data provided on the
change API overlays the data previously in the entry. The data is changed by providing the data as done
in a create. To effectively delete the data set, set Text length to 0. This entry can be created, changed, or
retrieved.

Offset

Dec Hex Type Field

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY (4) Text type

12 C BINARY(4) Coded character set identifier
16 10 BINARY(4) Text length

20 14 CHAR(12) Reserved

Problem Management APIs 117

Offset
Dec Hex Type Field

Pointer to the text

32 20 POINTER(SPP)

Key Group 4000-Supporting data entries

This key group maintains a list of files that contain supplemental data about a problem. The data is
contained in spooled or database files. The name and location of the files is maintained by this key

group.

To get to the key of your need, click one of the following:

+ [“Key 4000-Supporting Data Entries”|
* |“Key 4001-Spooled File Data”]
+ ["Key 4002-File Data” on page 119

Key 4000-Supporting Data Entries

This key retrieves and deletes all entries or all entries of a type, spooled or database files, associated with
a specific problem. Spooled files are processed using key 4001 and database files are processed using key
4002. Deleting a specific entry is not supported. This entry can be used by the delete and retrieve APL

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Key size
8 8 BINARY(4) File type
12 C BINARY(4) File count

Key 4001-Spooled File Data

This key contains the name of a spooled file that is associated with the problem log entry.

This key is used to add or create an entry. It is also used to return the results of a retrieve operation.

To add or create an entry, use this key to define each spooled file to be associated with the problem. New
entries are added to the file.

To change an entry it must be deleted first then a new one added.

A retrieve is done by passing key 4000 and defining type 1. All spooled file entries are returned, a key
4001 (spooled file data) for each. The entry is used by the Add and Create Problem Log Entry APIs.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Key size
8 8 BINARY(4) File number
12 C CHAR(10) Job name
22 16 CHAR(10) User

118 1BM Systems - iSeries: Problem Management APIs

Offset
Dec Hex Type Field
32 20 CHAR(6) Job Number
38 26 CHAR(10) File Name

Key 4002-File Data

This key contains the name of a data base file that is associated with the problem log entry.

This key is used to add or create an entry. It is also used to return the results of a retrieve operation.

To add or create an entry, use key 4002 (file data) to define each spooled file to be associated with the

problem. New entries are added to the file.

To change an entry it must be deleted first then a new ones added.

A retrieve is done by passing key 4000 and defining type 2. All data base file entries are returned, a key
4002 (file data) for each.

Offset
Dec Hex Type Field
BINARY(4) Key
4 4 BINARY(4) Key size
8 8 CHAR(10) File name
18 12 CHAR(10) File library name
28 1C CHAR(10) File member name
38 26 CHAR(2) Reserved

Key Group 5000-Contact Entries

This key group provides information about the contact.

This section contains the following keys:

* [“Key 5000-Contact entries”|

+ ["Key 5001-Contact Information” on page 120

Key 5000-Contact entries

Allows the retrieval of contact information, local, remote, or both. A key 5001 (Contact information) entry
is returned for each of the contact entries. This can be used by the Retrieve Problem Log Entry APL

For more details about the fields in the following table, see [“Field Descriptions for Key Groups for

[Problem Log APIs” on page 124

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Key size

Problem Management APIs 119

Offset
Dec Hex Type Field
8 8 BINARY(4) Contact type
12 C BINARY(4) Contact information count

Key 5001-Contact Information
Allows creating or changing a contact entry. To create or change an entry:
* Provide the type of entry to create or change
 Set the key control to define the field to process.
The control values are:

1 NLV

2 Corporation name

4 Contact name

8 Primary contact phone number
16 Help desk or pager number

32 Address

64 CCsID

128 Primary FAX contact phone number
256 Alternative FAX contact phone number
512 Primary electronic mail address

1024 Alternative electronic mail address

To process multiple fields sum the value of the fields to be processed.
* Provide the data to be added to the field. Enter a blank to delete the contents of a field.

Offset

Dec Hex Type Field

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Key control for key 5001

12 C BINARY (4) Contact type

16 10 BINARY(4) Coded character set identifier
20 14 CHAR(4) National language version

24 18 CHAR(36) Corporation name

60 3C CHAR(36) Name of contact

96 60 CHAR(30) Primary phone number
126 7E CHAR(30) Help desk or pager number
156 9C CHAR(30) Primary FAX number
186 BA CHAR(30) Alternative FAX number

Note: The following fields Address line 1 through Postal code pertain to the postal address.

216 D8 CHAR(36) Address line 1
252 FC CHAR(36) Address line 2
288 120 CHAR(36) Address line 3
324 144 CHAR(36) City or locality

120 1BM Systems - iSeries: Problem Management APIs

Offset
Dec Hex Type Field
360 168 CHAR(20) Country or region
380 17C CHAR(12) Postal code
392 188 CHAR(36) State or province
428 1AC CHAR(256) Primary electronic mail address
684 2AC CHAR(256) Alternative electronic mail address

Key Group 6000-Problem History Entries

This key group provides problem history structures.

This section includes the following keys:

+ [“Key 6000-History Information”|

* [“Key 6001-History Information”|

Key 6000-History Information

This key retrieves all or the last history entry. Key 6001 (history information) is returned for each history
entry. Entries are returned starting with the latest entry.

For more details about the fields in the following table, see [“Field Descriptions for Key Groups forf
[Problem Log APIs” on page 124

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Key size
8 8 BINARY(4) History type
12 C BINARY(4) History count

Key 6001-History Information

History entries should be added to the file in logical event sequence and must be added each time the
problem log entry is created, changed, or elements are deleted. The create and add APIs add the entries
in the sequence the key 6001 (history information) are supplied to the APIL. No verification is made of the
logical order of the events. All entries that are added in the context of one API call have the same date

and time. The API adds the date and time.

Once entered the event may not be changed or deleted. Change control is provided to allow optional
data, change request name, and change request number to be added when needed.

Offset
Dec Hex Type Field
0 BINARY (4) Key
4 4 BINARY(4) Key size
8 8 BINARY(4) Key control for key 6001

Problem Management APIs 121

Offset

Dec Hex Type Field

12 C BINARY(4) History type

16 10 CHAR(13) Event date and time

29 1D CHAR(10) User ID

39 27 CHAR(10) Change request name
49 31 CHAR(6) Change request number
55 37 CHAR(1) Reserved

Key Group 7000-PTF Entries

This key group provides program temporary fix (PTF) information.

This section contains the following keys:
* |“Key 7000-PTF Entry”]|

* [“Key 7001-PTF ID”|

* ["Key 7002-PTF ID” on page 123|

Key 7000-PTF Entry

Allows a user to retrieve or delete all PTF entries.

On a retrieve operation it defines the number of entries returned on a retrieve operation.

On a delete operation, all the PTF entries are deleted. Number of entries has no significance during
delete.

For more details about the fields in the following table, see [“Field Descriptions for Key Groups for
[Problem Log APIs” on page 124

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Key size
8 8 BINARY(4) PTF count

Key 7001-PTF ID

This key defines the program temporary fix (PTF) identifier. On add or create operations, all fields must
be filled in.

On a retrieve operation, this key defines which PTF to retrieve. A PTF is identified by the PTF ID,
product, version, release, and modification.

PTF entries are always added to the end of the list.

To change a PTF entry, the key control should be used to identify the field being changed. The PTF ID
may not be changed.

122 1BM Systems - iSeries: Problem Management APIs

Note: Ensure that the correct PTF entry is being changed. The SNDPTFORD command creates entries that
use special values for the product data. Non-IBM products may use the same PTF ID for different
releases or different vendors may use the same PTF ID. It may be necessary to retrieve, delete, and add
new PTF entries where there are multiple PTFs with the same PTF ID, but different product data, are
encountered. This exposure only exists with non-IBM PTFs since IBM PTFs have unique PTF identifiers.

Offset

Dec Hex Type Field

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Key control for key 7001
12 C BINARY(4) PTF status

16 10 BINARY(4) Sent

20 14 BINARY(4) PTF ID length

24 18 CHAR(20) PTF ID

Note: The following fields Product ID length through Reserved pertain to the product data.

44 2C BINARY(4) Product ID length

48 30 BINARY(4) Version length

52 34 BINARY(4) Release level length

56 38 BINARY(4) Modification level length
60 3C CHAR(15) Product ID

75 4B CHAR(5) Version

80 50 CHAR(5) Release level

85 55 CHAR(5) Modification level

90 5A CHAR(2) Reserved

92 5C CHAR(2) Minimum level

94 5E CHAR(2) Maximum level

96 60 CHAR(1) PTF image

Key 7002-PTF ID

On a create operation, all fields must be provided.
On a change operation, only the fields identified by the Key control field are processed.

On a retrieve operation, the PTF ordering options are returned.

Offset

Dec Hex Type Field

0 0 BINARY(4) Key

4 4 BINARY (4) Key size

8 8 BINARY(4) Key control for key 7002
12 C BINARY(4) PTF order type

16 10 BINARY(4) Option

20 14 BINARY(4) Reorder

Problem Management APIs 123

Offset
Dec Hex Type Field
24 18 BINARY(4) Delivery
28 1C BINARY(4) Check
32 20 BINARY(4) Delivery Format
36 24 CHAR(64) Image directory
100 64 CHAR(10) Image prefix

Key Group 8000-Analyzed Error Entries

This key group provides analyzed error flag information.

Key 8000-Analyzed Error Flag: This key retrieves a value that indicates whether SLIC analyzed the
problem.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Key size
8 8 BINARY(4) Analyzed error flag

Key Group 9000-Logical Partition ID Entries

This key group provides logical partition ID information.

Key 9000-Logical Partition ID: This key retrieves the current logical partition ID on the physical machine.

Offset
Dec Hex Type Field
0 0 BINARY(4) Key
4 4 BINARY(4) Key size
8 8 CHAR(1) Logical partition ID

Field Descriptions for Key Groups for Problem Log APIs

Address. Internet address of the client in dotted form. For example: 95.5.123.11.
Address line 1. The first line of the address.

Address line 2. The second line of the address.

Address line 3. The third line of the address.

Address type. The format of the unit address, which is numeric value that represents the hardware type.
Valid values are as follows:

1 Communications resource

124 1BM Systems - iSeries: Problem Management APIs

Storage resource
Workstation resource
Auxiliary processor resource

G W N

Library resource

Alert status. Valid values are:

0 Problem not alertable
1 No alert pending
2 Alert pending

Alternative electronic mail address. The electronic mail (e-mail) address to receive problem-related data,
if the primary e-mail address is not available.

Alternative FAX number. The backup FAX number to receive problem-related data.
Analyzed error flag. Indicates whether the error has been analyzed by SLIC.

Answer code assigned. The code that is assigned corresponds to a message that describes the answer
given to the problem. The values are:

-1 No code assigned

0 Fixes sent

1 Fixes mailed

2 Fixes to be sent later

3 Fix cover letter only

4 Fixes not available

5 Fixes already on system

6 Not ordered

7 Fixes ordered or on system

8 All fixes on order

9 Exceeds mailing limit

10 Exceeds transmit limit

11 Exceeds limit for cover letter order
12 Support center notified

13 Documentation error

14 Failing product not entitled
15 Service requester not entitled
16 Reporting system not entitled
17 Entries out of order

Answer code returned. The code that is assigned corresponds to a message that describes the answer
given the service requester regarding the problem. See the answer code assigned field for list of values.

APAR library. The name of the library containing the saved APAR data for this problem. The library, if
present, contains spooled and database files. This data is collected automatically or by the Restore APAR
Data (RSTAPARDTA) or Save APAR Data (SAVAPARDTA) commands. The library is deleted when the
problem log entry is deleted.

Auto PAR. Defines if problem analysis procedures were automatically run for this problem.

0 Problem analysis not done automatically.
1 Problem analysis done automatically.

Problem Management APIs 125

Auto notify. Defines if the problem has been automatically reported to a service provider.

0 Notify not done automatically.
1 Notify done automatically.

Board number. The number of the back plane card on this bus.

Bus number. The number of the bus.

Card location. The physical location of the card.

Card number. The number derived from the slot number (the logical address is assigned to the card slot).
Card position. Physical location where the device or feature is plugged into the bus.

Change request name. The name assigned, by the user, when submitting a change request.

Change request number. The sequence number of the change request.

Check. Indicates whether checking is performed on the service requester system to determine if PTFs are
ordered based on whether or not the PTF product is installed or supported. Possible values are:

*NO The PTFs specified on the PTF order list are ordered even when the PTF product is not installed or supported
on the service requester.

*YES The PTFs specified on the PTF order list parameter are ordered only if the PTF product is installed or
supported on the service requester.

Note: *NO must be specified when 1 (Cover letter only) is specified for PTF order type.
City or locality. The city or locality of the postal address.

Class of FRU. The class of FRU entries to process. The values are:

All FRU classes
Point of failure
Partial isolation
Isolation
Verification
Recovery
Answer

SN Gl LW N RO

All FRUs can only be used on a retrieve operation.
Client ID. Name of the client.
Client ID length. Length of the client ID data.

Code. A code that defines the network address type.

A APPN
I Internet
R *IBMSRV

126 1BM Systems - iSeries: Problem Management APIs

Coded character set identifier (CCSID). A code that describes the character set of the text. This value
should be changed each time data is written and the value must agree with the CCSID of the data. If this
value is 0 on a create operation, the API uses the job CCSID.

Contact information. Data describing the PC contact.

Contact information count. The number of 5001 keys that are returned by the retrieve operation.

Contact information length. Length of the contact information data. If it is a local contact information
record, it is the local corporation name, or else it is the remote system corporation name.

Contact type. Origin of contact information, local or remote. The values are:

1 Contact information of the local system

2 Contact information of the system on which the problem was created.
Corporation name. Name of company that depends on the entry type.
Count. Number of times the problem has been detected.

Country or region. The country or region of the postal address.

Create date and time. Time the problem log entry was created and added by the APL It is in format
CYYMMDDHHMMSS. Ignored if the create was local.

Create location. Defines where problem was created. The values are:

1 Local
2 Remote

Creator of entry. Defines the function that created the entry.

-1 Not defined

0 Alert

1 FFDC, first failure data capture
2 FAST

3 General

4 PWSI

Date and time added. Date and time the problem log entry was added. This is the time that the problem
was added to this systems problem log. This field is only valid for the QsxRetrieveProblemLogEntry APIL

This is entered by the create API when the problem is added to this system. The time added field cannot
be changed once entered, but it can be retrieved.

Date and time closed. Date and time the problem log entry was closed.

This field is changed when the user selects close on the Work with Problem display or uses the Change
Problem Log API. This field can be retrieved, but it cannot be changed.

Delivery. Defines whether the PTF will be delivered by mail or electronically.

0 Deliver by mail or electronically.
1 Deliver electronically only.

Problem Management APIs 127

Delivery format. Specifies the format the PTFs are stored. Possible values are:

0 PTFs are delivered electronically as save files.

1 PTFs are delivered electronically as optical image files. The optical image files will contain PTFs
and cover letters. The optical image files will be stored in the directory specified in the image
directory field.

Delta level. Specifies the level of the system release.

Dependent address 2. An address field where the type of address is dependent on the address type field.

Address Type

Dependent Address 2

1 (Communications) Adapter

2 (Storage) Controller

3 (Workstation) Adapter

4 (Auxiliary processor) Auxiliary processor
5 (Library) Library

Dependent address 3. An address field where the type of address is dependent on the address type field.

Address Type

Dependent Address 3

1 (Communications) Port

2 (Storage) Device

3 (Workstation) Port

4 (Auxiliary processor) Adapter
5 (Library) Controller

Dependent address 4. An address field where the type of address is dependent on the address type field.

Address Type

Dependent Address 4

1 (Communications) Channel
2 (Storage) Reserved
3 (Workstation) Device

4 (Auxiliary processor) Port

5 (Library) Device

Dependent address 5. An address field where the type of address is dependent on the address type field.

Address Type

1 (Communications)

2 (Storage)

3 (Workstation)

4 (Auxiliary processor)
5 (Library)

Dependent Address 5
Reserved

Reserved

Shared session
Reserved

Reserved

Device location. The physical location of the device.
Device location text. Text that describes the location of the device.
Device location text length. Length of text.

Device name. A name given to the device or feature.

128 1BM Systems - iSeries: Problem Management APIs

Device type. The type of device located on the system.

Document reference message ID. Message that contains a description of reference material.
DSA bus number. Code further defining the electrical address of a resource.

EC number. Engineering change number.

Error code message identifier. Identifier of the message that describes the error log entry.
Error log identifier. Number of the error log.

Event date and time. Date and time event was added to the problem log entry.

Exit point of the PDP. A code that defines the procedure in the PDP that isolated the problem.
Fault symptom code. A code defining the symptom of the problem.

Feature. Feature of the device. This is set to blank if a feature is not applicable.

Feature length. Length of the feature field. Maximum length supported is 4.

File count. The number of series 4001 or 4002 keys that are concatenated to this key.

File library name. Name of the library that contains the file.

File member name. Name of the file member. This is *SAVF if the file is a save file. This is *NONE if the
file has no members.

File name. The file name that was specified by the user program when the file was created, or the name
of the device file used to create this file.

File number. The file number for this spooled file.

File type. The type of entry to process. The values are:

0 All entries
1 Spooled file entry
2 Data file entry

Filter event Defines if problem log should be filtered

0 Not set
1 No alert pending
2 Alert pending

Filter group assigned. Name of the group in the filter to which the problem is assigned.
Filter library name. Library where the filter is located.

Filter name. Name of the filter.

Frame ID location. The physical location of the frame ID.

FRU code. A code that defines the FRU.

Problem Management APIs 129

FRU count. Number of FRU entries that were returned by the Retrieve Problem Log APIL
FRU description message ID. Message that describes this FRU.

Function. Name of the failing function.

Function length. Length of the function data.

Help desk or pager number. The help desk or pager number of the contact for the problem being
reported. This number should include the area code, exchange numbers, and the extension.

Hierarchy. The function of the program where the problem occurred.
History count. The number of 6001 keys returned by the Retrieve Problem Log APL

History type. History entry type. The types are:

0 Problem entry closed

1 Problem entry opened

2 Service request received

3 Opened by an alert

4 Problem analyzed

5 Verification test ran

6 Recovery procedure ran

7 Prepared to report

8 Service request sent

9 Problem answered

10 Response sent

11 Reported by voice

12 Fixes transmitted

13 Change request submitted

14 Change request ended

15 Fix verified

16 Remote analysis

17 Remote verification ran

18 Remote recovery ran

19 Alert created

20 APAR created

21 APAR data collected

22 APAR data restored

23 APAR data deleted

24 Changed by CHGPRB

25 Deleted by DLTPRB

26 Problem occurred multiple times

27 Status changed

28 Status query sent

29 Problem automatically analyzed

30 Problem not automatically analyzed - SRC
31 Problem not automatically analyzed - SBMJOB
32 Automatic problem analysis failed

33 Problem sent automatically

34 Problem not sent automatically - SRC off
35 Problem not sent automatically - SBMJOB
36 Automatic problem notification failed

37 Problem analysis failed

130 1BM Systems - iSeries: Problem Management APIs

Image directory. The path name of the directory where optical image files will be saved. For more
information on specifying path names, refer to “Object naming rules” in “CL concepts and reference” in

the CL reference information in the iSeries Information Center at http:/ /www.iseries.ibm.com/infocenter.
The following special value is accepted:

*DFT

The optical image files are stored in /QIBM/UserData/OS/Service/ECS directory.

Image prefix. The prefix for the optical image file names. If multiple images are received under one

order, the files will be uniquely identified by a numerical suffix on the image name. This field must be set
to blanks if 1 (Image) is not specified for delivery format. The following special value is accepted:

*DFT

by the service provider.

No prefix will be added at the beginning of each optical image file name. The files will be named

Instruction. Instruction number where the error was detected.

I/O bus address. The bus number between the IOP and the device.

Isolation status. The status of the isolation attempt.

Gl W N RO

Not isolated, no FRUs added.

Completed successfully with isolation FRUs added.

Completed successfully, no problem found, point of failure FRUs added.
Unsuccessful, point of failure FRUs added.

Analysis not complete, point of failure FRUs added.

Analysis partially completed, partial FRU list added.

Job name. The name of the job that produced the spooled file.

Job number. The number of the job that produced this spooled file.

Key. Integer value that defines the key you are working with.

Key control for key 6. Defines the fields that will be processed.

L L

64

Alert status
APAR library
Auto PAR
Auto Notify
From System
To System
Prepared For

Key control for key 8. Defines which field should be processed. Add the values to process multiple

fields.

o R N =

Use answer code assigned
Use answer code returned
Use problem number

Use problem country number
Use problem branch number

Key control for key 1004. Defines the EC (engineering change) number.

Problem Management APIs

131

Key control for key 1005. Defines the fields that will be processed.

1 Type

2 Device

4 Product

8 Instruction

16 Hierarchy

32 Resource name

64 Error log identifier
128 Program

Key control for key 1006. Defines field used for reporting code:

1 Product name
2 Program name
4 Probe

Key control for key 1014. Defines which field should be processed. Add the values to process multiple
fields.

1 Use count field
2 Use object length, object name and detecting product fields

Key control for key 5001. Defines contact data fields:

1 National Language Version (NLV)

2 Corporate name

4 Contact

8 Primary phone number

16 Help desk or pager number

32 Address

64 CCsID

128 Primary FAX contact phone number
256 Alternative FAX contact phone number
512 Primary electronic mail address
1024 Alternative electronic mail address

Key control for key 6001. Defines which fields to process:

1 Use optional change request data

Key control for key 7001. Identifies which fields to process on a change operation. The control values are:

1 Status
2 Sent

To process multiple fields sum the values for the fields you want to change.

Key control for key 7002. Defines which fields to process on a change operation. The control values are:

1 Type
2 Option

132 1BM Systems - iSeries: Problem Management APIs

4 Reorder
Delivery

16 Check

32 Delivery Format

64 Image directory

128 Image prefix

Key size. Defines the size of the key you are working with.

Machine type. A type of device.

Machine type length. Length of the machine type in bytes.

Maximum level. The indicator of the highest level of the product on which this PTF can be installed. If
the minimum and maximum levels are the same, then this PTF can only be installed on one level of the

product. The level can be AA to 99. This field will be blank if the product has no level.

Media type. This is a code that defines a media type.

1 Automatic selection. Auto selection implies that the system determines what device to use for fix distribution.
This is required when the problem is PREPARED.
2 CD-ROM.

Message file name. The message file that contains the problem description. The library of the file must
exist in the library list.

Message identifier. The identifier of a message that describes the problem.

Message library name. The library that contains the message file.

Minimum level. The indicator of the lowest level of the product on which this PTF can be installed. If
the minimum and maximum levels are the same, then this PTF can only be installed on one level of the
product. The level can be AA to 99. This field will be blank if the product has no level.

Model. The model of the device type.

Model length. Size of the machine model field, maximum is 3.

Mode of analysis. Whether the problem was in message mode, which allows the user to analyze the

problem, or the problem was analyzed by the System Licensed Internal Code (SLIC) and cannot be
analyzed again. Valid values are as follows:

0 Message mode of analysis
1 SLIC mode of analysis

Modification level. Modification level of the object. *ONLY is a valid constant even though it is longer
than the 2-byte maximum.

Modification level length. Length of the modification level in bytes. Maximum length supported is 2.
Module name. Component of a program or a program name.

Name. Product, microcode, application, or module name.

Problem Management APIs 133

Name length. Length of the name of the object that detected the error.
Name of contact. The name of a person to contact within the corporation.

National language version. A code that defines the national language version in which the cover letter is

supplied. The values are defined in the topic.

Network address. Defines the address of a network node. These formats are used:

APPN ¢ Network ID
+ Control point name
* Reserved

Internet (in dotted form) « Address

* Reserved

“IBMSRV * Network ID (must be blank)
* Control point name (must be *IBMSRV”)
* Reserved

The reserved fields must be blank.

Number of times analyzed. The number of times the problem was analyzed. The value must be greater
than 0 and should be incremented each time the problem is analyzed.

Object name. Name of the object that detected the error.

Option. Defines if only the PTFs listed will be ordered or the PTFs and its requisites.

0 PTF with no requisites
1 PTF and requisites

Part location. A textual description of where the part is located.

Part number array. List of up to six part numbers, 12 characters in length. Unused elements of the array
should be blank.

Path name. Path to the failing software.

Path name length. Length of the path name data.

PDP. Name of the problem determination procedure (PDP) module used to isolate the error.

Pointer to the text. Address of the text.

Port. Code defining where a device is attached to a device driver.

Postal code. The postal or zip code of the postal address.

Primary electronic mail address. The electronic mail (e-mail) address to receive problem-related data.
Primary FAX number. The primary FAX number to receive problem-related data.

Primary function group. The load ID of the program.

134 1BM Systems - iSeries: Problem Management APIs

Primary phone number. The phone number of the primary contact for the problem being reported.
Probability of fix. The probability of this FRU resolving the problem.
Probe. Identifier for a problem found in a program.

Problem branch number. A number assigned by the support system. The problem branch number field is
typically the problem management branch number used by *IBMSRV.

Problem category. Defines how a problem should be processed.

0 REPORT-Designates a set of problem log entries that can be reported. This includes all problems except for
LOGONLY problems.

1 CRITICAL-Designates a set of problem log entries that have been created from a critical message. These
problems should be handled immediately.

2 LOGONLY-Designates a set of problems that are log-only. These problems cannot be reported.

3 ALL-All program log entries are displayed

Problem country number. A number assigned by the support system. The problem country number field
is typically the problem management country number used by *IBMSRV.

Problem log identifier. A unique identifier based on date and time, network type and network address.
The values are:

Number On a create operation, this key defines whether the problem is being created for a local or remote
problem. A constant of "*LOCAL" is used to identify the problem as a local one.

The problem log ID is provided in key 1 (Problem log ID) when a remote problem is being

created.
Network type Network type
A APPN address

Network address Identifies the network in which the server resides. The format is:
¢ 8 characters for the network ID
* 8 characters for the control point name

e 4 characters reserved (must be blank)

Problem number. A number assigned by the support system. The problem number field is typically the
problem management number used by *IBMSRV.

Problem severity. The impact of the problem on the system. The values are:

1 High

2 Medium
3 Low

4 None

Problem status. Defines the current status of the problem. The values are:

0 *OPENED status

1 *READY status

2 *SENT status

3 *ANSWERED status
4 *VERIFIED status

5 *PREPARED status

Problem Management APIs 135

6 *CLOSED status

Problem type. Defines the type of problem the system is processing. The values are:

Machine-detected problem

User-perceived hardware or software problem
PTF orders

User-perceived remote problem
Application-detected problem

Client machine-detected problem

Client user-detected problem

User-created general problem

O N G W=

Product ID. Name of the product.

Product ID length. Length of the product ID data. The maximum length is 7 except for key 1013 where
the maximum is 64. *ONLY*PRODUCT** is a valid constant even though it is longer than the 7-byte
maximum.

Program. Name of the failing program.

Program length. Length of the program data.

PTF count. Number of PTF entries retrieved.

PTF ID. A program fix identifier.

PTF ID length. Length of the program fix identifier. Maximum length is 7.

PTF image. Identifies whether or not the PTF was downloaded as an optical image file on the system.
Possible values are:

0 The PTF was not downloaded as an optical image file.
1 The PTF was downloaded on the system as an optical image file.

PTF order type. Defines if the PTF and its cover letter will be ordered or only the cover letter.

0 PTF and cover letter
1 Cover letter only

PTF status. Identifies whether the PTF has been requested from a remote system. Requested implies that
the PTF order was sent and the PTF is needed by your system.

0 PTF not requested
1 PTF requested

Query status. Defines how the client service information is to be processed.

Field not defined

Service representative opened the problem
Service representative has been dispatched
Problem closed

LW N RO

136 1BM Systems - iSeries: Problem Management APIs

4 Problem closed and service representative has been dispatched

Rack serial number. Serial number of the rack.
Rack serial number length. Length of the serial number of the rack.

Recovery status. The status of the recovery attempt.

Recovery status not available
Recovery status available

Fix verified

Recovery failed

LW N RO

Reference code. Index into a reference code translatable table.

Reference code description data. Data defining the error.

Reference code description file name. File that contains the reference code description.

Reference code description library name. Library that contains the reference code description.
Reference code description message. Message identifier that describes the problem.

Reference code translate table identifier. Name of the table that contains a description of the problem.
Reference code translate table library. Library that contains the reference code translate table.

Release level. Release level of the object. *ONLY is a valid constant even though it is longer than the
2-byte maximum.

Release level length. Maximum length supported is 2.
Reorder. Defines if a PTF that is already on the system, but which does not have a save file, will be

reordered. Typically a PTF will not be ordered if it has been loaded or installed. This option overrides
normal operation but if a save file exists for the PTF it will not be reordered.

0 Do not reorder a PTF that is available on the system.

1 Order a PTF for which there is no save file for that PTF exists on the system.

Replacement text. Defining the configuration error.

Replacement text length. Length of the data in bytes.

Reserved. Space added to ensure correct boundary alignment. This field must be blank.
Resource name. Name of the resource.

Screen identifier. The identifier of a screen to be displayed to assist in solving a problem.
Secondary function group. Program option.

Sense bytes. Sense bytes that pertain to the problem.

Problem Management APIs 137

Sent. Defines if the PTF has been sent from the remote system in response to a PTF order or problem
report.

0 PTF not sent
1 PTF sent

Serial number. Manufacturing sequence number or designation.
Serial number length. Maximum length supported is 7.
State or province. The state or province of the postal address.

Symptom. An encoded string that represents the problem description. Typically, this field contains
EBCDIC uppercase alphabetic, numeric, and limited special characters. Contact your service
representative for data restrictions. This field is considered a user-defined field and no translation or
alteration of the contents are made. The first character position of the field cannot be blank.

Text count. A count of 3001 entries returned by the Retrieve Problem Log API of entries returned. If no
entries are found, 0 is returned.

Text length. Length of the data in bytes.

Text type. A code that defines the type of text to process. The values are:

All text, used on key 3000 (text entry) only to retrieve all entries.
80-character title, limit to one entry

Long problem description

Problem status

Private notes

Associated problem data

G W Nk O

Transport type. The type of connection from the central electronics complex (CEC) to the board’s
user-assigned value for this SPD bus.

Type of hardware. Machine, device, feature, or component type.

Unit address. Code defining the electrical address of a resource.

User assigned. The user profile of the person assigned to this problem. The value is blank if not assigned.
User ID. User ID of the job making the entry.

Verification status. Defines the status of the recovery attempt.

0 Not available
1 Available

2 Fixed

3 Failed

Version. Release level of the product. *ONLY is a valid constant even though it is longer than the 2-byte
maximum.

Version length. Length of the version data. Maximum length supported is 2 except for key 1013 where
the maximum is 64.

138 1BM Systems - iSeries: Problem Management APIs

Volume ID. Identifier of the media that is failing.

@ | ["Problem Management APIs,” on page 1| | |[APIs by category]

Problem Management APIs 139

#TOP_OF_PAGE
aplist.htm

140 1BM Systems - iSeries: Problem Management APIs

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2006 141

IBM Corporation

Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,
IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

(C) IBM 2006. Portions of this code are derived from IBM Corp. Sample Programs. (C) Copyright IBM
Corp. 1998, 2006. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface Information

This Application Programming Interfaces (API) publication documents intended Programming Interfaces
that allow the customer to write programs to obtain the services of IBM i5/0S.

142 1BM Systems - iSeries: Problem Management APIs

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:
Advanced 36

Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP

AIX

AS/400

COBOL/400

CUA

DB2

DB2 Universal Database
Distributed Relational Database Architecture
Domino

DPI

DRDA

eServer

GDDM

IBM

Integrated Language Environment
Intelligent Printer Data Stream
IPDS

i5/0S

iSeries

Lotus Notes

MVS

Netfinity

Net.Data

NetView

Notes

OfficeVision

Operating System/2
Operating System /400

0s/2

0S/400

PartnerWorld

PowerPC

PrintManager

Print Services Facility

RISC System /6000

RPG /400

RS/6000

SAA

SecureWay

System/36

System /370

System/38

System /390

VisualAge

WebSphere

xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Appendix. Notices 143

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and Conditions

Permissions for the use of these Publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these Publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
Publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these Publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these Publications, or reproduce, distribute or display these Publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the Publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the Publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations. IBM MAKES NO
GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS"” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE

144 1BM Systems - iSeries: Problem Management APIs

Printed in USA

	Contents
	Problem Management APIs
	Filtering
	Working with a Problem
	Key Groups
	APIs
	Problem Logging APIs
	Add Problem Log Entry (QsxAddProblemLogEntry) API
	Authorities and Locks
	Required Parameter Group
	Rules for Key Usage
	Keys for Adding FRU Records
	Keys for Adding Supporting Data
	Keys for Adding History Data
	Keys for Adding PTF Entry

	Error Messages

	Change Problem Log Entry (QsxChangeProblemLogEntry) API
	Authorities and Locks
	Required Parameter Group
	Format of the Keys
	Rules for Key Usage
	Changing General Data
	Changing Problem Status
	Keys for Changing Problem Type 1 to Another Status
	Keys for Changing Problem Types 2, 4, 5, and 8
	Keys for Changing Problem Type 3
	Keys for Changing Problem Types 6 and 7

	Error Messages

	Create Problem Log Entry (QsxCreateProblemLogEntry) API
	Authorities and Locks
	Required Parameter Group
	Format of the Keys
	Rules for Key Usage
	General Keys For Problem Log Entry Data
	Keys for Creating Problem Type 1
	Keys for Creating Problem Type 2
	Keys for Creating Problem Type 3
	Keys for Creating Problem Type 4
	Keys for Creating Problem Type 5
	Keys for Creating Problem Types 6 and 7
	Keys for Creating Problem Type 8
	Data for PREPARED Status

	Error Messages

	Delete Problem Log Entry (QsxDeleteProblemLogEntry) API
	Authorities and Locks
	Required Parameter Group
	Format of the Key Groups
	Rules for Key Usage
	Delete a Problem Log Entry
	Delete FRU Entries
	Delete PTF Entries
	Delete Supporting Data

	Error Messages

	End Problem Log Services (QsxEndProblemLogServices) API
	Authorities and Locks
	Required Parameter
	Error Messages

	Log Software Error (QPDLOGER) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group 1
	Optional Parameter Group 2
	Usage Notes
	Error Messages

	Report Software Error (QpdReportSoftwareError) API
	Authorities and Locks
	Required Parameter Group
	Problem Description Records Format
	Field Descriptions
	Keys
	Formats of Specific Problem Description Records
	Key 100-Call Stack Counter
	Key 101-Suspected Program
	Key 102-Suspected Service Program
	Key 103-Suspected Module
	Key 104-Suspected Procedure
	Key 105-Detecting Program
	Key 106-Detecting Service Program
	Key 107-Problem log entry creation
	Key 200-Symptom
	Key 201-Instruction Number
	Key 300-System Object
	Key 301-Data
	Key 302-Named System Object
	Key 303-Spooled File
	Key 304-Named Integrated File System Object
	Key 400-Service Identifier

	Field Descriptions
	Usage Notes
	Error Messages

	Retrieve Problem Log Entry (QsxRetrieveProblemLogEntry) API
	Authorities and Locks
	Required Parameter Group
	Format of the Key Groups
	Rules for Key Usage
	Retrieve PTF records
	Retrieve FRU records
	Retrieve text records
	Retrieve supporting data
	Retrieve history records

	Error Messages

	Start Problem Log Services (QsxStartProblemLogServices) API
	Authorities and Locks
	Required Parameter
	Error Messages

	Work with Problem (QPDWRKPB) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	Error Messages

	Service APIs
	Change Contact Information (QEDCHGIN) API
	Authorities and Locks
	Required Parameter Group
	CNTC0100 Format
	Field Descriptions
	Error Messages

	Collect Hung Job Service Documentation (QPDETHNG) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Convert Format of Service Information (QPDETCVT) API
	Authorities and Locks
	Required Parameter Group
	CVTR0100 - Format for receiver variable
	CVTS0100 - Format for LIC Log conversion
	CVTS0200 - Format for message conversion (STRWCH)
	CVTS0300 - Format for message conversion (QGYOLMSG)
	CVTS0400 - Format for message conversion (QGYOLJBL)
	Field Descriptions
	Error Messages

	Filter Problem (QSXFTRPB) API
	Required Parameter Group
	Authorities and Locks
	Format for the Problem Log Identifier
	Field Descriptions
	Error Messages

	Retrieve Contact Information (QEDRTVCI) API
	Authorities and Locks
	Required Parameter Group
	CNTI0100 Format
	Field Descriptions
	Error Messages

	Retrieve Policy Data (QPDETRTV) API
	Authorities and Locks
	Required Parameter Group
	Format of Data Returned
	RPOL0100 - Retrieve service cleanup interval
	RPOL0200 - Retrieve problem documentation level
	RPOL0300 - Retrieve maximum PTF order size

	Field Descriptions
	Error Messages

	Retrieve Service Attributes (QESRSRVA) API
	Authorities and Locks
	Required Parameter Group
	Receiver Variable Format
	Field Descriptions

	Service Attribute Template Format
	Field Descriptions
	Service Attributes Format
	Key 1—Automatic Problem Analysis
	Field Descriptions
	Key 2—Automatic Problem Reporting
	Field Descriptions
	Key 3—Service Provider to Report Problem
	Field Descriptions
	Key 4—PTF Install Type
	Field Descriptions
	Key 5—Critical Message Recipients
	Field Descriptions
	Key 6—Send Data Packets
	Field Descriptions
	Key 7—Copy PTFs
	Field Descriptions
	Key 10—System-Disabled Reporting Connection Number
	Field Descriptions
	Key 11—System-Disabled Call-Back Connection Number
	Field Descriptions
	Key 12—Service Provider Connection Number
	Field Descriptions
	Error Messages

	Retrieve XML Service Information (QSCRXMLI) API
	Authorities and Locks
	Required Parameter Group
	DEST0100 Format
	Field Descriptions
	DEST0200 Format
	SIRV0100 Format
	Field Descriptions
	SSIF0100 Service Selection Information from a Nonprogram Message Queue Format
	Field Descriptions
	SSIF0200 Service Selection Information from a Program Message Queue of a Job Format
	Field Descriptions
	Usage Notes
	Error Messages

	Send Service Request (QPDETSND) API
	Authorities and Locks
	Required Parameter Group
	SNDR0100 - Refresh Policy File Request
	SNDR0200 - Start a Function Request
	SNDR0300 - Stop a Function Request
	SNDR0400 - Service Event Request
	SNDR0500 - Change Logging Levels Request
	SNDR0600 - Handle Changed System Value Request
	Field Descriptions
	Error Messages

	Set User Policy (QPDETPOL) API
	Authorities and Locks
	Required Parameter Group
	POLS0100 - Format for setting service interval policy for Service Monitor cleanup
	POLS0200 - Format for setting the level of problem documentation sent with a problem
	POLS0300 - Format for setting maximum PTF order size
	Field Descriptions
	Error Messages

	Monitoring APIs
	End Watch (QSCEWCH) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Start Watch (QSCSWCH) API
	Authorities and Locks
	Required Parameter Group
	Format for message information
	Format for LIC log information
	Field Descriptions
	Error Messages

	Start Watch Command or API Exit Program (QPDETWCH) API
	Authorities and Locks
	Required Parameter Group

	Exit Programs
	Exit Program for Watch for Trace Event
	Authorities and Locks
	Required Parameter Group
	Field Descriptions
	Related Information

	Concepts
	Key Groups for Problem Log APIs
	Key Use for Problem Log APIs
	Key utilization matrix

	Key Group 0000-General Problem Log Entries
	Key 1-problem log id
	Key 2-problem type
	Key 3-problem status
	Key 4-user assigned
	Key 5-problem origin system
	Key 6-Operational data
	Key 7—filter control
	Key 8-answer codes

	Key Group 1000-Problem Description Entries
	Key 1001—Problem Severity
	Key 1002-Problem Description Message
	Key 1003-Problem Creation Data
	Key 1004-Reporting Device
	Key 1005—Failing Resource
	Key 1006-Reporting Code
	Key 1007-Problem Analysis Data
	Key 1008-Fix Verification Status
	Key 1009-Fix Recovery Status
	Key 1010 -Symptom String
	Key 1011-PTF Media Selection
	Key 1012-Problem Category
	Key 1013-Client Information
	Key 1014-First Failure Data Capture
	Key 1015-Query Status
	Key 1016-Hardware Location Information

	Key Group 2000-FRU Entries
	Key 2000-Number of FRU Entries to Work with
	Key 2001-Device FRU Type
	Key 2002-Code FRU Type
	Key 2003-Media FRU Type
	Key 2004-User FRU Type
	Key 2005-FRU Name
	Key 2006-Attached FRU
	Key 2007-Configuration FRU
	Key 2008 - General FRU
	Key 2009-Channel Attached FRU

	Key Group 3000-Text Entries
	Key 3000-Text Entry
	Key 3001-Text Entry

	Key Group 4000-Supporting data entries
	Key 4000-Supporting Data Entries
	Key 4001-Spooled File Data
	Key 4002-File Data

	Key Group 5000-Contact Entries
	Key 5000-Contact entries
	Key 5001-Contact Information

	Key Group 6000-Problem History Entries
	Key 6000-History Information
	Key 6001-History Information

	Key Group 7000-PTF Entries
	Key 7000-PTF Entry
	Key 7001-PTF ID
	Key 7002-PTF ID
	Key Group 8000-Analyzed Error Entries
	Key Group 9000-Logical Partition ID Entries

	Field Descriptions for Key Groups for Problem Log APIs

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions

