
IBM Systems - iSeries

Problem Management APIs

Version 5 Release 4

���

IBM Systems - iSeries

Problem Management APIs

Version 5 Release 4

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 141.

Sixth Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of IBM i5/OS (product number 5722-SS1) and to all

subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all

reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2006.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Problem Management APIs 1

Filtering 1

Working with a Problem 1

Key Groups 1

APIs 1

Problem Logging APIs 1

Add Problem Log Entry (QsxAddProblemLogEntry)

API 2

Authorities and Locks 2

Required Parameter Group 3

Rules for Key Usage 3

Error Messages 6

Change Problem Log Entry

(QsxChangeProblemLogEntry) API 6

Authorities and Locks 6

Required Parameter Group 6

Format of the Keys 7

Rules for Key Usage 7

Error Messages 12

Create Problem Log Entry

(QsxCreateProblemLogEntry) API 13

Authorities and Locks 14

Required Parameter Group 14

Format of the Keys 14

Rules for Key Usage 14

Error Messages 17

Delete Problem Log Entry

(QsxDeleteProblemLogEntry) API 18

Authorities and Locks 18

Required Parameter Group 18

Format of the Key Groups 19

Rules for Key Usage 19

Error Messages 20

End Problem Log Services

(QsxEndProblemLogServices) API 20

Authorities and Locks 20

Required Parameter 21

Error Messages 21

Log Software Error (QPDLOGER) API 21

Authorities and Locks 22

Required Parameter Group 22

Optional Parameter Group 1 24

Optional Parameter Group 2 24

Usage Notes 24

Error Messages 25

Report Software Error (QpdReportSoftwareError)

API 25

Authorities and Locks 26

Required Parameter Group 26

Problem Description Records Format 26

Field Descriptions 26

Keys 26

Formats of Specific Problem Description Records 27

Field Descriptions 32

Usage Notes 35

Error Messages 35

Retrieve Problem Log Entry

(QsxRetrieveProblemLogEntry) API 35

Authorities and Locks 36

Required Parameter Group 36

Format of the Key Groups 37

Rules for Key Usage 37

Error Messages 38

Start Problem Log Services

(QsxStartProblemLogServices) API 38

Authorities and Locks 39

Required Parameter 39

Error Messages 39

Work with Problem (QPDWRKPB) API 39

Authorities and Locks 40

Required Parameter Group 40

Optional Parameter Group 42

Error Messages 42

Service APIs 43

Change Contact Information (QEDCHGIN) API . . 43

Authorities and Locks 43

Required Parameter Group 43

CNTC0100 Format 44

Field Descriptions 45

Error Messages 47

Collect Hung Job Service Documentation

(QPDETHNG) API 47

Authorities and Locks 48

Required Parameter Group 48

Error Messages 48

Convert Format of Service Information

(QPDETCVT) API 48

Authorities and Locks 49

Required Parameter Group 49

CVTR0100 - Format for receiver variable . . . 50

CVTS0100 - Format for LIC Log conversion . . 50

CVTS0200 - Format for message conversion

(STRWCH) 51

CVTS0300 - Format for message conversion

(QGYOLMSG) 52

CVTS0400 - Format for message conversion

(QGYOLJBL) 53

Field Descriptions 54

Error Messages 60

Filter Problem (QSXFTRPB) API 61

Required Parameter Group 61

Authorities and Locks 61

Format for the Problem Log Identifier 61

Field Descriptions 61

Error Messages 61

Retrieve Contact Information (QEDRTVCI) API . . 62

Authorities and Locks 62

Required Parameter Group 62

CNTI0100 Format 63

Field Descriptions 63

Error Messages 65

Retrieve Policy Data (QPDETRTV) API 65

© Copyright IBM Corp. 1998, 2006 iii

Authorities and Locks 66

Required Parameter Group 66

Format of Data Returned 66

Field Descriptions 67

Error Messages 67

Retrieve Service Attributes (QESRSRVA) API . . . 68

Authorities and Locks 68

Required Parameter Group 68

Receiver Variable Format 69

Service Attribute Template Format 70

Field Descriptions 70

Service Attributes Format 70

Key 1—Automatic Problem Analysis 71

Field Descriptions 71

Key 2—Automatic Problem Reporting 71

Field Descriptions 71

Key 3—Service Provider to Report Problem . . 71

Field Descriptions 71

Key 4—PTF Install Type 72

Field Descriptions 72

Key 5—Critical Message Recipients 72

Field Descriptions 72

Key 6—Send Data Packets 73

Field Descriptions 73

Key 7—Copy PTFs 73

Field Descriptions 73

Key 10—System-Disabled Reporting Connection

Number 73

Field Descriptions 73

Key 11—System-Disabled Call-Back Connection

Number 74

Field Descriptions 74

Key 12—Service Provider Connection Number . 74

Field Descriptions 74

Error Messages 74

Retrieve XML Service Information (QSCRXMLI) API 74

Authorities and Locks 75

Required Parameter Group 75

DEST0100 Format 76

Field Descriptions 77

DEST0200 Format 77

SIRV0100 Format 77

Field Descriptions 77

SSIF0100 Service Selection Information from a

Nonprogram Message Queue Format 77

Field Descriptions 77

SSIF0200 Service Selection Information from a

Program Message Queue of a Job Format . . . 78

Field Descriptions 78

Usage Notes 78

Error Messages 78

Send Service Request (QPDETSND) API 79

Authorities and Locks 80

Required Parameter Group 80

SNDR0100 - Refresh Policy File Request 80

SNDR0200 - Start a Function Request 81

SNDR0300 - Stop a Function Request 81

SNDR0400 - Service Event Request 81

SNDR0500 - Change Logging Levels Request . . 81

SNDR0600 - Handle Changed System Value

Request 81

Field Descriptions 81

Error Messages 83

Set User Policy (QPDETPOL) API 83

Authorities and Locks 83

Required Parameter Group 83

POLS0100 - Format for setting service interval

policy for Service Monitor cleanup 84

POLS0200 - Format for setting the level of

problem documentation sent with a problem . . 84

POLS0300 - Format for setting maximum PTF

order size 84

Field Descriptions 85

Error Messages 85

Monitoring APIs 86

End Watch (QSCEWCH) API 86

Authorities and Locks 86

Required Parameter Group 87

Error Messages 87

Start Watch (QSCSWCH) API 87

Authorities and Locks 88

Required Parameter Group 88

Format for message information 90

Format for LIC log information 90

Field Descriptions 90

Error Messages 92

Start Watch Command or API Exit Program

(QPDETWCH) API 93

Authorities and Locks 93

Required Parameter Group 93

Exit Programs 94

Exit Program for Watch for Trace Event 94

Authorities and Locks 95

Required Parameter Group 95

Field Descriptions 96

Related Information 96

Concepts 97

Key Groups for Problem Log APIs 97

Key Use for Problem Log APIs 97

Key utilization matrix 97

Key Group 0000-General Problem Log Entries . . . 99

Key 1-problem log id 99

Key 2-problem type 99

Key 3-problem status 100

Key 4-user assigned 100

Key 5-problem origin system 100

Key 6-Operational data 101

Key 7—filter control 102

Key 8-answer codes 102

Key Group 1000-Problem Description Entries . . . 103

Key 1001—Problem Severity 103

Key 1002-Problem Description Message . . . 104

Key 1003-Problem Creation Data 104

Key 1004-Reporting Device 104

Key 1005—Failing Resource 105

Key 1006-Reporting Code 106

Key 1007-Problem Analysis Data 107

Key 1008-Fix Verification Status 107

Key 1009-Fix Recovery Status 107

Key 1010 -Symptom String 108

Key 1011-PTF Media Selection 108

Key 1012-Problem Category 108

iv IBM Systems - iSeries: Problem Management APIs

Key 1013-Client Information 109

Key 1014-First Failure Data Capture 109

Key 1015-Query Status 110

Key 1016-Hardware Location Information . . . 110

Key Group 2000-FRU Entries 110

Key 2000-Number of FRU Entries to Work with 111

Key 2001-Device FRU Type 111

Key 2002-Code FRU Type 112

Key 2003-Media FRU Type 113

Key 2004-User FRU Type 114

Key 2005-FRU Name 114

Key 2006-Attached FRU 115

Key 2007-Configuration FRU 115

Key 2008 - General FRU 115

Key 2009-Channel Attached FRU 116

Key Group 3000-Text Entries 116

Key 3000-Text Entry 117

Key 3001-Text Entry 117

Key Group 4000-Supporting data entries 118

Key 4000-Supporting Data Entries 118

Key 4001-Spooled File Data 118

Key 4002-File Data 119

Key Group 5000-Contact Entries 119

Key 5000-Contact entries 119

Key 5001-Contact Information 120

Key Group 6000-Problem History Entries 121

Key 6000-History Information 121

Key 6001-History Information 121

Key Group 7000-PTF Entries 122

Key 7000-PTF Entry 122

Key 7001-PTF ID 122

Key 7002-PTF ID 123

Key Group 8000-Analyzed Error Entries . . . 124

Key Group 9000-Logical Partition ID Entries . . 124

Field Descriptions for Key Groups for Problem Log

APIs 124

Appendix. Notices 141

Programming Interface Information 142

Trademarks 143

Terms and Conditions 144

Contents v

vi IBM Systems - iSeries: Problem Management APIs

Problem Management APIs

The problem management APIs offer you the ability to write problem management solutions, improve

serviceability, and manage your own applications. Problem management APIs deal directly with how the

iSeries(TM) server handles problems today. The problem log provides most of the operations necessary for

problem management in a network environment.

The problem management APIs are organized into the following groups:

v “Problem Logging APIs”

v “Service APIs” on page 43

v “Monitoring APIs” on page 86

Filtering

In the problem management APIs, a filter categorizes problem log entries into groups and performs

operations on them accordingly. The problem log applies the currently active filter to a problem log entry

whenever a problem entry is created, changed, or deleted using system-provided interfaces.

The operations supported allow you to send application notification to a user data queue and assign the

problem to a user. Your application can receive these notifications from the data queue using existing

APIs. See also Data Queue APIs.

Working with a Problem

Problem analysis is the process of finding the cause of a problem and identifying why the system is not

working. Often, this process identifies equipment or data communications functions as the source of the

problem. The “Work with Problem (QPDWRKPB) API” on page 39 (QPDWRKPB) API allows you to

perform problem analysis on local machine-detected problems in the problem log. The Work with

Problem (QPDWRKPB) API prepares the problem in the problem log for reporting; it does not report the

problem automatically.

Key Groups

See “Key Groups for Problem Log APIs” on page 97 for information about keys for problem log APIs.

 Top | APIs by category

APIs

These are the APIs for this category.

Problem Logging APIs

The Problem Logging APIs include:

v “Add Problem Log Entry (QsxAddProblemLogEntry) API” on page 2 (QsxAddProblemLogEntry) adds

additional or supporting data to a problem log entry.

v “Change Problem Log Entry (QsxChangeProblemLogEntry) API” on page 6

(QsxChangeProblemLogEntry) updates an existing problem entry by changing the information.

© Copyright IBM Corp. 1998, 2006 1

obj2.htm
#TOP_OF_PAGE
aplist.htm

v “Create Problem Log Entry (QsxCreateProblemLogEntry) API” on page 13

(QsxCreateProblemLogEntry) creates a problem log entry with the information provided to the

problem log entry.

v “Delete Problem Log Entry (QsxDeleteProblemLogEntry) API” on page 18

(QsxDeleteProblemLogEntry) deletes problem log entries or removes keys from a problem log entry.

v “End Problem Log Services (QsxEndProblemLogServices) API” on page 20

(QsxEndProblemLogServices) ends an instance of the problem log services identified by the handle

returned when the services started.

v “Log Software Error (QPDLOGER) API” on page 21 (QPDLOGER) logs a software problem and collects

data needed for its resolution.

v “Report Software Error (QpdReportSoftwareError) API” on page 25 (QpdReportSoftwareError) is an

ILE program that logs problems in the problem log and sends it to a service provider.

v “Retrieve Problem Log Entry (QsxRetrieveProblemLogEntry) API” on page 35

(QsxRetrieveProblemLogEntry) extracts data from a specific problem log entry.

v “Start Problem Log Services (QsxStartProblemLogServices) API” on page 38

(QsxStartProblemLogServices) sets up an environment for adding, creating, changing, deleting, and

retrieving problem log entries.

v “Work with Problem (QPDWRKPB) API” on page 39 (QPDWRKPB) analyzes and prepares a

machine-detected hardware problem for reporting.

 Top | “Problem Management APIs,” on page 1 | APIs by category

Add Problem Log Entry (QsxAddProblemLogEntry) API

 Required Parameter Group:

 1 Handle Input Binary(4)

2 Key structures Input Array of Pointers

3 Number of keys Input Binary(4)

4 Error code I/O Char(*)

 Default Public Authority: *USE
 Service Program: QSXSRUPL
 Threadsafe: No

The Add Problem Log Entry (QsxAddProblemLogEntry) API adds information to an existing problem log

entry.

The API supports the following data types:

v Keys 2001-2009 (field replaceable unit (FRU) entries) can be added to the problem log entry.

v Keys 4001 and 4002 (supporting data) entries can be added. Do not add duplicate information because

checking is not performed.

v Key 6001 (history information) can be added.

v Key 7001 (PTF ID) can be added to a problem log entry. If the PTF entry already exists, an error is

signalled.

Authorities and Locks

API Public Authority

*USE

2 IBM Systems - iSeries: Problem Management APIs

#TOP_OF_PAGE
aplist.htm

Required Parameter Group

Handle

INPUT; BINARY(4)

 An identifier that associates the problem log services started by the Start Problem Log Services

API.

Key structures

INPUT; ARRAY of POINTERS

 An array of pointers that has the address of each key that contains data to be written into the

problem log. The number of pointers passed in the array must equal the value passed by the

Number of keys parameter. Keys not supported for the Add Problem Log Entry API cause error

messages to be sent to the caller.

Number of keys

INPUT; BINARY(4)

 Number of keys passed to the API.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Rules for Key Usage

Key 1 (problem log ID) is required to identify the problem log entry to process.

Data can be added to an existing problem log entry with the Add Problem Log Entry API. The types of

data that may be added with this API are:

v Keys 2001-2009 (FRU entries)

v Supporting data entries (keys 4001 and 4002 (supporting data)

v Key 6001 (history information)

v Key 7001 (PTF ID)

The remaining data contained in a problem can be altered using the Change API. More information on

the above keys can be found in “Key Groups for Problem Log APIs” on page 97

Keys for Adding FRU Records

A FRU, field replaceable unit, entry defines an object that may have a specific machine-detected problem.

FRUs have been broken into 9 types and represented by keys 2001 through 2009.

The types are:

 2001 Device FRU type

2002 Code FRU type

2003 Media FRU type

2004 User FRU type

2005 FRU name

2006 Attached FRU

2007 Configuration FRU

2008 General FRU

2009 Channel attached FRU

Problem Management APIs 3

In addition, a FRU or list of FRUs are associated with a problem based upon an analysis class. The

analysis class implies the amount or type of analysis that has been done on the problem. FRUs are

associated with a problem within the context of a class.

The classes of FRUs are:

 1 Point of failure

2 Partial isolation

3 Isolation

4 Verification

5 Recovery

6 Answer

To add FRUs for a class of FRUs, the problem log entry must be identified, the class must be chosen, and

the data must be added. These three actions need to be done for each FRU type. FRUs may be used in

any combination, to add data about individual failing elements to a maximum of 21 FRUs per class.

This API adds FRU entries to the bottom of the list. If they need to be maintained in probability order,

follow these steps:

v Retrieve the group using the Retrieve Problem Log Entry API.

v Modify the FRU records or append additional FRUs to the original list.

v Delete the existing FRU entries of that class using the Delete Problem Log Entry API.

v Add the new or updated FRU list using the Add Problem Log Entry API.

Keys for Adding Supporting Data

The addition of supporting data is not restricted. Any number of spooled or data base files can be

associated with a problem log entry. Duplicate records are allowed. If you add a file twice, it is listed

twice.

To add supporting data, define the type of record to be added using keys 4001 and 4002 (supporting

data). They can be added in any combination.

Keys for Adding History Data

The addition of history data, or events, is restricted because specific events can occur only when the

problem is in a specific status. Some history data types are applicable to specific problem log types. Any

number of events can be associated with a problem log entry. Duplicate records are allowed since many

events can be repeated. Events are added in the sequence that you supply them on the API call. The API

makes no attempt to put them in order.

To add a history entry, use key 6001 (history information) to supply the needed data to reflect the action

that was taken. If you are adding supporting data, you can add it in any combination. The time the event

is added is entered by the API.

The history types are:

 0 Problem entry closed. Only applicable when the problem has been closed. Once this status is set, the problem

can only be retrieved.

1 Problem entry opened. Can only be used when the problem is initially opened.

2 Service request received. Only applicable when a problem is received from another system.

3 Opened by an alert. Only applicable when the problem is opened due to an alert.

4 Problem analyzed. Applicable each time a problem is analyzed.

5 Verification test ran. Applicable each time a problem is verified.

6 Recovery procedure ran. Applicable each time recovery is run.

7 Prepared to report. Applicable each time a problem is prepared to be sent to a service provider.

4 IBM Systems - iSeries: Problem Management APIs

8 Service request sent. Applicable only when a problem is sent to another system. This implies that the service

request was sent, but the service provider has no solution to the problem.

9 Problem answered. Applicable only when a problem is sent to another system. This implies that the service

request was sent, and the service provider has a solution to the problem.

10 Response sent. Implies that a reply has been received from a service provider.

11 Reported by voice. Used when a problem is reported manually.

12 Fixes transmitted. Implies that fixes have been sent to a service requester.

13 A change request was submitted for this problem.

14 The change request submitted for this problem has ended.

15 Fix verified. Applicable each time a problem is verified.

16 Remote analysis. Only applicable when a problem has been analyzed by a remote service representative.

17 Remote verification ran. Only applicable when this system has been used to analyze a problem on another

system.

18 Remote recovery ran. Only applicable when this system has been used to perform recovery on another

system.

19 Alert created. Only applicable when the system created an alert for this problem.

20 APAR created. Only applicable when APAR data is created during analysis.

21 APAR data collected. Only applicable when APAR data is collected during analysis.

22 APAR data restored. Only applicable when APAR data is restored during analysis.

23 APAR data deleted. Only applicable when APAR data is deleted during analysis.

24 Changed by CHGPRB. Only applicable when the problem was changed by the CHGPRB command or the

QsxChangeProblemLogEntry API.

25 Deleted by DLTPRB. Only applicable when the problem was changed by the DLTPRB command or

QsxDeleteProblemLogEntry API.

26 This problem has occurred multiple times.

27 Status changed. Only applicable when querying the status of a problem that has been reported to a service

provider.

28 Status query sent. Only applicable when querying the status of a problem that has been reported to a service

provider.

29 Automatic problem analysis has completed successfully.

30 Auto-PAR is not complete; the SRC flag is off. Problem analysis did not occur because the SRC was turned

off.

31 Auto-PAR not complete, submit job to QSYSWRK failed.

32 Auto-PAR failed. Problem analysis failed because an unknown problem occurred.

33 Auto-Notify complete. Problem was sent automatically.

34 Auto-Notify not complete, SRC flag is off. Problem was not sent automatically, the SRC was turned off.

35 An attempt to automatically send the problem failed.

36 Auto-Notify failed.

37 Problem analysis failed.

See Getting started with iSeries for more information about SRCs.

Keys for Adding PTF Entry

PTF entries can be added to the problem log at any time. Duplicate PTF records are not allowed and

signal an exception condition. To ensure uniqueness, the PTF identifier and the product data are required.

To add a PTF record, use key 7001 (PTF ID) to add the data required. The PTF entry is added to the

bottom of existing text.

To get the PTF records in a specific order, the records must be retrieved, sorted and then replaced after

the existing PTF records are deleted.

PTF entries can be created using *ONLY*PRODUCT** as the constant for Product ID and *ONLY as the

constant for version, release, and modification level.

Problem Management APIs 5

Error Messages

 Message ID Error Message Text

CPF3C1E E Required parameter &1 omitted.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF7AAB E Problem &1 not found.

CPF3C4D D Length &1 for key &2 not valid.

CPF3C82 D Key &1 not valid for API &2.

CPF3C86 D Required key &1 not specified.

CPD7A82 D Value not valid for key &1. (char string)

CPD7A83 D Value not valid for key &1. (integer)

CPD7A88 D Incorrect DBCS field format found.

CPD7A8A D Key value &1 is not valid.

CPF7A89 E Incorrect handle for this activation.

CPF7A8A E Problem log services not started.

CPF7AA7 E Problem &1 not found.

CPF9821 E Not authorized to program &1 in library &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA320 E Pointer parameter is null.

API introduced: V3R1

 Top | “Problem Management APIs,” on page 1
APIs by category

Change Problem Log Entry (QsxChangeProblemLogEntry) API

 Required Parameter Group:

 1 Handle Input Binary(4)

2 Key structures Input Array of Pointers

3 Number of keys Input Binary(4)

4 Error code I/O Char(*)

 Default Public Authority: *EXCLUDE
 Service Program: QSXSRVPL
 Threadsafe: No

The Change Problem Log Entry (QsxChangeProblemLogEntry) API updates an existing problem entry by

changing the information. Key 1 (problem log ID) identifies the problem to be changed. Some data in the

problem log entry can be changed on a field by field basis while other data can only be changed as a

group and some data cannot be changed.

Authorities and Locks

API Public Authority

*USE

Required Parameter Group

Handle

INPUT; BINARY(4)

 An identifier that associates the problem log services started with the

QsxStartProblemLogServices API.

6 IBM Systems - iSeries: Problem Management APIs

#TOP_OF_PAGE
aplist.htm

Key structures

INPUT; ARRAY of POINTERS

 An array of pointers to the key structures being passed to the API.

Number of keys

INPUT; BINARY(4)

 Number of keys passed to the API.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of the Keys

The number of keys used varies depending on the type of problem log entry being changed. You must

select the keys applicable to the problem type with which you are working. If the keys provided to the

API do not match the requirements for the problem log entry type you are changing, you are notified by

the error handling procedures.

For details about the keys that can be used, see “Key Groups for Problem Log APIs” on page 97.

Rules for Key Usage

You can change the problem log data, the status, or both. The problems are categorized into the following

types:

 1 Machine-detected problem

2 User-perceived hardware or software problem

3 PTF orders

4 User-perceived remote problem

5 Application-detected problem

6 Client machine-detected problem

7 Client user-detected problem

8 User-created general problem

Changing General Data

General data is data that can be changed for any problem type without affecting the status of the

problem. Data of this class are:

v Key 4 (user assigned). The validity of this data is not checked.

v Key 3001 (text entry) problem types 1, 2, and 4 can be changed.

v Key 6001 (history information). Use the Add Problem Log Entry (QsxAddProblemLogEntry) API.

Changing Problem Status

To change the problem status, specific data is required. The amount of data depends on the current or

requested problem log status. Data that requires a status change cannot be added unless key 3 (problem

status) is provided. An error is signaled if this occurs.

A problem can be changed to the following statuses:

v OPENED

The beginning status of a problem.

v OPENED-PREPARED

Problem is staged for transmission to a service provider.

v READY

Problem Management APIs 7

Problem entry has been analyzed and data is provided by keys that reflects the analysis results.

v READY-PREPARED

Problem is staged for transmission to a service provider.

v SENT

Problem has been sent to a service provider and a solution was not available.

v SENT-PREPARED

Problem is staged for transmission to a service provider.

v ANSWERED

Problem has been sent to a service provider and a solution was available.

v ANSWERED-PREPARED

Problem is staged for transmission to a service provider.

v VERIFIED

User has applied and tested the solution provided. The results of the testing are satisfactory. Once a

problem is moved to VERIFIED status, it cannot be returned to OPENED or READY status.

v VERIFIED-PREPARED

Problem is staged for transmission to a service provider.

v CLOSED

Problem is resolved and there is no longer a need for the problem entry. Once this status is set, it

cannot be returned to any other status. The problem can only be retrieved.

PREPARED, while displayed as a specific status, is actually an amplifier to the previous status of the

problem: OPENED, READY, SENT, ANSWERED or VERIFIED.

The supplemental data needed to move a problem to PREPARED status are:

v Key 6 (operational data)

– Prepared for system

Required to define the system that this problem will be sent to.
v Key 1001 (problem severity)

– Optional. If not provided, the API defaults it to None.

– Prohibited for PTF orders (problem type 3).
v Key 1011 (PTF media selection)

Optional. Defines the media on which a program fix can be delivered. If not provided, the contact data

is used as a default. Typically this is the tape device type and model or a description of the media type

on which PTFs are delivered if the distribution size exceeds a predefined transmit size limit.

v Key 5001 (contact information)

Optional. Used to override local service contact information.

A problem can be set to PREPARED status by providing the required data keys (if not already provided)

and a key 3 (problem status) code of 5.

Keys for Changing Problem Type 1 to Another Status

Problem type 1 (machine-detected problems) requires data from two additional key groups, 1000 and

2000.

Note: When changing status and FRU entries are required, use the Add Problem Log Entry API. To

change status in general, you do not need the key group 2000 data.

v Data for OPENED status

8 IBM Systems - iSeries: Problem Management APIs

A problem in OPENED status, with the exception of general data that does not affect a status change,

can only be changed to READY status. A problem may be changed from OPENED status to

PREPARED status if the problem is to be sent to an iSeries server that has System Manager installed.

v Data for READY status

A problem can be changed from OPENED to READY status by including the following data items:

– Key 3 (problem status) indicates READY status.

– Key 1004 (reporting device) is always required to identify the product with a maintenance contract,

regardless of the problem.

– Key 1006 (reporting code) is required for problems that were, on analysis, determined to be caused

by software.

– Key 1010 (symptom string).

– Key 1007 (problem analysis data).
v Data for SENT and ANSWERED status at the service requester

A problem can be changed to SENT or ANSWERED status by including the following data items:

– Key 3 (problem status) indicates SENT or ANSWERED status.

– Key 8 (answer codes).

At the service requester the answer code assigned field should be updated with the answer received

from a service provider that is not *IBMSRV.

If *IBMSRV was the service provider, the Problem number field should be updated to reflect the

problem management number that *IBMSRV has associated with the problem.

– Key 7001 (PTF ID) is used to change the Sent and Status fields.

Once the problem is in SENT or ANSWERED status, text can be added that defines the problem status.

This is data that is added as a response to a query of the problem status or as an answer the service

provider sends to the problem. This is done with key 3001 (text entry), type 3. Key 6001 (history

information) is required to indicate the action has taken place.

If the local system is acting as a service provider, the problem log entry for the service requester can be

updated to reflect the following conditions:

– A response was sent

– PTFs were sent

– An answer was added to the problem log

These actions do not require a status change. Add a history event to define the action taken.

v Data for ANSWERED status at the service provider

When a service provider answers a problem, the status is changed from READY status to ANSWERED

status by including the following data items:

– Key 3 (problem status) indicates ANSWERED status.

– Key 6001 (history information) can add a number of events depending on the status change.

– Key 7001 (PTF ID) is used to change the Sent and Status fields of the PTF entry.

Once the problem is in ANSWERED status, text can be added that defines the problem status. This is

data that is added as a response to a query of the problem status or as an answer the service provider

wants to add to the problem. This is done with key 3001 (text entry), type 3. Key 6001 (history

information) is required to indicate the action has taken place.

When a response is sent to the service requester, key 6 (operational data) is used to indicate that a

response was sent. The following data items are required:

– Key 8 (answer codes) is updated to indicate the answer that was sent to the service requester.

– Key 6001 (history information) can add a number of events depending on the status change.

– Key 7001 (PTF ID) is used to change the Sent and Status fields.

If PTFs were sent or an answer was added to the problem log, these actions do not require a status

change. Add a history event to define the action taken.

Problem Management APIs 9

v Data for VERIFIED status

A problem can be changed to VERIFIED status from READY, SENT or ANSWERED status by including

the following data items:

– Key 3 (problem status) indicates VERIFIED status.

– Key 1008 (fix verification status) where the Status field and PDP field must be provided.

– Key 6001 (history information) can add a number of events depending on the status change. The

Remote verification ran field is required based on the origin system location.

– FRUs (key group 2000) are added for machine-detected problems and are added with the Add

Problem Log Entry API.
v Data for recovery

Recovery data can be added from OPENED or READY by including the following data items, and the

status is not changed:

– Key 3 (problem status) is not permitted. The status does not change as a result of running recovery

procedures.

– Key 1009 (fix recovery status) and problem determination procedures (PDP) fields must be provided.

– Key 6001 (history information) can add a number of events depending on the status change. Remote

recovery ran is required based on the origin system location.
v Data for CLOSED status

A problem can be changed to CLOSED status from any other status by including the following data

items:

– Key 3 (problem status) indicates that CLOSED status is the only key allowed.

– Key 6 (operational data) is updated by the API when the problem is closed.

Keys for Changing Problem Types 2, 4, 5, and 8

Problem types 2 (User-perceived), 4 (User-perceived remote), 5 (Application-detected), and 8

(User-created general) require the following data to achieve the following status:

v Data for OPENED status

This does not apply because these problem types are created in READY status.

v Data for READY status

This does not apply because these problems are created in READY status.

v Data for SENT and ANSWERED status at the service requester

A problem can be changed to SENT or ANSWERED status by including the following data items:

– Key 3 (problem status) indicates SENT or ANSWERED status.

– Key 8 (answer codes).

At the service requester, the Answer code assigned field should be updated with the answer

received from a service provider that is not *IBMSRV.

If *IBMSRV was the service provider, the problem management number (PMR) number field should

be updated to reflect the problem management number that *IBMSRV has associated with the

problem.

– Key 6001 (history information) can add a number of events depending on the status change.

– Key 7001 (PTF ID) is used to change the Sent and Status fields.

Once the problem is in SENT or ANSWERED status, text can be added that defines the problem status.

This is data that is added as a response to a query of the problem status or as an answer the service

provider sends to the problem. This is done with key 3001 (text entry), type 3. Key 6001 (history

information) is required to indicate the action has taken place.

If the local system is acting as a service provider, the problem log entry for the service requester can be

updated to reflect that a response was sent, PTFs were sent, or that an answer is added to the problem

log. These actions do not require a status change. Add a history event to define the action taken.

v Data for ANSWERED status at the service provider

10 IBM Systems - iSeries: Problem Management APIs

When a service provider answers a problem, the status is changed from READY status to ANSWERED

status by including the following data items:

– Key 3 (problem status) indicates ANSWERED status.

– Key 6001 (history information) can add a number of entries depending on the status change.

– Key 7001 (PTF ID) is used to change the Sent and Status fields.

Once the problem is in ANSWERED status, text can be added that defines the problem status. This is

data that is added as a response to a query of the problem status or as an answer the service provider

wants to add to the problem. This is done with key 3001 (text entry), type 3. Key 6001 (history

information) is required to indicate the action has taken place.

When a response is sent to the service requester, the problem log entry is updated to reflect that a

response was sent. The following data items are required:

– Key 8 (answer codes) is updated to indicate the answer that was sent to the service requester.

– Key 6001 (history information) can add a number of events depending on the status change.

– Key 7001 (PTF ID) is used to change the Sent and Status fields.

If PTFs were sent or an answer was added to the problem log, these actions do not require a status

change. Add a history event to define the action taken.

v Data for CLOSED status

A problem can be changed to CLOSED status from any other status by including the following data

items:

– Key 3 (problem status) indicates that CLOSED status is the only key allowed.

– Key 6 (operational data) is updated by the API when the problem is closed.

Keys for Changing Problem Type 3

Problem type 3 (PTF order) requires the following data to achieve the following status:

v Data for OPENED status

This does not apply to PTF orders (problem type 3).

v Data for READY status

This does not apply to PTF orders (problem type 3) because they are created in READY status.

v Data for SENT and ANSWERED status at the service requester

A problem can be changed to SENT or ANSWERED status by including the following data items:

– Key 3 (problem status) indicates SENT or ANSWERED status.

– Key 8 (answer codes).

At the service requester the Answer code assigned field should be updated with the answer received

from a service provider that is not *IBMSRV.

If *IBMSRV was the service provider, the Problem number field should be updated to reflect the

problem management number that *IBMSRV has associated with the problem.

– Key 6001 (history information) can add a number of events depending on the status change.

– Key 7001 (PTF ID) is used to change the Sent and Status fields. This key is also used to update the

product and VRM fields of the PTFs, especially if the default product, *ONLYPRD, and version,

*ONLY, were used during the creation of the problem or if the SNDPTFORD command used the

defaults.

Once the problem is in SENT or ANSWERED status, text can be added that defines the problem status.

This is data that is added as a response to a query of the problem status or as an answer the service

provider sends to the problem. This is done with key 3001 (text entry), type 3. Key 6001 (history

information) is required to indicate the action has taken place.

If the local system is acting as a service provider, the problem log entry for the service requester can be

updated to reflect that a response was sent, PTFs were sent, or that an answer is added to the problem

log. These actions do not require a status change. Add a history event to define the action taken.

v Data for ANSWERED status at the service provider

Problem Management APIs 11

When a service provider answers a problem, the status is changed from READY status to ANSWERED

status by including the following data items:

– Key 3 (problem status) indicates ANSWERED status.

– Key 6001 (history information) can add a number of events depending on the status change.

– Key 7001 (PTF ID) is used to change the Sent and Status fields.

Once the problem is in ANSWERED status, text can be added that defines the problem status. This is

data that is added as a response to a query of the problem status or as an answer the service provider

wants to add to the problem. This is done with key 3001 (text entry), type 3. Key 6001 (history

information) is required to indicate the action has taken place.

When a response is sent to the service requester, the problem log entry is updated to reflect that a

response was sent. The following data items are required:

– Key 8 (answer codes) is updated to indicate the answer that was sent to the service requester.

– Key 6001 (history information) can add a number of events depending on the status change.

– Key 7001 (PTF ID) is used to change the Sent and Status fields.

If PTFs were sent or an answer was added to the problem log, these actions do not require a status

change. Add a history event to define the action taken.

v Data for CLOSED status

A problem can be changed to CLOSED status from any other status by including the following data

items:

– Key 3 (problem status) indicates that CLOSED status is the only key allowed.

– Key 6 (operational data) is updated by the API when the problem is closed.

Keys for Changing Problem Types 6 and 7

Problem type 6 (client machine-detected) and problem type 7 (client user-detected) require the Problem

category field in key 1012 be set to 0 (Report) to move to PREPARED status.

Error Messages

 Message ID Error Message Text

CPF3C1E E Required parameter &1 omitted.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF7AAB E Problem &1 not found.

CPF3C4D D Length &1 for key &2 not valid.

CPF3C82 D Key &1 not valid for API &2.

CPF3C86 D Required key &1 not specified.

CPD7A82 D Value not valid for key &1. (char string)

CPD7A83 D Value not valid for key &1. (integer)

CPD7A87 D Key &1 may be added only once.

CPD7A88 D Incorrect DBCS field format found.

CPD7A8A D Key value &1 is not valid.

CPD7A8B D Length of data not valid.

CPF7A89 E Incorrect handle for this activation.

CPF7A8A E Problem log services not started.

CPF7AA7 E Problem &1 not found.

CPF9821 E Not authorized to program &1 in library &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA320 E Pointer parameter is null.

API introduced: V3R1

12 IBM Systems - iSeries: Problem Management APIs

Top | “Problem Management APIs,” on page 1
APIs by category

Create Problem Log Entry (QsxCreateProblemLogEntry) API

 Required Parameter Group:

 1 Handle Input Binary(4)

2 Problem log ID Output Char(40)

3 Key structures Input Array of Pointers

4 Number of keys Input Binary(4)

5 Error Code I/O Char(*)

 Service Program Name: QSXSRVPL
 Default Public Authority: *USE
 Threadsafe: No

The Create Problem Log Entry (QsxCreateProblemLogEntry) API creates a problem log entry and adds

the information provided to the problem log files using keys. Key 1 (problem log ID) is returned to the

user that is required for other API operations.

The API allows a problem to be created with a status of OPENED, READY, or PREPARED. The difference

to the user is that the amount of data increases as the problem goes from OPENED to PREPARED.

The types of problems that may be created are:

v Machine-detected (problem type 1)

v User-perceived (problem type 2)

v PTF orders (problem type 3)

v User-perceived remote hardware or software problems (problem type 4)

v Application-detected (problem type 5)

v Client machine-detected (problem type 6)

v Client user-detected (problem type 7)

v User-created general (problem type 8)

The keys provided to create a problem are checked for validity and applicability to the problem log entry

in two ways:

v Applicability of the type

v Applicability of the field

The fields are checked to verify that they are not null. Some keys allow the user to control them (key

control). Keys without ″key control″ support require all fields to be filled. Fields not flagged are

ignored.(The existence of the data is verified; NOT whether or not the data is valid. The problem log

APIs do not check the validity of the data.) Operations that are unsupported or not valid, such as

creating a problem in SENT status or not providing all dependent keys, result in a diagnostic message for

each infraction found and an exception or an error notification defining it.

The key fields are checked before the problem log entry is created and an error is signalled if any

required key fields are null.

If the maximum number of problem log entries has been reached for this particular date (99999), CPF392F

E is signaled.

Problem Management APIs 13

#TOP_OF_PAGE
aplist.htm

Authorities and Locks

API Public Authority

*USE

Required Parameter Group

Handle

INPUT; BINARY(4)

 An identifier that associates the problem log services started by the Start Problem Log Services

API.

Key 1 (problem log ID)

OUTPUT: CHAR(40)

 This parameter contains the problem log identifier after the problem is created. If this parameter

is omitted, no problem log ID is returned.

Key structures

INPUT; ARRAY of POINTERS

 An array of pointers that has the address of each key that contains data to be written into the

problem log. The number of pointers passed in the array must equal the value passed by

parameter 4, Number of keys.

Number of keys

INPUT; BINARY(4)

 Defines the number of keys that are being passed to the API.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of the Keys

See “Key Groups for Problem Log APIs” on page 97 for a description of the keys.

Rules for Key Usage

To create a problem log entry, specific data is required. The amount of data varies depending on the

status of the problem log. This section defines the data required for each problem type for statuses

OPENED and READY. Problems in OPENED or READY status may be amplified with the status of

PREPARED. The supplemental data required for this is defined once and is applicable to either OPENED

or READY.

General Keys For Problem Log Entry Data

The minimum key data for all problems types is:

v Key 1 (problem log ID)

This key must contain one of the following:

– Problem log identifier if the problem was created on another system

– The value ″*LOCAL″ to indicate that the problem is a local one.
v Key 2 (problem type)

This defines the type of problem log entry being created.

v Key 3 (problem status)

Defines the status to which the entry will be set. Three values are allowed:

– OPENED. Create a problem in OPENED status.

14 IBM Systems - iSeries: Problem Management APIs

– READY. Create a problem in READY status.

– PREPARED. Create a problem in READY or OPENED status and add supplemental data required

for PREPARED status.
v Key 5 (problem origin system)

– Required if key 1 (problem log ID) is not *LOCAL.

– Prohibited if key 1 (problem log ID) is *LOCAL.
v Key 6 (operational data)

– If key 1 (problem log ID) is *LOCAL, the Received from system field is prohibited. If it is not

*LOCAL, the Received from system field is required.

– If key 3 (problem status) indicates the problem is to be in PREPARED status the Prepared for system

field is required otherwise it is prohibited.

– The Date and time added field is automatically added by the API.

– The Date and time closed field is automatically added when the problem is closed.
v Key 1002 (problem description message) or key 3001 (text entry), type 1.

Either or both are acceptable. Key 3001 is used if both are supplied. When both key 1002 and key 3001

are added, only key 3001 is available through the command interface, but both key 1002 and key 3001

can be retrieved through APIs. When the problem type is machine detected, key 1002 is required.

v Key 5001 (contact information)

Required if key 1 (problem log ID) is not *LOCAL. Used to enter contact data for the remote system.

v Key 6001 (history information)

This information defines the type of create action. One or more history entries are allowed. At least one

event is required.

In addition, the following information is needed based on the problem type.

Keys for Creating Problem Type 1

Machine detected problems (problem type 1) use the following keys:

Data for OPENED status are:

v Key 1002 (problem description message)

Required.

v Key 1003 (problem creation data)

Required.

v Key 1005 (failing device)

Required to define the device and/or code that is failing.

v Keys 2001-2009 (FRU entries)

At least one key of the range 2001 to 2009 is required. The keys may be provided in any order but will

be stored in probability of fix order, with the highest probability FRU record being stored first and the

least probability FRU record being stored last.

v Keys 4001 and 4002 (supporting data)

Optional. Used to define the supporting data that will be associated with the problem. Multiple entries

are allowed.
v Data for READY status are:

Post analysis data must be added to a machine detected problem to achieve READY status. This data is

in addition to the data added to achieve OPENED status. Data for READY status are:

v Key 1004 (reporting device)

Defines the machine that will be reported to a service provider as the failing machine.

v Key 1005 (failing device) This provides a description of the resource that caused the problem.

Problem Management APIs 15

v Key 1006 (reporting code)

Defines the program/product that is failing. This is required if the highest probability FRU is key 2002

(code FRU type).

v Key 1007 (problem analysis data)

Required

v Key 1010 (symptom string)

Required

v Keys 2001-2009 (FRU entries)

At least one key of the range 2001 to 2009 is required. The keys may be provided in any order but will

be stored in probability of fix order, with the highest probability FRU record being stored first and the

least probability FRU record being stored last.

Keys for Creating Problem Type 2

User-perceived hardware or software problems (problem type 2) can be created in READY and READY -

PREPARED status only. These problems require data similar to machine-detected problems (problem type

1) with the following exceptions:

v Key group 2000 (FRU records) is prohibited.

v Key group 3000 (problem type 1) is required if 1002 is not used.

Keys for Creating Problem Type 3

PTF orders (problem type 3) are created in READY and READY - PREPARED status only and use the

following:

v Key group 1000 (problem description entries), except key 1002 (problem description message), is

prohibited.

v Key group 2000 (FRU records) is prohibited.

v Key group 4000 (supported data records) is prohibited.

v Key 1011 is optional.

v Key group 7001 is required.

Keys for Creating Problem Type 4

User-perceived remote hardware or software problems (problem type 4) can be created in READY and

READY - PREPARED status only. These problems require data similar to machine-detected problems

(problem type 1) with the following exceptions:

v Key group 2000 (FRU records) is prohibited.

v Key group 4000 (supported data records) is prohibited.

Keys for Creating Problem Type 5

Application detected problems (problem type 5) are used to enter problems automatically detected during

the execution of a program. They can be created in READY and PREPARED status only. These problems

require data similar to machine-detected problems (problem type 1) with the following exceptions:

v Key group 2000 (FRU records) is optional.

If key group 2000 (FRU records) is specified only key 2002 (code FRU type) is permitted.

v Key group 4000 (supported data records) is optional.

Key group 4000 (supported data records) may be used to identify APAR data that is associated with

the problem.

Keys for Creating Problem Types 6 and 7

Client machine-detected (problem type 6) and user-created (problem type 7) problems are used to create

problem log entries for an attached client. These problems are generated in the READY status. The data

requirements are:

v Key 1012 is required and must be LOGONLY on the Add Problem Log Entry API.

16 IBM Systems - iSeries: Problem Management APIs

v Key 1013 is required.

v Key 1003 (problem creation data)

v Key 1010

v Keys 1001, 1002, 1003

v Keys 4001 and 4002 are optional

v Key 3001 (text entry) is optional

v Key 6001 (history information) is optional

Keys for Creating Problem Type 8

User-created general problems (problem type 8) are used to add data of a general nature, that is not

applicable to the types already defined. The entry can be created in READY and READY - PREPARED

status only. The data requirements are:

v Key group 1000 (problem description entries) is prohibited.

v Key 1002 (problem description message) can be used to create text for the problem description of the

message.

v Key 3001 (text entry) type 2 is required to provide a detailed description of the problem.

Key group 4000 (supported data records) can be used to identify data that is associated with the

problem.

Data for PREPARED Status

The supplemental data needed to move a problem from OPENED or READY status to PREPARED status

are:

v Key 6 (operational data)

v Key control

v Prepared for system

Required to define the system that this problem will be sent to.

v Key 1001 (problem severity)

v Optional. Default is none.

v Ignored for PTF Order (problem type 3).

v Key 1011 (PTF media selection)

Optional. Default is the contact data base. Typically this is the tape device type and model or a

description of the media type on which PTFs are delivered if the distribution size exceeds a predefined

transmit size limit.

v Key 5001 (contact information)

Optional. Used to override local service contact information.

Error Messages

 Message ID Error Message Text

CPF3C1E E Required parameter &1 omitted.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF7AAB E Problem &1 not found.

CPF3C4D D Length &1 for key &2 not valid.

CPF3C82 D Key &1 not valid for API &2.

CPF3C86 D Required key &1 not specified.

CPD7A82 D Value not valid for key &1. (char string)

CPD7A83 D Value not valid for key &1. (integer)

CPD7A87 D Key &1 may be added only once.

Problem Management APIs 17

Message ID Error Message Text

CPD7A88 D Incorrect DBCS field format found.

CPD7A8A D Key value &1 is not valid.

CPD7A8B D Length of data not valid.

CPF7A89 E Incorrect handle for this activation.

CPF7A8A E Problem log services not started.

CPF7AA7 E Problem &1 not found.

CPF9821 E Not authorized to program &1 in library &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA320 E Pointer parameter is null.

API introduced: V3R1

 Top | “Problem Management APIs,” on page 1
APIs by category

Delete Problem Log Entry (QsxDeleteProblemLogEntry) API

 Required Parameter Group:

 1 Handle Input Binary(4)

2 Key structures Input Array of Pointers

3 Number of keys Input Binary(4)

4 Error code I/O Char(*)

 Default Public Authority: *USE
 Service Program: QSXSRVPL
 Threadsafe: No

The Delete Problem Log Entry (QsxDeleteProblemLogEntry) API provides one of the following functions:

v Deletes a single problem log entry.

The problem log entry and all associated data is deleted.

v Removes data from a problem log entry.

The data that can be removed by the API are:

v Key group 2000 (FRU entries). Either all FRU entries or all FRU entries of a class are removed.

Individual FRU entries cannot be removed.

v Key group 4000 (supported data entries). Either all supporting data entries are removed or all entries

of a type.

v PTF entries can be deleted individually, using key 7001 (PTF ID), or they can be deleted entirely using

key 7000 (PTF entry).

Authorities and Locks

API Public Authority

*USE

Required Parameter Group

Handle

INPUT; BINARY(4)

 An identifier that associates the problem log services started with the

QsxStartProblemLogServices API.

18 IBM Systems - iSeries: Problem Management APIs

#TOP_OF_PAGE
aplist.htm

Key structures

INPUT; Array of Pointers

 Array of pointers to the data contained in each key being passed to the API.

Number of keys

INPUT; BINARY(4)

 Tells the API how many keys are being passed to it.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of the Key Groups

Depending on the type of problem entry being deleted, one or more key groups must be provided to

remove the data required or desired to the problem. You must select the keys applicable to the problem

data you are deleting. If the keys provided to the API do not match the requirements for the problem log

entry type you are deleting, you are notified by the error handling procedures.

For details about the keys that may be used see “Key Groups for Problem Log APIs” on page 97.

Rules for Key Usage

The Delete Problem Log Entry API can be used to:

v Delete the problem log entry.

v To delete specific entries from the problem log.

The specific data that can be deleted are:

– Key 2000 (class of FRU entries) to remove all FRU entries or all FRU entries of a class

– Key 7000 (PTF entry) to remove all PTF entries

– Key group 4000 (supporting data entries) to remove all supporting data entries, or all spooled file

entries or all data file records as a group. Individual entries cannot be removed.

– Key 7001 (PTF ID) to remove a single PTF entry

Deleting the above in any combination is supported.

The status of a problem log is not changed as a result of the delete operation.

Delete a Problem Log Entry

To delete a problem log entry, provide a key 1 (problem log ID) with no other keys. This deletes the

problem log entry and all associated data. To delete the problem, it must be in CLOSED status or be

older than the period defined by system value QPRBHLDITV.

Delete FRU Entries

Individual FRU entries cannot be deleted. FRU entries are deleted by class. For example, to delete the

point of failure FRUs, use key 2000 and set the class field to 1. All point of failure FRUs are deleted.

Delete PTF Entries

PTF entries can be deleted individually, using key 7001 (PTF ID), or they can be deleted entirely using

key 7000 (PTF entry).

Delete Supporting Data

Individual supporting data entries cannot be deleted. The entry in the problem log is deleted and the

data defined by the entry is also deleted. For example, if a spooled file entry is defined, the problem log

Problem Management APIs 19

contains the name of the object to be deleted. The spooled file and the problem log entry containing the

spooled file name are both deleted. Provide the following data:

v Key 1 (problem log ID)

v Key group 4000 (supported data entries) deletes all entries or all entries of a type.

Error Messages

 Message ID Error Message Text

CPF3C1E E Required parameter &1 omitted.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF7AAB E Problem &1 not found.

CPF3C4D D Length &1 for key &2 not valid.

CPF3C82 D Key &1 not valid for API &2.

CPF3C86 D Required key &1 not specified.

CPF7AA6 D Problem record &1 cannot be deleted.

CPD7A82 D Value not valid for key &1. (char string)

CPD7A87 D Key &1 may be added only once.

CPD7A89 D Record &1 was not deleted.

CPD7A8A D Key value &1 is not valid.

CPF7A89 E Incorrect handle for this activation.

CPF7A8A E Problem log services not started.

CPF7AA6 E Problem record &1 cannot be deleted.

CPF7AA7 E Problem &1 not found.

CPF9821 E Not authorized to program &1 in library &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA320 E Pointer parameter is null.

API introduced: V3R1

 Top | “Problem Management APIs,” on page 1
APIs by category

End Problem Log Services (QsxEndProblemLogServices) API

 Required Parameter

 1 Handle Input Binary(4)

2 Error code I/O Char(*)

 Default Public Authority: *USE
 Service Program: QSXSRVPL
 Threadsafe: No

The End Problem Log Services (QsxEndProblemLogServices) API ends an instance of the problem log

services identified by the handle returned when the services were started. The following are performed:

v A rollback is issued to delete any problem log entries that were not committed. This is just performed

as a precaution only. The Add, Change, Create, and Delete Problem Log Entry APIs perform a commit

or rollback.

Authorities and Locks

API Public Authority

*USE

20 IBM Systems - iSeries: Problem Management APIs

#TOP_OF_PAGE
aplist.htm

Required Parameter

Handle

INPUT; BINARY(4)

 The handle that defines the instance of problem log services to end.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3C1E E Required parameter &1 omitted.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF7A89 E Incorrect handle for this activation.

CPF9821 E Not authorized to program &1 in library &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA320 E Pointer parameter is null.

API introduced: V3R1

 Top | “Problem Management APIs,” on page 1
APIs by category

Log Software Error (QPDLOGER) API

 Required Parameter Group:

 1 Suspected program name Input Char(10)

2 Detection ID Input Char(12)

3 Message reference key Input Char(4)

4 Point of failure Input Binary(4)

5 Print job log Input Char(1)

6 Data items Input Char(*)

7 Data item offset and length Input Array of Char(*)

8 Number of data items Input Binary(4)

9 Object name Input Array of Char(*)

10 Number of object names Input Binary(4)

11 Error code I/O Char(*)

 Optional Parameter Group 1:

 12 ILE module name Input Char(10)

 Optional Parameter Group 2:

 13 Problem log entry creation Input Char(1)

Problem Management APIs 21

#TOP_OF_PAGE
aplist.htm

Default Public Authority: *USE
 Threadsafe: Conditional; see “Usage Notes” on page 24.

The Log Software Error (QPDLOGER) API allows a program to report a software problem to the local

iSeries server and provide the data needed to resolve the problem. When this API is called, any error

data provided is spooled to one or more spooled files, a symptom string is created, an entry is created in

the problem log, and a message is sent to the QSYSOPR message queue indicating that a software error

has been detected.

Error data can be provided on the API call by using the data item offset and length and object name

parameters.

Authorities and Locks

Authority to use the API

To use this API, you must have service (*SERVICE) special authority or must be authorized to the

Service dump function of Operating System through iSeries Navigator’s Application

Administration support.

Object Authority

Read data authority to the object to be dumped.

Locks None

Required Parameter Group

Suspected program name

INPUT; CHAR(10)

 The name of the program in which the error is suspected. Service programs are not supported.

The Report Software Error (QpdReportSoftwareError) API must be used to report a problem

against a service program. If a service program is specified on the QPDLOGER API, the service

program will not be found and the suspected program will be used instead.

Valid values are:

 *SAME The reporting program.

*PRV The program that called the reporting program.

program name The name of the suspected program.

The suspected program name is included in the symptom string (as F/name) created when this

API is called.

Detection ID

INPUT; CHAR(12)

 A message ID or other value defined by the reporting program that further identifies the

problem. This value is included in the symptom string (as MSGdetectionid) created when this API

is called.

Message reference key

INPUT; CHAR(4)

 The message key associated with the message that is being reported (if a message is being

reported). This parameter is used to verify that message CPF9999 (a function check) was not

caused by a damage exception (CPF81xx). If message CPF9999 is caused by a damage exception,

the problem will not be reported. This value is ignored if it does not contain a key for a CPF9999

message.

Note: The detection ID should not contain blanks. The API ignores characters after the first blank.

22 IBM Systems - iSeries: Problem Management APIs

Point of failure

INPUT; BINARY(4)

 A return code, statement number, or other value defined by the reporting program that assists in

locating the problem. This value is converted to zoned decimal and included in the symptom

string (as RCnnnnnnnn) created when this API is called.

Print job log

INPUT; CHAR(1)

 Whether the job log and other job information is to be spooled to a spooled file.

Valid values are:

 Y Print the job log and job information.

N Do not print the job log and job information.

Data items

INPUT; CHAR(*)

 The data to be spooled.

Data item offset and length

INPUT; ARRAY of CHAR(*)

 An array of the offsets to and lengths of the data items to be spooled to a spooled file. The array

can contain up to 32 elements.

Each element has the following structure:

 Data offset BINARY(4).

 The offset to the data item from the start of the data.

Data length BINARY(4).

 The length of this data item (must be greater than 0).

Number of data items

INPUT; BINARY(4)

 The number of elements in the array of data item offsets and lengths. The number must be

between 0 and 32, inclusive.

Object name

INPUT; ARRAY of CHAR(*)

 An array of object names whose contents are to be spooled to a spooled file. The array can

contain up to 32 elements.

Each element has the following structure:

 Object name CHAR(30).

 The name of the object to be spooled.

Library CHAR(30).

 The library in which the object resides.

Valid values for the library name are:

*CURLIB

The job’s current library.

*LIBL The library list.

library name

The specific library that contains the object.

Problem Management APIs 23

Object type

CHAR(10). The object type. For a complete list of the available object types, see Object Types in

the CL topic.

Number of object names

INPUT; BINARY(4)

 The number of object names in the array of object names. The number must be between 0 and 32,

inclusive.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Optional Parameter Group 1

ILE module name

INPUT; CHAR(10)

 The name of the integrated language environment (ILE) module in which the error is suspected.

This value is included in the symptom string created when this API is called.

Optional Parameter Group 2

Problem log entry creation

INPUT; CHAR(1)

 Whether a proble log entry is created or not.

Valid values are:

 0 Unconditional - Create a problem log entry. This is the default value when this parameter is not

present.

1 Conditional - Do not create a problem log entry.

Usage Notes

When this API runs within a threaded job, no problem log entry is created. When the API is called, the

following occurs:

v Any error data that is provided is spooled to one or more spooled files.

v A symptom string is created.

v A message is sent to the job log and to the QSYSOPR message queue, which indicates that a software

error has been detected.

Error data can be provided on the call to the API by using the data item offset and length parameters.

(No object dumping support is available).

Also, dump job output is provided to help with problem determination.

The following parameters are ignored:

v Print job log

24 IBM Systems - iSeries: Problem Management APIs

v Object name

v Number of object names

Current API users do not have to make any changes.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF93C0 E Software error logging not active.

CPF93C2 E &1 is not a valid number of data items.

CPF93C3 E &1 is not a valid number of object names.

CPF93C4 E Error already logged.

CPF93C5 E Software problem logging (QPDLOGER) API error occurred.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPI93B2 I Software problem data for &4 has been detected.

CPI93CA I Suspected program &1 not found.

CPI93CB I Point-of-failure value not valid.

CPI93CC I Object &1 in library &2 not found.

CPI93CF I Data length or data offset not valid.

API introduced: V2R3

 Top | “Problem Management APIs,” on page 1
APIs by category

Report Software Error (QpdReportSoftwareError) API

 Required Parameter Group:

 1 Problem description records Input Array of Pointers

2 Number of problem description records Input Binary(4)

3 Error code I/O Char(*)

 Default Public Authority: *USE
 Service Program: QPDSRVPG
 Threadsafe: Conditional; see “Usage Notes” on page 35.

Use the Report Software Error (QpdReportSoftwareError) API whenever your ILE program detects a

software problem that must be fixed.

The API logs the problem in the system problem log, which lets you track the problem, as well as send it

to a service provider. See the System Manager for iSeries product for more information about service

providers and service requesters.

The API also lets you specify the symptoms that identify the problem. The operating system and the

service provider use those symptoms to find a PTF that may fix the problem.

The API also lets you specify data to dump to spooled files. If neither the operating system nor the

service provider can find a PTF, you may be able to find the cause of the problem using the data the

program dumped.

Problem Management APIs 25

#TOP_OF_PAGE
aplist.htm

Authorities and Locks

Object Authority

 *USE for objects in libraries

*R for objects in directories

Object Library Authority

*EXECUTE

Object Directory Authority

*RX

Locks None

Required Parameter Group

Problem description records

INPUT; ARRAY of POINTERS

 This is a list of pointers to problem symptom and data description records. See “Problem

Description Records Format” for the format of the records.

Number of Problem description records

INPUT; BINARY(4)

 The number of problem description records your program is passing to the API.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Problem Description Records Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 CHAR(*) Problem record description

Field Descriptions

Key Identifies a particular problem symptom or data. See “Keys” for a list of the possible keys.

Problem record description This describes a particular symptom of the problem, or specifies data to

collect. See “Formats of Specific Problem Description Records” on page 27 for the various problem record

description formats.

Keys

The following table lists the valid keys of the key field area of the software problem record.

 Key Description

100 “Key 100-Call Stack Counter” on page 27

101 “Key 101-Suspected Program” on page 27

26 IBM Systems - iSeries: Problem Management APIs

Key Description

102 “Key 102-Suspected Service Program” on page 28

103 “Key 103-Suspected Module” on page 28

104 “Key 104-Suspected Procedure” on page 28

105 “Key 105-Detecting Program” on page 29

106 “Key 106-Detecting Service Program” on page 29

107 “Key 107-Problem log entry creation” on page 29

200 “Key 200-Symptom” on page 30

201 “Key 201-Instruction Number” on page 30

300 “Key 300-System Object” on page 30

301 “Key 301-Data” on page 30

302 “Key 302-Named System Object” on page 31

303 “Key 303-Spooled File” on page 31

304 “Key 304-Named Integrated File System Object” on page 31

400 “Key 400-Service Identifier” on page 32

Formats of Specific Problem Description Records

Key 100-Call Stack Counter

This key specifies which invocation on the program stack is suspected of causing the error being

reported. If this key is used, you must not use keys 101, 102, 103, or 104. If neither key 100, 101, nor 102

are specified, the API assumes that the program or service program that called the API is the one that has

the problem.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Call stack counter

Key 101-Suspected Program

This key is used to identify which program is suspected of causing the error being reported. If this key is

used, you must not use key 100 or 102, but should use keys 103 and 104 if applicable. If neither key 100,

101, nor 102 are specified, the API assumes that the program or service program that called the API is the

one that has the problem.

Note: The program must exist on the system at the time the API is called.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Length of program name

8 8 BINARY(4) Length of library name

12 C CHAR(4) Reserved

16 10 POINTER Program name

Problem Management APIs 27

Offset

Type Field Dec Hex

32 20 POINTER Library name

Key 102-Suspected Service Program

This key is used to identify which service program is suspected of causing the error being reported. If

this key is used, you must not use key 100 or 101, but should use keys 103 and 104 if applicable. If

neither key 100, 101, nor 102 are specified, the API assumes that the program or service program that

called the API is the one that has the problem.

Note: The service program must exist on the system at the time the API is called.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Length of service program name

8 8 BINARY(4) Length of library name

12 C CHAR(4) Reserved

16 10 POINTER Service program name

32 20 POINTER Library name

Key 103-Suspected Module

This key is used to identify which module is suspected of causing the error being reported. If this key is

used, you must not use key 100, but should use keys 101 or 102.

Note: The module must exist on the system at the time the API is called.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Length of module name

8 8 BINARY(4) Length of library name

12 C CHAR(4) Reserved

16 10 POINTER Module name

32 20 POINTER Library name

Key 104-Suspected Procedure

This key is used to identify which procedure is suspected of causing the error being reported. If this key

is used, you must not use key 100, but should use key 103 and either 101 or 102.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Length of procedure name

28 IBM Systems - iSeries: Problem Management APIs

Offset

Type Field Dec Hex

8 8 CHAR(8) Reserved

16 10 POINTER Procedure name

Key 105-Detecting Program

This key identifies the program that detected the problem. If this key is used, you must not use key 106.

If neither key 105 nor 106 is specified, the API assumes that the program or service program that called

the API is the one that detected the problem.

Note: The program must exist on the system at the time the API is called.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Length of program name

8 8 BINARY(4) Length of library name

12 C CHAR(4) Reserved

16 10 POINTER Program name

32 20 POINTER Library name

Key 106-Detecting Service Program

This key identifies the service program that detected the problem. If this key is used, you must not use

key 105. If neither key 105 nor 106 is specified, the API assumes that the program or service program that

called the API is the one that detected the problem.

Note: The service program must exist on the system at the time the API is called.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Length of service program name

8 8 BINARY(4) Length of library name

12 C CHAR(4) Reserved

16 10 POINTER Service program name

32 20 POINTER Library name

Key 107-Problem log entry creation

This key identifies whether a problem log entry is created or not. The valid values are ’0’ Unconditional

(problem log entry created) and ’1’ Conditional (problem log entry not created). The default value is ’0’

Unconditional.

Problem Management APIs 29

Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 CHAR(1) Problem log entry creation

Key 200-Symptom

This key identifies the symptoms associated with the problem. Together, the symptoms form a symptom

string. i5/OS searches for a PTF that has a solution string that matches this symptom string.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Length of symptom keyword

8 8 BINARY(4) Length of symptom data

12 C CHAR(1) Type of symptom data

13 D CHAR(3) Reserved

16 10 POINTER Pointer to symptom keyword

32 20 POINTER Pointer to symptom data

Key 201-Instruction Number

This key identifies the instruction number where the problem occurred.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 CHAR(4) Instruction number

Key 300-System Object

This key identifies system objects associated with the problem. The system objects will be dumped to

spooled files. The spooled files will be kept on an output queue in the APAR library associated with the

problem log entry. You can display the spooled files using the WRKPRB command. The combination of

this key and the other keys related to objects may be specified up to 32 times.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 CHAR(12) Reserved

16 10 PTR(SYP) Pointer to object

Key 301-Data

This key identifies data associated with the problem. The data is dumped to spooled files. This key may

be specified up to 32 times. The spooled files are kept on an output queue in the APAR library associated

30 IBM Systems - iSeries: Problem Management APIs

with the problem log entry. You can display the spooled files using the WRKPRB command. The first one

thousand bytes from the list of data items are also sent to the service provider if the problem is reported

and if the “send data packet” flag in the service attributes is on. That data resides in a file named

QAPDFCDP in the APAR library associated with the problem log entry on the service provider.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Data length

8 8 BINARY(4) Data ID

12 C CHAR(4) Reserved

16 10 POINTER Pointer to data

Key 302-Named System Object

This key names system objects associated with the problem. The system objects will be dumped to

spooled files. The spooled files will be kept on an output queue in the APAR library associated with the

problem log entry. You can display the spooled files using the WRKPRB command. The combination of

this key and the other keys related to objects may be specified up to 32 times.

Note: The object must exist on the system at the time the API is called.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 CHAR(30) Object name

34 22 CHAR(30) Object library

64 40 CHAR(10) Object type

Key 303-Spooled File

This key identifies spooled files associated with the problem. The job that created the spooled files must

be the current job. This key may be specified up to 32 times. The spooled files are kept on an output

queue in the APAR library associated with the problem log entry.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 CHAR(10) Spooled file name

14 E BINARY(4) Spooled file number

Key 304-Named Integrated File System Object

This key names integrated file system objects associated with the problem. The integrated file system

objects will be dumped to spooled files. The spooled files will be kept on an output queue in the APAR

library associated with the problem log entry. You can display the spooled files using the WRKPRB

command. The combination of this key and the other keys related to objects may be specified up to 32

times.

Problem Management APIs 31

Notes:

1. The object must exist on the system at the time the API is called.

2. Both absolute and relative path names are allowed. The patterns ? and * are not allowed. The home

directory of the user is not resolved, thus a tilde (~) in the first character position is not treated as the

home directory. The NLS-enabled path name structure (defined in the QLG header file) can be filled

in to specify the coded character set identifier (CCSID) the path name is in.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 CHAR(12) Reserved

16 10 POINTER NLS-enabled path name structure

Key 400-Service Identifier

This key identifies where in a particular program or service program the problem was reported. The

default service identifier is 9000.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 CHAR(4) Service identifier

Field Descriptions

Call stack counter. The number of invocations in the program stack to count from the invocation of the

program or service program that called the API, to the invocation of the program or service program that

is suspected of having the problem. Use 1, for instance, to specify the program or service program that

called the program or service program that called the API. If the call stack counter value exceeds the

number of invocations currently on the program stack, the API uses the invocation of the program or

service program that called the API.

Data ID. This number is used to identify the data that is dumped.

Data length. The length of the data that is dumped.

Instruction number. Specifies exactly where the problem occurred within the specified program or

service program.

Key. Identifies the problem description record.

Length of library name. The length of the library name. The value ranges from 1 to 10.

Length of module name. The length of the module name. The value ranges from 1 to 10.

Length of procedure name. The length of the procedure name. The value ranges from 1 to 256.

Length of program name. The length of the program name. The value ranges from 1 to 10.

Length of service program name. The length of the service program name. The value ranges from 1 to

10.

32 IBM Systems - iSeries: Problem Management APIs

Length of symptom data. This indicates how many bytes the stored data occupies. The valid range is 1

to 15. The length of the symptom data plus the length of the symptom keyword must not exceed 15.

Length of symptom keyword. The length of the symptom keyword. The valid range is 1 to 15. The

length of the symptom data plus the length of the symptom keyword must not exceed 15.

Library name. A pointer to the name of the library which contains the program, service program, or

module in which the error has occurred.

Module name. A pointer to the name of the module in which the error has occurred.

NLS-enabled path name structure. For more information on this structure, see Path Name Format.

Object library. The library in which the object resides.

Valid values for the library name are:

 *CURLIB The job’s current library.

*LIBL The library list.

library name The specific library that contains the object.

Object name. The name of the object to be dumped.

Object type. The type of object. For complete list of the available object types, see the Control Language

(CL) information in the iSeries Information Center.

Pointer to data. A space pointer to the data.

Pointer to object. A system pointer to a system object.

Pointer to symptom data. A pointer to the symptom data. The symptom data is a symptom of the

problem. It is concatenated to the symptom keyword. The sum of the symptom keyword length and the

symptom data length must not be longer than 15 characters.

Pointer to symptom keyword. A pointer to the system keyword. The symptom keyword is concatenated

to the symptom data. The sum of the symptom keyword length and the symptom data length must not

be longer than 15 characters. There are a limited number of keywords that can be used. The valid

keywords are:

Table 1. Symptom string keywords

 Key Description

(blanks) Normally, a symptom in the symptom string consists of a keyword and data. However, for

flexibility, you may specify a symptom without a keyword.

MSG This is a message identifier associated with the problem.

RC The point of failure is a number that identifies a subroutine, block of code, or specific statement

associated with the problem. Note: This number should not be an instruction number, since the

instruction number may be different for different versions of the same program.

FLDS/ This is the name of a field associated with the problem. It may be followed by the VALU/

keyword to show what value the field contained at the time of the failure.

MOD/ MOD/ is the name of the ILE module that might have caused the problem being reported.

OPCS/ OPCS/ is the name of the command, macro, or instruction associated with the problem.

PCSS/ PCSS/ is a program label that shows generally where the problem occurred.

Problem Management APIs 33

Key Description

PRCS/ PRCS/ is a reason code or return code associated with the problem.

REGS/ This is the name of a register associated with the problem. It may be followed by the VALU/

keyword to show what value the register contained at the time of the failure.

RIDS/ RIDS/ is the name of the subroutine or the identifier of the thread in which the problem

occurred.

VALU/ VALU/ is the value of a field or register at the time the problem occurred. VALU/ must appear

after key FLDS/ or REGS/.

Procedure name. A space pointer to the name of the procedure in which the error has occurred.

Problem log entry creation. Identifies whether a problem log entry is generated or not. The valid

values are ’0’ Unconditional (problem log entry created) and ’1’ Conditional (problem log entry not

created). The default value is ’0’ Unconditional.

Program name. A pointer to the name of the program in which the error is suspected. The suspected

program name is included in the symptom string (as F/name) created when this API is called. If neither

the 100, 101, nor the 102 keys are used, then the program name in the symptom string defaults to the

caller of this API.

Reserved. Null.

Service identifier. Identifiers where in a program or service program the problem was reported. The

valid range is 1 to 8999.

Service program name. A pointer to the name of the service program in which the error is suspected.

The suspected service program name is included in the symptom string (as F/name) created when this

API is called. If the 100, 101, or the 102 keys are not used, then the service program name in the

symptom string defaults to the caller of this API.

Spooled file name. The name of a spooled file associated with the problem.

Spooled file number. The unique number of a spooled file associated with the problem. The valid range

is 1 through 9999.

The following special values are supported for this parameter:

 0 Only one spooled file from the job has the specified file name, so the number of the spooled file is not

necessary.

-1 This uses the highest numbered spooled file with the specified file name.

Type of symptom data. This indicates how the data is stored.

The possible values are:

 C The data is in displayable form. It must not include blanks or characters that are not displayable.

X The data is in hexadecimal form. The API converts it to displayable characters.

 Note:The length of symptom data is the number of bytes used to store the hexadecimal value.

D The data is in zoned decimal form.

P The data is in packed decimal form. The API converts it to displayable numbers.

B The data is in binary form. The API converts it to displayable numbers.

 Note:The length of symptom data can only be 2 or 4 bytes if the type of symptom data is B.

34 IBM Systems - iSeries: Problem Management APIs

Usage Notes

When this API runs within a threaded job, no problem log entry is created. When the API is called, the

following occurs:

v Any error data that is provided is spooled to one or more spooled files.

v A symptom string is created.

v A message is sent to the job log and to the QSYSOPR message queue, which indicates that a software

error has been detected.

Error data can be provided on the call to the API by using the data item offset and length parameters.

(No object dumping support is available).

Also, dump job output is provided to help with problem determination.

Also, the following keys are ignored:

 Key Description

300 System object

302 Named system object

303 Spooled file

400 Service identifier

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C82 D Key &1 not valid for API &2.

CPF3C85 D Value for key &1 not allowed with value for key &2.

CPF93C2 D &1 is not a valid number of data items.

CPF93C3 D &1 is not a valid number of object names.

CPF93C8 D Not a valid number of symptoms.

CPF93C9 D Not a valid number of spooled files.

CPF93C0 E Software error logging not active.

CPF93C4 E Error already logged.

CPF93C6 E Suspected program cannot be determined.

CPF93C7E Error in parameter &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPI93B2 I Software problem data for &4 has been detected.

API introduced: V3R1

 Top | “Problem Management APIs,” on page 1
APIs by category

Retrieve Problem Log Entry (QsxRetrieveProblemLogEntry) API

 Required Parameter Group:

 1 Handle Input Binary(4)

2 Key structures Input Array of Pointers

Problem Management APIs 35

#TOP_OF_PAGE
aplist.htm

3 Number of keys Input Binary(4)

4 Receiver variable Output Char(*)

5 Length of receiver variable Input Binary(4)

6 Return information Output Char(16)

7 Pointer to array of pointers to the keys returned in the

buffer receiver variable

Output PTR(SPP)

8 Error code I/O Char(*)

 Default Public Authority: *USE
 Service Program: QSXSRVPL
 Threadsafe: No

The Retrieve Problem Log Entry (QsxRetrieveProblemLogEntry) API allows a user to extract data from a

specific problem log entry, which the caller identifies. The problem log entry is identified by key 1

(problem log ID). The data to be retrieved is identified by the keys passed by reference. The keys used to

identify the data to be retrieved are not changed by the API.

Data is returned in the receiver variable. If you are supplying an automatically extendable space, specify

-1 for the size of the receiver variable. You provide the size and location of this receiver variable. If the

receiver variable is not large enough to contain all the keys requested, the keys successfully retrieved to

that point are returned. The number of keys returned is set in the return information parameter (number

6).

The API can be used to:

v Read a specific key from a problem log entry

v Read a group of keys

Authorities and Locks

QSXSRVPL authority

*USE

API Public Authority

*USE

Required Parameter Group

Handle

INPUT; BINARY(4)

 An identifier that associates the problem log services started with the

QsxStartProblemLogServices API.

Key structures

INPUT; ARRAY of POINTERS

 List of keys defining the data to be returned.

Number of keys

INPUT; BINARY(4)

 Number of keys passed to the API in the input key array.

Receiver variable

OUTPUT; CHAR(*)

 The variable that provides the output buffer.

Length of receiver variable

INPUT; BINARY(4)

36 IBM Systems - iSeries: Problem Management APIs

The size of the output buffer. If it is -1, an automatically extendable space is assumed.

Return information

OUTPUT; CHAR(16)

v Bytes returned—BINARY(4)

v Bytes available—BINARY(4)

v Number of keys returned—BINARY(4)

v Reserved—BINARY(4)

Pointer to array of pointers to the keys returned in the buffer receiver variable

OUTPUT; PTR(SPP)

 The pointer to the array of pointers to the keys returned in the buffer.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of the Key Groups

For details about the keys that can be used, see “Key Groups for Problem Log APIs” on page 97

Rules for Key Usage

Any amount and type of data can be retrieved from the problem log. The limiting factor is the size of the

buffer that is available. The data is returned in a buffer up to the size of the buffer.

Data to be retrieved must be identified by the keys provided. Key 1 (problem log ID) is required. All

other keys are optional, but only data for valid keys defined is returned.

Data, including PTF entries, can be returned individually or in groups. Data that will be returned as a

group are:

v FRU entries

v Text entries

v Supporting data entries

v History entries

Retrieve PTF records

PTF data can be retrieved individually or as a group.

To retrieve all PTFs, use key 7000 (PTF entry). Key 7000 is returned and the count field states how many

Key 7001 (PTF ID) keys are returned. For key 7001, the data required includes PTF ID, product ID,

version, release, and modification level.

To retrieve individual PTFs, use key 7001 (PTF ID) and add the fields that are to be used as the key. Key

1 (problem log ID) and key 7001 (PTF ID) are required. Product data is optional, but can be required if

multiple PTFs have the same PTF identifier.

Retrieve FRU records

To retrieve a FRU group, provide key 2000 (class of FRU entries) and a class. Key 2000 (class of FRU

entries) is returned with a count of FRU entries and 2000—2009 are returned.

Problem Management APIs 37

Retrieve text records

To retrieve the text data, provide key 3000 (text entry) and the text type. Key 3000 (text entry) is returned

with a count of key 3001 (text entry) returned. Only one is returned unless all text was requested.

Retrieve supporting data

To retrieve supporting data records, provide key group 4000 (supporting data entries) and the type. Key

group 4000 is returned with a count of the entries and key 4001 (spooled file data) and 4002 are returned.

Retrieve history records

To retrieve the history data, provide key 6000 (history information) and specify last or all. Key 6000

(history information) is returned with a count of the history entries and key 6001 (history information) is

returned.

Retrieve analyzed error flag:

To retrieve the analyzed eror flag data, provide key 8000 (analyzed error flag entries). Key 8000 returns a

value that indicates whether the problem has been analyzed by System Licensed Internal Code (SLIC).

Retrieve logical partition ID:

To retrieve the logical partition ID data, provide key 9000 (logical partition ID). Key 9000 returns the

current logical partition ID on the physical machine.

Error Messages

 Message ID Error Message Text

CPF3C1E E Required parameter &1 omitted.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF7AAB E Problem &1 not found.

CPF3C4D D Length &1 for key &2 not valid.

CPF3C82 D Key &1 not valid for API &2.

CPF3C86 D Required key &1 not specified.

CPD7A82 D Value not valid for key &1. (char string)

CPD7A84 D Buffer area not accessible.

CPD7A87 D Key &1 may be added only once.

CPD7A8A D Key value &1 is not valid.

CPF7AA7 E Problem &1 not found.

CPF9821 E Not authorized to program &1 in library &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA320 E Pointer parameter is null.

API introduced: V3R1

 Top | “Problem Management APIs,” on page 1
APIs by category

Start Problem Log Services (QsxStartProblemLogServices) API

 Required Parameter Group:

 1 Handle Output Binary(4)

2 Error code I/O Char(*)

38 IBM Systems - iSeries: Problem Management APIs

#TOP_OF_PAGE
aplist.htm

Default Public Authority: *USE
 Service Program: QSXSRVPL
 Threadsafe: No

The Start Problem Log Services (QsxStartProblemLogServices) API sets up the environment to allow

creating, changing, deleting, and retrieving problem log entries. The procedure performs the following

functions:

v Opens the problem log files for update.

v Starts commitment control

v Returns a handle that must be supplied as a parameter by the using problem log APIs.

Only one instance of the problem log services may be started from a job. Attempting to start multiple

instances of the problem log services will result in an error. Attempting to use one of the problem log

APIs without the proper handle will also result in an error.

Authorities and Locks

API Public Authority

*USE

Required Parameter

Handle

OUTPUT; BINARY(4)

 This provides a means of associating the problem log services that are started with subsequent

problem log activities that will be performed.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3C1E E Required parameter &1 omitted.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF7A86 E Problem log services already started.

CPF9821 E Not authorized to program &1 in library &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA320 E Pointer parameter is null.

API introduced: V3R1

 Top | “Problem Management APIs,” on page 1
APIs by category

Work with Problem (QPDWRKPB) API

 Required Parameter Group:

 1 Display panels Input Char(10)

2 Problem ID number Input Char(10)

Problem Management APIs 39

#TOP_OF_PAGE
aplist.htm

3 Origin system Input Char(20)

4 Current problem status Input Char(10)

5 Requested problem statuses Input Array of Char(10)

6 Number of requested problem statuses Input Binary(4)

7 Service provider network identifier Input Char(8)

8 Service provider control point name Input Char(8)

9 Problem severity Input Char(1)

10 Error code I/O Char(*)

 Optional Parameter Group:

 11 Note text Input Char(*)

12 Length of note text Input Binary(4)

 Default Public Authority: *USE
 Threadsafe: No

The Work with Problem (QPDWRKPB) API uses a problem log entry to analyze and prepare a

machine-detected hardware problem for reporting. Only local machine-detected problems that have an

OPEN, READY, PREPARED, or SENT status can be analyzed and prepared for reporting. Remote

problems that have an OPEN, READY, PREPARED, or SENT status can be prepared for reporting but

cannot be analyzed. This API does not analyze or prepare user-detected problems.

If a machine-detected problem is analyzed, the problem analysis program associated with the problem is

called to generate a problem analysis list identifying all the possible causes for the problem.

Authorities and Locks

None.

Required Parameter Group

Display panels

INPUT; CHAR(10)

 Whether or not displays are shown during problem analysis. Valid values are:

 *NO No displays are shown.

 Note: During problem analysis, if displays are usually shown for the type of hardware associated

with the problem, then the Point of Failure list is saved. This list is only saved if no other list of

causes currently associated with the problem exists.

*YES All displays are shown. This value is not allowed if the API is called in a batch job.

Problem ID number

INPUT; CHAR(10)

 The number the system generates to identify a problem.

Origin system

INPUT; CHAR(20)

 The node name of the origin system (the format is network-ID.control-point-name).

Current problem status

INPUT; CHAR(10)

 The current status of the problem. If the problem is found to be in a status other than what is

indicated, an error occurs. Valid values are:

 *OPENED The problem was identified and a problem record was created.

40 IBM Systems - iSeries: Problem Management APIs

*READY Problem analysis information has been added to the problem record.

*PREPARED The problem has been prepared for reporting.

*SENT The problem record was sent to a service provider, and the information needed to correct the

problem was not returned.

*ANSWERED The problem has been answered.

Requested problem statuses

INPUT; ARRAY of CHAR(10)

 The requested status for the problem.

Valid values are:

 *READY Analyze the problem. Valid for local machine-detected problems only.

*PREPARED Prepare the problem for reporting. The service provider network identifier, service provider

control point name, and problem severity parameters and the default contact database are used.

 Note: If you select *READY and *PREPARED, the final status is *PREPARED.

Number of requested problem statuses

INPUT; BINARY(4)

 The number of statuses entered for requested problem statuses parameter.

Service provider network identifier

INPUT; CHAR(8)

 The network identifier of the service provider system where the problem is to be sent.

Valid values are:

 *NETATR The network identifier of this system. Use *NETATR if the control point name is *IBMSRV.

Service provider control point name

INPUT; CHAR(8)

 The control point name of the service provider system where the problem is to be sent.

Valid values are:

 *IBMSRV IBM service support. This value cannot be used if the problem has an *OPENED status unless you

also have a requested problem status of *READY.

Name The control point name.

Problem severity

INPUT; CHAR(1)

 The severity of the problem.

Valid values are:

 1 A high severity level in which there is a critical affect on operations. A severity 1 problem requires a service

representative at the site, and the person solving the problem must work on the problem 24 hours a day until

the problem is solved or circumvented. If the problem needs more information, patching, or the problem must

be created again on the failing system, a service representative must be available to do these tasks

immediately. It is not a severity 1 if these and any other tasks cannot be performed immediately.

2 A medium severity level in which you are able to use the system, but your operations are severely restricted

by the problem.

3 A low severity level in which you are able to continue operations with some restrictions. The restrictions do

not have a critical effect on your operations.

4 The severity level is minimal because the problem causes little or no effect to your operation, or you have

found a way to circumvent the problem.

Problem Management APIs 41

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group

Note text

INPUT; CHAR(*)

 The field used to include a note stating that a problem originated with the service director. The

note will be included when the API is called.

Length of note text

INPUT; BINARY(4)

 The length of the text for the note text field. The text field for the note text field can be up to 80

characters long.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF7AA7 E Problem &1 not found.

CPF7A9C E Cannot work with the problem log at this time.

CPF7A9D E Problem log object &1 is missing.

CPF7A93 E Problem &2 currently in use by job &1.

CPF8C09 E &1 not defined as a service provider.

CPF8C24 E Error occurred while processing request.

CPF8C87 E Service provider &1.&2 not found.

CPF9308 E Unable to complete problem analysis. Reason code &1.

CPF931C E Problem analysis results not recorded in problem log.

CPF9310 E Problem analysis procedure was exited before it had completed.

CPF9313 E Requested procedure is not allowed.

CPF932A E Number of requested statuses is not valid.

CPF932B E *IBMSRV not allowed as service provider for problems in OPENED status.

CPF9320 E &1 to display panels is not valid.

CPF9321 E Panels cannot be displayed in a batch job.

CPF9322 E Current status &3 does not match problem status &4.

CPF9323 E Current status &1 is not valid.

CPF9324 E Problems on a remote system cannot be analyzed.

CPF9325 E Problem &1 has a status that is not allowed.

CPF9326 E Problem selected not allowed.

CPF9327 E Problem analysis procedure was exited before it had completed.

CPF9328 E Severity &1 is not valid.

CPF9329 E Requested status &1 is not valid.

CPF7845 E Error occurred while opening file &1.

CPF7846 E Error while processing file &1 in library &2.

CPF7847 E Error occurred while closing file &1 in library &2.

CPF7872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

42 IBM Systems - iSeries: Problem Management APIs

Top | “Problem Management APIs,” on page 1
APIs by category

Service APIs

The Service APIs include:

v

“Change Contact Information (QEDCHGIN) API” (QEDCHGIN) updates the contact information

that is supplied to a service provider when a problem is reported or a PTF is requested.

v

“Collect Hung Job Service Documentation (QPDETHNG) API” on page 47 (QPDETHNG) dumps

documentation associated with the hung job to help service determine the cause of the hang.

v

“Convert Format of Service Information (QPDETCVT) API” on page 48 (QPDETCVT) allows you

convert messages and liclog information to an XML document

v “Filter Problem (QSXFTRPB) API” on page 61 (QSXFTRPB) applies the currently active problem log

filter to a problem log entry.

v

“Retrieve Contact Information (QEDRTVCI) API” on page 62 (QEDRTVCI) returns the contact

information that is supplied to a service provider when a problem is reported or a PTF is requested.

v

“Retrieve Policy Data (QPDETRTV) API” on page 65 (QPDETRTV) retrieves policy data.

v “Retrieve Service Attributes (QESRSRVA) API” on page 68 (QESRSRVA) retrieves service information

such as the service provider and whether automatic problem analysis should be performed.

v

“Retrieve XML Service Information (QSCRXMLI) API” on page 74 (QSCRXMLI) Lists service

information like messages from a nonprogram message queue or messages sent to the program

message queue of a job, in XML format, and optionally stores the output in a stream file.

v

“Send Service Request (QPDETSND) API” on page 79 (QPDETSND) Will send the request to the

Service Monitor or to the Service Control job.

v

“Set User Policy (QPDETPOL) API” on page 83 (QPDETPOL) allows the changing of user policies

related to service.

 Top | “Problem Management APIs,” on page 1 | APIs by category

Change Contact Information (QEDCHGIN) API

 Required Parameter Group:

 1 Contact information Input Char(*)

2 Length of contact information Input Binary(4)

3 Format name Input Char(8)

4 Error Code I/O Char(*)

 Default Public Authority: *EXCLUDE
 Threadsafe: Yes

The Change Contact Information (QEDCHGIN) API updates the contact information that is supplied to

a service provider when a problem is reported or a PTF is requested.

Authorities and Locks

None.

Required Parameter Group

Contact information

INPUT; CHAR(*)

Problem Management APIs 43

#TOP_OF_PAGE
aplist.htm
#TOP_OF_PAGE
aplist.htm

The contact information that is changed.

Length of contact information

INPUT; BINARY(4)

 The total length in bytes of the contact information input variable.

Format name

INPUT; CHAR(8)

 The format of the contact information input data. The possible values are:

CNTC0100

This format updates all of the contact information. See “CNTC0100 Format” for details.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

CNTC0100 Format

Use this format when changing contact information. For detailed descriptions of the fields in this table,

see “Field Descriptions” on page 45

 Offset

Type Field Dec Hex

0 0 Char(36) Company name

36 24 Char(36) Contact name

72 48 Char(20) Primary telephone number

92 5C Char(20) Help desk or pager number

112 70 Char(20) Primary fax number

132 84 Char(20) Alternative fax number

152 98 Char(36) Street address line 1

188 BC Char(36) Street address line 2

224 E0 Char(36) Street address line 3

260 104 Char(36) City or locality

296 128 Char(36) State or province

332 14C Char(20) Country or region

352 160 Char(12) Postal code

364 16C Binary(4) Offset to primary electronic mail address

368 170 Binary(4) Length of primary electronic mail address

372 174 Binary(4) Offset to alternative electronic mail address

376 178 Binary(4) Length of alternative electronic mail address

380 17C Binary(4) Media for mailing PTFs

384 180 Char(10) National language version

* * Char(*) Primary electronic mail address

44 IBM Systems - iSeries: Problem Management APIs

Offset

Type Field Dec Hex

* * Char(*) Alternative electronic mail address

Field Descriptions

Alternative electronic mail address. The electronic mail (e-mail) address where information for the

person specified for the Contact can be sent, if the primary e-mail address is not available.

 *SAME The value does not change.

*NONE There is no alternative electronic mail address for the contact person.

character-value Specify the alternative electronic mail address.

Alternative fax number. The complete telephone number where information for the Contact can be faxed,

if the primary fax number is not available. This number should include the area code, exchange numbers,

and the extension.

 *SAME The value does not change.

*NONE There is no alternative fax number for the contact person.

character-value Specify the alternative fax number.

City or locality. The city or locality name for the location to which you want your service provider to

send parts or assistance.

 *SAME The value does not change.

character-value Specify the city or locality.

Company name. The name of the organization that owns or is responsible for this system. The name

should appear in this field as it appears on a mailing label.

 *SAME The value does not change.

character-value Specify the company name.

Contact name. The name of the person in your organization who is responsible for repairs and

maintenance on the system. This person may be called by the service provider with information or

assistance for a system problem. Also, parts or PTFs may be sent to this person.

 *SAME The value does not change.

character-value Specify the contact person’s name.

Country or region. The country or region where the company is located to which the service provider

should send parts or assistance.

 *SAME The value does not change.

character-value Specify the country or region.

Help desk or pager number. The complete Help desk or pager number. This number should include the

area code, exchange numbers, and the extension.

 *SAME The value does not change.

Problem Management APIs 45

*NONE There is no Help desk telephone number.

character-value Specify the Help desk telephone number.

Length of alternative electronic mail address. The length of the alternative electronic mail address.

Length of primary electronic mail address. The length of the primary electronic mail address.

Media for mailing PTFs. The media currently used for mailing program temporary fixes (PTFs). The

media options available are:

 0 = *SAME The value does not change.

1 =

*AUTOMATIC

The system will automatically select the media to be used for sending PTFs.

2 = *CDROM PTFs will be sent on CD-ROM media.

National language version. The national language version code currently being used for PTF cover

letters. If the cover letter you ordered has not been translated into this language the cover letter will be

sent in U.S. English.

 *SAME The value does not change.

*PRIMARY The language version for the currently installed primary national language on the system is used.

character-value Specify the preferred language version code to be used for PTF cover letters.

Offset to alternative electronic mail address. The offset to the alternative electronic mail address.

Offset to primary electronic mail address. The offset to the primary electronic mail address.

Postal code. The Postal code for the location to which the service provider should send parts or

assistance.

 *SAME The value does not change.

character-value Specify the Postal code.

Primary electronic mail address. The electronic mail (e-mail) address where information for the person

specified for the Contact can be sent.

 *SAME The value does not change.

*NONE There is no primary electronic mail address for the contact person.

character-value Specify the primary electronic mail address.

Primary fax number. The complete telephone number where information for the Contact can be faxed.

This number should include the area code, exchange numbers, and the extension

 *SAME The value does not change.

*NONE There is no primary fax number for the contact person.

character-value Specify the primary fax number.

Primary telephone number. The complete telephone number where the person named for the Contact

may be reached most often. This number should include the area code, exchange numbers, and the

extension.

 *SAME The value does not change.

46 IBM Systems - iSeries: Problem Management APIs

character-value Specify the primary telephone number.

State or province. The state or province names for the location to which you want your service provider

to send parts or assistance.

 *SAME The value does not change.

*NONE There is no State or province.

character-value Specify the State or province.

Street address lines 1, 2 and 3. The postal number and street name of the location to which you want

your service provider to send parts or assistance for the problem. This should not be a post office box.

 *SAME The value does not change.

*NONE No additional street address information is provided. This value is valid for lines 2 and 3, but not

for line 1.

character-value Specify the street address. Up to three lines of street address information can be specified. Each

line is a separate parameter element, which can be up to 36 characters long.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPF24B4 Severe error while addressing parameter list.

CPF3CF1 Error code parameter not valid.

CPF3CF2 Error(s) occurred during running of &1 API.

CPF3C19 Error occurred with receiver variable specified.

CPF3C21 Format name &1 is not valid.

CPF3C24 Length of the receiver variable is not valid.

CPF8C83 One or more required fields to add contact information missing. See previous messages.

API introduced: V5R4

 Top | “Problem Management APIs,” on page 1 | APIs by category

Collect Hung Job Service Documentation (QPDETHNG) API

 Required Parameter Group:

 1 Job name Input Char(10)

2 Job user Input Char(10)

3 Job number Input Char(6)

4 Error Code I/O Char(*)

 Default Public Authority: *EXCLUDE
 Threadsafe: Yes

The Collect Hung Job Service Documentation (QPDETHNG) API dumps documentation associated with

the hung job to help service determine the cause of the hang.

Problem Management APIs 47

#TOP_OF_PAGE
aplist.htm

Authorities and Locks

Authority to use the API

Special authorities needed: *JOBCTL and either *SERVICE or be authorized to the Service Dump

function of i5/OS through iSeries Navigator’s Application Administration support. The Change

Function Usage (CHGFCNUSG) command, with a function ID of QIBM_SERVICE_DUMP, can

also be used to change the list of users that are allowed to perform dump operations.

Required Parameter Group

Job name

INPUT; CHAR(10)

 The name of the hung job.

Job user

INPUT; CHAR(10)

 The user of the hung job.

Job number

INPUT; CHAR(6)

 The number of the hung job.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPF3CF1 Error code parameter not valid.

CPF3CF2 Error(s) occurred during running of * API.

CPFC1D Input variable length in parameter * not valid.

CPF3C1E Required parameter * omitted.

CPF3C17 Error occurred with input data parameter.

CPF3C21 Format name * is not valid.

CPF3C4A Value not valid for field *.

CPF3C4B Value not valid for field *.

CPF3C4C Value not valid for field *.

CPF9872 Program or service program * in library * ended. Reason code *.

API introduced: V5R4

 Top | “Problem Management APIs,” on page 1 | APIs by category

Convert Format of Service Information (QPDETCVT) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

48 IBM Systems - iSeries: Problem Management APIs

#TOP_OF_PAGE
aplist.htm

3 Format of receiver variable Input Char(8)

4 Information to convert Input Char(*)

5 Format of information to convert Input Char(8)

6 Error Code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: Yes

The Convert Format of Service Information(QPDETCVT) API will take the data input and convert it to

a string containing an XML object.

Authorities and Locks

Authority to use the API

No authorities needed.

Required Parameter Group

Receiver Variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. The data returned will be a

formatted XML string.

Length of receiver variable

INPUT; BINARY(4)

 The size of the area to contain the information returned, in bytes.

This parameter must specify the size of the variable you use for the receiver variable parameter.

If this parameter specifies a longer size, other parts of storage could be overwritten when the API

returns the information.

To determine how much information the API actually returns in response to this call, see the

bytes returned field in the receiver variable format. To determine how much information the API

could return if space were available, see the bytes available field.

If the bytes available is greater than the length supplied, no XML data will be returned and the

bytes returned field will be set to 8.

Format of receiver variable

INPUT; CHAR(8)

 The format of the information passed back to the caller of this API. The possible format names

are:

 CVTR0100 The information returned to the caller of this API. For more information, see “CVTR0100 - Format

for receiver variable” on page 50 for information to convert

Information to convert

INPUT; CHAR(*)

 The data to be converted.

Format of information to convert

INPUT; CHAR(8)

 The format of the information passed in the information to convert. The possible format names

are:

Problem Management APIs 49

“CVTS0100 -

Format for LIC

Log conversion”

The information to convert and the receiver variable are for LIC Log data typically associated with

the exit program specified in Start Watch (STRWCH) command or API. The format of the receiver

variable will be described by the XSD file specified in the returned XML object.

“CVTS0200 -

Format for

message

conversion

(STRWCH)” on

page 51

The information to convert and the receiver variable are for message data typically associated with

the Start Watch (STRWCH) command or API exit program. The format of the receiver variable will

be described by the XSD file specified in the returned XML object.

“CVTS0300 -

Format for

message

conversion

(QGYOLMSG)”

on page 52

The information to convert and the receiver variable are for message data typically associated with

the Open List of Messages (QGYOLMSG) API or the List Nonprogram Messages (QMHLSTM)

API. For more information, see “CVTS0300 - Format for message conversion (QGYOLMSG)” on

page 52 for information to convert. The format of the receiver variable will be described by the

XSD file specified in the returned XML object.

“CVTS0400 -

Format for

message

conversion

(QGYOLJBL)” on

page 53

The information to convert and the receiver variable are for message data typically associated with

the Open List of Job Log Messages (QGYOLJBL) API or the List Job Log Messages (QMHLJOBL)

API. For more information, see “CVTS0400 - Format for message conversion (QGYOLJBL)” on

page 53 for information to convert. The format of the receiver variable will be described by the

XSD file specified in the returned XML object.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

CVTR0100 - Format for receiver variable

The following table shows the format of the returned information. For a detailed description of each field,

see “Field Descriptions” on page 54.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) XML data length

12 C CHAR(*) XML data

CVTS0100 - Format for LIC Log conversion

The following table shows the input for converting a LIC Log to XML. Any data not available should be

initialized with ’00’x.
For a detailed description of each field, see “Field Descriptions” on page 54

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of watch information

50 IBM Systems - iSeries: Problem Management APIs

QGYOLMSG.htm
QMHLSTM.htm
QGYOLJBL.htm
QMHLJOBL.htm

Offset

Type Field Dec Hex

4 4 CHAR(4) LIC Log major code

8 8 CHAR(4) LIC Log minor code

12 C CHAR(8) LIC Log identifier

20 14 CHAR(8) LIC Log timestamp

28 1C CHAR(8) TDE number

36 24 CHAR(16) Task name

52 34 CHAR(30) Server type

82 52 CHAR(2) Exception ID

84 54 CHAR(10) LIC job name

94 5E CHAR(10) LIC job user name

104 68 CHAR(6) LIC job number

110 6E CHAR(4) Reserved

114 72 CHAR(8) Thread ID

122 7A CHAR(8) LIC module compile binary timestamp

130 82 CHAR(8) LIC module offset

138 8A CHAR(8) LIC module RU name

146 92 CHAR(48) LIC module name

194 DA CHAR(128) LIC module entry point name

322 142 CHAR(2) Reserved

324 144 BINARY(4) Offset to comparison data

328 148 BINARY(4) Length of comparison data

* * CHAR(*) LIC Log comparison data

CVTS0200 - Format for message conversion (STRWCH)

The following table shows the input for converting messages received from the Start Watch command or

API to XML. Any data not available should be initialized with ’00’x.

For a detailed description of each field, see “Field Descriptions” on page 54.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of watch information

4 4 CHAR(7) Message ID

11 B CHAR(1) Reserved

12 C CHAR(10) Message queue name

22 16 CHAR(10) Message queue library

32 20 CHAR(10) Job name

42 2A CHAR(10) Job user name

52 34 CHAR(6) Job number

58 3A CHAR(4) Reserved

Problem Management APIs 51

Offset

Type Field Dec Hex

62 3E CHAR(256) Sending program name

318 13E CHAR(10) Sending module name

328 148 BINARY(4) Offset to sending procedure name

332 14C BINARY(4) Length of sending procedure name

336 150 CHAR(10) Receiving program name

346 15A CHAR(10) Receiving module name

356 164 BINARY(4) Offset to receiving procedure name

360 168 BINARY(4) Length of receiving procedure name

364 16C BINARY(4) Message severity

368 170 CHAR(10) Symbolic message type

378 17A CHAR(8) Message timestamp

386 182 CHAR(4) Message key

390 186 CHAR(10) Message file name

400 190 CHAR(10) Message file library

410 19A CHAR(2) Reserved

412 19C BINARY(4) Offset to comparison data

416 1A0 BINARY(4) Length of comparison data

420 1A4 CHAR(10) Compare against

430 1AE CHAR(10) Reserved

432 1B0 BINARY(4) Comparison data CCSID

436 1B4 BINARY(4) Offset where comparison data was found

440 1B8 BINARY(4) Offset to message replacement data

444 1BC BINARY(4) Length of message replacement data

448 1C0 BINARY(4) Replacement data CCSID

* * CHAR(*) Sending procedure name

* * CHAR(*) Receiving procedure name

* * CHAR(*) Message comparison data

* * CHAR(*) Message replacement data

CVTS0300 - Format for message conversion (QGYOLMSG)

The following table shows the input for converting messages received from the Open List of Messages in

format LSTM0100 to XML. For a detailed description of each field, For a detailed description of each

field, see “Field Descriptions” on page 54.
Any data not available should be initialized with ’00’x.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of fixed header

4 4 BINARY(4) Offset to first message

52 IBM Systems - iSeries: Problem Management APIs

Offset

Type Field Dec Hex

8 8 BINARY(4) Number of messages to convert

These fields repeat for

each message identifier

specified.

BINARY(4) Displacement to the next entry

BINARY(4) Displacement to fields

BINARY(4) Number of fields

BINARY(4) Message severity

CHAR(7) Message identifier

CHAR(2) Message type

CHAR(4) Message key

CHAR(10) Message file name

CHAR(10) Message file library specified at send time

CHAR(10) Message queue

CHAR(10) Message queue library used

CHAR(7) Date sent

CHAR(6) Time Sent

CHAR(6) Microseconds

CHAR(*) Reserved

 These fields repeat for each identifier field specified. BINARY(4) Displacement to the

next field information

BINARY(4) Length of field

information

BINARY(4) Identifier field

CHAR(1) Type of data

CHAR(1) Status of data

CHAR(14) Reserved

BINARY(4) Length of data

CHAR(*) Data

CHAR(*) Reserved

CVTS0400 - Format for message conversion (QGYOLJBL)

The following table shows the input for converting messages received from the Open list of Joblog

Messages in format OLJL0100 to XML. For a detailed description of each field, see “Field Descriptions”

on page 54.
Any data not available should be initialized with ’00’x.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of fixed header

4 4 BINARY(4) Offset to first message

Problem Management APIs 53

Offset

Type Field Dec Hex

8 8 BINARY(4) Number of messages to convert

12 C CHAR(10) Job name

22 16 CHAR(10) Job user name

32 20 CHAR(6) Job number

These fields repeat for

each message identifier

specified.

BINARY(4) Displacement to the next entry

BINARY(4) Displacement to fields

BINARY(4) Number of fields

BINARY(4) Message severity

CHAR(7) Message identifier

CHAR(2) Message type

CHAR(4) Message key

CHAR(10) Message file name

CHAR(10) Message file library specified at send time

CHAR(7) Date sent

CHAR(6) Time sent

CHAR(6) Microseconds

CHAR(2) Message type

CHAR(*) Reserved

 These fields repeat for each identifier field

specified.

BINARY(4) Displacement to the next

field information returned

BINARY(4) Length of field

information returned

BINARY(4) Identifier field

CHAR(1) Type of data

CHAR(1) Status of data

CHAR(14) Reserved

BINARY(4) Length of data

CHAR(*) Data

CHAR(*) Reserved

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Compare against. The part of the message the data specified in message comparison data field was

compared against. This field is set to blanks if zero was specified for the length of comparison data field.

The possible values are:

 *MSGDTA The message comparison data was compared against the message replacement data.

54 IBM Systems - iSeries: Problem Management APIs

*FROMPGM The message comparison data was compared against the sending program name.

*TOPGM The message comparison data was compared against the receiving program name.

Comparison data CCSID. The coded character set identifier (CCSID) of the message comparison data.

Data. The data associated with the specified identifier field.

Date Sent. The date on which the message was sent, in CYYMMDD (century, year, month, and day)

format.

Displacement to fields. The displayment displacement, in bytes, from the beginning of the repeating

information for each message variable to the beginning of the first repeating identifier field of the

CVTS0300 or CVTS0400 format.

Displacement to the next entry. The displacement, in bytes, from the beginning of the first message entry

to the beginning of the next message entry. If there is no next entry, this field should be set to 0.

Displacement to the next field information. The displacement, in bytes, from the beginning of the first

message entry to the beginning of the next repeating identifier field of the CVTS0300 format.

Exception ID. The exception that caused the Log entry to be requested. This is a 2-byte hexadecimal field

formed by concatenating to the high-order 1-byte exception group number a low-order 1-byte exception

subtype number. Exception identifier is binary zeros if the LIC Log entry was not requested as a result of

an exception.

Identifier field. The field returned. See QGYOLMSG - Open List of Messages, the Valid Field Identifiers for

the list of valid field identifiers.

Job name. The name of the job that sent the message.

Job number. The job number (000001-999999) to further qualify the job name and user name of the job

that sent the message

Job user name. The user name of the job that sent the message.

Length of comparison data. The length of the user specified text which was compared against the

message or LIC Log event data.

Length of data. The length of the data returned in the data field, in bytes. If no data is returned, this

value will be set to 0.

Length of field information. The total length of information in this field, in bytes.

Length of fixed header. The total length of fixed header information, in bytes. The possible values are:

 12 - when using format CVTS0300

38 - when using format CVTS0400

Length of message replacement data. The length of the message replacement data, in bytes.

Length of receiving procedure name. The length of the procedure the message was sent to when the

message was sent to a procedure within an ILE program. This field is set to zero if the message was sent

to an original program model (OPM) program or when the message is sent to a nonprogram message

queue.

Problem Management APIs 55

Length of sending procedure name. The length of the procedure sending the message when the message

was sent from a procedure within an ILE program. This field is set to zero if the message was sent from

an original program model (OPM) program.

Length of watch information. The length of the Information to convert parameter , including the 4-byte

length of this field, associated with the the data in format CVTS0100 or format CVTS0200.

LIC job name. The name of the job which requested the Log entry. LIC job name is blank (hex 40s) if the

Log entry was not requested by a job.

LIC job number. The job number (000001-999999) to further qualify the job name and user name of the

job which requested the LIC Log entry. LIC job number is blank (hex 40s) if the LIC Log entry was not

requested by a job.

LIC job user name. The user name of the job which requested the LIC Log entry. LIC user name is blank

(hex 40s) if the LIC Log entry was not requested by a job.

LIC Log comparison data. The user specified text string used to compare against the entry data of the

watched for log entry. This is an optional field.

LIC Log identifier. The LIC Log entry identifier of the LIC Log that occurred. The LIC Log entry

identifier is binary zeros if the entry was not added to the LIC Log by the time this event was signalled.

LIC Log major code. The major code of the LIC Log that occurred.

LIC Log minor code. The minor code of the LIC Log that occurred.

LIC Log timestamp. The binary timestamp of when the entry was requested to be added to the LIC Log.

The format for this field is the system time-stamp format.

LIC module compile binary timestamp. The binary timestamp of when the LIC module was compiled.

The format for this field is the system time-stamp format.

LIC module entry point name. The name of the entry point which requested the LIC Log entry. If the

entry point name is greater than 128 characters, the LIC module entry point name is truncated to 128

characters.

LIC module name. The name of the module which requested the LIC Log entry. If the module name is

greater than 48 characters, the LIC module name is truncated to 48 characters.

LIC module offset. The byte offset into the LIC module text which requested the LIC Log entry.

LIC module RU name. The replaceable unit name of the module which requested the LIC Log entry. LIC

module RU name is always in upper case EBCDIC.

Message comparison data. The user specified text string used to compare against the entry data of the

watched for message ID.

Message file library. The name of the library containing the message file.

Message file library specified at send time. The name of the library containing the message file as

specified when the message was sent. If *CURLIB or *LIBL was specified for the library when the

message was sent, that value is returned as the library here.

Message file name. The name of the message file that was used to send the message.

56 IBM Systems - iSeries: Problem Management APIs

Message ID. The identifier of the message that occurred.

Message identifier. The identifying code of the message listed. If an immediate message is listed, this

field is set to blanks.

Message key. The message reference key of the message that occurred. This field is set to blanks if

*JOBLOG is specified for the message queue name.

Message queue. The name of the message queue where the message was listed.

Message queue library. The name of the library where the message queue is located. This field is set to

blanks if *JOBLOG is specified for the message queue name.

Message queue library used. The actual library that contains the message queue.

Message queue name. The name of the message queue where the message was sent. The following

special values are accepted:

 Value Message Type

*JOBLOG The message ID was found in the job specified in the job name, user name and job number fields.

Message replacement data. The values for substitution variables in the message sent.

Message severity. The severity code, ranging from 00 through 99, of the message.

Message timestamp. The timestamp of when the message was sent. The format for this field is the

system time-stamp format.

Message type. The type of message listed. The possible values and their meanings follow:

 Value Message Type

01 Completion

02 Diagnostic

04 Informational

05 Inquiry

06 Sender’s copy

08 Request

10 Request with prompting

14 Notify, exception already handled when API is called

15 Escape, exception already handled when API is called

16 Notify, exception not handled when API is called

17 Escape, exception not handled when API is called

21 Reply, not checked for validity

22 Reply, checked for validity

23 Reply, message default used

24 Reply, system default used

25 Reply, from system reply list

26 Reply, from exit program

Problem Management APIs 57

Microseconds. The microseconds part of the time sent.

Number of fields. The number of identifier fields provided to the application

Number of messages to convert. The number of messages provided to the application

Offset to comparison data. The offset to the field that holds the comparison data. If there was no

comparison data, this field should be set to 0.

Offset to first message. The offset , in bytes, from the beginning of the message information to convert

variable to the beginning of the first repeating message entry of the CVTS0300 or CVTS0400 format.

Offset to message replacement data. The offset to the field that holds the replacement data.

Offset to receiving procedure name. The offset to the field that holds the procedure the message was

sent to when the message was sent to a procedure within an ILE program. This field is set to zero if the

message was sent to an original program model (OPM) program or when the message is sent to a

nonprogram message queue.

Offset to sending procedure name. The offset to the field that holds the procedure sending the message

when the message was sent from a procedure within an ILE program. This field is set to zero if the

message was sent from an original program model (OPM) program.

Offset where comparison data was found. The offset in the message replacement data, the sending

program name or the receiving program name, where the message comparison data was found. This field

is set to zero if zero was specified for the length of comparison data field.

Receiving module name. The name of the module receiving the message when the message was sent to a

procedure within an ILE program. If the message was sent to an original program model (OPM)

program, this field is set to blanks. This field will be blank when the message is sent to a nonprogram

message queue.

Receiving procedure name. The name of the procedure the message was sent to when the message was

sent to a procedure within an ILE program. A nested procedure name has each procedure name

separated by a colon. The outermost procedure name is identified first followed by the procedures it

contains. The innermost procedure is identified last in the string.

Receiving program name. The name of the program the message was sent to, or the Integrated Language

Environment (ILE) program name that contains the procedure receiving the message. This field will be

blank when the message is sent to a nonprogram message queue.

Replacement data CCSID. The coded character set identifier (CCSID) that the message data is in. This

only applies to the part of the replacement data that corresponds to a convertible character data type

(*CCHAR). All other replacement data has not be converted and can be considered to have a CCSID of

65535. If there is no *CHAR replacement data, this field may be set to 65535.

For more information about message handler and its use of CCSIDS, see CCSIDS: Message Support in the

Gobalization topic. For more information about the *CCHAR field type, see the Add Message Description

(ADDMSGD) command.

Reserved. A reserved field. This field must be set to hexadecimal or binary zero.

Sending module name. The name of the module the sending message when the sender is a procedure

within an ILE program.

58 IBM Systems - iSeries: Problem Management APIs

Sending procedure name. The name of the procedure sending the message when the sender is a

procedure within an ILE program. A nested procedure name has each procedure name separated by a

colon. The outermost procedure name is identified first followed by the procedures it contains. The

innermost procedure is identified last in the string.

Sending program name. The program name or ILE program name that contains the procedure sending

the message.

Server type. The type of server that requested the LIC Log entry. Server type is blank (hex 40s) if the LIC

Log entry was not requested by a server.

Status of data. The status of the data listed for this message. Possible values and their meanings follow:

 blank The data returned is complete.

A The caller of the API was not authorized to view the data. This occurs when the caller of the API is not

authorized to the message file or message file library containing a stored message being listed.

D The data was damaged. This occurs when the message file or library specified at send time for a stored

message is damaged when the API is called.

U The data was unavailable. This occurs when the message file or library specified at send time for a

stored message is exclusively used by another process when the API is called.

N The data was not found. This occurs when the message file or library specified at send time for a

stored message cannot be found or resolved when the API is called.

This field is applicable to the field identifiers that are retrieved from the message file for a stored

message. A description of the action that occurs for specific field identifiers when the status of data field

is not blank follows:

 0101 When the status of data field is not blank, the alert option field identifier contains blanks.

0301, 0302 When the status of data field is not blank, these message field identifiers contain message text

about the problem encountered while attempting to access the message file. Both fields have the

replacement data substituted.

0401, 0402, 0403,

0404

When the status of data field is not blank, these message help field identifiers contain the text of

the message regarding the problem encountered while attempting to access the message file. All

fields have the replacement data substituted. The message help with formatting characters and

message help with replacement data and formatting characters field identifiers also have the

message formatting characters included.

0501 When the status of data field is not blank, the default reply field identifier contains the system

default reply.

0801 When the status of data field is not blank, the message file library used field identifier contains

blanks.

This field is also applicable to the various sending information fields (identifiers 0601, 0603) when a

problem is encountered while attempting to retrieve this information. When one of these fields cannot be

retrieved from the message:

v The status of data field is set to N.

v The length of data field is set to 0.

The status of data field is always blank for the other field identifiers. The length of data field is zero.

Symbolic message type. The type assigned to the message when it was sent. The possible values are:

 *COMP Completion

Problem Management APIs 59

*DIAG Diagnostic

*ESCAPE Escape

*INFO Informational

*INQ Inquiry

*NOTIFY Notify

*RQS Request

*STATUS Status

Task name. The name of the task which requested the LIC Log entry. Task name is blank (hex 40s) if the

LIC Log entry was not requested by a task.

TDE number. The number of the task dispatching element (TDE) which requested the LIC Log entry.

Thread ID. The thread which requested the LIC Log entry. Thread identifier is binary zeros if the LIC

Log entry was not requested by a thread.

Time sent. The time at which the message being listed was sent, in HHMMSS (hour, minute, and second)

format.

Type of data. The type of data returned.

 C The data is returned in character format.

B The data is returned in binary format.

M The data is returned in a mixed form

XML data. The XML data being returned.

XML data length. The length of the XML object being returned.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPF0CC1 Error initializing the XML parser.

CPF3C21 Format name &1 is not valid.

CPF3C24 Length of the receiver variable is not valid.

CPF3C36 Number of parameters, &1, entered for this API was not valid.

CPF3CF1 Error code parameter not valid.

CPF3CF2 Error(s) occurred during running of &1 API.

API introduced: V5R4

 Top | Problem Management APIs |APIs by category

60 IBM Systems - iSeries: Problem Management APIs

#TOP_OF_PAGE
aplist.htm

Filter Problem (QSXFTRPB) API

 Required Parameter Group:

 1 Problem log identifier Input Char(30)

2 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: No

The Filter Problem (QSXFTRPB) API applies the currently active problem log filter to a problem log entry.

The system value for the problem filter (QPRBFTR) identifies the active filter currently being used.

Multiple filters can be defined, but only one can be active at a time. The QSXFTRPB API can be used at

any time.

Required Parameter Group

Problem log identifier

INPUT; CHAR(30)

 The problem to be retrieved, updated, and sent through the active filter. The problem log

identifier has two parts: a problem ID number and the origin system. See “Format for the

Problem Log Identifier.”

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Authorities and Locks

API Public Authority

*USE

Format for the Problem Log Identifier

 Offset

Type Field Dec Hex

0 0 CHAR(10) Problem ID number

10 A CHAR(20) Origin system

Field Descriptions

Origin system. The node name of the origin system (the format is network ID.control point name).

Problem ID number. The number the system generates to identify a problem.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF7AA7 E Problem &1 not found.

CPF7A82 E Error occurred while applying the problem filter.

Problem Management APIs 61

Message ID Error Message Text

CPF7A83 E Problem filter &1/&2 not found.

CPF7A93 E Problem &2 currently in use by job &1.

CPF8160 E &8 damage on &4 type &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

 Top | “Problem Management APIs,” on page 1
APIs by category

Retrieve Contact Information (QEDRTVCI) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name Input Char(8)

4 Error Code I/O Char(*)

 Default Public Authority: *EXCLUDE
 Threadsafe: Yes

The Retrieve Contact Information (QEDRTVCI) API returns the contact information that is supplied to a

service provider when a problem is reported or a PTF is requested.

Authorities and Locks

None.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of receiver variable parameter may be

specified up to the size of the receiver variable specified in the user program. If the length of

receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

 The format of the contact information to be returned. The possible values are:

CNTI0100

This format returns all of the contact information. See “CNTI0100 Format” on page 63 for

details.

Error code

I/O; CHAR(*)

62 IBM Systems - iSeries: Problem Management APIs

#TOP_OF_PAGE
aplist.htm

The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

CNTI0100 Format

The following information is returned by this API when CNTI0100 format. For detailed descriptions of

the fields in the table, see “Field Descriptions”

 Offset

Type Field Dec Hex

0 0 Binary(4) Bytes returned

4 4 Binary(4) Bytes available

8 8 Char(36) Company name

44 2C Char(36) Contact name

80 50 Char(20) Primary telephone number

100 64 Char(20) Help desk or pager number

120 78 Char(20) Primary fax number

140 8C Char(20) Alternative fax number

160 A0 Char(36) Street address line 1

196 C4 Char(36) Street address line 2

232 E8 Char(36) Street address line 3

268 10C Char(36) City or locality

304 130 Char(36) State or province

340 154 Char(20) Country or region

360 168 Char(12) Postal code

372 174 Binary(4) Offset to primary electronic mail address

376 178 Binary(4) Length of primary electronic mail address

380 17C Binary(4) Offset to alternative electronic mail address

384 180 Binary(4) Length of alternative electronic mail address

388 184 Binary(4) Media for mailing PTFs

392 188 Char(4) National language version

* * Char(*) Primary electronic mail address

* * Char(*) Alternative electronic mail address

Field Descriptions

Alternative electronic mail address. The electronic mail (e-mail) address where information for the

person specified for the Contact can be sent, if the primary e-mail address is not available. The e-mail is

returned as UTF8. The following special values might be returned:

 *NONE There is no alternative electronic mail address for the contact person.

Alternative fax number. The complete telephone number where information for the Contact can be faxed,

if the primary fax number is not available. This number should include the area code, exchange numbers,

and the extension. The following special values might be returned:

Problem Management APIs 63

*NONE There is no alternative fax number for the contact person.

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

City or locality. The City or locality name for the location to which you want your service provider to

send parts or assistance.

Company name. The name of the organization that owns or is responsible for this system. The name

should appear in this field as it appears on a mailing label.

Contact name. The name of the person in your organization who is responsible for repairs and

maintenance on the system. This person may be called by the service provider with information or

assistance for a system problem. Also, parts or PTFs may be sent to this person.

Country or region. The Country or region where the company is located to which the service provider

should send parts or assistassnce.

Help desk or pager number. The complete Help desk or pager number. This number should include the

area code, exchange numbers, and the extension. The following special values might be returned:

 *NONE There is no Help desk or pager number.

Length of alternative electronic mail address. The length of the alternative electronic mail address.

Length of primary electronic mail address. The length of the primary electronic mail address.

Media for mailing PTFs. The media currently used for mailing program temporary fixes (PTFs). The

media options available are:

 1 =

*AUTOMATIC

The system will automatically select the media to be used for sending PTFs.

2 = *CDROM PTFs will be sent on CD-ROM media.

National language version. The national language version code currently being used for PTF cover

letters. If the cover letter you ordered has not been translated into this language the cover letter will be

sent in U.S. English.

Offset to alternative electronic mail address. The offset to the alternative electronic mail address.

Offset to primary electronic mail address. The offset to the primary electronic mail address.

Postal code. The Postal code for the location to which the service provider should send parts or

assistance.

Primary electronic mail address. The electronic mail (e-mail) address where information for the person

specified for the Contact can be sent. The e-mail is returned as UTF8. The following special values might

be returned:

 *NONE There is no primary electronic mail address for the contact person.

64 IBM Systems - iSeries: Problem Management APIs

Primary fax number. The complete telephone number where information for the Contact can be faxed.

This number should include the area code, exchange numbers, and the extension. The following special

values might be returned:

 *NONE There is no primary fax number for the contact person.

Primary telephone number. The complete telephone number where the person named for the Contact

may be reached most often. This number should include the area code, exchange numbers, and the

extension.

State or province. The state or province names for the location to which you want your service provider

to send parts or assistance. The following special values might be returned:

 *NONE There is no State or province.

Street address lines 1, 2 and 3. The postal number and street name of the location to which you want

your service provider to send parts or assistance for the problem. This should not be a post office box.

The following special values might be returned:

 *NONE No additional street address information is provided. This value is valid for lines 2 and 3, but not

for line 1.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPF24B4 Severe error while addressing parameter list.

CPF3CF1 Error code parameter not valid.

CPF3CF2 Error(s) occurred during running of &1 API.

CPF3C19 Error occurred with receiver variable specified.

CPF3C21 Format name &1 is not valid.

CPF3C24 Length of the receiver variable is not valid.

CPF8C81 No Contact Information is available.

API introduced: V5R4

 Top | “Problem Management APIs,” on page 1 | APIs by category

Retrieve Policy Data (QPDETRTV) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name Input Char(8)

4 Error Code I/O Char(*)

 Default Public Authority: *EXCLUDE
 Threadsafe: Yes

Problem Management APIs 65

#TOP_OF_PAGE
aplist.htm

The Retrieve Policy Data (QPDETRTV) API retrieves policy data.

Authorities and Locks

Special Authority to use the API

 *SERVICE

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that will receive the policy information being retrieved. For the format, see “Format

of Data Returned.”

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable described in Format of data returned. If the length is larger

than the size of the receiver variable, the results may not be predictable. The minimum length is 8

bytes.

Format name

INPUT; CHAR(8)

 The format of the information to be returned. You must use one of the following format names:

RPOL0100

Retrieve service cleanup interval.

RPOL0200

Retrieve problem documentation level.

RPOL0300

Retrieve maximum PTF order size.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of Data Returned

The receiver variable holds the policy information returned.

RPOL0100 - Retrieve service cleanup interval

 Offset

Type Field Dec Hex

0 0 Binary(4) Bytes returned

4 4 Binary(4) Bytes available

8 8 Binary(4) Number of days

66 IBM Systems - iSeries: Problem Management APIs

RPOL0200 - Retrieve problem documentation level

 Offset

Type Field Dec Hex

0 0 Binary(4) Bytes returned

4 4 Binary(4) Bytes available

8 8 Char(10) Problem documentation level

RPOL0300 - Retrieve maximum PTF order size

 Offset

Type Field Dec Hex

0 0 Binary(4) Bytes returned

4 4 Binary(4) Bytes available

8 8 Binary(4) Maximum PTF order size over LAN

12 C Binary(4) Maximum PTF order size over a modem

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Maximum PTF order size over a modem. The maximum size in megabytes for a PTF order to be

delivered over a modem. A value of -1 indicates PTF orders of any size are delivered over a modem. A

value of 100 MB (MB equals approximately 1 000 000 bytes) is used if a lower value is retrieved.

Maximum PTF order size over LAN. The maximum size in megabytes for a PTF order to be delivered

over the local area network (LAN). A value of -1 indicates PTF orders of any size are delivered over the

LAN. A value of -1 is used if a value lower than 100 MB (MB equals approximately 1 000 000 bytes) is

retrieved.

Number of days. The number of days an object covered by this policy is allowed to exist before being

deleted by the Service Monitor. Objects covered by this policy are: Service Monitor logs and Integrated

File System files created by the FFDC process.

Problem documentation level. Indicates how much problem documentation should be included when

problems are automatically reported to the service provider Only the following values are returned:

 *BASE Minimal documentation is sent in the service request record. No additional data will be uploaded.

*DEFAULT Minimal documentation will be sent in the service request record. If no fix for the problem is found,

additional documentation will be automatically uploaded. Additional documentation may include

information such as joblogs and service dumps.

Error Messages

The following messages may be sent from this function:

Problem Management APIs 67

Message ID Error Message Text

CPF3CF1 Error code parameter not valid.

CPF3CF2 Error(s) occurred during running of * API.

CPF3C1D Input variable length in parameter * not valid.

CPF3C1E Required parameter * omitted.

CPF3C17 Error occurred with input data parameter.

CPF3C21 Format name * is not valid.

CPF3C4A Value not valid for field *.

CPF3C4B Value not valid for field *.

CPF3C4C Value not valid for field *.

CPF9872 Program or service program * in library * ended. Reason code *.

 API introduced: V5R4

 Top | “Problem Management APIs,” on page 1 | APIs by category

Retrieve Service Attributes (QESRSRVA) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Number of service attribute keys Input Binary(4)

4 Service attribute keys Input Array(*) of Binary(4)

5 Error code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: No

The Retrieve Service Attributes (QESRSRVA) API copies specified service attributes into the receiver

variable.

Authorities and Locks

None.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable in which this API returns the data. See “Receiver Variable Format” on page 69

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. The length of the receiver variable is 16 times the number of

service attributes to be retrieved, plus the length of each service attribute retrieved, plus 4.

As an example, the size of the receiver variable needed to retrieve the automatic problem analysis

and automatic problem reporting attributes is (16 * 2) + 1 + 1 + 4.

Note: If this value is larger than the actual size of the receiver variable, the results may not be

predictable.

Number of service attribute keys

INPUT; BINARY(4)

68 IBM Systems - iSeries: Problem Management APIs

#TOP_OF_PAGE
aplist.htm

The total number of service attributes to retrieve.

Service attribute keys

INPUT: ARRAY(*) of BINARY(4)

 A list of keys that identify which service attributes to retrieve. The keys and their associated

service attributes are:

 Key Service attribute

1 Automatic problem analysis

2 Automatic problem reporting

3 Service provider to report problem

4 PTF install type

5 Critical message recipients

6 Send data packets

7 Copy PTFs

10 System-disabled reporting connection number

11 System-disabled call-back connection number

12 Service provider connection number

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Receiver Variable Format

The format of the receiver variable is:

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of service attributes retrieved

4 4 ARRAY(*) of

BINARY(4)

Offsets to service attribute templates

* * CHAR(*) Service attribute templates

Field Descriptions

Number of service attributes retrieved.

The number of service attributes the API put into the receiver variable. This number will be less than the

number requested if the receiver variable is too small.

Offsets to service attribute templates. A list of values. Each value is an offset from the beginning of the

receiver variable to a service attribute template.

Service attribute templates. The templates of the requested service attributes. There is one template for

each service attribute retrieved. The formats of the templates are shown in “Service Attribute Template

Format” on page 70

Problem Management APIs 69

Service Attribute Template Format

The format of a service attribute template is:

 Offset

Type Field Dec Hex

0 0 BINARY(4) Service attribute key

4 4 CHAR(1)

Data type of service attribute

5 5 CHAR(1)

Status of service attribute

6 6 CHAR(2)

Reserved

8 8 BINARY(4)

Length of service attribute

12 C CHAR(*) Service attribute

Field Descriptions

Data type of service attribute. The type of data returned.

 0 The service attribute was not available.

1 The service attribute is returned in character format.

2 The service attribute is returned in binary format.

Length of service attribute. The length of the service attribute. If the service attribute was not available,

this value is 0.

Reserved. This field will contain null characters.

Service attribute. The requested service attribute. See “Service Attributes Format” for the formats of the

service attributes.

Service attribute key. A value that identifies the service attribute that was retrieved.

Status of service attribute. Whether the service attribute was available for retrieval.

 0 The service attribute was available.

1 The service attribute was locked.

Service Attributes Format

The Service Attributes Format has the following self-explanatory keys to solve problems:

v “Key 1—Automatic Problem Analysis” on page 71

v “Key 2—Automatic Problem Reporting” on page 71

v “Key 3—Service Provider to Report Problem” on page 71

v “Key 4—PTF Install Type” on page 72

v “Key 5—Critical Message Recipients” on page 72

v “Key 6—Send Data Packets” on page 73

v

Key 7—Copy PTFs (page “Key 7—Copy PTFs” on page 73)

v “Key 10—System-Disabled Reporting Connection Number” on page 73

v “Key 11—System-Disabled Call-Back Connection Number” on page 74

v “Key 12—Service Provider Connection Number” on page 74

70 IBM Systems - iSeries: Problem Management APIs

Key 1—Automatic Problem Analysis

 Offset

Type Field Dec Hex

0 0 CHAR(1) Attribute

Field Descriptions

Attribute. The problem analysis attribute specifies when to analyze problems.

 0 Problems will not be analyzed when they are logged. Instead, the operator must analyze the problem from

the QSYSOPR message queue or from the Work with Problems (WRKPRB) command.

1 The system will analyze the problem as soon as the problem is logged.

Key 2—Automatic Problem Reporting

 Offset

Type Field Dec Hex

0 0 CHAR(1) Attribute

Field Descriptions

Attribute. The problem reporting attribute specifies when to report problems.

 0 Problems will not be reported when they are logged. Instead, the operator must report the problem from the

QSYSOPR message queue or from the Work with Problems (WRKPRB) command.

1 If the problem analysis attribute specifies that problems are to be analyzed as soon as the problem is logged,

the system will report the problem to the service provider specified in the Service provider to report problem

attribute as soon as the problem is analyzed.

Key 3—Service Provider to Report Problem

 Offset

Type Field Dec Hex

0 0 CHAR(1) Name format

1 1 CHAR(17) Service provider name

Field Descriptions

Name format. This is an ’A’ to show that the name is an SNA node name.

Service provider name. This identifies the service provider to report problems to if the automatic

problem reporting’ attribute specifies that problems are to be reported as soon as a problem is analyzed.

If this field contains *IBMSRV, problems will be sent to IBM. Otherwise, the first eight characters of this

field contain the control point name of the service provider. The next nine characters contain either the

network identifier of the service provider, or *LCLNETID if the network identifier of the service provider

is the same as that of the system that is reporting the problem.

Problem Management APIs 71

Key 4—PTF Install Type

 Offset

Type Field Dec Hex

0 0 CHAR(10) Type of PTF install

Field Descriptions

Type of PTF install. This service attribute determines whether the immediate PTFs are applied

immediately or delayed.

 *DLYIPL All PTFs will be marked for delayed apply and the system will be IPLed.

*DLYALL All PTFs will be marked for delayed apply and the system will not be IPLed.

*IMMONLY The immediate PTFs will be applied and the delayed PTFs marked for apply at the next IPL.

*IMMDLY Only the immediate PTFs will be applied and the system will not be IPLed.

Key 5—Critical Message Recipients

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of entries

4 4 ARRAY(50) of

CHAR(10)

User list

Field Descriptions

Number of entries. This is the number of entries in the user list.

User list. This is an ordered list of user identifiers and user classes. If the system detects a critical

condition such as a DASD failure, and the first entry in this list is a user identifier, and that user is

signed on, the system will send a break message to that user. If the first entry is a user class, the system

will try to send a break message to all the users in that class that are signed on.

If the specified user is not signed on, or none of the users in the user class are signed on, the system tries

to send the break message to the user identifier or user class in the second entry of this list.

The system keeps trying to find a user that is signed on until it reaches the end of the list.

This function is only used if problem analysis routines are run automatically at the time of failure (the

ANZPRBAUTO service attribute is *YES).

 *SYSOPR All users of user class *SYSOPR will receive a message when a critical message is sent.

*SECOFR All users of user class *SECOFR will receive a message when a critical message is sent.

*SECADM All users of user class *SECADM will receive a message when a critical message is sent.

*PGMR All users of user class *PGMR will receive a message when a critical message is sent.

*USER All users of user class *USER will receive a message when a critical message is sent.

72 IBM Systems - iSeries: Problem Management APIs

Key 6—Send Data Packets

 Offset

Type Field Dec Hex

0 0 CHAR(1) Attribute

Field Descriptions

Attribute. The Send data packets attribute specifies whether or not to send problem data to the service

provider.

 0 Data will not be sent to the service provider.

1 Up to 2000 bytes of data will be sent to the service provider.

Key 7—Copy PTFs

 Offset

Type Field Dec Hex

0 0 CHAR(1) Attribute

Field Descriptions

Attribute. The Copy PTFs attribute specifies whether or not to copy PTF save files and cover letters into

*SERVICE when PTFs are loaded from a tape or optical device. PTF save files must be in *SERVICE when

distributing PTFs to other systems or when using the Save System Information (SAVSYSINF) command.

 0 PTF save files and cover letters are not copied into *SERVICE when PTFs are loaded from tape or optical.

1 PTF save files and cover letters that do not already exist are copied into *SERVICE when PTFs are loaded

from tape or optical.

Key 10—System-Disabled Reporting Connection Number

 Offset

Type Field Dec Hex

0 0 CHAR(30) System-disabled reporting connection number

Field Descriptions

System-disabled reporting connection number. The complete electronic connection number used for

automatic reporting to external support when this system is disabled. This number should include the

entire sequence of numbers required to complete the call, including international access codes, country or

region codes, area codes, exchanges, and so on, as appropriate.

Problem Management APIs 73

Key 11—System-Disabled Call-Back Connection Number

 Offset

Type Field Dec Hex

0 0 CHAR(30) System-disabled call-back connection number

Field Descriptions

System-disabled call-back connection number. The complete electronic connection number used to call

back this system from external support when this system is disabled. This number should include the

entire sequence of numbers required to complete the call, including international access codes, country or

region codes, area codes, exchanges, and so on, as appropriate.

Key 12—Service Provider Connection Number

 Offset

Type Field Dec Hex

0 0 CHAR(30) Service provider connection number

Field Descriptions

Service provider connection number. The complete electronic connection number to the service provider.

This number should include the entire sequence of numbers required to complete the call, including

international access codes, country or region codes, area codes, exchanges, and so on, as appropriate.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8C50 E Key in input list not valid.

CPF8C51 E Error with receiver variable length.

CPF8C52 E Number of values in input list not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R1

 Top | “Problem Management APIs,” on page 1 | APIs by category

Retrieve XML Service Information (QSCRXMLI) API

 Required Parameter Group:

 1 Destination information Input Char(*)

2 Destination format name Input Char(8)

3 Receiver variable Output Char(*)

4 Receiver format name Input Char(8)

5 Service selection

information

Input Char(*)

74 IBM Systems - iSeries: Problem Management APIs

#TOP_OF_PAGE
aplist.htm

6 Service selection

information format

Input Char(8)

7 Error Code I/O Char(*)

 Default Public Authority: *USE
 Threadsafe: No

The Retrieve XML Service Information (QSCRXMLI) API lists service information like messages from a

nonprogram message queue or messages sent to the program message queue of a job, in XML format,

and optionally stores the output in a stream file.

The Retrieve XML Service Information API cannot be used to list messages sent to the QHST message

queue.

New messages are prevented from being added to or removed from the message queue listed during the

use of the QSCRXMLI API.

See Open List of Messages (QGYOLMSG) API or Open List of Job Log Messages (QGYOLJBL) API for

the description of the message fields returned.

Authorities and Locks

Output File Authority (if output stored in a stream file)

Authority to the path and file are determined by the open() API. For details, see the Authorities

section of the open()—Open File API for files opened with an access mode of O_WRONLY and

O_TRUNC.

Output File Lock

*SHRNUP

Message Queue

*USE

Message Queue Library

*EXECUTE

User Space Lock

*EXCLRD

Job Authority

v *JOBCTL special authority if the job for which messages are being listed has a different user

profile from that of the job that calls the QSCRXMLI API.

v *ALLOBJ and *JOBCTL special authorities if the job for which messages are being retrieved has

*ALLOBJ and *JOBCTL special authority. As an alternative to having *ALLOBJ authority, the

user calling the API can be authorized to the All Object Job Log function of Operating System

through iSeries Navigator’s Application Administration support. The Change Function Usage

(CHGFCNUSG) command, with a function ID of QIBM_ACCESS_ALLOBJ_JOBLOG, can also

be used to change the list of users that are allowed to access a job log that has *ALLOBJ special

authority.

For additional information on job authorities, see Plan and set up system security.

Required Parameter Group

Destination information

INPUT; CHAR(*)

 Provides information about the destination for the generated XML output.

Problem Management APIs 75

open.htm

v If DEST0100 is specified for the destination format name, this parameter contains a 4-byte

integer which is the size of the receiver variable (parameter 3).

v If DEST0200 is specified for the destination format name, this parameter contains a structure

which gives the path name of the stream file where the generated XML output is to be stored.

Destination format name

INPUT; CHAR(8)

 The destination format to determine where the generated XML output will be stored. Possible

values are:

 “DEST0100 Format” Return the XML output in the receiver variable.

“DEST0200 Format” on page

77

Return the XML output in a stream file using the path name coded in the destination

information parameter.

Receiver variable

OUTPUT; CHAR(*)

 The variable that is to receive the generated XML output. The variable is used only when the

destination format name is DEST0100. If the receiver variable is not large enough to hold all of

the generated XML output, no XML output is returned.

Receiver format name

INPUT; CHAR(8)

 The format of the generated XML output to be returned. You must use one of the following

format names:

 “SIRV0100 Format” on page

77

The information returned to the caller of this API. For more information, see

“SIRV0100 Format” on page 77.

Service selection information

INPUT; CHAR(*)

 The information that identifies the source of the service information to be returned. The format of

this information depends on the specified Service selection format name.

Service selection format name

INPUT; CHAR(8)

 Indicates where the service information will be retrieved from. The possible values are:

 “SSIF0100 Service Selection

Information from a

Nonprogram Message Queue

Format” on page 77

The list of messages will be retrieved from a nonprogram message queue as specified

in “SSIF0100 Service Selection Information from a Nonprogram Message Queue

Format” on page 77.

“SSIF0200 Service Selection

Information from a Program

Message Queue of a Job

Format” on page 78

The list of messages will be retrieved from a program message queue of a job as

specified in “SSIF0200 Service Selection Information from a Program Message Queue

of a Job Format” on page 78.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

DEST0100 Format

The following information needs to be supplied in the destination information parameter (parameter 1)

for the DEST0100 format.

76 IBM Systems - iSeries: Problem Management APIs

Offset

Type Field Dec Hex

0 0 BINARY(4) Length of receiver variable

Field Descriptions

Length of receiver variable. The length of the receiver variable. If the length is larger than the size of the

receiver variable, the results may not be predictable. The minimum length is 8 bytes.

DEST0200 Format

The destination information parameter (parameter 1) specifies the file path name where the generated

XML output is to be returned for the DEST0200 format. See Path name format for information on

specifying the output stream file path name.

SIRV0100 Format

The following information is returned in the receiver variable for the DEST0100 format.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) XML data length

12 C CHAR(*) XML data

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

XML data. The XML output of the service information returned. If the receiver variable is not large

enough to hold the entire XML output or if an unexpected error occurs while writing to the receiver

variable, no data will be returned.

XML data length. The length of the XML data being returned.

SSIF0100 Service Selection Information from a Nonprogram Message

Queue Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Message queue name

10 0A CHAR(10) Message queue library

Field Descriptions

Message queue library. The name of the library where the message queue is located.

Message queue name. The name of the message queue whose messages are to be listed.

Problem Management APIs 77

SSIF0200 Service Selection Information from a Program Message

Queue of a Job Format

 Offset

Type Field Dec Hex

0 0 CHAR(26) Qualified job name

Field Descriptions

Qualified job name. The name of the job whose messages are to be listed. The qualified job name has

three parts:

 Job name CHAR(10)A specific job name or one of the following special value:

* The job that this program is running in. The rest of the qualified job name parameter

must be blank.

User name CHAR(10) A specific user profile name, or blanks when the job name is the special value of *.

Job number CHAR(6) A specific job number, or blanks when the job name is the special value of *.

Usage Notes

The output file path name is represented by the ’Path name’ field in the ’Path Name Format’ structure

when using the DEST0200 destination format. The output file path name is used to store the generated

XML output. The output stream file is opened for writing only, in text-only mode, in CCSID 1208, and

allows sharing with readers only. If the output stream file exists, the file is truncated to zero length before

writing any data. If the output stream file already exists, it should have been created with a CCSID of

1208; otherwise, the resulting XML output may not be usable. If the output file does not exist, it will be

created with a CCSID of 1208 before attempting to write the XML output to it. The output file is created

so that the file owner has read and write permission to it. The output file can be replaced if the user has

the authority to do so. For more information on authority requirements for stream files, see the

open()—Open File API in the Integrated File System section of the APIs in the Information Center.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3006 E Input/output error.

CPE3014 E The object name is not correct.

CPE3021 E The value specified for the argument is not correct.

CPE3025 E No such path or directory.

CPE3027 E Operation not permitted.

CPE3029 E Resource busy.

CPE3401 E Permission denied.

CPE3403 E Not a directory.

CPE3404 E No space available.

CPE3406 E Operation would have caused the process to be suspended.

CPE3407 E Interrupted function call.

CPE3408 E The address used for an argument was not correct.

CPE3436 E There is not enough buffer space for the requested operation.

CPE3440 E Operation not supported.

CPE3450 E Descriptor not valid.

CPE3452 E Too many open files for this process.

CPE3453 E Too many open files in the system.

CPE3460 E Storage allocation request failed.

78 IBM Systems - iSeries: Problem Management APIs

open.htm

Message ID Error Message Text

CPE3470 E Function not implemented.

CPE3471 E Specified target is a directory.

CPE3474 E Unknown system state.

CPE3484 E A damaged object was encountered.

CPE3485 E A loop exists in the symbolic links.

CPE3486 E A path name is too long.

CPE3489 E System resources not available to complete request.

CPE3490 E Conversion error.

CPE3499 E Object is suspended.

CPE3500 E Object is a read only object.

CPE3507 E Object too large.

CPE3511 E File ID conversion of a directory failed.

CPE3512 E A File ID could not be assigned when linking an object to directory.

CPE3513 E File handle rejected by server.

CPE3524 E Function not allowed.

CPFA09E E Object in use. Object is &1.

CPF2207 E Not authorized to use object &1 in library &3 type *&2.

CPF24B4 E Severe error while addressing parameter list.

CPF2401 E Not authorized to library &1.

CPF2441 E Not authorized to display job log.

CPF2443 E Job log not displayed or listed because job has ended.

CPF3CF1 E Error code parameter not valid.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C55 E Job &3/&2/&1 does not exist.

CPF3C58 E Job name specified is not valid.

CPF3C90 E Literal value cannot be changed.

CPF6565 E User profile storage limit exceeded.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9821 E Not authorized to program &1 in library &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPF2403 E Message queue &1 in &2 not found.

CPF2408 E Not authorized to message queue &1.

CPF2433 E Function not allowed for system log message queue &1.

API introduced: V5R4

 Top | “Problem Management APIs,” on page 1 | APIs by category

Send Service Request (QPDETSND) API

 Required Parameter Group:

 1 Request Data Input Char(*)

2 Length of request data Input Binary(4)

3 Format or request data Input Char(8)

4 Error Code I/O Char(*)

Problem Management APIs 79

#TOP_OF_PAGE
aplist.htm

Default Public Authority: *USE
 Threadsafe: No

The Send Service Request (QPDETSND) API will send the request to the Service Monitor or to the

Service Control job.

If the Service Control job is not active, the job will be submitted.

If the Service Monitor is not active, and the request is for a Service Monitor function, a request will be

submitted to the Service Control job to start the Service Monitor before sending the request.

Authorities and Locks

Authority to use the API

None

Required Parameter Group

Request data

INPUT; CHAR(*)

 Information to use while processing the request. The format of this data is specified by the

Format of request data parameter.

Length of request data

INPUT; BINARY(4)

 How long the request data is.

Format of request data. This indicates the type of request being submitted. Only the following values

are accepted:

INPUT; CHAR(8)

 “SNDR0100 - Refresh Policy File Request” Send a refresh Service Monitor policy file request

“SNDR0200 - Start a Function Request” on page 81 Send a start function request

“SNDR0300 - Stop a Function Request” on page 81 Send a stop function request

“SNDR0400 - Service Event Request” on page 81 Send a Service event request

“SNDR0500 - Change Logging Levels Request” on page 81 Send a change logging level request

“SNDR0600 - Handle Changed System Value Request” on page 81 Send a handle changed system

value request

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

SNDR0100 - Refresh Policy File Request

 Offset

Type Field Dec Hex

0 0 BINARY(4) Type of policy data

4 4 BINARY(4) Length of policy data

80 IBM Systems - iSeries: Problem Management APIs

Offset

Type Field Dec Hex

8 8 CHAR(*) Policy data

SNDR0200 - Start a Function Request

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of functions to start

4 4 Array of BIN(4) Functions to start

SNDR0300 - Stop a Function Request

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of functios to stop

4 4 Array of BIN(4) Functions to stop

SNDR0400 - Service Event Request

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of service event data

4 4 CHAR(*) Service event data

SNDR0500 - Change Logging Levels Request

 Offset

Type Field Dec Hex

0 0 BINARY(4) Logging Level

SNDR0600 - Handle Changed System Value Request

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of system values changed

4 4 Array of CHAR(10) System Value names

Field Descriptions

Functions to start. An array of BINARY(4) values. Each value indicates a particular function to start.

Supported values are:

 1 Start the Service Monitor function

Problem Management APIs 81

2 Start the Communications Trace Analyzer Function

Functions to stop. An array of BINARY(4) values. Each value indicates a particular function to stop.

Supported values are:

 1 Stop the Service Monitor function

2 Stop the Communications Trace Analyzer Function

3 Stop the Service Control function

Length of policy data. The length of the provided data.

Length of service event data. The length of the service event data provided.

Logging level. The logging level of the Service Monitor function. This value should only be used when

requested by IBM Support personnel. This changes the amount of data which the Service Monitor logs

for problem determination reasons. Supported values are:

 0 No logging

1 Low logging

2 Medium logging

3 High logging

Number of functions to start. How many functions to start.

Number of functions to stop. How many functions to stop.

Number of system values changed. How many system values where changed.

Policy data. The policy data. This data is in schema validated XML format. The location of the XSD file is

imbedded within the XML.

Service event data. Data about the service event being sent. This data is in schema validated XML

format. The location of the XSD file is imbedded within the XML. This format can be generated using the

Convert Format of Service Information (QPDETCVT) API with a format name of CVTS0100 or CVTS0200.

System value names. An array containing the names of the system values that were changed. Supported

values are:

 QSFWERRLOG Software Error Logging

Type of policy data. The type of policy data provided. Supported values are:

 0 The policy data provided contains the path name to an IFS file containing policy data.

1 The policy data provided contains the actual policy data.

82 IBM Systems - iSeries: Problem Management APIs

Error Messages

The following messages may be sent from this function:

 CPF3CF1 Error code parameter not valid.

CPF3CF2 Error(s) occurred during running of * API.

CPF3C1D Input variable length in parameter * not valid.

CPF3C1E Required parameter * omitted.

CPF3C17 Error occurred with input data parameter.

CPF3C19 Error occurred with receiver variable specified.

CPF3C21 Format name * is not valid.

CPF3C24 Length of receiver variable not valid.

CPF3C39 Value for reserved field not valid.

CPF3C4A Value not valid for field *.

CPF3C4B Value not valid for field *.

CPF3C4C Value not valid for field *.

CPFE083 Service Monitor is not running.

CPFE084 Value Duplicated functions requested.

 API introduced: V5R4

 Top | Other APIs in this part | APIs by category

Set User Policy (QPDETPOL) API

 Required Parameter Group:

 1 Policy data Input Char(*)

2 Length of policy data Input Binary(4)

3 Format of policy data Input Char(8)

4 Error Code I/O Char(*)

 Default Public Authority: *EXCLUDE
 Threadsafe: Yes

The Set User Policy (QPDETPOL) API allows the changing of user policies related to service. This

includes:

v How long to retain service related information

v What level of information to send when the system automatically reports a problem to a service

provider

v What is the maximum size for a PTF order to be delivered electronically

Authorities and Locks

Special Authority

 *SERVICE

Required Parameter Group

Policy data

INPUT; CHAR(*)

 Information to use when setting the policy.

Problem Management APIs 83

#TOP_OF_PAGE
sec1.htm
aplist.htm

Length of policy data

INPUT; BINARY(4)

 How long the policy data is.

Format of policy data

INPUT; CHAR(8)

 Which policy to set. Only the following values are accepted.

 “POLS0100 - Format for

setting service interval policy

for Service Monitor cleanup”

Set service cleanup interval policy.

“POLS0200 - Format for

setting the level of problem

documentation sent with a

problem”

Set problem documentation level.

“POLS0300 - Format for

setting maximum PTF order

size”

Set maximum PTF order size.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

POLS0100 - Format for setting service interval policy for Service

Monitor cleanup

The following information needs to be supplied in the policy data parameter (parameter 1) for the

POLS0100 format.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of days

POLS0200 - Format for setting the level of problem documentation

sent with a problem

The following information needs to be supplied in the policy data parameter (parameter 1) for the

POLS0200 format.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Problem documentation level

POLS0300 - Format for setting maximum PTF order size

The following information needs to be supplied in the policy data parameter (parameter 1) for the

POLS0300 format.

84 IBM Systems - iSeries: Problem Management APIs

Offset

Type Field Dec Hex

0 0 BINARY(4) Maximum PTF order size over LAN

4 4 BINARY(4) Maximum PTF order size over a modem

Field Descriptions

Maximum PTF order size over a modem. The maximum size in megabytes for a PTF order to be

delivered electronically over a modem. This policy is shipped with a default value of 100 MB (MB equals

approximately 1 000 000 bytes). If -1 is specified, PTF orders of any size are delivered over a modem.

This policy cannot be set to a value less than 100 MB.

Maximum PTF order size over LAN. The maximum size in megabytes for a PTF order to be delivered

electronically over the local area network (LAN). If -1 is specified, PTF orders of any size are delivered

over the LAN. This policy is shipped with a default value of -1. This policy cannot be set to a value less

than 100 MB (MB equals approximately 1 000 000 bytes).

Number of days. The number of days an object covered by this policy is allowed to exist before being

deleted by the Service Monitor. Objects covered by this policy are: Service Monitor logs and Integrated

File System files created by the FFDC process. This policy is shipped with a value of 7. This policy cannot

be set to a value less than 1.

Problem documentation level. Indicates how much problem documentation should be included when

problems are automatically reported to the service provider. Only the following values are accepted:

 *BASE Minimal documentation is sent in the service request record. No additional data will be

uploaded.

*DEFAULT Minimal documentation will be sent in the service request record. If no fix for the problem is

found, additional documentation will be automatically uploaded. Additional documentation may

include information such as job logs and service dumps.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPFE080 Maximum PTF order size not valid.

CPF0CC1 Error initializing the XML parser.

CPF24B4 Severe error while addressing parameter list.

CPF3CF1 Error code parameter not valid.

CPF3CF2 Error(s) occurred during running of &1 API.

CPF3C1E Required parameter &1 omitted.

CPF3C21 Format name &1 is not valid.

CPF3C3A Value for parameter &2 for API &1 not valid.

CPF9872 Program or service program &1 in library &2 ended. Reason code &3.

 API introduced: V5R4

 Top | “Problem Management APIs,” on page 1 | APIs by category

Problem Management APIs 85

#TOP_OF_PAGE
aplist.htm

Monitoring APIs

The Monitoring APIs include:

v

“End Watch (QSCEWCH) API” (QSCEWCH) ends a watch session that was started by a STRWCH

(Start Watch) command or by the Start Watch (QSCSWCH) API.

v

“Start Watch (QSCSWCH) API” on page 87 (QSCSWCH) starts the watch for event function, which

notifies the user by calling a user specified program when the specified event (a message or LIC log)

occurs.

v

“Start Watch Command or API Exit Program (QPDETWCH) API” on page 93 (QPDETWCH) can be

used as the exit program for the Start Watch (STRWCH) Command or Start Watch (QSCSWCH) API.

The Monitoring exit programs include:

v

Watch for Event exit program is started by the STRWCH command or the Start Watch (QSCSWCH)

API, and has the capability to notify the user by calling a user exit program when the specified event

occurs.

v “Exit Program for Watch for Trace Event” on page 94 is called while using commands to watch for

specific events, such as messages being sent to a particular queue.

 Top | “Problem Management APIs,” on page 1 | APIs by category

End Watch (QSCEWCH) API

 Required Parameter Group:

 1 Session ID Input Char(10)

2 Error Code I/O Char(*)

 Default Public Authority: *EXCLUDE
 Threadsafe: Yes

The End Watch (QSCEWCH) API ends a watch session that was started by a STRWCH (Start Watch)

command or by the Start Watch (QSCSWCH) API.

Note: A watch session can be ended from the same job that issued the start function or from a different

job.

Authorities and Locks

Authority to use the API

To use this API, you must have service (*SERVICE) special authority, or be authorized to the

Service watch function of Operating System through iSeries Navigator’s Application

Administration support. The Change Function Usage (CHGFCNUSG) command, with a function

ID of QIBM_SERVICE_WATCH, can also be used to change the list of users that are allowed to

start and end watch operations.

Authority to watch session

If ending a watch session that is watching for a message within a job log, the issuer of the API

must be running under a user profile which is the same as the job user identity of the job being

watched, or the issuer of the API must be running under a user profile which has job control

(*JOBCTL) special authority. Job control (*JOBCTL) special authority is also required when ending

a session where jobs with a generic user name are being watched.

 If ending a watch session that was started specifying *ALL for the watch job name, or a generic

user name, you must have *ALLOBJ special authority, or be authorized to the Watch any job

function of Operating System through iSeries Navigator’s Application Administration support.

86 IBM Systems - iSeries: Problem Management APIs

xwchevnt.htm
#TOP_OF_PAGE
aplist.htm

The Change Function Usage (CHGFCNUSG) command, with a function ID of

QIBM_WATCH_ANY_JOB, can also be used to change the list of users that are allowed to start

and end watch operations.

Required Parameter Group

Session ID

INPUT; CHAR(10)

 The session identifier for the watch to be ended. This name must match the session identifier of a

watch that had been previously started and is still active. You can use this special value for this

parameter:

 *PRV The watch session most recently started by the same user who is running this API will be ended. For

example, if the job running the API is running under user profile BOB, the last watch session started

under user profile BOB is ended.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPF24B4 Severe error while addressing parameter list.

CPF3CF1 Error code parameter not valid.

CPF39EC Cannot end watch session &1 started by &2 command.

CPF39E1 Watch session ID &1 not found.

CPF39E2 There is not any active watch session for current user profile.

CPF39E6 The user does not have the required authority.

CPF39E8 Not enough authority to watch operations.

CPF39E9 *JOBCTL special authority required.

CPF9872 Program or service program &1 in library &2 ended. Reason code &3.

 API introduced: V5R4

 Top | “Problem Management APIs,” on page 1 | APIs by category

Start Watch (QSCSWCH) API

 Required Parameter Group:

 1 Session ID Input Char(10)

2 Started session ID Output Char(10)

3 Watch program Input Char(20)

4 Watch for message Input Char(*)

5 Watch for LIC log entry Input Char(*)

6 Error Code I/O Char(*)

 Default Public Authority: *EXCLUDE
 Threadsafe: Yes

The Start Watch (QSCSWCH) API starts the watch for event function, which notifies the user by calling a

user specified program when the specified event (a message or LIC log) occurs.

Problem Management APIs 87

#TOP_OF_PAGE
aplist.htm

Up to 10000 watch sessions can be active at a time. The watch session continues until ended with the End

Watch (QSCEWCH) API or with the End Watch (ENDWCH) command.

Note: A watch session can be ended from the same job or a different job.

Authorities and Locks

Authority to use the API

To use this API, you must have service (*SERVICE) special authority, or be authorized to the

Service watch function of Opearting System through iSeries Navigator’s Application

Administration support. The Change Function Usage (CHGFCNUSG) command, with a function

ID of QIBM_SERVICE_WATCH, can also be used to change the list of users that are allowed to

start and end watch operations.

Authority to watch program

You must have operational (*OBJOPR) and execute (*EXECUTE) authorities to the watch program

to be called, and execute (*EXECUTE) authority to the library where the program is located.

Authority to message queue

You must have use (*USE) authority to the message queue specified in watched message queue

name field, and use (*USE) authority to the library where the message queue is located.

Authority to watched job

When a message is being watched within a job, the issuer of the API must be running under a

user profile which is the same as the job user identity of the job being watched, or the issuer of

the API must be running under a user profile which has job control (*JOBCTL) special authority.

Job control (*JOBCTL) special authority is also required if a generic user name is specified in the

watched job user name field.

 If you specify *ALL for the watched job name, or a generic user name, you must have all object

(*ALLOBJ) special authority, or be authorized to the Watch any job function of Operating System

through iSeries Navigator’s Application Administration support. The Change Function Usage

(CHGFCNUSG) command, with a function ID of QIBM_WATCH_ANY_JOB, can also be used to

change the list of users that are allowed to start and end watch operations.

Required Parameter Group

Session ID

INPUT; CHAR(10)

 The session identifier for this watch. This watch session identifier must be unique across all active

watche sessions on the system. You cannot specify a session identifier that starts with ″QSC″. You

can use this special value for this parameter:

 *GEN The system will generate a unique session identifier for this watch that will be returned as output in

Started session ID parameter.

Started session ID

OUTPUT; CHAR(10)

 The identifier of the watch session just started.

Watch program

INPUT; CHAR(20)

 The program to be called to notify that a specified watch event occurred. The watch program will

be called after a match of a message identifier and any associated comparison data specified for

the watch for message parameter, or a match of a Licensed Internal Code (LIC) log entry and any

associated comparison data specified for the watch for LIC log entry parameter occurs.

88 IBM Systems - iSeries: Problem Management APIs

The exit program will be called once for each message id and LIC log entry specified on this API.

That is, if a message is watched on a message queue and in a job log, and the message is sent to

both locations, the exit program will be called twice.

For more information about the watch exit program interface, refer to the System API Reference

information in the iSeries Information Center at http://www.iseries.ibm.com/infocenter .

The information must be in the following format:

Watch program name

CHAR(10)
The name of the user-written program to call.

Watch program library

CHAR(10)
The library where the user-written program is located. You can use one of these special

values for this field:

 *LIBL All libraries in the job’s library list are searched until the first match is found.

*CURLIB The current library for the job is used to locate the program. If no library is specified as the

current library for the job, the QGPL library is used.

Watch for message

INPUT; CHAR(*)

 The message identifiers which are to be watched for and where to watch for them. The

information must be in the following format:

Number of messages being watched

BINARY(4)
The total number of all of the messages to watch for within this session. Up to 100

messages might be watched at the same time by a single session.

Message information

Each message being watched contains a message id, where to watch for the message

(message queue or job log) and it may specify a message comparison data. Refer to

“Format for message information” on page 90 for the format of this field.

Watch for LIC log entry

INPUT; CHAR(*)

 The licensed internal code (LIC) log entry identifiers which are to be watched for. The watched

for condition will be met if a LIC log entry is added that matches the specified major and minor

codes and any comparison data specified. The information must be in the following format:

Number of LIC logs being watched

BINARY(4)
The total number of all of the LIC logs to watch for. Up to five LIC logs can be specified.

LIC log information

Each LIC log entry contains a major and a minor code and it may specify a LIC log

comparison data. Refer to “Format for LIC log information” on page 90 for the format of

this field.

Error code

I/O; CHAR(*)

Problem Management APIs 89

The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format for message information

The following table shows the format for the messages to be watched for. For a detailed description of

each field, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of message information

4 4 CHAR(7) Message id

11 B CHAR(1) Reserved

12 C CHAR(10) Watched message queue name

22 16 CHAR(10) Watched message queue library

32 20 CHAR(10) Watched job name

42 2A CHAR(10) Watched job user name

52 34 CHAR(6) Watched job number

58 3A CHAR(6) Reserved

64 40 BINARY(4) Offset to message comparison data

68 44 BINARY(4) Length of message comparison data

72 48 CHAR(10) Compare against

82 52 CHAR(*) Message comparison data

Format for LIC log information

The following table shows the format for the LIC logs to be watched for. For a detailed description of

each field, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of LIC log information

4 4 CHAR(4) LIC log major code

8 8 CHAR(4) LIC log minor code

12 C BINARY(4) Offset to LIC log comparison data

16 10 BINARY(4) Length of LIC log comparison data

20 14 CHAR(*) LIC log comparison data

Field Descriptions

Compare against. The part of the message the data specified in message comparison data field is to be

compared against. You must specify blanks if zero was specified for the length of message comparison

data field. You can specify the following special values for this field:

 *MSGDTA The message comparison data will be compared against the message replacement data.

90 IBM Systems - iSeries: Problem Management APIs

*FROMPGM The message comparison data will be compared against the name of the program sending the

message, or the name of the ILE program that contains the procedure sending the message.

*TOPGM The message comparison data will be compared against the name of the program the message was

sent to, or the name of the ILE program that contains the procedure the message was sent to.

Length of LIC log comparison data. The length of the text specified in LIC log comparison data field.

Valid values are 0 through 72.

Length of LIC log information. The length of the structure containing the information of the LIC log to

watch for.

Length of message comparison data. The length of the text specified in message comparison data field.

Valid values are 0 through 72.

Length of message information. The length of the structure containing the information of the message to

watch for.

LIC log comparison data. The comparison data to be used if a log entry matching the specified major

and minor codes is added to the licensed internal code (LIC) log. If this text is found in the LIC log entry

data fields of the watched for log entry, the watched for condition is true. This text is case sensitive. The

LIC log fields which can be compared are TDE number, task name, server type, job name, user ID, job

number, thread ID, exception ID, LIC module compile binary timestamp, LIC module offset, LIC module

RU name, LIC module name, LIC module entry point name. The comparison data cannot be used to

match across two fields, and can match an entire field or a substring of any field. When watching for an

exception ID, all four hexadecimal digits of the exception ID must be specified. Also, the prefix MCH

may be specified if you want to compare only against the exception ID field and avoid possible substring

matches with the other fields.

LIC log major code. The LIC log major code to be watched for. You can specify either a hexadecimal

digit or a question mark for each character in the four-digit code. A question mark is a wildcard character

that will match any digit in that position. Up to three wildcard characters can be specified. You can

specify the following special value for this field:

 *ALL Any LIC log entry major code will be considered to be a match. If *ALL is specified for the major code,

you cannot specify *ALL for the LIC log entry minor code.

LIC log minor code. The LIC log minor code to be watched for. You can specify either a hexadecimal

digit or a question mark for each character in the four-digit code. A question mark is a wildcard character

that will match any digit in that position. Up to three wildcard characters can be specified. You can

specify the following special value for this field:

 *ALL Any LIC log entry minor code will be considered to be a match. If *ALL is specified for the minor code,

you cannot specify *ALL for the LIC log entry major code.

Message comparison data. The comparison data to be used if a message matching the specified message

ID is added to the specified message queue or log. If the message data, the ″From program″ or the ″To

program″ includes the specified text, the watched for condition is true. This text is case sensitive.

Message id. The 7-character message identifier to be watched for.

Offset to LIC log comparison data. The offset to the field that holds the LIC log comparison data.

Offset to message comparison data. The offset to the field that holds the message comparison data.

Problem Management APIs 91

Reserved. A reserved field. This field must be set to hexadecimal or binary zero.

Watched job name. The name of the job to be watched. You must specify blanks if something different

from *JOBLOG is specified for watched message queue name field. You can specify the following special

values for this field:

 generic-name The generic name of the job to be watched. A generic name is a character string of one or more

characters followed by an asterisk (*); for example, ABC*. The asterisk substitutes for any valid

characters. A generic job name specifies all jobs with job names that begin with the generic prefix.

* Only the job log of the job that issued this API is watched.

*ALL All jobs with the specified job user name are watched. *ALL for the job name is considered to be a

generic job specification because it will watch all jobs that meet the job user name qualifier that

you specified.

Watched job number. The job number (000001-999999) to further qualify the job name and user name.

You must specify blanks if a generic job name or a generic user name qualifier is specified, or if

something different from *JOBLOG is specified for watched message queue name field. You can specify

the following special value for this field:

 *ALL All jobs with the specified job name and user name are watched.

Watched job user name. The user name of the job to be watched. You must specify blanks if ’*’ is

specified for the watched job name field or something different from *JOBLOG is specified for watched

message queue name field. You can specify the following special value for this field:

 generic-name The generic name of the user name of the job to be watched. A generic name is a character string

of one or more characters followed by an asterisk (*); for example, ABC*. The asterisk substitutes

for any valid characters. A generic user name specifies all jobs with the specified job name and

with user names that begin with the generic prefix.

*ALL All jobs with the specified job name are watched. *ALL for the job user name is considered to be a

generic job specification because it will watch all jobs that meet the job name qualifier that you

specified.

Watched message queue library. The name of the library where the message queue is located. This field

is ignored if *SYSOPR, *JOBLOG or *HSTLOG was specified in the message queue name. You can specify

the following special value for this field:

 *LIBL All libraries in the job’s library list are searched until the first match is found.

Watched message queue name. The name of the message queue to watch. You can specify the following

special values for this field:

 *SYSOPR Watch messages added to the system operator message queue (QSYSOPR message queue in

library QSYS).

*JOBLOG Watch messages added to the job logs of the jobs specified for the watched job field.

*HSTLOG Watch messages added to the history log (QHST message queue in library QSYS).

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPF24B4 Severe error while addressing parameter list.

92 IBM Systems - iSeries: Problem Management APIs

Message ID Error Message Text

CPF2401 Not authorized to library &1.

CPF2403 Message queue &1 in &2 not found.

CPF2408 Not authorized to message queue &1.

CPF3CF1 Error code parameter not valid.

CPF3C1D Length specified in parameter &1 not valid.

CPF3C20 Error found by program &1.

CPF3C3A Value for parameter &2 for API &1 not valid.

CPF39D0 Watch for event function cannot start.

CPF39D1 Limit exceeded for jobs watching for trace events.

CPF39EA Value specified for watched job user name filed is not valid.

CPF39EB Watched job name, watched job user name or watched job number field not valid.

CPF39E3 Session ID &1 already exists.

CPF39E5 No active jobs found, watch session not started.

CPF39E6 The user does not have the required authority.

CPF39E7 Invalid session identifier.

CPF39E8 Not enough authority to watch operations.

CPF39E9 *JOBCTL special authority required.

CPF3958 Not authorized to use program &1 in library &2.

CPF9811 Program &1 in library &2 not found.

CPF9872 Program or service program &1 in library &2 ended. Reason code &3.

 API introduced: V5R4

 Top | “Problem Management APIs,” on page 1 | APIs by category

Start Watch Command or API Exit Program (QPDETWCH) API

 Required Parameter Group:

 1 Watch option setting Input Char(10)

2 Session ID Input Char(10)

3 Error detected Output Char(10)

4 Event data Input Char(*)

 QSYSINC Member Name:

 Exit Point Name: QPDETWCH

 Exit Point Format Name: QPDETWCH

The Start Watch Command or API Exit Program (QPDETWCH) API can be used as the exit program for

the Start Watch (STRWCH) Command or Start Watch (QSCSWCH) API. See the online help for more

information about the STRWCH command, or refer to the “Start Watch (QSCSWCH) API” on page 87

API.

This program takes the information supplied by the Start Watch Command or API, generates an XML

service request, and places that service request on the Service Monitor queue.

Authorities and Locks

None.

Required Parameter Group

Watch option setting

INPUT; CHAR(10)

 The reason indicating why the exit program was called.

Problem Management APIs 93

#TOP_OF_PAGE
aplist.htm

The possible values are:

 *MSGID A match on a message id and any associated comparison data specified on watch for message

parameter occurred.

*LICLOG A match on a LIC log and any associated comparison data specified on the watch for LIC log

entry parameter occurred.

Session ID

INPUT; CHAR(10)

 The name of the session that is calling the exit program.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable described in Format of data returned. If the length is larger

than the size of the receiver variable, the results may not be predictable. The minimum length is 8

bytes.

Error detected

OUTPUT; CHAR(10)

 Indicates if an error in the exit program was found.

The possible values are:

 *ERROR Error detected by watch exit program. The watch session that was passed in Session ID parameter

will be ended. If the watch session to be ended originally specified multiple message ids or LIC

log entries, all of them will no longer be watched.

<blanks> No error detected by watch exit program.

Note: Any value other than “ERROR” or <blanks> will be considered an error and the watch

session that was passed in Session ID parameter will be ended. If the watch session to be ended

originally specified multiple message ids or LIC log entries, all of them will no longer be

watched.

Event data

INPUT; CHAR(*)

 The format of the watch information depends on the Watch option setting causing the exit

program to be called.

Information about the format of the event data can be found in the Start Watch Exit Program

documentation.

API introduced: V5R4

 Top | “Problem Management APIs,” on page 1 | APIs by category

Exit Programs

These are the Exit Programs for this category.

Exit Program for Watch for Trace Event

 Required Parameter Group:

 1 Trace option setting Input Char(10)

2 Reserved Input Char(10)

3 Error detected Output Char(10)

94 IBM Systems - iSeries: Problem Management APIs

#TOP_OF_PAGE
aplist.htm

4 Comparison data Input Char(*)

 QSYSINC/H member name: ESCWCHT

The Trace commands such as STRCMNTRC, STRTRC, TRCINT and TRCCNN have the capability to

watch for a specific event and end the trace when this event occurs. An event can be a message being

sent to a specific message queue, history log, job log, or LIClog. If specified in the TRCPGM parameter,

the watch for trace event facility will call a user-written program in the cicumstances specified in the

Trace option setting parameter.

Authorities and Locks

None.

Required Parameter Group

Trace option setting

INPUT; CHAR(10)

 The reason indicating the moment at which the user-written program was called. The possible

values are:

 *ON The watch for trace facility is starting.

*MSGID A match on a message id specified on WCHMSG parameter occurred.

*LICLOG A match on a LIC log specified on the WCHLICLOG parameter occurred.

*CMPDATA The major and minor code of a LIC log matched, but the comparison data did not.

*INTVAL The time interval specified on TRCPGMITV parameter is elapsed.

*WCHTIMO The length of time to watch specified on WCHTIMO is elapsed.

Error detected

OUTPUT; CHAR(10)

 Indicates if the trace event facility should stop or continue running, or if an error on the

user-written program was found. The possible values are:

 *CONTINUE The trace and the watch for trace event facility will continue running

*STOP The trace and the watch for trace event facility will be ended

*ERROR Error detected by customer trace program.

Comparison data

INPUT; CHAR(*)

 The format of the trace information depends on the Trace option setting causing the exit program

to be called. The format of the Comparison data is as follows if the Trace option setting is

*MSGID:

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of trace information

4 4 CHAR(7) Message ID

11 B CHAR(9) Reserved

20 14 BINARY(4) Offset to comparison data

24 18 BINARY(4) Length of comparison data

Problem Management APIs 95

Offset

Type Field Dec Hex

28 1C CHAR(*) Message comparison data

The format of the Comparison data is as follows if the Trace option setting is *LICLOG or

*CMPDATA:

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of trace information

4 4 CHAR(4) LIC Log major code

8 8 CHAR(4) LIC Log minor code

12 C CHAR(8) LIC Log identifier

20 14 BINARY(4) Offset to comparison data

24 18 BINARY(4) Length of comparison data

28 1C CHAR(*) LIC Log comparison data

The format of the Comparison data is as follows if the Trace option setting is *ON, *INTVAL or

*WCHTIMO:

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of trace information (always 4 at this time)

Field Descriptions

Length of trace information. The length of the Comparison data parameter passed to the user-written

exit program.

Length of comparison data. The length of the user specified text to be compared against the event data.

LIC Log identifier. The LIC Log entry identifier of the LIC Log that occurred.

LIC Log major code. The major code of the LIC Log that occurred.

LIC Log minor code. The minor code of the LIC Log that occurred.

LIC Log comparison data. The user specified text string used to compare against the entry data of the

watched for log entry.

Message ID. The identifier of the message that occurred.

Message comparison data. The user specified text string used to compare against the entry data of the

watched for message ID.

Offset to comparison data. The offset to the field that holds the comparison data.

Related Information

See the following for more information:

v Start Communications Trace (STRCMNTRC) command

96 IBM Systems - iSeries: Problem Management APIs

v Start Trace (STRTRC) command

v Trace Internal (TRCINT) command

v Trace Connection (TRCCNN) command

 Exit program introduced: V5R3

 Top | Communications APIs | APIs by category

Concepts

These are the concepts for this category.

Key Groups for Problem Log APIs

Key Use for Problem Log APIs

This section describes keys applicable for the following Problem Log APIs:

v QsxAddProblemLogEntry

v QsxChangeProblemLogEntry

v QsxCreateProblemLogEntry

v QsxDeleteProblemLogEntry

v QsxRetrieveProblemLogEntry

Key utilization matrix

 Key API

Add Change Create Delete Retrieve

Group 0000 - General problem log entries

1 Always Always Always Always Always

2 No No Yes No Yes

3 No Yes Yes No Yes

4 No Yes Yes No Yes

5 No No Yes No Yes

6 No Yes Yes No Yes

7 No Yes Yes No Yes

8 Yes Yes Yes No Yes

“Key Group 1000-Problem Description Entries” on page 103

1000 No Yes Yes No Yes

1001 No Yes Yes No Yes

1002 No Yes Yes No Yes

1003 No Yes Yes No Yes

1004 No Yes Yes No Yes

1005 No Yes Yes No Yes

1006 No Yes Yes No Yes

1007 No Yes Yes No Yes

1008 No Yes Yes No Yes

Problem Management APIs 97

#TOP_OF_PAGE
comm.htm
aplist.htm
#HDRTG0000

Key API

Add Change Create Delete Retrieve

1009 No Yes Yes No Yes

1010 No Yes Yes No Yes

1011 No Yes Yes No Yes

1012 No Yes Yes No Yes

1013 No Yes Yes No Yes

1014 No Yes Yes No Yes

1015 No Yes No No Yes

1016 No Yes No No Yes

“Key Group 2000-FRU Entries” on page 110

2000 No No No Yes Yes

2001 Yes No Yes No No

2002 Yes No Yes No No

2003 Yes No Yes No No

2004 Yes No Yes No No

2005 Yes No Yes No No

2006 Yes No Yes No No

2007 Yes No Yes No No

2008 Yes No Yes No No

2009 Yes No Yes No No

“Key Group 3000-Text Entries” on page 116

3000 No No No No Yes

3001 No Yes Yes No Yes

“Key Group 4000-Supporting data entries” on page 118

4000 No No No Yes Yes

4001 Yes No Yes No No

4002 Yes No Yes No No

“Key Group 5000-Contact Entries” on page 119

5000 No No No No Yes

5001 No Yes Yes No Yes

“Key Group 6000-Problem History Entries” on page 121

6000 No No No No Yes

6001 Yes No Yes No No

“Key Group 7000-PTF Entries” on page 122

7000 No No No Yes Yes

7001 Yes Yes Yes Yes Yes

7002 No Yes Yes No Yes

“Key Group 8000-Analyzed Error Entries” on page 124

8000 No No No No Yes

“Key Group 9000-Logical Partition ID Entries” on page 124

9000 No No No No Yes

98 IBM Systems - iSeries: Problem Management APIs

Key Group 0000-General Problem Log Entries

This group is required for all problem entries.

This section contains the following keys:

v “Key 1-problem log id”

v “Key 2-problem type”

v “Key 3-problem status” on page 100

v “Key 4-user assigned” on page 100

v “Key 5-problem origin system” on page 100

v “Key 6-Operational data” on page 101

v “Key 7—filter control” on page 102

v “Key 8-answer codes” on page 102

For more details about the fields in the following table, see “Field Descriptions for Key Groups for

Problem Log APIs” on page 124.

Key 1-problem log id

Key 1 is required to identify the entry to which data will be added. Key 1 has the following uses:

v Defines whether the problem is being created for a local or remote problem.

v Provides the problem log identifier that is used with the Add, Change, Delete, or Retrieve Problem Log

Entry APIs.

Note: The problem log output parameter provided on the Create Problem Log Entry API is returned in

the key 1 format.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 CHAR(31) Problem log identifier

39 27 CHAR(1) Reserved

Key 2-problem type

This key is used to:

v Define the type of problem log entry

v Return the type of problem log entry retrieved

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

Problem Management APIs 99

Offset

Type Field Dec Hex

8 8 BINARY(4) Problem type. See “Field Descriptions for Key Groups for Problem

Log APIs” on page 124 for a description of the problem types.

Key 3-problem status

Defines the status of the problem log. The problem statuses are OPENED, READY, SENT, ANSWERED,

VERIFIED, and CLOSED. PREPARED status implies that the problem log contains data that enables it to

be sent to a service provider. The status is incremental. This means that the problem log entry contains

the minimum level of data required for the problem to achieve such a status. PREPARED may be applied

anytime after a problem has been opened and before it is closed.

Key 6001 is required with this key to record that the problem status has been changed. The status can be

created, changed, or retrieved.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Problem status

Key 4-user assigned

Defines to whom the problem has been assigned.

This entry can be created, changed, or retrieved.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 CHAR(10) User assigned

18 12 CHAR(2) Reserved

Key 5-problem origin system

Defines the system on which this problem log entry originated. The system may be local (this system) or

remote (another system). If the Create location field is set to local, the Create Problem Log Entry API

automatically adds the following groups of fields:

v Origin system hardware description

v Origin system operating system

This entry can only be created and retrieved.

100 IBM Systems - iSeries: Problem Management APIs

Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Create location

Note: The following fields Machine type length through Serial number pertain to the origin system hardware

description.

12 C BINARY(4) Machine type length

16 10 BINARY(4) Model length

20 14 BINARY(4) Feature length

24 18 BINARY(4) Serial number length

28 1C CHAR(16) Machine type

44 2C CHAR(16) Model

60 3C CHAR(16) Feature

76 4C CHAR(32) Serial number

Note: The following fields Product ID length through Reserved pertain to the origin system operating system.

108 6C BINARY(4) Product ID length

112 70 BINARY(4) Version length

116 74 BINARY(4) Release level length

120 78 BINARY(4) Modification level length

124 7C CHAR(15) Product ID

139 8B CHAR(5) Version

144 90 CHAR(5) Release level

149 95 CHAR(5) Modification level

154 9A CHAR(2) Reserved

156 9C CHAR(13) Create date and time

169 A9 CHAR(2) Delta level

Key 6-Operational data

This key provides operational information about the problem entry.

All fields, except the Time added field and the When closed fields, can be created, changed, deleted, or

retrieved. The time fields are added automatically by the Create and Change Problem Log Entry APIs,

respectively.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Key control for key 6

12 C BINARY(4) Creator of entry

16 10 BINARY(4) Alert status

20 14 BINARY(4) Auto PAR

Problem Management APIs 101

Offset

Type Field Dec Hex

24 18 BINARY(4) Auto notify

28 1C CHAR(10) APAR Library

Note: The following fields Code and Network address are received from the system.

38 26 CHAR(1) Code

39 27 CHAR(20) Network address

Note: The following fields Code and Network address are sent to the system.

59 3B CHAR(1) Code

60 3C CHAR(20) Network address

Note: The following fields Code and Network address are prepared for the system.

80 50 CHAR(1) Code

81 51 CHAR(20) Network address

101 65 CHAR(13) Date and time added

114 72 CHAR(13) Date and time closed

127 7F CHAR(1) Reserved

128 80 BINARY(4) Mode of analysis

Key 7—filter control

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Filter event

12 C CHAR(10) Filter name

22 16 CHAR(10) Filter library name

32 20 CHAR(10) Filter group assigned

42 2A CHAR(2) Reserved

Key 8-answer codes

Contains the answer that was received when the problem was sent to a service provider.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Key control for key 8

12 C BINARY(4) Answer code assigned

16 10 BINARY(4) Answer code returned

20 14 CHAR(5) Problem number

102 IBM Systems - iSeries: Problem Management APIs

Offset

Type Field Dec Hex

25 19 CHAR(3) Problem branch number

28 1C CHAR(3) Problem country number

Key Group 1000-Problem Description Entries

This group creates, changes, and retrieves problem description entries.

To locate the key of your need, click one of the following:

v “Key 1001—Problem Severity”

v “Key 1002-Problem Description Message” on page 104

v “Key 1003-Problem Creation Data” on page 104

v “Key 1004-Reporting Device” on page 104

v “Key 1005—Failing Resource” on page 105

v “Key 1006-Reporting Code” on page 106

v “Key 1007-Problem Analysis Data” on page 107

v “Key 1008-Fix Verification Status” on page 107

v “Key 1009-Fix Recovery Status” on page 107

v “Key 1010 -Symptom String” on page 108

v “Key 1011-PTF Media Selection” on page 108

v “Key 1012-Problem Category” on page 108

v “Key 1013-Client Information” on page 109

v “Key 1014-First Failure Data Capture” on page 109

v “Key 1015-Query Status” on page 110

v “Key 1016-Hardware Location Information” on page 110

Key 1001—Problem Severity

This key defines the impact of the problem on the environment. This key is required for PREPARED

status.

This entry can be created, changed, and retrieved.

For more details about the fields in the following table, see “Field Descriptions for Key Groups for

Problem Log APIs” on page 124.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Problem severity

Problem Management APIs 103

Key 1002-Problem Description Message

This key may be used where a message is used to describe the problem. If a message is not used, use key

3001 (text entry) to provide a description of the problem. Either key 1002 or 3001 is required. This key is

required when the problem type is machine detected. This entry can be created, changed, or retrieved.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 CHAR(7) Message identifier

15 F CHAR(10) Message library name

25 19 CHAR(10) Message file name

35 23 CHAR(1) Reserved

Key 1003-Problem Creation Data

This is required for machine detected problem types and is optional for other problem types. This entry

can be created, changed, or retrieved.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

Note: The following fields Reference code through Reference code translate table library are part of the reference

code description data.

80 80 CHAR(2) Reference code

10 A CHAR(10) Reference code

translate table

identifier

20 14 CHAR(10) Reference code

translate table library

30 1E CHAR(7) Reference code

description message

37 25 CHAR(10) Reference code

description file name

47 2F CHAR(10) Reference code

description library

name

57 39 CHAR(7) Error code message

identifier

Key 1004-Reporting Device

This key provides data that defines the machine that contains the failing hardware. This data is required

for a problem to achieve READY status, since it contains the machine that a problem or PTF order will be

reported against.

This entry can be created, changed, or retrieved.

104 IBM Systems - iSeries: Problem Management APIs

Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Key control for key 1004

Note: The following fields Machine type length through Serial number pertain to the reporting device.

12 C BINARY(4) Machine type length

16 10 BINARY(4) Model length

20 14 BINARY(4) Feature length

24 18 BINARY(4) Serial number length

28 1C CHAR(16) Machine type

44 2C CHAR(16) Model

60 3C CHAR(16) Feature

76 4C CHAR(32) Serial number

108 6C CHAR(12) EC number

Key 1005—Failing Resource

This key contains data that defines the object that is failing. Hardware that can fail includes a machine, a

feature, or a component of the machine. To an observer they might appear the same: they both have a

type, a serial number, and a model. The major distinction is whether you have a maintenance contract.

For example, you can report a problem on a tape device 6366, but you cannot report a problem on an

IOP feature number 2615. The 2615 is part of system machine type 9406. A problem can be reported

against 9406 because it has a maintenance contract. This entry can be created, changed, or retrieved.

Where a program object is failing, the product data is also added. Otherwise it must be blank.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Key control for key 1005

12 C BINARY(4) Type of hardware

Note: The following fields Machine type length to Serial number pertain to the failing device structure.

16 10 BINARY(4) Machine type length

20 14 BINARY(4) Model length

24 18 BINARY(4) Feature length

28 1C BINARY(4) Serial number length

32 20 CHAR(16) Machine type

48 30 CHAR(16) Model

64 40 CHAR(16) Feature

80 50 CHAR(32) Serial number

Note: The following fields Product ID length through Reserved pertain to the failing product structure.

112 70 BINARY(4) Product ID length

Problem Management APIs 105

Offset

Type Field Dec Hex

116 74 BINARY(4) Version length

120 78 BINARY(4) Release level length

124 7C BINARY(4) Modification level length

128 80 CHAR(15) Product ID

143 8F CHAR(5) Version

148 94 CHAR(5) Release level

153 99 CHAR(5) Modification level

158 9E CHAR(2) Reserved

160 A0 CHAR(4) Instruction

164 A4 CHAR(20) Hierarchy

184 B8 CHAR(10) Resource name

194 C2 CHAR(4) Error log identifier

198 C6 CHAR(10) Program

Key 1006-Reporting Code

Data that defines the program object that is failing or the object against which the problem will be

reported. For example, the licensed internal code of a feature, such as an IOA, is the product on which

the problem will be reported. It is the program object with a maintenance contract.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Key control for key 1006

Note: The following fields Product ID length through Reserved pertain to the reporting product description.

12 C BINARY(4) Product ID length

16 10 BINARY(4) Version length

20 14 BINARY(4) Release level length

24 18 BINARY(4) Modification level length

28 1C CHAR(15) Product ID

43 2B CHAR(5) Version

48 30 CHAR(5) Release level

53 35 CHAR(5) Modification level

58 3A CHAR(2) Reserved

60 3C CHAR(10) Program

70 46 CHAR(4) Probe

74 4A CHAR(2) Reserved

106 IBM Systems - iSeries: Problem Management APIs

Key 1007-Problem Analysis Data

This key contains the post problem analysis results. The reference code description data defines the

program that isolated the error and provides a reference to an object that contains detailed data

describing the failure.

This key is required to move a machine detected problem to READY status. It is optional with other

problem types. The entry can be created, changed, or retrieved.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Number of times analyzed

12 C BINARY(4) Isolation status

16 10 CHAR(8) PDP

Note: The following fields Reference code through Reference code translate table library pertain to the reference

code description data.

24 18 CHAR(2) Reference code

26 1A CHAR(10) Reference code translate table identifier

36 24 CHAR(10) Reference code translate table library

46 2E CHAR(2) Exit point of the PDP

Key 1008-Fix Verification Status

The key that data that defines the status of the verification attempt.

The problem must be in SENT or ANSWERED status to append this data. This entry can be created,

changed, or retrieved.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Verification status

12 C CHAR(8) PDP

Key 1009-Fix Recovery Status

This key contains data that defines status of the recovery attempt.

The problem must be in SENT or ANSWERED status to append this data. This entry can be created,

changed, or retrieved.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

Problem Management APIs 107

Offset

Type Field Dec Hex

8 8 BINARY(4) Recovery status

12 C CHAR(8) PDP

Key 1010 -Symptom String

This key contains data that is used to search a data base for the existence of a problem.

The problem must be READY status to append this data. A problem cannot be moved to PREPARED

status without this key. This entry can be created, changed, or retrieved. It is not allowed on problem

type 3, PTF order.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 CHAR(256) Symptom

Note: The first character position of this symptom field may not contain a blank.

Key 1011-PTF Media Selection

This key contains data that is used to define the type of media on which a PTF should be delivered. The

type of media is defined by the media type and the machine type on which the media is installed.

Note: If the machine type and model are unknown, zeros must be used for these fields.

A problem cannot be moved to PREPARED status without this key.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Machine type length

12 C BINARY(4) Model length

16 10 BINARY(4) Media type

20 14 CHAR(16) Machine type

36 24 CHAR(16) Model

Key 1012-Problem Category

This key contains data that is used to define the category of a problem.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

108 IBM Systems - iSeries: Problem Management APIs

Offset

Type Field Dec Hex

4 4 BINARY(4) Key size

8 8 BINARY(4) Problem category

Key 1013-Client Information

This key contains data that defines the failing software on a personal computer.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Path Name Length

12 C BINARY(4) Product ID length

16 10 BINARY(4) Version length

20 14 BINARY(4) Program Length

24 18 BINARY(4) Function length

28 1C BINARY(4) Client ID length

32 20 BINARY(4) Contact information length

36 24 CHAR(256) Path Name

292 124 CHAR(64) Product ID

356 164 CHAR(64) Version

420 1A4 CHAR(64) Program

484 1E4 CHAR(64) Function

548 224 CHAR(256) Client ID

804 324 CHAR(256) Contact information

1060 424 CHAR(20) Address

Key 1014-First Failure Data Capture

This key contains data that is used to indicate the number of times a problem has recurred. The data

contains the program that detected the failure and a description of the product.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Key control for key 1014

12 C BINARY(4) Count

16 10 BINARY(4) Object name length

20 14 CHAR(256) Object name

Note: The following fields Product ID length through Reserved pertain to product data.

Problem Management APIs 109

Offset

Type Field Dec Hex

276 114 BINARY(4) Product ID length

280 118 BINARY(4) Version length

284 11C BINARY(4) Release level length

288 120 BINARY(4) Modification level length

292 124 CHAR(15) Product ID

307 133 CHAR(5) Version

312 138 CHAR(5) Release level

317 13D CHAR(5) Modification level

322 142 CHAR(2) Reserved

Key 1015-Query Status

An indicator of the results of a query of the problem log status.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Query status

Key 1016-Hardware Location Information

This key indicates the physical location of the hardware for frame ID and device locations.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 CHAR(4) Frame ID location

12 C CHAR(4) Device location

16 10 CHAR(4) Card location

Key Group 2000-FRU Entries

This key group provides information about field replaceable unit (FRU). This group can only be used

with machine-detected problem types. Keys 2001 through 2009 use a header to define the FRU type,

probability, FRU code, and message identifier for the FRU.

Click one of the following to find your key:

v “Key 2000-Number of FRU Entries to Work with” on page 111

v “Key 2001-Device FRU Type” on page 111

v “Key 2002-Code FRU Type” on page 112

110 IBM Systems - iSeries: Problem Management APIs

v “Key 2003-Media FRU Type” on page 113

v “Key 2004-User FRU Type” on page 114

v “Key 2005-FRU Name” on page 114

v “Key 2006-Attached FRU” on page 115

v “Key 2007-Configuration FRU” on page 115

v “Key 2008 - General FRU” on page 115

v “Key 2009-Channel Attached FRU” on page 116

Key 2000-Number of FRU Entries to Work with

This key deletes or retrieves all FRU entries or all FRU entries of a class.

For more details about the fields in the following table, see “Field Descriptions for Key Groups for

Problem Log APIs” on page 124.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Class of FRU

12 C BINARY(4) FRU count

Key 2001-Device FRU Type

This defines the data required to create a FRU entry for a device or feature. Device here can also be a

feature code. The device data defines the device or feature.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

Note: The following fields Class of FRU through Reserved pertain to the FRU header.

8 8 BINARY(4) Class of FRU

12 C BINARY(4) Probability of fix

16 10 CHAR(4) FRU code

20 14 CHAR(7) FRU description message ID

27 1B CHAR(1) Reserved

28 1C BINARY(4) Device location text length

32 20 BINARY(4) Coded character set identifier

36 24 BINARY(4) Rack serial number length

Note: The following fields Machine type length through Serial number pertain to device data.

40 28 BINARY(4) Machine type length

44 2C BINARY(4) Model length

48 30 BINARY(4) Feature length

52 34 BINARY(4) Serial number length

56 38 CHAR(16) Machine type

Problem Management APIs 111

Offset

Type Field Dec Hex

72 48 CHAR(16) Model

88 58 CHAR(16) Feature

104 68 CHAR(32) Serial number

136 88 CHAR(7) Document reference message ID

143 8F CHAR(256) Device location text

399 18F CHAR(10) Resource name

409 199 CHAR(10) Device name

419 1A3 CHAR(32) Rack serial number

451 1C3 CHAR(2) Card position

453 1C5 CHAR(2) DSA bus number

455 1C7 CHAR(4) Unit address

459 1CB CHAR(2) Port

461 1CD CHAR(3) Reserved

464 1D0 BINARY(4) Device type

Note: The following fields, Transport type through Dependent address 5, pertain to RISC device data.

468 1D4 BINARY(4) Transport type

472 1D8 BINARY(4) Bus number

476 1DC BINARY(4) Card number

480 1E0 BINARY(4) Board number

484 1E4 BINARY(4) Address type

488 1E8 BINARY(4) I/O bus address

492 1EC BINARY(4) Dependent address 2

496 1F0 BINARY(4) Dependent address 3

500 1F4 BINARY(4) Dependent address 4

504 1F8 BINARY(4) Dependent address 5

Key 2002-Code FRU Type

This defines the data required to create a FRU entry for code. Code may be a product, a program, or a

module.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

Note: The following fields Class of FRU through Reserved pertain to the FRU header.

8 8 BINARY(4) Class of FRU

12 C BINARY(4) Probability of fix

16 10 CHAR(4) FRU code

20 14 CHAR(7) FRU description message ID

27 1B CHAR(1) Reserved

112 IBM Systems - iSeries: Problem Management APIs

Offset

Type Field Dec Hex

Note: The following fields Product ID length through Reserved pertain to product data.

28 1C BINARY(4) Product ID length

32 20 BINARY(4) Version length

36 24 BINARY(4) Release level length

40 28 BINARY(4) Modification level length

44 2C CHAR(15) Product ID

59 3B CHAR(5) Version

64 40 CHAR(5) Release level

69 45 CHAR(5) Modification level

74 4A CHAR(2) Reserved

76 4C CHAR(4) Primary function group

80 50 CHAR(4) Secondary function group

84 54 CHAR(10) Module name

94 5E CHAR(7) Document reference message ID

101 65 CHAR(3) Reserved

Key 2003-Media FRU Type

This defines the data required to create a FRU entry for media. The device data defines the device on

which the media, such as tape or diskette, was installed.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

Note: The following fields Class of FRU through Reserved pertain to the FRU header.

8 8 BINARY(4) Class of FRU

12 C BINARY(4) Probability of fix

16 10 CHAR(4) FRU code

20 14 CHAR(7) FRU description message ID

27 1B CHAR(1) Reserved

Note: The following fields Machine length type through Serial number pertain to the device data.

28 1C BINARY(4) Machine type length

32 20 BINARY(4) Model length

36 24 BINARY(4) Feature length

40 28 BINARY(4) Serial number length

44 2C CHAR(16) Machine type

60 3C CHAR(16) Model

76 4C CHAR(16) Feature

92 5C CHAR(32) Serial number

124 7C CHAR(7) Document reference message ID

Problem Management APIs 113

Offset

Type Field Dec Hex

131 83 CHAR(10) Resource name

141 8D CHAR(8) Volume ID

149 95 CHAR(3) Reserved

Key 2004-User FRU Type

This defines the data required to define a problem resulting from a user action.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

Note: The following fields Class of FRU through Reserved pertain to the FRU header.

8 8 BINARY(4) Class of FRU

12 C BINARY(4) Probability of fix

16 10 CHAR(4) FRU code

20 14 CHAR(7) FRU description message ID

27 1B CHAR(1) Reserved

28 1C CHAR(7) Document reference message ID

35 23 CHAR(1) Reserved

Key 2005-FRU Name

This defines the data required to create a list of up to six parts that could be failing. The parts are

identified by their part numbers and location.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

Note: The following fields Class of FRU through Reserved pertain to the FRU header.

8 8 BINARY(4) Class of FRU

12 C BINARY(4) Probability of fix

16 10 CHAR(4) FRU code

20 14 CHAR(7) FRU description message ID

27 1B CHAR(1) Reserved

28 1C CHAR(7) Document reference message ID

35 23 CHAR(25) Part location

60 3C CHAR(6)(12) Part number array

114 IBM Systems - iSeries: Problem Management APIs

Key 2006-Attached FRU

This defines the data required to create a list of up to six parts that could be failing. The parts are

identified by their part numbers and location.

This FRU defines parts that are attached to I/O adapters or I/O processors.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

Note: The following fields Class of FRU through Reserved pertain to the FRU header.

8 8 BINARY(4) Class of FRU

12 C BINARY(4) Probability of fix

16 10 CHAR(4) FRU code

20 14 CHAR(7) FRU description message ID

27 1B CHAR(1) Reserved

28 1C CHAR(7) Document reference message ID

35 23 CHAR(25) Part location

60 3C CHAR(6)(12) Part number array

Key 2007-Configuration FRU

This key defines an error in the configuration of a device. It provides the name of a panel that may be

displayed defining a problem.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

Note: The following fields Class of FRU through Reserved pertain to the FRU header.

8 8 BINARY(4) Class of FRU

12 C BINARY(4) Probability of fix

16 10 CHAR(4) FRU code

20 14 CHAR(7) FRU description message ID

27 1B CHAR(1) Reserved

28 1C BINARY(4) Coded character set identifier

32 20 BINARY(4) Replacement text length

36 24 CHAR(8) Screen identifier

44 2C CHAR(30) Replacement text

74 4A CHAR(2) Reserved

Key 2008 - General FRU

This defines a FRU that is not of one of the other classes of FRUs. It provides the name of a panel that

may be displayed defining a problem.

Problem Management APIs 115

Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

Note: The following fields Class of FRU through Reserved pertain to the FRU header.

28 1C BINARY(4) Class of FRU

32 20 BINARY(4) Probability of fix

36 24 CHAR(4) FRU code

40 28 CHAR(7) FRU description message ID

47 2F CHAR(1) Reserved

48 30 BINARY(4) Coded character set identifier

52 34 BINARY(4) Replacement text length

56 38 CHAR(8) Screen identifier

64 40 CHAR(30) Replacement text

94 5E CHAR(2) Reserved

Key 2009-Channel Attached FRU

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

Note: The following fields Class of FRU through Reserved pertain to the FRU header.

8 8 BINARY(4) Class of FRU

12 C BINARY(4) Probability of fix

16 10 CHAR(4) FRU code

20 14 CHAR(7) FRU description message ID

27 1B CHAR(1) Reserved

28 1C CHAR(7) Document reference message ID

35 23 CHAR(4) Fault symptom code

39 27 CHAR(32) Sense bytes

71 47 CHAR(1) Reserved

Key Group 3000-Text Entries

This key group creates, retrieves, and changes problem text entries. It provides access to text that defines,

describes, or tracks a problem.

To get to the key of your need, click one of the following:

v “Key 3000-Text Entry” on page 117

v “Key 3001-Text Entry” on page 117

116 IBM Systems - iSeries: Problem Management APIs

Key 3000-Text Entry

Retrieves text about a problem. Either all text associated with the problem or specified text can be

retrieved. The text types associated with the problem are:

v 80 character title, limit to one entry

This entry provides users with a means of describing a problem in their own words. This appears on

the problem list panel.

v Long problem description.

A detailed description of the problem.

v Problem status

Used to provide a means of tracking a problem until it is resolved, especially tracking what the

support organization is doing to resolve the problem.

v Private notes

Provides an area to keep notes about a problem that will not be made public. These notes are not sent

to another system.

v Associated problem data

This area is for general use and can be tailored to the needs of the users.

For more details about the fields in the following table, see “Field Descriptions for Key Groups for

Problem Log APIs” on page 124.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Text type

12 C BINARY(4) Text count

Key 3001-Text Entry

Allows the user to create or change data about a problem. The user is responsible for the content and

format.

To create a text entry, provide the length of text to add. The text is referenced by a pointer and the coded

character set identifier. A pointer, defined in key 3001 (Text entry), points to the beginning of the data.

To change the data, a retrieve, although not required, should be performed first. Data provided on the

change API overlays the data previously in the entry. The data is changed by providing the data as done

in a create. To effectively delete the data set, set Text length to 0. This entry can be created, changed, or

retrieved.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Text type

12 C BINARY(4) Coded character set identifier

16 10 BINARY(4) Text length

20 14 CHAR(12) Reserved

Problem Management APIs 117

Offset

Type Field Dec Hex

32 20 POINTER(SPP) Pointer to the text

Key Group 4000-Supporting data entries

This key group maintains a list of files that contain supplemental data about a problem. The data is

contained in spooled or database files. The name and location of the files is maintained by this key

group.

To get to the key of your need, click one of the following:

v “Key 4000-Supporting Data Entries”

v “Key 4001-Spooled File Data”

v “Key 4002-File Data” on page 119

Key 4000-Supporting Data Entries

This key retrieves and deletes all entries or all entries of a type, spooled or database files, associated with

a specific problem. Spooled files are processed using key 4001 and database files are processed using key

4002. Deleting a specific entry is not supported. This entry can be used by the delete and retrieve API.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) File type

12 C BINARY(4) File count

Key 4001-Spooled File Data

This key contains the name of a spooled file that is associated with the problem log entry.

This key is used to add or create an entry. It is also used to return the results of a retrieve operation.

To add or create an entry, use this key to define each spooled file to be associated with the problem. New

entries are added to the file.

To change an entry it must be deleted first then a new one added.

A retrieve is done by passing key 4000 and defining type 1. All spooled file entries are returned, a key

4001 (spooled file data) for each. The entry is used by the Add and Create Problem Log Entry APIs.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) File number

12 C CHAR(10) Job name

22 16 CHAR(10) User

118 IBM Systems - iSeries: Problem Management APIs

Offset

Type Field Dec Hex

32 20 CHAR(6) Job Number

38 26 CHAR(10) File Name

Key 4002-File Data

This key contains the name of a data base file that is associated with the problem log entry.

This key is used to add or create an entry. It is also used to return the results of a retrieve operation.

To add or create an entry, use key 4002 (file data) to define each spooled file to be associated with the

problem. New entries are added to the file.

To change an entry it must be deleted first then a new ones added.

A retrieve is done by passing key 4000 and defining type 2. All data base file entries are returned, a key

4002 (file data) for each.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 CHAR(10) File name

18 12 CHAR(10) File library name

28 1C CHAR(10) File member name

38 26 CHAR(2) Reserved

Key Group 5000-Contact Entries

This key group provides information about the contact.

This section contains the following keys:

v “Key 5000-Contact entries”

v “Key 5001-Contact Information” on page 120

Key 5000-Contact entries

Allows the retrieval of contact information, local, remote, or both. A key 5001 (Contact information) entry

is returned for each of the contact entries. This can be used by the Retrieve Problem Log Entry API.

For more details about the fields in the following table, see “Field Descriptions for Key Groups for

Problem Log APIs” on page 124.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

Problem Management APIs 119

Offset

Type Field Dec Hex

8 8 BINARY(4) Contact type

12 C BINARY(4) Contact information count

Key 5001-Contact Information

Allows creating or changing a contact entry. To create or change an entry:

v Provide the type of entry to create or change

v Set the key control to define the field to process.

The control values are:

 1 NLV

2 Corporation name

4 Contact name

8 Primary contact phone number

16 Help desk or pager number

32 Address

64 CCSID

128 Primary FAX contact phone number

256 Alternative FAX contact phone number

512 Primary electronic mail address

1024 Alternative electronic mail address

To process multiple fields sum the value of the fields to be processed.

v Provide the data to be added to the field. Enter a blank to delete the contents of a field.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Key control for key 5001

12 C BINARY(4) Contact type

16 10 BINARY(4) Coded character set identifier

20 14 CHAR(4) National language version

24 18 CHAR(36) Corporation name

60 3C CHAR(36) Name of contact

96 60 CHAR(30) Primary phone number

126 7E CHAR(30) Help desk or pager number

156 9C CHAR(30) Primary FAX number

186 BA CHAR(30) Alternative FAX number

Note: The following fields Address line 1 through Postal code pertain to the postal address.

216 D8 CHAR(36) Address line 1

252 FC CHAR(36) Address line 2

288 120 CHAR(36) Address line 3

324 144 CHAR(36) City or locality

120 IBM Systems - iSeries: Problem Management APIs

Offset

Type Field Dec Hex

360 168 CHAR(20) Country or region

380 17C CHAR(12) Postal code

392 188 CHAR(36) State or province

428 1AC CHAR(256) Primary electronic mail address

684 2AC CHAR(256) Alternative electronic mail address

Key Group 6000-Problem History Entries

This key group provides problem history structures.

This section includes the following keys:

v “Key 6000-History Information”

v “Key 6001-History Information”

Key 6000-History Information

This key retrieves all or the last history entry. Key 6001 (history information) is returned for each history

entry. Entries are returned starting with the latest entry.

For more details about the fields in the following table, see “Field Descriptions for Key Groups for

Problem Log APIs” on page 124.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) History type

12 C BINARY(4) History count

Key 6001-History Information

History entries should be added to the file in logical event sequence and must be added each time the

problem log entry is created, changed, or elements are deleted. The create and add APIs add the entries

in the sequence the key 6001 (history information) are supplied to the API. No verification is made of the

logical order of the events. All entries that are added in the context of one API call have the same date

and time. The API adds the date and time.

Once entered the event may not be changed or deleted. Change control is provided to allow optional

data, change request name, and change request number to be added when needed.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Key control for key 6001

Problem Management APIs 121

Offset

Type Field Dec Hex

12 C BINARY(4) History type

16 10 CHAR(13) Event date and time

29 1D CHAR(10) User ID

39 27 CHAR(10) Change request name

49 31 CHAR(6) Change request number

55 37 CHAR(1) Reserved

Key Group 7000-PTF Entries

This key group provides program temporary fix (PTF) information.

This section contains the following keys:

v “Key 7000-PTF Entry”

v “Key 7001-PTF ID”

v “Key 7002-PTF ID” on page 123

Key 7000-PTF Entry

Allows a user to retrieve or delete all PTF entries.

On a retrieve operation it defines the number of entries returned on a retrieve operation.

On a delete operation, all the PTF entries are deleted. Number of entries has no significance during

delete.

For more details about the fields in the following table, see “Field Descriptions for Key Groups for

Problem Log APIs” on page 124.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) PTF count

Key 7001-PTF ID

This key defines the program temporary fix (PTF) identifier. On add or create operations, all fields must

be filled in.

On a retrieve operation, this key defines which PTF to retrieve. A PTF is identified by the PTF ID,

product, version, release, and modification.

PTF entries are always added to the end of the list.

To change a PTF entry, the key control should be used to identify the field being changed. The PTF ID

may not be changed.

122 IBM Systems - iSeries: Problem Management APIs

Note: Ensure that the correct PTF entry is being changed. The SNDPTFORD command creates entries that

use special values for the product data. Non-IBM products may use the same PTF ID for different

releases or different vendors may use the same PTF ID. It may be necessary to retrieve, delete, and add

new PTF entries where there are multiple PTFs with the same PTF ID, but different product data, are

encountered. This exposure only exists with non-IBM PTFs since IBM PTFs have unique PTF identifiers.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Key control for key 7001

12 C BINARY(4) PTF status

16 10 BINARY(4) Sent

20 14 BINARY(4) PTF ID length

24 18 CHAR(20) PTF ID

Note: The following fields Product ID length through Reserved pertain to the product data.

44 2C BINARY(4) Product ID length

48 30 BINARY(4) Version length

52 34 BINARY(4) Release level length

56 38 BINARY(4) Modification level length

60 3C CHAR(15) Product ID

75 4B CHAR(5) Version

80 50 CHAR(5) Release level

85 55 CHAR(5) Modification level

90 5A CHAR(2) Reserved

92 5C CHAR(2) Minimum level

94 5E CHAR(2) Maximum level

96 60 CHAR(1) PTF image

Key 7002-PTF ID

On a create operation, all fields must be provided.

On a change operation, only the fields identified by the Key control field are processed.

On a retrieve operation, the PTF ordering options are returned.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Key control for key 7002

12 C BINARY(4) PTF order type

16 10 BINARY(4) Option

20 14 BINARY(4) Reorder

Problem Management APIs 123

Offset

Type Field Dec Hex

24 18 BINARY(4) Delivery

28 1C BINARY(4) Check

32 20 BINARY(4) Delivery Format

36 24 CHAR(64) Image directory

100 64 CHAR(10) Image prefix

Key Group 8000-Analyzed Error Entries

This key group provides analyzed error flag information.

Key 8000-Analyzed Error Flag: This key retrieves a value that indicates whether SLIC analyzed the

problem.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 BINARY(4) Analyzed error flag

Key Group 9000-Logical Partition ID Entries

This key group provides logical partition ID information.

Key 9000-Logical Partition ID: This key retrieves the current logical partition ID on the physical machine.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Key size

8 8 CHAR(1) Logical partition ID

Field Descriptions for Key Groups for Problem Log APIs

Address. Internet address of the client in dotted form. For example: 95.5.123.11.

Address line 1. The first line of the address.

Address line 2. The second line of the address.

Address line 3. The third line of the address.

Address type. The format of the unit address, which is numeric value that represents the hardware type.

Valid values are as follows:

 1 Communications resource

124 IBM Systems - iSeries: Problem Management APIs

2 Storage resource

3 Workstation resource

4 Auxiliary processor resource

5 Library resource

Alert status. Valid values are:

 0 Problem not alertable

1 No alert pending

2 Alert pending

Alternative electronic mail address. The electronic mail (e-mail) address to receive problem-related data,

if the primary e-mail address is not available.

Alternative FAX number. The backup FAX number to receive problem-related data.

Analyzed error flag. Indicates whether the error has been analyzed by SLIC.

Answer code assigned. The code that is assigned corresponds to a message that describes the answer

given to the problem. The values are:

 -1 No code assigned

0 Fixes sent

1 Fixes mailed

2 Fixes to be sent later

3 Fix cover letter only

4 Fixes not available

5 Fixes already on system

6 Not ordered

7 Fixes ordered or on system

8 All fixes on order

9 Exceeds mailing limit

10 Exceeds transmit limit

11 Exceeds limit for cover letter order

12 Support center notified

13 Documentation error

14 Failing product not entitled

15 Service requester not entitled

16 Reporting system not entitled

17 Entries out of order

Answer code returned. The code that is assigned corresponds to a message that describes the answer

given the service requester regarding the problem. See the answer code assigned field for list of values.

APAR library. The name of the library containing the saved APAR data for this problem. The library, if

present, contains spooled and database files. This data is collected automatically or by the Restore APAR

Data (RSTAPARDTA) or Save APAR Data (SAVAPARDTA) commands. The library is deleted when the

problem log entry is deleted.

Auto PAR. Defines if problem analysis procedures were automatically run for this problem.

 0 Problem analysis not done automatically.

1 Problem analysis done automatically.

Problem Management APIs 125

Auto notify. Defines if the problem has been automatically reported to a service provider.

 0 Notify not done automatically.

1 Notify done automatically.

Board number. The number of the back plane card on this bus.

Bus number. The number of the bus.

Card location. The physical location of the card.

Card number. The number derived from the slot number (the logical address is assigned to the card slot).

Card position. Physical location where the device or feature is plugged into the bus.

Change request name. The name assigned, by the user, when submitting a change request.

Change request number. The sequence number of the change request.

Check. Indicates whether checking is performed on the service requester system to determine if PTFs are

ordered based on whether or not the PTF product is installed or supported. Possible values are:

 *NO The PTFs specified on the PTF order list are ordered even when the PTF product is not installed or supported

on the service requester.

*YES The PTFs specified on the PTF order list parameter are ordered only if the PTF product is installed or

supported on the service requester.

 Note: *NO must be specified when 1 (Cover letter only) is specified for PTF order type.

 City or locality. The city or locality of the postal address.

Class of FRU. The class of FRU entries to process. The values are:

 0 All FRU classes

1 Point of failure

2 Partial isolation

3 Isolation

4 Verification

5 Recovery

6 Answer

All FRUs can only be used on a retrieve operation.

Client ID. Name of the client.

Client ID length. Length of the client ID data.

Code. A code that defines the network address type.

 A APPN

I Internet

R *IBMSRV

126 IBM Systems - iSeries: Problem Management APIs

Coded character set identifier (CCSID). A code that describes the character set of the text. This value

should be changed each time data is written and the value must agree with the CCSID of the data. If this

value is 0 on a create operation, the API uses the job CCSID.

Contact information. Data describing the PC contact.

Contact information count. The number of 5001 keys that are returned by the retrieve operation.

Contact information length. Length of the contact information data. If it is a local contact information

record, it is the local corporation name, or else it is the remote system corporation name.

Contact type. Origin of contact information, local or remote. The values are:

 1 Contact information of the local system

2 Contact information of the system on which the problem was created.

Corporation name. Name of company that depends on the entry type.

Count. Number of times the problem has been detected.

Country or region. The country or region of the postal address.

Create date and time. Time the problem log entry was created and added by the API. It is in format

CYYMMDDHHMMSS. Ignored if the create was local.

Create location. Defines where problem was created. The values are:

 1 Local

2 Remote

Creator of entry. Defines the function that created the entry.

 -1 Not defined

0 Alert

1 FFDC, first failure data capture

2 FAST

3 General

4 PWSI

Date and time added. Date and time the problem log entry was added. This is the time that the problem

was added to this systems problem log. This field is only valid for the QsxRetrieveProblemLogEntry API.

This is entered by the create API when the problem is added to this system. The time added field cannot

be changed once entered, but it can be retrieved.

Date and time closed. Date and time the problem log entry was closed.

This field is changed when the user selects close on the Work with Problem display or uses the Change

Problem Log API. This field can be retrieved, but it cannot be changed.

Delivery. Defines whether the PTF will be delivered by mail or electronically.

 0 Deliver by mail or electronically.

1 Deliver electronically only.

Problem Management APIs 127

Delivery format. Specifies the format the PTFs are stored. Possible values are:

 0 PTFs are delivered electronically as save files.

1 PTFs are delivered electronically as optical image files. The optical image files will contain PTFs

and cover letters. The optical image files will be stored in the directory specified in the image

directory field.

Delta level. Specifies the level of the system release.

Dependent address 2. An address field where the type of address is dependent on the address type field.

 Address Type Dependent Address 2

1 (Communications) Adapter

2 (Storage) Controller

3 (Workstation) Adapter

4 (Auxiliary processor) Auxiliary processor

5 (Library) Library

Dependent address 3. An address field where the type of address is dependent on the address type field.

 Address Type Dependent Address 3

1 (Communications) Port

2 (Storage) Device

3 (Workstation) Port

4 (Auxiliary processor) Adapter

5 (Library) Controller

Dependent address 4. An address field where the type of address is dependent on the address type field.

 Address Type Dependent Address 4

1 (Communications) Channel

2 (Storage) Reserved

3 (Workstation) Device

4 (Auxiliary processor) Port

5 (Library) Device

Dependent address 5. An address field where the type of address is dependent on the address type field.

 Address Type Dependent Address 5

1 (Communications) Reserved

2 (Storage) Reserved

3 (Workstation) Shared session

4 (Auxiliary processor) Reserved

5 (Library) Reserved

Device location. The physical location of the device.

Device location text. Text that describes the location of the device.

Device location text length. Length of text.

Device name. A name given to the device or feature.

128 IBM Systems - iSeries: Problem Management APIs

Device type. The type of device located on the system.

Document reference message ID. Message that contains a description of reference material.

DSA bus number. Code further defining the electrical address of a resource.

EC number. Engineering change number.

Error code message identifier. Identifier of the message that describes the error log entry.

Error log identifier. Number of the error log.

Event date and time. Date and time event was added to the problem log entry.

Exit point of the PDP. A code that defines the procedure in the PDP that isolated the problem.

Fault symptom code. A code defining the symptom of the problem.

Feature. Feature of the device. This is set to blank if a feature is not applicable.

Feature length. Length of the feature field. Maximum length supported is 4.

File count. The number of series 4001 or 4002 keys that are concatenated to this key.

File library name. Name of the library that contains the file.

File member name. Name of the file member. This is *SAVF if the file is a save file. This is *NONE if the

file has no members.

File name. The file name that was specified by the user program when the file was created, or the name

of the device file used to create this file.

File number. The file number for this spooled file.

File type. The type of entry to process. The values are:

 0 All entries

1 Spooled file entry

2 Data file entry

Filter event Defines if problem log should be filtered

 0 Not set

1 No alert pending

2 Alert pending

Filter group assigned. Name of the group in the filter to which the problem is assigned.

Filter library name. Library where the filter is located.

Filter name. Name of the filter.

Frame ID location. The physical location of the frame ID.

FRU code. A code that defines the FRU.

Problem Management APIs 129

FRU count. Number of FRU entries that were returned by the Retrieve Problem Log API.

FRU description message ID. Message that describes this FRU.

Function. Name of the failing function.

Function length. Length of the function data.

Help desk or pager number. The help desk or pager number of the contact for the problem being

reported. This number should include the area code, exchange numbers, and the extension.

Hierarchy. The function of the program where the problem occurred.

History count. The number of 6001 keys returned by the Retrieve Problem Log API.

History type. History entry type. The types are:

 0 Problem entry closed

1 Problem entry opened

2 Service request received

3 Opened by an alert

4 Problem analyzed

5 Verification test ran

6 Recovery procedure ran

7 Prepared to report

8 Service request sent

9 Problem answered

10 Response sent

11 Reported by voice

12 Fixes transmitted

13 Change request submitted

14 Change request ended

15 Fix verified

16 Remote analysis

17 Remote verification ran

18 Remote recovery ran

19 Alert created

20 APAR created

21 APAR data collected

22 APAR data restored

23 APAR data deleted

24 Changed by CHGPRB

25 Deleted by DLTPRB

26 Problem occurred multiple times

27 Status changed

28 Status query sent

29 Problem automatically analyzed

30 Problem not automatically analyzed - SRC

31 Problem not automatically analyzed - SBMJOB

32 Automatic problem analysis failed

33 Problem sent automatically

34 Problem not sent automatically - SRC off

35 Problem not sent automatically - SBMJOB

36 Automatic problem notification failed

37 Problem analysis failed

130 IBM Systems - iSeries: Problem Management APIs

Image directory. The path name of the directory where optical image files will be saved. For more

information on specifying path names, refer to “Object naming rules” in “CL concepts and reference” in

the CL reference information in the iSeries Information Center at http://www.iseries.ibm.com/infocenter.

The following special value is accepted:

 *DFT The optical image files are stored in /QIBM/UserData/OS/Service/ECS directory.

Image prefix. The prefix for the optical image file names. If multiple images are received under one

order, the files will be uniquely identified by a numerical suffix on the image name. This field must be set

to blanks if 1 (Image) is not specified for delivery format. The following special value is accepted:

 *DFT No prefix will be added at the beginning of each optical image file name. The files will be named

by the service provider.

Instruction. Instruction number where the error was detected.

I/O bus address. The bus number between the IOP and the device.

Isolation status. The status of the isolation attempt.

 0 Not isolated, no FRUs added.

1 Completed successfully with isolation FRUs added.

2 Completed successfully, no problem found, point of failure FRUs added.

3 Unsuccessful, point of failure FRUs added.

4 Analysis not complete, point of failure FRUs added.

5 Analysis partially completed, partial FRU list added.

Job name. The name of the job that produced the spooled file.

Job number. The number of the job that produced this spooled file.

Key. Integer value that defines the key you are working with.

Key control for key 6. Defines the fields that will be processed.

 1 Alert status

2 APAR library

4 Auto PAR

8 Auto Notify

16 From System

32 To System

64 Prepared For

Key control for key 8. Defines which field should be processed. Add the values to process multiple

fields.

 1 Use answer code assigned

2 Use answer code returned

4 Use problem number

8 Use problem country number

16 Use problem branch number

Key control for key 1004. Defines the EC (engineering change) number.

Problem Management APIs 131

Key control for key 1005. Defines the fields that will be processed.

 1 Type

2 Device

4 Product

8 Instruction

16 Hierarchy

32 Resource name

64 Error log identifier

128 Program

Key control for key 1006. Defines field used for reporting code:

 1 Product name

2 Program name

4 Probe

Key control for key 1014. Defines which field should be processed. Add the values to process multiple

fields.

 1 Use count field

2 Use object length, object name and detecting product fields

Key control for key 5001. Defines contact data fields:

 1 National Language Version (NLV)

2 Corporate name

4 Contact

8 Primary phone number

16 Help desk or pager number

32 Address

64 CCSID

128 Primary FAX contact phone number

256 Alternative FAX contact phone number

512 Primary electronic mail address

1024 Alternative electronic mail address

Key control for key 6001. Defines which fields to process:

 1 Use optional change request data

Key control for key 7001. Identifies which fields to process on a change operation. The control values are:

 1 Status

2 Sent

To process multiple fields sum the values for the fields you want to change.

Key control for key 7002. Defines which fields to process on a change operation. The control values are:

 1 Type

2 Option

132 IBM Systems - iSeries: Problem Management APIs

4 Reorder

8 Delivery

16 Check

32 Delivery Format

64 Image directory

128 Image prefix

Key size. Defines the size of the key you are working with.

Machine type. A type of device.

Machine type length. Length of the machine type in bytes.

Maximum level. The indicator of the highest level of the product on which this PTF can be installed. If

the minimum and maximum levels are the same, then this PTF can only be installed on one level of the

product. The level can be AA to 99. This field will be blank if the product has no level.

Media type. This is a code that defines a media type.

 1 Automatic selection. Auto selection implies that the system determines what device to use for fix distribution.

This is required when the problem is PREPARED.

2 CD-ROM.

Message file name. The message file that contains the problem description. The library of the file must

exist in the library list.

Message identifier. The identifier of a message that describes the problem.

Message library name. The library that contains the message file.

Minimum level. The indicator of the lowest level of the product on which this PTF can be installed. If

the minimum and maximum levels are the same, then this PTF can only be installed on one level of the

product. The level can be AA to 99. This field will be blank if the product has no level.

Model. The model of the device type.

Model length. Size of the machine model field, maximum is 3.

Mode of analysis. Whether the problem was in message mode, which allows the user to analyze the

problem, or the problem was analyzed by the System Licensed Internal Code (SLIC) and cannot be

analyzed again. Valid values are as follows:

 0 Message mode of analysis

1 SLIC mode of analysis

Modification level. Modification level of the object. *ONLY is a valid constant even though it is longer

than the 2-byte maximum.

Modification level length. Length of the modification level in bytes. Maximum length supported is 2.

Module name. Component of a program or a program name.

Name. Product, microcode, application, or module name.

Problem Management APIs 133

Name length. Length of the name of the object that detected the error.

Name of contact. The name of a person to contact within the corporation.

National language version. A code that defines the national language version in which the cover letter is

supplied. The values are defined in the globalization topic.

Network address. Defines the address of a network node. These formats are used:

 APPN v Network ID

v Control point name

v Reserved

Internet (in dotted form) v Address

v Reserved

*IBMSRV v Network ID (must be blank)

v Control point name (must be ’*IBMSRV’)

v Reserved

The reserved fields must be blank.

Number of times analyzed. The number of times the problem was analyzed. The value must be greater

than 0 and should be incremented each time the problem is analyzed.

Object name. Name of the object that detected the error.

Option. Defines if only the PTFs listed will be ordered or the PTFs and its requisites.

 0 PTF with no requisites

1 PTF and requisites

Part location. A textual description of where the part is located.

Part number array. List of up to six part numbers, 12 characters in length. Unused elements of the array

should be blank.

Path name. Path to the failing software.

Path name length. Length of the path name data.

PDP. Name of the problem determination procedure (PDP) module used to isolate the error.

Pointer to the text. Address of the text.

Port. Code defining where a device is attached to a device driver.

Postal code. The postal or zip code of the postal address.

Primary electronic mail address. The electronic mail (e-mail) address to receive problem-related data.

Primary FAX number. The primary FAX number to receive problem-related data.

Primary function group. The load ID of the program.

134 IBM Systems - iSeries: Problem Management APIs

Primary phone number. The phone number of the primary contact for the problem being reported.

Probability of fix. The probability of this FRU resolving the problem.

Probe. Identifier for a problem found in a program.

Problem branch number. A number assigned by the support system. The problem branch number field is

typically the problem management branch number used by *IBMSRV.

Problem category. Defines how a problem should be processed.

 0 REPORT-Designates a set of problem log entries that can be reported. This includes all problems except for

LOGONLY problems.

1 CRITICAL-Designates a set of problem log entries that have been created from a critical message. These

problems should be handled immediately.

2 LOGONLY-Designates a set of problems that are log-only. These problems cannot be reported.

3 ALL-All program log entries are displayed

Problem country number. A number assigned by the support system. The problem country number field

is typically the problem management country number used by *IBMSRV.

Problem log identifier. A unique identifier based on date and time, network type and network address.

The values are:

 Number On a create operation, this key defines whether the problem is being created for a local or remote

problem. A constant of ″*LOCAL″ is used to identify the problem as a local one.

The problem log ID is provided in key 1 (Problem log ID) when a remote problem is being

created.

Network type Network type

A APPN address

Network address Identifies the network in which the server resides. The format is:

v 8 characters for the network ID

v 8 characters for the control point name

v 4 characters reserved (must be blank)

Problem number. A number assigned by the support system. The problem number field is typically the

problem management number used by *IBMSRV.

Problem severity. The impact of the problem on the system. The values are:

 1 High

2 Medium

3 Low

4 None

Problem status. Defines the current status of the problem. The values are:

 0 *OPENED status

1 *READY status

2 *SENT status

3 *ANSWERED status

4 *VERIFIED status

5 *PREPARED status

Problem Management APIs 135

6 *CLOSED status

Problem type. Defines the type of problem the system is processing. The values are:

 1 Machine-detected problem

2 User-perceived hardware or software problem

3 PTF orders

4 User-perceived remote problem

5 Application-detected problem

6 Client machine-detected problem

7 Client user-detected problem

8 User-created general problem

Product ID. Name of the product.

Product ID length. Length of the product ID data. The maximum length is 7 except for key 1013 where

the maximum is 64. *ONLY*PRODUCT** is a valid constant even though it is longer than the 7-byte

maximum.

Program. Name of the failing program.

Program length. Length of the program data.

PTF count. Number of PTF entries retrieved.

PTF ID. A program fix identifier.

PTF ID length. Length of the program fix identifier. Maximum length is 7.

PTF image. Identifies whether or not the PTF was downloaded as an optical image file on the system.

Possible values are:

 0 The PTF was not downloaded as an optical image file.

1 The PTF was downloaded on the system as an optical image file.

PTF order type. Defines if the PTF and its cover letter will be ordered or only the cover letter.

 0 PTF and cover letter

1 Cover letter only

PTF status. Identifies whether the PTF has been requested from a remote system. Requested implies that

the PTF order was sent and the PTF is needed by your system.

 0 PTF not requested

1 PTF requested

Query status. Defines how the client service information is to be processed.

 0 Field not defined

1 Service representative opened the problem

2 Service representative has been dispatched

3 Problem closed

136 IBM Systems - iSeries: Problem Management APIs

4 Problem closed and service representative has been dispatched

Rack serial number. Serial number of the rack.

Rack serial number length. Length of the serial number of the rack.

Recovery status. The status of the recovery attempt.

 0 Recovery status not available

1 Recovery status available

2 Fix verified

3 Recovery failed

Reference code. Index into a reference code translatable table.

Reference code description data. Data defining the error.

Reference code description file name. File that contains the reference code description.

Reference code description library name. Library that contains the reference code description.

Reference code description message. Message identifier that describes the problem.

Reference code translate table identifier. Name of the table that contains a description of the problem.

Reference code translate table library. Library that contains the reference code translate table.

Release level. Release level of the object. *ONLY is a valid constant even though it is longer than the

2-byte maximum.

Release level length. Maximum length supported is 2.

Reorder. Defines if a PTF that is already on the system, but which does not have a save file, will be

reordered. Typically a PTF will not be ordered if it has been loaded or installed. This option overrides

normal operation but if a save file exists for the PTF it will not be reordered.

 0 Do not reorder a PTF that is available on the system.

1 Order a PTF for which there is no save file for that PTF exists on the system.

Replacement text. Defining the configuration error.

Replacement text length. Length of the data in bytes.

Reserved. Space added to ensure correct boundary alignment. This field must be blank.

Resource name. Name of the resource.

Screen identifier. The identifier of a screen to be displayed to assist in solving a problem.

Secondary function group. Program option.

Sense bytes. Sense bytes that pertain to the problem.

Problem Management APIs 137

Sent. Defines if the PTF has been sent from the remote system in response to a PTF order or problem

report.

 0 PTF not sent

1 PTF sent

Serial number. Manufacturing sequence number or designation.

Serial number length. Maximum length supported is 7.

State or province. The state or province of the postal address.

Symptom. An encoded string that represents the problem description. Typically, this field contains

EBCDIC uppercase alphabetic, numeric, and limited special characters. Contact your service

representative for data restrictions. This field is considered a user-defined field and no translation or

alteration of the contents are made. The first character position of the field cannot be blank.

Text count. A count of 3001 entries returned by the Retrieve Problem Log API of entries returned. If no

entries are found, 0 is returned.

Text length. Length of the data in bytes.

Text type. A code that defines the type of text to process. The values are:

 0 All text, used on key 3000 (text entry) only to retrieve all entries.

1 80-character title, limit to one entry

2 Long problem description

3 Problem status

4 Private notes

5 Associated problem data

Transport type. The type of connection from the central electronics complex (CEC) to the board’s

user-assigned value for this SPD bus.

Type of hardware. Machine, device, feature, or component type.

Unit address. Code defining the electrical address of a resource.

User assigned. The user profile of the person assigned to this problem. The value is blank if not assigned.

User ID. User ID of the job making the entry.

Verification status. Defines the status of the recovery attempt.

 0 Not available

1 Available

2 Fixed

3 Failed

Version. Release level of the product. *ONLY is a valid constant even though it is longer than the 2-byte

maximum.

Version length. Length of the version data. Maximum length supported is 2 except for key 1013 where

the maximum is 64.

138 IBM Systems - iSeries: Problem Management APIs

Volume ID. Identifier of the media that is failing.

 Top | “Problem Management APIs,” on page 1 | APIs by category

Problem Management APIs 139

#TOP_OF_PAGE
aplist.htm

140 IBM Systems - iSeries: Problem Management APIs

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2006 141

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

(C) IBM 2006. Portions of this code are derived from IBM Corp. Sample Programs. (C) Copyright IBM

Corp. 1998, 2006. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface Information

This Application Programming Interfaces (API) publication documents intended Programming Interfaces

that allow the customer to write programs to obtain the services of IBM i5/OS.

142 IBM Systems - iSeries: Problem Management APIs

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI
DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
i5/OS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Appendix. Notices 143

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and Conditions

Permissions for the use of these Publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these Publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

Publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these Publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these Publications, or reproduce, distribute or display these Publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the Publications or any information, data, software or other intellectual property

contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the Publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE

PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE

144 IBM Systems - iSeries: Problem Management APIs

����

Printed in USA

	Contents
	Problem Management APIs
	Filtering
	Working with a Problem
	Key Groups
	APIs
	Problem Logging APIs
	Add Problem Log Entry (QsxAddProblemLogEntry) API
	Authorities and Locks
	Required Parameter Group
	Rules for Key Usage
	Keys for Adding FRU Records
	Keys for Adding Supporting Data
	Keys for Adding History Data
	Keys for Adding PTF Entry

	Error Messages

	Change Problem Log Entry (QsxChangeProblemLogEntry) API
	Authorities and Locks
	Required Parameter Group
	Format of the Keys
	Rules for Key Usage
	Changing General Data
	Changing Problem Status
	Keys for Changing Problem Type 1 to Another Status
	Keys for Changing Problem Types 2, 4, 5, and 8
	Keys for Changing Problem Type 3
	Keys for Changing Problem Types 6 and 7

	Error Messages

	Create Problem Log Entry (QsxCreateProblemLogEntry) API
	Authorities and Locks
	Required Parameter Group
	Format of the Keys
	Rules for Key Usage
	General Keys For Problem Log Entry Data
	Keys for Creating Problem Type 1
	Keys for Creating Problem Type 2
	Keys for Creating Problem Type 3
	Keys for Creating Problem Type 4
	Keys for Creating Problem Type 5
	Keys for Creating Problem Types 6 and 7
	Keys for Creating Problem Type 8
	Data for PREPARED Status

	Error Messages

	Delete Problem Log Entry (QsxDeleteProblemLogEntry) API
	Authorities and Locks
	Required Parameter Group
	Format of the Key Groups
	Rules for Key Usage
	Delete a Problem Log Entry
	Delete FRU Entries
	Delete PTF Entries
	Delete Supporting Data

	Error Messages

	End Problem Log Services (QsxEndProblemLogServices) API
	Authorities and Locks
	Required Parameter
	Error Messages

	Log Software Error (QPDLOGER) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group 1
	Optional Parameter Group 2
	Usage Notes
	Error Messages

	Report Software Error (QpdReportSoftwareError) API
	Authorities and Locks
	Required Parameter Group
	Problem Description Records Format
	Field Descriptions
	Keys
	Formats of Specific Problem Description Records
	Key 100-Call Stack Counter
	Key 101-Suspected Program
	Key 102-Suspected Service Program
	Key 103-Suspected Module
	Key 104-Suspected Procedure
	Key 105-Detecting Program
	Key 106-Detecting Service Program
	Key 107-Problem log entry creation
	Key 200-Symptom
	Key 201-Instruction Number
	Key 300-System Object
	Key 301-Data
	Key 302-Named System Object
	Key 303-Spooled File
	Key 304-Named Integrated File System Object
	Key 400-Service Identifier

	Field Descriptions
	Usage Notes
	Error Messages

	Retrieve Problem Log Entry (QsxRetrieveProblemLogEntry) API
	Authorities and Locks
	Required Parameter Group
	Format of the Key Groups
	Rules for Key Usage
	Retrieve PTF records
	Retrieve FRU records
	Retrieve text records
	Retrieve supporting data
	Retrieve history records

	Error Messages

	Start Problem Log Services (QsxStartProblemLogServices) API
	Authorities and Locks
	Required Parameter
	Error Messages

	Work with Problem (QPDWRKPB) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	Error Messages

	Service APIs
	Change Contact Information (QEDCHGIN) API
	Authorities and Locks
	Required Parameter Group
	CNTC0100 Format
	Field Descriptions
	Error Messages

	Collect Hung Job Service Documentation (QPDETHNG) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Convert Format of Service Information (QPDETCVT) API
	Authorities and Locks
	Required Parameter Group
	CVTR0100 - Format for receiver variable
	CVTS0100 - Format for LIC Log conversion
	CVTS0200 - Format for message conversion (STRWCH)
	CVTS0300 - Format for message conversion (QGYOLMSG)
	CVTS0400 - Format for message conversion (QGYOLJBL)
	Field Descriptions
	Error Messages

	Filter Problem (QSXFTRPB) API
	Required Parameter Group
	Authorities and Locks
	Format for the Problem Log Identifier
	Field Descriptions
	Error Messages

	Retrieve Contact Information (QEDRTVCI) API
	Authorities and Locks
	Required Parameter Group
	CNTI0100 Format
	Field Descriptions
	Error Messages

	Retrieve Policy Data (QPDETRTV) API
	Authorities and Locks
	Required Parameter Group
	Format of Data Returned
	RPOL0100 - Retrieve service cleanup interval
	RPOL0200 - Retrieve problem documentation level
	RPOL0300 - Retrieve maximum PTF order size

	Field Descriptions
	Error Messages

	Retrieve Service Attributes (QESRSRVA) API
	Authorities and Locks
	Required Parameter Group
	Receiver Variable Format
	Field Descriptions

	Service Attribute Template Format
	Field Descriptions
	Service Attributes Format
	Key 1—Automatic Problem Analysis
	Field Descriptions
	Key 2—Automatic Problem Reporting
	Field Descriptions
	Key 3—Service Provider to Report Problem
	Field Descriptions
	Key 4—PTF Install Type
	Field Descriptions
	Key 5—Critical Message Recipients
	Field Descriptions
	Key 6—Send Data Packets
	Field Descriptions
	Key 7—Copy PTFs
	Field Descriptions
	Key 10—System-Disabled Reporting Connection Number
	Field Descriptions
	Key 11—System-Disabled Call-Back Connection Number
	Field Descriptions
	Key 12—Service Provider Connection Number
	Field Descriptions
	Error Messages

	Retrieve XML Service Information (QSCRXMLI) API
	Authorities and Locks
	Required Parameter Group
	DEST0100 Format
	Field Descriptions
	DEST0200 Format
	SIRV0100 Format
	Field Descriptions
	SSIF0100 Service Selection Information from a Nonprogram Message Queue Format
	Field Descriptions
	SSIF0200 Service Selection Information from a Program Message Queue of a Job Format
	Field Descriptions
	Usage Notes
	Error Messages

	Send Service Request (QPDETSND) API
	Authorities and Locks
	Required Parameter Group
	SNDR0100 - Refresh Policy File Request
	SNDR0200 - Start a Function Request
	SNDR0300 - Stop a Function Request
	SNDR0400 - Service Event Request
	SNDR0500 - Change Logging Levels Request
	SNDR0600 - Handle Changed System Value Request
	Field Descriptions
	Error Messages

	Set User Policy (QPDETPOL) API
	Authorities and Locks
	Required Parameter Group
	POLS0100 - Format for setting service interval policy for Service Monitor cleanup
	POLS0200 - Format for setting the level of problem documentation sent with a problem
	POLS0300 - Format for setting maximum PTF order size
	Field Descriptions
	Error Messages

	Monitoring APIs
	End Watch (QSCEWCH) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Start Watch (QSCSWCH) API
	Authorities and Locks
	Required Parameter Group
	Format for message information
	Format for LIC log information
	Field Descriptions
	Error Messages

	Start Watch Command or API Exit Program (QPDETWCH) API
	Authorities and Locks
	Required Parameter Group

	Exit Programs
	Exit Program for Watch for Trace Event
	Authorities and Locks
	Required Parameter Group
	Field Descriptions
	Related Information

	Concepts
	Key Groups for Problem Log APIs
	Key Use for Problem Log APIs
	Key utilization matrix

	Key Group 0000-General Problem Log Entries
	Key 1-problem log id
	Key 2-problem type
	Key 3-problem status
	Key 4-user assigned
	Key 5-problem origin system
	Key 6-Operational data
	Key 7—filter control
	Key 8-answer codes

	Key Group 1000-Problem Description Entries
	Key 1001—Problem Severity
	Key 1002-Problem Description Message
	Key 1003-Problem Creation Data
	Key 1004-Reporting Device
	Key 1005—Failing Resource
	Key 1006-Reporting Code
	Key 1007-Problem Analysis Data
	Key 1008-Fix Verification Status
	Key 1009-Fix Recovery Status
	Key 1010 -Symptom String
	Key 1011-PTF Media Selection
	Key 1012-Problem Category
	Key 1013-Client Information
	Key 1014-First Failure Data Capture
	Key 1015-Query Status
	Key 1016-Hardware Location Information

	Key Group 2000-FRU Entries
	Key 2000-Number of FRU Entries to Work with
	Key 2001-Device FRU Type
	Key 2002-Code FRU Type
	Key 2003-Media FRU Type
	Key 2004-User FRU Type
	Key 2005-FRU Name
	Key 2006-Attached FRU
	Key 2007-Configuration FRU
	Key 2008 - General FRU
	Key 2009-Channel Attached FRU

	Key Group 3000-Text Entries
	Key 3000-Text Entry
	Key 3001-Text Entry

	Key Group 4000-Supporting data entries
	Key 4000-Supporting Data Entries
	Key 4001-Spooled File Data
	Key 4002-File Data

	Key Group 5000-Contact Entries
	Key 5000-Contact entries
	Key 5001-Contact Information

	Key Group 6000-Problem History Entries
	Key 6000-History Information
	Key 6001-History Information

	Key Group 7000-PTF Entries
	Key 7000-PTF Entry
	Key 7001-PTF ID
	Key 7002-PTF ID
	Key Group 8000-Analyzed Error Entries
	Key Group 9000-Logical Partition ID Entries

	Field Descriptions for Key Groups for Problem Log APIs

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions

