
iSeries

Machine

Interface

Instructions

APIs

Version

5

Release

3

ERserver

���

iSeries

Machine

Interface

Instructions

APIs

Version

5

Release

3

ERserver

���

Note

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

information

in

Appendix

A,

“Notices,”

on

page

1305.

First

Edition

(May

2004)

This

edition

applies

to

version

5,

release

3,

modification

0

of

Operating

System/400

(product

number

5722-SS1)

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

This

version

does

not

run

on

all

reduced

instruction

set

computer

(RISC)

models

nor

does

it

run

on

CISC

models.

©

Copyright

International

Business

Machines

Corporation

1998,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

Machine

Interface

Instructions

.

.

.

.

. 1

APIs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

iSeries(TM)

Machine

Interface

.

.

.

.

.

.

.

.

. 1

Activate

Bound

Program

(ACTBPGM)

.

.

.

.

.

. 5

Warning:

Temporary

Level

3

Header

.

.

.

.

. 8

Activate

Program

(ACTPG)

.

.

.

.

.

.

.

.

. 10

Warning:

Temporary

Level

3

Header

.

.

.

.

. 11

Add

Logical

Character

(ADDLC)

.

.

.

.

.

.

. 13

Warning:

Temporary

Level

3

Header

.

.

.

.

. 13

Add

Numeric

(ADDN)

.

.

.

.

.

.

.

.

.

. 15

Warning:

Temporary

Level

3

Header

.

.

.

.

. 16

Add

Space

Pointer

(ADDSPP)

.

.

.

.

.

.

.

. 19

Warning:

Temporary

Level

3

Header

.

.

.

.

. 20

Allocate

Activation

Group-Based

Heap

Space

Storage

(ALCHSS)

.

.

.

.

.

.

.

.

.

.

.

. 21

Warning:

Temporary

Level

3

Header

.

.

.

.

. 23

And

(AND)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Warning:

Temporary

Level

3

Header

.

.

.

.

. 24

And

Complemented

String

(ANDCSTR)

.

.

.

.

. 27

Warning:

Temporary

Level

3

Header

.

.

.

.

. 27

AND

String

(ANDSTR)

.

.

.

.

.

.

.

.

.

. 28

Warning:

Temporary

Level

3

Header

.

.

.

.

. 28

Arc

Cosine

(ACOS)

.

.

.

.

.

.

.

.

.

.

.

. 29

Warning:

Temporary

Level

3

Header

.

.

.

.

. 29

Arc

Sine

(ASIN)

.

.

.

.

.

.

.

.

.

.

.

.

. 30

Warning:

Temporary

Level

3

Header

.

.

.

.

. 30

Arc

Tangent

(ATAN)

.

.

.

.

.

.

.

.

.

.

. 31

Warning:

Temporary

Level

3

Header

.

.

.

.

. 31

Arc

Tangent

Hyperbolic

(ATANH)

.

.

.

.

.

.

. 32

Warning:

Temporary

Level

3

Header

.

.

.

.

. 32

Atomic

Add

(ATMCADD)

.

.

.

.

.

.

.

.

. 33

Warning:

Temporary

Level

3

Header

.

.

.

.

. 33

Atomic

And

(ATMCAND)

.

.

.

.

.

.

.

.

. 35

Warning:

Temporary

Level

3

Header

.

.

.

.

. 36

Atomic

Or

(ATMCOR)

.

.

.

.

.

.

.

.

.

.

. 37

Warning:

Temporary

Level

3

Header

.

.

.

.

. 38

Branch

(B)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

Warning:

Temporary

Level

3

Header

.

.

.

.

. 40

Call

External

(CALLX)

.

.

.

.

.

.

.

.

.

.

. 41

Warning:

Temporary

Level

3

Header

.

.

.

.

. 43

Call

Internal

(CALLI)

.

.

.

.

.

.

.

.

.

.

. 46

Warning:

Temporary

Level

3

Header

.

.

.

.

. 46

Call

Program

with

Variable

Length

Argument

List

(CALLPGMV)

.

.

.

.

.

.

.

.

.

.

.

.

. 48

Warning:

Temporary

Level

3

Header

.

.

.

.

. 48

Check

Lock

Value

(CHKLKVAL)

.

.

.

.

.

.

. 50

Warning:

Temporary

Level

3

Header

.

.

.

.

. 51

Cipher

(CIPHER)

.

.

.

.

.

.

.

.

.

.

.

. 53

Warning:

Temporary

Level

3

Header

.

.

.

.

. 54

Clear

Bit

in

String

(CLRBTS)

.

.

.

.

.

.

.

.

. 68

Warning:

Temporary

Level

3

Header

.

.

.

.

. 69

Clear

Invocation

Exit

(CLRIEXIT)

.

.

.

.

.

.

. 70

Warning:

Temporary

Level

3

Header

.

.

.

.

. 70

Clear

Invocation

Flags

(CLRINVF)

.

.

.

.

.

.

. 71

Warning:

Temporary

Level

3

Header

.

.

.

.

. 71

Clear

Lock

Value

(CLRLKVAL)

.

.

.

.

.

.

.

. 72

Warning:

Temporary

Level

3

Header

.

.

.

.

. 72

Compare

and

Swap

(CMPSW)

.

.

.

.

.

.

.

. 74

Warning:

Temporary

Level

3

Header

.

.

.

.

. 75

Compare

and

Swap

(CMPSW)

.

.

.

.

.

.

.

. 77

Warning:

Temporary

Level

3

Header

.

.

.

.

. 79

Compare

Bytes

Left-Adjusted

(CMPBLA)

.

.

.

. 81

Warning:

Temporary

Level

3

Header

.

.

.

.

. 82

Compare

Bytes

Left-Adjusted

with

Pad

(CMPBLAP)

83

Warning:

Temporary

Level

3

Header

.

.

.

.

. 84

Compare

Bytes

Right-Adjusted

(CMPBRA)

.

.

.

. 85

Warning:

Temporary

Level

3

Header

.

.

.

.

. 86

Compare

Bytes

Right-Adjusted

with

Pad

(CMPBRAP)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

Warning:

Temporary

Level

3

Header

.

.

.

.

. 89

Compare

Null-Terminated

Strings

Constrained

(STRNCMPNULL)

.

.

.

.

.

.

.

.

.

.

.

. 90

Warning:

Temporary

Level

3

Header

.

.

.

.

. 91

Compare

Numeric

Value

(CMPNV)

.

.

.

.

.

. 91

Warning:

Temporary

Level

3

Header

.

.

.

.

. 92

Compare

Pointer

for

Object

Addressability

(CMPPTRA)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 94

Warning:

Temporary

Level

3

Header

.

.

.

.

. 96

Compare

Pointer

for

Space

Addressability

(CMPPSPAD)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

Warning:

Temporary

Level

3

Header

.

.

.

.

. 99

Compare

Pointer

Type

(CMPPTRT)

.

.

.

.

.

. 100

Warning:

Temporary

Level

3

Header

.

.

.

. 102

Compare

Pointers

for

Equality

(CMPPTRE)

.

.

. 103

Warning:

Temporary

Level

3

Header

.

.

.

. 104

Compare

Space

Addressability

(CMPSPAD)

.

.

. 106

Warning:

Temporary

Level

3

Header

.

.

.

. 107

Compare

To

Pad

(CMPTOPAD)

.

.

.

.

.

.

. 108

Warning:

Temporary

Level

3

Header

.

.

.

. 108

Complement

String

(COMSTR)

.

.

.

.

.

.

. 109

Warning:

Temporary

Level

3

Header

.

.

.

. 109

Compress

Data

(CPRDATA)

.

.

.

.

.

.

.

. 110

Warning:

Temporary

Level

3

Header

.

.

.

.

. 111

Compute

Array

Index

(CAI)

.

.

.

.

.

.

.

. 113

Warning:

Temporary

Level

3

Header

.

.

.

. 113

Compute

Date

Duration

(CDD)

.

.

.

.

.

.

. 115

Warning:

Temporary

Level

3

Header

.

.

.

. 116

Compute

Length

of

Null-Terminated

String

(STRLENNULL)

.

.

.

.

.

.

.

.

.

.

.

. 118

Warning:

Temporary

Level

3

Header

.

.

.

. 118

Compute

Math

Function

Using

One

Input

Value

(CMF1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

Warning:

Temporary

Level

3

Header

.

.

.

. 125

Compute

Math

Function

Using

Two

Input

Values

(CMF2)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

Warning:

Temporary

Level

3

Header

.

.

.

. 129

Compute

Time

Duration

(CTD)

.

.

.

.

.

.

. 131

Warning:

Temporary

Level

3

Header

.

.

.

. 132

Compute

Timestamp

Duration

(CTSD)

.

.

.

.

. 134

Warning:

Temporary

Level

3

Header

.

.

.

. 135

Concatenate

(CAT)

.

.

.

.

.

.

.

.

.

.

. 137

Warning:

Temporary

Level

3

Header

.

.

.

. 137

©

Copyright

IBM

Corp.

1998,

2004

iii

Convert

BSC

to

Character

(CVTBC)

.

.

.

.

.

. 139

Warning:

Temporary

Level

3

Header

.

.

.

. 142

Convert

Character

to

BSC

(CVTCB)

.

.

.

.

.

. 143

Warning:

Temporary

Level

3

Header

.

.

.

. 146

Convert

Character

to

Hex

(CVTCH)

.

.

.

.

.

. 147

Warning:

Temporary

Level

3

Header

.

.

.

. 148

Convert

Character

to

MRJE

(CVTCM)

.

.

.

.

. 149

Warning:

Temporary

Level

3

Header

.

.

.

. 154

Convert

Character

to

Numeric

(CVTCN)

.

.

.

. 155

Warning:

Temporary

Level

3

Header

.

.

.

. 156

Convert

Character

to

SNA

(CVTCS)

.

.

.

.

.

. 158

Warning:

Temporary

Level

3

Header

.

.

.

. 166

Convert

Date

(CVTD)

.

.

.

.

.

.

.

.

.

. 168

Warning:

Temporary

Level

3

Header

.

.

.

. 170

Convert

Decimal

Form

to

Floating-Point

(CVTDFFP)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 172

Warning:

Temporary

Level

3

Header

.

.

.

. 173

Convert

External

Form

to

Numeric

Value

(CVTEFN)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

Warning:

Temporary

Level

3

Header

.

.

.

. 176

Convert

Floating-Point

to

Decimal

Form

(CVTFPDF)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 178

Warning:

Temporary

Level

3

Header

.

.

.

. 180

Convert

Hex

to

Character

(CVTHC)

.

.

.

.

.

. 182

Warning:

Temporary

Level

3

Header

.

.

.

. 182

Convert

MRJE

to

Character

(CVTMC)

.

.

.

.

. 183

Warning:

Temporary

Level

3

Header

.

.

.

. 186

Convert

Numeric

to

Character

(CVTNC)

.

.

.

. 188

Warning:

Temporary

Level

3

Header

.

.

.

. 189

Convert

SNA

to

Character

(CVTSC)

.

.

.

.

.

. 191

Warning:

Temporary

Level

3

Header

.

.

.

. 200

Convert

Time

(CVTT)

.

.

.

.

.

.

.

.

.

. 202

Warning:

Temporary

Level

3

Header

.

.

.

. 204

Convert

Timestamp

(CVTTS)

.

.

.

.

.

.

.

. 205

Warning:

Temporary

Level

3

Header

.

.

.

. 207

Copy

Bits

Arithmetic

(CPYBTA)

.

.

.

.

.

.

. 208

Warning:

Temporary

Level

3

Header

.

.

.

. 209

Copy

Bits

Logical

(CPYBTL)

.

.

.

.

.

.

.

. 210

Warning:

Temporary

Level

3

Header

.

.

.

. 211

Copy

Bits

with

Left

Logical

Shift

(CPYBTLLS)

.

. 212

Warning:

Temporary

Level

3

Header

.

.

.

. 213

Copy

Bits

with

Right

Arithmetic

Shift

(CPYBTRAS)

214

Warning:

Temporary

Level

3

Header

.

.

.

. 215

Copy

Bits

with

Right

Logical

Shift

(CPYBTRLS)

217

Warning:

Temporary

Level

3

Header

.

.

.

. 217

Copy

Bytes

(CPYBYTES)

.

.

.

.

.

.

.

.

. 219

Warning:

Temporary

Level

3

Header

.

.

.

. 219

Copy

Bytes

Left-Adjusted

(CPYBLA)

.

.

.

.

. 220

Warning:

Temporary

Level

3

Header

.

.

.

. 220

Copy

Bytes

Left-Adjusted

with

Pad

(CPYBLAP)

222

Warning:

Temporary

Level

3

Header

.

.

.

. 222

Copy

Bytes

Overlap

Left-Adjusted

(CPYBOLA)

.

. 224

Warning:

Temporary

Level

3

Header

.

.

.

. 224

Copy

Bytes

Overlap

Left-Adjusted

with

Pad

(CPYBOLAP)

.

.

.

.

.

.

.

.

.

.

.

.

. 226

Warning:

Temporary

Level

3

Header

.

.

.

. 226

Copy

Bytes

Overlapping

(CPYBO)

.

.

.

.

.

. 228

Warning:

Temporary

Level

3

Header

.

.

.

. 228

Copy

Bytes

Repeatedly

(CPYBREP)

.

.

.

.

.

. 229

Warning:

Temporary

Level

3

Header

.

.

.

. 229

Copy

Bytes

Right-Adjusted

(CPYBRA)

.

.

.

.

. 231

Warning:

Temporary

Level

3

Header

.

.

.

. 231

Copy

Bytes

Right-Adjusted

with

Pad

(CPYBRAP)

232

Warning:

Temporary

Level

3

Header

.

.

.

. 233

Copy

Bytes

to

Bits

Arithmetic

(CPYBBTA)

.

.

.

. 234

Warning:

Temporary

Level

3

Header

.

.

.

. 235

Copy

Bytes

to

Bits

Logical

(CPYBBTL)

.

.

.

.

. 236

Warning:

Temporary

Level

3

Header

.

.

.

. 237

Copy

Bytes

with

Pointers

(CPYBWP)

.

.

.

.

. 238

Warning:

Temporary

Level

3

Header

.

.

.

. 240

Copy

Extended

Characters

Left-Adjusted

With

Pad

(CPYECLAP)

.

.

.

.

.

.

.

.

.

.

.

.

. 241

Warning:

Temporary

Level

3

Header

.

.

.

. 244

Copy

Hex

Digit

Numeric

to

Numeric

(CPYHEXNN)

.

.

.

.

.

.

.

.

.

.

.

.

. 245

Warning:

Temporary

Level

3

Header

.

.

.

. 245

Copy

Hex

Digit

Numeric

to

Zone

(CPYHEXNZ)

247

Warning:

Temporary

Level

3

Header

.

.

.

. 247

Copy

Hex

Digit

Zone

To

Numeric

(CPYHEXZN)

248

Warning:

Temporary

Level

3

Header

.

.

.

. 249

Copy

Hex

Digit

Zone

To

Zone

(CPYHEXZZ)

.

.

. 250

Warning:

Temporary

Level

3

Header

.

.

.

. 250

Copy

Null-Terminated

String

Constrained

(STRNCPYNULL)

.

.

.

.

.

.

.

.

.

.

.

. 252

Warning:

Temporary

Level

3

Header

.

.

.

. 252

Copy

Null-Terminated

String

Constrained,

Null

Padded

(STRNCPYNULLPAD)

.

.

.

.

.

.

. 253

Warning:

Temporary

Level

3

Header

.

.

.

. 253

Copy

Numeric

Value

(CPYNV)

.

.

.

.

.

.

. 254

Warning:

Temporary

Level

3

Header

.

.

.

. 255

Copy

Numeric

Value

(CPYNV)

.

.

.

.

.

.

. 257

Warning:

Temporary

Level

3

Header

.

.

.

. 259

Copy

Numeric

Value

(CPYNV)

.

.

.

.

.

.

. 261

Warning:

Temporary

Level

3

Header

.

.

.

. 262

Cosine

(COS)

.

.

.

.

.

.

.

.

.

.

.

.

. 264

Warning:

Temporary

Level

3

Header

.

.

.

. 264

Cosine

Hyperbolic

(COSH)

.

.

.

.

.

.

.

.

. 265

Warning:

Temporary

Level

3

Header

.

.

.

. 265

Cotangent

(COT)

.

.

.

.

.

.

.

.

.

.

.

. 266

Warning:

Temporary

Level

3

Header

.

.

.

. 266

Create

Activation

Group-Based

Heap

Space

(CRTHS)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 266

Warning:

Temporary

Level

3

Header

.

.

.

. 270

Create

Independent

Index

(CRTINX)

.

.

.

.

. 271

Warning:

Temporary

Level

3

Header

.

.

.

. 278

Create

Pointer-Based

Mutex

(CRTMTX)

.

.

.

.

. 281

Warning:

Temporary

Level

3

Header

.

.

.

. 283

Create

Space

(CRTS)

.

.

.

.

.

.

.

.

.

.

. 285

Warning:

Temporary

Level

3

Header

.

.

.

. 293

Deactivate

Program

(DEACTPG)

.

.

.

.

.

.

. 295

Warning:

Temporary

Level

3

Header

.

.

.

. 295

Decompress

Data

(DCPDATA)

.

.

.

.

.

.

.

. 297

Warning:

Temporary

Level

3

Header

.

.

.

. 298

Decrement

Date

(DECD)

.

.

.

.

.

.

.

.

. 300

Warning:

Temporary

Level

3

Header

.

.

.

. 302

Decrement

Time

(DECT)

.

.

.

.

.

.

.

.

.

. 304

Warning:

Temporary

Level

3

Header

.

.

.

. 305

Decrement

Timestamp

(DECTS)

.

.

.

.

.

.

. 307

Warning:

Temporary

Level

3

Header

.

.

.

. 309

Dequeue

(DEQ)

.

.

.

.

.

.

.

.

.

.

.

. 311

Warning:

Temporary

Level

3

Header

.

.

.

. 315

Dequeue

(DEQ)

.

.

.

.

.

.

.

.

.

.

.

. 318

iv

iSeries:

Machine

Interface

Instructions

APIs

Warning:

Temporary

Level

3

Header

.

.

.

. 322

Destroy

Activation

Group-Based

Heap

Space

(DESHS)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 324

Warning:

Temporary

Level

3

Header

.

.

.

. 325

Destroy

Independent

Index

(DESINX)

.

.

.

.

. 326

Warning:

Temporary

Level

3

Header

.

.

.

. 326

Destroy

Pointer-Based

Mutex

(DESMTX)

.

.

.

. 328

Warning:

Temporary

Level

3

Header

.

.

.

. 329

Destroy

Space

(DESS)

.

.

.

.

.

.

.

.

.

. 331

Warning:

Temporary

Level

3

Header

.

.

.

. 331

Divide

(DIV)

.

.

.

.

.

.

.

.

.

.

.

.

. 333

Warning:

Temporary

Level

3

Header

.

.

.

. 334

Divide

with

Remainder

(DIVREM)

.

.

.

.

.

. 337

Warning:

Temporary

Level

3

Header

.

.

.

. 340

Edit

(EDIT)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 341

Warning:

Temporary

Level

3

Header

.

.

.

. 348

Edit

(EDIT)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 350

Warning:

Temporary

Level

3

Header

.

.

.

. 357

Edit

(EDIT)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 359

Warning:

Temporary

Level

3

Header

.

.

.

. 366

End

(END)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 368

Warning:

Temporary

Level

3

Header

.

.

.

. 368

Enqueue

(ENQ)

.

.

.

.

.

.

.

.

.

.

.

. 369

Warning:

Temporary

Level

3

Header

.

.

.

. 370

Ensure

Object

(ENSOBJ)

.

.

.

.

.

.

.

.

.

. 372

Warning:

Temporary

Level

3

Header

.

.

.

. 373

Exchange

Bytes

(EXCHBY)

.

.

.

.

.

.

.

.

. 374

Warning:

Temporary

Level

3

Header

.

.

.

. 375

Exclusive

Or

(XOR)

.

.

.

.

.

.

.

.

.

.

. 376

Warning:

Temporary

Level

3

Header

.

.

.

. 378

Exponential

Function

of

E

(EEXP)

.

.

.

.

.

. 379

Warning:

Temporary

Level

3

Header

.

.

.

. 379

Extended

Character

Scan

(ECSCAN)

.

.

.

.

. 380

Warning:

Temporary

Level

3

Header

.

.

.

. 382

Extract

Exponent

(EXTREXP)

.

.

.

.

.

.

.

. 384

Warning:

Temporary

Level

3

Header

.

.

.

. 385

Extract

Magnitude

(EXTRMAG)

.

.

.

.

.

.

. 386

Warning:

Temporary

Level

3

Header

.

.

.

. 387

Find

Byte

(FINDBYTE)

.

.

.

.

.

.

.

.

.

. 390

Warning:

Temporary

Level

3

Header

.

.

.

. 390

Find

Character

Constrained

(MEMCHR)

.

.

.

. 391

Warning:

Temporary

Level

3

Header

.

.

.

. 391

Find

Independent

Index

Entry

(FNDINXEN)

.

.

. 391

Warning:

Temporary

Level

3

Header

.

.

.

. 394

Find

Relative

Invocation

Number

(FNDRINVN)

396

Warning:

Temporary

Level

3

Header

.

.

.

. 401

Free

Activation

Group-Based

Heap

Space

Storage

(FREHSS)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 403

Warning:

Temporary

Level

3

Header

.

.

.

. 403

Free

Activation

Group-Based

Heap

Space

Storage

From

Mark

(FREHSSMK)

.

.

.

.

.

.

.

.

. 404

Warning:

Temporary

Level

3

Header

.

.

.

. 405

Generate

Universal

Unique

Identifier

(GENUUID)

406

Warning:

Temporary

Level

3

Header

.

.

.

. 407

Increment

Date

(INCD)

.

.

.

.

.

.

.

.

.

. 408

Warning:

Temporary

Level

3

Header

.

.

.

. 410

Increment

Time

(INCT)

.

.

.

.

.

.

.

.

.

. 412

Warning:

Temporary

Level

3

Header

.

.

.

. 414

Increment

Timestamp

(INCTS)

.

.

.

.

.

.

. 415

Warning:

Temporary

Level

3

Header

.

.

.

. 417

Initialize

Exception

Handler

Control

Actions

(INITEHCA)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 419

Warning:

Temporary

Level

3

Header

.

.

.

. 419

Insert

Independent

Index

Entry

(INSINXEN)

.

.

. 419

Warning:

Temporary

Level

3

Header

.

.

.

. 421

Invocation

Pointer

(INVP)

.

.

.

.

.

.

.

.

. 423

Warning:

Temporary

Level

3

Header

.

.

.

. 423

Lock

Object

(LOCK)

.

.

.

.

.

.

.

.

.

.

. 424

Warning:

Temporary

Level

3

Header

.

.

.

. 429

Lock

Object

Location

(LOCKOL)

.

.

.

.

.

.

. 431

Warning:

Temporary

Level

3

Header

.

.

.

. 433

Lock

Pointer-Based

Mutex

(LOCKMTX)

.

.

.

. 435

Warning:

Temporary

Level

3

Header

.

.

.

. 438

Lock

Space

Location

(LOCKSL)

.

.

.

.

.

.

. 440

Warning:

Temporary

Level

3

Header

.

.

.

. 444

Lock

Teraspace

Storage

Location

(LOCKTSL)

.

.

. 446

Warning:

Temporary

Level

3

Header

.

.

.

. 451

Logarithm

Base

E

(Natural

Logarithm)

(LN)

.

.

. 453

Warning:

Temporary

Level

3

Header

.

.

.

. 453

Materialize

Access

Group

Attributes

(MATAGAT)

453

Warning:

Temporary

Level

3

Header

.

.

.

. 456

Materialize

Activation

Attributes

(MATACTAT)

.

. 458

Warning:

Temporary

Level

3

Header

.

.

.

. 462

Materialize

Activation

Export

(MATACTEX)

.

.

. 464

Warning:

Temporary

Level

3

Header

.

.

.

. 465

Materialize

Activation

Group

Attributes

(MATAGPAT)

.

.

.

.

.

.

.

.

.

.

.

.

. 466

Warning:

Temporary

Level

3

Header

.

.

.

. 470

Materialize

Activation

Group-Based

Heap

Space

Attributes

(MATHSAT)

.

.

.

.

.

.

.

.

.

. 472

Warning:

Temporary

Level

3

Header

.

.

.

. 475

Materialize

Allocated

Object

Locks

(MATAOL)

.

. 477

Warning:

Temporary

Level

3

Header

.

.

.

. 480

Materialize

Authority

(MATAU)

.

.

.

.

.

.

. 482

Warning:

Temporary

Level

3

Header

.

.

.

. 484

Materialize

Authority

List

(MATAL)

.

.

.

.

.

. 486

Warning:

Temporary

Level

3

Header

.

.

.

. 490

Materialize

Authorized

Objects

(MATAUOBJ)

.

. 492

Usage

note:

.

.

.

.

.

.

.

.

.

.

.

.

. 493

Materialize

Authorized

Users

(MATAUU)

.

.

.

. 502

Warning:

Temporary

Level

3

Header

.

.

.

. 505

Materialize

Bound

Program

(MATBPGM)

.

.

.

. 507

Warning:

Temporary

Level

3

Header

.

.

.

. 537

Materialize

Context

(MATCTX)

.

.

.

.

.

.

. 539

Usage

note:

.

.

.

.

.

.

.

.

.

.

.

.

. 540

Materialize

Data

Space

Record

Locks

(MATDRECL)

547

Warning:

Temporary

Level

3

Header

.

.

.

. 551

Materialize

Dump

Space

(MATDMPS)

.

.

.

.

. 552

Warning:

Temporary

Level

3

Header

.

.

.

. 554

Materialize

Exception

Description

(MATEXCPD)

556

Warning:

Temporary

Level

3

Header

.

.

.

. 559

Materialize

Independent

Index

Attributes

(MATINXAT)

.

.

.

.

.

.

.

.

.

.

.

.

. 560

Warning:

Temporary

Level

3

Header

.

.

.

. 565

Materialize

Instruction

Attributes

(MATINAT)

.

. 566

Warning:

Temporary

Level

3

Header

.

.

.

. 572

Materialize

Invocation

(MATINV)

.

.

.

.

.

. 574

Warning:

Temporary

Level

3

Header

.

.

.

. 577

Materialize

Invocation

Attributes

(MATINVAT)

.

. 579

Warning:

Temporary

Level

3

Header

.

.

.

. 589

Materialize

Invocation

Entry

(MATINVE)

.

.

.

. 591

Contents

v

Warning:

Temporary

Level

3

Header

.

.

.

. 596

Materialize

Invocation

Stack

(MATINVS)

.

.

.

. 597

Warning:

Temporary

Level

3

Header

.

.

.

. 601

Materialize

Journal

Port

Attributes

(MATJPAT)

.

. 603

Warning:

Temporary

Level

3

Header

.

.

.

. 610

Materialize

Journal

Space

Attributes

(MATJSAT)

612

Warning:

Temporary

Level

3

Header

.

.

.

. 617

Materialize

Machine

Attributes

(MATMATR)

.

.

. 619

Warning:

Temporary

Level

3

Header

.

.

.

. 654

Materialize

Machine

Attributes

(MATMATR)

.

.

. 656

Warning:

Temporary

Level

3

Header

.

.

.

. 691

Materialize

Machine

Data

(MATMDATA)

.

.

.

. 693

Warning:

Temporary

Level

3

Header

.

.

.

. 696

Materialize

Machine

Information

(MATMIF)

.

.

. 697

Warning:

Temporary

Level

3

Header

.

.

.

. 702

Materialize

Mutex

(MATMTX)

.

.

.

.

.

.

.

. 704

Warning:

Temporary

Level

3

Header

.

.

.

. 706

Materialize

Object

Locks

(MATOBJLK)

.

.

.

.

. 708

Warning:

Temporary

Level

3

Header

.

.

.

. 711

Materialize

or

Verify

Licensed

Internal

Code

Options

(MVLICOPT)

.

.

.

.

.

.

.

.

.

. 713

Warning:

Temporary

Level

3

Header

.

.

.

. 716

Materialize

Pointer

(MATPTR)

.

.

.

.

.

.

.

. 718

Warning:

Temporary

Level

3

Header

.

.

.

. 727

Materialize

Pointer

Information

(MATPTRIF)

.

.

. 729

Warning:

Temporary

Level

3

Header

.

.

.

. 735

Materialize

Pointer

Locations

(MATPTRL)

.

.

.

. 736

Warning:

Temporary

Level

3

Header

.

.

.

. 737

Materialize

Process

Activation

Groups

(MATPRAGP)

.

.

.

.

.

.

.

.

.

.

.

.

. 739

Warning:

Temporary

Level

3

Header

.

.

.

. 741

Materialize

Process

Attributes

(MATPRATR)

.

.

. 742

Warning:

Temporary

Level

3

Header

.

.

.

. 765

Materialize

Process

Locks

(MATPRLK)

.

.

.

.

. 767

Warning:

Temporary

Level

3

Header

.

.

.

. 769

Materialize

Process

Message

(MATPRMSG)

.

.

. 770

Warning:

Temporary

Level

3

Header

.

.

.

. 786

Materialize

Process

Mutex

(MATPRMTX)

.

.

.

. 788

Warning:

Temporary

Level

3

Header

.

.

.

. 794

Materialize

Process

Record

Locks

(MATPRECL)

795

Warning:

Temporary

Level

3

Header

.

.

.

. 799

Materialize

Program

(MATPG)

.

.

.

.

.

.

. 800

Warning:

Temporary

Level

3

Header

.

.

.

. 818

Materialize

Program

Name

(MATPGMNM)

.

.

. 820

Warning:

Temporary

Level

3

Header

.

.

.

. 821

Materialize

Queue

Attributes

(MATQAT)

.

.

.

. 822

Warning:

Temporary

Level

3

Header

.

.

.

. 827

Materialize

Queue

Messages

(MATQMSG)

.

.

. 829

Warning:

Temporary

Level

3

Header

.

.

.

. 831

Materialize

Resource

Management

Data

(MATRMD)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 833

Warning:

Temporary

Level

3

Header

.

.

.

. 911

Materialize

Selected

Locks

(MATSELLK)

.

.

.

. 912

Warning:

Temporary

Level

3

Header

.

.

.

. 914

Materialize

Space

Attributes

(MATS)

.

.

.

.

. 916

Warning:

Temporary

Level

3

Header

.

.

.

. 920

Materialize

System

Object

(MATSOBJ)

.

.

.

.

. 921

Warning:

Temporary

Level

3

Header

.

.

.

. 931

Materialize

Machine

Data

(MATMDATA)

.

.

.

. 933

Warning:

Temporary

Level

3

Header

.

.

.

. 936

Materialize

Time

of

Day

Clock

Attributes

(MATTODAT)

.

.

.

.

.

.

.

.

.

.

.

.

. 938

Warning:

Temporary

Level

3

Header

.

.

.

. 940

Materialize

User

Profile

(MATUP)

.

.

.

.

.

. 941

Warning:

Temporary

Level

3

Header

.

.

.

. 947

Materialize

User

Profile

Pointers

from

ID

(MATUPID)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 949

Warning:

Temporary

Level

3

Header

.

.

.

. 952

Memory

Compare

(MEMCMP)

.

.

.

.

.

.

. 954

Warning:

Temporary

Level

3

Header

.

.

.

. 954

Memory

Copy

(MEMCPY)

.

.

.

.

.

.

.

.

. 955

Warning:

Temporary

Level

3

Header

.

.

.

. 955

Memory

Move

(MEMMOVE)

.

.

.

.

.

.

.

. 956

Warning:

Temporary

Level

3

Header

.

.

.

. 956

Modify

Automatic

Storage

Allocation

(MODASA)

957

Warning:

Temporary

Level

3

Header

.

.

.

. 958

Modify

Automatic

Storage

Allocation

(MODASA)

959

Warning:

Temporary

Level

3

Header

.

.

.

. 960

Modify

Exception

Description

(MODEXCPD)

.

.

. 962

Warning:

Temporary

Level

3

Header

.

.

.

. 964

Modify

Independent

Index

(MODINX)

.

.

.

.

. 965

Warning:

Temporary

Level

3

Header

.

.

.

. 966

Modify

Invocation

Authority

Attributes

(MODINVAU)

.

.

.

.

.

.

.

.

.

.

.

.

. 968

Warning:

Temporary

Level

3

Header

.

.

.

. 969

Modify

Space

Attributes

(MODS)

.

.

.

.

.

.

. 971

Warning:

Temporary

Level

3

Header

.

.

.

. 979

Modify

Space

Attributes

(MODS)

.

.

.

.

.

.

. 981

Warning:

Temporary

Level

3

Header

.

.

.

. 990

Modify

Space

Attributes

(MODS)

.

.

.

.

.

.

. 992

Warning:

Temporary

Level

3

Header

.

.

.

. 1000

Multiply

(MULT)

.

.

.

.

.

.

.

.

.

.

.

. 1002

Warning:

Temporary

Level

3

Header

.

.

.

. 1003

Negate

(NEG)

.

.

.

.

.

.

.

.

.

.

.

.

. 1006

Warning:

Temporary

Level

3

Header

.

.

.

. 1007

No

Operation

(NOOP)

.

.

.

.

.

.

.

.

.

. 1010

No

Operation

and

Skip

(NOOPS)

.

.

.

.

.

. 1010

Not

(NOT)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1011

Warning:

Temporary

Level

3

Header

.

.

.

. 1011

NPM

Procedure

Parameter

List

Address

(NPM_PARMLIST_ADDR)

.

.

.

.

.

.

.

. 1013

Warning:

Temporary

Level

3

Header

.

.

.

. 1014

OPM

Parameter

Address

(OPM_PARM_ADDR)

1015

Warning:

Temporary

Level

3

Header

.

.

.

. 1015

OPM

Parameter

Count

(OPM_PARM_CNT)

.

.

. 1015

Warning:

Temporary

Level

3

Header

.

.

.

. 1016

Or

(OR)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1016

Warning:

Temporary

Level

3

Header

.

.

.

. 1016

OR

String

(ORSTR)

.

.

.

.

.

.

.

.

.

.

. 1019

Warning:

Temporary

Level

3

Header

.

.

.

. 1019

Override

Program

Attributes

(OVRPGATR)

.

.

. 1020

PCO

Pointer

(PCOPTR)

.

.

.

.

.

.

.

.

. 1021

Warning:

Temporary

Level

3

Header

.

.

.

. 1022

Propagate

Byte

(PROPB)

.

.

.

.

.

.

.

.

. 1022

Warning:

Temporary

Level

3

Header

.

.

.

. 1022

Reallocate

Activation

Group-Based

Heap

Space

Storage

(REALCHSS)

.

.

.

.

.

.

.

.

.

. 1023

Warning:

Temporary

Level

3

Header

.

.

.

. 1024

Reinitialize

Static

Storage

(RINZSTAT)

.

.

.

. 1025

Warning:

Temporary

Level

3

Header

.

.

.

. 1026

Remainder

(REM)

.

.

.

.

.

.

.

.

.

.

. 1028

vi

iSeries:

Machine

Interface

Instructions

APIs

Warning:

Temporary

Level

3

Header

.

.

.

. 1029

Remove

Independent

Index

Entry

(RMVINXEN)

1032

Warning:

Temporary

Level

3

Header

.

.

.

. 1033

Resolve

Data

Pointer

(RSLVDP)

.

.

.

.

.

.

. 1035

Warning:

Temporary

Level

3

Header

.

.

.

. 1036

Resolve

System

Pointer

(RSLVSP)

.

.

.

.

.

. 1038

Warning:

Temporary

Level

3

Header

.

.

.

. 1046

Retrieve

Computational

Attributes

(RETCA)

.

.

. 1049

Warning:

Temporary

Level

3

Header

.

.

.

. 1050

Retrieve

Exception

Data

(RETEXCPD)

.

.

.

.

. 1050

Warning:

Temporary

Level

3

Header

.

.

.

. 1052

Retrieve

Invocation

Flags

(RETINVF)

.

.

.

.

. 1054

Warning:

Temporary

Level

3

Header

.

.

.

. 1054

Retrieve

Teraspace

Address

From

Space

Pointer

(RETTSADR)

.

.

.

.

.

.

.

.

.

.

.

.

. 1054

Warning:

Temporary

Level

3

Header

.

.

.

. 1055

Retrieve

Thread

Count

(RETTHCNT)

.

.

.

.

. 1055

Warning:

Temporary

Level

3

Header

.

.

.

. 1055

Retrieve

Thread

Identifier

(RETTHID)

.

.

.

.

. 1057

Warning:

Temporary

Level

3

Header

.

.

.

. 1057

Return

External

(RTX)

.

.

.

.

.

.

.

.

.

. 1058

Warning:

Temporary

Level

3

Header

.

.

.

. 1059

Return

From

Exception

(RTNEXCP)

.

.

.

.

. 1060

Warning:

Temporary

Level

3

Header

.

.

.

. 1063

Return

PCO

Pointer

(PCOPTR2)

.

.

.

.

.

.

. 1064

Warning:

Temporary

Level

3

Header

.

.

.

. 1065

Scale

(SCALE)

.

.

.

.

.

.

.

.

.

.

.

.

. 1066

Warning:

Temporary

Level

3

Header

.

.

.

. 1066

Scan

(SCAN)

.

.

.

.

.

.

.

.

.

.

.

.

. 1070

Warning:

Temporary

Level

3

Header

.

.

.

. 1071

Scan

Extended

(SCANX)

.

.

.

.

.

.

.

.

. 1072

Warning:

Temporary

Level

3

Header

.

.

.

. 1079

Scan

with

Control

(SCANWC)

.

.

.

.

.

.

. 1080

Warning:

Temporary

Level

3

Header

.

.

.

. 1086

Search

(SEARCH)

.

.

.

.

.

.

.

.

.

.

. 1087

Warning:

Temporary

Level

3

Header

.

.

.

. 1089

Sense

Exception

Description

(SNSEXCPD)

.

.

. 1090

Warning:

Temporary

Level

3

Header

.

.

.

. 1093

Set

Access

State

(SETACST)

.

.

.

.

.

.

.

. 1095

Warning:

Temporary

Level

3

Header

.

.

.

. 1099

Set

Activation

Group-Based

Heap

Space

Storage

Mark

(SETHSSMK)

.

.

.

.

.

.

.

.

.

.

. 1101

Warning:

Temporary

Level

3

Header

.

.

.

. 1102

Set

Argument

List

Length

(SETALLEN)

.

.

.

. 1103

Warning:

Temporary

Level

3

Header

.

.

.

. 1104

Set

Bit

in

String

(SETBTS)

.

.

.

.

.

.

.

.

. 1105

Warning:

Temporary

Level

3

Header

.

.

.

. 1106

Set

Computational

Attributes

(SETCA)

.

.

.

. 1107

Warning:

Temporary

Level

3

Header

.

.

.

. 1108

Set

Data

Pointer

(SETDP)

.

.

.

.

.

.

.

.

. 1108

Warning:

Temporary

Level

3

Header

.

.

.

. 1109

Set

Data

Pointer

Addressability

(SETDPADR)

.

. 1110

Warning:

Temporary

Level

3

Header

.

.

.

. 1111

Set

Data

Pointer

Attributes

(SETDPAT)

.

.

.

. 1112

Warning:

Temporary

Level

3

Header

.

.

.

. 1114

Set

Instruction

Pointer

(SETIP)

.

.

.

.

.

.

. 1116

Warning:

Temporary

Level

3

Header

.

.

.

. 1116

Set

Invocation

Exit

(SETIEXIT)

.

.

.

.

.

.

. 1117

Warning:

Temporary

Level

3

Header

.

.

.

. 1118

Set

Invocation

Flags

(SETINVF)

.

.

.

.

.

.

. 1120

Warning:

Temporary

Level

3

Header

.

.

.

. 1120

Set

Object

Pointer

from

Pointer

(SETOBPFP)

.

.

. 1120

Warning:

Temporary

Level

3

Header

.

.

.

. 1120

Set

Space

Pointer

(SETSPP)

.

.

.

.

.

.

.

. 1122

Warning:

Temporary

Level

3

Header

.

.

.

. 1122

Set

Space

Pointer

from

Pointer

(SETSPPFP)

.

.

. 1124

Warning:

Temporary

Level

3

Header

.

.

.

. 1125

Set

Space

Pointer

Offset

(SETSPPO)

.

.

.

.

. 1126

Warning:

Temporary

Level

3

Header

.

.

.

. 1127

Set

Space

Pointer

with

Displacement

(SETSPPD)

1129

Warning:

Temporary

Level

3

Header

.

.

.

. 1129

Set

System

Pointer

from

Pointer

(SETSPFP)

.

.

. 1131

Warning:

Temporary

Level

3

Header

.

.

.

. 1131

Signal

Exception

(SIGEXCP)

.

.

.

.

.

.

.

. 1133

Warning:

Temporary

Level

3

Header

.

.

.

. 1137

Sine

(SIN)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1138

Warning:

Temporary

Level

3

Header

.

.

.

. 1139

Sine

Hyperbolic

(SINH)

.

.

.

.

.

.

.

.

. 1139

Warning:

Temporary

Level

3

Header

.

.

.

. 1140

Store

and

Set

Computational

Attributes

(SSCA)

1140

Warning:

Temporary

Level

3

Header

.

.

.

. 1143

Store

Parameter

List

Length

(STPLLEN)

.

.

.

. 1144

Warning:

Temporary

Level

3

Header

.

.

.

. 1145

Store

Space

Pointer

Offset

(STSPPO)

.

.

.

.

. 1146

Warning:

Temporary

Level

3

Header

.

.

.

. 1147

Subtract

Logical

Character

(SUBLC)

.

.

.

.

. 1148

Warning:

Temporary

Level

3

Header

.

.

.

. 1148

Subtract

Numeric

(SUBN)

.

.

.

.

.

.

.

.

. 1151

Warning:

Temporary

Level

3

Header

.

.

.

. 1151

Subtract

Space

Pointer

Offset

(SUBSPP)

.

.

.

. 1155

Warning:

Temporary

Level

3

Header

.

.

.

. 1156

Subtract

Space

Pointers

For

Offset

(SUBSPPFO)

1157

Warning:

Temporary

Level

3

Header

.

.

.

. 1158

Synchronize

Shared

Storage

Accesses

(SYNCSTG)

1159

Warning:

Temporary

Level

3

Header

.

.

.

. 1160

Tangent

(TAN)

.

.

.

.

.

.

.

.

.

.

.

. 1160

Warning:

Temporary

Level

3

Header

.

.

.

. 1160

Tangent

Hyperbolic

(TANH)

.

.

.

.

.

.

.

. 1161

Warning:

Temporary

Level

3

Header

.

.

.

. 1161

Test

and

Replace

Bytes

(TESTRPL)

.

.

.

.

.

. 1162

Warning:

Temporary

Level

3

Header

.

.

.

. 1162

Test

and

Replace

Characters

(TSTRPLC)

.

.

.

. 1163

Warning:

Temporary

Level

3

Header

.

.

.

. 1164

Test

Authority

(TESTAU)

.

.

.

.

.

.

.

.

. 1165

Warning:

Temporary

Level

3

Header

.

.

.

. 1168

Test

Bit

in

String

(TSTBTS)

.

.

.

.

.

.

.

. 1170

Warning:

Temporary

Level

3

Header

.

.

.

. 1172

Test

Bits

Under

Mask

(TSTBUM)

.

.

.

.

.

. 1173

Warning:

Temporary

Level

3

Header

.

.

.

. 1174

Test

Exception

(TESTEXCP)

.

.

.

.

.

.

.

. 1175

Warning:

Temporary

Level

3

Header

.

.

.

. 1177

Test

Extended

Authorities

(TESTEAU)

.

.

.

.

. 1178

Warning:

Temporary

Level

3

Header

.

.

.

. 1182

Test

Initial

Thread

(TSTINLTH)

.

.

.

.

.

.

. 1184

Warning:

Temporary

Level

3

Header

.

.

.

. 1184

Test

Pending

Interrupts

(TESTINTR)

.

.

.

.

. 1185

Warning:

Temporary

Level

3

Header

.

.

.

. 1186

Test

Performance

Data

Collection

(TESTPDC)

.

. 1187

Warning:

Temporary

Level

3

Header

.

.

.

. 1189

Test

Pointer

(TESTPTR)

.

.

.

.

.

.

.

.

.

. 1190

Warning:

Temporary

Level

3

Header

.

.

.

. 1190

Test

Subset

(TESTSUBSET)

.

.

.

.

.

.

.

. 1191

Contents

vii

Warning:

Temporary

Level

3

Header

.

.

.

. 1192

Test

Temporary

Object

(TESTTOBJ)

.

.

.

.

.

. 1192

Warning:

Temporary

Level

3

Header

.

.

.

. 1193

Test

User

List

Authority

(TESTULA)

.

.

.

.

. 1195

Warning:

Temporary

Level

3

Header

.

.

.

. 1199

Transfer

Control

(XCTL)

.

.

.

.

.

.

.

.

. 1201

Warning:

Temporary

Level

3

Header

.

.

.

. 1203

Transfer

Object

Lock

(XFRLOCK)

.

.

.

.

.

. 1206

Warning:

Temporary

Level

3

Header

.

.

.

. 1210

Translate

(XLATE)

.

.

.

.

.

.

.

.

.

.

. 1212

Warning:

Temporary

Level

3

Header

.

.

.

. 1213

Translate

Bytes

(XLATEB)

.

.

.

.

.

.

.

.

. 1214

Warning:

Temporary

Level

3

Header

.

.

.

. 1215

Translate

Bytes

One

Byte

at

a

Time

(XLATEB1)

1215

Warning:

Temporary

Level

3

Header

.

.

.

. 1216

Translate

Multiple

Bytes

(XLATEMB)

.

.

.

.

. 1217

Warning:

Temporary

Level

3

Header

.

.

.

. 1229

Translate

with

Table

(XLATEWT)

.

.

.

.

.

. 1230

Warning:

Temporary

Level

3

Header

.

.

.

. 1231

Translate

with

Table

and

DBCS

Skip

(XLATWTDS)

.

.

.

.

.

.

.

.

.

.

.

.

. 1233

Warning:

Temporary

Level

3

Header

.

.

.

. 1234

Trim

Length

(TRIML)

.

.

.

.

.

.

.

.

.

. 1235

Warning:

Temporary

Level

3

Header

.

.

.

. 1236

Unlock

Object

(UNLOCK)

.

.

.

.

.

.

.

.

. 1237

Warning:

Temporary

Level

3

Header

.

.

.

. 1240

Unlock

Object

Location

(UNLOCKOL)

.

.

.

. 1241

Warning:

Temporary

Level

3

Header

.

.

.

. 1243

Unlock

Pointer-Based

Mutex

(UNLKMTX)

.

.

. 1244

Warning:

Temporary

Level

3

Header

.

.

.

. 1245

Unlock

Space

Location

(UNLOCKSL)

.

.

.

.

. 1246

Warning:

Temporary

Level

3

Header

.

.

.

. 1248

Unlock

Teraspace

Storage

Location

(UNLCKTSL)

1250

Warning:

Temporary

Level

3

Header

.

.

.

. 1252

Verify

(VERIFY)

.

.

.

.

.

.

.

.

.

.

.

. 1254

Warning:

Temporary

Level

3

Header

.

.

.

. 1255

Wait

On

Time

(WAITTIME)

.

.

.

.

.

.

.

. 1256

Warning:

Temporary

Level

3

Header

.

.

.

. 1258

X

To

The

Y

Power

(POWER)

.

.

.

.

.

.

.

. 1259

Warning:

Temporary

Level

3

Header

.

.

.

. 1259

XOR

(Exclusive

Or)

String

(XORSTR)

.

.

.

.

. 1260

Warning:

Temporary

Level

3

Header

.

.

.

. 1260

Yield

(YIELD)

.

.

.

.

.

.

.

.

.

.

.

.

. 1261

Warning:

Temporary

Level

3

Header

.

.

.

. 1261

Concepts

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1262

iSeries

Machine

Interface

Introduction

.

.

.

.

. 1262

Overview

.

.

.

.

.

.

.

.

.

.

.

.

. 1262

What’s

New

for

V5R3

.

.

.

.

.

.

.

.

. 1262

Instruction

Format

Conventions

Used

.

.

.

. 1264

Reserved

and

Obsolete

Fields

.

.

.

.

.

. 1268

Definition

Of

The

NBP

Operand

Syntax

.

.

. 1269

Names

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1272

Character

Constants

.

.

.

.

.

.

.

.

.

. 1272

Standard

Time

Format

.

.

.

.

.

.

.

.

. 1272

Time-of-Day

(TOD)

Clock

.

.

.

.

.

.

.

. 1273

Storage

Terminology

.

.

.

.

.

.

.

.

. 1274

Storage

Limitations

.

.

.

.

.

.

.

.

.

. 1274

Atomicity

.

.

.

.

.

.

.

.

.

.

.

.

. 1275

Shared

Storage

Access

Ordering

.

.

.

.

.

. 1276

External

Standards

and

Architectures

.

.

.

. 1276

Logical

partitioning

.

.

.

.

.

.

.

.

.

. 1276

ISeries(TM)

Machine

Interface

Instructions

.

.

. 1277

iSeries(TM)

Machine

Interface

Instructions

Sorted

by

Topic

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1282

Introduction

.

.

.

.

.

.

.

.

.

.

.

. 1282

Computation

and

Branching

.

.

.

.

.

.

. 1283

Bound

Program

Computation

and

Branching

Built-in

Functions

.

.

.

.

.

.

.

.

.

. 1285

Date/Time/Timestamp

.

.

.

.

.

.

.

.

. 1286

Pointer/name

resolution

.

.

.

.

.

.

.

. 1286

Space

Addressing

.

.

.

.

.

.

.

.

.

. 1286

Space

Management

.

.

.

.

.

.

.

.

.

. 1287

Heap

Management

.

.

.

.

.

.

.

.

.

. 1287

Program

Management

.

.

.

.

.

.

.

.

. 1287

Program

Execution

.

.

.

.

.

.

.

.

.

. 1287

Program

creation

control

.

.

.

.

.

.

.

. 1288

Independent

Index

.

.

.

.

.

.

.

.

.

. 1288

Queue

Management

.

.

.

.

.

.

.

.

.

. 1288

Object

Lock

Management

.

.

.

.

.

.

.

. 1288

Mutex

Management

.

.

.

.

.

.

.

.

.

. 1289

Shared

Storage

Synchronization

.

.

.

.

.

. 1289

Exception

Management

.

.

.

.

.

.

.

.

. 1289

Queue

Space

Management

.

.

.

.

.

.

. 1290

Context

Management

.

.

.

.

.

.

.

.

. 1290

Authorization

Management

.

.

.

.

.

.

. 1290

Process

and

Thread

Management

.

.

.

.

. 1290

Storage

and

Resource

Management

.

.

.

.

. 1290

Dump

Space

Management

.

.

.

.

.

.

.

. 1290

Journal

Management

.

.

.

.

.

.

.

.

. 1291

Machine

Observation

.

.

.

.

.

.

.

.

. 1291

Machine

Interface

Support

Functions

.

.

.

. 1291

iSeries(TM)

Exceptions

.

.

.

.

.

.

.

.

.

. 1291

Appendix

A.

Notices

.

.

.

.

.

.

.

. 1305

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

. 1306

Appendix

B.

Terms

and

conditions

for

downloading

and

printing

publications

.

.

.

.

.

.

.

.

.

.

. 1309

Appendix

C.

Code

disclaimer

information

.

.

.

.

.

.

.

.

.

.

.

. 1311

viii

iSeries:

Machine

Interface

Instructions

APIs

Machine

Interface

Instructions

Machine

interface

instructions

include:

v

“iSeries(TM)

Machine

Interface”

v

ILE

C/C++

MI

Library

Reference

APIs

by

category

APIs

These

are

the

APIs

for

this

category.

iSeries(TM)

Machine

Interface

v

“iSeries

Machine

Interface

Introduction”

on

page

1262

v

“ISeries(TM)

Machine

Interface

Instructions”

on

page

1277

v

“iSeries(TM)

Machine

Interface

Instructions

Sorted

by

Topic”

on

page

1282

v

“iSeries(TM)

Exceptions”

on

page

1291

v

Instruction

name

“Arc

Cosine

(ACOS)”

on

page

29

“Activate

Bound

Program

(ACTBPGM)”

on

page

5

“Activate

Program

(ACTPG)”

on

page

10

“Add

Logical

Character

(ADDLC)”

on

page

13

“Add

Numeric

(ADDN)”

on

page

15

“Add

Space

Pointer

(ADDSPP)”

on

page

19

“Allocate

Activation

Group-Based

Heap

Space

Storage

(ALCHSS)”

on

page

21

“And

(AND)”

on

page

24

“And

Complemented

String

(ANDCSTR)”

on

page

27

“AND

String

(ANDSTR)”

on

page

28

“Arc

Sine

(ASIN)”

on

page

30

“Arc

Tangent

(ATAN)”

on

page

31

“Arc

Tangent

Hyperbolic

(ATANH)”

on

page

32

“Atomic

Add

(ATMCADD)”

on

page

33

“Atomic

And

(ATMCAND)”

on

page

35

“Atomic

Or

(ATMCOR)”

on

page

37

“Branch

(B)”

on

page

39

“Compute

Array

Index

(CAI)”

on

page

113

“Call

Internal

(CALLI)”

on

page

46

“Call

Program

with

Variable

Length

Argument

List

(CALLPGMV)”

on

page

48

“Call

External

(CALLX)”

on

page

41

“Concatenate

(CAT)”

on

page

137

“Compute

Date

Duration

(CDD)”

on

page

115

“Check

Lock

Value

(CHKLKVAL)”

on

page

50

“Cipher

(CIPHER)”

on

page

53

“Clear

Bit

in

String

(CLRBTS)”

on

page

68

“Clear

Invocation

Exit

(CLRIEXIT)”

on

page

70

“Clear

Invocation

Flags

(CLRINVF)”

on

page

71

©

Copyright

IBM

Corp.

1998,

2004

1

aplist.htm

“Clear

Lock

Value

(CLRLKVAL)”

on

page

72

“Compute

Math

Function

Using

One

Input

Value

(CMF1)”

on

page

119

“Compute

Math

Function

Using

Two

Input

Values

(CMF2)”

on

page

126

“Compare

Bytes

Left-Adjusted

(CMPBLA)”

on

page

81

“Compare

Bytes

Left-Adjusted

with

Pad

(CMPBLAP)”

on

page

83

“Compare

Bytes

Right-Adjusted

(CMPBRA)”

on

page

85

“Compare

Bytes

Right-Adjusted

with

Pad

(CMPBRAP)”

on

page

88

“Compare

Numeric

Value

(CMPNV)”

on

page

91

“Compare

Pointer

for

Space

Addressability

(CMPPSPAD)”

on

page

97

“Compare

Pointer

for

Object

Addressability

(CMPPTRA)”

on

page

94

“Compare

Pointers

for

Equality

(CMPPTRE)”

on

page

103

“Compare

Pointer

Type

(CMPPTRT)”

on

page

100

“Compare

Space

Addressability

(CMPSPAD)”

on

page

106

“Compare

To

Pad

(CMPTOPAD)”

on

page

108

“Complement

String

(COMSTR)”

on

page

109

“Cosine

(COS)”

on

page

264

“Cosine

Hyperbolic

(COSH)”

on

page

265

“Cotangent

(COT)”

on

page

266

“Compress

Data

(CPRDATA)”

on

page

110

“Copy

Bytes

to

Bits

Arithmetic

(CPYBBTA)”

on

page

234

“Copy

Bytes

to

Bits

Logical

(CPYBBTL)”

on

page

236

“Copy

Bytes

Left-Adjusted

(CPYBLA)”

on

page

220

“Copy

Bytes

Left-Adjusted

with

Pad

(CPYBLAP)”

on

page

222

“Copy

Bytes

Overlapping

(CPYBO)”

on

page

228

“Copy

Bytes

Overlap

Left-Adjusted

(CPYBOLA)”

on

page

224

“Copy

Bytes

Overlap

Left-Adjusted

with

Pad

(CPYBOLAP)”

on

page

226

“Copy

Bytes

Right-Adjusted

(CPYBRA)”

on

page

231

“Copy

Bytes

Right-Adjusted

with

Pad

(CPYBRAP)”

on

page

232

“Copy

Bytes

Repeatedly

(CPYBREP)”

on

page

229

“Copy

Bits

Arithmetic

(CPYBTA)”

on

page

208

“Copy

Bits

Logical

(CPYBTL)”

on

page

210

“Copy

Bits

with

Left

Logical

Shift

(CPYBTLLS)”

on

page

212

“Copy

Bits

with

Right

Arithmetic

Shift

(CPYBTRAS)”

on

page

214

“Copy

Bits

with

Right

Logical

Shift

(CPYBTRLS)”

on

page

217

“Copy

Bytes

with

Pointers

(CPYBWP)”

on

page

238

“Copy

Bytes

(CPYBYTES)”

on

page

219

“Copy

Extended

Characters

Left-Adjusted

With

Pad

(CPYECLAP)”

on

page

241

“Copy

Hex

Digit

Numeric

to

Numeric

(CPYHEXNN)”

on

page

245

“Copy

Hex

Digit

Numeric

to

Zone

(CPYHEXNZ)”

on

page

247

“Copy

Hex

Digit

Zone

To

Numeric

(CPYHEXZN)”

on

page

248

“Copy

Hex

Digit

Zone

To

Zone

(CPYHEXZZ)”

on

page

250

“Create

Activation

Group-Based

Heap

Space

(CRTHS)”

on

page

266

“Create

Independent

Index

(CRTINX)”

on

page

271

“Create

Pointer-Based

Mutex

(CRTMTX)”

on

page

281

“Create

Space

(CRTS)”

on

page

285

“Compute

Time

Duration

(CTD)”

on

page

131

“Compute

Timestamp

Duration

(CTSD)”

on

page

134

“Convert

BSC

to

Character

(CVTBC)”

on

page

139

“Convert

Character

to

BSC

(CVTCB)”

on

page

143

“Convert

Character

to

Hex

(CVTCH)”

on

page

147

“Convert

Character

to

MRJE

(CVTCM)”

on

page

149

“Convert

Character

to

Numeric

(CVTCN)”

on

page

155

“Convert

Character

to

SNA

(CVTCS)”

on

page

158

“Convert

Date

(CVTD)”

on

page

168

“Convert

Decimal

Form

to

Floating-Point

(CVTDFFP)”

on

page

172

“Convert

External

Form

to

Numeric

Value

(CVTEFN)”

on

page

174

“Convert

Floating-Point

to

Decimal

Form

(CVTFPDF)”

on

page

178

“Convert

Hex

to

Character

(CVTHC)”

on

page

182

“Convert

MRJE

to

Character

(CVTMC)”

on

page

183

“Convert

Numeric

to

Character

(CVTNC)”

on

page

188

“Convert

SNA

to

Character

(CVTSC)”

on

page

191

“Convert

Time

(CVTT)”

on

page

202

“Convert

Timestamp

(CVTTS)”

on

page

205

“Decompress

Data

(DCPDATA)”

on

page

297

“Deactivate

Program

(DEACTPG)”

on

page

295

“Decrement

Date

(DECD)”

on

page

300

“Decrement

Time

(DECT)”

on

page

304

“Decrement

Timestamp

(DECTS)”

on

page

307

“Destroy

Activation

Group-Based

Heap

Space

(DESHS)”

on

page

324

2

iSeries:

Machine

Interface

Instructions

APIs

“Destroy

Independent

Index

(DESINX)”

on

page

326

“Destroy

Pointer-Based

Mutex

(DESMTX)”

on

page

328

“Destroy

Space

(DESS)”

on

page

331

“Divide

(DIV)”

on

page

333

“Divide

with

Remainder

(DIVREM)”

on

page

337

“Extended

Character

Scan

(ECSCAN)”

on

page

380

“Exponential

Function

of

E

(EEXP)”

on

page

379

“End

(END)”

on

page

368

“Enqueue

(ENQ)”

on

page

369

“Ensure

Object

(ENSOBJ)”

on

page

372

“Exchange

Bytes

(EXCHBY)”

on

page

374

“Extract

Exponent

(EXTREXP)”

on

page

384

“Extract

Magnitude

(EXTRMAG)”

on

page

386

“Find

Byte

(FINDBYTE)”

on

page

390

“Find

Independent

Index

Entry

(FNDINXEN)”

on

page

391

“Find

Relative

Invocation

Number

(FNDRINVN)”

on

page

396

“Free

Activation

Group-Based

Heap

Space

Storage

(FREHSS)”

on

page

403

“Free

Activation

Group-Based

Heap

Space

Storage

From

Mark

(FREHSSMK)”

on

page

404

“Generate

Universal

Unique

Identifier

(GENUUID)”

on

page

406

“Increment

Date

(INCD)”

on

page

408

“Increment

Time

(INCT)”

on

page

412

“Increment

Timestamp

(INCTS)”

on

page

415

“Initialize

Exception

Handler

Control

Actions

(INITEHCA)”

on

page

419

“Insert

Independent

Index

Entry

(INSINXEN)”

on

page

419

“Invocation

Pointer

(INVP)”

on

page

423

“Logarithm

Base

E

(Natural

Logarithm)

(LN)”

on

page

453

“Lock

Object

(LOCK)”

on

page

424

“Lock

Pointer-Based

Mutex

(LOCKMTX)”

on

page

435

“Lock

Object

Location

(LOCKOL)”

on

page

431

“Lock

Space

Location

(LOCKSL)”

on

page

440

“Lock

Teraspace

Storage

Location

(LOCKTSL)”

on

page

446

“Materialize

Activation

Attributes

(MATACTAT)”

on

page

458

“Materialize

Activation

Export

(MATACTEX)”

on

page

464

“Materialize

Access

Group

Attributes

(MATAGAT)”

on

page

453

“Materialize

Activation

Group

Attributes

(MATAGPAT)”

on

page

466

“Materialize

Authority

List

(MATAL)”

on

page

486

“Materialize

Allocated

Object

Locks

(MATAOL)”

on

page

477

“Materialize

Authority

(MATAU)”

on

page

482

“Materialize

Authorized

Objects

(MATAUOBJ)”

on

page

492

“Materialize

Authorized

Users

(MATAUU)”

on

page

502

“Materialize

Bound

Program

(MATBPGM)”

on

page

507

“Materialize

Context

(MATCTX)”

on

page

539

“Materialize

Dump

Space

(MATDMPS)”

on

page

552

“Materialize

Data

Space

Record

Locks

(MATDRECL)”

on

page

547

“Materialize

Exception

Description

(MATEXCPD)”

on

page

556

“Materialize

Activation

Group-Based

Heap

Space

Attributes

(MATHSAT)”

on

page

472

“Materialize

Instruction

Attributes

(MATINAT)”

on

page

566

“Materialize

Invocation

(MATINV)”

on

page

574

“Materialize

Invocation

Attributes

(MATINVAT)”

on

page

579

“Materialize

Invocation

Entry

(MATINVE)”

on

page

591

“Materialize

Invocation

Stack

(MATINVS)”

on

page

597

“Materialize

Independent

Index

Attributes

(MATINXAT)”

on

page

560

“Materialize

Journal

Port

Attributes

(MATJPAT)”

on

page

603

“Materialize

Journal

Space

Attributes

(MATJSAT)”

on

page

612

“Materialize

Machine

Information

(MATMIF)”

on

page

697

“Materialize

Mutex

(MATMTX)”

on

page

704

“Materialize

Object

Locks

(MATOBJLK)”

on

page

708

“Materialize

Program

(MATPG)”

on

page

800

“Materialize

Program

Name

(MATPGMNM)”

on

page

820

“Materialize

Process

Activation

Groups

(MATPRAGP)”

on

page

739

“Materialize

Process

Attributes

(MATPRATR)”

on

page

742

“Materialize

Process

Record

Locks

(MATPRECL)”

on

page

795

“Materialize

Process

Locks

(MATPRLK)”

on

page

767

“Materialize

Process

Message

(MATPRMSG)”

on

page

770

“Materialize

Process

Mutex

(MATPRMTX)”

on

page

788

“Materialize

Pointer

(MATPTR)”

on

page

718

“Materialize

Pointer

Information

(MATPTRIF)”

on

page

729

“Materialize

Pointer

Locations

(MATPTRL)”

on

page

736

“Materialize

Queue

Attributes

(MATQAT)”

on

page

822

Machine

Interface

Instructions

3

“Materialize

Queue

Messages

(MATQMSG)”

on

page

829

“Materialize

Resource

Management

Data

(MATRMD)”

on

page

833

“Materialize

Space

Attributes

(MATS)”

on

page

916

“Materialize

Selected

Locks

(MATSELLK)”

on

page

912

“Materialize

System

Object

(MATSOBJ)”

on

page

921

“Materialize

Time

of

Day

Clock

Attributes

(MATTODAT)”

on

page

938

“Materialize

User

Profile

(MATUP)”

on

page

941

“Materialize

User

Profile

Pointers

from

ID

(MATUPID)”

on

page

949

“Find

Character

Constrained

(MEMCHR)”

on

page

391

“Memory

Compare

(MEMCMP)”

on

page

954

“Memory

Copy

(MEMCPY)”

on

page

955

“Memory

Move

(MEMMOVE)”

on

page

956

“Modify

Exception

Description

(MODEXCPD)”

on

page

962

“Modify

Invocation

Authority

Attributes

(MODINVAU)”

on

page

968

“Modify

Independent

Index

(MODINX)”

on

page

965

“Multiply

(MULT)”

on

page

1002

“Materialize

or

Verify

Licensed

Internal

Code

Options

(MVLICOPT)”

on

page

713

“Negate

(NEG)”

on

page

1006

“No

Operation

(NOOP)”

on

page

1010

“No

Operation

and

Skip

(NOOPS)”

on

page

1010

“Not

(NOT)”

on

page

1011

“NPM

Procedure

Parameter

List

Address

(NPM_PARMLIST_ADDR)”

on

page

1013

“OPM

Parameter

Address

(OPM_PARM_ADDR)”

on

page

1015

“OPM

Parameter

Count

(OPM_PARM_CNT)”

on

page

1015

“Or

(OR)”

on

page

1016

“OR

String

(ORSTR)”

on

page

1019

“Override

Program

Attributes

(OVRPGATR)”

on

page

1020

“PCO

Pointer

(PCOPTR)”

on

page

1021

“Return

PCO

Pointer

(PCOPTR2)”

on

page

1064

“X

To

The

Y

Power

(POWER)”

on

page

1259

“Propagate

Byte

(PROPB)”

on

page

1022

“Reallocate

Activation

Group-Based

Heap

Space

Storage

(REALCHSS)”

on

page

1023

“Remainder

(REM)”

on

page

1028

“Retrieve

Computational

Attributes

(RETCA)”

on

page

1049

“Retrieve

Exception

Data

(RETEXCPD)”

on

page

1050

“Retrieve

Invocation

Flags

(RETINVF)”

on

page

1054

“Retrieve

Teraspace

Address

From

Space

Pointer

(RETTSADR)”

on

page

1054

“Retrieve

Thread

Count

(RETTHCNT)”

on

page

1055

“Retrieve

Thread

Identifier

(RETTHID)”

on

page

1057

“Reinitialize

Static

Storage

(RINZSTAT)”

on

page

1025

“Remove

Independent

Index

Entry

(RMVINXEN)”

on

page

1032

“Resolve

Data

Pointer

(RSLVDP)”

on

page

1035

“Resolve

System

Pointer

(RSLVSP)”

on

page

1038

“Return

From

Exception

(RTNEXCP)”

on

page

1060

“Return

External

(RTX)”

on

page

1058

“Scale

(SCALE)”

on

page

1066

“Scan

(SCAN)”

on

page

1070

“Scan

with

Control

(SCANWC)”

on

page

1080

“Scan

Extended

(SCANX)”

on

page

1072

“Search

(SEARCH)”

on

page

1087

“Set

Access

State

(SETACST)”

on

page

1095

“Set

Argument

List

Length

(SETALLEN)”

on

page

1103

“Set

Bit

in

String

(SETBTS)”

on

page

1105

“Set

Computational

Attributes

(SETCA)”

on

page

1107

“Set

Data

Pointer

(SETDP)”

on

page

1108

“Set

Data

Pointer

Addressability

(SETDPADR)”

on

page

1110

“Set

Data

Pointer

Attributes

(SETDPAT)”

on

page

1112

“Set

Activation

Group-Based

Heap

Space

Storage

Mark

(SETHSSMK)”

on

page

1101

“Set

Invocation

Exit

(SETIEXIT)”

on

page

1117

“Set

Invocation

Flags

(SETINVF)”

on

page

1120

“Set

Instruction

Pointer

(SETIP)”

on

page

1116

“Set

Object

Pointer

from

Pointer

(SETOBPFP)”

on

page

1120

“Set

System

Pointer

from

Pointer

(SETSPFP)”

on

page

1131

“Set

Space

Pointer

(SETSPP)”

on

page

1122

“Set

Space

Pointer

with

Displacement

(SETSPPD)”

on

page

1129

“Set

Space

Pointer

from

Pointer

(SETSPPFP)”

on

page

1124

“Set

Space

Pointer

Offset

(SETSPPO)”

on

page

1126

“Signal

Exception

(SIGEXCP)”

on

page

1133

“Sine

(SIN)”

on

page

1138

4

iSeries:

Machine

Interface

Instructions

APIs

“Sine

Hyperbolic

(SINH)”

on

page

1139

“Sense

Exception

Description

(SNSEXCPD)”

on

page

1090

“Store

and

Set

Computational

Attributes

(SSCA)”

on

page

1140

“Store

Parameter

List

Length

(STPLLEN)”

on

page

1144

“Compute

Length

of

Null-Terminated

String

(STRLENNULL)”

on

page

118

“Compare

Null-Terminated

Strings

Constrained

(STRNCMPNULL)”

on

page

90

“Copy

Null-Terminated

String

Constrained

(STRNCPYNULL)”

on

page

252

“Copy

Null-Terminated

String

Constrained,

Null

Padded

(STRNCPYNULLPAD)”

on

page

253

“Store

Space

Pointer

Offset

(STSPPO)”

on

page

1146

“Subtract

Logical

Character

(SUBLC)”

on

page

1148

“Subtract

Numeric

(SUBN)”

on

page

1151

“Subtract

Space

Pointer

Offset

(SUBSPP)”

on

page

1155

“Subtract

Space

Pointers

For

Offset

(SUBSPPFO)”

on

page

1157

“Synchronize

Shared

Storage

Accesses

(SYNCSTG)”

on

page

1159

“Tangent

(TAN)”

on

page

1160

“Tangent

Hyperbolic

(TANH)”

on

page

1161

“Test

Authority

(TESTAU)”

on

page

1165

“Test

Extended

Authorities

(TESTEAU)”

on

page

1178

“Test

Exception

(TESTEXCP)”

on

page

1175

“Test

Pending

Interrupts

(TESTINTR)”

on

page

1185

“Test

Performance

Data

Collection

(TESTPDC)”

on

page

1187

“Test

Pointer

(TESTPTR)”

on

page

1190

“Test

and

Replace

Bytes

(TESTRPL)”

on

page

1162

“Test

Subset

(TESTSUBSET)”

on

page

1191

“Test

Temporary

Object

(TESTTOBJ)”

on

page

1192

“Test

User

List

Authority

(TESTULA)”

on

page

1195

“Trim

Length

(TRIML)”

on

page

1235

“Test

Bit

in

String

(TSTBTS)”

on

page

1170

“Test

Bits

Under

Mask

(TSTBUM)”

on

page

1173

“Test

Initial

Thread

(TSTINLTH)”

on

page

1184

“Test

and

Replace

Characters

(TSTRPLC)”

on

page

1163

“Unlock

Teraspace

Storage

Location

(UNLCKTSL)”

on

page

1250

“Unlock

Pointer-Based

Mutex

(UNLKMTX)”

on

page

1244

“Unlock

Object

(UNLOCK)”

on

page

1237

“Unlock

Object

Location

(UNLOCKOL)”

on

page

1241

“Unlock

Space

Location

(UNLOCKSL)”

on

page

1246

“Verify

(VERIFY)”

on

page

1254

“Wait

On

Time

(WAITTIME)”

on

page

1256

“Transfer

Control

(XCTL)”

on

page

1201

“Transfer

Object

Lock

(XFRLOCK)”

on

page

1206

“Translate

(XLATE)”

on

page

1212

“Translate

Bytes

(XLATEB)”

on

page

1214

“Translate

Bytes

One

Byte

at

a

Time

(XLATEB1)”

on

page

1215

“Translate

Multiple

Bytes

(XLATEMB)”

on

page

1217

“Translate

with

Table

(XLATEWT)”

on

page

1230

“Translate

with

Table

and

DBCS

Skip

(XLATWTDS)”

on

page

1233

“Exclusive

Or

(XOR)”

on

page

376

“XOR

(Exclusive

Or)

String

(XORSTR)”

on

page

1260

“Yield

(YIELD)”

on

page

1261

Activate

Bound

Program

(ACTBPGM)

Op

Code

(Hex)

Operand

1

Operand

2

ACTBPGM2

02DE

Activation

defn

Program

spec

ACTBPGM

02CE

Activation

defn

Program

spec

Operand

1:

Space

pointer.

Machine

Interface

Instructions

5

Operand

2:

System

pointer

or

space

pointer

data

object

Bound

program

access

Built-in

number

for

ACTBPGM2

is

658.

ACTBPGM2(

activation_defn

:

address

of

aggregate

program_spec

:

address

of

system

pointer

or

address

of

space

pointer(16)

)

OR

Built-in

number

for

ACTBPGM

is

416.

ACTBPGM

(

activation_defn

:

address

of

aggregate

program_spec

:

address

of

system

pointer

or

address

of

space

pointer(16)

)

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Note

It

is

recommended

that

you

use

the

ACTBPGM2

instruction

which

supports

8-byte

activation

and

activation

group

marks.

4-byte

marks

can

wrap

and

produce

unexpected

results.

Description:

Activates

a

bound

program

or

bound

service

program.

The

program

spec

operand

specifies

the

target

program

to

be

activated,

either

directly

or

indirectly.

If

the

program

spec

operand

specifies

a

space

pointer,

it

must

locate

a

16-byte

aligned

structure.

The

format

of

the

structure

is

different

for

the

ACTBPGM

and

ACTBPGM2

instructions.

Format

of

program

spec

for

ACTBPGM2

instruction:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Program

System

pointer

16

10

Target

activation

group

UBin(8)

16

10

Target

activation

group

(Non-Bound

program)

Char(8)

24

18

Reserved

(binary

0)

Char(24)

48

30

—-

End

—-

Format

of

program

spec

for

ACTBPGM

instruction:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Program

System

pointer

16

10

Target

activation

group

UBin(4)

20

14

Reserved

(binary

0)

Char(12)

32

20

—-

End

—-

where,

6

iSeries:

Machine

Interface

Instructions

APIs

Program

is

a

system

pointer

to

a

bound

service

program

to

be

activated.

The

service

program

must

specify

callers

activation

group

for

its

activation

group

attribute.

If

the

program

is

not

a

service

program

or

the

activation

group

attribute

is

incorrect,

then

the

invalid

operation

for

program

(hex

2C15)

exception

is

signaled.

Target

activation

group

is

the

activation

group

mark

of

an

existing

activation

group

into

which

the

service

program

is

to

be

activated.

If

the

activation

group

does

not

exist,

then

the

activation

group

not

found

(hex

2C13)

exception

is

signaled.

The

service

program

is

eligible

to

be

activated

into

the

target

activation

group

if

either

of

the

following

conditions

hold:

v

v

The

target

activation

group’s

state

and

the

service

program

state

are

equal

(i.e.

either

both

are

system-state

or

both

are

user-state).

v

The

service

program

state

is

inherit-state

and

the

target

activation

group’s

state

is

equal

to

the

current

thread

execution

state.

If

the

service

program

is

not

eligible

to

be

activated,

the

activation

access

violation

(hex

2C1E)

exception

is

signaled.

If

the

service

program

is

eligible

to

be

activated

in

the

target

activation

group,

activation

proceeds

as

described

in

activating

the

program

below.

If

the

program

spec

operand

specifies

a

system

pointer,

it

designates

the

target

program

to

be

activated.

The

target

program

must

be

either

a

bound

program

or

a

bound

service

program,

otherwise

invalid

operation

for

program

(hex

2C15)

exception

is

signaled.

Activating

the

Program:

The

program

activation

operation

is

discussed

in

detail

in

the

CALLX

instruction.

If

the

target

program

adopts

its

owner’s

user

profile,

the

effect

is

as

if

the

target

program

were

the

most

recent

invocation

on

the

call

stack.

This

permits

the

adopted

authority

of

the

owner

to

be

applied

for

purposes

of

activating

dependent

service

programs.

This

adoption

policy

is

in

effect

for

the

duration

of

the

ACTBPGM

operation.

Activation

Definition:

The

activation

defn

must

point

to

a

16-byte

aligned

area

which

receives

the

activation

definition.

The

format

of

the

structure

is

different

for

the

ACTBPGM

and

ACTBPGM2

instructions.

Format

of

activation

defn

for

ACTBPGM2

instruction:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Activation

definition

Char(48)

0

0

Activation

group

mark

UBin(

0

0

Activation

group

mark

(Non-Bound

program)

8

8

Activation

mark

UBin(

8

8

Activation

mark

(Non-Bound

program)

16

10

Reserved

Char(

23

17

Indicators

Char(

23

17

Activation

status

0=

New

activation

1=

Existing

activation

23

17

Reserved

(binary

0)

Machine

Interface

Instructions

7

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

24

18

Reserved

(binary

0)

Char(24)

48

30

—-

End

—-

Format

of

activation

defn

for

ACTBPGM

instruction:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Activation

definition

Char(32)

0

0

Activation

group

mark

UBin(4)

4

4

Activation

mark

UBin(4)

8

8

Reserved

Char(7)

15

F

Indicators

Char(1)

15

F

Activation

status

Bit

0

0=

New

activation

1=

Existing

activation

15

F

Reserved

(binary

0)

Bits

1-7

16

10

Reserved

(binary

0)

Char(16)

32

20

—-

End

—-

where,

The

activation

group

mark

identifies

the

activation

group

into

which

the

target

program

was

activated.

The

activation

mark

identifies

the

activation

of

the

program.

The

activation

status

indicates

whether

the

operation

created

a

new

activation

(=0)

or

found

an

existing

activation

(=1).

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Program

referenced

by

operand

2

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

8

iSeries:

Machine

Interface

Instructions

APIs

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

Machine

Interface

Instructions

9

2A

Program

Creation

2AB5

Observable

Information

Necessary

For

Retranslation

Not

Encapsulated

2C

Program

Execution

2C12

Activation

Group

Access

Violation

2C15

Invalid

Operation

for

Program

2C1E

Activation

Access

Violation

2C2A

Caller

Parameter

Mask

Does

Not

Match

Imported

Procedure

Parameter

Mask

2C2B

Invalid

Storage

Model

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Activate

Program

(ACTPG)

Op

Code

(Hex)

Operand

1

Operand

2

0212

Program

or

static

storage

frame

Program

Operand

1:

Space

pointer

data

object

or

system

pointer.

Operand

2:

System

pointer.

Bound

program

access

Built-in

number

for

ACTPG

is

32.

ACTPG

(

program_or_static_storage_frame

:

address

of

system

pointer

OR

address

of

space

pointer(16)

program

:

address

of

system

pointer

)

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Description:

This

instruction

creates

an

activation

entry

for

the

non-bound

program

specified

by

operand

2,

if

it

uses

static

storage.

If

the

program

specified

is

of

any

other

type,

an

invalid

operation

for

program

(hex

2C15)

exception

is

signaled.

No

operation

is

performed

for

a

program

which

does

not

require

static

storage.

10

iSeries:

Machine

Interface

Instructions

APIs

Operand

1

receives

either

a

space

pointer

or

system

pointer

as

follows:

v

v

If

an

activation

entry

is

created

or

an

activation

entry

exists

for

the

program

within

the

target

activation

group,

then

a

space

pointer

to

the

static

storage

frame

is

returned.

The

static

storage

frame

is

allocated

and

initialized

according

to

specifications

within

the

program.

The

static

storage

frame

is

16-byte

aligned

and

begins

with

a

64-byte

header.

The

header

is

not

initialized

and

it

is

not

used

by

the

machine.

The

header

is

provided

for

compatibility

with

prior

machine

implementations.

v

If

the

program

does

not

use

static

storage

(hence,

no

activation

entry

is

created)

a

copy

of

the

program

pointer

in

operand

2

is

returned.

If

an

attempt

is

made

to

activate

an

already

active

program

then

v

the

activation

mark

of

the

activation

entry

is

changed,

and

v

the

static

storage

frame

is

reinitialized

When

the

security

level

machine

attribute

value

is

hex

40

and

higher,

if

the

thread

state

at

the

time

this

instruction

is

invoked

is

user

state

and

an

attempt

is

made

to

activate

a

system

state

program,

an

invalid

operation

for

program

(hex

2C15)

exception

will

be

signalled.

A

space

pointer

machine

object

may

not

be

specified

for

operand

1.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Program

referenced

by

operand

2

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

Machine

Interface

Instructions

11

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2A

Program

Creation

2AB5

Observable

Information

Necessary

For

Retranslation

Not

Encapsulated

2C

Program

Execution

2C15

Invalid

Operation

for

Program

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

12

iSeries:

Machine

Interface

Instructions

APIs

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Add

Logical

Character

(ADDLC)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-7]

ADDLC

1023

Sum

Addend

1

Addend

2

ADDLCI

1823

Indicator

options

Sum

Addend

1

Addend

2

Indicator

targets

ADDLCB

1C23

Branch

options

Sum

Addend

1

Addend

2

Branch

targets

Operand

1:

Character

variable

scalar.

Operand

2:

Character

scalar.

Operand

3:

Character

scalar.

Operand

4-7:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Warning:

Temporary

Level

3

Header

Short

forms

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

[3-6]

ADDLCS

1123

Sum/Addend

1

Addend

2

ADDLCIS

1923

Indicator

options

Sum/Addend

1

Addend

2

Indicator

targets

ADDLCBS

1D23

Branch

options

Sum/Addend

1

Addend

2

Branch

targets

Operand

1:

Character

variable

scalar.

Operand

2:

Character

scalar.

Operand

3-6:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

The

unsigned

binary

value

of

the

addend

1

operand

is

added

to

the

unsigned

binary

value

of

the

addend

2

operand

and

the

result

is

placed

in

the

sum

operand.

If

the

short

form

is

not

used

and

if

neither

source

operand

is

an

immediate

value,

then

operands

2

and

3

must

be

the

same

length.

The

length

can

be

a

maximum

of

256

bytes.

In

the

case

that

the

short

form

is

not

used

and

operand

2

or

3

is

an

immediate

operand,

it

is

treated

as

a

character

value

and

extended

on

the

right

with

hex

00

bytes

to

match

the

length

of

the

other

operand.

Machine

Interface

Instructions

13

The

addition

operation

is

performed

according

to

the

rules

of

algebra.

The

result

value

is

then

placed

(left-adjusted)

in

the

receiver

operand

with

truncating

or

padding

taking

place

on

the

right.

The

pad

value

used

in

this

instruction

is

a

byte

value

of

hex

00.

If

operands

overlap

but

do

not

share

all

of

the

same

bytes,

results

of

operations

performed

on

these

operands

are

not

predictable.

If

overlapped

operands

share

all

of

the

same

bytes,

the

results

are

predictable

when

direct

addressing

is

used.

If

indirect

addressing

is

used

(that

is,

based

operands,

parameters,

strings

with

variable

lengths,

and

arrays

with

variable

subscripts),

the

results

are

not

always

predictable.

Resultant

Conditions:

The

logical

sum

of

the

character

scalar

operands

is:

v

v

Zero

with

no

carry

out

of

the

leftmost

bit

position

v

Not-zero

with

no

carry

v

Zero

with

carry

v

Not-zero

with

carry.

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

14

iSeries:

Machine

Interface

Instructions

APIs

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Add

Numeric

(ADDN)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-7]

ADDN

1043

Sum

Addend

Augend

ADDNR

1243

Sum

Addend

Augend

ADDNI

1843

Indicator

options

Sum

Addend

Augend

Indicator

targets

ADDNIR

1A43

Indicator

options

Sum

Addend

Augend

Indicator

targets

ADDNB

1C43

Branch

options

Sum

Addend

Augend

Branch

targets

ADDNBR

1E43

Branch

options

Sum

Addend

Augend

Branch

targets

Operand

1:

Numeric

variable

scalar.

Operand

2:

Numeric

scalar.

Machine

Interface

Instructions

15

Operand

3:

Numeric

scalar.

Operand

4-7:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Warning:

Temporary

Level

3

Header

Short

forms

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

[3-6]

ADDNS

1143

Sum/Addend

Augend

ADDNSR

1343

Sum/Addend

Augend

ADDNIS

1943

Indicator

options

Sum/Addend

Augend

Indicator

targets

ADDNISR

1B43

Indicator

options

Sum/Addend

Augend

Indicator

targets

ADDNBS

1D43

Branch

options

Sum/Addend

Augend

Branch

targets

ADDNBSR

1F43

Branch

options

Sum/Addend

Augend

Branch

targets

Operand

1:

Numeric

variable

scalar.

Operand

2:

Numeric

scalar.

Operand

3-6:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Caution:

If

operands

overlap

but

do

not

share

all

of

the

same

bytes,

results

of

operations

performed

on

these

operands

are

not

predictable.

If

overlapped

operands

share

all

of

the

same

bytes,

the

results

are

predictable

when

direct

addressing

is

used

or

whenever

the

assume

coincident

operand

overlap

attribute

has

been

specified

in

the

program

template.

If

the

assume

coincident

operand

overlap

attribute

has

not

been

specified

in

the

program

template

and

indirect

addressing

is

used

(that

is,

based

operands,

parameters,

strings

with

variable

lengths,

and

arrays

with

variable

subscripts),

the

results

are

not

always

predictable.

Description:

The

sum

is

the

result

of

adding

the

addend

and

augend.

Operands

can

have

floating-point,

packed

or

zoned

decimal,

signed

or

unsigned

binary

type.

Source

operands

are

the

addend

and

augend.

The

receiver

operand

is

the

sum.

If

operands

are

not

of

the

same

type,

addends

are

converted

according

to

the

following

rules:

1.

If

any

one

of

the

operands

has

floating

point

type,

addends

are

converted

to

floating

point

type.

2.

Otherwise,

if

any

one

of

the

operands

has

zoned

or

packed

decimal

type,

addends

are

converted

to

packed

decimal.

3.

Otherwise,

the

binary

operands

are

converted

to

a

like

type.

Note:

unsigned

binary(2)

scalars

are

logically

treated

as

signed

binary(4)

scalars.

16

iSeries:

Machine

Interface

Instructions

APIs

Addend

and

augend

are

added

according

to

their

type.

Floating

point

operands

are

added

using

floating

point

addition.

Packed

decimal

addends

are

added

using

packed

decimal

addition.

Unsigned

binary

addition

is

used

with

unsigned

addends.

Signed

binary

addends

are

added

using

two’s

complement

binary

addition.

Better

performance

can

be

obtained

if

all

operands

have

the

same

type.

Signed

and

unsigned

binary

additions

execute

faster

than

either

packed

decimal

or

floating

point

additions.

Decimal

operands

used

in

floating-point

operations

cannot

contain

more

than

15

total

digit

positions.

For

a

decimal

operation,

alignment

of

the

assumed

decimal

point

takes

place

by

padding

with

0’s

on

the

right

end

of

the

addend

with

lesser

precision.

Floating-point

addition

uses

exponent

comparison

and

significand

addition.

Alignment

of

the

binary

point

is

performed,

if

necessary,

by

shifting

the

significand

of

the

value

with

the

smaller

exponent

to

the

right.

The

exponent

is

increased

by

one

for

each

binary

digit

shifted

until

the

two

exponents

agree.

The

operation

uses

the

lengths

and

the

precision

of

the

source

and

receiver

operands

to

calculate

accurate

results.

Operations

performed

in

decimal

are

limited

to

31

decimal

digits

in

the

intermediate

result.

The

addition

operation

is

performed

according

to

the

rules

of

algebra.

The

result

of

the

operation

is

copied

into

the

sum

operand.

If

this

operand

is

not

the

same

type

as

that

used

in

performing

the

operation,

the

resultant

value

is

converted

to

its

type.

If

necessary,

the

resultant

value

is

adjusted

to

the

length

of

the

sum,

aligned

at

the

assumed

decimal

point

of

the

sum

operand,

or

both

before

being

copied.

Length

adjustment

and

decimal

point

alignment

are

performed

according

to

the

rules

of

arithmetic

operations

outlined

in

the

Arithmetic

Operations.

If

nonzero

digits

are

truncated

on

the

left

end

of

the

resultant

value,

a

size

(hex

0C0A)

exception

is

signaled.

When

the

target

of

the

instruction

is

signed

or

unsigned

binary

size,

exceptions

can

be

suppressed.

For

the

optional

round

form

of

the

instruction,

specification

of

a

floating-point

receiver

operand

is

invalid.

For

fixed-point

operations,

if

nonzero

digits

are

truncated

off

the

left

end

of

the

resultant

value,

a

size

(hex

0C0A)

exception

is

signaled.

For

floating-point

operations

involving

a

fixed-point

receiver

field,

if

nonzero

digits

would

be

truncated

off

the

left

end

of

the

resultant

value,

an

invalid

floating-point

conversion

(hex

0C0C)

exception

is

signaled.

For

a

floating-point

sum,

if

the

exponent

of

the

resultant

value

is

either

too

large

or

too

small

to

be

represented

in

the

sum

field,

the

floating-point

overflow

(hex

0C06)

exception

and

floating-point

underflow

(hex

0C07)

exception

are

signaled,

respectively.

If

a

decimal

to

binary

conversion

causes

a

size

(hex

0C0A)

exception

to

be

signaled,

the

binary

value

contains

the

correct

truncated

result

only

if

the

decimal

value

contains

15

or

fewer

significant

nonfractional

digits.

Resultant

Conditions:

v

v

Positive

-

The

algebraic

value

of

the

numeric

scalar

sum

operand

is

positive.

v

Negative

-

The

algebraic

value

of

the

numeric

scalar

sum

operand

is

negative.

v

Zero

-

The

algebraic

value

of

the

numeric

scalar

sum

operand

is

zero.

v

Unordered

-

The

value

assigned

a

floating-point

sum

operand

is

NaN.

Machine

Interface

Instructions

17

MCNPFAO.htm

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C02

Decimal

Data

0C03

Decimal

Point

Alignment

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

0C0A

Size

0C0C

Invalid

Floating-Point

Conversion

0C0D

Floating-Point

Inexact

Result

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

18

iSeries:

Machine

Interface

Instructions

APIs

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Add

Space

Pointer

(ADDSPP)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

0083

Receiver

pointer

Source

pointer

Increment

Operand

1:

Space

pointer.

Operand

2:

Space

pointer.

Operand

3:

Binary

scalar.

Description:

This

instruction

adds

a

signed

or

unsigned

binary

value

to

the

offset

of

a

space

pointer.

The

value

of

the

binary

scalar

represented

by

operand

3

is

added

to

the

space

address

contained

in

the

space

pointer

specified

by

operand

2,

and

the

result

is

stored

in

the

space

pointer

identified

by

operand

1.

I.e.

Operand

1

=

Operand

2

+

Operand

3

Operand

3

can

have

a

positive

or

negative

value.

The

space

that

the

pointer

is

addressing

is

not

changed

by

the

instruction.

Operand

2

must

contain

a

space

pointer;

otherwise,

a

pointer

type

invalid

(hex

2402)

exception

is

signaled.

Machine

Interface

Instructions

19

When

the

addressability

in

the

space

pointer

is

modified,

the

instruction

signals

a

space

addressing

violation

(hex

0601)

exception

when

one

of

the

following

conditions

occurs,

for

any

space

except

teraspace:

v

v

The

space

address

to

be

stored

in

the

pointer

has

a

negative

offset

value.

v

The

offset

addresses

beyond

the

largest

space

allocatable

in

the

object.

This

maximum

offset

value

is

dependent

on

the

size

and

packaging

of

the

object

containing

the

space

and

is

independent

of

the

actual

size

of

the

space

allocated.

If

the

exception

is

signaled

by

this

instruction

for

one

of

these

reasons,

the

pointer

is

not

modified

by

the

instruction.

In

contrast,

when

modifying

the

addressability

of

a

space

pointer

to

teraspace,

if

the

address

computed

either

overflows

or

underflows

the

offset,

the

result

is

wrapped

back

within

teraspace

and

no

exception

is

signalled.

However,

since

the

size

of

teraspace

and

thus

the

size

of

the

offset

portion

of

a

teraspace

address

is

implementation-dependent,

the

wrapped

result

may

vary

between

machine

implementations.

Attempts

to

use

a

pointer

whose

offset

value

lies:

between

the

currently

allocated

extent

of

the

space

and

the

maximum

allocatable

extent

of

the

space,

or

whose

offset

is

outside

all

teraspace

allocations,

cause

the

space

addressing

violation

(hex

0601)

exception

to

be

signaled.

The

object

destroyed

(hex

2202)

exception,

parameter

reference

violation

(hex

0801)

exception,

and

pointer

does

not

exist

(hex

2401)

exception

are

not

signaled

when

operand

1

and

operand

2

are

space

pointer

machine

objects.

This

occurs

when

operand

2

contains

an

internal

machine

value

that

indicates

one

of

these

error

conditions

exists.

If

the

corresponding

exception

is

not

signaled,

operand

1

is

set

with

an

internal

machine

value

that

preserves

the

exception

condition

that

existed

for

operand

2.

The

appropriate

exception

condition

will

be

signaled

for

either

pointer

when

a

subsequent

attempt

is

made

to

reference

the

space

data

that

the

pointer

addresses.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

20

iSeries:

Machine

Interface

Instructions

APIs

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Allocate

Activation

Group-Based

Heap

Space

Storage

(ALCHSS)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

03B3

Space

allocation

Heap

identifier

Size

of

space

allocation

Operand

1:

Space

pointer.

Operand

2:

Binary(4)

scalar

or

null.

Machine

Interface

Instructions

21

Operand

3:

Binary(4)

scalar.

Bound

program

access

Built-in

number

for

ALCHSS

is

111.

ALCHSS

(

heap_identifier

:

signed

binary(4)

OR

unsigned

binary(4)

OR

null

operand

size_of_space_allocation

:

signed

binary(4)

)

:

space

pointer(16)

to

a

space

allocation

The

heap_identifier

and

size_of_space_allocation

operands

correspond

to

operands

2

and

3

on

the

ALCHSS

operation;

the

return

value

corresponds

to

operand

1.

Note:

The

term

″heap

space″

in

this

instruction

refers

to

an

″activation

group-based

heap

space″.

Description:

A

heap

space

storage

allocation

of

at

least

the

size

indicated

by

operand

3

is

provided

from

the

heap

space

indicated

by

operand

2.

The

operand

1

space

pointer

is

set

to

address

the

first

byte

of

the

allocation

which

will

begin

on

a

boundary

at

least

as

great

as

the

minimum

boundary

specified

when

the

heap

space

was

created.

Each

allocation

associated

with

a

heap

space

provides

a

continuum

of

contiguously

addressable

bytes.

Individual

allocations

within

a

heap

space

have

no

addressability

affinity

with

each

other.

The

contents

of

the

heap

space

allocation

are

unpredictable

unless

initialization

of

heap

allocations

was

specified

when

the

heap

space

was

created.

The

maximum

single

allocation

allowed

is

determined

by

the

maximum

single

allocation

size

specified

when

the

heap

space

was

created.

The

maximum

single

allocation

possible

is

(16M

-

1

page)

bytes.

To

determine

the

current

page

size

use

option

hex

12

of

the

MATRMD

instruction.

If

a

user

attempts

to

request

a

space

allocation

size

of

zero

or

greater

than

the

maximum

allocation,

an

invalid

size

request

(hex

4504)

exception

will

be

signaled.

It

is

the

responsibility

of

the

using

program

to

see

that

only

the

amount

of

heap

space

storage

requested

is

used.

Reference

to

heap

space

storage

outside

the

bounds

of

the

requested

space

will

produce

unpredictable

results.

The

exact

address

returned

must

be

supplied

to

the

Free

Activation

Group-Based

Heap

Space

Storage

(FREHSS)

instruction

when

the

user

has

completed

use

of

the

heap

space

storage.

A

default

heap

space

(heap

identifier

value

of

0)

is

automatically

available

in

each

activation

group

without

issuing

a

Create

Activation

Group-Based

Heap

Space

(CRTHS)

instruction.

The

default

heap

space

is

created

when

the

first

Allocate

Activation

Group-Based

Heap

Space

is

issued

against

the

default

heap

space.

When

operand

2

is

null,

the

default

heap

space

(heap

identifier

of

0)

provides

the

allocation.

The

machine

supplied

attributes

of

the

default

heap

space

are

as

follows:

v

v

Maximum

single

allocation

size

is

(16M

-

1

page)

bytes.

v

Minimum

boundary

requirement

is

a

16

byte

boundary.

v

The

creation

size

advisory

is

4KB

unless

the

size

of

the

allocation

request

dictates

a

larger

creation

size

be

used.

v

The

extension

size

advisory

is

4KB

unless

the

size

of

the

allocation

request

dictates

a

larger

extension

size

be

used.

v

Domain

is

determined

from

the

state

of

the

program

issuing

the

instruction.

v

Normal

allocation

strategy.

v

A

heap

space

mark

is

not

allowed.

v

The

transfer

size

is

1

page.

v

The

process

access

group

membership

advisory

value

is

taken

from

the

activation

group.

22

iSeries:

Machine

Interface

Instructions

APIs

v

Heap

space

storage

allocations

are

not

initialized

to

the

allocation

value.

v

Heap

space

storage

allocations

are

not

overwritten

to

the

freed

value

after

being

freed.

Neither

operand

2

nor

3

is

modified

by

the

instruction.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

44

Protection

Violation

Machine

Interface

Instructions

23

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

45

Heap

Space

4501

Invalid

Heap

Identifier

4503

Heap

Space

Full

4504

Invalid

Size

Request

4505

Heap

Space

Destroyed

4506

Invalid

Heap

Space

Condition

And

(AND)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-5]

AND

1093

Receiver

Source

1

Source

2

ANDI

1893

Indicator

options

Receiver

Source

1

Source

2

Indicator

targets

ANDB

1C93

Branch

options

Receiver

Source

1

Source

2

Branch

targets

Operand

1:

Character

variable

scalar

or

numeric

variable

scalar.

Operand

2:

Character

scalar

or

numeric

scalar.

Operand

3:

Character

scalar

or

numeric

scalar.

Operand

4-5:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Warning:

Temporary

Level

3

Header

Short

forms

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

[3-4]

ANDS

1193

Receiver/Source

1

Source

2

ANDIS

1993

Indicator

options

Receiver/Source

1

Source

2

Indicator

targets

ANDBS

1D93

Branch

options

Receiver/Source

1

Source

2

Branch

targets

Operand

1:

Character

variable

scalar

or

numeric

variable

scalar.

Operand

2:

Character

scalar

or

numeric

scalar.

Operand

3-4:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

24

iSeries:

Machine

Interface

Instructions

APIs

Description:

The

Boolean

and

operation

is

performed

on

the

string

values

in

the

source

operands.

The

resulting

string

is

placed

in

the

receiver

operand.

The

operands

may

be

character

or

numeric

scalars.

They

are

both

interpreted

as

bit

strings.

Substringing

is

supported

for

both

character

and

numeric

operands.

The

length

of

the

operation

is

equal

to

the

length

of

the

longer

of

the

two

source

operands.

The

shorter

of

the

two

operands

is

logically

padded

on

the

right

with

hex

00

values.

This

assigns

hex

00

values

to

the

results

for

those

bytes

that

correspond

to

the

excess

bytes

of

the

longer

operand.

The

bit

values

of

the

result

are

determined

as

follows:

Source

1

Bit

Source

2

Bit

Result

Bit

0

0

0

0

1

0

1

0

0

1

1

1

The

result

value

is

then

placed

(left-adjusted)

in

the

receiver

operand

with

truncating

or

padding

taking

place

on

the

right.

The

pad

value

used

in

this

instruction

is

a

byte

value

of

hex

00.

If

operands

overlap

but

do

not

share

all

of

the

same

bytes,

results

of

operations

performed

on

these

operands

are

not

predictable.

If

overlapped

operands

share

all

of

the

same

bytes,

the

results

are

predictable

when

direct

addressing

is

used.

If

indirect

addressing

is

used

(that

is,

based

operands,

parameters,

strings

with

variable

lengths,

and

arrays

with

variable

subscripts),

the

results

are

not

always

predictable.

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

be

specified

for

operands

1,

2,

and

3.

The

effect

of

specifying

a

null

substring

reference

for

either

or

both

of

the

source

operands

is

that

the

result

is

all

zero

and

the

instruction’s

resultant

condition

is

zero.

When

a

null

substring

reference

is

specified

for

the

receiver,

a

result

is

not

set

and

the

instruction’s

resultant

condition

is

zero

regardless

of

the

values

of

the

source

operands.

When

the

receiver

operand

is

a

numeric

variable

scalar,

it

is

possible

that

the

result

produced

will

not

be

a

valid

value

for

the

numeric

type.

This

can

occur

due

to

padding

with

hex

00,

due

to

truncation,

or

due

to

the

resultant

bit

string

produced

by

the

instruction.

The

instruction

completes

normally

and

signals

no

exceptions

for

these

conditions.

Resultant

Conditions:

v

v

Zero

-

The

bit

value

for

the

bits

of

the

scalar

receiver

operand

is

either

all

zero

or

a

null

substring

reference

is

specified

for

the

receiver.

v

Not

zero

-

The

bit

value

for

the

bits

of

the

scalar

receiver

operand

is

not

all

zero.

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

Machine

Interface

Instructions

25

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

26

iSeries:

Machine

Interface

Instructions

APIs

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

And

Complemented

String

(ANDCSTR)

Bound

program

access

Built-in

number

for

ANDCSTR

is

463.

ANDCSTR

(

receiver_string

:

address

of

aggregate(*)

first_source_string

:

address

of

aggregate(*)

second_source_string

:

address

of

aggregate(*)

string_length

:

unsigned

binary(4,8)

value

which

specifies

the

length

of

the

three

strings

)

Description:

Each

byte

value

of

the

first

source

string,

for

the

number

of

bytes

indicated

by

string

length,

is

logically

anded

with

the

logical

complement

of

the

corresponding

byte

value

of

the

second

source

string,

on

a

bit-by-bit

basis.

The

results

are

placed

in

the

receiver

string.

If

the

strings

overlap

in

storage,

predictable

results

occur

only

if

the

overlap

is

fully

coincident.

If

the

space(s)

indicated

by

the

three

addresses

are

not

long

enough

to

contain

the

number

of

bytes

indicated

by

string

length,

a

space

addressing

violation

(hex

0601)

is

signalled.

Partial

results

in

this

case

are

unpredictable.

An

example

of

the

AND-COMPLEMENT

operation,

where

the

two

operands

each

have

length

of

one

byte,

follows:

First

operand

value:

01101001

Second

operand

value:

10010001

Second

operand

complemented:

01101110

Final

result

of

first

operand

ANDed

with

the

complement

of

the

second

operand:

01101000

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

08

Argument/Parameter

Machine

Interface

Instructions

27

0801

Parameter

Reference

Violation

22

Object

Access

2202

Object

Destroyed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

AND

String

(ANDSTR)

Bound

program

access

Built-in

number

for

ANDSTR

is

450.

ANDSTR

(

receiver_string

:

address

of

aggregate(*)

first_source_string

:

address

of

aggregate(*)

second_source_string

:

address

of

aggregate(*)

string_length

:

unsigned

binary(4,8)

value

which

specifies

the

length

of

the

three

strings

)

Description:

Each

byte

value

of

the

first

source

string,

for

the

number

of

bytes

indicated

by

operand

4,

is

logically

anded

with

the

corresponding

byte

value

of

the

second

source

string,

on

a

bit-by-bit

basis.

The

results

are

placed

in

the

receiver

string.

If

the

strings

overlap

in

storage,

predictable

results

occur

only

if

the

overlap

is

fully

coincident.

If

the

space(s)

indicated

by

the

three

addresses

are

not

long

enough

to

contain

the

number

of

bytes

indicated

by

string

length,

a

space

addressing

violation

(hex

0601)

is

signalled.

Partial

results

in

this

case

are

unpredictable.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

28

iSeries:

Machine

Interface

Instructions

APIs

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

08

Argument/Parameter

0801

Parameter

Reference

Violation

22

Object

Access

2202

Object

Destroyed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Arc

Cosine

(ACOS)

Bound

program

access

Built-in

number

for

ACOS

is

401.

ACOS

(

source

:

floating

point(8)

value

)

:

floating

point(8)

value

which

is

the

arc

cosine

of

the

source

value

Description:

The

arc

cosine

of

the

numeric

value

of

the

source

operand

is

computed

and

the

result

(in

radians)

is

returned.

The

result

is

in

the

range:

0

<=

ACOS(source)

<=

pi

See

floating

point

results

from

special

values

for

additional

information.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Machine

Interface

Instructions

29

NCBCON.htm

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0C

Computation

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

0C0D

Floating-Point

Inexact

Result

0C0E

Floating-Point

Zero

Divide

Arc

Sine

(ASIN)

Bound

program

access

Built-in

number

for

ASIN

is

399.

ASIN

(

source

:

floating

point(8)

value

)

:

floating

point(8)

value

which

is

the

arc

sine

of

the

source

value

Description:

The

arc

sine

of

the

numeric

value

of

the

source

operand

is

computed

and

the

result

(in

radians)

is

returned.

The

result

is

in

the

range:

-pi/2

<=

ASIN(source)

<=

+pi/2

See

floating

point

results

from

special

values

for

additional

information.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

30

iSeries:

Machine

Interface

Instructions

APIs

NCBCON.htm

0C

Computation

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

0C0D

Floating-Point

Inexact

Result

0C0E

Floating-Point

Zero

Divide

Arc

Tangent

(ATAN)

Bound

program

access

Built-in

number

for

ATAN

is

403.

ATAN

(

source

:

floating

point(8)

value

)

:

floating

point(8)

value

which

is

the

arc

tangent

of

the

source

value

Description:

The

arc

tangent

of

the

numeric

value

of

the

source

operand

is

computed

and

the

result

(in

radians)

is

returned.

The

result

is

in

the

range:

-pi/2

<=

ATAN(source)

<=

+pi/2

See

floating

point

results

from

special

values

for

additional

information.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0C

Computation

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

0C0D

Floating-Point

Inexact

Result

0C0E

Floating-Point

Zero

Divide

Machine

Interface

Instructions

31

NCBCON.htm

Arc

Tangent

Hyperbolic

(ATANH)

Bound

program

access

Built-in

number

for

ATANH

is

410.

ATANH

(

source

:

floating

point(8)

value

)

:

floating

point(8)

value

which

is

the

arc

tangent

hyperbolic

of

the

source

value

Description:

The

inverse

of

the

tangent

hyperbolic

of

the

numeric

value

of

the

source

operand

is

computed

and

the

result

(in

radians)

is

returned.

The

result

is

in

the

range:

-infinity

<=

ATANH(source)

<=

+infinity

See

floating

point

results

from

special

values

for

additional

information.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0C

Computation

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

0C0D

Floating-Point

Inexact

Result

0C0E

Floating-Point

Zero

Divide

32

iSeries:

Machine

Interface

Instructions

APIs

NCBCON.htm

Atomic

Add

(ATMCADD)

Bound

program

access

Built-in

number

for

ATMCADD4

is

671.

ATMCADD4

(

op1

:

address

of

a

signed

binary(4)

value

(has

alignment

restrictions

-

see

description

below)

op2

:

signed

binary(4)

value

)

:

signed

binary(4)

Built-in

number

for

ATMCADD8

is

672.

ATMCADD8

(

op1

:

address

of

a

signed

binary(8)

value

(has

alignment

restrictions

-

see

description

below)

op2

:

signed

binary(8)

value

)

:

signed

binary(8)

Description:

Atomically

increments

the

value

pointed

to

by

op1

by

the

value

op2.

Returns

the

original

value

pointed

to

by

op1.

The

value

pointed

to

by

op1

and

the

op2

value

must

have

the

same

length.

Failure

to

have

the

operands

the

same

length

will

not

be

detected

and

the

results

of

the

instruction

are

undefined

when

this

occurs.

The

first

operand

must

be

aligned

based

on

its

length:

v

v

four

byte

length

-

4-byte

aligned

v

eight

byte

length

-

8-byte

aligned

Failure

to

have

the

first

operand

aligned

properly

will

not

be

detected,

but

the

results

of

the

instruction

are

undefined

when

this

occurs.

The

arithmetic

performed

by

this

instruction

will

not

signal

any

exceptions.

This

operation

is

useful

when

a

variable

is

shared

between

two

or

more

threads.

When

updating

such

a

variable,

it

is

important

to

make

sure

that

the

entire

operation

is

performed

atomically

(not

interruptible).

See

“Atomicity”

on

page

1275

for

additional

information.

The

primary

purpose

of

this

instruction

is

to

manipulate

a

variable

which

is

shared

by

two

or

more

threads,

but

this

instruction

does

not

synchronize

storage.

When

sharing

more

than

one

variable

between

multiple

threads

or

processes,

be

aware

of

storage

synchronization

issues.

See

Storage

Synchronization

Concepts

for

additional

information.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Machine

Interface

Instructions

33

MCNSYNC.htm
MCNSYNC.htm

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

36

Space

Management

3601

Space

Extension/Truncation

34

iSeries:

Machine

Interface

Instructions

APIs

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Atomic

And

(ATMCAND)

Bound

program

access

Built-in

number

for

ATMCAND4

is

673.

ATMCAND4

(

op1

:

address

of

a

unsigned

binary(4)

value

(has

alignment

restrictions

-

see

description

below)

mask

:

unsigned

binary(4)

value

)

:

unsigned

binary(4)

Built-in

number

for

ATMCAND8

is

674.

ATMCAND8

(

op1

:

address

of

a

unsigned

binary(8)

value

(has

alignment

restrictions

-

see

description

below)

mask

:

unsigned

binary(8)

value

)

:

unsigned

binary(8)

Description:

Sets

bits

in

the

value

pointed

to

by

op1,

according

to

a

bit

mask,

in

a

single

atomic

operation.

The

bits

in

the

value

pointed

to

by

op1

that

correspond

to

the

zero

bits

in

mask

are

set

to

0.

The

bits

in

the

value

pointed

to

by

op1

that

correspond

to

the

one

bits

in

mask

are

not

modified.

Returns

the

original

value

pointed

to

by

op1.

The

updated

bit

values

for

the

storage

pointed

to

by

op1

are

determined

as

follows:

Original

op1

Bit

Mask

Bit

Resulting

op1

Bit

0

0

0

0

1

0

1

0

0

1

1

1

The

value

pointed

to

by

op1

and

the

mask

value

must

have

the

same

length.

Failure

to

have

the

operands

the

same

length

will

not

be

detected

and

the

results

of

the

instruction

are

undefined

when

this

occurs.

The

first

operand

must

be

aligned

based

on

its

length:

v

v

four

byte

length

-

4-byte

aligned

v

eight

byte

length

-

8-byte

aligned

Failure

to

have

the

first

operand

aligned

properly

will

not

be

detected,

but

the

results

of

the

instruction

are

undefined

when

this

occurs.

This

operation

is

useful

when

a

variable

containing

bit

flags

is

shared

between

two

or

more

threads.

When

updating

such

a

variable,

it

is

important

to

make

sure

that

the

entire

operation

is

performed

atomically

(not

interruptible).

See

“Atomicity”

on

page

1275

for

additional

information.

Machine

Interface

Instructions

35

The

primary

purpose

of

this

instruction

is

to

manipulate

a

variable

which

is

shared

by

two

or

more

threads,

but

this

instruction

does

not

synchronize

storage.

When

sharing

more

than

one

variable

between

multiple

threads

or

processes,

be

aware

of

storage

synchronization

issues.

See

Storage

Synchronization

Concepts

for

additional

information.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

36

iSeries:

Machine

Interface

Instructions

APIs

MCNSYNC.htm
MCNSYNC.htm

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Atomic

Or

(ATMCOR)

Bound

program

access

Built-in

number

for

ATMCOR4

is

675.

ATMCOR4

(

op1

:

address

of

a

unsigned

binary(4)

value

(has

alignment

restrictions

-

see

description

below)

mask

:

unsigned

binary(4)

value

)

:

unsigned

binary(4)

Built-in

number

for

ATMCOR8

is

676.

ATMCOR8

(

op1

:

address

of

a

unsigned

binary(8)

value

(has

alignment

restrictions

-

see

description

below)

mask

:

unsigned

binary(8)

value

)

:

unsigned

binary(8)

Description:

Sets

bits

in

the

value

pointed

to

by

op1,

according

to

a

bit

mask,

in

a

single

atomic

operation.

The

bits

in

the

value

pointed

to

by

op1

that

correspond

to

the

one

bits

in

mask

are

set

to

1.

The

bits

in

the

value

pointed

to

by

op1

that

correspond

to

the

zero

bits

in

mask

are

not

modified.

The

updated

bit

values

for

the

storage

pointed

to

by

op1

are

determined

as

follows:

Original

op1

Bit

Mask

Bit

Resulting

op1

Bit

0

0

0

0

1

1

1

0

1

1

1

1

The

value

pointed

to

by

op1

and

the

mask

value

must

have

the

same

length.

Failure

to

have

the

operands

the

same

length

will

not

be

detected

and

the

results

of

the

instruction

are

undefined

when

this

occurs.

The

first

operand

must

be

aligned

based

on

its

length:

Machine

Interface

Instructions

37

v

v

four

byte

length

-

4-byte

aligned

v

eight

byte

length

-

8-byte

aligned

Failure

to

have

the

first

operand

aligned

properly

will

not

be

detected,

but

the

results

of

the

instruction

are

undefined

when

this

occurs.

This

operation

is

useful

when

a

variable

containing

bit

flags

is

shared

between

two

or

more

threads.

When

updating

such

a

variable,

it

is

important

to

make

sure

that

the

entire

operation

is

performed

atomically

(not

interruptible).

See

“Atomicity”

on

page

1275

for

additional

information.

The

primary

purpose

of

this

instruction

is

to

manipulate

a

variable

which

is

shared

by

two

or

more

threads,

but

this

instruction

does

not

synchronize

storage.

When

sharing

more

than

one

variable

between

multiple

threads

or

processes,

be

aware

of

storage

synchronization

issues.

See

Storage

Synchronization

Concepts

for

additional

information.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

38

iSeries:

Machine

Interface

Instructions

APIs

MCNSYNC.htm
MCNSYNC.htm

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Branch

(B)

Op

Code

(Hex)

Operand

1

1011

Branch

target

Operand

1:

Instruction

number,

relative

instruction

number,

branch

point,

instruction

pointer,

or

instruction

definition

list

element.

Description:

Control

is

unconditionally

transferred

to

the

instruction

indicated

in

the

branch

target

operand.

The

instruction

number

indicated

by

the

branch

target

operand

must

be

within

the

instruction

stream

containing

the

branch

instruction.

The

branch

target

may

be

an

element

of

an

array

of

instruction

pointers

or

an

element

of

an

instruction

definition

list.

The

specific

element

can

be

identified

by

using

a

compound

subscript

operand.

Machine

Interface

Instructions

39

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

40

iSeries:

Machine

Interface

Instructions

APIs

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Call

External

(CALLX)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

0283

Program

to

be

called

or

call

template

Argument

list

Return

list

Operand

1:

System

pointer

or

space

pointer

data

object.

Operand

2:

Operand

list

or

null.

Operand

3:

Instruction

definition

list

or

null.

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Description:

The

instruction

preserves

the

calling

invocation

and

passes

control

to

either

the

program

entry

procedure

of

a

bound

program

or

the

external

entry

point

of

a

non-bound

program.

If

operand

1

specifies

a

Java(TM)

program

or

a

bound

program

which

does

not

contain

a

program

entry

procedure,

an

invalid

operation

for

program

(hex

2C15)

exception

is

signaled.

Operand

1

may

be

specified

as

a

system

pointer

which

directly

addresses

the

program

that

is

to

receive

control

or

as

a

space

pointer

to

a

call

template

which

identifies

the

program

to

receive

control.

Specifying

a

template

allows

for

additional

controls

over

how

the

specified

program

is

to

be

invoked.

The

format

of

the

call

template

is

the

following:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Call

options

Char(4)

0

0

Suppress

adopted

user

profiles

Bit

0

0

=

No

1

=

Yes

0

0

Reserved

(binary

0)

Bits

1-30

0

0

Force

thread

state

to

user

state

for

call

Bit

31

Machine

Interface

Instructions

41

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

No

1

=

Yes

4

4

Reserved

(binary

0)

Char(12)

16

10

Program

to

be

called

System

pointer

32

20

—-

End

—-

The

suppress

adopted

user

profiles

call

option

specifies

whether

or

not

the

program

adopted

and

propagated

user

profiles

which

may

be

serving

as

sources

of

authority

to

the

thread

are

to

be

suppressed

from

supplying

authority

to

the

new

invocation.

Specifying

yes

causes

the

propagation

of

adopted

user

profiles

to

be

stopped

as

of

the

calling

invocation,

thereby,

not

allowing

the

called

invocation

to

benefit

from

their

authority.

Specifying

no

allows

the

normal

propagation

of

adopted

and

propagated

user

profiles

to

occur.

The

called

program

may

adopt

its

owning

user

profile,

if

necessary,

to

supplement

the

authority

available

to

its

invocation.

The

force

thread

state

to

user

state

option

specifies

whether

or

not

the

call

changes

the

state

of

the

thread

to

user

state.

Operand

2

specifies

an

operand

list

that

identifies

the

arguments

to

be

passed

to

the

invocation

entry

to

be

called.

If

operand

2

is

null,

no

arguments

are

passed

by

the

instruction.

An

argument

list

length

violation

(hex

0802)

exception

is

signaled

if

the

number

of

arguments

passed

does

not

correspond

to

the

number

required

by

the

parameter

list

of

the

target

program.

An

unsupported

space

use

(hex

0607)

exception

is

signalled

if

this

call

would

pass

a

parameter

stored

in

teraspace

to

a

program

which

is

not

teraspace

capable.

To

be

teraspace

capable,

a

non-bound

program

must

be

created

as

teraspace

capable

or

a

bound

program

must

be

created

with

a

teraspace

capable

program

entry

procedure.

Operand

3

specifies

an

instruction

definition

list

(IDL)

that

identifies

the

instruction

number(s)

of

alternate

return

points

within

the

calling

invocation.

A

Return

External

instruction

in

an

invocation

immediately

subordinate

to

the

calling

invocation

can

indirectly

reference

a

specific

entry

in

the

IDL

to

cause

a

return

of

control

to

the

instruction

associated

with

the

referenced

IDL

entry.

If

operand

3

is

null,

then

the

calling

invocation

has

no

alternate

return

points

associated

with

the

call.

If

operand

3

is

not

null

and

operand

1

specifies

a

bound

program,

an

invalid

operation

for

program

(hex

2C15)

exception

is

signaled.

Common

Program

Call

Processing:

The

details

of

processing

differ

for

non-bound

and

bound

programs.

The

following

outlines

the

common

steps.

1.

A

check

is

made

to

determine

if

the

caller

has

authority

to

invoke

the

program

and

that

the

object

is

indeed

a

program

object.

The

specified

program

must

be

either

a

bound

program

that

contains

a

program

entry

procedure

or

a

non-bound

program.

2.

The

activation

group

in

which

the

program

is

to

be

run

is

located

or

created

if

it

doesn’t

exist.

3.

If

the

program

requires

an

activation

entry

and

it

is

not

already

active

within

the

appropriate

activation

group,

it

is

activated.

Bound

programs

always

require

an

activation;

non-bound

programs

require

an

activation

only

if

they

use

static

storage.

The

invocation

count

of

a

newly

created

activation

is

set

to

1

while

the

invocation

count

of

an

existing

activation

is

incremented

by

1.

4.

The

invocation

created

for

the

target

program

has

the

following

attributes

(as

would

be

reported

via

the

Materialize

Invocation

Attributes

(MATINVAT)

instruction.)

v

42

iSeries:

Machine

Interface

Instructions

APIs

v

the

invocation

mark

is

at

least

one

higher

than

any

previous

invocation

within

the

thread.

The

invocation

mark

value

is

generated

from

the

thread

mark

counter

and

is

unique

within

the

thread.

There

is

no

relationship

between

the

values

of

the

invocation

mark

and

the

marks

of

the

activation

or

activation

group

associated

with

the

invocation.

v

the

invocation

number

is

one

greater

than

the

invocation

number

of

the

calling

invocation.

This

is

merely

a

measure

of

the

depth

of

the

call-stack.

v

the

invocation

type

is

hex

01

to

indicate

a

CALLX

invocation.

v

the

invocation

number

is

the

same

as

the

invocation

number

of

the

transferring

invocation.

v

the

invocation

type

is

hex

02

to

indicate

a

XCTL

type

of

invocation.
5.

The

automatic

storage

frame

(ASF),

if

required,

is

allocated

on

a

16-byte

boundary.

6.

Control

is

transferred

to

the

program

entry

procedure

(or

external

entry

point)

of

the

program.

7.

Normal

flow-of-control

resumes

at

the

instruction

following

the

program

call

instruction

after

a

return

from

the

program.

8.

Normal

flow-of-control

resumes

at

the

instruction

following

the

caller

of

the

program

issuing

the

XCTL

instruction.

The

details

of

locating

the

target

activation

group

and

activating

the

program

differ

depending

upon

the

model

of

the

program.

Bound

Program:

A

bound

program

is

activated

and

run

in

an

activation

group

specified

by

program

attributes.

There

are

two

logical

steps

involved:

v

v

locate

the

existing,

or

create

a

new

activation

group

for

the

program

v

locate

an

existing,

or

create

a

new

activation

entry

for

the

program

within

the

activation

group

After

locating

the

activation

entry

for

the

program,

control

is

passed

to

the

program

entry

procedure

for

the

program.

If

required,

the

activation

group

is

destroyed

when

the

invocation

for

the

program

entry

procedure

is

destroyed.

Non-bound

Program:

The

automatic

storage

frame

begins

with

a

64

byte

header.

If

the

program

defines

no

automatic

data

items

the

frame

consists

solely

of

the

64-byte

header,

otherwise

the

automatic

storage

items

are

located

immediately

following

the

header.

In

prior

releases

of

the

machine,

this

header

contained

invocation

information

which

is

now

available

via

the

Materialize

Invocation

Attributes

(MATINVAT)

instruction.

This

header

is

not

initialized

and

the

contents

of

the

header

are

not

used

by

the

machine.

(The

space

is

allocated

merely

to

provide

for

compatibility

with

prior

implementations

of

the

machine.)

The

update

PASA

stack

program

attribute,

supported

in

prior

implementations

of

the

machine,

is

no

longer

meaningful

and

is

ignored,

if

specified

as

an

attribute

of

the

program.

Following

the

allocation

and

initialization

of

the

invocation

entry,

control

is

passed

to

the

invoked

program.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Program

referenced

by

operand

1

–

Contexts

referenced

for

address

resolution

Machine

Interface

Instructions

43

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0607

Unsupported

Space

Use

08

Argument/Parameter

0801

Parameter

Reference

Violation

0802

Argument

List

Length

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

44

iSeries:

Machine

Interface

Instructions

APIs

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2A

Program

Creation

2AB5

Observable

Information

Necessary

For

Retranslation

Not

Encapsulated

2C

Program

Execution

2C15

Invalid

Operation

for

Program

2C1D

Automatic

Storage

Overflow

2C1E

Activation

Access

Violation

2C1F

Program

Signature

Violation

2C20

Static

Storage

Overflow

2C21

Program

Import

Invalid

2C22

Data

Reference

Invalid

2C23

Imported

Object

Invalid

2C24

Activation

Group

Export

Conflict

2C25

Import

Not

Found

2C2A

Caller

Parameter

Mask

Does

Not

Match

Imported

Procedure

Parameter

Mask

2C2B

Invalid

Storage

Model

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

Machine

Interface

Instructions

45

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Call

Internal

(CALLI)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

0293

Internal

entry

point

Argument

list

Return

target

Operand

1:

Internal

entry

point.

Operand

2:

Operand

list

or

null.

Operand

3:

Instruction

pointer.

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Description:

The

internal

entry

point

specified

by

operand

1

is

located

in

the

same

invocation

from

which

the

Call

Internal

instruction

is

executed.

A

subinvocation

is

defined

and

execution

control

is

transferred

to

the

first

instruction

associated

with

the

internal

entry

point.

The

instruction

does

not

cause

a

new

invocation

to

be

established.

Therefore,

there

is

no

allocation

of

objects

and

instructions

in

the

subinvocation

have

access

to

all

invocation

objects.

Operand

2

specifies

an

operand

list

that

identifies

the

arguments

to

be

passed

to

the

subinvocation.

If

operand

2

is

null,

no

arguments

are

passed.

After

an

argument

has

been

passed

on

a

Call

Internal

instruction,

the

corresponding

parameter

may

be

referenced.

This

causes

an

indirect

reference

to

the

storage

area

located

by

the

argument.

This

mapping

exists

until

the

parameter

is

assigned

a

new

mapping

based

on

a

subsequent

Call

Internal

instruction.

A

reference

to

an

internal

parameter

before

its

being

assigned

an

argument

mapping

causes

a

parameter

reference

violation

(hex

0801)

exception

to

be

signaled.

Operand

3

specifies

an

instruction

pointer

that

identifies

the

pointer

into

which

the

machine

places

addressability

to

the

instruction

immediately

following

the

Call

Internal

instruction.

A

branch

instruction

in

the

called

subinvocation

can

directly

reference

this

instruction

pointer

to

cause

control

to

be

passed

back

to

the

instruction

immediately

following

the

Call

Internal

instruction.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

46

iSeries:

Machine

Interface

Instructions

APIs

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Machine

Interface

Instructions

47

Call

Program

with

Variable

Length

Argument

List

(CALLPGMV)

Bound

program

access

Built-in

number

for

CALLPGMV

is

668.

CALLPGMV

(

pgmOrTmpltPtr

:

address

of

system

pointer,

address

of

space

pointer(16),

or

address

of

open

pointer

argArray

:

address

of

array

of

space

pointer(16)

nargs

:

unsigned

binary(4)

)

Description:

Preserve

the

calling

invocation

and

pass

control

to

either

the

program

entry

procedure

of

a

bound

program

or

the

external

entry

point

of

a

non-bound

program

identified

by

pgmOrTmpltPtr.

The

pgmOrTmpltPtr

may

address

a

system

pointer

which

directly

addresses

the

program

that

is

to

receive

control,

or

may

address

a

space

pointer(16)

to

a

call

template

which

identifies

the

program

to

receive

control.

Specifying

a

template

allows

for

additional

controls

over

how

the

specified

program

is

to

be

invoked.

The

format

of

the

template

is

described

under

the

CALLX

instruction.

If

the

program

to

receive

control

is

a

Java(TM)

program

or

a

bound

program

that

does

not

contain

a

program

entry

procedure,

an

invalid

operation

for

program

(hex

2C15)

exception

is

signalled.

The

number

of

arguments

for

the

program

call

is

given

by

nargs.

The

arguments

are

given

by

elements

in

argArray.

The

i’th

argument

of

the

OPM

parameter

list

is

constructed

from

the

address

of

the

i’th

element

of

the

array.

Each

element

of

the

array

is

a

space

pointer(16)

value.

The

actual

number

of

arguments

passed,

nargs,

must

be

less

than

or

equal

to

16383

or

else

an

argument

list

length

modification

violation

(hex

0803)

exception

is

signalled.

An

unsupported

space

use

(hex

0607)

exception

is

signalled

if

this

call

would

pass

a

parameter

stored

in

teraspace

to

a

program

which

is

not

teraspace

capable.

To

be

teraspace

capable,

a

non-bound

program

must

be

created

as

teraspace

capable

or

a

bound

program

must

be

created

with

a

teraspace

capable

program

entry

procedure.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Program

referenced

by

pgmOrTmpltPtr

–

Context

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

48

iSeries:

Machine

Interface

Instructions

APIs

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0607

Unsupported

Space

Use

08

Argument/Parameter

0802

Argument

List

Length

Violation

0803

Argument

List

Length

Modification

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2A

Program

Creation

2AB5

Observable

Information

Necessary

For

Retranslation

Not

Encapsulated

Machine

Interface

Instructions

49

2C

Program

Execution

2C15

Invalid

Operation

for

Program

2C1D

Automatic

Storage

Overflow

2C1E

Activation

Access

Violation

2C1F

Program

Signature

Violation

2C20

Static

Storage

Overflow

2C21

Program

Import

Invalid

2C22

Data

Reference

Invalid

2C23

Imported

Object

Invalid

2C24

Activation

Group

Export

Conflict

2C25

Import

Not

Found

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Check

Lock

Value

(CHKLKVAL)

Bound

program

access

Built-in

number

for

CHKLKVAL

is

677.

CHKLKVAL

(

addr

:

address

of

a

signed

binary(8)

value

(has

alignment

restrictions

-

see

description

below)

old_val

:

signed

binary(8)

value

new_val

:

signed

binary(8)

value

)

:

signed

binary(4)

Description:

Performs

the

following

atomic

(uninterruptible)

sequence

of

operations:

The

value

pointed

to

by

addr

is

compared

to

the

old_val

value.

If

the

two

values

are

equal,

the

new_val

value

is

stored

into

the

addr

location

and

the

numeric

value

0

is

returned.

If

the

two

values

are

not

equal,

the

numeric

value

1

is

returned.

The

first

operand

must

be

8-byte

aligned.

Failure

to

have

the

first

operand

aligned

properly

will

not

be

detected,

but

the

results

of

the

instruction

are

undefined

when

this

occurs.

50

iSeries:

Machine

Interface

Instructions

APIs

The

comparison

and

conditional

update

of

the

first

operand

are

performed

atomically

(not

interruptible).

This

is

important

when

multiple

threads

share

the

storage

pointed

to

by

addr.

See

“Atomicity”

on

page

1275

for

additional

information.

This

operation

is

storage

synchronizing.

Any

shared

storage

reads

performed

after

a

successful

update

of

the

lock

value

will

be

no

less

current

than

the

most

recent

synchronizing

action

by

the

writer

of

the

shared

storage.

The

behavior

of

this

instruction

is

similar

to

the

CMPSW

instruction.

CHKLKVAL

is

designed

specifically

for

implementation

of

low-level

locking

protocols,

and

may

perform

better

than

using

CMPSW

for

that

purpose.

For

correct

storage

synchronization,

the

CHKLKVAL

instruction

is

commonly

used

in

conjunction

with

the

CLRLKVAL

instruction.

See

Storage

Synchronization

Concepts

for

additional

information

on

storage

synchronization.

Warning:

Temporary

Level

3

Header

Usage

Notes

The

CHKLKVAL

and

CLRLKVAL

instructions

are

designed

primarily

to

be

used

in

combination

when

implementing

low-level

locking

protocols

to

protect

space

data

shared

by

two

or

more

threads.

A

typical

usage

pattern

for

these

instructions

is:

//

Acquire

the

lock

loop

until

CHKLKVAL(LOCK,

0,

1)

returns

the

value

zero

[

Shared

data

reads/writes

go

here

]

//

Release

the

"lock"

CLRLKVAL(LOCK,

0)

Where:

LOCK

is

the

address

of

an

8-byte

variable

shared

by

threads

that

want

to

enforce

mutually

exclusive

access

to

a

shared

data

structure.

Note

that

the

example

above

is

only

a

framework

that

illustrates

a

simple

locking

protocol.

When

all

threads

which

share

a

data

structure

use

this

pattern,

access

to

the

data

structure

will

be

synchronized

and

free

of

race

conditions.

The

values

0

and

1

used

above

do

not

have

any

particular

meaning

to

the

instruction.

They

are

simply

unique

values

that

are

used

in

this

example

to

represent

an

unlocked

and

locked

state,

respectively.

Note

also

that

the

pattern

above

contains

no

provision

for

deadlock

detection/prevention,

as

would

be

available

with

higher

level

MI

locking

mechanisms,

such

as

the

LOCKMTX

and

LOCKSL

instructions.

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Machine

Interface

Instructions

51

MCNSYNC.htm

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

36

Space

Management

3601

Space

Extension/Truncation

52

iSeries:

Machine

Interface

Instructions

APIs

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Cipher

(CIPHER)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

10EF

Receiver

Controls

Source

Operand

1:

Space

pointer

data

object.

Operand

2:

Character(32,

42,

96)

variable

scalar.

Operand

3:

Space

pointer

data

object.

Bound

program

access

Built-in

number

for

CIPHER

is

176.

CIPHER

(

receiver

:

address

of

space

pointer(16)

controls

:

address

source

:

address

of

space

pointer(16)

)

Description:

The

cipher

operation

specified

in

the

controls

(operand

2)

is

performed

on

the

string

value

addressed

by

the

source

(operand

3).

The

result

is

placed

into

the

string

addressed

by

the

receiver

(operand

1).

The

controls

operand

must

be

a

character

variable

scalar.

It

specifies

information

to

be

used

to

control

the

cipher

operation.

The

common

header

of

the

controls

operand

has

the

following

format.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Function

identifier

Char(2)

The

function

identifier

must

be

hex

0002,

hex

0005,

hex

0007,

hex

0008,

hex

0010,

hex

0011,

hex

0013,

or

hex

0015.

If

not,

a

template

value

invalid

(hex

3801)

exception

is

signaled.

2

2

—-

End

—-

The

function

identifier

specifies

the

cryptographic

service

provider

(CSP)

for

the

cipher

operation.

It

must

specify

hex

0002,

hex

0005,

hex

0007,

hex

0008,

hex

0010,

hex

0011,

hex

0013,

or

hex

0015.

Any

other

value

causes

a

template

value

invalid

(hex

3801)

exception

to

be

signaled.

Hex

0002

The

Machine

CSP

licensed

internal

code

is

to

be

used

for

a

one-way

encryption

operation

using

the

ANSI

(American

National

Standards

Institute)

DEA

(Data

Encryption

Algorithm).

Hex

0005

The

Machine

CSP

licensed

internal

code

is

to

be

used

to

perform

a

one-way

hash

operation.

The

returned

output

may

be

a

hash

value

or

an

HMAC

(Hash

Message

Authentication

Code)

value.

The

supported

hash

algorithms

are

MD5

(Message

Digest)

and

SHA-1

(Secure

Hash

Algorithm).

Hex

0007

The

Machine

CSP

licensed

internal

code

is

to

be

used

to

perform

a

UNIX(R)

crypt(3)

operation.

Machine

Interface

Instructions

53

Hex

0008

The

Machine

CSP

licensed

internal

code

is

to

be

used

to

perform

a

pseudorandom

number

generator

operation.

Hex

0010

The

Machine

CSP

licensed

internal

code

is

to

be

used

for

an

encryption

or

decryption

operation

using

the

ANSI

(American

National

Standards

Institute)

DEA

(Data

Encryption

Algorithm).

In

order

to

use

this

function

identifier,

the

cryptography

attributes

must

contain

an

algorithm

entry

that

specifies

DES

(Data

Encryption

Standard)

is

provided

by

the

machine

service

provider.

If

no

such

entry

exists,

then

requested

function

not

valid

(hex

1C08)

exception

will

be

signaled.

The

cryptography

attributes

may

be

materialized

through

the

use

of

the

Materialize

Machine

Attributes

(MATMATR)

instruction

and

using

a

selection

value

of

hex

01C8.

Hex

0011

The

Machine

CSP

licensed

internal

code

is

to

be

used

for

an

encryption

or

decryption

operation

using

the

ANSI

(American

National

Standards

Institute)

TDEA

(Triple

Data

Encryption

Algorithm).

In

order

to

use

this

function

identifier,

the

cryptography

attributes

must

contain

an

algorithm

entry

that

specifies

TDES

is

provided

by

the

machine

service

provider.

If

no

such

entry

exists,

then

requested

function

not

valid

(hex

1C08)

exception

will

be

signaled.

The

cryptography

attributes

may

be

materialized

through

the

use

of

the

Materialize

Machine

Attributes

(MATMATR)

instruction

and

using

a

selection

value

of

hex

01C8.

Hex

0013

The

Machine

CSP

licensed

internal

code

is

to

be

used

for

an

encryption

or

decryption

operation

using

an

algorithm

compatible

with

RC4(R).

In

order

to

use

this

function

identifier,

the

cryptography

attributes

must

contain

an

algorithm

entry

that

specifies

the

RC4-compatible

algorithm

is

provided

by

the

machine

service

provider.

If

no

such

entry

exists,

then

requested

function

not

valid

(hex

1C08)

exception

will

be

signaled.

The

cryptography

attributes

may

be

materialized

through

the

use

of

the

Materialize

Machine

Attributes

(MATMATR)

instruction

and

using

a

selection

value

of

hex

01C8.

Hex

0015

The

Machine

CSP

licensed

internal

code

is

to

be

used

for

an

encryption

or

decryption

operation

using

the

Advanced

Encryption

Standard

(AES).

In

order

to

use

this

function

identifier,

the

cryptography

attributes

must

contain

an

algorithm

entry

that

specifies

AES

is

provided

by

the

machine

service

provider.

If

no

such

entry

exists,

then

requested

function

not

valid

(hex

1C08)

exception

will

be

signaled.

The

cryptography

attributes

may

be

materialized

through

the

use

of

the

Materialize

Machine

Attributes

(MATMATR)

instruction

and

using

a

selection

value

of

hex

01C8.

The

format

of

the

controls

operand

is

dependent

on

the

value

of

the

function

identifier.

Warning:

Temporary

Level

3

Header

Function

Identifier

0002

The

following

description

applies

only

to

function

identifier

0002.

The

controls

operand

must

have

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Controls

operand

Char(32)

0

0

Function

identifier

Char(2)

2

2

Data

length

Char(2)

4

4

Options

Char(1)

4

4

Reserved

(binary

0)

Bit

0

4

4

Use

cipher

block

chaining

Bit

1

54

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

No

1

=

Yes

4

4

Data

padding

Bit

2

0

=

No

1

=

Yes

4

4

Reserved

(binary

0)

Bits

3-7

5

5

Cryptographic

key

Char(8)

13

D

Reserved

(ignored)

Char(1)

14

E

Initial

chaining

value

Char(8)

22

16

Pad

character

Char(1)

23

17

Reserved

(binary

0)

Char(9)

32

20

—-

End

—-

The

first

character

of

the

source

and

receiver

strings

is

addressed

by

their

respective

operand

pointers.

The

data

length

field

of

the

controls

operand

specifies

the

length

of

the

input

source

data.

The

length

of

data

returned

in

the

receiver

is

determined

from

the

length

of

the

source.

When

the

data

padding

field

specifies

no,

the

length

of

data

returned

in

the

receiver

is

equal

to

the

length

of

the

source.

When

the

data

padding

field

specifies

yes,

the

length

of

data

returned

in

the

receiver

is

not

equal

to

the

length

of

the

source

and

is

returned

in

the

data

length

field

of

the

controls

operand.

Refer

to

the

discussion

of

the

data

padding

field

for

details

on

the

amount

of

data

returned

in

this

case.

The

data

length

field

specifies

the

length

of

the

data

addressed

by

the

source

operand.

The

data

length

value

must

be

nonzero

and

less

than

or

equal

to

64

bytes.

In

addition,

when

the

data

padding

and

use

cipher

block

chaining

fields

specify

no,

the

data

length

must

be

a

multiple

of

8

bytes.

An

incorrect

data

length

value

results

in

the

signaling

of

the

template

value

invalid

(hex

3801)

exception.

When

the

data

padding

field

specifies

yes,

the

length

of

the

data

placed

into

the

receiver

is

returned

in

this

field.

The

use

cipher

block

chaining

field

specifies

whether

or

not

cipher

block

chaining

is

to

be

used

during

the

cipher

operation.

When

the

use

cipher

block

chaining

field

specifies

yes,

the

first

block

of

data

from

the

source

operand

is

exclusive

ORed

with

the

initial

chaining

value

and

then

encrypted.

For

subsequent

blocks

of

data,

the

prior

block

of

encrypted

data

from

the

receiver

operand

is

exclusive

ORed

with

the

current

data

block

from

the

source

operand

and

the

result

is

encrypted.

The

data

padding

field

specifies

whether

data

padding

is

to

be

used

during

the

cipher

operation.

When

the

data

padding

field

specifies

no,

padding

is

not

performed.

When

the

data

padding

field

specifies

yes,

padding

is

performed.

In

this

case,

the

length

of

data

returned

in

the

receiver

is

different

from

the

source

length

and

is

returned

in

the

data

length

field

for

both

encrypt

and

decrypt

operations.

When

the

data

padding

field

specifies

yes,

the

data

from

the

source

operand

is

padded

out

to

the

next

multiple

of

8

bytes;

for

example,

a

source

length

of

20

is

padded

to

24,

32

is

padded

to

40,

and

so

forth.

The

final

block

of

source

data

is

padded

with

zero

to

seven

repetitions

of

the

pad

character

until

the

block

length

is

7

bytes

in

length.

The

eighth

byte

is

then

filled

with

a

1-byte

binary

counter

containing

the

number

of

pad

characters

used

(a

value

from

one

to

eight

which

includes

the

1-byte

counter)

and

the

block

is

encrypted.

The

cryptographic

key

field

specifies

the

key

to

be

used

for

the

cipher

operation.

The

cryptographic

key

is

provided

in

an

unencrypted

form.

Machine

Interface

Instructions

55

The

initial

chaining

value

field

specifies

the

8-byte

value

to

be

used

in

conjunction

with

cipher

block

chaining

when

the

use

cipher

block

chaining

field

specifies

yes.

When

the

use

cipher

block

chaining

field

specifies

no,

this

field

is

ignored.

Refer

to

the

description

of

the

use

cipher

block

chaining

field

for

details

on

how

this

value

is

used

in

the

cipher

operation.

The

pad

character

field

specifies

the

value

to

be

used

as

a

pad

character

when

the

data

padding

field

specifies

yes.

When

the

data

padding

field

specifies

no,

this

field

is

ignored.

Specific

Properties

of

ANSI

DEA:

The

encrypt

operation

is

performed

iteratively

upon

8-byte

blocks

of

the

source

operand.

Each

block

is

encrypted

using

DEA

and

the

information

specified

in

the

controls

and

the

resulting

value

is

placed

into

the

receiver

at

the

same

relative

location

as

that

from

which

the

source

data

was

accessed

from

the

source

operand.

The

process

is

repeated

until

the

data

in

the

source

is

exhausted.

The

key

is

presented

to

the

DEA

as

a

64-bit

value.

The

DEA

uses

the

first

7

bits

of

each

byte,

for

a

total

of

56

bits,

as

the

key.

The

remaining

8

bits

enforce

odd

parity

of

each

byte

when

required.

The

DEA

uses

the

key

and

the

input

data

to

calculate

the

output.

Given

fixed

input

data,

the

output

is

unique

for

each

unique

set

of

56

bits.

Refer

to

Cryptographic

Support/400

User’s

Guide

(SC41-3342)

for

more

information

on

the

DEA.

Function

Identifier

0005

The

following

description

applies

only

to

function

identifier

0005.

The

controls

operand

must

be

16-byte

aligned

and

have

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Controls

operand

Char(96)

0

0

Function

identifier

Char(2)

2

2

Hash

algorithm

Char(1)

Hex

00

=

MD5

Hex

01

=

SHA-1

3

3

Sequence

Char(1)

Hex

00

=

Only

Hex

01

=

First

Hex

02

=

Middle

Hex

03

=

Final

4

4

Data

length

UBin(4)

8

8

Output

Char(1)

Hex

00

=

Hash

Hex

01

=

HMAC

9

9

Reserved

(ignored)

Char(7)

16

10

Hash

context

Space

pointer

32

20

HMAC

key

Space

pointer

48

30

HMAC

key

length

UBin(4)

56

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

96

60

—-

End

—-

The

hash

algorithm

field

specifies

the

one-way

hash

function

to

perform.

A

hash

function

takes

a

variable-length

input

string

and

converts

it

to

a

fixed-length

output

string.

A

one-way

hash

function

means

the

function

is

for

all

practical

purposes

irreversible

in

that

it

is

computationally

infeasible

to

re-create

the

input

message

from

the

hash

value

or

to

find

another

message

that

will

hash

to

the

same

value.

MD5

produces

a

128-bit

hash

value.

MD5

is

documented

in

RFC

1321.

SHA-1

produces

a

160-bit

hash

value.

SHA-1

is

documented

in

FIPS

180-1.

A

hash

of

data

may

be

performed

in

one

execution

of

the

CIPHER

instruction

or

in

several

which

allows

the

hash

of

data

that

does

not

lie

in

contiguous

storage.

This

is

specified

using

the

sequence

field.

When

performing

the

hash

in

one

execution

of

CIPHER,

the

sequence

field

should

specify

only.

Otherwise,

the

first

use

of

the

CIPHER

instruction

should

specify

first,

the

last

use

of

CIPHER

should

specify

final,

and

any

executions

of

CIPHER

in

between

should

specify

middle.

The

hash

will

be

returned

in

the

receiver

operand

when

the

sequence

field

specifies

only

or

final.

The

data

length

field

specifies

the

length

of

the

input

source

data.

The

output

field

specifies

the

value

to

return

in

the

receiver

operand.

When

hash

is

specified,

the

hash

of

the

source

string

is

returned

in

the

receiver.

When

HMAC

is

specified,

the

HMAC

of

the

source

string

is

returned

in

the

receiver.

HMAC

is

a

mechanism

for

message

authentication

using

a

one-way

hash

function

and

a

secret

shared

key.

It

is

documented

in

RFC

2104.

For

both

hash

and

HMAC,

if

MD5

is

specified

for

the

hash

algorithm,

16

bytes

are

returned

in

the

receiver.

If

SHA-1

is

specified,

20

bytes

are

returned

in

the

receiver.

The

hash

context

space

pointer

points

to

a

work

area

belonging

to

the

user.

If

the

output

field

specifies

hash

this

work

area

must

be

at

least

96

bytes

long.

If

HMAC

is

specified,

it

must

be

at

least

160

bytes

long.

Prior

to

executing

CIPHER

with

only

or

first

specified

in

the

sequence

field,

the

work

area

should

be

set

to

binary

0s.

When

executing

CIPHER

with

middle

or

final

specified

in

the

sequence

field,

the

hash

context

field

should

point

to

the

work

area

that

was

used

on

the

previous

execution

of

CIPHER.

The

user

should

not

modify

data

returned

in

the

work

area,

or

unpredictable

results

may

occur.

The

HMAC

key

space

pointer

points

to

an

area

containing

the

secret

key

to

be

used

in

an

HMAC

operation.

This

field

is

ignored

when

the

output

field

specifies

hash

or

if

the

sequence

field

specifies

middle

or

final.

The

HMAC

key

length

field

specifies

the

length

of

the

HMAC

key.

It

is

ignored

when

the

output

field

specifies

hash

or

if

the

sequence

field

specifies

middle

or

final.

The

minimum

size

is

16

bytes

when

using

the

MD5

hash

algorithm,

and

20

bytes

when

using

the

SHA-1

hash

algorithm.

An

incorrect

HMAC

key

length

value

results

in

the

signaling

of

the

template

value

invalid

(hex

3801)

exception.

Keys

longer

than

these

sizes

do

not

significantly

increase

the

function

strength

unless

the

randomness

of

the

key

is

considered

weak.

In

accordance

with

the

RFC,

a

key

longer

than

64

bytes

will

be

hashed

before

it

is

used.

Function

Identifier

0007

The

following

description

applies

only

to

function

identifier

0007.

Machine

Interface

Instructions

57

The

controls

operand

must

be

16-byte

aligned

and

have

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Controls

operand

Char(32)

0

0

Function

identifier

Char(2)

2

2

Reserved

(binary

0)

Char(2)

4

4

Salt

Char(2)

6

6

Reserved

(binary

0)

Char(26)

32

20

—-

End

—-

The

crypt(3)

function

is

a

string

encryption

function

used

on

UNIX(R)

systems

for

password

authentication.

Crypt(3)

is

a

one-way

(no

decryption)

variant

of

DES

(Data

Encryption

Standard).

Crypt(3)

encrypts

8

bytes

of

hex

00

25

times

using

the

8-byte

password

pointed

to

by

the

source

operand

as

the

key

for

the

DES

algorithm.

The

password

may

be

any

value.

If

the

password

is

under

8

bytes,

the

source

operand

should

be

padded

on

the

right

to

8

bytes

with

hex

00.

The

salt

value

is

used

to

modify

the

DES

E

bit-selection

table

in

one

of

4096

possible

ways.

Each

salt

byte

must

be

an

ASCII

character,

″a″-″z″,

″A″-″Z″,

″0″-″9″,

″.″

or

″/″.

An

invalid

salt

value

will

produce

a

template

value

invalid

(hex

3801)

exception.

For

a

description

of

the

DES

(Data

Encryption

Standard)

algorithm,

including

the

E

bit-selection

table,

see

the

Federal

Information

Processing

Standard

(FIPS)

46-2.

The

result

of

the

encryption

operation

is

converted

into

11

bytes

of

ASCII

characters.

At

the

completion

of

the

crypt(3)

operation,

the

receiver

operand

will

contain

the

salt

value

followed

by

the

resultant

ASCII

characters,

for

a

total

of

13

bytes.

Function

Identifier

0008

The

following

description

applies

only

to

function

identifier

0008.

The

controls

operand

must

be

16-byte

aligned

and

have

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Controls

operand

Char(32)

0

0

Function

identifier

Char(2)

2

2

Seed

request

Char(1)

Hex

00

=

No

seed

Hex

01

=

Add

seed

3

3

Reserved

(binary

0)

Char(3)

6

6

Seed

length

UBin(2)

8

8

PRN

(pseudorandom

number)

request

Char(1)

Hex

00

=

Generate

real

pseudorandom

numbers

Hex

01

=

Generate

test

pseudorandom

numbers

9

9

PRN

parity

Char(1)

58

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

Hex

00

=

No

parity

Hex

01

=

Odd

parity

Hex

02

=

Even

parity

10

A

Reserved

(binary

0)

Char(4)

14

E

Number

of

PRNs

UBin(2)

16

10

Reserved

(binary

0)

Char(16)

32

20

—-

End

—-

The

Pseudorandom

Number

Generator

is

composed

of

two

parts

-

pseudorandom

number

generation

and

seed

management.

Pseudorandom

number

generation

is

performed

using

the

FIPS

186-1

algorithm.

Cryptographically

secure

pseudorandom

numbers

rely

on

good

seed.

The

FIPS

186-1

key

and

seed

values

are

obtained

from

the

system

seed

digest.

The

system

automatically

generates

the

system

seed

digest

using

data

collected

from

system

information,

or

by

using

the

random

number

generator

on

a

cryptographic

coprocessor

if

one

is

available.

System-generated

seed

can

never

be

truly

random

and

if

a

cryptographic

coprocessor

is

not

available,

a

user

may

use

this

interface

to

add

their

own

random

seed

to

the

system

seed

digest.

This

should

be

done

as

soon

as

possible

anytime

the

system

seed

digest

is

created.

The

system

seed

digest

is

created

during

the

first

IPL

after

an

install

of

the

Licensed

Internal

Code,

or

if

ever

destroyed.

The

seed

request

field

indicates

if

user

seed

is

being

added

to

the

system

seed

digest.

A

no

seed

value

indicates

no

seed

data

is

being

added

on

this

request.

An

add

seed

value

indicates

seed

data

is

being

added.

The

seed

data

is

obtained

from

the

source

operand.

Any

other

values

will

produce

a

template

value

invalid

(hex

3801)

exception.

All

object

authority

special

authority

is

required

for

an

add

seed

request.

If

add

seed

is

specified

and

the

issuer

does

not

have

all

object

special

authority,

a

special

authorization

required

(hex

0A04)

exception

is

signalled.

The

seed

length

field

indicates

the

number

of

seed

data

bytes

in

the

source

operand.

This

field

is

ignored

for

the

no

seed

option.

If

the

add

seed

option

is

specified

and

the

seed

length

is

zero,

no

seed

is

added.

It

is

important

that

the

seed

data

be

unpredictable

and

have

as

much

entropy

as

possible.

Entropy

is

the

minimum

number

of

bits

needed

to

represent

the

information

contained

in

some

data.

For

the

purpose

of

this

instruction,

entropy

is

a

measure

of

the

amount

of

uncertainty

or

unpredictability

of

the

seed.

The

system

seed

digest

holds

a

maximum

of

320

bits

of

entropy.

To

totally

refresh

the

system

seed

digest,

you

should

add

at

least

that

much

entropy.

Possible

sources

of

seed

data

are

coin

flipping,

keystroke

or

mouse

timings,

or

a

noise

source

such

as

on

the

4758

cryptographic

coprocessor.

The

PRN

(pseudorandom

numbers)

request

field

is

used

to

request

output

of

PRNs.

A

generate

real

pseudorandom

numbers

value

indicates

real

pseudorandom

numbers

should

be

output.

A

generate

test

pseudorandom

numbers

value

indicates

test

pseudorandom

numbers

should

be

output.

Test

pseudorandom

numbers

are

produced

using

fixed

FIPS

186-1

key

and

seed

values.

The

test

pseudorandom

numbers

will

be

statistically

random.

However,

the

next

request

for

test

pseudorandom

numbers

will

return

an

identical

stream

of

pseudorandom

numbers.

Any

other

values

specified

for

the

PRN

request

field

will

signal

a

template

value

invalid

(hex

3801)

exception.

This

field

is

ignored

if

the

number

of

PRNs

field

is

0.

The

PRN

request

is

performed

after

the

seed

request

has

completed.

PRN

requests

for

generate

real

pseudorandom

numbers

will

result

in

a

requested

function

not

valid

(hex

1C08)

exception

if

the

system

seed

digest

is

not

fully

initialized.

Machine

Interface

Instructions

59

The

number

of

PRNs

field

indicates

the

number

of

pseudorandom

number

bytes

to

return.

If

0

is

specified,

no

pseudorandom

numbers

are

produced.

Pseudorandom

numbers

are

returned

in

the

receiver

operand.

The

PRN

parity

field

indicates

how

the

parity

of

the

pseudorandom

numbers

should

be

set.

If

a

no

parity

value

is

specified,

the

pseudorandom

number

output

is

not

altered.

If

an

odd

parity

value

is

specified,

each

byte

will

be

set

to

odd

parity

by

altering

the

low

order

bit

as

needed.

If

an

even

parity

value

is

specified,

each

byte

will

be

set

to

even

parity

by

altering

the

low

order

bit

as

needed.

Any

other

values

will

produce

a

template

value

invalid

(hex

3801)

exception.

Reserved

fields

must

be

set

to

binary

0

or

a

template

value

invalid

(hex

3801)

exception

will

be

signalled.

Function

Identifier

0010

The

following

description

applies

only

to

function

identifier

0010.

The

controls

operand

must

have

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Controls

operand

Char(42)

0

0

Function

identifier

Char(2)

2

2

Data

length

UBin(2)

4

4

Operation

Char(1)

Hex

00

=

Encrypt

Hex

01

=

Decrypt

Hex

02

=

MAC

(Message

Authentication

Code)

5

5

Mode

Char(1)

Hex

00

=

ECB

(Electronic

Codebook)

Hex

01

=

CBC

(Cipher

Block

Chaining)

Hex

02

=

OFB

(Output

Feedback)

Hex

03

=

CFB

(Cipher

Feedback)

1-bit

Hex

04

=

CFB

(Cipher

Feedback)

8-bit

Hex

05

=

CFB

(Cipher

Feedback)

64-bit

6

6

Initialization

vector

Char(8)

14

E

Pad

option

Char(1)

Hex

00

=

No

pad

Hex

01

=

Pad

using

pad

character

Hex

02

=

Pad

using

pad

number

15

F

Pad

character

Char(1)

16

10

MAC

(Message

Authentication

Code)

length

Char(1)

17

11

Reserved

(binary

0)

Char(1)

60

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

18

12

Key

Char(8)

26

1A

Reserved

(binary

0)

Char(16)

42

2A

—-

End

—-

Encryption,

decryption,

or

creation

of

a

message

authentication

code

(MAC)

is

performed

as

specified

in

the

operation

field

using

the

DES

algorithm

as

defined

in

FIPS

PUB

46-3

Data

Encryption

Standard

and

in

ANSI

X3.92

Data

Encryption

Algorithm

(DEA).

DES

must

be

enabled

in

the

cryptographic

attributes

for

an

encrypt

or

decrypt

operation

or

else

a

requested

function

not

valid

(hex

1C08)

exception

is

signaled.

To

query

the

cryptographic

attributes,

use

the

MATMATR

instruction

with

a

selection

value

of

hex

01C8.

A

MAC

operation

is

always

allowed

regardless

of

the

cryptographic

attributes.

The

data

length

field

specifies

the

length

of

the

input

data

pointed

to

by

the

source

operand.

Upon

completion

of

the

operation,

the

data

length

field

will

be

set

with

the

length

of

data

returned

in

the

receiver

operand.

When

CFB

1-bit

is

specified

for

the

mode

field,

the

data

length

field

is

specified

in

bits,

otherwise

it

is

specified

in

bytes.

When

the

mode

is

ECB,

OFB,

or

CFB

64-bit

and

the

pad

option

is

no

pad,

the

value

of

the

data

length

field

must

be

a

multiple

of

8,

otherwise

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

The

mode

field

specifies

the

mode

of

operation

as

defined

in

FIPS

PUB

81

(also

ANSI

X3.106).

Valid

values

are

ECB

for

Electronic

Codebook;

CBC

for

Cipher

Block

Chaining;

OFB

for

Output

Feedback;

and

CFB

1-bit,

CFB

8-bit,

and

CFB

64-bit

for

Cipher

Feedback.

Refer

to

the

standard

for

an

explanation

of

these

modes.

ECB

and

OFB

are

not

valid

when

the

operation

field

specifies

MAC.

For

all

mode

values

except

ECB,

the

initialization

vector

(IV)

will

be

used

as

part

of

the

operation.

Refer

to

FIPS

PUB

81

for

an

explanation

of

its

use.

The

IV

need

not

be

secret,

but

it

should

be

unique.

If

not

unique,

it

may

compromise

security.

The

IV

can

be

any

binary

value.

Upon

completion

of

the

operation,

an

output

chaining

value

will

be

returned

in

the

initialization

vector

field.

This

value

can

be

used

as

the

IV

for

the

next

DES

operation

when

encrypting,

decrypting,

or

MACing

a

message

in

multiple

blocks.

Specifying

a

pad

option

will

pad

the

data

in

the

source

operand

out

to

the

next

8

byte

multiple

when

encrypting

or

MACing.

When

decrypting,

specifying

a

pad

option

will

strip

the

pad

bytes

off

the

end

of

the

output

data

before

returning

it

in

the

receiver

operand.

For

example,

a

source

length

of

20

is

padded

to

24,

32

is

padded

to

40,

and

so

forth,

when

encrypting.

The

last

byte

of

pad

data

is

filled

with

a

1-byte

binary

counter

containing

the

number

of

pad

characters

used

(a

value

from

1

to

8

which

includes

the

1-byte

counter).

If

pad

option

specifies

pad

using

pad

character,

the

pad

character

field

is

used

for

the

preceeding

pad

characters.

If

the

pad

option

specifies

pad

using

pad

number,

the

value

of

the

last

byte

(the

pad

counter)

is

used

for

the

preceeding

pad

characters.

When

decrypting,

it

is

not

necessary

to

know

which

pad

method

was

used

when

the

data

was

encrypted.

If

the

data

was

padded,

you

can

specify

either

pad

using

pad

character

or

pad

using

pad

number.

The

pad

option

is

ignored

when

CFB

1-bit

or

CFB

8-bit

is

specified

for

mode.

When

the

operation

field

specifies

MAC,

the

MAC

length

field

specifies

the

length

of

the

MAC

to

return

in

the

receiver

operand.

Otherwise,

the

field

is

ignored.

When

MACing,

the

source

operand

data

is

encrypted

in

the

normal

manner.

From

the

last

8

bytes

of

the

encrypted

data,

the

leftmost

MAC

length

bytes

are

returned.

Valid

values

for

MAC

length

are

1

to

8.

The

key

for

the

DES

operation

is

specified

in

the

key

field.

The

key

can

be

any

binary

value.

Note,

only

the

leftmost

7

bits

from

each

byte

are

used

for

the

key.

The

rightmost

bit

of

each

byte

is

used

to

enforce

parity

when

required.

To

obtain

good

random

key

and

IV

values,

use

CIPHER

function

identifier

hex

0008.

Reserved

fields

must

be

set

to

binary

0

or

a

template

value

invalid

(hex

3801)

exception

will

be

signalled.

Machine

Interface

Instructions

61

Function

Identifier

0011

The

following

description

applies

only

to

function

identifier

0011.

The

controls

operand

must

have

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Controls

operand

Char(42)

0

0

Function

identifier

Char(2)

2

2

Data

length

UBin(2)

4

4

Operation

Char(1)

Hex

00

=

Encrypt

Hex

01

=

Decrypt

Hex

02

=

MAC

(Message

Authentication

Code)

5

5

Mode

Char(1)

Hex

00

=

ECB

(Electronic

Codebook)

Hex

01

=

CBC

(Cipher

Block

Chaining)

Hex

02

=

OFB

(Output

Feedback)

Hex

03

=

CFB

(Cipher

Feedback)

1-bit

Hex

04

=

CFB

(Cipher

Feedback)

8-bit

Hex

05

=

CFB

(Cipher

Feedback)

64-bit

6

6

Initialization

vector

Char(8)

14

E

Pad

option

Char(1)

Hex

00

=

No

pad

Hex

01

=

Pad

using

pad

character

Hex

02

=

Pad

using

pad

number

15

F

Pad

character

Char(1)

16

10

MAC

(Message

Authentication

Code)

length

Char(1)

17

11

Key

option

Char(1)

Hex

01

=

One

key

Hex

02

=

Two

keys

Hex

03

=

Three

keys

18

12

Key

1

Char(8)

26

1A

Key

2

Char(8)

34

22

Key

3

Char(8)

42

2A

—-

End

—-

62

iSeries:

Machine

Interface

Instructions

APIs

Encryption,

decryption,

or

the

creation

of

a

message

authentication

code

(MAC)

is

performed

as

specified

in

the

operation

field

using

the

Triple

DES

(TDES)

algorithm

as

defined

in

FIPS

PUB

46-3

Data

Encryption

Standard

and

in

ANSI

X9.52

Triple

Data

Encryption

Algorithm

Modes

of

Operation

(TDEA).

Triple

DES

must

be

enabled

in

the

cryptographic

attributes

for

an

encrypt

or

decrypt

operation

or

else

a

requested

function

not

valid

(hex

1C08)

exception

is

signaled.

To

query

the

cryptographic

attributes,

use

the

MATMATR

instruction

with

a

selection

value

of

hex

01C8.

A

MAC

operation

is

always

allowed

regardless

of

the

cryptographic

attributes.

The

data

length

field

specifies

the

length

of

the

input

data

pointed

to

by

the

source

operand.

Upon

completion

of

the

operation,

the

data

length

field

will

be

set

with

the

length

of

data

returned

in

the

receiver

operand.

When

CFB

1-bit

is

specified

for

the

mode

field,

the

data

length

field

is

specified

in

bits,

otherwise

it

is

specified

in

bytes.

When

the

mode

is

ECB,

OFB,

or

CFB

64-bit

and

the

pad

option

is

no

pad,

the

value

of

the

data

length

field

must

be

a

multiple

of

8,

otherwise

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

The

mode

field

specifies

the

mode

of

operation

as

defined

in

ANSI

X9.52.

Valid

values

are

ECB

for

Electronic

Codebook;

CBC

for

Cipher

Block

Chaining;

OFB

for

Output

Feedback;

and

CFB

1-bit,

CFB

8-bit,

and

CFB

64-bit

for

Cipher

Feedback.

Refer

to

the

standard

for

an

explanation

of

these

modes.

CBC

must

be

specified

when

the

operation

field

specifies

MAC.

For

all

mode

values

except

ECB,

the

initialization

vector

(IV)

will

be

used

as

part

of

the

operation.

Refer

to

ANSI

X9.52

for

an

explanation

of

its

use.

The

IV

need

not

be

secret,

but

it

should

be

unique.

If

not

unique,

it

may

compromise

security.

The

IV

can

be

any

binary

value.

Upon

completion

of

the

operation,

an

output

chaining

value

will

be

returned

in

the

initialization

vector

field.

This

value

can

be

used

as

the

IV

for

the

next

TDES

operation

when

encrypting,

decrypting,

or

MACing

a

message

in

multiple

blocks.

Specifying

a

pad

option

will

pad

the

data

in

the

source

operand

out

to

the

next

8

byte

multiple

when

encrypting.

When

decrypting,

specifying

a

pad

option

will

strip

the

pad

bytes

off

the

end

of

the

output

data

before

returning

it

in

the

receiver

operand.

For

example,

a

source

length

of

20

is

padded

to

24,

32

is

padded

to

40,

and

so

forth,

when

encrypting.

The

last

byte

of

pad

data

is

filled

with

a

1-byte

binary

counter

containing

the

number

of

pad

characters

used

(a

value

from

1

to

8

which

includes

the

1-byte

counter).

If

pad

option

specifies

pad

using

pad

character,

the

pad

character

field

is

used

for

the

preceeding

pad

characters.

If

the

pad

option

specifies

pad

using

pad

number,

the

value

of

the

last

byte

(the

pad

counter)

is

used

for

the

preceeding

pad

characters.

When

decrypting,

it

is

not

necessary

to

know

which

pad

method

was

used

when

the

data

was

encrypted.

If

the

data

was

padded,

you

can

specify

either

pad

using

pad

character

or

pad

using

pad

number.

The

pad

option

is

ignored

when

CFB

1-bit

or

CFB

8-bit

is

specified

for

mode.

If

a

MAC

operation

is

specified,

pad

option

is

ignored.

If

the

data

length

is

not

a

multiple

of

8,

the

data

will

be

padded

with

hex

00s.

When

the

operation

field

specifies

MAC,

the

MAC

length

field

specifies

the

length

of

the

MAC

to

return

in

the

receiver

operand.

Otherwise,

the

field

is

ignored.

When

MACing,

the

source

operand

data

minus

the

last

8-byte

block

is

encrypted

using

DES.

The

last

block

is

encrypted

using

TDES.

From

the

last

resulting

block,

the

leftmost

MAC

length

bytes

are

returned.

Valid

values

for

MAC

length

are

1

to

8.

The

Triple

DES

key

is

specified

in

the

key

1,

key

2,

and

key

3

fields.

If

key

option

specifies

three

keys,

all

three

key

fields

are

used

for

the

key.

If

key

option

specifies

two

keys,

key

1

will

be

used

for

key

3.

If

key

option

specifies

one

key,

key

1

will

be

used

for

key

2

and

key

3.

(This

last

option

is

equivalent

to

performing

a

single

DES

operation.)

Note,

only

the

leftmost

7

bits

from

each

byte

are

used

for

the

key.

The

rightmost

bit

of

each

byte

is

used

to

enforce

parity

when

required.

To

obtain

good

random

key

and

IV

values,

use

CIPHER

function

identifier

hex

0008.

Reserved

fields

must

be

set

to

binary

0

or

a

template

value

invalid

(hex

3801)

exception

will

be

signalled.

Machine

Interface

Instructions

63

Function

Identifier

0013

The

following

description

applies

only

to

function

identifier

0013.

The

controls

operand

must

be

16-byte

aligned

and

have

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Controls

operand

Char(32)

0

0

Function

identifier

Char(2)

2

2

Data

length

UBin(2)

4

4

Operation

Char(1)

Hex

00

=

Encrypt

Hex

01

=

Decrypt

5

5

Reserved

(binary

0)

Char(11)

16

10

Key

context

pointer

Space

pointer

32

20

—-

End

—-

Encryption

or

decryption

is

performed

as

specified

in

the

operation

field

using

an

RC4(R)-compatible

algorithm.

RC4

must

be

enabled

in

the

cryptographic

attributes

or

else

a

requested

function

not

valid

(hex

1C08)

exception

is

signaled.

To

query

the

cryptographic

attributes,

use

the

MATMATR

instruction

with

a

selection

value

of

hex

01C8.

The

data

length

field

specifies

the

length

of

the

input

data

pointed

to

by

the

source

operand.

The

encrypted

or

decrypted

data

is

returned

in

the

area

pointed

to

by

the

receiver

operand

and

is

identical

in

length.

If

data

length

is

0,

no

data

is

encrypted

or

decrypted,

but

the

key

context

will

be

initialized.

The

key

context

pointer

field

points

to

a

264-byte

area

belonging

to

the

user

and

having

the

following

format.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Key

context

Char(264)

0

0

Key

stream

Char(256)

256

100

Key

length

UBin(2)

258

102

Reserved

(binary

0)

Char(6)

264

108

—-

End

—-

The

key

context

allows

encryption

or

decryption

of

a

message

in

multiple

blocks

using

multiple

calls

to

CIPHER.

Prior

to

the

first

call

to

CIPHER,

set

the

key

in

the

key

stream

field.

The

key

may

be

any

binary

value

and

any

length

from

1

to

16

bytes

depending

on

the

length

enabled

in

the

cryptographic

attributes.

To

query

the

cryptographic

attributes,

use

the

MATMATR

instruction

with

a

selection

value

of

hex

01C8.

Specify

the

length

of

the

supplied

key

in

the

key

length

field.

To

obtain

good

random

key

values,

use

CIPHER

function

identifier

hex

0008.

The

key

context

contains

the

state

of

the

encryption

or

decryption

operation.

As

data

is

encrypted

or

decrypted,

the

key

stream

is

altered

by

the

RC4-compatible

algorithm.

Consequently,

when

encrypting

or

decrypting

a

message

in

multiple

blocks,

subsequent

calls

to

CIPHER

must

pass

in

the

identical

key

context

returned

from

the

previous

call.

Because

of

the

nature

of

the

RC4-compatible

algorithm,

using

the

same

key

for

more

than

one

message

will

severely

compromise

security.

Reserved

fields

of

the

key

context

must

be

set

to

binary

0

or

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

Function

Identifier

0015

The

following

description

applies

only

to

function

identifier

0015.

64

iSeries:

Machine

Interface

Instructions

APIs

The

controls

operand

must

be

16-byte

aligned

and

have

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Controls

operand

Char(96)

0

0

Function

identifier

Char(2)

2

2

Data

length

UBin(2)

4

4

Operation

Char(1)

Hex

00

=

Encrypt

Hex

01

=

Decrypt

Hex

02

=

MAC

(Message

Authentication

Code)

5

5

Mode

Char(1)

Hex

00

=

ECB

(Electronic

Codebook)

Hex

01

=

CBC

(Cipher

Block

Chaining)

6

6

Block

length

Char(1)

7

7

MAC

(Mesage

Authentication

Code)

length

Char(1)

8

8

Initialization

vector

Char(32)

40

28

Reserved

(binary

0)

Char(7)

47

2F

Key

option

Char(1)

Hex

00

=

Use

Key

schedule

Hex

10

=

Use

16-byte

key

Hex

18

=

Use

24-byte

key

Hex

20

=

Use

32-byte

key

48

30

Key

schedule

Space

pointer

64

40

Key

Char(32)

96

60

—-

End

—-

Encryption,

decryption,

or

the

creation

of

a

message

authentication

code

(MAC)

is

performed

as

specified

in

the

operation

field

using

the

NIST-proposed

Advanced

Encryption

Standard

(AES)

algorithm.

AES

must

be

enabled

in

the

cryptographic

attributes

for

an

encrypt

or

decrypt

operation

or

else

a

requested

function

not

valid

(hex

1C08)

exception

is

signaled.

To

query

the

cryptographic

attributes,

use

the

MATMATR

instruction

with

a

selection

value

of

hex

01C8.

A

MAC

operation

is

always

allowed

regardless

of

the

cryptographic

attributes.

The

data

length

field

specifies

the

length

of

the

input

data

pointed

to

by

the

source

operand.

The

data

length

can

be

0

or

a

multiple

of

the

block

length,

otherwise

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

If

0,

no

data

is

encrypted

or

decrypted,

but

the

key

schedule

will

be

calculated.

The

mode

field

specifies

the

mode

of

operation

as

defined

in

FIPS

PUB

81.

Valid

values

are

ECB

for

Electronic

Codebook;

and

CBC

for

Cipher

Block

Chaining.

Refer

to

the

standard

for

an

explanation

of

these

modes.

CBC

mode

must

be

specified

when

operation

is

MAC.

Machine

Interface

Instructions

65

When

CBC

is

specified,

the

initialization

vector

(IV)

will

be

used

as

part

of

the

operation.

The

length

of

IV

used

is

that

specified

in

block

length.

Refer

to

ANSI

X9.52

for

an

explanation

of

its

use.

The

IV

need

not

be

secret,

but

it

should

be

unique.

If

not

unique,

it

may

compromise

security.

The

IV

can

be

any

binary

value.

Upon

completion

of

an

AES

CBC

operation,

an

output

chaining

value

will

be

returned

in

the

initialization

vector

field.

This

value

should

be

used

as

the

IV

for

the

next

AES

operation

when

encrypting,

decrypting,

or

MACing

a

message

in

multiple

blocks.

Block

length

indicates

the

number

of

bytes

that

are

encrypted/decrypted

at

one

time.

Supported

block

lengths

are

16,

24,

and

32

(hex

10,

18,

and

20).

Other

lengths

will

produce

a

template

value

invalid

(hex

3801)

exception.

When

the

operation

specifies

MAC,

the

MAC

length

field

specifies

the

length

of

MAC

to

return

in

the

receiver

operand.

Otherwise,

the

field

is

ignored.

When

MACing,

the

source

operand

data

is

encrypted

in

the

normal

manner.

From

the

last

block

length

bytes

of

encrypted

data,

the

leftmost

MAC

length

bytes

are

returned.

Valid

values

for

MAC

length

are

1

to

block

length.

Other

values

will

cause

a

template

value

invalid

(hex

3801)

exception.

The

AES

key

is

specified

in

the

key

field

and

should

be

left

justified.

The

length

of

key

may

be

16,

24,

or

32

bytes

as

specified

in

the

key

option

field.

The

initial

step

in

an

AES

operation

is

to

calculate

a

set

of

subkeys.

The

subkeys

will

be

stored

in

the

area

pointed

to

by

the

key

schedule

pointer,

if

the

pointer

value

is

not

a

null

pointer

value.

This

area

should

be

4-byte

aligned

and

1088

bytes

in

length.

This

allows

subsequent

AES

operations

to

specify

the

use

key

schedule

option

and

bypass

the

subkey

generation

step.

A

template

value

invalid

(hex

3801)

exception

will

be

signalled

if

use

key

schedule

is

specified

but

the

key

schedule

pointer

is

null.

To

obtain

good

random

key

and

IV

values,

use

CIPHER

function

identifier

hex

0008.

Reserved

fields

must

be

set

to

binary

0

or

a

template

value

invalid

(hex

3801)

exception

will

be

signalled.

Limitations

(Subject

to

Change)

The

following

are

limits

that

apply

to

the

functions

performed

by

this

instruction.

Valid

results

are

produced

for

the

case

of

the

receiver

and

source

operands

being

coincident

with

one

another.

The

source

data

is

accessed

first,

then

the

result

is

stored

in

the

receiver.

Partial

overlap

between

the

source

and

receiver

operands

may

produce

invalid

results.

Authorization

Required

v

v

All

Object

Special

Authority

–

–

Add

seed

specified

in

the

seed

request

of

the

controls

operand

for

function

identifier

Hex

0008.

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

66

iSeries:

Machine

Interface

Instructions

APIs

0A

Authorization

0A01

Unauthorized

for

Operation

0A04

Special

Authorization

Required

0C

Computation

0C0F

Master

Key

Not

Defined

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C08

Requested

Function

Not

Valid

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

Machine

Interface

Instructions

67

2E02

Security

Audit

Journal

Failure

32

Scalar

Specification

3201

Scalar

Type

Invalid

34

Source/Sink

Management

3403

Source/Sink

Object

State

Invalid

3404

Source/Sink

Resource

Not

Available

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Clear

Bit

in

String

(CLRBTS)

Op

Code

(Hex)

Operand

1

Operand

2

102E

Receiver

Offset

Operand

1:

Character

variable

scalar

or

numeric

variable

scalar.

Operand

2:

Binary

scalar.

Bound

program

access

Built-in

number

for

CLRBTS

is

2.

CLRBTS

(

receiver

:

address

offset

:

unsigned

binary(4)

)

The

offset

parameter

must

be

between

0

and

65,535.

Description:

Clears

the

bit

of

the

receiver

operand

as

indicated

by

the

bit

offset

operand.

The

selected

bit

from

the

receiver

operand

is

set

to

a

value

of

binary

0.

The

receiver

operand

can

be

character

or

numeric.

The

leftmost

bytes

of

the

receiver

operand

are

used

in

the

operation.

The

receiver

operand

is

interpreted

as

a

bit

string

with

the

bits

numbered

left

to

right

from

0

to

the

total

number

of

bits

in

the

string

minus

1.

The

receiver

cannot

be

a

variable

substring.

68

iSeries:

Machine

Interface

Instructions

APIs

The

offset

operand

indicates

which

bit

of

the

receiver

operand

is

to

be

cleared,

with

an

offset

of

zero

indicating

the

leftmost

bit

of

the

leftmost

byte

of

the

receiver

operand.

If

an

offset

value

less

than

zero

or

beyond

the

length

of

the

string

is

specified,

a

scalar

value

invalid

(hex

3203)

exception

is

signaled.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

Machine

Interface

Instructions

69

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Clear

Invocation

Exit

(CLRIEXIT)

Op

Code

(Hex)

0250

Description:

The

instruction

removes

the

invocation

exit

program

for

the

requesting

invocation.

No

exception

is

signaled

if

an

invocation

exit

program

is

not

specified

for

the

current

invocation.

Also,

an

implicit

clear

of

the

invocation

exit

occurs

when

the

invocation

exit

program

is

given

control,

or

the

program

which

set

the

invocation

exit

completes

execution.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

10

Damage

Encountered

1004

System

Object

Damage

State

70

iSeries:

Machine

Interface

Instructions

APIs

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2208

Object

Compressed

220B

Object

Not

Available

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

Clear

Invocation

Flags

(CLRINVF)

Bound

program

access

Built-in

number

for

CLRINVF

is

4.

CLRINVF

(

clear_mask

:

unsigned

binary(4)

value

which

specifies

the

invocation

flags

to

be

cleared

)

Description:

Operand

1

selects

which

invocation

flags

are

to

be

cleared.

The

invocation

flags

to

be

cleared

are

indicated

with

0

values

in

the

bit

positions

of

operand

1,

based

on

the

correspondence

described

below.

Only

the

invocation

flags

that

are

″writeable″

can

be

cleared.

Any

″read-only″

flags

selected

by

the

stack

value

are

unchanged.

The

operation

is

performed

by

doing

a

bit-wise

Boolean

and

of

the

16

writeable

status

bits

with

the

low-order

two

bytes

of

the

clear

mask

operand,

and

then

replacing

the

writeable

status

bits

with

the

result

of

this

and.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Machine

Interface

Instructions

71

Lock

Enforcement

v

v

None

Exceptions

v

v

None

Clear

Lock

Value

(CLRLKVAL)

Bound

program

access

Built-in

number

for

CLRLKVAL

is

678.

CLRLKVAL

(

addr

:

address

of

a

signed

binary(8)

value

(has

alignment

restrictions

-

see

description

below)

new_val

:

signed

binary(8)

value

)

Description:

The

value

pointed

to

by

addr

is

set

to

the

new_val

value.

The

first

operand

must

be

8-byte

aligned.

Failure

to

have

the

first

operand

aligned

properly

will

not

be

detected,

but

the

results

of

the

instruction

are

undefined

when

this

occurs.

This

operation

is

storage

synchronizing.

When

a

thread

performs

the

CLRLKVAL

instruction,

shared

space

data

values

previously

written

by

that

thread

will

be

visible

to

other

threads

at

their

next

synchronizing

actions.

The

shared

space

data

values

seen

by

those

other

threads

will

be

at

least

as

current

as

what

was

written

by

the

thread

performing

the

CLRLKVAL.

The

CLRLKVAL

instruction

is

designed

specifically

for

implementation

of

low-level

locking

protocols.

For

correct

storage

synchronization,

the

CLRLKVAL

instruction

is

commonly

used

in

conjunction

with

the

CHKLKVAL

instruction.

See

Storage

Synchronization

Concepts

for

additional

information

on

storage

synchronization.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

72

iSeries:

Machine

Interface

Instructions

APIs

MCNSYNC.htm

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Machine

Interface

Instructions

73

Compare

and

Swap

(CMPSW)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

4

[5]

CMPSWB

1C37

Branch

options

Compare

operand

1

Compare

operand

2

Swap

operand

Branch

target

CMPSWI

1837

Indicator

options

Compare

operand

1

Compare

operand

2

Swap

operand

Indicator

target

Operand

1:

Character(1,2,4,8)

variable

scalar.

Operand

2:

Character(1,2,4,8)

variable

scalar.

Operand

3:

Character(1,2,4,8)

scalar.

Operand

4

[4-5]:

v

v

Branch

Form-Instruction

number,

relative

instruction

number,

branch

point,

or

instruction

pointer.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Bound

program

access

Built-in

number

for

CMPSWP

is

156.

CMPSWP

(

op1

:

address

of

a

scalar(1,2,4,8)

value

op2

:

address

of

a

scalar(1,2,4,8)

value

(has

alignment

restrictions

based

on

the

length

of

the

scalar

-

see

description

below)

op3

:

scalar(1,2,4,8)

value

cntl

:

signed

binary(4)

literal

value

(this

operand

is

optional

--

see

description

below)

)

:

signed

binary(4)

If

the

values

of

op1

and

op2

are

equal,

the

value

1

is

returned.

Otherwise,

the

value

0

is

returned.

Description:

The

value

of

the

first

compare

operand

is

compared

with

the

value

of

the

second

compare

operand.

If

they

are

equal,

the

swap

operand

is

stored

in

the

second

compare

operand’s

location.

If

they

are

unequal,

the

second

compare

operand

is

stored

into

the

first

compare

operand’s

location.

Based

on

the

comparison,

the

resulting

condition

is

used

with

the

extender

field

to:

v

v

Transfer

control

conditionally

to

the

instruction

indicated

in

one

of

the

branch

target

operands

(branch

form).

v

Assign

a

value

to

each

of

the

indicator

operands

(indicator

form).

When

an

equal

comparison

occurs,

it

is

assured

that

no

access

by

another

Compare

and

Swap

instruction

will

occur

at

the

second

compare

operand

location

between

the

moment

that

the

second

compare

operand

is

fetched

for

comparison

and

the

moment

that

the

swap

operand

is

stored

at

the

second

compare

operand

location.

When

an

unequal

comparison

occurs,

no

atomicity

guarantees

are

made

regarding

the

store

to

the

first

compare

operand

location

and

other

Compare

and

Swap

instruction

access.

Thus

only

the

second

compare

operand

should

be

a

variable

shared

for

concurrent

processing

control.

Both

compare

operands

must

be

1,

2,

4

or

8

byte

character

variable

scalars

and

the

swap

operand

must

be

a

1,

2,

4

or

8

byte

character

scalar.

All

three

operands

must

have

the

same

length.

Failure

to

have

the

operands

the

same

length

will

not

be

detected

and

the

results

of

the

Compare

and

Swap

instruction

are

undefined

when

this

occurs.

The

second

operand

must

be

aligned

based

on

its

length:

v

v

one

byte

length

-

no

alignment

restrictions

74

iSeries:

Machine

Interface

Instructions

APIs

v

two

byte

length

-

halfword

aligned

v

four

byte

length

-

fullword

aligned

v

eight

byte

length

-

doubleword

aligned

Failure

to

have

the

second

operand

aligned

properly

will

not

be

detected,

but

the

results

of

the

Compare

and

Swap

instruction

are

undefined

when

this

occurs.

For

bound

program

access,

the

cntl

operand

is

optional,

and

does

not

need

to

be

specified.

If

the

cntl

operand

is

specified,

it

has

the

following

effect

depending

on

the

value:

v

v

Hex

0x0

=

(Default)

Storage

synchronization

is

performed

both

before

and

after

a

successful

store

of

the

swap

operand.

v

Hex

0x1

=

No

storage

synchronization

is

performed

If

the

cntl

operand

is

not

specified,

the

instruction

proceeds

as

if

the

default

value

had

been

specified.

The

machine

does

not

enforce

that

only

the

values

enumerated

above

are

used

for

the

cntl

operand.

When

specified,

use

of

any

value

other

than

those

enumerated

above

may

result

in

unpredictable

behavior.

Warning:

Temporary

Level

3

Header

Storage

Synchronization

Unless

explicitly

disabled

with

the

no

storage

synchronization

is

performed

control

option

(disabling

is

possible

only

using

bound

program

access),

this

instruction

synchronizes

storage

both

before

and

after

the

swap

operand

is

stored

to

op2.

Synchronized

operation

provides

the

following

guarantees:

v

v

When

reading

shared

storage

after

a

successful

store

of

the

swap

operand,

the

thread

performing

the

CMPSW

will

have

a

view

of

shared

storage

no

less

current

then

the

most

recent

synchronizing

actions

taken

by

threads

writing

the

shared

storage.

v

Shared

data

written

by

the

thread

performing

the

CMPSW

prior

to

a

successful

store

of

the

swap

operand

will

be

current

from

the

perspective

of

other

threads

at

their

next

synchronizing

action.

When

synchronization

is

disabled

for

CMPSW,

storage

synchronization

can

be

accomplished

using

other

storage

synchronizing

MI

instructions,

such

as

SYNCSTG.

See

Storage

Synchronization

Concepts

for

additional

information

on

storage

synchronization.

Usage

Note

Note

that

the

compare

and

swap

construct

(including

both

this

CMPSW

instruction

and

support

found

on

other

architectures)

simply

compares

values;

it

cannot

determine

whether

the

presence

of

the

same

value

indicates

that

the

data

object

for

which

an

update

is

being

synchronized

is

in

fact

the

intended

data

object.

For

example,

CMPSW

is

insufficient

for

modifications

to

data

structures

comprised

of

multiple

data

objects,

when

an

equal

comparison

of

the

value

of

one

data

object

does

not

necessarily

mean

that

the

whole

data

structure

is

unchanged.

In

that

case,

finding

an

equal

value

for

one

data

object

may

not

mean

that

you

are

operating

on

the

intended

data

structure

element;

other

data

objects

in

the

data

structure

may

have

been

independently

changed.

A

similar

example

is

that

CMPSW

might

not

be

sufficient

for

dequeueing

an

element

from

a

queue

residing

in

shared

storage.

More

specifically,

consider

a

queue

that

has

an

identified

″head″

offset

value

and

some

number

of

elements

that

each

include

a

″next″

offset

field

(a

binary

data

object).

Just

because

the

element

currently

at

the

head

of

the

queue

has

the

same

offset

value

as

was

previously

copied

to

Machine

Interface

Instructions

75

MCNSYNC.htm

local

storage

for

use

in

a

CMPSW

does

not

mean

that

the

element’s

current

value

of

″next″

is

the

same

as

the

″next″

value

copied

to

local

storage

when

the

″head″

offset

value

was

copied.

That

is,

multiple

elements

may

have

been

dequeued

and

the

element

with

the

saved

″head″

offset,

but

a

different

″next″

value,

may

have

been

enqueued

since

the

local

copies

were

made.

Setting

the

new

queue

head

value

with

the

copied

″next″

value

would

thus

be

invalid.

Update

of

the

queue

data

structure

clearly

has

not

been

properly

synchronized

by

such

a

use

of

CMPSW.

Instead,

a

CMPSW

of

a

data

object

that

consists

of

two

smaller

data

objects:

an

offset

and

a

use

count

that

is

incremented

every

time

the

element

is

used,

would

be

a

safe

approach

if

the

use

count

values

will

always

be

different.

Resultant

Conditions:

v

v

Equal-The

first

compare

operand

is

equal

to

the

second

compare

operand.

v

Unequal

-The

first

compare

operand

is

unequal

to

the

second

compare

operand.

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

76

iSeries:

Machine

Interface

Instructions

APIs

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Compare

and

Swap

(CMPSW)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

4

[5]

CMPSWB

1C37

Branch

options

Compare

operand

1

Compare

operand

2

Swap

operand

Branch

target

CMPSWI

1837

Indicator

options

Compare

operand

1

Compare

operand

2

Swap

operand

Indicator

target

Operand

1:

Character(1,2,4,8)

variable

scalar.

Operand

2:

Character(1,2,4,8)

variable

scalar.

Operand

3:

Character(1,2,4,8)

scalar.

Operand

4

[4-5]:

v

v

Branch

Form-Instruction

number,

relative

instruction

number,

branch

point,

or

instruction

pointer.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Machine

Interface

Instructions

77

Bound

program

access

Built-in

number

for

CMPSWP

is

156.

CMPSWP

(

op1

:

address

of

a

scalar(1,2,4,8)

value

op2

:

address

of

a

scalar(1,2,4,8)

value

(has

alignment

restrictions

based

on

the

length

of

the

scalar

-

see

description

below)

op3

:

scalar(1,2,4,8)

value

cntl

:

signed

binary(4)

literal

value

(this

operand

is

optional

--

see

description

below)

)

:

signed

binary(4)

If

the

values

of

op1

and

op2

are

equal,

the

value

1

is

returned.

Otherwise,

the

value

0

is

returned.

Description:

The

value

of

the

first

compare

operand

is

compared

with

the

value

of

the

second

compare

operand.

If

they

are

equal,

the

swap

operand

is

stored

in

the

second

compare

operand’s

location.

If

they

are

unequal,

the

second

compare

operand

is

stored

into

the

first

compare

operand’s

location.

Based

on

the

comparison,

the

resulting

condition

is

used

with

the

extender

field

to:

v

v

Transfer

control

conditionally

to

the

instruction

indicated

in

one

of

the

branch

target

operands

(branch

form).

v

Assign

a

value

to

each

of

the

indicator

operands

(indicator

form).

When

an

equal

comparison

occurs,

it

is

assured

that

no

access

by

another

Compare

and

Swap

instruction

will

occur

at

the

second

compare

operand

location

between

the

moment

that

the

second

compare

operand

is

fetched

for

comparison

and

the

moment

that

the

swap

operand

is

stored

at

the

second

compare

operand

location.

When

an

unequal

comparison

occurs,

no

atomicity

guarantees

are

made

regarding

the

store

to

the

first

compare

operand

location

and

other

Compare

and

Swap

instruction

access.

Thus

only

the

second

compare

operand

should

be

a

variable

shared

for

concurrent

processing

control.

Both

compare

operands

must

be

1,

2,

4

or

8

byte

character

variable

scalars

and

the

swap

operand

must

be

a

1,

2,

4

or

8

byte

character

scalar.

All

three

operands

must

have

the

same

length.

Failure

to

have

the

operands

the

same

length

will

not

be

detected

and

the

results

of

the

Compare

and

Swap

instruction

are

undefined

when

this

occurs.

The

second

operand

must

be

aligned

based

on

its

length:

v

v

one

byte

length

-

no

alignment

restrictions

v

two

byte

length

-

halfword

aligned

v

four

byte

length

-

fullword

aligned

v

eight

byte

length

-

doubleword

aligned

Failure

to

have

the

second

operand

aligned

properly

will

not

be

detected,

but

the

results

of

the

Compare

and

Swap

instruction

are

undefined

when

this

occurs.

For

bound

program

access,

the

cntl

operand

is

optional,

and

does

not

need

to

be

specified.

If

the

cntl

operand

is

specified,

it

has

the

following

effect

depending

on

the

value:

v

v

Hex

0x0

=

(Default)

Storage

synchronization

is

performed

both

before

and

after

a

successful

store

of

the

swap

operand.

v

Hex

0x1

=

No

storage

synchronization

is

performed

If

the

cntl

operand

is

not

specified,

the

instruction

proceeds

as

if

the

default

value

had

been

specified.

78

iSeries:

Machine

Interface

Instructions

APIs

The

machine

does

not

enforce

that

only

the

values

enumerated

above

are

used

for

the

cntl

operand.

When

specified,

use

of

any

value

other

than

those

enumerated

above

may

result

in

unpredictable

behavior.

Warning:

Temporary

Level

3

Header

Storage

Synchronization

Unless

explicitly

disabled

with

the

no

storage

synchronization

is

performed

control

option

(disabling

is

possible

only

using

bound

program

access),

this

instruction

synchronizes

storage

both

before

and

after

the

swap

operand

is

stored

to

op2.

Synchronized

operation

provides

the

following

guarantees:

v

v

When

reading

shared

storage

after

a

successful

store

of

the

swap

operand,

the

thread

performing

the

CMPSW

will

have

a

view

of

shared

storage

no

less

current

then

the

most

recent

synchronizing

actions

taken

by

threads

writing

the

shared

storage.

v

Shared

data

written

by

the

thread

performing

the

CMPSW

prior

to

a

successful

store

of

the

swap

operand

will

be

current

from

the

perspective

of

other

threads

at

their

next

synchronizing

action.

When

synchronization

is

disabled

for

CMPSW,

storage

synchronization

can

be

accomplished

using

other

storage

synchronizing

MI

instructions,

such

as

SYNCSTG.

See

Storage

Synchronization

Concepts

for

additional

information

on

storage

synchronization.

Usage

Note

Note

that

the

compare

and

swap

construct

(including

both

this

CMPSW

instruction

and

support

found

on

other

architectures)

simply

compares

values;

it

cannot

determine

whether

the

presence

of

the

same

value

indicates

that

the

data

object

for

which

an

update

is

being

synchronized

is

in

fact

the

intended

data

object.

For

example,

CMPSW

is

insufficient

for

modifications

to

data

structures

comprised

of

multiple

data

objects,

when

an

equal

comparison

of

the

value

of

one

data

object

does

not

necessarily

mean

that

the

whole

data

structure

is

unchanged.

In

that

case,

finding

an

equal

value

for

one

data

object

may

not

mean

that

you

are

operating

on

the

intended

data

structure

element;

other

data

objects

in

the

data

structure

may

have

been

independently

changed.

A

similar

example

is

that

CMPSW

might

not

be

sufficient

for

dequeueing

an

element

from

a

queue

residing

in

shared

storage.

More

specifically,

consider

a

queue

that

has

an

identified

″head″

offset

value

and

some

number

of

elements

that

each

include

a

″next″

offset

field

(a

binary

data

object).

Just

because

the

element

currently

at

the

head

of

the

queue

has

the

same

offset

value

as

was

previously

copied

to

local

storage

for

use

in

a

CMPSW

does

not

mean

that

the

element’s

current

value

of

″next″

is

the

same

as

the

″next″

value

copied

to

local

storage

when

the

″head″

offset

value

was

copied.

That

is,

multiple

elements

may

have

been

dequeued

and

the

element

with

the

saved

″head″

offset,

but

a

different

″next″

value,

may

have

been

enqueued

since

the

local

copies

were

made.

Setting

the

new

queue

head

value

with

the

copied

″next″

value

would

thus

be

invalid.

Update

of

the

queue

data

structure

clearly

has

not

been

properly

synchronized

by

such

a

use

of

CMPSW.

Instead,

a

CMPSW

of

a

data

object

that

consists

of

two

smaller

data

objects:

an

offset

and

a

use

count

that

is

incremented

every

time

the

element

is

used,

would

be

a

safe

approach

if

the

use

count

values

will

always

be

different.

Resultant

Conditions:

v

v

Equal-The

first

compare

operand

is

equal

to

the

second

compare

operand.

v

Unequal

-The

first

compare

operand

is

unequal

to

the

second

compare

operand.

Machine

Interface

Instructions

79

MCNSYNC.htm

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

80

iSeries:

Machine

Interface

Instructions

APIs

2C

Program

Execution

2C04

Branch

Target

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Compare

Bytes

Left-Adjusted

(CMPBLA)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

[4,

5]

CMPBLAB

1CC2

Branch

options

Compare

operand

1

Compare

operand

2

Branch

targets

CMPBLAI

18C2

Indicator

options

Compare

operand

1

Compare

operand

2

Indicator

targets

Operand

1:

Numeric

scalar

or

character

scalar.

Operand

2:

Numeric

scalar

or

character

scalar.

Operand

3

[4,

5]:

v

v

Branch

Form-Instruction

number,

relative

instruction

number,

branch

point,

or

instruction

pointer.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

This

instruction

compares

the

logical

string

values

of

two

left-adjusted

compare

operands.

The

logical

string

value

of

the

first

compare

operand

is

compared

with

the

logical

string

value

of

the

second

compare

operand

(no

padding

done).

Based

on

the

comparison,

the

resulting

condition

is

used

with

the

extender

field

to:

v

v

Transfer

control

conditionally

to

the

instruction

indicated

in

one

of

the

branch

target

operands

(branch

form).

v

Assign

a

value

to

each

of

the

indicator

operands

(indicator

form).

The

compare

operands

can

be

either

character

or

numeric.

Any

numeric

operands

are

interpreted

as

logical

character

strings.

The

compare

operands

are

compared

byte

by

byte,

from

left

to

right

with

no

numeric

conversions

performed.

The

length

of

the

operation

is

equal

to

the

length

of

the

shorter

of

the

two

compare

operands.

The

comparison

begins

with

the

leftmost

byte

of

each

of

the

compare

operands

and

proceeds

until

all

bytes

of

the

shorter

compare

operand

have

been

compared

or

until

the

first

unequal

pair

of

bytes

is

encountered.

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

be

specified

for

operands

1

and

2.

The

effect

of

specifying

a

null

substring

reference

for

either

or

both

compare

operands

is

that

the

instruction’s

resultant

condition

is

equal.

Machine

Interface

Instructions

81

Resultant

Conditions:

The

scalar

first

compare

operand’s

string

value

is

one

of

the

following

as

compared

to

the

second

compare

operand.

v

v

Higher

v

Lower

v

Equal

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

82

iSeries:

Machine

Interface

Instructions

APIs

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Compare

Bytes

Left-Adjusted

with

Pad

(CMPBLAP)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

4

[5,

6]

CMPBLAPB

1CC3

Branch

options

Compare

operand

1

Compare

operand

2

Pad

Branch

targets

CMPBLAPI

18C3

Indicator

options

Compare

operand

1

Compare

operand

2

Pad

Indicator

targets

Operand

1:

Numeric

scalar

or

character

scalar.

Operand

2:

Numeric

scalar

or

character

scalar.

Operand

3:

Numeric

scalar

or

character

scalar.

Operand

4

[5,

6]:

v

v

Branch

Form-Instruction

number,

relative

instruction

number,

branch

point,

or

instruction

pointer.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

This

instruction

compares

the

logical

string

values

of

two

left-adjusted

compare

operands

(padded

if

needed).

The

logical

string

value

of

the

first

compare

operand

is

compared

with

the

logical

string

value

of

the

second

compare

operand.

Based

on

the

comparison,

the

resulting

condition

is

used

with

the

extender

field

to:

v

v

Transfer

control

conditionally

to

the

instruction

indicated

in

one

of

the

branch

target

operands

(branch

form).

v

Assign

a

value

to

each

of

the

indicator

operands

(indicator

form).

Machine

Interface

Instructions

83

The

compare

operands

can

be

either

character

or

numeric.

Any

numeric

operands

are

interpreted

as

logical

character

strings.

The

compare

operands

are

compared

byte

by

byte,

from

left

to

right

with

no

numeric

conversions

being

performed.

The

length

of

the

operation

is

equal

to

the

length

of

the

longer

of

the

two

compare

operands.

The

shorter

of

the

two

compare

operands

is

logically

padded

on

the

right

with

the

1-byte

value

indicated

in

the

pad

operand.

If

the

pad

operand

is

more

than

1

byte

in

length,

only

its

leftmost

byte

is

used.

The

comparison

begins

with

the

leftmost

byte

of

each

of

the

compare

operands

and

proceeds

until

all

the

bytes

of

the

longer

of

the

two

compare

operands

have

been

compared

or

until

the

first

unequal

pair

of

bytes

is

encountered.

All

excess

bytes

in

the

longer

of

the

two

compare

operands

are

compared

to

the

pad

value.

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

be

specified

for

operands

1

and

2.

The

effect

of

specifying

a

null

substring

reference

for

one

of

the

compare

operands

is

that

the

other

compare

operand

is

compared

with

an

equal

length

string

of

pad

character

values.

When

a

null

substring

reference

is

specified

for

both

compare

operands,

the

resultant

condition

is

equal.

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

not

be

specified

for

operand

3.

Resultant

Conditions:

The

scalar

first

compare

operand’s

string

value

is

one

of

the

following

as

compared

to

the

second

compare

operand.

v

v

Higher

v

Lower

v

Equal

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

84

iSeries:

Machine

Interface

Instructions

APIs

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Compare

Bytes

Right-Adjusted

(CMPBRA)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

[4,

5]

CMPBRAB

1CC6

Branch

options

Compare

operand

1

Compare

operand

2

Branch

targets

Machine

Interface

Instructions

85

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

[4,

5]

CMPBRAI

18C6

Indicator

options

Compare

operand

1

Compare

operand

2

Indicator

targets

Operand

1:

Numeric

scalar

or

character

scalar.

Operand

2:

Numeric

scalar

or

character

scalar.

Operand

3

[4,

5]:

v

v

Branch

Form-Instruction

number,

relative

instruction

number,

branch

point,

or

instruction

pointer.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

This

instruction

compares

the

logical

string

values

of

two

right-adjusted

compare

operands.

The

logical

string

value

of

the

first

compare

operand

is

compared

with

the

logical

string

value

of

the

second

compare

operand

(no

padding

done).

Based

on

the

comparison,

the

resulting

condition

is

used

with

the

extender

field

to:

v

v

Transfer

control

conditionally

to

the

instruction

indicated

in

one

of

the

branch

target

operands

(branch

form).

v

Assign

a

value

to

each

of

the

indicator

operands

(indicator

form).

The

compare

operands

can

be

either

string

or

numeric.

Any

numeric

operands

are

interpreted

as

logical

character

strings.

The

compare

operands

are

compared

byte

by

byte,

from

left

to

right

with

no

numeric

conversions

performed.

The

length

of

the

operation

is

equal

to

the

length

of

the

shorter

of

the

two

compare

operands.

The

comparison

begins

with

the

leftmost

byte

of

each

of

the

compare

operands

and

proceeds

until

all

bytes

of

the

shorter

compare

operand

have

been

compared

or

until

the

first

unequal

pair

of

bytes

is

encountered.

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

be

specified

for

operands

1

and

2.

The

effect

of

specifying

a

null

substring

reference

for

either

or

both

compare

operands

is

that

the

instruction’s

resultant

condition

is

equal.

Resultant

Conditions:

The

scalar

first

compare

operand’s

string

value

is

one

of

the

following

as

compared

to

the

second

compare

operand.

v

v

Higher

v

Lower

v

Equal

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

86

iSeries:

Machine

Interface

Instructions

APIs

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

Machine

Interface

Instructions

87

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Compare

Bytes

Right-Adjusted

with

Pad

(CMPBRAP)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

4

[5,

6]

CMPBRAPB

1CC7

Branch

options

Compare

operand

1

Compare

operand

2

Pad

Branch

targets

CMPBRAPI

18C7

Indicator

options

Compare

operand

1

Compare

operand

2

Pad

Indicator

targets

Operand

1:

Numeric

scalar

or

character

scalar.

Operand

2:

Numeric

scalar

or

character

scalar.

Operand

3:

Numeric

scalar

or

character

scalar.

Operand

4

[5,

6]:

v

v

Branch

Form-Instruction

number,

relative

instruction

number,

branch

point,

or

instruction

pointer.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

This

instruction

compares

the

logical

string

values

of

the

right-adjusted

compare

operands

(padded

if

needed).

The

logical

string

value

of

the

first

compare

operand

is

compared

with

the

logical

string

value

of

the

second

compare

operand.

Based

on

the

comparison,

the

resulting

condition

is

used

with

the

extender

field

to:

v

v

Transfer

control

conditionally

to

the

instruction

indicated

in

one

of

the

branch

target

operands

(branch

form).

v

Assign

a

value

to

each

of

the

indicator

operands

(indicator

form).

The

compare

operands

can

be

either

character

or

numeric.

Any

numeric

operands

are

interpreted

as

logical

character

strings.

The

compare

operands

are

compared

byte

by

byte,

from

left

to

right

with

no

numeric

conversions

performed.

The

length

of

the

operation

is

equal

to

the

length

of

the

longer

of

the

two

compare

operands.

The

shorter

of

the

two

compare

operands

is

logically

padded

on

the

left

with

the

1-byte

value

indicated

in

the

pad

operand.

If

the

pad

operand

is

more

than

1

byte

in

length,

only

its

leftmost

byte

is

used.

The

comparison

begins

with

the

leftmost

byte

of

the

longer

of

the

compare

operands.

Any

excess

bytes

(on

the

left)

in

the

longer

compare

operand

are

compared

with

the

pad

value.

All

other

bytes

are

compared

with

the

corresponding

bytes

in

the

other

compare

operand.

The

operation

proceeds

until

all

bytes

in

the

longer

operand

are

compared

or

until

the

first

unequal

pair

of

bytes

is

encountered.

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

be

specified

for

operands

1

and

2.

The

effect

of

specifying

a

null

substring

reference

for

one

of

the

compare

88

iSeries:

Machine

Interface

Instructions

APIs

operands

is

that

the

other

compare

operand

is

compared

with

an

equal

length

string

of

pad

character

values.

When

a

null

substring

reference

is

specified

for

both

compare

operands,

the

resultant

condition

is

equal.

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

not

be

specified

for

operand

3.

Resultant

Conditions:

The

scalar

first

compare

operand’s

string

value

is

one

of

the

following

as

compared

to

the

second

compare

operand.

v

v

Higher

v

Lower

v

Equal

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

Machine

Interface

Instructions

89

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Compare

Null-Terminated

Strings

Constrained

(STRNCMPNULL)

Bound

program

access

Built-in

number

for

STRNCMPNULL

is

19.

STRNCMPNULL

(

null_terminated_string1

:

address

of

aggregate(*)

null_terminated_string2

:

address

of

aggregate(*)

maximum_compare_length

:

unsigned

binary(4)

value

which

specifies

the

maximum

number

of

bytes

to

compare

)

:

signed

binary(4)

value

which

indicates

if

null_terminated_string1

is

lexically

less

than

(-1),

equal

to

(0)

or

greater

than

(1)

null_terminated_string2

Description:

A

compare

is

done

of

the

storage

specified

by

null

terminated

string1

and

null

terminated

string2.

If

the

first

byte

of

null

terminated

string1

is

less

than

the

first

byte

of

null

terminated

string2,

the

function

returns

-1;

if

the

byte

is

greater

the

function

returns

1.

If

the

bytes

are

equal

the

function

continues

with

the

next

byte.

This

process

is

repeated

until

either:

v

90

iSeries:

Machine

Interface

Instructions

APIs

v

The

end

of

null

terminated

string1

(ie.

a

null

character)

and

null

terminated

string2

is

reached.

The

function

returns

0.

v

The

end

of

null

terminated

string1

is

reached.

The

function

returns

-1.

v

The

end

of

null

terminated

string2

is

reached.

The

function

returns

1.

v

The

number

of

characters

specified

by

maximum

compare

length

have

been

compared.

The

function

returns

0.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Compare

Numeric

Value

(CMPNV)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

[4-6]

CMPNVB

1C46

Branch

options

Compare

operand

1

Compare

operand

2

Branch

targets

CMPNVI

1846

Indicator

options

Compare

operand

1

Compare

operand

2

Indicator

targets

Operand

1:

Numeric

scalar.

Operand

2:

Numeric

scalar.

Operand

3

[4-6]:

v

v

Branch

Form-Instruction

number,

relative

instruction

number,

branch

point,

or

instruction

pointer.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

The

numeric

value

of

the

first

compare

operand

is

compared

with

the

signed

or

unsigned

numeric

value

of

the

second

compare

operand.

Based

on

the

comparison,

the

resulting

condition

is

used

with

the

extender

field

to:

Machine

Interface

Instructions

91

v

v

Transfer

control

conditionally

to

the

instruction

indicated

in

one

of

the

branch

target

operands

(branch

form).

v

Assign

a

value

to

each

of

the

indicator

operands

(indicator

form).

Both

the

compare

operands

must

be

numeric

with

any

implicit

conversions

occurring

according

to

the

rules

of

arithmetic

operations

as

outlined

in

Arithmetic

Operations.

For

a

decimal

operation,

alignment

of

the

assumed

decimal

point

takes

place

by

padding

with

0’s

on

the

right

end

of

the

compare

operand

with

lesser

precision.

Decimal

operands

used

in

floating-point

operations

cannot

contain

more

than

15

total

digit

positions.

When

both

operands

are

signed

numeric

or

both

are

unsigned

numeric,

the

length

of

the

operation

is

equal

to

the

length

of

the

longer

of

the

two

compare

operands.

The

shorter

of

the

two

operands

is

adjusted

to

the

length

of

the

longer

operand

according

to

the

rules

of

arithmetic

operations

outlined

in

Arithmetic

Operations.

When

one

operand

is

signed

numeric

and

the

other

operand

unsigned

numeric,

the

unsigned

operand

is

converted

to

a

signed

value

with

more

precision

than

its

current

size.

The

length

of

the

operation

is

equal

to

the

length

of

the

longer

of

the

two

compare

operands.

A

negative

signed

numeric

value

will

always

be

less

than

a

positive

unsigned

value.

Floating-point

comparisons

use

exponent

comparison

and

significand

comparison.

For

a

denormalized

floating-point

number,

the

comparison

is

performed

as

if

the

denormalized

number

had

first

been

normalized.

For

floating-point,

two

values

compare

unordered

when

at

least

one

comparand

is

NaN.

Every

NaN

compares

unordered

with

everything

including

another

NaN

value.

Floating-point

comparisons

ignore

the

sign

of

zero.

Positive

zero

always

compares

equal

with

negative

zero.

A

floating-point

invalid

operand

(hex

0C09)

exception

is

signaled

when

two

floating-point

values

compare

unordered

and

no

branch

or

indicator

option

exists

for

any

of

the

unordered,

negation

of

unordered,

equal,

or

negation

of

equal

resultant

conditions.

When

a

comparison

is

made

between

a

floating-point

compare

operand

and

a

fixed-point

decimal

compare

operand

that

contains

fractional

digit

positions,

a

floating-point

inexact

result

(hex

0C0D)

exception

may

be

signaled

because

of

the

implicit

conversion

from

decimal

to

floating-point.

Resultant

Conditions:

v

v

High-The

first

compare

operand

has

a

higher

numeric

value

than

the

second

compare

operand.

v

Low-The

first

compare

operand

has

a

lower

numeric

value

than

the

second

compare

operand.

v

Equal-The

first

compare

operand

has

a

numeric

value

equal

to

the

second

compare

operand.

v

Unordered-The

first

compare

operand

is

unordered

compared

to

the

second

compare

operand.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

92

iSeries:

Machine

Interface

Instructions

APIs

MCNPFAO.htm
MCNPFAO.htm

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C02

Decimal

Data

0C03

Decimal

Point

Alignment

0C09

Floating-Point

Invalid

Operand

0C0D

Floating-Point

Inexact

Result

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

Machine

Interface

Instructions

93

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Compare

Pointer

for

Object

Addressability

(CMPPTRA)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

[4]

CMPPTRAB

1CD2

Branch

options

Compare

operand

1

Compare

operand

2

Branch

targets

CMPPTRAI

18D2

Indicator

options

Compare

operand

1

Compare

operand

2

Indicator

targets

Operand

1:

Data

pointer,

space

pointer,

system

pointer,

instruction

pointer,

or

label

pointer.

Operand

2:

Data

pointer,

space

pointer,

system

pointer,

instruction

pointer,

or

label

pointer.

Operand

3

[4]:

v

v

Branch

Form-Instruction

number,

relative

instruction

number,

branch

point,

or

instruction

pointer.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

94

iSeries:

Machine

Interface

Instructions

APIs

Bound

program

access

Built-in

number

for

CMPPTRA

is

139.

CMPPTRA

(

compare_operand1

:

space

pointer(16)

OR

data

pointer

OR

system

pointer

OR

label

pointer

compare_operand2

:

space

pointer(16)

OR

data

pointer

OR

system

pointer

OR

label

pointer

)

:

signed

binary(4)

/*

return_code

*/

The

return

code

will

be

set

as

follows:

Return

code

Meaning

1

Pointers

address

same

object.

0

Pointers

address

different

objects.

This

built-in

function

is

used

to

provide

support

for

the

branch

and

indicator

forms

of

the

CMPPTRA

operation.

The

user

must

specify

code

to

process

the

return

code

and

perform

the

desired

branching

or

indicator

setting.

Description:

The

object

addressed

by

operand

1

is

compared

with

the

object

addressed

by

operand

2

to

determine

if

both

operands

are

addressing

the

same

object.

Based

on

the

comparison,

the

resulting

condition

is

used

with

the

extender

to

transfer

control

(branch

form)

or

to

assign

a

value

to

each

of

the

indicator

operands

(indicator

form).

If

operand

1

is

a

data

pointer,

a

space

pointer,

or

a

system

pointer,

operand

2

may

be

a

data

pointer,

a

space

pointer,

or

a

system

pointer

in

any

combination.

An

equal

condition

occurs

if

the

pointers

are

addressing

the

same

object.

For

space

pointers

and

data

pointers,

only

the

space

they

are

addressing

is

considered

in

the

comparison.

That

is,

the

space

offset

portion

of

the

pointer

is

ignored.

All

implicit

process

spaces

and

teraspace

are

considered

part

of

an

active

PCS

(Process

Control

Space)

object.

Thus

a

pointer

to

teraspace

or

to

an

implicit

process

space

addresses

the

same

object

as

any

other

pointer

which

addresses

the

PCS

of

the

process

which

contains

the

currently

executing

thread.

Further,

since

any

teraspace

reference

is

local

to

a

process,

any

two

pointers

to

teraspace

used

within

the

same

process

are

defined

to

address

the

same

object.

For

system

pointer

compare

operands,

an

equal

condition

occurs

if

the

system

pointer

is

compared

with

a

space

pointer

or

data

pointer

that

addresses

the

space

that

is

associated

with

the

object

that

is

addressed

by

the

system

pointer.

For

example,

a

space

pointer

that

addresses

a

byte

in

a

space

associated

with

a

system

object

compares

equal

with

a

system

pointer

that

addresses

the

system

object.

For

instruction

pointer

comparisons,

both

operands

must

be

instruction

pointers;

otherwise,

a

pointer

type

invalid

(hex

2402)

exception

is

signaled.

An

equal

condition

occurs

when

both

instruction

pointers

are

addressing

the

same

instruction

in

the

same

program.

A

not

equal

condition

occurs

if

the

instruction

pointers

are

not

addressing

the

same

instruction

in

the

same

program.

Machine

Interface

Instructions

95

For

label

pointer

comparisons,

both

operands

must

be

label

pointers;

otherwise,

a

pointer

type

invalid

(hex

2402)

exception

is

signaled.

An

equal

condition

occurs

when

both

label

pointers

are

addressing

the

same

label

in

the

same

procedure.

A

not

equal

condition

occurs

if

the

label

pointers

are

not

addressing

the

same

label

in

the

same

procedure.

A

pointer

does

not

exist

(hex

2401)

exception

is

signaled

if

a

pointer

does

not

exist

in

either

of

the

operands.

Resultant

Conditions:

v

v

Equal

v

Not

equal

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

96

iSeries:

Machine

Interface

Instructions

APIs

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Compare

Pointer

for

Space

Addressability

(CMPPSPAD)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

[4-6]

CMPPSPADB

1CE6

Branch

options

Compare

operand

1

Compare

operand

2

Branch

targets

CMPPSPADI

18E6

Indicator

options

Compare

Operand

1

Compare

Operand

2

Indicator

targets

Operand

1:

Space

pointer

or

data

pointer.

Operand

2:

Numeric

variable

scalar,

character

variable

scalar,

numeric

variable

array,

character

variable

array,

space

pointer,

or

data

pointer.

Machine

Interface

Instructions

97

Operand

3

[4-6]:

v

v

Branch

Form-Instruction

number,

relative

instruction

number,

branch

point,

or

instruction

pointer.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

The

space

addressability

contained

in

the

pointer

specified

by

operand

1

is

compared

with

the

space

addressability

defined

by

operand

2.

The

value

of

the

operand

1

pointer

is

compared

based

on

the

following:

v

v

If

operand

2

is

a

scalar

data

object

(element

or

array),

the

space

addressability

of

that

data

object

is

compared

with

the

space

addressability

contained

in

the

operand

1

pointer.

v

If

operand

2

is

a

pointer,

it

must

be

a

space

pointer

or

data

pointer,

and

the

space

addressability

contained

in

the

pointer

is

compared

with

the

space

addressability

contained

in

the

operand

1

pointer.

Based

on

the

results

of

the

comparison,

the

resulting

condition

is

used

with

the

extender

to

transfer

control

(branch

form)

or

to

assign

a

value

to

each

of

the

indicator

operands

(indicator

form).

If

the

operands

are

not

in

the

same

space,

the

resultant

condition

is

unequal.

If

the

operands

are

in

the

same

space

and

the

offset

into

the

space

of

operand

1

is

larger

or

smaller

than

the

offset

of

operand

2,

the

resultant

condition

is

high

or

low,

respectively.

An

equal

condition

occurs

only

if

the

operands

are

in

the

same

space

at

the

same

offset.

Therefore,

the

resultant

conditions

(high,

low,

equal,

and

unequal)

are

mutually

exclusive.

Consequently,

if

you

specify

that

an

action

be

taken

upon

the

nonexistence

of

a

condition,

this

results

in

the

action

being

taken

upon

the

occurrence

of

any

of

the

other

three

possible

conditions.

For

example,

a

branch

not

high

would

result

in

the

branch

being

taken

on

a

low,

equal,

or

unequal

condition.

The

object

destroyed

(hex

2202)

exception,

parameter

reference

violation

(hex

0801)

exception,

and

pointer

does

not

exist

(hex

2401)

exception

are

not

signaled

when

operand

1

or

operand

2

is

a

space

pointer

machine

object

or

when

operand

2

is

a

scalar

based

on

a

space

pointer

machine

object.

This

occurs

when

the

space

pointer

machine

object

contains

an

internal

machine

value

that

indicates

one

of

these

error

conditions

exists.

If

the

corresponding

exception

is

not

signaled,

the

resulting

condition

of

the

comparison

operation

is

not

defined

other

than

that

it

will

be

one

of

the

four

valid

resultant

conditions

for

this

instruction.

When

the

Override

Program

Attributes

(OVRPGATR)

instruction

is

used

to

override

this

instruction,

the

pointer

does

not

exist

(hex

2401)

exception

is

not

signaled

when

operand

1

or

operand

2

is

a

space

pointer

(i.e.

either

a

space

pointer

data

object

or

a

space

pointer

machine

object).

Furthermore,

some

comparisons

involving

space

pointers

are

defined

even

when

one

or

both

of

the

compare

operands

is

a

pointer

subject

to

the

pointer

does

not

exist

condition.

Specifically,

if

both

compare

operands

are

subject

to

the

pointer

does

not

exist

condition,

the

resultant

condition

is

equal.

When

one

space

pointer

is

set

and

one

is

subject

to

the

pointer

does

not

exist

condition,

the

resultant

condition

is

unequal,

but

undefined

with

respect

to

comparisons

which

include

specification

of

the

high

or

low

conditions.

Resultant

Conditions:

v

v

High

v

Low

v

Equal

v

Unequal

98

iSeries:

Machine

Interface

Instructions

APIs

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0604

External

Data

Object

Not

Found

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

Machine

Interface

Instructions

99

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Compare

Pointer

Type

(CMPPTRT)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

[4]

CMPPTRTB

1CE2

Branch

options

Compare

operand

1

Compare

operand

2

Branch

targets

CMPPTRTI

18E2

Indicator

options

Compare

operand

1

Compare

operand

2

Indicator

targets

Operand

1:

Data

pointer,

space

pointer,

system

pointer,

instruction

pointer,

invocation

pointer,

procedure

pointer,

label

pointer,

suspend

pointer,

synchronization

pointer,

object

pointer,

or

field

pointer.

Operand

2:

Character(1)

scalar

or

null.

Operand

3

[4]:

v

v

Branch

Form-Instruction

number,

relative

instruction

number,

branch

point,

or

instruction

pointer.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

100

iSeries:

Machine

Interface

Instructions

APIs

Bound

program

access

Built-in

number

for

CMPPTRT

is

140.

CMPPTRT

(

pointer_type

:

aggregate(1,2,4)

OR

signed

binary(1,2,4)

OR

unsigned

binary(1,2,4)

pointer

:

pointer(16)

)

:

signed

binary(4)

/*

return_code

*/

The

return

code

will

be

set

as

follows:

Return

code

Meaning

1

Pointer

is

of

specified

type.

0

Pointer

is

not

of

specified

type.

The

pointer

type

operand

corresponds

to

operand

2

on

the

CMPPTRT

operation.

The

pointer

operand

corresponds

to

operand

1

on

the

CMPPTRT

operation.

This

built-in

function

is

used

to

provide

support

for

the

branch

and

indicator

forms

of

the

CMPPTRT

operation.

The

user

must

specify

code

to

process

the

return

code

and

perform

the

desired

branching

or

indicator

setting.

Description:

The

instruction

compares

the

pointer

type

currently

in

operand

1

with

the

character

scalar

identified

by

operand

2.

Based

on

the

comparison,

the

resulting

condition

is

used

with

the

extender

to

transfer

control

(branch

form)

or

to

assign

a

value

to

each

of

the

indicator

operands

(indicator

form).

Operand

1

can

specify

a

space

pointer

machine

object

only

when

operand

2

is

null.

An

unresolved

operand

1

pointer

is

not

resolved

by

this

instruction.

If

operand

2

is

null

or

if

operand

2

specifies

a

comparison

value

of

hex

00,

an

equal

condition

occurs

if

a

pointer

does

not

exist

in

the

storage

area

identified

by

operand

1.

Following

are

the

allowable

values

for

operand

2:

Hex

00

-

A

pointer

does

not

exist

at

this

location

Hex

01

-

System

pointer

Hex

02

-

Space

pointer

Hex

03

-

Data

pointer

Hex

04

-

Instruction

pointer

Hex

05

-

Invocation

pointer

Hex

06

-

Procedure

pointer

Hex

07

-

Label

pointer

Hex

08

-

Suspend

pointer

Hex

09

-

Synchronization

pointer

Hex

0A

-

Object

pointer

Machine

Interface

Instructions

101

Hex

0B

-

Field

pointer

Resultant

Conditions:

v

v

Equal

v

Not

equal

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

102

iSeries:

Machine

Interface

Instructions

APIs

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Compare

Pointers

for

Equality

(CMPPTRE)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

[4]

CMPPTREB

1C12

Branch

options

Compare

operand

1

Compare

operand

2

Branch

targets

CMPPTREI

1812

Indicator

options

Compare

operand

1

Compare

operand

2

Indicator

targets

Operand

1:

Pointer

data

object

Operand

2:

Pointer

data

object

Operand

3

[4]:

v

v

Branch

Form-Instruction

number,

relative

instruction

number,

branch

point,

or

instruction

pointer.

Machine

Interface

Instructions

103

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

The

pointer

specified

by

operand

1

is

compared

with

the

pointer

specified

by

operand

2

to

determine

if

both

operands

are

of

the

same

type

and

contain

equal

values.

Based

on

the

comparison,

the

resulting

condition

is

used

with

the

extender

to

transfer

control

(branch

form)

or

to

assign

a

value

to

each

of

the

indicator

operands

(indicator

form).

Pointers

may

be

specified

for

operands

1

and

2

in

any

combination.

An

equal

condition

occurs

if

the

pointers

are

of

the

same

type

and

contain

the

same

value,

or

if

neither

pointer

has

been

set.

If

one

pointer

is

set

and

the

other

is

not,

a

not

equal

condition

occurs.

System

pointers

and

data

pointers

are

not

resolved

by

this

instruction.

The

comparison

result

is

undefined

when

an

unresolved

pointer

is

supplied

for

one

or

both

operands.

Note

that

any

authorities

stored

in

a

resolved

system

pointer

are

part

of

the

pointer.

Thus

system

pointers

pointing

to

the

same

object,

but

with

different

levels

of

authority,

will

compare

as

not

equal.

Since

any

pointer

type

may

be

specified

for

this

instruction,

the

pointer

type

invalid

(hex

2402)

exception

is

not

signaled

except

for

pointers

used

as

a

base

for

the

operands.

Similarly,

since

the

instruction

accepts

unset

pointers,

the

pointer

does

not

exist

(hex

2401)

exception

is

not

signaled

except

for

pointers

used

as

a

base

for

the

operands.

While

it

is

possible

for

two

synchronization

pointers

to

compare

as

equal,

the

item

referenced

by

the

pointer

may

not

be

usable

from

both

pointer

locations.

A

copied

synchronization

pointer

is

not

useful,

because

a

synchronization

pointer

is

defined

to

reside

at

only

a

single

location

in

memory.

Resultant

Conditions:

v

v

Equal

v

Not

equal

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

104

iSeries:

Machine

Interface

Instructions

APIs

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

Machine

Interface

Instructions

105

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Compare

Space

Addressability

(CMPSPAD)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

[4-6]

CMPSPADB

1CF2

Branch

options

Compare

operand

1

Compare

operand

2

Branch

targets

CMPSPADI

18F2

Indicator

options

Compare

operand

1

Compare

operand

2

Indicator

targets

Operand

1:

Numeric

variable

scalar,

character

variable

scalar,

numeric

variable

array,

character

variable

array,

pointer

data

object,

pointer

data

object

array.

Operand

2:

Numeric

variable

scalar,

character

variable

scalar,

numeric

variable

array,

character

variable

array,

pointer

data

object,

pointer

data

object

array.

Operand

3

[4-6]:

v

v

Branch

Form-Instruction

number,

relative

instruction

number,

branch

point,

or

instruction

pointer.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

The

space

addressability

of

the

object

specified

by

operand

1

is

compared

with

the

space

addressability

of

the

object

specified

by

operand

2.

Based

on

the

results

of

the

comparison,

the

resulting

condition

is

used

with

the

extender

to

transfer

control

(branch

form)

or

to

assign

a

value

to

each

of

the

indicator

operands

(indicator

form).

If

the

operands

are

not

in

the

same

space,

the

resultant

condition

is

unequal.

If

the

operands

are

in

the

same

space

and

the

offset

of

operand

1

is

larger

or

smaller

than

the

offset

of

operand

2,

the

resultant

condition

is

high

or

low,

respectively.

Equal

occurs

only

if

the

operands

are

in

the

same

space

at

the

same

offset.

Therefore,

the

resultant

conditions

(high,

low,

equal,

and

unequal)

are

mutually

exclusive.

Consequently,

if

you

specify

that

an

action

be

taken

upon

the

nonexistence

of

a

condition,

this

results

in

the

action

being

taken

upon

the

occurrence

of

any

of

the

other

three

possible

conditions.

For

example,

a

branch

not

high

would

result

in

the

branch

being

taken

on

a

low,

equal,

or

unequal

condition.

If

a

pointer

data

object

operand

contains

a

data

pointer

value

upon

execution

of

the

instruction,

the

addressability

is

compared

to

the

pointer

data

object

rather

than

to

the

scalar

described

by

the

data

pointer

value.

The

variable

scalar

references

allowed

on

operands

1

and

2

cannot

be

described

through

a

data

pointer

value.

The

object

destroyed

(hex

2202)

exception,

parameter

reference

violation

(hex

0801)

exception,

and

pointer

does

not

exist

(hex

2401)

exception

are

not

signaled

when

operand

1

or

operand

2

is

based

on

a

space

pointer

machine

object.

This

occurs

when

the

space

pointer

machine

object

contains

an

internal

machine

value

that

indicates

one

of

these

error

conditions

exists.

If

the

corresponding

exception

is

not

signaled,

the

resulting

condition

of

the

comparison

operation

is

not

defined

other

than

that

it

will

be

one

of

the

four

valid

resultant

conditions

for

this

instruction.

Resultant

Conditions:

v

v

High

v

Low

v

Equal

v

Unequal

106

iSeries:

Machine

Interface

Instructions

APIs

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

Machine

Interface

Instructions

107

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Compare

To

Pad

(CMPTOPAD)

Bound

program

access

Built-in

number

for

CMPTOPAD

is

429.

CMPTOPAD

(

string

:

address

of

aggregate(*)

pad

:

signed

binary(1,4,8)

-

rightmost

byte

specifies

the

pad

value

OR

unsigned

binary(1)

OR

aggregate(1)

string_length

:

unsigned

binary(4,8)

value

which

specifies

the

length

of

the

string

)

:

signed

binary(4,8)

value

which

indicates

if

the

string

is

lexically

less

than

(-1),

equal

to

(0)

or

greater

than

(1)

a

string

of

equal

length

which

would

be

composed

entirely

of

the

pad

byte

value,

replicated

for

the

length

of

the

string

Description:

A

logical

(character)

compare

is

done

between

the

storage

specified

by

string

and

the

pad

byte,

which

is

logically

replicated

as

necessary.

If

the

first

byte

of

the

string

is

less

than

the

pad

byte

value,

the

result

is

-1;

if

the

string

byte

is

greater

the

result

is

1.

If

the

bytes

are

equal

the

operation

continues

with

the

next

byte

of

the

string.

This

process

is

repeated

until

an

inequality

result

is

returned,

or

the

number

of

bytes

specified

by

string

length

have

been

compared.

If

all

bytes

compare

equal,

the

result

is

0.

If

the

string

length

has

a

value

of

zero,

the

result

is

0.

The

string

operand

can

point

to

storage

containing

values

of

any

data

type.

The

values

will

be

interpreted

as

a

logical

character

string.

If

the

string

operand

points

to

storage

which

contains

pointers,

any

pointer

tags

will

not

be

taken

into

account,

since

this

is

strictly

a

byte

comparison.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

108

iSeries:

Machine

Interface

Instructions

APIs

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

08

Argument/Parameter

0801

Parameter

Reference

Violation

22

Object

Access

2202

Object

Destroyed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Complement

String

(COMSTR)

Bound

program

access

Built-in

number

for

COMSTR

is

452.

COMSTR

(

receiver_string

:

address

of

aggregate(*)

for

the

result

of

the

complement

source_string

:

address

of

aggregate(*)

string_length

:

unsigned

binary(4,8)

value

which

specifies

the

length

of

the

two

strings

)

Description:

Each

byte

value

of

the

source

string,

for

the

number

of

bytes

indicated

by

string

length,

is

logically

complemented

on

a

bit-by-bit

basis

(i.e.

one’s

complement).

The

results

are

placed

in

the

receiver

string.

If

the

strings

overlap

in

storage,

predictable

results

occur

only

if

the

overlap

is

fully

coincident.

If

the

space(s)

indicated

by

the

two

addresses

are

not

long

enough

to

contain

the

number

of

bytes

indicated

by

string

length,

a

space

addressing

violation

(hex

0601)

is

signalled.

Partial

results

in

this

case

are

unpredictable.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Machine

Interface

Instructions

109

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

08

Argument/Parameter

0801

Parameter

Reference

Violation

22

Object

Access

2202

Object

Destroyed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Compress

Data

(CPRDATA)

Op

Code

(Hex)

Operand

1

1041

Compress

data

template

Operand

1:

Space

pointer.

Bound

program

access

Built-in

number

for

CPRDATA

is

107.

CPRDATA

(

compress_data_template

:

address

)

Description:

The

instruction

compresses

user

data

of

a

specified

length.

Operand

1

identifies

a

template

which

identifies

the

data

to

be

compressed.

The

template

also

identifies

the

result

space

to

receive

the

compressed

data.

110

iSeries:

Machine

Interface

Instructions

APIs

The

compress

data

template

must

be

aligned

on

a

16-byte

boundary.

The

format

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Source

length

Bin(4)

4

4

Result

area

length

Bin(4)

8

8

Actual

result

length

Bin(4)

+

12

C

Compression

algorithm

Bin(2)

1

=

Simple

TERSE

algorithm

2

=

IBM(R)

LZ1

algorithm

14

E

Reserved

(binary

0)

Char(18)

32

20

Source

space

pointer

Space

pointer

48

30

Result

space

pointer

Space

pointer

64

40

—-

End

—-

Note:

The

input

value

associated

with

template

fields

annotated

with

a

plus

sign

(+)

are

ignored

by

the

instruction;

these

fields

are

updated

by

the

instruction

to

return

information

about

instruction

execution.

The

data

at

the

location

specified

by

the

source

space

pointer

for

the

length

specified

by

the

source

length

is

compressed

and

stored

at

the

location

specified

by

the

result

space

pointer.

The

actual

result

length

is

set

to

the

number

of

bytes

in

the

compressed

result.

The

source

data

is

not

modified.

The

value

of

both

the

source

length

field

and

result

area

length

field

must

be

greater

than

or

equal

to

zero.

If

either

of

these

conditions

is

not

met,

a

template

value

invalid

(hex

3801)

exception

is

signalled.

If

the

length

of

the

compressed

result

is

greater

than

the

value

in

the

result

area

length

field,

a

materialization

length

invalid

(hex

3803)

exception

is

signalled.

The

compression

algorithm

field

specifies

the

algorithm

used

to

compress

the

data.

The

IBM

LZ1

algorithm

tends

to

produce

better

compression

on

shorter

input

strings

than

the

simple

TERSE

algorithm.

The

algorithm

choice

is

stored

in

the

compressed

output

data

so

the

Decompress

Data

(DCPDATA)

instruction

will

automatically

select

the

correct

decompression

algorithm.

Only

scalar

(non-pointer)

data

is

compressed,

so

any

pointers

in

the

data

to

be

compressed

are

destroyed

in

the

output

of

the

Compress

Data

instruction.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

Machine

Interface

Instructions

111

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

3803

Materialization

Length

Invalid

44

Protection

Violation

112

iSeries:

Machine

Interface

Instructions

APIs

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Compute

Array

Index

(CAI)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

Operand

4

1044

Array

index

Subscript

A

Subscript

B

Dimension

Operand

1:

Binary(2)

variable

scalar.

Operand

2:

Binary(2)

scalar.

Operand

3:

Binary(2)

scalar.

Operand

4:

Binary(2)

constant

scalar

object

or

immediate

operand.

Description:

This

instruction

provides

the

ability

to

reduce

multidimensional

array

subscript

values

into

a

single

index

value

which

can

then

be

used

in

referencing

the

single-dimensional

arrays

of

the

system.

This

index

value

is

computed

by

performing

the

following

arithmetic

operation

on

the

indicated

operands.

Array

Index

=

Subscript

A

+

((Subscript

B-1)

X

Dimension)

The

numeric

value

of

the

subscript

B

operand

is

decreased

by

1

and

multiplied

by

the

numeric

value

of

the

dimension

operand.

The

result

of

this

multiplication

is

added

to

the

subscript

A

operand

and

the

sum

is

placed

in

the

array

index

operand.

All

the

operands

must

be

binary

with

any

implicit

conversions

occurring

according

to

the

rules

of

arithmetic

operations

documented

in

Arithmetic

Operations.

The

usual

rules

of

algebra

are

observed

concerning

the

subtraction,

addition,

and

multiplication

of

operands.

This

instruction

provides

for

mapping

multidimensional

arrays

to

single-dimensional

arrays.

The

elements

of

an

array

with

the

dimensions

(d1,

d2,

d3,

...,

dn)

can

be

defined

as

a

single-dimensional

array

with

d1*d2*d3*...*dn

elements.

To

reference

a

specific

element

of

the

multidimensional

array

with

subscripts

(s1,s2,s3,...sn),

it

is

necessary

to

convert

the

multiple

subscripts

to

a

single

subscript

for

use

in

the

single-dimensional

array.

This

single

subscript

can

be

computed

using

the

following:

s1+((s2-1)*d1)+(s3-1)*d1*d2)+...+((sn-1)*d*d2*d3*...*dm)

where

m

=

n-1

The

CAI

instruction

is

used

to

form

a

single

index

value

from

two

subscript

values.

To

reduce

N

subscript

values

into

a

single

index

value,

N-1

uses

of

this

instruction

are

necessary.

Assume

that

S1,

S2,

and

S3

are

three

subscript

values

and

that

D1

is

the

size

of

one

dimension,

D2

is

the

size

of

the

second

dimension,

and

the

D1D2

is

the

product

of

D1

and

D2.

The

following

two

uses

of

this

instruction

reduce

the

three

subscripts

to

a

single

subscript.

CAI

INDEX,

S1,

S2,

D1

Calculates

s1+(s2-1)*d1

CAI

INDEX,

INDEX,

S3,

D1D2

Calculates

s1+(s2-1)*d1+(s3-1)*d2*d1

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Machine

Interface

Instructions

113

MCNPFAO.htm

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C0A

Size

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

114

iSeries:

Machine

Interface

Instructions

APIs

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Compute

Date

Duration

(CDD)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

Operand

4

0424

Date

duration

Date

1

Date

2

Instruction

template

Operand

1:

Packed

decimal

variable

scalar.

Operand

2:

Character

scalar.

Operand

3:

Character

scalar.

Operand

4:

Space

pointer.

Bound

program

access

Built-in

number

for

CDD

is

101.

CDD

(

date_duration

:

address

of

packed

decimal

date1

:

address

date2

:

address

instruction_template

:

address

)

Description:

The

date

specified

by

operand

3

is

subtracted

from

the

date

specified

by

operand

2

and

the

resulting

date

duration

is

placed

in

operand

1.

Operand

4

defines

the

data

definitional

attributes

for

operands

1

through

3.

A

negative

value

will

be

returned

when

the

date

1

operand

is

less

than

the

date

2

operand.

The

following

describes

the

instruction

template.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Instruction

template

Char(*)

0

0

Instruction

template

size

UBin(4)

4

4

Operand

1

data

definitional

attribute

template

number

UBin(2)

6

6

Operand

2

data

definitional

attribute

template

number

UBin(2)

8

8

Operand

3

data

definitional

attribute

template

number

UBin(2)

10

A

Reserved

(binary

0)

Char(2)

Machine

Interface

Instructions

115

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

12

C

Operand

2

length

UBin(2)

14

E

Operand

3

length

UBin(2)

16

10

Reserved

(binary

0)

Char(26)

42

2A

Data

definitional

attribute

template

list

Char(*)

42

2A

Size

of

the

DDAT

list

UBin(4)

46

2E

Number

of

DDATs

UBin(2)

48

30

Reserved

(binary

0)

Char(10)

58

3A

DDAT

offset

[*]

UBin(4)

*

*

Data

definitional

attribute

template

[*]

Char(*)

*

*

—-

End

—-

A

data

definitional

attribute

template

(DDAT)

number

is

a

number

that

corresponds

to

the

relative

position

of

a

template

in

the

data

definitional

attribute

template

list.

For

example,

the

number

1

references

the

first

template.

The

valid

values

for

this

field

are

1,

2,

and

3.

The

DDAT

for

operand

1

must

be

valid

for

a

date

duration.

The

DDATs

for

operands

2

and

3

must

be

valid

for

a

date

and

must

be

identical.

Otherwise,

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

Operand

2

length

and

operand

3

length

are

specified

in

number

of

bytes.

The

size

of

the

DDAT

list

is

specified

in

bytes.

The

number

of

DDATs

is

the

count

of

DDATs

specified

for

this

instruction

template.

The

maximum

number

of

DDATs

that

can

be

specified

is

3.

The

DDAT

offset

is

the

number

of

bytes

from

the

start

of

the

DDAT

list

to

the

start

of

the

specific

DDAT.

There

should

be

as

many

DDAT

offsets

as

there

are

DDATs

specified.

A

data

definitional

attribute

template

defines

the

presentation

of

the

data.

Each

template

describes

the

definitional

attributes

of

the

operands.

The

length

of

the

character

operands

will

be

defined

by

the

template.

For

a

further

description

of

the

data

definitional

attribute

template,

see

Data

Definitional

Attribute

Template.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

116

iSeries:

Machine

Interface

Instructions

APIs

MINDTCON.htm#HDRDDAT
MINDTCON.htm#HDRDDAT

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C15

Date

Boundary

Overflow

0C16

Data

Format

Error

0C17

Data

Value

Error

0C18

Date

Boundary

Underflow

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

Machine

Interface

Instructions

117

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Compute

Length

of

Null-Terminated

String

(STRLENNULL)

Bound

program

access

Built-in

number

for

STRLENNULL

is

23.

STRLENNULL

(

null_terminated_string

:

address

of

aggregate(*)

)

:

unsigned

binary(4)

value

which

specifies

the

number

of

bytes

between

the

beginning

of

the

string

and

the

first

null

(ie.

zero)

byte

Description:

The

null

terminated

string

is

searched

for

the

first

null

byte

(hex

00).

The

number

of

non-null

bytes

found

is

returned.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

118

iSeries:

Machine

Interface

Instructions

APIs

Compute

Math

Function

Using

One

Input

Value

(CMF1)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-5]

CMF1

100B

Receiver

Controls

Source

CMF1B

1C0B

Branch

options

Receiver

Controls

Source

Branch

targets

CMF1I

180B

Indicator

options

Receiver

Controls

Source

Indicator

targets

Operand

1:

Numeric

variable

scalar.

Operand

2:

Character(2)

scalar.

Operand

3:

Numeric

scalar.

Operand

4-5:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

The

mathematical

function,

indicated

by

the

controls

operand,

is

performed

on

the

source

operand

value

and

the

result

is

placed

in

the

receiver

operand.

The

calculation

is

always

done

in

floating-point.

The

result

of

the

operation

is

copied

into

the

receiver

operand.

The

controls

operand

must

be

a

character

scalar

that

specifies

which

mathematical

function

is

to

be

performed.

It

must

be

at

least

2

bytes

in

length

and

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Controls

operand

Char(2)

Hex

0001

=

Sine

Hex

0002

=

Arc

sine

Hex

0003

=

Cosine

Hex

0004

=

Arc

cosine

Hex

0005

=

Tangent

Hex

0006

=

Arc

tangent

Hex

0007

=

Cotangent

Hex

0010

=

Exponential

function

Hex

0011

=

Logarithm

based

e

(natural

logarithm)

Hex

0012

=

Sine

hyperbolic

Hex

0013

=

Cosine

hyperbolic

Hex

0014

=

Tangent

hyperbolic

Hex

0015

=

Arc

tangent

hyperbolic

Hex

0020

=

Square

root

All

other

values

are

reserved

Machine

Interface

Instructions

119

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

2

2

—-

End

—-

The

controls

operand

mathematical

functions

are

as

follows:

v

v

Hex

0001-Sine

The

sine

of

the

numeric

value

of

the

source

operand,

whose

value

is

considered

to

be

in

radians,

is

computed

and

placed

in

the

receiver

operand.

The

result

is

in

the

range:

-1

<=

SIN(x)

<=

1

v

Hex

0002-Arc

sine

The

arc

sine

of

the

numeric

value

of

the

source

operand

is

computed

and

the

result

(in

radians)

is

placed

in

the

receiver

operand.

The

result

is

in

the

range:

-pi/2

<=

ASIN(x)

<=

+pi/2

v

Hex

0003-Cosine

The

cosine

of

the

numeric

value

of

the

source

operand,

whose

value

is

considered

to

be

in

radians,

is

computed

and

placed

in

the

receiver

operand.

The

result

is

in

the

range:

-1

<=

COS(x)

<=

1

v

Hex

0004-Arc

cosine

The

arc

cosine

of

the

numeric

value

of

the

source

operand

is

computed

and

the

result

(in

radians)

is

placed

in

the

receiver

operand.

The

result

is

in

the

range:

0

<=

ACOS(x)

<=

pi

v

Hex

0005-Tangent

The

tangent

of

the

source

operand,

whose

value

is

considered

to

be

in

radians,

is

computed

and

the

result

is

placed

in

the

receiver

operand.

The

result

is

in

the

range:

-infinity

<=

TAN(x)

<=

+infinity

v

Hex

0006-Arc

tangent

The

arc

tangent

of

the

source

operand

is

computed

and

the

result

(in

radians)

is

placed

in

the

receiver

operand.

The

result

is

in

the

range:

-pi/2

<=

ATAN(x)

<=

pi/2

v

Hex

0007-Cotangent

The

cotangent

of

the

source

operand,

whose

value

is

considered

to

be

in

radians,

is

computed

and

the

result

is

placed

in

the

receiver

operand.

The

result

is

in

the

range:

-infinity

<=

COT(x)

<=

+infinity

v

Hex

0010-Exponential

function

The

computation

e

power

(source

operand)

is

performed

and

the

result

is

placed

in

the

receiver

operand.

The

result

is

in

the

range:

0

<=

EXP(x)

<=

+infinity

v

Hex

0011-Logarithm

based

e

(natural

logarithm)

120

iSeries:

Machine

Interface

Instructions

APIs

The

natural

logarithm

of

the

source

operand

is

computed

and

the

result

is

placed

in

the

receiver

operand.

The

result

is

in

the

range:

-infinity

<=

LN(x)

<=

+infinity

v

Hex

0012-Sine

hyperbolic

The

sine

hyperbolic

of

the

numeric

value

of

the

source

operand

is

computed

and

the

result

(in

radians)

is

placed

in

the

receiver

operand.

The

result

is

in

the

range:

-infinity

<=

SINH(x)

<=

+infinity

v

Hex

0013-Cosine

hyperbolic

The

cosine

hyperbolic

of

the

numeric

value

of

the

source

operand

is

computed

and

the

result

(in

radians)

is

placed

in

the

receiver

operand.

The

result

is

in

the

range:

+1

<=

COSH(x)

<=

+infinity

v

Hex

0014-Tangent

hyperbolic

The

tangent

hyperbolic

of

the

numeric

value

of

the

source

operand

is

computed

and

the

result

(in

radians)

is

placed

in

the

receiver

operand.

The

result

is

in

the

range:

-1

<=

TANH(x)

<=

+1

v

Hex

0015-Arc

tangent

hyperbolic

The

inverse

of

the

tangent

hyperbolic

of

the

numeric

value

of

the

source

operand

is

computed

and

the

result

(in

radians)

is

placed

in

the

receiver

operand.

The

result

is

in

the

range:

-infinity

<=

ATANH(x)

<=

+infinity

v

Hex

0020-Square

root

The

square

root

of

the

numeric

value

of

the

source

operand

is

computed

and

placed

in

the

receiver

operand.

The

result

is

in

the

range:

0

<=

SQRT(x)

<=

+infinity

The

following

chart

shows

some

special

cases

for

certain

arguments

(X)

of

the

different

mathematical

functions

which

take

one

argument

value.

X

Masked

UnMasked

Maximum

Minimum

Function

NaN

NaN

+Infinity

-Infinity

+0

-0

Value

Value

Other

Sine

g

A(e)

A(f)

A(f)

+0

-0

A(1,f)

A(1,f)

B(3)

Arc

sine

g

A(e)

A(f)

A(f)

+0

-0

A(6,f)

A(6,f)

-

Cosine

g

A(e)

A(f)

A(f)

+1

+1

A(1,f)

A(1,f)

B(3)

Arc

cosine

g

A(e)

A(f)

A(f)

+pi/2

+pi/2

A(6,f)

A(6,f)

-

Tangent

g

A(e)

A(f)

A(f)

+0

-0

A(1,f)

A(1,f)

B(3)

Arc

Tangent

g

A(e)

+pi/2

-pi/2

+0

-0

-

-

-

Cotangent

g

A(e)

A(f)

A(f)

+inf

-inf

A(1,f)

A(1,f)

B(3)

E

Exponent

g

A(e)

+inf

+0

+1

+1

C(4,a)

D(5,b)

-

Logarithm

g

A(e)

+inf

A(f)

-inf

-inf

-

-

A(2,f)

Sine

hyperbolic

g

A(e)

+inf

-inf

+0

-0

-

-

-

Cosine

hyperbolic

g

A(e)

+inf

+inf

+1

+1

-

-

-

Tangent

hyperbolic

g

A(e)

+1

-1

+0

-0

-

-

-

Machine

Interface

Instructions

121

X

Masked

UnMasked

Maximum

Minimum

Function

NaN

NaN

+Infinity

-Infinity

+0

-0

Value

Value

Other

Arc

tangent

hyperbolic

g

A(e)

A(f)

A(f)

+0

-0

A(6,f)

A(6,f)

-

Square

root

g

A(e)

+inf

A(f)

+0

-0

-

-

A(2,f)

Special

cases

for

single

argument

math

functions

Capital

letters

in

the

chart

indicate

the

exceptions,

small

letters

indicate

the

returned

results,

and

Arabic

numerals

indicate

the

limits

of

the

arguments

(X)

as

defined

in

the

following

lists:

A

=

Floating-point

invalid

operand

(hex

0C09)

exception

(no

result

stored

if

unmasked;

if

masked,

occurrence

bit

is

set)

B

=

Floating-point

inexact

result

(hex

0C0D)

exception

(result

is

stored

whether

or

not

exception

is

masked)

C

=

Floating-point

overflow

(hex

0C06)

exception

(no

result

is

stored

if

unmasked;

if

masked,

occurrence

bit

is

set)

D

=

Floating-point

underflow

(hex

0C07)

exception

(no

result

is

stored

if

unmasked;

occurrence

bit

is

always

set)

a

=

Result

follows

the

rules

that

depend

on

round

mode

b

=

Result

is

+0

or

a

denormalized

value

c

=

Result

is

+infinity

d

=

Result

is

-infinity

e

=

Result

is

the

masked

form

of

the

input

NaN

f

=

Result

is

the

system

default

masked

NaN

g

=

Result

is

the

input

NaN

inf

=

Result

is

infinity

1

=

|

pi

*

2**50

|=Hex

432921FB54442D18

2

=

Argument

is

in

the

range:

-inf

<

x

<

-0

3

=

|

pi

*

2**26

|=Hex

41A921FB54442D18

4

=

1n(2**1023)

Hex

40862E42FEFA39EF

5

=

1n(2**-1021.4555)=Hex

C086200000000000

6

=

Argument

is

in

the

range:

-1

<=

x

<=

+1

The

following

chart

provides

accuracy

data

for

the

mathematical

functions

that

can

be

invoked

by

this

instruction.

Function

Name

Sample

Selection

Accuracy

data

Relative

Error(e)

Absolute

Error(E)

A

Range

of

x

D

MAX(e)

SD(e)

MAX(E)

SD(E)

Arc

cosine

9

0<=x<=3.14

U

8.26*

10**-14

2.11*10**-15

Arc

sine

10

-1.57<=x<=1.57

U

1.02*10**-13

2.66*10**-15

Arc

tangent

1

-pi/2<x<pi/2

1

3.33*10**-16

9.57*10**-17

Arc

tangent

hyperbolic

14

-3<=x<=3

U

1.06*10**-14

1.79*10**-15

Cosine

(See

Sine

below)

Cosine

hyperbolic

(See

Sine

Hyperbolic

below)

Cotangent

11

-10<=x<=100

.000001<=x<=.001

4000<=x<=4000000

U

U

U

4.83*10**-16

4.36*10**-16

5.72*10**-16

1.48*10**-16

1.49*10**-16

1.46*10**-16

Exponential

2

-100<=x<=300

U

5.70*10**-14

1.13*10**-14

Natural

Logarithm

3

0.5<=x<=1.5

U

2.77*10**-16

8.01*10**-17

122

iSeries:

Machine

Interface

Instructions

APIs

Function

Name

Sample

Selection

Accuracy

data

Relative

Error(e)

Absolute

Error(E)

A

Range

of

x

D

MAX(e)

SD(e)

MAX(E)

SD(E)

Natural

Logarithm

4

-100<=x<=700

E

2.17*10**-16

7.37*10**-17

Sine

cosine

5

-10<=x<=100

.000001<=x<=.001

4000<=x<=4000000

U

U

U

2.22*10**-16

2.22*10**-16

2.22*10**-16

1.31*10**-16

1.56*10**-16

1.28*10**-16

Sine

cosine

6

-10<=x<=100

.000001<=x<=.001

4000<=x<=4000000

U

U

U

3.33*10**-16

4.33*10**-19

3.33*10**-16

8.39*10**-17

1.28*10**-19

8.17*10**-17

Sine/cosine

hyperbolic

12

-100<=x<=300

U

6.31*10**-16

1.97*10**-16

Square

root

7

-100<=x<=700

E

4.13*10**-16

1.27*10**-16

Tangent

8

-10<=x<=100

.000001<=x<=.001

4000<=x<=4000000

U

U

U

4.59*10**-16

4.42*10**-16

4.77*10**-16

1.54*10**-16

1.44*10**-16

1.43*10**-16

3.25*10**-19

8.06*10**-20

Tangent

hyperbolic

13

-100<=x<=300

U

8.35*10**-16

3.87*10**-17

2.22*10**-16

3.17*10**-17

Note:

Algorithm

Notes:

1.

f(x)

=

x,

and

g(x)

=

ATAN(TAN(x)).

2.

f(x)

=

e**x,

and

g(x)

=

e**(1n(e**x)).

3.

f(x)

=

1n(x),

and

g(x)

=

1n(e**(1n(x))).

4.

f(x)

=

x,

and

g(x)

=

1n(e**x).

5.

Sum

of

squares

algorithm.

f(x)

=

1,

and

g(x)

=

SIN(x))**2

+

(COS(x))**2.

6.

Double

angle

algorithm.

f(x)

-

SIN(2x),

and

g(x)

=

2*(SIN(x)*COS(x)).

7.

f(x)

=

e(**x,

and

g(x)

=

(SQR(e**x))**2.

8.

f(x)

=

TAN(x),

and

g(x)

=

SIN(x)

/

COS(x).

9.

f(x)

=

x,

and

g(x)

=

ACOS(COS(x)).

10.

f(x)

=

x,

and

g(x)

=

ASIN(SIN(x)).

11.

f(x)

=

COT(x),

and

g(x)

=

COS(x)

/

SIN(x).

12.

f(x)

=

SINH(2x),

and

g(x)

=

2*(SINH(x)*COSH(x)).

13.

f(x)

=

TANH(x),

and

g(x)

=

SINH(x)

/

COSH(x).

14.

f(x)

=

x,

and

g(x)

=

ATANH(TANH(x)).

Distribution

Note:

1.

The

sample

input

arguments

were

tangents

of

numbers,

x,

uniformly

distributed

between

-pi/2

and

+pi/2.

Accuracy

data

for

CMF1

mathematical

functions

The

vertical

columns

in

the

accuracy

data

chart

have

the

following

meanings:

v

v

Function

Name:

This

column

identifies

the

principal

mathematical

functions

evaluated

with

entries

arranged

in

alphabetical

order

by

function

name.

v

Sample

Selection:

This

column

identifies

the

selection

of

samples

taken

for

a

particular

math

function

through

the

following

subcolumns:

–

Machine

Interface

Instructions

123

–

A:

identifies

the

algorithm

used

against

the

argument,

x,

to

gather

the

accuracy

samples.

The

numbers

in

this

column

refer

to

notes

describing

the

functions,

f(x)

and

g(x),

which

were

calculated

to

test

for

the

anticipated

relation

where

f(x)

should

equal

g(x).

An

accuracy

sample

then,

is

an

evaluation

of

the

degree

to

which

this

relation

held

true.

The

algorithm

used

to

sample

the

arctangent

function,

for

example,

defines

g(x)

to

first

calculate

the

tangent

of

x

to

provide

an

appropriate

distribution

of

input

arguments

for

the

arctangent

function.

Since

f(x)

is

defined

simply

as

the

value

of

x,

the

relation

to

be

evaluated

is

then

x=ARCTAN(TAN(x)).

This

type

of

algorithm,

where

a

function

and

its

inverse

are

used

in

tandem,

is

the

usual

type

employed

to

provide

the

appropriate

comparison

values

for

the

evaluation.

–

″Range

of

x″:

gives

the

range

of

x

used

to

obtain

the

accuracy

samples.

The

test

values

for

x

are

uniformly

distributed

over

this

range.

It

should

be

noted

that

x

is

not

always

the

direct

input

argument

to

the

function

being

tested;

it

is

sometimes

desirable

to

distribute

the

input

arguments

in

a

nonuniform

fashion

to

provide

a

more

complete

test

of

the

function

(see

column

D

below).

For

each

function,

accuracy

data

is

given

for

one

or

more

segments

within

the

valid

range

of

x.

In

each

case,

the

numbers

given

are

the

most

meaningful

to

the

function

and

range

under

consideration.

–

D:

identifies

the

distribution

of

arguments

input

to

the

particular

function

being

sampled.

The

letter

E

indicates

an

exponential

distribution.

The

letter

U

indicates

a

uniform

distribution.

A

number

refers

to

a

note

providing

detailed

information

regarding

the

distribution.
v

Accuracy

Data:

The

maximum

relative

error

and

standard

deviation

of

the

relative

error

are

generally

useful

and

revealing

statistics;

however,

they

are

useless

for

the

range

of

a

function

where

its

value

becomes

zero.

This

is

because

the

slightest

error

in

the

argument

can

cause

an

unpredictable

fluctuation

in

the

magnitude

of

the

answer.

When

a

small

argument

error

would

have

this

effect,

the

maximum

absolute

error

and

standard

deviation

of

the

absolute

error

are

given

for

the

range.

–

–

Relative

Error

(e):

The

maximum

relative

error

and

standard

deviation

(root

mean

square)

of

the

relative

error

are

defined:

MAX(e)

=

MAX(

ABS((f(x)

-

g(x)

)

/

f(x)))

where:

MAX

selects

the

largest

of

its

arguments

and

ABS

takes

the

absolute

value

of

its

argument.

SD(e)

=

SQR(

(1/N)

SUMSQ((f(x)

-

g(x)

)

/

f(x)))

where:

SQR

takes

the

square

root

of

its

argument

and

SUMSQ

takes

the

summation

of

the

squares

of

its

arguments

over

all

of

the

test

cases.

–

Absolute

Error

(E):

The

maximum

absolute

error

produced

during

the

testing

and

the

standard

deviation

(root

mean

square)

of

the

absolute

error

are:

MAX(E)

=

MAX(

ABS(

f(x)

-

g(x)

)

)

where:

the

operators

are

those

defined

above.

SD(E)

=

SQR(

(1/N)

SUMSQ(

f(x)

-

g(x)

)

)

where:

the

operators

are

those

defined

above.

Limitations

(Subject

to

Change):

The

following

are

limits

that

apply

to

the

functions

performed

by

this

instruction.

The

source

and

receiver

operands

must

both

be

specified

as

floating-point

with

the

same

length

(4

bytes

for

short

format

or

8

bytes

for

long

format).

Resultant

Conditions:

v

v

Positive-The

algebraic

value

of

the

receiver

operand

is

positive.

124

iSeries:

Machine

Interface

Instructions

APIs

v

Negative-The

algebraic

value

of

the

receiver

operand

is

negative.

v

Zero-The

algebraic

value

of

the

receiver

operand

is

zero.

v

Unordered-The

value

assigned

to

the

floating-point

result

is

NaN.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

0C0D

Floating-Point

Inexact

Result

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

Machine

Interface

Instructions

125

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

2E02

Security

Audit

Journal

Failure

32

Scalar

Specification

3201

Scalar

Type

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Compute

Math

Function

Using

Two

Input

Values

(CMF2)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

4

Operand

[5-8]

CMF2

100C

Receiver

Controls

Source

1

Source

2

CMF2B

1C0C

Branch

options

Receiver

Controls

Source

1

Source

2

Branch

targets

CMF2I

180C

Indicator

options

Receiver

Controls

Source

1

Source

2

Indicator

targets

Operand

1:

Numeric

variable

scalar.

Operand

2:

Character(2)

scalar.

126

iSeries:

Machine

Interface

Instructions

APIs

Operand

3:

Numeric

scalar.

Operand

4:

Numeric

scalar.

Operand

5-8:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

The

mathematical

function,

indicated

by

the

controls

operand,

is

performed

on

the

source

operand

values

and

the

result

is

placed

in

the

receiver

operand.

The

calculation

is

always

done

in

floating-point.

The

controls

operand

must

be

a

character

scalar

that

specifies

which

mathematical

function

is

to

be

performed.

It

must

be

at

least

2

bytes

in

length

and

have

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Controls

operand

Char(2)

Hex

0001

=

Power

(x

to

the

y)

All

other

values

are

reserved

2

2

—-

End

—-

The

computation

x

power

y,

where

x

is

the

first

source

operand

and

y

is

the

second

source

operand,

is

performed

and

the

result

is

placed

in

the

receiver

operand.

The

following

chart

shows

some

special

cases

for

certain

arguments

of

the

power

function

(x**y).

Within

the

chart,

the

capitalized

letters

X

and

Y

refer

to

the

absolute

value

of

the

arguments

x

and

y;

that

is,

X

=

|x|

and

Y

=

|y|.

y

-inf

y<0

y<0

y<0

-1

-1/2

+0

+1/2

+1

y>0

y>0

y>0

+inf

M-

UnM-

y=

y=2n

real

or

y=

y=2n

real

NaN

NaN

x

2n+1

-0

2n+1

+inf

+0

+0

+0

+0

+0

+0

+1

+inf

+inf

+inf

+inf

+inf

+inf

b

A(c)

x>1

+0

+1

———

X**Y

+1

———

X**Y

+1

———

X**Y

+1

———

X

+1

—————

SQRT(x)

+1

SQRT(x)

x

x**y

x**y

x**y

+inf

b

A(c)

X=+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

b

A(c)

0<x<1

+inf

+1

———

X**Y

+1

———

X**Y

+1

———

X**Y

+1

———

X

+1

—————

SQRT(X)

+1

SQRT(x)

x

x**y

x**y

x**y

+0

b

A(c)

x=+0

E(f)

E(f)

E(f)

E(f)

E(f)

E(f)

+1

+0

+0

+0

+0

+0

+0

b

A(c)

x=-0

E(f)

E(g)

E(f)

E(f)

E(g)

E(g)

+1

-0

-0

-0

+0

+0

+0

b

A(c)

0>x>-1

A(a)

-1

———

X**Y

+1

———

X**Y

A(a)

-1

———

X

A(a)

+1

A(a)

x

-X**y

X**y

A(a)

A(a)

b

A(c)

x=-1

A(a)

-1

+1

A(a)

-1

A(a)

+1

A(a)

-1

-1

+1

A(a)

A(a)

b

A(c)

x<-1

A(a)

-1

———

X**Y

+1

———

X**Y

A(a)

-1

———

X

A(a)

+1

A(a)

x

-X**y

X**y

A(a)

A(a)

b

A(c)

Machine

Interface

Instructions

127

x=-inf

A(a)

-0

+0

A(a)

-0

A(a)

+1

A(a)

-inf

-inf

+inf

A(a)

A(a)

b

A(c)

Masked

Nan

b

b

b

b

b

b

b

b

b

b

b

b

b

d

A(e)

Unmasked

Nan

A(c)

A(c)

A(c)

A(c)

A(c)

A(c)

A(c)

A(c)

A(c)

A(c)

A(c)

A(c)

A(c)

A(e)

A(e)

Special

cases

of

the

power

function

(x**y)

Capital

letters

in

the

chart

indicate

the

exceptions

and

small

letters

indicate

the

returned

results

as

defined

in

the

following

list:

A

Floating-point

invalid

operand

(hex

0C09)

exception

E

Floating-point

zero

divide

(hex

0C0E)

exception

a

Result

is

the

system

default

masked

NaN

b

Result

is

the

same

NaN

c

Result

is

the

same

NaN

masked

d

Result

is

one

of

the

input

NaNs

e

Result

is

a

masked

NAN

f

Result

is

+infinity

g

Result

is

-infinity

The

following

chart

provides

accuracy

data

for

the

mathematical

function

that

can

be

invoked

by

this

instruction.

+inf

+0

+0

+0

+0

+0

+0

+1

+inf

+inf

+inf

+inf

+inf

+inf

b

A(c)

x>1

+0

+1

x**Y

+1

x**Y

+1

x**Y

+1

x

+1

SQRT(x)

+1

SQRT(x)

x

x**y

x**y

x**y

inf

b

A(c)

x=+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

b

A(c)

0<x<1

+inf

+1/x**Y

+1/x**Y

+1/x**Y

+1/x

+1/SQRT(x)

x

x**y

x**y

x**y

+0

b

A(c)

x=+0

E(f)

E(f)

E(f)

E(f)

E(f)

E(f)

+1

+0

+0

+0

+0

+0

+0

b

A(c)

Special

cases

of

the

power

function

Figure

1.

Accuracy

data

for

CMF2

mathematical

functions.

|

|

|

|

|

|

Sample

Selection

|

Accuracy

Data

|

|

|---|

|

Function|

|

|

|

|

|

Name

|

x

|

y

|

MAX(e)

|

SD(e)

|

|

|

|

|

|

|

|--

|

Power

|

1/3|-345

<=

y

<=

330

|

4.99

*

10**-16

|

1.90

*

10**-16

|

|

--

|

|

.75|-320

<=

y

<=

1320

|

2.96

*

10**-16

|

2.39

*

10**-16

|

|

--

|

|

.9

|-3605

<=

y

<=

3605|

1.23

*

10**-16

|

1.02

*

10**-16

|

|

--

|

|

10

|-165

<=

y

<=

165

|

7.10

*

10**-16

|

3.18

*

10**-16

|

|

--

|

|

712|-57

<=

y

<=

57

|

1.75

*

10**-15

|

7.24

*

10**-16

|

--

The

vertical

columns

in

the

accuracy

data

chart

have

the

following

meanings:

v

128

iSeries:

Machine

Interface

Instructions

APIs

v

Function

Name:

This

column

identifies

the

mathematical

function.

v

Sample

Selection:

This

column

identifies

the

selection

of

samples

taken

for

the

power

function.

The

algorithm

used

against

the

arguments,

x

and

y,

to

gather

the

accuracy

samples

was

a

test

for

the

anticipated

relation

where

f(x)

should

equal

g(x,y):

where:

f

(x)=

x

g(x,y)=

(x**y)**(1/y)

An

accuracy

sample

then,

is

an

evaluation

of

the

degree

to

which

this

relation

held

true.

The

range

of

argument

values

for

x

and

y

were

selected

such

that

x

was

held

constant

at

a

particular

value

and

y

was

uniformly

varied

throughout

a

range

of

values

which

avoided

overflowing

or

underflowing

the

result

field.

The

particular

values

selected

are

indicated

in

the

subcolumns

entitled

x

and

y.

v

Accuracy

Data:

The

maximum

relative

error

and

standard

deviation

(root

mean

square)

of

the

relative

error

are

generally

useful

and

revealing

statistics.

These

statistics

for

the

relative

error,

(e),

are

provided

in

the

following

subcolumns:

MAX(e)

=

MAX(

ABS(

(

f(x)

-

g(x)

)

/

f(x)

)

)

where:

MAX

selects

the

largest

of

its

arguments

and

ABS

takes

the

absolute

value

of

its

argument.

SD(e)

=

SQR(

(1/N)

SUMSQ((f(x)

-

g(x)

)

/

f(x)))

where:

SQR

takes

the

square

root

of

its

argument

and

SUMSQ

takes

the

summation

of

the

squares

of

its

arguments

over

all

of

the

test

cases.

Limitations

(Subject

to

Change):

The

following

are

limits

that

apply

to

the

functions

performed

by

this

instruction.

The

source

and

receiver

operands

must

both

be

specified

as

floating-point

with

the

same

length

(4

bytes

for

short

format

or

8

bytes

for

long

format).

Resultant

Conditions:

v

v

Positive-The

algebraic

value

of

the

receiver

operand

is

positive.

v

Negative-The

algebraic

value

of

the

receiver

operand

is

negative.

v

Zero-The

algebraic

value

of

the

receiver

operand

is

zero.

v

Unordered-The

value

assigned

to

the

floating-point

result

is

NaN.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Machine

Interface

Instructions

129

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

0C0C

Invalid

Floating-Point

Conversion

0C0D

Floating-Point

Inexact

Result

0C0E

Floating-Point

Zero

Divide

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

130

iSeries:

Machine

Interface

Instructions

APIs

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

2E02

Security

Audit

Journal

Failure

32

Scalar

Specification

3201

Scalar

Type

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Compute

Time

Duration

(CTD)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

Operand

4

0454

Time

duration

Time

1

Time

2

Instruction

template

Operand

1:

Packed

decimal

variable

scalar.

Operand

2:

Character

scalar.

Operand

3:

Character

scalar.

Operand

4:

Space

pointer.

Bound

program

access

Built-in

number

for

CTD

is

102.

CTD

(

time_duration

:

address

of

packed

decimal

time1

:

address

time2

:

address

instruction_template

:

address

)

Description:

The

time

specified

by

operand

3

is

subtracted

from

the

time

specified

by

operand

2

and

the

resulting

time

duration

is

placed

in

operand

1.

Operand

4

defines

the

data

definitional

attributes

for

operands

1

through

3.

Machine

Interface

Instructions

131

A

negative

value

will

be

returned

when

the

time

1

operand

is

less

than

the

time

2

operand.

The

following

describes

the

instruction

template.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Instruction

template

Char(*)

0

0

Instruction

template

size

UBin(4)

4

4

Operand

1

data

definitional

attribute

template

number

UBin(2)

6

6

Operand

2

data

definitional

attribute

template

number

UBin(2)

8

8

Operand

3

data

definitional

attribute

template

number

UBin(2)

10

A

Reserved

(binary

0)

Char(2)

12

C

Operand

2

length

UBin(2)

14

E

Operand

3

length

UBin(2)

16

10

Reserved

(binary

0)

Char(26)

42

2A

Data

definitional

attribute

template

list

Char(*)

42

2A

Size

of

the

DDAT

list

UBin(4)

46

2E

Number

of

DDATs

UBin(2)

48

30

Reserved

(binary

0)

Char(10)

58

3A

DDAT

offset

[*]

UBin(4)

*

*

Data

definitional

attribute

template

[*]

Char(*)

*

*

—-

End

—-

A

data

definitional

attribute

template

(DDAT)

number

is

a

number

that

corresponds

to

the

relative

position

of

a

template

in

the

data

definitional

attribute

template

list.

For

example,

the

number

1

references

the

first

template.

The

valid

values

for

this

field

are

1,

2,

and

3.

The

DDAT

for

operand

1

must

be

valid

for

a

time

duration.

The

DDATs

for

operands

2

and

3

must

be

valid

for

a

time

and

must

be

identical.

Otherwise,

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

Operand

2

length

and

operand

3

length

are

specified

in

number

of

bytes.

The

size

of

the

DDAT

list

is

specified

in

bytes.

The

number

of

DDATs

is

the

count

of

DDATs

specified

for

this

instruction

template.

The

maximum

number

of

DDATs

that

can

be

specified

is

3.

The

DDAT

offset

is

the

number

of

bytes

from

the

start

of

the

DDAT

list

to

the

start

of

the

specific

DDAT.

There

should

be

as

many

DDAT

offsets

as

there

are

DDATs

specified.

A

data

definitional

attribute

template

defines

the

presentation

of

the

data.

Each

template

describes

the

definitional

attributes

of

the

operands.

The

length

of

the

character

operands

will

be

defined

by

the

template.

For

a

further

description

of

the

data

definitional

attribute

template,

see

Data

Definitional

Attribute

Template.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

132

iSeries:

Machine

Interface

Instructions

APIs

MINDTCON.htm#HDRDDAT
MINDTCON.htm#HDRDDAT

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C16

Data

Format

Error

0C17

Data

Value

Error

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

Machine

Interface

Instructions

133

32

Scalar

Specification

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Compute

Timestamp

Duration

(CTSD)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

Operand

4

043C

Timestamp

duration

Timestamp

1

Timestamp

2

Instruction

template

Operand

1:

Packed

decimal

variable

scalar.

Operand

2:

Character

scalar.

Operand

3:

Character

scalar.

Operand

4:

Space

pointer.

Bound

program

access

Built-in

number

for

CTSD

is

103.

CTSD

(

timestamp_duration

:

address

of

packed

decimal

timestamp1

:

address

timestamp2

:

address

instruction_template

:

address

)

Description:

The

timestamp

specified

by

operand

3

is

subtracted

from

the

timestamp

specified

by

operand

2

and

the

resulting

time

duration

is

placed

in

operand

1.

Operand

4

defines

the

data

definitional

attributes

for

operands

1

through

3.

A

negative

value

will

be

returned

when

the

timestamp

1

operand

is

less

than

the

timestamp

2

operand.

The

following

describes

the

instruction

template.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Instruction

template

Char(*)

0

0

Instruction

template

size

Bin(4)

134

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

4

4

Operand

1

data

definitional

attribute

template

number

UBin(2)

6

6

Operand

2

data

definitional

attribute

template

number

UBin(2)

8

8

Operand

3

data

definitional

attribute

template

number

UBin(2)

10

A

Reserved

(binary

0)

Char(2)

12

C

Operand

2

length

UBin(2)

14

E

Operand

3

length

UBin(2)

16

10

Reserved

(binary

0)

Char(26)

42

2A

Data

definitional

attribute

template

list

Char(*)

42

2A

Size

of

the

DDAT

list

UBin(4)

46

2E

Number

of

DDATs

UBin(2)

48

30

Reserved

(binary

0)

Char(10)

58

3A

DDAT

offset

[*]

UBin(4

*

*

Data

definitional

attribute

template

[*]

Char(*

*

*

—-

End

—-

A

data

definitional

attribute

template

(DDAT)

number

is

a

number

that

corresponds

to

the

relative

position

of

a

template

in

the

data

definitional

attribute

template

list.

For

example,

the

number

1

references

the

first

template.

The

valid

values

for

this

field

are

1,

2,

and

3.

The

DDAT

for

operand

1

must

be

valid

for

a

timestamp

duration.

The

DDATs

for

operands

2

and

3

must

be

valid

for

a

timestamp

and

must

be

identical.

Otherwise,

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

Operand

2

length

and

operand

3

length

are

specified

in

number

of

bytes.

The

size

of

the

DDAT

list

is

specified

in

bytes.

The

number

of

DDATs

is

the

count

of

DDATs

specified

for

this

instruction

template.

The

maximum

number

of

DDATs

that

can

be

specified

is

3.

The

DDAT

offset

is

the

number

of

bytes

from

the

start

of

the

DDAT

list

to

the

start

of

the

specific

DDAT.

There

should

be

as

many

DDAT

offsets

as

there

are

DDATs

specified.

A

data

definitional

attribute

template

defines

the

presentation

of

the

data.

Each

template

describes

the

definitional

attributes

of

the

operands.

The

length

of

the

character

operands

will

be

defined

by

the

template.

For

a

further

description

of

the

data

definitional

attribute

template,

see

Data

Definitional

Attribute

Template.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Machine

Interface

Instructions

135

MINDTCON.htm#HDRDDAT
MINDTCON.htm#HDRDDAT

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C15

Date

Boundary

Overflow

0C16

Data

Format

Error

0C17

Data

Value

Error

0C18

Date

Boundary

Underflow

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

136

iSeries:

Machine

Interface

Instructions

APIs

32

Scalar

Specification

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Concatenate

(CAT)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

10F3

Receiver

Source

1

Source

2

Operand

1:

Character

variable

scalar.

Operand

2:

Character

scalar.

Operand

3:

Character

scalar.

Description:

The

character

string

value

of

the

second

source

operand

is

joined

to

the

right

end

of

the

character

string

value

of

the

first

source

operand.

The

resulting

string

value

is

placed

(left-adjusted)

in

the

receiver

operand.

The

length

of

the

operation

is

equal

to

the

length

of

the

receiver

operand

with

the

resulting

string

truncated

or

is

logically

padded

on

the

right

end

accordingly.

The

pad

value

for

this

instruction

is

hex

40.

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

be

specified

for

operands

1,

2,

and

3.

The

effect

of

specifying

a

null

substring

reference

for

one

source

operand

is

that

the

other

source

operand

is

used

as

the

result

of

the

concatenation.

The

effect

of

specifying

a

null

substring

reference

for

both

source

operands

is

that

the

bytes

of

the

receiver

are

each

set

with

a

value

of

hex

40.

The

effect

of

specifying

a

null

substring

reference

for

the

receiver

is

that

a

result

is

not

set

regardless

of

the

value

of

the

source

operands.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Machine

Interface

Instructions

137

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

138

iSeries:

Machine

Interface

Instructions

APIs

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Convert

BSC

to

Character

(CVTBC)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-6]

CVTBC

10AF

Receiver

Controls

Source

CVTBCB

1CAF

Branch

options

Receiver

Controls

Source

Branch

targets

CVTBCI

18AF

Indicator

options

Receiver

Controls

Source

Indicator

targets

Operand

1:

Character

variable

scalar.

Operand

2:

Character(3)

variable

scalar.

Operand

3:

Character

scalar.

Operand

4-6:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Machine

Interface

Instructions

139

Bound

program

access

Built-in

number

for

CVTBC

is

130.

CVTBC

(

receiver

:

address

receiver_length

:

unsigned

binary(4)

controls

:

address

source

:

address

source_length

:

unsigned

binary(4)

return_code

:

address

of

signed

binary(4)

)

The

return_code

will

be

set

as

follows:

Return

code

Meaning

-1

Completed

Record.

0

Source

Exhausted.

1

Truncated

Record.

The

receiver,

controls

and

source

parameters

correspond

to

operands

1,

2

and

3

on

the

CVTBC

operation.

The

receiver_length

and

source_length

parameters

contain

the

length,

in

bytes,

of

the

receiver

and

source

strings.

They

are

expected

to

contain

values

between

1

and

32,767.

The

return_code

parameter

is

used

to

provide

support

for

the

branch

and

indicator

forms

of

the

CVTBC

operation.

The

user

must

specify

code

to

process

the

return_code

and

perform

the

desired

branching

or

indicator

setting.

Description:

This

instruction

converts

a

string

value

from

the

BSC

(binary

synchronous

communications)

compressed

format

to

a

character

string.

The

operation

converts

the

source

(operand

3)

from

the

BSC

compressed

format

to

character

under

control

of

the

controls

(operand

2)

and

places

the

result

into

the

receiver

(operand

1).

The

source

and

receiver

operands

must

both

be

character

strings.

The

controls

operand

must

be

a

character

scalar

that

specifies

additional

information

to

be

used

to

control

the

conversion

operation.

It

must

be

at

least

3

bytes

in

length

and

have

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Controls

operand

Char(3)

0

0

Source

offset

Bin(2)

2

2

Record

separator

Char(1)

3

3

—-

End

—-

The

source

offset

specifies

the

offset

where

bytes

are

to

be

accessed

from

the

source

operand.

If

the

source

offset

is

equal

to

or

greater

than

the

length

specified

for

the

source

operand

(it

identifies

a

byte

beyond

the

140

iSeries:

Machine

Interface

Instructions

APIs

end

of

the

source

operand),

a

template

value

invalid

(hex

3801)

exception

is

signaled.

As

output

from

the

instruction,

the

source

offset

is

set

to

specify

the

offset

that

indicates

how

much

of

the

source

is

processed

when

the

instruction

ends.

The

record

separator,

if

specified

with

a

value

other

than

hex

01,

contains

the

value

used

to

separate

converted

records

in

the

source

operand.

A

value

of

hex

01

specifies

that

record

separators

do

not

occur

in

the

converted

records

in

the

source.

Only

the

first

3

bytes

of

the

controls

operand

are

used.

Any

excess

bytes

are

ignored.

The

operation

begins

by

accessing

the

bytes

of

the

source

operand

located

at

the

offset

specified

in

the

source

offset.

This

is

assumed

to

be

the

start

of

a

record.

The

bytes

of

the

record

in

the

source

operand

are

converted

into

the

receiver

record

according

to

the

following

algorithm.

The

strings

to

be

built

in

the

receiver

are

contained

in

the

source

as

blank

compression

entries

and

strings

of

consecutive

nonblank

characters.

The

format

of

the

blank

compression

entries

occurring

in

the

source

are

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Blank

compression

entry

Char(2)

0

0

Interchange

group

separator

Char(1)

1

1

Count

of

compressed

blanks

Char(1)

2

2

—-

End

—-

The

interchange

group

separator

has

a

fixed

value

of

hex

1D.

The

count

of

compressed

blanks

provides

for

describing

up

to

63

compressed

blanks.

The

count

of

the

number

of

blanks

(up

to

63)

to

be

decompressed

is

formed

by

subtracting

hex

40

from

the

value

of

the

count

field.

The

count

field

can

vary

from

a

value

of

hex

41

to

hex

7F.

If

the

count

field

contains

a

value

outside

of

this

range,

a

conversion

(hex

0C01)

exception

is

signaled.

Strings

of

blanks

described

by

blank

compression

entries

in

the

source

are

repeated

in

the

receiver

the

number

of

times

specified

by

the

blank

compression

count.

Nonblank

strings

in

the

source

are

copied

into

the

receiver

intact

with

no

alteration.

If

the

receiver

record

is

filled

with

converted

data

without

encountering

the

end

of

the

source

operand,

the

instruction

ends

with

a

resultant

condition

of

completed

record.

This

can

occur

in

two

ways.

If

a

record

separator

was

not

specified,

the

instruction

ends

when

enough

bytes

have

been

converted

from

the

source

to

fill

the

receiver.

If

a

record

separator

was

specified,

the

instruction

ends

when

a

source

byte

is

encountered

with

that

value

prior

to

or

just

after

filling

the

receiver

record.

The

source

offset

value

locates

the

byte

following

the

last

source

record

(including

the

record

separator)

for

which

conversion

was

completed.

When

the

record

separator

value

is

encountered,

any

remaining

bytes

in

the

receiver

are

padded

with

blanks.

If

the

end

of

the

source

operand

is

encountered

(whether

or

not

in

conjunction

with

a

record

separator

or

the

filling

of

the

receiver),

the

instruction

ends

with

a

resultant

condition

of

source

exhausted.

The

source

offset

value

locates

the

byte

following

the

last

byte

of

the

source

operand.

The

remaining

bytes

in

the

receiver

after

the

converted

record

are

padded

with

blanks.

If

the

converted

form

of

a

record

cannot

be

completely

contained

in

the

receiver,

the

instruction

ends

with

a

resultant

condition

of

truncated

record.

The

offset

value

for

the

source

locates

the

byte

following

the

last

source

byte

for

which

conversion

was

performed,

unless

a

blank

compression

entry

was

being

processed.

Machine

Interface

Instructions

141

In

this

case,

the

source

offset

is

set

to

locate

the

byte

after

the

blank

compression

entry.

If

the

source

does

not

contain

record

separators,

this

condition

can

only

occur

for

the

case

in

which

a

blank

compression

entry

was

being

converted

when

the

receiver

record

became

full.

Any

form

of

overlap

between

the

operands

on

this

instruction

yields

unpredictable

results

in

the

receiver

operand.

Resultant

Conditions:

v

v

Completed

record-The

receiver

record

has

been

completely

filled

with

converted

data

from

a

source

record.

v

Source

exhausted-All

of

the

bytes

in

the

source

operand

have

been

converted

into

the

receiver

operand.

v

Truncated

record-The

receiver

record

cannot

contain

all

of

the

converted

data

from

the

source

record.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C01

Conversion

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

142

iSeries:

Machine

Interface

Instructions

APIs

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Convert

Character

to

BSC

(CVTCB)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-5]

CVTCB

108F

Receiver

Controls

Source

Machine

Interface

Instructions

143

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-5]

CVTCBB

1C8F

Branch

options

Receiver

Controls

Source

Branch

targets

CVTCB

188F

Indicator

options

Receiver

Controls

Source

Indicator

targets

Operand

1:

Character

variable

scalar.

Operand

2:

Character(3)

variable

scalar.

Operand

3:

Character

scalar.

Operand

4-5:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Bound

program

access

Built-in

number

for

CVTCB

is

131.

CVTCB

(

receiver

:

address

receiver_length

:

unsigned

binary(4)

controls

:

address

source

:

address

source_length

:

unsigned

binary(4)

return_code

:

address

of

signed

binary(4)

)

The

return_code

will

be

set

as

follows:

Return

code

Meaning

-1

Receiver

Overrun.

0

Source

Exhausted.

The

receiver,

controls

and

source

parameters

correspond

to

operands

1,

2

and

3

on

the

CVTCB

operation.

The

receiver_length

and

source_length

parameters

contain

the

length,

in

bytes,

of

the

receiver

and

source

strings.

They

are

expected

to

contain

values

between

1

and

32,767.

The

return_code

parameter

is

used

to

provide

support

for

the

branch

and

indicator

forms

of

the

CVTCB

operation.

The

user

must

specify

code

to

process

the

return_code

and

perform

the

desired

branching

or

indicator

setting.

Description:

This

instruction

converts

a

string

value

from

character

to

BSC

(binary

synchronous

communications)

compressed

format.

The

operation

converts

the

source

(operand

3)

from

character

to

the

BSC

compressed

format

under

control

of

the

controls

(operand

2)

and

places

the

result

into

the

receiver

(operand

1).

The

source

and

receiver

operands

must

both

be

character

strings.

144

iSeries:

Machine

Interface

Instructions

APIs

The

controls

operand

must

be

a

character

scalar

that

specifies

additional

information

to

be

used

to

control

the

conversion

operation.

It

must

be

at

least

3

bytes

in

length

and

have

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Controls

operand

Char(3)

0

0

Receiver

offset

Bin(2)

2

2

Record

separator

Char(1)

3

3

—-

End

—-

The

receiver

offset

specifies

the

offset

where

bytes

are

to

be

placed

into

the

receiver

operand.

If

the

receiver

offset

is

equal

to

or

greater

than

the

length

specified

for

the

receiver

operand

(it

identifies

a

byte

beyond

the

end

of

the

receiver),

a

template

value

invalid

(hex

3801)

exception

is

signaled.

As

output

from

the

instruction,

the

receiver

offset

is

set

to

specify

the

offset

that

indicates

how

much

of

the

receiver

has

been

filled

when

the

instruction

ends.

The

record

separator,

if

specified

with

a

value

other

than

hex

01,

contains

the

value

used

to

separate

converted

records

in

the

receiver

operand.

A

value

of

hex

01

specifies

that

record

separators

are

not

to

be

placed

into

the

receiver

to

separate

converted

records.

Only

the

first

3

bytes

of

the

controls

operand

are

used.

Any

excess

bytes

are

ignored.

The

source

operand

is

assumed

to

be

one

record.

The

bytes

of

the

record

in

the

source

operand

are

converted

into

the

receiver

operand

at

the

location

specified

in

the

receiver

offset

according

to

the

following

algorithm.

The

bytes

of

the

source

record

are

interrogated

to

identify

the

strings

of

consecutive

blank

(hex

40)

characters

and

the

strings

of

consecutive

nonblank

characters

which

occur

in

the

source

record.

Only

three

or

more

blank

characters

are

treated

as

a

blank

string

for

purposes

of

conversion

into

the

receiver.

As

the

blank

and

nonblank

strings

are

encountered

in

the

source,

they

are

packaged

into

the

receiver.

Blank

strings

are

reflected

in

the

receiver

as

one

or

more

blank

compression

entries.

The

format

of

the

blank

compression

entries

built

into

the

receiver

are

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Blank

compression

entry

Char(2)

0

0

Interchange

group

separator

Char(1)

1

1

Count

of

compressed

blanks

Char(1)

2

2

—-

End

—-

The

interchange

group

separator

has

a

fixed

value

of

hex

1D.

The

count

of

compressed

blanks

provides

for

compressing

up

to

63

blanks.

The

value

of

the

count

field

is

formed

by

adding

hex

40

to

the

actual

number

of

blanks

(up

to

63)

to

be

compressed.

The

count

field

can

vary

from

a

value

of

hex

43

to

hex

7F.

Nonblank

strings

are

copied

into

the

receiver

intact

with

no

alteration

or

additional

control

information.

When

the

end

of

the

source

record

is

encountered,

the

record

separator

value

if

specified

is

placed

into

the

receiver

and

the

instruction

ends

with

a

resultant

condition

of

source

exhausted.

The

receiver

offset

value

locates

the

byte

following

the

converted

record

in

the

receiver.

The

value

of

the

remaining

bytes

in

the

receiver

after

the

converted

record

is

unpredictable.

Machine

Interface

Instructions

145

If

the

converted

form

of

a

record

cannot

be

completely

contained

in

the

receiver

(including

the

record

separator

if

specified),

the

instruction

ends

with

a

resultant

condition

of

receiver

overrun.

The

receiver

offset

remains

unchanged.

The

remaining

bytes

in

the

receiver,

starting

with

the

byte

located

by

the

receiver

offset,

are

unpredictable.

Any

form

of

overlap

between

the

operands

on

this

instruction

yields

unpredictable

results

in

the

receiver

operand.

Resultant

Conditions:

v

v

Source

exhausted-All

of

the

bytes

in

the

source

operand

have

been

converted

into

the

receiver

operand.

v

Receiver

overrun-An

overrun

condition

in

the

receiver

operand

was

detected

before

all

of

the

bytes

in

the

source

operand

were

processed.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

146

iSeries:

Machine

Interface

Instructions

APIs

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Convert

Character

to

Hex

(CVTCH)

Op

Code

(Hex)

Operand

1

Operand

2

1082

Receiver

Source

Operand

1:

Character

variable

scalar.

Operand

2:

Character

variable

scalar.

Machine

Interface

Instructions

147

Description:

Each

character

(8-bit

value)

of

the

string

value

in

the

source

operand

is

converted

to

a

hex

digit

(4-bit

value)

and

placed

in

the

receiver

operand.

The

source

operand

characters

must

relate

to

valid

hex

digits

or

a

conversion

(hex

0C01)

exception

is

signaled.

Characters

Hex

Digits

Hex

F0-hex

F9

Hex

0-hex

9

Hex

C1-hex

C6

Hex

A-hex

F

The

operation

begins

with

the

two

operands

left-adjusted

and

proceeds

left

to

right

until

all

the

hex

digits

of

the

receiver

operand

have

been

filled.

If

the

source

operand

is

too

small,

it

is

logically

padded

on

the

right

with

zero

characters

(hex

F0).

If

the

source

operand

is

too

large,

a

length

conformance

(hex

0C08)

exception

or

an

invalid

operand

length

(hex

2A0A)

exception

is

signaled.

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

be

specified

for

operands

1

and

2.

The

effect

of

specifying

a

null

substring

reference

for

the

source

is

that

the

bytes

of

the

receiver

are

each

set

with

a

value

of

hex

00.

The

effect

of

specifying

a

null

substring

reference

for

the

receiver

is

that

no

result

is

set.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C01

Conversion

0C08

Length

Conformance

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

148

iSeries:

Machine

Interface

Instructions

APIs

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Convert

Character

to

MRJE

(CVTCM)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-5]

CVTCM

108B

Receiver

Controls

Source

CVTCMB

1C8B

Branch

options

Receiver

Controls

Source

Branch

targets

CVTCMI

188B

Indicator

options

Receiver

Controls

Source

Indicator

targets

Operand

1:

Character

variable

scalar.

Operand

2:

Character(13)

variable

scalar.

Operand

3:

Character

scalar.

Machine

Interface

Instructions

149

Operand

4-5:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Bound

program

access

Built-in

number

for

CVTCM

is

133.

CVTCM

(

receiver

:

address

receiver_length

:

unsigned

binary(4)

controls

:

address

source

:

address

source_length

:

unsigned

binary(4)

return_code

:

address

of

signed

binary(4)

)

The

return_code

will

be

set

as

follows:

Return

code

Meaning

-1

Receiver

Overrun.

0

Source

Exhausted.

The

receiver,

controls

and

source

parameters

correspond

to

operands

1,

2

and

3

on

the

CVTCM

operation.

The

receiver_length

and

source_length

parameters

contain

the

length,

in

bytes,

of

the

receiver

and

source

strings.

They

are

expected

to

contain

values

between

1

and

32,767.

The

return_code

parameter

is

used

to

provide

support

for

the

branch

and

indicator

forms

of

the

CVTCM

operation.

The

user

must

specify

code

to

process

the

return_code

and

perform

the

desired

branching

or

indicator

setting.

Description:

This

instruction

converts

a

string

of

characters

to

MRJE

(MULTI-LEAVING

remote

job

entry)

compressed

format.

The

operation

converts

the

source

(operand

3)

from

character

to

the

MRJE

compressed

format

under

control

of

the

controls

(operand

2)

and

places

the

results

in

the

receiver

(operand

1).

The

source

and

receiver

operands

must

both

be

character

strings.

The

source

operand

cannot

be

specified

as

either

a

signed

or

unsigned

immediate

value.

The

source

operand

can

be

described

through

the

controls

operand

as

being

composed

of

one

or

more

fixed

length

data

fields,

which

may

be

separated

by

fixed

length

gaps

of

characters

to

be

ignored

during

the

conversion

operation.

Additionally,

the

controls

operand

specifies

the

amount

of

data

to

be

processed

from

the

source

to

produce

a

converted

record

in

the

receiver.

This

may

be

a

different

value

than

the

length

of

the

data

fields

in

the

source.

The

following

diagram

shows

this

structure

for

the

source

operand.

150

iSeries:

Machine

Interface

Instructions

APIs

The

controls

operand

must

be

a

character

scalar

that

specifies

additional

information

to

be

used

to

control

the

conversion

operation.

It

must

be

at

least

13

bytes

in

length

and

have

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Controls

operand

Char(13)

0

0

Receiver

offset

Bin(2)

2

2

Source

offset

Bin(2)

4

4

Algorithm

modifier

Char(1)

5

5

Source

record

length

Char(1)

6

6

Data

field

length

Bin(2)

8

8

Gap

offset

Bin(2)

10

A

Gap

length

Bin(2)

12

C

Record

control

block

(RCB)

value

Char(1)

13

D

—-

End

—-

As

input

to

the

instruction,

the

source

offset

and

receiver

offset

fields

specify

the

offsets

where

bytes

of

the

source

and

receiver

operands

are

to

be

processed.

If

an

offset

is

equal

to

or

greater

than

the

length

specified

for

the

operand

it

corresponds

to

(i.e.

it

identifies

a

byte

beyond

the

end

of

the

operand),

a

template

value

invalid

(hex

3801)

exception

is

signaled.

As

output

from

the

instruction,

the

source

offset

and

receiver

offset

fields

specify

offsets

that

indicate

how

much

of

the

operation

is

complete

when

the

instruction

ends.

The

algorithm

modifier

has

the

following

valid

values:

v

v

Hex

00

=

Perform

full

compression.

v

Hex

01

=

Perform

only

truncation

of

trailing

blanks.

The

source

record

length

value

specifies

the

amount

of

data

from

the

source

to

be

processed.

If

a

source

record

length

of

0

is

specified,

a

template

value

invalid

(hex

3801)

exception

is

signaled.

Machine

Interface

Instructions

151

The

data

field

length

value

specifies

the

length

of

the

data

fields

in

the

source.

Data

fields

occurring

in

the

source

may

be

separated

by

gaps

of

characters,

which

are

to

be

ignored

during

the

conversion

operation.

Specification

of

a

data

field

length

of

0

indicates

that

the

source

operand

is

one

data

field.

In

this

case,

the

gap

length

and

gap

offset

values

have

no

meaning

and

are

ignored.

The

gap

offset

value

specifies

the

offset

to

the

next

gap

in

the

source.

This

value

is

both

input

to

and

output

from

the

instruction.

This

is

relative

to

the

current

byte

to

be

processed

in

the

source

as

located

by

the

source

offset

field.

No

validation

is

done

for

this

offset.

It

is

assumed

to

be

valid

relative

to

the

source

operand.

The

gap

offset

value

is

ignored

if

the

data

field

length

is

specified

with

a

value

of

0.

The

gap

length

value

specifies

the

amount

of

data

occurring

between

data

fields

in

the

source

operand

which

is

to

be

ignored

during

the

conversion

operation.

The

gap

length

value

is

ignored

if

the

data

field

length

is

specified

with

a

value

of

0.

The

record

control

block

(RCB)

value

field

specifies

the

RCB

value

that

is

to

precede

the

converted

form

of

each

record

in

the

receiver.

It

can

have

any

value.

Only

the

first

13

bytes

of

the

controls

operand

are

used.

Any

excess

bytes

are

ignored.

The

operation

begins

by

accessing

the

bytes

of

the

source

operand

at

the

location

specified

by

the

source

offset.

This

is

assumed

to

be

the

start

of

a

source

record.

Only

the

bytes

of

the

data

fields

in

the

source

are

accessed

for

conversion

purposes.

Gaps

between

data

fields

are

ignored,

causing

the

access

of

data

field

bytes

to

occur

as

if

the

data

fields

were

contiguous

with

one

another.

Bytes

accessed

from

the

source

for

the

source

record

length

are

considered

a

source

record

for

the

conversion

operation.

They

are

converted

into

the

receiver

operand

at

the

location

specified

by

the

receiver

offset

according

to

the

following

algorithm.

The

RCB

value

is

placed

into

the

first

byte

of

the

receiver

record.

An

SRCB

(sub

record

control

byte)

value

of

hex

80

is

placed

into

the

second

byte

of

the

receiver

record.

If

the

algorithm

modifier

specifies

full

compression

(a

value

of

hex

00)

then:

The

bytes

of

the

source

record

are

interrogated

to

locate

the

blank

character

strings

(2

or

more

consecutive

blanks),

identical

character

strings

(3

or

more

consecutive

identical

characters),

and

nonidentical

character

strings

occurring

in

the

source.

A

blank

character

string

occurring

at

the

end

of

the

record

is

treated

as

a

special

case

(see

following

information

on

trailing

blanks).

If

the

algorithm

modifier

specifies

blank

truncation

(a

value

of

hex

01)

then:

The

bytes

of

the

source

record

are

interrogated

to

determine

if

a

blank

character

string

exists

at

the

end

of

the

source

record.

If

one

exists,

it

is

treated

as

a

string

of

trailing

blanks.

All

characters

prior

to

it

in

the

record

are

treated

as

one

string

of

nonidentical

characters.

The

strings

encountered

(blank,

identical,

or

nonidentical)

are

reflected

in

the

receiver

by

building

one

or

more

SCBs

(string

control

bytes)

in

the

receiver

to

describe

them.

The

format

of

the

SCBs

built

into

the

receiver

is:

v

v

SCB

format

is

o

k

l

jjjjj

The

bit

meanings

are:

Bit

Value

Meaning

o

0

End

of

record;

the

EOR

SCB

is

hex

00.

1

All

other

SCBs.

152

iSeries:

Machine

Interface

Instructions

APIs

Bit

Value

Meaning

k

0

The

string

is

compressed.

1

The

string

is

not

compressed.

l

For

k

=

0:

0

Blanks

(hex

40s)

have

been

deleted.

1

Nonblank

characters

have

been

deleted.

The

next

character

in

the

data

stream

is

the

specimen

character.

For

k

=

1:

This

bit

is

part

of

the

length

field

for

length

of

uncompressed

data.

jjjjj

Number

of

characters

that

have

been

deleted

if

k

=

0.

The

value

can

be

2-31.

ljjjjj

Number

of

characters

to

the

next

SCB

(no

compression)

if

k

=

1.

The

value

can

be

1-63.

The

uncompressed

(nonidentical

bytes)

follow

the

SCB

in

the

data

stream.

When

the

end

of

a

source

record

is

encountered,

an

EOR

(end

of

record)

SCB

(hex

00)

is

built

into

the

receiver.

Trailing

blanks

in

a

record

including

a

record

of

all

blanks

are

represented

in

the

receiver

by

an

EOR

character.

However,

a

record

of

all

blanks

is

reflected

in

the

compressed

result

by

an

RCB,

an

SRCB,

a

compression

entry

describing

an

’unlike

string’

of

one

blank

character,

and

an

EOR

character.

Additionally,

the

receiver

offset,

the

source

offset,

and

the

gap

offset

are

updated

in

the

controls

operand.

If

the

end

of

the

source

operand

is

not

encountered,

the

operation

then

continues

by

reapplying

the

above

algorithm

to

the

next

record

in

the

source

operand.

If

the

end

of

the

source

operand

is

encountered

(whether

or

not

in

conjunction

with

a

record

boundary),

the

instruction

ends

with

a

resultant

condition

of

source

exhausted.

The

source

offset

locates

the

byte

following

the

last

source

record

for

which

conversion

was

completed.

The

gap

offset

value

indicates

the

offset

to

the

next

gap

relative

to

the

source

offset

value

set

for

this

condition.

The

gap

offset

value

has

no

meaning

and

is

not

set

when

the

data

field

length

is

0.

The

receiver

offset

locates

the

byte

following

the

last

fully

converted

record

in

the

receiver.

The

value

of

the

remaining

bytes

in

the

receiver

after

the

last

converted

record

is

unpredictable.

If

the

converted

form

of

a

record

cannot

be

completely

contained

in

the

receiver,

the

instruction

ends

with

a

resultant

condition

of

receiver

overrun.

The

source

offset

locates

the

byte

following

the

last

source

record

for

which

conversion

was

completed.

The

gap

offset

value

indicates

the

offset

to

the

next

gap

relative

to

the

source

offset

value

set

for

this

condition.

The

gap

offset

value

has

no

meaning

and

is

not

set

when

the

data

field

length

is

0.

The

receiver

offset

locates

the

byte

following

the

last

fully

converted

record

in

the

receiver.

The

value

of

the

remaining

bytes

in

the

receiver

after

the

last

converted

record

is

unpredictable.

Any

form

of

overlap

between

the

operands

of

this

instruction

yields

unpredictable

results

in

the

receiver

operand.

Resultant

Conditions:

v

v

Source

exhausted-All

complete

records

in

the

source

operand

have

been

converted

into

the

receiver

operand.

v

Receiver

overrun-An

overrun

condition

in

the

receiver

operand

was

detected

prior

to

processing

all

of

the

bytes

in

the

source

operand.

If

source

exhausted

and

receiver

overrun

occur

at

the

same

time,

the

source

exhausted

condition

is

recognized

first.

When

source

exhausted

is

the

resultant

condition,

the

receiver

may

also

be

full.

In

this

case,

the

receiver

offset

may

contain

a

value

equal

to

the

length

specified

for

the

receiver,

and

this

condition

will

cause

an

exception

on

the

next

invocation

of

the

instruction.

The

processing

performed

for

the

source

exhausted

condition

provides

for

this

case

when

the

instruction

is

invoked

multiple

times

with

the

same

controls

operand

template.

When

the

receiver

overrun

condition

is

the

resultant

condition,

the

source

always

contains

data

that

can

be

converted.

Machine

Interface

Instructions

153

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

154

iSeries:

Machine

Interface

Instructions

APIs

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Convert

Character

to

Numeric

(CVTCN)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

1083

Receiver

Source

Attributes

Operand

1:

Numeric

variable

scalar

or

data-pointer-defined

numeric

scalar.

Operand

2:

Character

scalar

or

data-pointer-defined

character

scalar.

Operand

3:

Character(7)

scalar

or

data-pointer-defined

character

scalar.

Description:

The

character

scalar

specified

by

operand

2

is

treated

as

though

it

were

a

numeric

scalar

with

the

attributes

specified

by

operand

3.

The

character

string

source

operand

is

converted

to

the

numeric

forms

of

the

receiver

operand

and

moved

to

the

receiver

operand.

The

value

of

operand

2,

when

viewed

in

this

manner,

is

converted

to

the

type,

length,

and

precision

of

the

numeric

receiver,

operand

1,

following

the

rules

for

the

Copy

Numeric

Value

(CPYNV)

instruction.

The

length

of

operand

2

must

be

large

enough

to

contain

the

numeric

value

described

by

operand

3.

If

it

is

not

large

enough,

a

scalar

value

invalid

(hex

3203)

exception

is

signaled.

If

it

is

larger

than

needed,

its

leftmost

bytes

are

used

as

the

value,

and

the

rightmost

bytes

are

ignored.

Machine

Interface

Instructions

155

Normal

rules

of

arithmetic

conversion

apply

except

for

the

following.

If

operand

2

is

interpreted

as

a

zoned

decimal

value,

a

value

of

hex

40

in

the

rightmost

byte

referenced

in

the

conversion

is

treated

as

a

positive

sign

and

a

zero

digit.

If

a

decimal

to

binary

conversion

causes

a

size

(hex

0C0A)

exception

to

be

signaled,

the

binary

value

contains

the

correct

truncated

result

only

if

the

decimal

value

contains

15

or

fewer

significant

nonfractional

digits.

The

format

of

the

attributes

operand

specified

by

operand

3

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Scalar

attributes

Char(7)

0

0

Scalar

type

Char(1)

Hex

00

=

Signed

binary

Hex

01

=

Floating-point

Hex

02

=

Zoned

decimal

Hex

03

=

Packed

decimal

Hex

0A

=

Unsigned

binary

1

1

Scalar

length

Bin(2)

If

binary:

1

1

Length

(L)

(where

L

=

2

or

4)

Bits

0-15

If

floating-point:

1

1

Length

(L)

(where

L

=

4

or

8)

Bits

0-15

If

zoned

decimal

or

packed

decimal:

1

1

Fractional

digits

(F)

Bits

0-7

1

1

Total

digits

(T)

Bits

8-15

(where

1

<=

T

<=

63

and

0

<=

F

<=

T)

3

3

Reserved

(binary

0)

Bin(4)

7

7

—-

End

—-

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

156

iSeries:

Machine

Interface

Instructions

APIs

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0604

External

Data

Object

Not

Found

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C02

Decimal

Data

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

0C0A

Size

0C0C

Invalid

Floating-Point

Conversion

0C0D

Floating-Point

Inexact

Result

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

Machine

Interface

Instructions

157

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Convert

Character

to

SNA

(CVTCS)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-5]

CVTCS

10CB

Receiver

Controls

Source

CVTCSB

1CCB

Branch

options

Receiver

Controls

Source

Branch

targets

CVTCSI

18CB

Indicator

options

Receiver

Controls

Source

Indicator

targets

Operand

1:

Character

variable

scalar.

Operand

2:

Character(15)

variable

scalar.

Operand

3:

Character

scalar.

Operand

4-5:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

158

iSeries:

Machine

Interface

Instructions

APIs

Bound

program

access

Built-in

number

for

CVTCS

is

135.

CVTCS

(

receiver

:

address

receiver_length

:

unsigned

binary(4)

controls

:

address

source

:

address

source_length

:

unsigned

binary(4)

return_code

:

address

of

signed

binary(4)

)

The

return_code

will

be

set

as

follows:

Return

code

Meaning

-1

Receiver

Overrun.

0

Source

Exhausted.

The

receiver,

controls

and

source

parameters

correspond

to

operands

1,

2

and

3

on

the

CVTCS

operation.

The

receiver_length

and

source_length

parameters

contain

the

length,

in

bytes,

of

the

receiver

and

source

strings.

They

are

expected

to

contain

values

between

1

and

32,767.

The

return_code

parameter

is

used

to

provide

support

for

the

branch

and

indicator

forms

of

the

CVTCS

operation.

The

user

must

specify

code

to

process

the

return_code

and

perform

the

desired

branching

or

indicator

setting.

Description:

This

instruction

converts

the

source

(operand

3)

from

character

to

SNA

(systems

network

architecture)

format

under

control

of

the

controls

(operand

2)

and

places

the

result

into

the

receiver

(operand

1).

The

source

and

receiver

operands

must

both

be

character

strings.

The

source

operand

may

not

be

specified

as

an

immediate

operand.

The

source

operand

can

be

described

by

the

controls

operand

as

being

one

or

more

fixed-length

data

fields

that

may

be

separated

by

fixed-length

gaps

of

characters

to

be

ignored

during

the

conversion

operation.

Additionally,

the

controls

operand

specifies

the

amount

of

data

to

be

processed

from

the

source

to

produce

a

converted

record

in

the

receiver.

This

may

be

a

different

value

than

the

length

of

the

data

fields

in

the

source.

The

following

diagram

shows

this

structure

for

the

source

operand.

Machine

Interface

Instructions

159

The

controls

operand

must

be

a

character

scalar

that

specifies

additional

information

to

be

used

to

control

the

conversion

operation.

The

operand

must

be

at

least

15

bytes

in

length

and

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Controls

operand

Char(15)

0

0

Receiver

offset

Bin(2)

2

2

Source

offset

Bin(2)

4

4

Algorithm

modifier

Char(1)

5

5

Source

record

length

Char(1)

6

6

Data

field

length

Bin(2)

8

8

Gap

offset

Bin(2)

10

A

Gap

length

Bin(2)

12

C

Record

separator

character

Char(1)

13

D

Prime

compression

character

Char(1)

14

E

Unconverted

source

record

bytes

Char(1)

15

F

—-

End

—-

As

input

to

the

instruction,

the

source

offset

and

receiver

offset

fields

specify

the

offsets

where

the

bytes

of

the

source

and

receiver

operands

are

to

be

processed.

If

an

offset

is

equal

to

or

greater

than

the

length

specified

for

the

operand,

the

offset

identifies

a

byte

beyond

the

end

of

the

operand

and

a

template

value

invalid

(hex

3801)

exception

is

signaled.

When

the

source

offset

and

the

receiver

offset

field

are

output

from

the

instruction,

they

specify

offsets

that

indicate

how

much

of

the

operation

is

complete

when

the

instruction

ends.

The

algorithm

modifier

specifies

the

optional

functions

to

be

performed.

Any

combination

of

functions

can

be

specified

as

indicated

by

the

bit

meanings

in

the

following

chart.

At

least

one

of

the

functions

must

be

specified.

If

all

of

the

algorithm

modifier

bits

are

zero,

a

template

value

invalid

(hex

3801)

exception

is

signaled.

The

algorithm

modifier

bit

meanings

are:

160

iSeries:

Machine

Interface

Instructions

APIs

Bits

Meaning

0

0

=

Do

not

perform

compression.

1

=

Perform

compression.

1-2

00

=

Do

not

use

record

separators

and

no

blank

truncation.

Do

not

perform

data

transparency

conversion.

01

=

Reserved.

10

=

Use

record

separators

and

perform

blank

truncation.

Do

not

perform

data

transparency

conversion.

11

=

Use

record

separators

and

perform

blank

truncation.

Perform

data

transparency

conversion.

3

0

=

Do

not

perform

record

spanning.

1

=

Perform

record

spanning.

(allowed

only

when

bit

1

=

1)

4-7

(Reserved)

The

source

record

length

value

specifies

the

amount

of

data

from

the

source

to

be

processed

to

produce

a

converted

record

in

the

receiver.

Specification

of

a

source

record

length

of

zero

results

in

a

template

value

invalid

(hex

3801)

exception.

The

data

field

length

value

specifies

the

length

of

the

data

fields

in

the

source.

Data

fields

occurring

in

the

source

may

be

separated

by

gaps

of

characters

that

are

to

be

ignored

during

the

conversion

operation.

Specification

of

a

data

field

length

of

zero

indicates

that

the

source

operand

is

one

data

field.

In

this

case,

the

gap

length

and

gap

offset

values

have

no

meaning

and

are

ignored.

The

gap

offset

value

specifies

the

offset

to

the

next

gap

in

the

source.

This

value

is

both

input

to

and

output

from

the

instruction.

This

is

relative

to

the

current

byte

to

be

processed

in

the

source

as

located

by

the

source

offset

value.

No

validation

is

done

for

this

offset.

It

is

assumed

to

be

valid

relative

to

the

source

operand.

The

gap

offset

value

is

ignored

if

the

data

field

length

is

specified

with

a

value

of

zero.

The

gap

length

value

specifies

the

amount

of

data

that

is

to

be

ignored

between

data

fields

in

the

source

operand

during

the

conversion

operation.

The

gap

length

value

is

ignored

if

the

data

field

length

is

zero.

The

record

separator

character

value

specifies

the

character

that

precedes

the

converted

form

of

each

record

in

the

receiver.

It

also

serves

as

a

delimiter

when

the

previous

record

is

truncating

trailing

blanks.

The

Convert

SNA

to

Character

instruction

recognizes

any

value

that

is

less

than

hex

40.

The

record

separator

value

is

ignored

if

do

not

use

record

separators

is

specified

in

the

algorithm

modifier.

The

prime

compression

character

value

specifies

the

character

to

be

used

as

the

prime

compression

character

when

performing

compression

of

the

source

data

to

SNA

format.

It

may

have

any

value.

The

prime

compression

character

value

is

ignored

if

the

perform

compression

function

is

not

specified

in

the

algorithm

modifier.

The

unconverted

source

record

bytes

value

specifies

the

number

of

bytes

remaining

in

the

current

source

record

that

are

yet

to

be

converted.

When

the

perform

record

spanning

function

is

specified

in

the

algorithm

modifier,

the

unconverted

source

record

bytes

field

is

both

input

to

and

output

from

the

instruction.

On

input,

a

value

of

hex

00

means

it

is

the

start

of

a

new

record

and

the

initial

conversion

step

is

yet

to

be

performed.

That

is,

a

record

separator

character

has

not

yet

been

placed

in

the

receiver.

On

input,

a

nonzero

value

less

than

or

equal

to

the

source

record

length

specifies

the

number

of

bytes

remaining

in

the

current

source

record

that

are

yet

to

be

converted

into

the

receiver.

This

value

is

assumed

to

be

the

valid

count

of

unconverted

source

record

bytes

relative

to

the

current

byte

to

be

processed

in

the

source

as

located

by

the

source

offset

value.

As

such,

it

is

used

to

determine

the

location

of

the

next

record

boundary

in

the

source

operand.

This

value

must

be

less

than

or

equal

to

the

source

record

length

value;

otherwise,

a

template

value

invalid

(hex

3801)

Machine

Interface

Instructions

161

exception

is

signaled.

On

output

this

field

is

set

with

a

value

as

defined

above

that

describes

the

number

of

bytes

of

the

current

source

record

that

have

not

yet

been

converted.

When

the

perform

record

spanning

function

is

not

specified

in

the

algorithm

modifier,

the

unconverted

source

record

bytes

value

is

ignored.

Only

the

first

15

bytes

of

the

controls

operand

are

used.

Any

excess

bytes

are

ignored.

The

description

of

the

conversion

process

is

presented

as

a

series

of

separately

performed

steps

that

may

be

selected

in

allowable

combinations

to

accomplish

the

conversion

function.

It

is

presented

this

way

to

allow

for

describing

these

functions

separately.

However,

in

the

actual

execution

of

the

instruction,

these

functions

may

be

performed

in

conjunction

with

one

another

or

separately

depending

upon

which

technique

is

determined

to

provide

the

best

implementation.

The

operation

is

performed

either

on

a

record-by-record

basis

(record

processing)

or

on

a

nonrecord

basis

(string

processing).

This

is

determined

by

the

functions

selected

in

the

algorithm

modifier.

Specifying

the

use

record

separators

and

perform

blank

truncation

function

indicates

record

processing

is

to

be

performed.

If

this

is

not

specified,

in

which

case

compression

must

be

specified,

it

indicates

that

string

processing

is

to

be

performed.

The

operation

begins

by

accessing

the

bytes

of

the

source

operand

at

the

location

specified

by

the

source

offset.

When

record

processing

is

specified,

the

source

offset

may

locate

the

start

of

a

full

or

partial

record.

When

the

perform

record

spanning

function

has

not

been

specified

in

the

algorithm

modifier,

the

source

offset

is

assumed

to

locate

the

start

of

a

record.

When

the

perform

record

spanning

function

has

been

specified

in

the

algorithm

modifier,

the

source

offset

is

assumed

to

locate

a

point

at

which

processing

of

a

possible

partially

converted

record

is

to

be

resumed.

In

this

case,

the

unconverted

source

record

bytes

value

contains

the

length

of

the

remaining

portion

of

the

source

record

to

be

converted.

The

conversion

process

in

this

case

is

started

by

completing

the

conversion

of

the

current

source

record

before

processing

the

next

full

source

record.

When

string

processing

is

specified,

the

source

offset

locates

the

start

of

the

source

string

to

be

converted.

Only

the

bytes

of

the

data

fields

in

the

source

are

accessed

for

conversion

purposes.

Gaps

between

data

fields

are

ignored

causing

the

access

of

data

field

bytes

to

occur

as

if

the

data

fields

were

contiguous.

A

string

of

bytes

accessed

from

the

source

for

a

length

equal

to

the

source

record

length

is

considered

to

be

a

record

for

the

conversion

operation.

When

during

the

conversion

process,

the

end

of

the

source

operation

is

encountered,

the

instruction

ends

with

a

resultant

condition

of

source

exhausted.

When

record

processing

is

specified

in

the

algorithm

modifier,

this

check

is

performed

at

the

start

of

conversion

for

each

record.

If

the

source

operand

does

not

contain

a

full

record,

the

source

exhausted

condition

is

recognized.

The

instruction

is

terminated

with

status

in

the

controls

operand

describing

the

last

completely

converted

record.

For

source

exhausted,

partial

conversion

of

a

source

record

is

not

performed.

When

string

processing

is

specified

in

the

algorithm

modifier,

then

compression

must

be

specified

and

the

compression

function

described

below

defines

the

detection

of

source

exhausted.

162

iSeries:

Machine

Interface

Instructions

APIs

If

the

converted

form

of

the

source

cannot

be

completely

contained

in

the

receiver,

the

instruction

ends

with

a

resultant

condition

of

receiver

overrun.

See

the

description

of

this

condition

in

the

conversion

process

described

below

to

determine

the

status

of

the

controls

operand

values

and

the

converted

bytes

in

the

receiver

for

each

case.

When

string

processing

is

specified,

the

bytes

accessed

from

the

source

are

converted

on

a

string

basis

into

the

receiver

operand

at

the

location

specified

by

the

receiver

offset.

In

this

case,

the

compression

function

must

be

specified

and

the

conversion

process

proceeds

with

the

compression

function

defined

below.

When

record

processing

is

specified,

the

bytes

accessed

from

the

source

are

converted

one

record

at

a

time

into

the

receiver

operand

at

the

location

specified

by

the

receiver

offset

performing

the

functions

specified

in

the

algorithm

modifier

in

the

sequence

defined

by

the

following

algorithm.

The

first

function

performed

is:

trailing

blank

truncation

A

truncated

record

is

built

by

logically

appending

the

record

data

to

the

record

separator

value

specified

in

the

controls

operand

and

removing

all

blank

characters

after

the

last

nonblank

character

in

the

record.

If

a

record

has

no

trailing

blanks,

then

no

actual

truncation

takes

place.

A

null

record,

a

record

consisting

entirely

of

blanks,

will

be

converted

as

just

the

record

separator

character

with

no

other

data

following

it.

The

truncated

record

then

consists

of

the

record

separator

character

followed

by

the

truncated

record

data,

the

full

record

data,

or

no

data

from

the

record.

If

either

the

data

transparency

conversion

or

the

compression

function

is

specified

in

the

algorithm

modifier,

the

conversion

process

continues

for

this

record

with

the

next

specified

function.

If

not,

the

conversion

process

for

this

record

is

completed

by

placing

the

truncated

record

into

the

receiver.

If

the

truncated

record

cannot

be

completely

contained

in

the

receiver,

the

instruction

ends

with

a

resultant

condition

of

receiver

overrun.

When

the

perform

record

spanning

function

is

specified

in

the

algorithm

modifier,

as

much

of

the

truncated

record

as

will

fit

is

placed

into

the

receiver

and

the

controls

operand

is

updated

to

describe

how

much

of

the

source

record

was

successfully

converted

into

the

receiver.

When

the

perform

record

spanning

function

is

not

specified

in

the

algorithm

modifier,

the

controls

operand

is

updated

to

describe

only

the

last

fully

converted

record

in

the

receiver

and

the

value

of

the

remaining

bytes

in

the

receiver

is

unpredictable.

The

second

function

performed

is:

data

transparency

conversion

Data

transparency

conversion

is

performed

if

the

function

is

specified

in

the

algorithm

modifier.

This

provides

for

making

the

data

in

a

record

transparent

to

the

Convert

SNA

to

Character

instruction

in

the

area

of

its

scanning

for

record

separator

values.

Transparent

data

is

built

by

preceding

the

data

with

2

bytes

of

transparency

control

information.

The

first

byte

has

a

fixed

value

of

hex

35

and

is

referred

to

as

the

TRN

(transparency)

control

character.

The

second

byte

is

a

1-byte

hexadecimal

count,

a

value

ranging

from

1

to

255

decimal,

of

the

number

of

bytes

of

data

that

follow

and

is

referred

to

as

the

TRN

count.

This

contains

the

length

of

the

data

and

does

not

include

the

TRN

control

information

length.

Transparency

conversion

can

be

specified

only

in

conjunction

with

record

processing

and,

as

such,

is

performed

on

the

truncated

form

of

the

source

record.

The

transparent

record

is

built

by

preceding

the

data

that

follows

the

record

separator

in

the

truncated

record

with

the

TRN

control

information.

The

TRN

count

in

this

case

contains

the

length

of

just

the

truncated

data

for

the

record

and

does

not

include

the

record

separator

character.

For

the

special

case

of

a

null

record,

no

TRN

control

information

is

placed

after

the

record

separator

character

because

there

is

no

record

data

to

be

made

transparent.

If

the

compression

function

is

specified

in

the

algorithm

modifier,

the

conversion

process

continues

for

this

record

with

the

compression

function.

If

not,

the

conversion

process

for

this

record

is

completed

by

placing

the

transparent

record

into

the

receiver.

If

the

transparent

record

cannot

be

completely

contained

in

the

receiver,

the

instruction

ends

with

a

resultant

condition

of

receiver

overrun.

Machine

Interface

Instructions

163

When

the

perform

record

spanning

function

is

specified

in

the

algorithm

modifier,

as

much

of

the

transparent

record

as

will

fit

is

placed

into

the

receiver

and

the

controls

operand

is

updated

to

describe

how

much

of

the

source

record

was

successfully

converted

into

the

receiver.

The

TRN

count

is

also

adjusted

to

describe

the

length

of

the

data

successfully

converted

into

the

receiver;

thus,

the

transparent

data

for

the

record

is

not

spanned

out

of

the

receiver.

The

remaining

bytes

of

the

transparent

record,

if

any,

will

be

processed

as

a

partial

source

record

on

the

next

invocation

of

the

instruction

and

will

be

preceded

by

the

appropriate

TRN

control

information.

For

the

special

case

where

only

1

to

3

bytes

are

available

at

the

end

of

the

receiver,

(not

enough

room

for

the

record

separator,

the

transparency

control,

and

a

byte

of

data)

then

just

the

record

separator

is

placed

in

the

receiver

for

the

record

being

converted.

This

can

cause

up

to

2

bytes

of

unused

space

at

the

end

of

the

receiver.

The

value

of

these

unused

bytes

is

unpredictable.

When

the

perform

record

spanning

function

is

not

specified

in

the

algorithm

modifier,

the

controls

operand

is

updated

to

describe

only

the

last

fully

converted

record

in

the

receiver

and

the

value

of

the

remaining

bytes

in

the

receiver

is

unpredictable.

The

third

function

performed

is:

compression

Compression

is

performed

if

the

function

is

specified

in

the

algorithm

modifier.

This

provides

for

reducing

the

size

of

strings

of

duplicate

characters

in

the

source

data.

The

source

data

to

be

compressed

may

have

assumed

a

partially

converted

form

at

this

point

as

a

result

of

processing

for

functions

specified

in

the

algorithm

modifier.

Compressed

data

is

built

by

concatenating

one

or

more

compression

strings

together

to

describe

the

bytes

that

make

up

the

converted

form

of

the

source

data

prior

to

the

compression

step.

The

bytes

of

the

converted

source

data

are

interrogated

to

locate

the

prime

compression

character

strings

(two

or

more

consecutive

prime

compression

characters),

duplicate

character

strings

(three

or

more

duplicate

nonprime

characters)

and

nonduplicate

character

strings

occurring

in

the

source.

The

character

strings

encountered

(prime,

duplicate

and

nonduplicate)

are

reflected

in

the

compressed

data

by

building

one

or

more

compression

strings

to

describe

them.

Compression

strings

are

comprised

of

an

SCB

(string

control

byte)

possibly

followed

by

one

or

more

bytes

of

data

related

to

the

character

string

to

be

described.

The

format

of

an

SCB

and

the

description

of

the

data

that

may

follow

it

are:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

SCB

Char(1)

0

0

Control

Bits

0-1

00

=

n

nonduplicate

characters

are

between

this

SCB

and

the

next

one;

where

n

is

the

value

of

the

count

field

(1-63).

01

=

Reserved

10

=

This

SCB

represents

n

deleted

prime

compression

characters;

where

n

is

the

value

of

the

count

field

(2-63).

The

next

byte

is

the

next

SCB.

11

=

This

SCB

represents

n

deleted

duplicate

characters;

where

n

is

the

value

of

the

count

field

(3-63).

The

next

byte

contains

a

specimen

of

the

deleted

characters.

The

byte

following

the

specimen

character

contains

the

next

SCB.

0

0

Count

Bits

2-7

164

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

This

contains

the

number

of

characters

that

have

been

deleted

for

a

prime

or

duplicate

string,

or

the

number

of

characters

to

the

next

SCB

for

a

nonduplicate

string.

A

count

value

of

zero

cannot

be

produced.

1

1

—-

End

—-

When

record

processing

is

specified,

the

compression

is

performed

as

follows.

The

compression

function

is

performed

on

just

the

converted

form

of

the

current

source

record

including

the

record

separator

character.

The

converted

form

of

the

source

record

prior

to

the

compression

step

may

be

a

truncated

record

or

a

transparent

record

as

described

above,

depending

upon

the

functions

selected

in

the

algorithm

modifier.

The

record

separator

and

TRN

control

information

is

always

converted

as

a

nonduplicate

compression

entry

to

provide

for

length

adjustment

of

the

TRN

count,

if

necessary.

The

conversion

process

for

this

record

is

completed

by

placing

the

compressed

record

into

the

receiver.

If

the

compressed

record

cannot

be

completely

contained

in

the

receiver,

the

instruction

ends

with

a

resultant

condition

of

receiver

overrun.

When

the

perform

record

spanning

function

is

specified

in

the

algorithm

modifier,

as

much

of

the

compressed

record

as

will

fit

is

placed

into

the

receiver

and

the

controls

operand

is

updated

to

describe

how

much

of

the

source

record

was

successfully

converted

into

the

receiver.

The

last

compression

entry

placed

into

the

receiver

may

be

adjusted

if

necessary

to

a

length

that

provides

for

filling

out

the

receiver.

This

length

adjustment

applies

only

to

compression

entries

for

nonduplicate

strings.

Compression

entries

for

duplicate

strings

are

placed

in

the

receiver

only

if

they

fit

with

no

adjustment.

For

the

special

case

where

data

transparency

conversion

is

specified,

the

transparent

data

being

described

is

not

spanned

out

of

the

receiver.

This

is

provided

for

by

performing

length

adjustment

on

the

TRN

count

of

a

transparent

record,

which

may

be

included

in

the

compressed

data

so

that

it

describes

only

the

source

data

that

was

successfully

converted

into

the

receiver.

For

the

special

case

where

only

2

to

5

bytes

are

available

at

the

end

of

the

receiver,

not

enough

room

for

the

compression

entry

for

a

nonduplicate

string

containing

the

record

separator

and

the

TRN

control,

and

up

to

a

2-byte

compression

entry

for

some

of

the

transparent

data,

the

nonduplicate

compression

entry

is

adjusted

to

describe

only

the

record

separator.

By

doing

this,

no

more

than

3

bytes

of

unused

space

will

remain

in

the

receiver.

The

value

of

these

unused

bytes

is

unpredictable.

Unconverted

source

record

bytes,

if

any,

will

be

processed

as

a

partial

source

record

on

the

next

invocation

of

the

instruction

and

will

be

preceded

by

the

appropriate

TRN

control

information

when

performing

transparency

conversion.

When

the

perform

record

spanning

function

is

not

specified

in

the

algorithm

modifier,

the

controls

operand

is

updated

to

describe

only

the

last

fully

converted

record

in

the

receiver.

The

value

of

the

remaining

bytes

in

the

receiver

is

unpredictable.

When

string

processing

is

specified,

the

compression

is

performed

as

follows.

The

compression

function

is

performed

on

the

data

for

the

entire

source

operand

on

a

compression

string

basis.

In

this

case,

the

fields

in

the

controls

operand

related

to

record

processing

are

ignored.

The

conversion

process

for

the

source

operand

is

completed

by

placing

the

compressed

data

into

the

receiver.

When

the

compressed

data

cannot

be

completely

contained

in

the

receiver,

the

instruction

ends

with

a

resultant

condition

of

receiver

overrun.

As

much

of

the

compressed

data

as

will

fit

is

placed

into

the

receiver

and

the

controls

operand

is

updated

to

describe

how

much

of

the

source

data

was

successfully

converted

into

the

receiver.

The

last

compression

entry

placed

into

the

receiver

may

be

adjusted

if

Machine

Interface

Instructions

165

necessary

to

a

length

that

provides

for

filling

out

the

receiver.

This

length

adjustment

applies

only

to

compression

entries

for

nonduplicate

strings.

Compression

entries

for

duplicate

strings

are

placed

in

the

receiver

only

if

they

fit

with

no

adjustment.

By

doing

this,

no

more

than

1

byte

of

unused

space

will

remain

in

the

receiver.

When

the

compressed

data

can

be

completely

contained

in

the

receiver,

the

instruction

ends

with

a

resultant

condition

of

source

exhausted.

The

compressed

data

is

placed

into

the

receiver

and

the

controls

operand

is

updated

to

indicate

that

all

of

the

source

data

was

successfully

converted

into

the

receiver.

At

this

point,

either

conversion

of

a

source

record

has

been

completed

or

conversion

has

been

interrupted

due

to

detection

of

the

source

exhausted

or

receiver

overrun

conditions.

For

record

processing,

if

neither

of

the

above

conditions

has

been

detected

either

during

conversion

of

or

at

completion

of

conversion

for

the

current

record,

the

conversion

process

continues

on

the

next

source

record

with

the

blank

truncation

step

described

above.

At

completion

of

the

instruction,

the

receiver

offset

locates

the

byte

following

the

last

converted

byte

in

the

receiver.

The

value

of

the

remaining

bytes

in

the

receiver

after

the

last

converted

byte

are

unpredictable.

The

source

offset

locates

the

byte

following

the

last

source

byte

for

which

conversion

was

completed.

When

the

perform

record

spanning

function

is

specified

in

the

algorithm

modifier,

the

unconverted

source

record

bytes

field

specifies

the

length

of

the

remaining

source

record

bytes

yet

to

be

converted.

When

the

perform

record

spanning

function

is

not

specified

in

the

algorithm

modifier,

the

unconverted

source

record

bytes

field

has

no

meaning

and

is

not

set.

The

gap

offset

value

indicates

the

offset

to

the

next

gap

relative

to

the

source

offset

value

set

for

this

condition.

The

gap

offset

value

has

no

meaning

and

is

not

set

when

the

data

field

length

is

zero.

Warning:

Temporary

Level

3

Header

Limitations

(Subject

to

Change)

The

following

are

limits

that

apply

to

the

functions

performed

by

this

instruction.

v

v

Any

form

of

overlap

between

the

operands

on

this

instruction

yields

unpredictable

results

in

the

receiver

operand.

v

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

not

be

specified

for

this

instruction.

Resultant

Conditions

v

v

Source

exhausted

-

All

bytes

in

the

source

operand

have

been

converted

into

the

receiver

operand.

v

Receiver

overrun

-

An

overrun

condition

in

the

receiver

operand

was

detected

before

all

of

the

bytes

in

the

source

operand

were

processed.

166

iSeries:

Machine

Interface

Instructions

APIs

Programming

Notes:

If

the

source

operand

does

not

end

on

a

record

boundary,

in

which

case

the

last

record

is

spanned

out

of

the

source,

this

instruction

performs

conversion

only

up

to

the

start

of

that

partial

record.

In

this

case,

the

user

of

the

instruction

must

move

this

partial

record

to

combine

it

with

the

rest

of

the

record

in

the

source

operand

to

provide

for

its

being

processed

correctly

upon

the

next

invocation

of

the

instruction.

If

full

records

are

provided,

the

instruction

performs

its

conversions

out

to

the

end

of

the

source

operand

and

no

special

processing

is

required.

For

the

special

case

of

a

tie

between

the

source

exhausted

and

receiver

overrun

conditions,

the

source

exhausted

condition

is

recognized

first.

That

is,

when

source

exhausted

is

the

resultant

condition,

the

receiver

may

also

be

full.

In

this

case,

the

receiver

offset

may

contain

a

value

equal

to

the

length

specified

for

the

receiver,

which

would

cause

an

exception

to

be

detected

on

the

next

invocation

of

the

instruction.

The

processing

performed

for

the

source

exhausted

condition

should

provide

for

this

case

if

the

instruction

is

to

be

invoked

multiple

times

with

the

same

controls

operand

template.

When

the

receiver

overrun

condition

is

the

resultant

condition,

the

source

will

always

contain

data

that

can

be

converted.

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

Machine

Interface

Instructions

167

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Convert

Date

(CVTD)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

040F

Result

date

Source

date

Instruction

template

Operand

1:

Character

variable

scalar,

packed

variable

scalar,

or

zoned

variable

scalar.

Operand

2:

Character

scalar,

packed

scalar,

or

zoned

scalar.

168

iSeries:

Machine

Interface

Instructions

APIs

Operand

3:

Space

pointer.

Bound

program

access

Built-in

number

for

CVTD

is

104.

CVTD

(

result_date

:

address

of

aggregate

OR

address

of

zoned

decimal

OR

address

of

packed

decimal

source_date

:

address

of

aggregate

OR

address

of

zoned

decimal

OR

address

of

packed

decimal

instruction_template

:

address

)

Description:

The

date

specified

in

operand

2

is

converted

to

another

calendar

external

or

internal

presentation

and

placed

in

operand

1.

Operand

3

defines

the

data

definitional

attributes

for

operands

1

and

2.

The

following

describes

the

instruction

template.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Instruction

template

Char(*)

0

0

Instruction

template

size

Bin(4)

4

4

Operand

1

data

definitional

attribute

template

number

UBin(2)

6

6

Operand

2

data

definitional

attribute

template

number

UBin(2)

8

8

Reserved

(binary

0)

Char(2)

10

A

Operand

1

length

UBin(2)

12

C

Operand

2

length

UBin(2)

14

E

Reserved

(binary

0)

Char(2)

16

10

Preferred/Found

date

format

UBin(2)

18

12

Preferred/Found

date

separator

Char(1)

19

13

Reserved

(binary

0)

Char(23)

42

2A

Data

definitional

attribute

template

list

Char(*)

42

2A

Size

of

the

DDAT

list

UBin(4

46

2E

Number

of

DDATs

UBin(2

48

30

Reserved

(binary

0)

Char(10

58

3A

DDAT

offset

[*]

UBin

*

*

Data

definitional

attribute

template

[*]

Cha

*

*

—-

End

—-

A

data

definitional

attribute

template

number

is

a

number

that

corresponds

to

the

relative

position

of

a

template

in

the

data

definitional

attribute

template

list.

For

example,

the

number

1

references

the

first

template.

The

valid

values

for

this

field

are

1

and

2.

The

DDATs

for

operands

1

and

2

must

be

valid

for

a

date.

Otherwise,

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

Operand

1

length

and

operand

2

length

are

specified

in

number

of

bytes.

If

the

data

definitional

attribute

template

numbers

for

operands

1

and

2

are

the

same,

only

data

validation

is

performed.

The

validation

will

check

for

format

and

data

value

correctness.

Machine

Interface

Instructions

169

A

format

of

unknown

date,

time,

or

timestamp

will

indicate

that

operand

2

will

be

scanned

for

a

valid

format.

For

a

list

of

formats

that

can

be

scanned,

see

Data

Definitional

Attribute

Template.

With

an

unknown

format,

the

preferred/found

date

format

and

preferred/found

date

separator

can

be

specified

to

select

an

additional

non-scanable

format.

This

preferred

format

and

preferred

separator

will

be

used

first

to

find

a

matching

format

before

scanning

operand

2.

When

the

preferred

format

and

preferred

separator

have

a

hex

value

of

zero,

only

the

scan

occurs.

When

a

format

of

unknown

date,

time,

or

timestamp

is

specified,

the

preferred/found

date

format

and

preferred/found

date

separator

fields

will

be

set

to

the

format

and

separator

found.

The

size

of

the

DDAT

list

is

specified

in

bytes.

The

number

of

DDATs

is

the

count

of

DDATs

specified

for

this

instruction

template.

The

maximum

number

of

DDATs

that

can

be

specified

is

2.

The

DDAT

offset

is

the

number

of

bytes

from

the

start

of

the

DDAT

list

to

the

start

of

the

specific

DDAT.

There

should

be

as

many

DDAT

offsets

as

there

are

DDATs

specified.

A

data

definitional

attribute

template

defines

the

presentation

of

the

data.

Each

template

describes

the

definitional

attributes

of

the

operands.

The

length

of

the

character

operands

will

be

defined

by

the

templates.

For

a

further

description

of

the

data

definitional

attribute

template,

see

Data

Definitional

Attribute

Template.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C15

Date

Boundary

Overflow

0C16

Data

Format

Error

0C17

Data

Value

Error

0C18

Date

Boundary

Underflow

170

iSeries:

Machine

Interface

Instructions

APIs

MINDTCON.htm#HDRDDAT
MINDTCON.htm#HDRDDAT
MINDTCON.htm#HDRDDAT

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Machine

Interface

Instructions

171

Convert

Decimal

Form

to

Floating-Point

(CVTDFFP)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

107F

Receiver

Decimal

exponent

Decimal

significand

Operand

1:

Floating-point

variable

scalar.

Operand

2:

Packed

scalar

or

zoned

scalar

(1

to

31

digits).

Operand

3:

Packed

scalar

or

zoned

scalar

(1

to

31

digits).

Description:

This

instruction

converts

the

decimal

form

of

a

floating-point

value

specified

by

a

decimal

exponent

and

a

decimal

significand

to

binary

floating-point

format,

and

places

the

result

in

the

receiver

operand.

The

decimal

exponent

(operand

2)

and

decimal

significand

(operand

3)

are

considered

to

specify

a

decimal

form

of

a

floating-point

number.

The

value

of

this

number

is

considered

to

be

as

follows:

Value

=

S

*

(10**E)

where:

S

=

The

value

of

the

decimal

significand

operand.

E

=

The

value

of

the

decimal

exponent

operand.

*

Denotes

multiplication.

**

Denotes

exponentiation.

The

decimal

exponent

must

be

specified

as

a

decimal

integer

value;

no

fractional

digit

positions

may

be

specified

in

its

definition.

The

decimal

exponent

is

a

signed

integer

value

specifying

a

power

of

10

which

gives

the

floating-point

value

its

magnitude.

A

decimal

exponent

value

too

large

or

too

small

to

be

represented

in

the

receiver

will

result

in

the

signaling

of

the

appropriate

floating-point

overflow

(hex

0C06)

exception

or

floating-point

underflow

(hex

0C07)

exception.

The

decimal

significand

must

be

specified

as

a

decimal

value

with

a

single

integer

digit

position

and

optional

fractional

digit

positions.

The

decimal

significand

is

a

signed

decimal

value

specifying

decimal

digits

which

give

the

floating-point

value

its

precision.

The

significant

digits

of

the

decimal

significand

are

considered

to

start

with

the

leftmost

nonzero

decimal

digit

and

continue

to

the

right

to

the

end

of

the

decimal

significand

value.

Significant

digits

beyond

7

for

a

short

float

receiver,

and

beyond

15

for

a

long

float

receiver

exceed

the

precision

provided

for

in

the

binary

floating-point

receiver.

These

excess

digits

do

participate

in

the

conversion

to

provide

for

uniqueness

of

the

conversion

as

well

as

for

proper

rounding.

The

decimal

form

floating-point

value

specified

by

the

decimal

exponent

and

decimal

significand

operands

is

converted

to

a

binary

floating-point

number

and

rounded

to

the

precision

of

the

result

field

as

follows:

Source

values

which,

in

magnitude

M,

are

in

the

range

where

(10**31-1)

*

10**-31

<=

M

<=

(10**31-1)

*10**+31

are

converted

subject

to

the

normal

rounding

error

defined

for

the

floating-point

rounding

modes.

Source

values

which,

in

magnitude

M,

are

in

the

range

where

(10**31-1)

*

10**-31

>

M

>

(10**31-1)

*10**+31

are

converted

such

that

the

rounding

error

incurred

on

the

conversion

may

exceed

that

defined

above.

For

round

to

nearest,

this

error

will

not

exceed

by

more

than

.47

units

in

the

least

significant

digit

position

of

the

result

in

relation

to

the

error

that

would

be

incurred

for

normal

rounding.

For

the

other

floating-point

rounding

modes,

this

error

will

not

exceed

1.47

units

in

the

least

significant

digit

position

of

the

result.

The

converted

and

rounded

value

is

then

assigned

to

the

floating-point

receiver.

172

iSeries:

Machine

Interface

Instructions

APIs

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C02

Decimal

Data

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C0D

Floating-Point

Inexact

Result

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

Machine

Interface

Instructions

173

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Convert

External

Form

to

Numeric

Value

(CVTEFN)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

1087

Receiver

Source

Mask

Operand

1:

Numeric

variable

scalar

or

data-pointer-defined

numeric

scalar.

Operand

2:

Character

scalar

or

data-pointer-defined

character

scalar.

174

iSeries:

Machine

Interface

Instructions

APIs

Operand

3:

Character(3)

scalar,

null,

or

data-pointer-defined

character(3)

scalar.

Bound

program

access

Built-in

number

for

CVTEFN

is

136.

CVTEFN

(

receiver

:

address

of

signed

binary

OR

address

of

unsigned

binary

OR

address

of

zoned

decimal

(1

to

63

digits)

OR

address

of

packed

decimal

(1

to

63

digits)

receiver_attributes

:

address

source

:

address

source_length

:

address

of

unsigned

binary(4)

mask

:

address

)

The

receiver_attributes

is

a

structure

which

describes

the

data

attributes

of

the

receiver

values.

The

format

of

this

structure

matches

that

of

the

third

operand

on

the

CVTCN

and

CVTNC

operations.

The

source_length

parameter

contains

the

length,

in

bytes,

of

the

source

string.

It

is

expected

to

contain

a

value

between

1

and

32,767.

If

a

value

less

than

1

or

greater

than

32,767

is

specified,

a

scalar

value

invalid

(hex

3203)

exception

is

signaled.

Description:

This

instruction

scans

a

character

string

for

a

valid

decimal

number

in

display

format,

removes

the

display

character,

and

places

the

results

in

the

receiver

operand.

The

operation

begins

by

scanning

the

character

string

value

in

the

source

operand

to

make

sure

it

is

a

valid

decimal

number

in

display

format.

Valid

types

for

the

receiver

are:

packed

or

zoned

decimal,

signed

or

unsigned

binary.

The

character

string

defined

by

source

consists

of

the

following

optional

entries:

v

v

Currency

symbol

-

This

value

is

optional

and,

if

present,

must

precede

any

sign

and

digit

values.

The

valid

symbol

is

determined

by

mask.

The

currency

symbol

may

be

preceded

in

the

field

by

blank

(hex

40)

characters.

v

Sign

symbol

-

This

value

is

optional

and,

if

present,

may

precede

any

digit

values

(a

leading

sign)

or

may

follow

the

digit

values

(a

trailing

sign).

Valid

signs

are

positive

(hex

4E)

and

negative

(hex

60).

The

sign

symbol,

if

it

is

a

leading

sign,

may

be

preceded

by

blank

characters.

If

the

sign

symbol

is

a

trailing

sign,

it

must

be

the

rightmost

character

in

the

field.

Only

one

sign

symbol

is

allowed.

v

Decimal

digits

-

Up

to

63

decimal

digits

may

be

specified.

Valid

decimal

digits

are

in

the

range

of

hex

F0

through

hex

F9

(0-9).

The

first

decimal

digit

may

be

preceded

by

blank

characters

(hex

40),

but

hex

40

values

located

to

the

right

of

the

leftmost

decimal

digit

are

invalid.

The

decimal

digits

may

be

divided

into

two

parts

by

the

decimal

point

symbol:

an

integer

part

and

a

fractional

part.

Digits

to

the

left

of

the

decimal

point

are

interpreted

as

integer

values.

Digits

to

the

right

are

interpreted

as

a

fractional

values.

If

no

decimal

point

symbol

is

included,

the

value

is

interpreted

as

an

integer

value.

The

valid

decimal

point

symbol

is

determined

by

mask.

If

the

decimal

point

symbol

precedes

the

leftmost

decimal

digit,

the

digit

value

is

interpreted

as

a

fractional

value,

and

the

leftmost

decimal

digit

must

be

adjacent

to

the

decimal

point

symbol.

If

the

decimal

point

follows

the

rightmost

decimal

digit,

the

digit

value

is

interpreted

as

an

integer

value,

and

the

rightmost

decimal

digit

must

be

adjacent

to

the

decimal

point.

Decimal

digits

in

the

integer

portion

may

optionally

have

comma

symbols

separating

groups

of

three

digits.

The

leftmost

group

may

contain

one,

two,

or

three

decimal

digits,

and

each

succeeding

group

must

be

preceded

by

the

comma

symbol

and

contain

three

digits.

The

comma

symbol

must

be

adjacent

to

a

decimal

digit

on

either

side.

The

valid

comma

symbol

is

determined

by

mask.

Decimal

digits

in

the

fractional

portion

may

not

be

separated

by

commas

and

must

be

adjacent

to

one

another.

Machine

Interface

Instructions

175

Examples

of

external

formats

follow.

The

following

symbols

are

used.

$

currency

symbol

.

decimal

point

,

comma

D

digit

(hex

F0-F9)

blank

(hex

40)

+

positive

sign

-

negative

sign

Format

Comments

$+DDDD.DD

Currency

symbol,

leading

sign,

no

comma

separators

DD,DDD-

Comma

symbol,

no

fraction,

trailing

sign

-.DDD

No

integer,

leading

sign

$DDD,DDD-

No

fraction,

comma

symbol,

trailing

sign

$

+

DD.DD

Embedded

blanks

before

digits

If

the

length

of

operand

2

is

0,

a

scalar

value

invalid

(hex

3203)

exception

is

signaled.

Mask

must

indicate

a

3-byte

character

scalar.

Byte

1

of

the

string

indicates

the

byte

value

that

is

to

be

used

for

the

currency

symbol.

Byte

2

of

the

string

indicates

the

byte

value

to

be

used

for

the

comma

symbol.

Byte

3

of

the

string

indicates

the

byte

value

to

be

used

for

the

decimal

point

symbol.

Unpredictable

results

can

occur

if

the

same

value

is

used

for

more

than

one

symbol.

If

mask

is

null

for

a

non-bound

program,

the

currency

symbol

(hex

5B),

comma

(hex

6B),

and

decimal

point

(hex

4B)

are

used.

If

the

syntax

rules

are

violated,

a

conversion

(hex

0C01)

exception

is

signaled.

If

not,

a

zoned

decimal

value

is

formed

from

the

digits

of

the

display

format

character

string.

This

number

is

placed

in

the

receiver

operand

following

the

rules

of

a

normal

arithmetic

conversion.

If

a

decimal

to

binary

conversion

causes

a

size

(hex

0C0A)

exception

to

be

signaled,

the

binary

value

contains

the

correct

truncated

result

only

if

the

decimal

value

contains

15

or

fewer

significant

nonfractional

digits.

A

data-pointer-defined

receiver

with

8

byte

binary

attributes

is

not

supported

and

will

cause

a

scalar

value

invalid

(hex

3203)

exception

to

be

signaled.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

176

iSeries:

Machine

Interface

Instructions

APIs

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C01

Conversion

0C0A

Size

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

Machine

Interface

Instructions

177

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Convert

Floating-Point

to

Decimal

Form

(CVTFPDF)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

CVTFPDF

10BF

Decimal

exponent

Decimal

significand

Source

CVTFPDFR

12BF

Decimal

exponent

Decimal

significand

Source

Operand

1:

Packed

variable

scalar

or

zoned

variable

scalar

(1

to

31

digits).

Operand

2:

Packed

variable

scalar

or

zoned

variable

scalar

(1

to

31

digits).

Operand

3:

Floating-point

scalar.

Description:

This

instruction

converts

a

binary

floating-point

value

to

a

decimal

form

of

a

floating-point

value

specified

by

a

decimal

exponent

and

a

decimal

significand,

and

places

the

result

in

the

decimal

exponent

and

decimal

significand

operands.

The

value

of

this

number

is

considered

to

be

as

follows:

Value

=

S

*

(10**E)

178

iSeries:

Machine

Interface

Instructions

APIs

where:

S

=

The

value

of

the

decimal

significand

operand.

E

=

The

value

of

the

decimal

exponent

operand.

*

Denotes

multiplication.

**

Denotes

exponentiation.

The

decimal

exponent

must

be

specified

as

a

decimal

integer

value.

No

fractional

digit

positions

are

allowed.

It

must

be

specified

with

at

least

five

digit

positions.

The

decimal

exponent

provides

for

containing

a

signed

integer

value

specifying

a

power

of

10

which

gives

the

floating-point

value

its

magnitude.

The

decimal

significand

must

be

specified

as

a

decimal

value

with

a

single

integer

digit

position

and

optional

fractional

digit

positions.

The

decimal

significand

provides

for

containing

a

signed

decimal

value

specifying

decimal

digit

which

gives

the

floating-point

value

its

precision.

The

decimal

significand

is

formed

as

a

normalized

value,

that

is,

the

leftmost

digit

position

is

nonzero

for

a

nonzero

source

value.

When

the

source

contains

a

representation

of

a

normalized

binary

floating-point

number

with

decimal

significand

digits

beyond

the

leftmost

7

digits

for

a

short

floating-point

source

or

beyond

the

leftmost

15

digits

for

a

long

floating-point

source,

the

precision

allowed

for

the

binary

floating-point

source

is

exceeded.

When

the

source

contains

a

representation

of

a

denormalized

binary

floating-point

number,

it

may

provide

less

precision

than

the

precision

of

a

normalized

binary

floating-point

number,

depending

on

the

particular

source

value.

Decimal

significand

digits

exceeding

the

precision

of

the

source

are

set

as

a

result

of

the

conversion

to

provide

for

uniqueness

of

conversion

and

are

correct,

except

for

rounding

errors.

These

digits

are

only

as

precise

as

the

floating-point

calculations

that

produced

the

source

value.

The

floating-point

inexact

result

(hex

0C0D)

exception

provides

a

means

of

detecting

loss

of

precision

in

floating-point

calculations.

The

binary

floating-point

source

is

converted

to

a

decimal

form

floating-point

value

and

rounded

to

the

precision

of

the

decimal

significand

operand

as

follows:

v

v

The

decimal

significand

is

formed

as

a

normalized

value

and

the

decimal

exponent

is

set

accordingly.

Machine

Interface

Instructions

179

v

For

the

nonround

form

of

the

instruction,

the

value

to

be

assigned

to

the

decimal

significand

is

adjusted

to

the

precision

of

the

decimal

significand,

if

necessary,

according

to

the

current

float

rounding

mode

in

effect

for

the

thread.

For

the

optional

round

form

of

the

instruction,

the

decimal

round

algorithm

is

used

for

the

precision

adjustment

of

the

decimal

significand.

The

decimal

round

algorithm

overrides

the

current

floating-point

rounding

mode

that

is

in

effect

for

the

thread.

v

Source

values

which,

in

magnitude

M,

are

in

the

range

where

(10**31-1)

*

10**-31

<=

M

<=

(10**31-1)

*

10**+31

are

converted

subject

to

the

normal

rounding

error

defined

for

the

floating-point

rounding

modes

and

the

optional

round

form

of

the

instruction.

v

Source

values

which,

in

magnitude

M,

are

in

the

range

where

(10**31-1)

*

10**-31

>

M

>

(10**31-1)

*

10**+31

are

converted

such

that

the

rounding

error

incurred

on

the

conversion

may

exceed

that

defined

above.

For

round

to

nearest

and

the

optional

round

form

of

the

instruction,

this

error

will

not

exceed

by

more

than

.47

units

in

the

least

significant

digit

position

of

the

result,

the

error

that

would

be

incurred

for

a

correctly

rounded

result.

For

the

other

floating-point

rounding

modes,

this

error

will

not

exceed

1.47

units

in

the

least

significant

digit

position

of

the

result.

v

If

necessary,

the

decimal

exponent

value

is

adjusted

to

compensate

for

rounding.

v

The

converted

and

rounded

value

is

then

assigned

to

the

decimal

exponent

and

decimal

significand

operands.

A

size

(hex

0C0A)

exception

cannot

occur

on

the

assignment

of

the

decimal

exponent

or

the

decimal

significand

values.

Limitations

(Subject

to

Change):

The

following

are

limits

that

apply

to

the

functions

performed

by

this

instruction.

v

v

The

result

of

the

operation

is

unpredictable

for

any

type

of

overlap

between

the

decimal

exponent

and

decimal

significand

operands.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

180

iSeries:

Machine

Interface

Instructions

APIs

0C0D

Floating-Point

Inexact

Result

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Machine

Interface

Instructions

181

Convert

Hex

to

Character

(CVTHC)

Op

Code

(Hex)

Operand

1

Operand

2

1086

Receiver

Source

Operand

1:

Character

variable

scalar.

Operand

2:

Character

variable

scalar.

Description:

Each

hex

digit

(4-bit

value)

of

the

string

value

in

the

source

operand

is

converted

to

a

character

(8-bit

value)

and

placed

in

the

receiver

operand.

Hex

Digits

Characters

Hex

0-9

=

Hex

F0-F9

Hex

A-F

=

Hex

C1-C6

The

operation

begins

with

the

two

operands

left-adjusted

and

proceeds

left

to

right

until

all

the

characters

of

the

receiver

operand

have

been

filled.

If

the

source

operand

contains

fewer

hex

digits

than

needed

to

fill

the

receiver,

the

excess

characters

are

assigned

a

value

of

hex

F0.

If

the

source

operand

is

too

large,

a

length

conformance

(hex

0C08)

exception

or

an

invalid

operand

length

(hex

2A0A)

exception

is

signaled.

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

be

specified

for

operands

1

and

2.

The

effect

of

specifying

a

null

substring

reference

for

the

source

is

that

the

bytes

of

the

receiver

are

each

set

with

a

value

of

hex

F0.

The

effect

of

specifying

a

null

substring

reference

for

the

receiver

is

that

no

result

is

set.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C08

Length

Conformance

10

Damage

Encountered

182

iSeries:

Machine

Interface

Instructions

APIs

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Convert

MRJE

to

Character

(CVTMC)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-5]

CVTMC

10AB

Receiver

Controls

Source

CVTMCB

1CAB

Branch

options

Receiver

Controls

Source

Branch

targets

CVTMCI

18AB

Indicator

options

Receiver

Controls

Source

Indicator

targets

Machine

Interface

Instructions

183

Operand

1:

Character

variable

scalar.

Operand

2:

Character(6)

variable

scalar.

Operand

3:

Character

scalar.

Operand

4-5:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Bound

program

access

Built-in

number

for

CVTMC

is

132.

CVTMC

(

receiver

:

address

receiver_length

:

unsigned

binary(4)

controls

:

address

source

:

address

source_length

:

unsigned

binary(4)

return_code

:

address

of

signed

binary(4)

)

The

return_code

will

be

set

as

follows:

Return

code

Meaning

-1

Receiver

Overrun.

0

Source

Exhausted.

The

receiver,

controls

and

source

parameters

correspond

to

operands

1,

2

and

3

on

the

CVTMC

operation.

The

receiver_length

and

source_length

parameters

contain

the

length,

in

bytes,

of

the

receiver

and

source

strings.

They

are

expected

to

contain

values

between

1

and

32,767.

The

return_code

parameter

is

used

to

provide

support

for

the

branch

and

indicator

forms

of

the

CVTMC

operation.

The

user

must

specify

code

to

process

the

return_code

and

perform

the

desired

branching

or

indicator

setting.

Description:

This

instruction

converts

a

character

string

from

the

MRJE

(MULTI-LEAVING

remote

job

entry)

compressed

format

to

character

format.

The

operation

converts

the

source

(operand

3)

from

the

MRJE

compressed

format

to

character

format

under

control

of

the

controls

(operand

2)

and

places

the

results

in

the

receiver

(operand

1).

The

source

and

receiver

operands

must

both

be

character

strings.

The

source

operand

cannot

be

specified

as

either

a

signed

or

unsigned

immediate

value.

The

controls

operand

must

be

a

character

scalar

that

specifies

additional

information

to

be

used

to

control

the

conversion

operation.

It

must

be

at

least

6

bytes

in

length

and

have

the

following

format:

184

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Controls

operand

Char(6)

0

0

Receiver

offset

Bin(2)

2

2

Source

offset

Bin(2)

4

4

Algorithm

modifier

Char(1)

5

5

Receiver

record

length

Char(1)

6

6

—-

End

—-

As

input

to

the

instruction,

the

source

offset

and

receiver

offset

fields

specify

the

offsets

where

bytes

of

the

source

and

receiver

operands

are

to

be

processed.

If

an

offset

is

equal

to

or

greater

than

the

length

specified

for

the

operand

it

corresponds

to

(it

identifies

a

byte

beyond

the

end

of

the

operand),

a

template

value

invalid

(hex

3801)

exception

is

signaled.

As

output

from

the

instruction,

the

source

offset

and

receiver

offset

fields

specify

offsets

that

indicate

how

much

of

the

operation

is

complete

when

the

instruction

ends.

The

algorithm

modifier

has

the

following

valid

values:

v

v

Hex

00

=

Do

not

move

SRCBs

(sub

record

control

bytes)

from

the

source

into

the

receiver.

v

Hex

01

=

Move

SRCBs

from

the

source

into

the

receiver.

The

receiver

record

length

value

specifies

the

record

length

to

be

used

to

convert

source

records

into

the

receiver

operand.

This

length

applies

to

only

the

string

portion

of

the

receiver

record

and

does

not

include

the

optional

SRCB

field.

If

a

receiver

record

length

of

0

is

specified,

a

template

value

invalid

(hex

3801)

exception

is

signaled.

Only

the

first

6

bytes

of

the

controls

operand

are

used.

Any

excess

bytes

are

ignored.

The

operation

begins

by

accessing

the

bytes

of

the

source

operand

at

the

location

specified

by

the

source

offset.

This

is

assumed

to

be

the

start

of

a

record.

The

bytes

of

the

records

in

the

source

operand

are

converted

into

the

receiver

operand

at

the

location

specified

by

the

receiver

offset

according

to

the

following

algorithm.

The

first

byte

of

the

source

record

is

considered

to

be

an

RCB

(record

control

byte)

that

is

to

be

ignored

during

conversion.

The

second

byte

of

the

source

record

is

considered

to

be

an

SRCB.

If

an

algorithm

modifier

of

value

hex

00

was

specified,

the

SRCB

is

ignored.

If

an

algorithm

modifier

of

value

hex

01

was

specified,

the

SRCB

is

copied

into

the

receiver.

The

strings

to

be

built

in

the

receiver

record

are

described

in

the

source

after

the

SRCB

by

one

or

more

SCBs

(string

control

bytes).

The

format

of

the

SCBs

in

the

source

are

as

follows:

o

k

l

jjjjj

The

bit

meanings

are:

Bit

Value

Meaning

o

0

End

of

record;the

EOR

SCB

is

hex

00.

1

All

other

SCBs.

k

0

The

string

is

compressed.

1

The

string

is

not

compressed.

l

For

k

=

0:

0

Blanks

(hex

40s)

have

been

deleted.

Machine

Interface

Instructions

185

Bit

Value

Meaning

1

Nonblank

characters

have

been

deleted.

The

next

character

in

the

data

stream

is

the

specimen

character.

For

k

=

1:

This

bit

is

part

of

the

length

field

for

length

of

uncompressed

data.

jjjjj

Number

of

characters

that

have

been

deleted

if

k

=

0.

The

value

can

be

1-31.

ljjjjj

Number

of

characters

to

the

next

SCB

(no

compression)

if

k=1.

The

value

can

be

1-63.

The

uncompressed

(nonidentical

bytes)

follow

the

SCB

in

the

data

stream.

A

length

of

0

encountered

in

an

SCB

results

in

the

signaling

of

a

conversion

(hex

0C01)

exception.

Strings

of

blanks

or

nonblank

identical

characters

described

in

the

source

record

are

repeated

in

the

receiver

the

number

of

times

indicated

by

the

SCB

count

value.

Strings

of

nonidentical

characters

described

in

the

source

record

are

moved

into

the

receiver

for

the

length

indicated

by

the

SCB

count

value.

When

an

EOR

(end

of

record)

SCB

(hex

00)

is

encountered

in

the

source,

the

receiver

is

padded

with

blanks

out

to

the

end

of

the

current

record.

If

the

converted

form

of

a

source

record

is

larger

than

the

receiver

record

length,

the

instruction

is

terminated

by

signaling

a

length

conformance

(hex

0C08)

exception.

If

the

end

of

the

source

operand

is

not

encountered,

the

operation

then

continues

by

reapplying

the

above

algorithm

to

the

next

record

in

the

source

operand.

If

the

end

of

the

source

operand

is

encountered

(whether

or

not

in

conjunction

with

a

record

boundary,

EOR

SCB

in

the

source),

the

instruction

ends

with

a

resultant

condition

of

source

exhausted.

The

receiver

offset

locates

the

byte

following

the

last

fully

converted

record

in

the

receiver.

The

source

offset

locates

the

byte

following

the

last

source

record

for

which

conversion

is

complete.

The

value

of

the

remaining

bytes

in

the

receiver

after

the

last

converted

record

are

unpredictable.

If

the

converted

form

of

a

record

cannot

be

completely

contained

in

the

receiver,

the

instruction

ends

with

a

resultant

condition

of

receiver

overrun.

The

receiver

offset

locates

the

byte

following

the

last

fully

converted

record

in

the

receiver.

The

source

offset

locates

the

byte

following

the

last

source

record

for

which

conversion

is

complete.

The

value

of

the

remaining

bytes

in

the

receiver

after

the

last

converted

record

is

unpredictable.

If

the

source

exhausted

and

the

receiver

overrun

conditions

occur

at

the

same

time,

the

source

exhausted

condition

is

recognized

first.

In

this

case,

the

receiver

offset

may

contain

a

value

equal

to

the

length

specified

for

the

receiver

which

causes

an

exception

to

be

signaled

on

the

next

invocation

of

the

instruction.

The

processing

performed

for

the

source

exhausted

condition

provides

for

this

case

if

the

instruction

is

invoked

multiple

times

with

the

same

controls

operand

template.

When

the

receiver

overrun

condition

is

the

resultant

condition,

the

source

always

contains

data

that

can

be

converted.

Warning:

Temporary

Level

3

Header

Limitations

(Subject

to

Change)

The

following

are

limits

that

apply

to

the

functions

performed

by

this

instruction.

v

v

Any

form

of

overlap

between

the

operands

on

this

instruction

yields

unpredictable

results

in

the

receiver

operand.

186

iSeries:

Machine

Interface

Instructions

APIs

Resultant

Conditions

v

v

Source

exhausted

-

All

full

records

in

the

source

operand

have

been

converted

into

the

receiver

operand.

v

Receiver

overrun

-

An

overrun

condition

in

the

receiver

operand

was

detected

prior

to

processing

all

of

the

bytes

in

the

source

operand.

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C01

Conversion

0C08

Length

Conformance

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

Machine

Interface

Instructions

187

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Convert

Numeric

to

Character

(CVTNC)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

10A3

Receiver

Source

Attributes

Operand

1:

Character

variable

scalar

or

data-pointer-defined

character

scalar.

Operand

2:

Numeric

scalar

or

data-pointer-defined

numeric

scalar.

Operand

3:

Character(7)

scalar

or

data-pointer-defined

character(7)

scalar.

188

iSeries:

Machine

Interface

Instructions

APIs

Description:

The

source

numeric

value

(operand

2)

is

converted

and

copied

to

the

receiver

character

string

(operand

1).

The

receiver

operand

is

treated

as

though

it

had

the

attributes

supplied

by

operand

3.

Operand

1,

when

viewed

in

this

manner,

receives

the

numeric

value

of

operand

2

following

the

rules

of

the

Copy

Numeric

Value

(CPYNV)

instruction.

The

format

of

operand

3

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Scalar

attributes

Char(7)

0

0

Scalar

type

Char(1)

Hex

00

=

Signed

binary

Hex

01

=

Floating-point

Hex

02

=

Zoned

decimal

Hex

03

=

Packed

decimal

Hex

0A

=

Unsigned

binary

1

1

Scalar

length

Bin(2)

If

binary:

1

1

Length

(L)

(where

L

=

2

or

4)

Bits

0

If

floating-point:

1

1

Length

(where

L

=

4

or

8)

Bits

0

If

zoned

decimal

or

packed

decimal:

1

1

Fractional

digits

(F)

Bits

0

1

1

Total

digits

(T)

Bits

8

(where

1

<=

T

<=

63

and

0

<=

F

<=

T)

3

3

Reserved

(binary

0)

Bin(4)

7

7

—-

End

—-

The

byte

length

of

operand

1

must

be

large

enough

to

contain

the

numeric

value

described

by

operand

3.

If

it

is

not

large

enough,

a

scalar

value

invalid

(hex

3203)

exception

is

signaled.

If

it

is

larger

than

needed,

the

numeric

value

is

placed

in

the

leftmost

bytes

and

the

unneeded

rightmost

bytes

are

unchanged

by

the

instruction.

If

a

decimal

to

binary

conversion

causes

a

size

(hex

0C0A)

exception

to

be

signaled,

the

binary

value

contains

the

correct

truncated

result

only

if

the

decimal

value

contains

15

or

fewer

significant

nonfractional

digits.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Machine

Interface

Instructions

189

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0604

External

Data

Object

Not

Found

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C02

Decimal

Data

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

0C0A

Size

0C0C

Invalid

Floating-Point

Conversion

0C0D

Floating-Point

Inexact

Result

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

190

iSeries:

Machine

Interface

Instructions

APIs

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Convert

SNA

to

Character

(CVTSC)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-6]

CVTSC

10DB

Receiver

Controls

Source

CVTSCB

1CDB

Branch

options

Receiver

Controls

Source

Branch

targets

CVTSCI

18DB

Indicator

options

Receiver

Controls

Source

Indicator

targets

Operand

1:

Character

variable

scalar.

Operand

2:

Character(14)

variable

scalar.

Operand

3:

Character

scalar.

Operand

4-6:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Machine

Interface

Instructions

191

Bound

program

access

Built-in

number

for

CVTSC

is

134.

CVTSC

(

receiver

:

address

receiver_length

:

unsigned

binary(4)

controls

:

address

source

:

address

source_length

:

unsigned

binary(4)

return_code

:

address

of

signed

binary(4)

)

The

return_code

will

be

set

as

follows:

Return

code

Meaning

-1

Receiver

Overrun.

0

Source

Exhausted.

1

Escape

Code

Encountered.

The

receiver,

controls

and

source

parameters

correspond

to

operands

1,

2

and

3

on

the

CVTSC

operation.

The

receiver_length

and

source_length

parameters

contain

the

length,

in

bytes,

of

the

receiver

and

source

strings.

They

are

expected

to

contain

values

between

1

and

32,767.

The

return_code

parameter

is

used

to

provide

support

for

the

branch

and

indicator

forms

of

the

CVTSC

operation.

The

user

must

specify

code

to

process

the

return_code

and

perform

the

desired

branching

or

indicator

setting.

Description:

This

instruction

converts

a

string

value

from

SNA

(systems

network

architecture)

format

to

character.

The

operation

converts

the

source

(operand

3)

from

SNA

format

to

character

under

control

of

the

controls

(operand

2)

and

places

the

result

into

the

receiver

(operand

1).

The

source

and

receiver

operands

must

both

be

character

strings.

The

source

operand

may

not

be

specified

as

an

immediate

operand.

The

controls

operand

must

be

a

character

scalar

that

specifies

additional

information

to

be

used

to

control

the

conversion

operation.

It

must

be

at

least

14

bytes

in

length

and

have

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Controls

operand

base

template

Char(14)

0

0

Receiver

offset

Bin(2)

2

2

Source

offset

Bin(2)

4

4

Algorithm

modifier

Char(1)

5

5

Receiver

record

length

Char(1)

6

6

Record

separator

Char(1)

7

7

Prime

compression

Char(1)

8

8

Unconverted

receiver

record

bytes

Char(1)

9

9

Conversion

status

Char(2)

192

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

11

B

Unconverted

transparency

string

bytes

Char(1)

12

C

Offset

into

template

to

translate

table

Bin(2)

14

E

Controls

operand

optional

template

extension

Char(64)

14

E

Record

separator

translate

table

Char(64)

78

4E

—-

End

—-

Upon

input

to

the

instruction,

the

source

offset

and

receiver

offset

fields

specify

the

offsets

where

bytes

of

the

source

and

receiver

operands

are

to

be

processed.

If

an

offset

is

equal

to

or

greater

than

the

length

specified

for

the

operand

it

corresponds

to

(it

identifies

a

byte

beyond

the

end

of

the

operand),

a

template

value

invalid

(hex

3801)

exception

is

signaled.

As

output

from

the

instruction,

the

source

offset

and

receiver

offset

are

set

to

specify

offsets

that

indicate

how

much

of

the

operation

is

complete

when

the

instruction

ends.

The

algorithm

modifier

specifies

the

optional

functions

to

be

performed.

Any

combination

of

functions

not

precluded

by

the

bit

definitions

below

is

valid

except

that

at

least

one

of

the

functions

must

be

specified.

All

algorithm

modifier

bits

cannot

be

zero.

Specification

of

an

invalid

algorithm

modifier

value

results

in

a

template

value

invalid

(hex

3801)

exception.

The

meaning

of

the

bits

in

the

algorithm

modifier

is

the

following:

Bits

Meaning

0

0

=

Do

not

perform

decompression.

Interpret

a

source

character

value

of

hex

00

as

null.

1

=

Perform

decompression.

Interpret

a

source

character

value

of

hex

00

as

a

record

separator.

1-2

00

=

No

record

separators

in

source,

no

blank

padding.

Do

not

perform

data

transparency

conversion.

01

=

Reserved.

10

=

Record

separators

in

source,

perform

blank

padding.

Do

not

perform

data

transparency

conversion.

11

=

Record

separators

in

source,

perform

blank

padding.

Perform

data

transparency

conversion.

3-4

00

=

Do

not

put

record

separators

into

receiver.

01

=

Move

record

separators

from

source

to

receiver

(allowed

only

when

bit

1

=

1)

10

=

Translate

record

separators

from

source

to

receiver

(allowed

only

when

bit

1

=

1)

11

=

Move

record

separator

from

controls

to

receiver.

5-7

Reserved

The

receiver

record

length

value

specifies

the

record

length

to

be

used

to

convert

source

records

into

the

receiver

operand.

This

length

applies

only

to

the

data

portion

of

the

receiver

record

and

does

not

include

the

optional

record

separator.

Specification

of

a

receiver

record

length

of

zero

results

in

a

template

value

invalid

(hex

3801)

exception.

The

receiver

record

length

value

is

ignored

if

no

record

separator

processing

is

requested

in

the

algorithm

modifier.

The

record

separator

value

specifies

the

character

that

is

to

precede

the

converted

form

of

each

record

in

the

receiver.

The

record

separator

character

specified

in

the

controls

operand

is

used

only

for

the

case

where

the

move

record

separator

from

controls

to

receiver

function

is

specified

in

the

algorithm

modifier

or

where

a

missing

record

separator

in

the

source

is

detected.

Machine

Interface

Instructions

193

The

prime

compression

value

specifies

the

character

to

be

used

as

the

prime

compression

character

when

performing

decompression

of

the

SNA

format

source

data

to

character.

It

may

have

any

value.

The

prime

compression

value

is

ignored

if

the

perform

decompression

function

is

not

specified

in

the

algorithm

modifier.

The

unconverted

receiver

record

bytes

value

specifies

the

number

of

bytes

remaining

in

the

current

receiver

record

that

are

yet

to

be

set

with

converted

bytes

from

the

source.

When

record

separator

processing

is

specified

in

the

algorithm

modifier,

this

value

is

both

input

to

and

output

from

the

instruction.

On

input,

a

value

of

hex

00

means

it

is

the

start

of

processing

for

a

new

record,

and

the

initial

conversion

step

is

yet

to

be

performed.

This

indicates

that

for

the

case

where

a

function

for

putting

record

separators

into

the

receiver

is

specified

in

the

algorithm

modifier,

a

record

separator

character

has

yet

to

be

placed

in

the

receiver.

On

input,

a

nonzero

value

less

than

or

equal

to

the

receiver

record

length

specifies

the

number

of

bytes

remaining

in

the

current

receiver

record

that

are

yet

to

be

set

with

converted

bytes

from

the

source.

This

value

is

assumed

to

be

the

valid

count

of

unconverted

receiver

record

bytes

relative

to

the

current

byte

to

be

processed

in

the

receiver

as

located

by

the

receiver

offset

field.

As

such,

it

is

used

to

determine

the

location

of

the

next

record

boundary

in

the

receiver

operand.

This

value

must

be

less

than

or

equal

to

the

receiver

record

length

value;

otherwise,

a

template

value

invalid

(hex

3801)

exception

is

signaled.

On

output,

this

field

is

set

with

a

value

as

defined

above

which

describes

the

number

of

bytes

of

the

current

receiver

record

not

yet

containing

converted

data.

When

record

separator

processing

is

not

specified

in

the

algorithm

modifier,

this

value

is

ignored.

The

conversion

status

field

specifies

status

information

for

the

operation

to

be

performed.

The

meaning

of

the

bits

in

the

conversion

status

is

the

following:

Bits

Meaning

0

0

=

No

transparency

string

active.

1

=

Transparency

string

active.

Unconverted

transparency

string

bytes

value

contains

the

remaining

string

length.

1-15

Reserved

This

field

is

both

input

to

and

output

from

the

instruction.

It

provides

for

checkpointing

the

conversion

status

over

successive

executions

of

the

instruction.

If

the

conversion

status

indicates

transparency

string

active,

but

the

algorithm

modifier

does

not

specify

perform

data

transparency

conversion,

a

template

value

invalid

(hex

3801)

exception

is

signaled.

The

unconverted

transparency

string

bytes

field

specifies

the

number

of

bytes

remaining

to

be

converted

for

a

partially

processed

transparency

string

in

the

source.

When

perform

data

transparency

conversion

is

specified

in

the

algorithm

modifier,

the

unconverted

transparency

string

bytes

field

can

be

both

input

to

and

output

from

the

instruction.

On

input,

when

the

no

transparency

string

active

status

is

specified

in

the

conversion

status,

this

value

is

ignored.

On

input,

when

transparency

string

active

status

is

specified

in

the

conversion

status,

this

value

contains

a

count

for

the

remaining

bytes

to

be

converted

for

a

transparency

string

in

the

source.

A

value

of

hex

00

means

the

count

field

for

a

transparency

string

is

the

first

byte

of

data

to

be

processed

from

the

source

operand.

A

value

of

hex

01

through

hex

FF

specifies

the

count

of

the

remaining

bytes

to

be

converted

for

194

iSeries:

Machine

Interface

Instructions

APIs

a

transparency

string.

This

value

is

assumed

to

be

the

valid

count

of

unconverted

transparency

string

bytes

relative

to

the

current

byte

to

be

processed

in

the

source

as

located

by

the

source

offset

field.

On

output,

this

value

is

set

if

necessary

along

with

the

transparency

string

active

status

to

describe

a

partially

converted

transparency

string.

A

value

of

hex

00

will

be

set

if

the

count

field

is

the

next

byte

to

be

processed

for

a

transparency

string.

A

value

of

hex

01

through

hex

FF

specifying

the

number

of

remaining

bytes

to

be

converted

for

a

transparency

string,

will

be

set

if

the

count

field

has

already

been

processed.

When

do

not

perform

data

transparency

conversion

is

specified

in

the

algorithm

modifier,

the

unconverted

transparency

string

bytes

value

is

ignored.

The

offset

into

template

to

translate

table

value

specifies

the

offset

from

the

beginning

of

the

template

to

the

record

separator

translate

table.

This

value

is

ignored

unless

the

translate

record

separators

from

source

to

receiver

function

is

specified

in

the

algorithm

modifier.

The

record

separator

translate

table

value

specifies

the

translate

table

to

be

used

in

translating

record

separators

specified

in

the

source

to

the

record

separator

value

to

be

placed

into

the

receiver.

It

is

assumed

to

be

64

bytes

in

length,

providing

for

translation

of

record

separator

values

from

hex

00

to

hex

3F.

This

translate

table

is

used

only

when

the

translate

record

separators

from

source

to

receiver

function

is

specified

in

the

algorithm

modifier.

See

the

record

separator

conversion

function

under

the

conversion

process

described

below

for

more

detail

on

the

usage

of

the

translate

table.

Only

the

first

14

bytes

of

the

controls

operand

base

template

and

the

optional

64-byte

extension

area

specified

for

the

record

separator

translate

table

are

used.

Any

excess

bytes

are

ignored.

The

description

of

the

conversion

process

is

presented

as

a

series

of

separately

performed

steps,

which

may

be

selected

in

allowable

combinations

to

accomplish

the

conversion

function.

It

is

presented

this

way

to

allow

for

describing

these

functions

separately.

However,

in

the

actual

execution

of

the

instruction,

these

functions

may

be

performed

in

conjunction

with

one

another

or

separately,

depending

upon

which

technique

is

determined

to

provide

the

best

implementation.

The

operation

is

performed

either

on

a

record-by-record

basis,

record

processing,

or

on

a

nonrecord

basis,

string

processing.

This

is

determined

by

the

functions

selected

in

the

algorithm

modifier.

Specifying

the

record

separators

in

source,

perform

blank

padding

or

move

record

separator

from

controls

to

receiver

indicates

record

processing

is

to

be

performed.

If

neither

of

these

functions

is

specified,

in

which

case

decompression

must

be

specified,

it

indicates

that

string

processing

is

to

be

performed.

The

operation

begins

by

accessing

the

bytes

of

the

source

operand

at

the

location

specified

by

the

source

offset.

When

record

processing

is

specified,

the

source

offset

may

locate

a

point

at

which

processing

of

a

partially

converted

record

is

to

be

resumed

or

processing

for

a

full

record

is

to

be

started.

The

unconverted

receiver

record

bytes

field

indicates

whether

conversion

processing

is

to

be

started

with

a

partial

or

a

full

record.

Additionally,

the

transparency

string

active

indicator

in

the

conversion

status

field

indicates

whether

conversion

of

a

transparency

string

is

active

for

the

case

of

resumption

of

processing

for

a

partially

converted

record.

The

conversion

process

is

started

by

completing

the

conversion

of

a

partial

source

record

if

necessary

before

processing

the

first

full

source

record.

When

string

processing

is

specified,

the

source

offset

is

assumed

to

locate

the

start

of

a

compression

entry.

When

during

the

conversion

process

the

end

of

the

receiver

operand

is

encountered,

the

instruction

ends

with

a

resultant

condition

or

receiver

overrun.

When

record

processing

is

specified

in

the

algorithm

modifier,

this

check

is

performed

at

the

start

of

conversion

for

each

record.

A

source

exhausted

condition

would

be

detected

before

a

receiver

overrun

Machine

Interface

Instructions

195

condition

if

there

is

no

source

data

to

convert.

If

the

receiver

operand

does

not

have

room

for

a

full

record,

the

receiver

overrun

condition

is

recognized.

The

instruction

is

terminated

with

status

in

the

controls

operand

describing

the

last

completely

converted

record.

For

receiver

overrun,

partial

conversion

of

a

source

record

is

not

performed.

When

string

processing

is

specified

in

the

algorithm

modifier,

then

decompression

must

be

specified

and

the

decompression

function

described

below

defines

the

detection

of

receiver

overrun.

When

during

the

conversion

process

the

end

of

the

source

operand

is

encountered,

the

instruction

ends

with

a

resultant

condition

of

source

exhausted.

See

the

description

of

this

condition

in

the

conversion

process

described

below

to

determine

the

status

of

the

controls

operand

values

and

the

converted

bytes

in

the

receiver

for

each

case.

When

string

processing

is

specified,

the

bytes

accessed

from

the

source

are

converted

on

a

string

basis

into

the

receiver

operand

at

the

location

specified

by

the

receiver

offset.

In

this

case,

the

decompression

function

must

be

specified

and

the

conversion

process

is

accomplished

with

just

the

decompression

function

defined

below.

When

record

processing

is

specified,

the

bytes

accessed

from

the

source

are

converted

one

record

at

a

time

into

the

receiver

operand

at

the

location

specified

by

the

receiver

offset

performing

the

functions

specified

in

the

algorithm

modifier

in

the

sequence

defined

by

the

following

algorithm.

Record

separator

conversion

is

performed

as

requested

in

the

algorithm

modifier

during

the

initial

record

separator

processing

performed

as

each

record

is

being

converted.

This

provides

for

controlling

the

setting

of

the

record

separator

value

in

the

receiver.

When

the

record

separators

in

source

option

is

specified,

the

following

algorithm

is

used

to

locate

them.

A

record

separator

is

recognized

in

the

source

when

a

character

value

less

than

hex

40

is

encountered.

When

do

not

perform

decompression

is

specified,

a

source

character

value

of

hex

00

is

recognized

as

a

null

value

rather

than

as

a

record

separator.

In

this

case,

the

processing

of

the

current

record

continues

with

the

next

source

byte

and

the

receiver

is

not

updated.

When

perform

data

transparency

conversion

is

specified,

a

character

value

of

hex

35

is

recognized

as

the

start

of

a

transparency

string

rather

than

as

a

record

separator.

If

the

do

not

put

record

separators

into

the

receiver

function

is

specified,

the

record

separator,

if

any,

from

the

source

record

being

processed

is

removed

from

the

converted

form

of

the

source

record

and

will

not

be

placed

in

the

receiver.

If

the

move

record

separators

from

the

source

to

the

receiver

function

is

specified,

the

record

separator

from

the

source

record

being

processed

is

left

as

is

in

the

converted

form

of

the

source

record

and

will

be

placed

in

the

receiver.

If

the

translate

record

separators

from

the

source

to

the

receiver

function

is

specified,

the

record

separator

from

the

source

record

being

processed

is

translated

using

the

specified

translate

table,

replaced

with

its

translated

value

in

the

converted

form

of

the

source

record,

and

placed

in

the

receiver.

The

translation

is

performed

as

in

the

translate

instruction

(XLATE)

with

the

record

separator

value

serving

as

the

source

byte

to

be

translated.

It

is

used

as

an

index

into

the

specified

translate

table

to

select

the

byte

in

the

translate

table

that

contains

the

value

to

which

the

record

separator

is

to

be

set.

If

the

selected

translate

table

byte

is

equal

to

hex

FF,

it

is

recognized

as

an

escape

code.

The

instruction

ends

with

a

resultant

condition

of

escape

code

encountered,

and

the

controls

operand

is

set

to

describe

the

conversion

status

as

of

the

processing

completed

just

prior

to

the

conversion

step

for

the

record

separator.

If

the

selected

translate

table

byte

is

not

equal

to

hex

FF,

the

record

separator

in

the

converted

form

of

the

record

is

set

to

its

value.

If

the

move

record

separator

from

controls

to

receiver

function

is

specified,

the

controls

record

separator

value

is

used

in

the

converted

form

of

the

source

record

and

will

be

placed

into

the

receiver.

196

iSeries:

Machine

Interface

Instructions

APIs

When

the

record

separators

in

source

do

blank

padding

function

is

requested,

an

assumed

record

separator

will

be

used

if

a

record

separator

is

missing

in

the

source

data.

In

this

case,

the

controls

record

separator

character

is

used

as

the

record

separator

to

precede

the

converted

record

if

record

separators

are

to

be

placed

in

the

receiver.

The

conversion

process

continues,

bypassing

the

record

separator

conversion

step

that

would

normally

be

performed.

The

condition

of

a

missing

record

separator

is

detected

when

during

initial

processing

for

a

full

record,

the

first

byte

of

data

is

not

a

record

separator

character.

Decompression

is

performed

if

the

function

is

specified

in

the

algorithm

modifier.

This

provides

for

converting

strings

of

duplicate

characters

in

compressed

format

in

the

source

back

to

their

full

size

in

the

receiver.

Decompression

of

the

source

data

is

accomplished

by

concatenating

together

character

strings

described

by

the

compression

strings

occurring

in

the

source.

The

source

offset

value

is

assumed

to

locate

the

start

of

a

compression

string.

Processing

of

a

partial

decompressed

record

is

performed

if

necessary.

The

character

strings

to

be

built

into

the

receiver

are

described

in

the

source

by

one

or

more

compression

strings.

Compression

strings

are

comprised

of

an

SCB

(string

control

byte)

possibly

followed

by

one

or

more

bytes

of

data

related

to

the

character

string

to

be

built

into

the

receiver.

The

format

of

an

SCB

and

the

description

of

the

data

that

may

follow

it

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

SCB

Char(1)

0

0

Control

Bits

0-1

00

=

n

nonduplicate

characters

are

between

this

SCB

and

the

next

one;

where

n

is

the

value

of

the

count

field

(1-63).

01

=

Reserved.

10

=

This

SCB

represents

n

deleted

prime

compression

characters;

where

n

is

the

value

of

the

count

field

(1-63).

The

next

byte

is

the

next

SCB.

11

=

This

SCB

represents

n

deleted

duplicate

characters;

where

n

is

the

value

of

the

count

field

(1-63).

The

next

byte

contains

a

specimen

of

the

deleted

characters.

The

byte

following

the

specimen

character

contains

the

next

SCB.

0

0

Count

Bits

2-7

This

contains

the

number

of

characters

that

have

been

deleted

for

a

prime

or

duplicate

string,

or

the

number

of

characters

to

the

next

SCB

for

a

nonduplicate

string.

A

count

value

of

zero

is

invalid

and

results

in

the

signaling

of

a

conversion

(hex

0C01)

exception.

1

1

—-

End

—-

Strings

of

prime

compression

characters

or

duplicate

characters

described

in

the

source

are

repeated

in

the

decompressed

character

string

the

number

of

times

indicated

by

the

SCB

count

value.

Strings

of

nonduplicate

characters

described

in

the

source

record

are

formed

into

a

decompressed

character

string

for

the

length

indicated

by

the

SCB

count

value.

Machine

Interface

Instructions

197

If

the

end

of

the

source

is

encountered

prior

to

the

end

of

a

compression

string,

a

conversion

(hex

0C01)

exception

is

signaled.

When

record

processing

is

specified,

decompression

is

performed

one

record

at

a

time.

In

this

case,

a

conversion

(hex

0C01)

exception

is

signaled

if

a

compression

string

describes

a

character

string

that

would

span

a

record

boundary

in

the

receiver.

If

the

source

contains

record

separators,

the

case

of

a

missing

record

separator

in

the

source

is

detected

as

defined

under

the

initial

description

of

the

conversion

process.

Record

separator

conversion,

as

requested

in

the

algorithm

modifier,

is

performed

as

the

initial

step

in

the

building

of

the

decompressed

record.

A

record

separator

to

be

placed

into

the

receiver

is

in

addition

to

the

data

to

be

converted

into

receiver

for

the

length

specified

in

the

receiver

record

length

field.

The

decompression

of

compression

strings

from

the

source

continues

until

a

record

separator

character

for

the

next

record

is

recognized

when

the

source

contains

record

separators,

or

until

the

decompressed

data

required

to

fill

the

receiver

record

has

been

processed

or

the

end

of

the

source

is

encountered

whether

record

separators

are

in

the

source

or

not.

Transparency

strings

encountered

in

the

decompressed

character

string

are

not

scanned

for

a

record

separator

value.

If

the

end

of

the

source

is

encountered,

the

data

decompressed

to

that

point

appended

to

the

optional

record

separator

for

this

record

forms

a

partial

decompressed

record.

Otherwise,

the

decompressed

character

strings

appended

to

the

optional

record

separator

for

this

record

form

the

decompressed

record.

The

conversion

process

then

continues

for

this

record

with

the

next

specified

function.

When

string

processing

is

specified,

decompression

is

performed

on

a

compression

string

basis

with

no

record

oriented

processing

implied.

The

conversion

process

for

each

compression

string

from

the

source

is

completed

by

placing

the

decompressed

character

string

into

the

receiver.

The

conversion

process

continues

decompressing

compression

strings

from

the

source

until

the

end

of

the

source

or

the

receiver

is

encountered.

When

the

end

of

the

source

operand

is

encountered,

the

instruction

ends

with

a

resultant

condition

of

source

exhausted.

When

a

character

string

cannot

be

completely

contained

in

the

receiver,

the

instruction

ends

with

a

resultant

condition

of

receiver

overrun.

For

either

of

the

above

ending

conditions,

the

controls

operand

is

updated

to

describe

the

status

of

the

conversion

operation

as

of

the

last

completely

converted

compression

entry.

Partial

conversion

of

a

compression

entry

is

not

performed.

Data

transparency

conversion

is

performed

if

perform

data

transparency

conversion

is

specified

in

the

algorithm

modifier.

This

provides

for

correctly

identifying

record

separators

in

the

source

even

if

the

data

for

a

record

contains

values

that

could

be

interpreted

as

record

separator

values.

Processing

of

active

transparency

strings

is

performed

if

necessary.

A

nontransparent

record

is

built

by

appending

the

nontransparent

and

transparent

data

converted

from

the

record

to

the

record

separator

for

the

record.

The

nontransparent

record

may

be

produced

from

either

a

partial

record

from

the

source

or

a

full

record

from

the

source.

This

is

accomplished

by

first

accessing

the

record

separator

for

a

full

record.

The

case

of

a

missing

record

separator

in

the

source

is

detected

as

defined

under

the

initial

description

of

the

conversion

process.

Record

separator

conversion

as

requested

in

the

algorithm

modifier

is

performed

if

it

has

not

already

been

performed

by

a

prior

step;

the

rest

of

the

source

record

is

scanned

for

values

of

less

than

hex

40.

A

value

greater

than

or

equal

to

hex

40

is

considered

nontransparent

data

and

is

concatenated

onto

the

record

being

built

as

is.

A

value

equal

to

hex

35

identifies

the

start

of

a

transparency

string.

A

transparency

string

is

comprised

of

2

bytes

of

transparency

control

information

followed

by

the

data

to

be

made

transparent

to

scanning

for

record

separators.

The

first

byte

has

a

fixed

value

of

hex

35

and

is

referred

to

as

the

TRN

(transparency)

control

character.

The

second

byte

is

a

1-byte

hexadecimal

count,

a

value

remaining

from

1

to

255

decimal,

of

the

number

of

bytes

of

data

that

follow

and

is

referred

to

as

the

TRN

count.

A

TRN

count

of

zero

is

invalid

and

causes

a

conversion

(hex

0C01)

exception.

This

contains

the

length

of

the

transparent

data

and

does

not

include

the

TRN

control

information

length.

The

transparent

data

is

concatenated

to

the

nontransparent

record

being

built

and

is

not

scanned

for

record

separator

characters.

198

iSeries:

Machine

Interface

Instructions

APIs

A

value

equal

to

hex

00

is

recognized

as

the

record

separator

for

the

next

record

only

when

perform

decompression

is

specified

in

the

algorithm

modifier.

In

this

case,

the

nontransparent

record

is

complete.

When

do

not

perform

decompression

is

specified

in

the

algorithm

modifier,

a

value

equal

to

hex

00

is

ignored

and

is

not

included

as

part

of

the

nontransparent

data

built

for

the

current

record.

A

value

less

than

hex

40

but

not

equal

to

hex

35

is

considered

to

be

the

record

separator

for

the

next

record,

and

the

forming

of

the

nontransparent

record

is

complete.

The

building

of

the

nontransparent

record

is

completed

when

the

length

of

the

data

converted

into

the

receiver

equals

the

receiver

record

length

if

the

record

separator

for

the

next

record

is

not

encountered

prior

to

that

point.

If

the

end

of

the

source

is

encountered

prior

to

completion

of

building

the

nontransparent

record,

the

nontransparent

record

built

up

to

this

point

is

placed

in

the

receiver

and

the

instruction

ends

with

a

resultant

condition

of

source

exhausted.

The

controls

operand

is

updated

to

describe

the

status

for

the

partially

converted

record.

This

includes

describing

a

partially

converted

transparency

string,

if

necessary,

by

setting

the

active

transparency

string

status

and

the

unconverted

transparency

string

bytes

field.

If

the

building

of

the

nontransparent

record

is

completed

prior

to

encountering

the

end

of

the

source,

the

conversion

process

continues

with

the

blank

padding

function

described

below.

Blank

padding

is

performed

if

the

function

is

specified

in

the

algorithm

modifier.

This

provides

for

expanding

out

to

the

size

specified

by

the

receiver

record

length

the

source

records

for

which

trailing

blanks

have

been

truncated.

The

padded

record

may

be

produced

from

either

a

partial

record

from

the

source

or

a

full

record

from

the

source.

The

record

separator

for

this

record

is

accessed.

The

case

of

a

missing

record

separator

in

the

source

is

detected

as

defined

under

the

initial

description

of

the

conversion

process.

Record

separator

conversion

as

requested

in

the

algorithm

modifier,

is

performed

if

it

has

not

already

been

performed

by

a

prior

step.

The

nontruncated

data,

if

any,

for

the

record

is

appended

to

the

optional

record

separator

for

the

record.

The

nontruncated

data

is

determined

by

scanning

the

source

record

for

the

record

separator

for

the

next

record.

This

scan

is

concluded

after

processing

enough

data

to

completely

fill

the

receiver

record

or

upon

encountering

the

record

separator

for

the

next

record.

The

data

processed

prior

to

concluding

the

scan

is

considered

the

nontruncated

data

for

the

record.

The

blanks,

if

any,

required

to

pad

the

record

out

to

the

nontruncated

data

for

the

record,

concluding

the

forming

of

the

padded

record.

If

the

end

of

the

source

is

encountered

during

the

forming

of

the

padded

record,

the

data

processed

up

to

that

point,

appended

to

the

optional

record

separator

for

the

record,

is

placed

into

the

receiver

and

the

instruction

ends

with

a

resultant

condition

of

source

exhausted.

The

controls

operand

is

updated

to

describe

the

status

of

the

partially

converted

record.

If

the

forming

of

the

padded

record

is

concluded

prior

to

encountering

the

end

of

the

source,

the

conversion

of

the

record

is

completed

by

placing

the

converted

form

of

the

record

into

the

receiver.

At

this

point,

either

conversion

of

a

source

record

has

been

completed

or

conversion

has

been

interrupted

due

to

detection

of

the

source

exhausted

or

receiver

overrun

condition.

For

record

processing,

if

neither

of

the

above

conditions

has

been

detected

either

during

conversion

of

or

at

completion

of

conversion

for

the

current

record,

the

conversion

process

continues

on

the

next

source

record

with

the

decompression

function

described

above.

At

completion

of

the

instruction,

the

receiver

offset

locates

the

byte

following

the

last

converted

byte

in

the

receiver.

The

value

of

the

remaining

bytes

in

the

receiver

after

the

last

converted

byte

are

unpredictable.

The

source

offset

locates

the

byte

following

the

last

source

byte

for

which

conversion

was

completed.

Machine

Interface

Instructions

199

When

record

processing

is

specified,

the

unconverted

receiver

record

bytes

field

specifies

the

length

of

the

receiver

record

bytes

not

yet

containing

converted

data.

When

perform

data

transparency

conversion

is

specified

in

the

algorithm

modifier,

the

conversion

status

indicates

whether

conversion

of

a

transparency

string

was

active

and

the

unconverted

transparency

string

bytes

field

specifies

the

length

of

the

remaining

bytes

to

be

processed

for

an

active

transparency

string.

This

instruction

does

not

provide

support

for

compression

entries

in

the

source

describing

data

that

would

span

records

in

the

receiver.

SNA

data

from

some

systems

may

violate

this

restriction

and

as

such

be

incompatible

with

the

instruction.

A

provision

can

be

made

to

avoid

this

incompatibility

by

performing

the

conversion

of

the

SNA

data

through

two

invocations

of

this

instruction.

The

first

invocation

would

specify

decompression

with

no

record

separator

processing.

The

second

invocation

would

specify

record

separator

processing

with

no

decompression.

This

technique

provides

for

separating

the

decompression

step

from

record

separator

processing;

thus,

the

incompatibility

is

avoided.

This

instruction

can

end

with

the

escape

code

encountered

condition.

In

this

case,

it

is

expected

that

the

user

of

the

instruction

will

want

to

do

some

special

processing

for

the

record

separator

causing

the

condition.

In

order

to

resume

execution

of

the

instruction,

the

user

will

have

to

set

the

appropriate

value

for

the

record

separator

into

the

receiver

and

update

the

controls

operand

source

offset

and

receiver

offset

fields

correctly

to

provide

for

restarting

processing

at

the

right

points

in

the

receiver

and

source

operands.

For

the

special

case

of

a

tie

between

the

source

exhausted

and

receiver

overrun

conditions,

the

source

exhausted

condition

is

recognized

first.

That

is,

when

source

exhausted

is

the

resultant

condition,

the

receiver

may

also

be

full.

In

this

case,

the

receiver

offset

may

contain

a

value

equal

to

the

length

specified

for

the

receiver,

which

would

cause

an

exception

to

be

detected

on

the

next

invocation

of

the

instruction.

The

processing

performed

for

the

source

exhausted

condition

should

provide

for

this

case

if

the

instruction

is

to

be

invoked

multiple

times

with

the

same

controls

operand

template.

When

the

receiver

overrun

condition

is

the

resultant

condition,

the

source

will

always

contain

data

that

can

be

converted.

This

instruction

will,

in

certain

cases,

ignore

what

would

normally

have

been

interpreted

as

a

record

separator

value

of

hex

00.

This

applies

(hex

00

is

ignored)

for

the

special

case

when

do

not

perform

decompression

and

record

separators

in

source

are

specified

in

the

algorithm

modifier.

Note

that

this

does

not

apply

when

perform

decompression

is

specified,

or

when

do

not

perform

decompression

and

no

record

separators

in

source

and

move

record

separator

from

controls

to

receiver

are

specified

in

the

algorithm

modifier.

Warning:

Temporary

Level

3

Header

Limitations

(Subject

to

Change)

The

following

are

limits

that

apply

to

the

functions

performed

by

this

instruction.

v

v

Any

form

of

overlap

between

the

operands

on

this

instruction

yields

unpredictable

results

in

the

receiver

operand.

Resultant

Conditions

v

v

Source

exhausted-The

end

of

the

source

operand

is

encountered

and

no

more

bytes

from

the

source

can

be

converted.

v

Receiver

overrun-An

overrun

condition

in

the

receiver

operand

is

detected

before

all

of

the

bytes

in

the

source

operand

have

been

processed.

v

Escape

code

encountered-A

record

separator

character

is

encountered

in

the

source

operand

that

is

to

be

treated

as

an

escape

code.

Authorization

Required

v

v

None

200

iSeries:

Machine

Interface

Instructions

APIs

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C01

Conversion

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

Machine

Interface

Instructions

201

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Convert

Time

(CVTT)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

041F

Result

time

Source

time

Instruction

template

Operand

1:

Character

variable

scalar.

Operand

2:

Character

scalar.

Operand

3:

Space

pointer.

Bound

program

access

Built-in

number

for

CVTT

is

105.

CVTT

(

result_time

:

address

source_time

:

address

instruction_template

:

address

)

Description:

The

time

specified

in

operand

2

is

converted

to

another

external

or

internal

presentation

and

placed

in

operand

1.

Operand

3

defines

the

data

definitional

attributes

for

operands

1

and

2.

The

following

describes

the

instruction

template.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Instruction

template

Char(*)

202

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Instruction

template

size

Bin(4)

4

4

Operand

1

data

definitional

attribute

template

number

UBin(2)

6

6

Operand

2

data

definitional

attribute

template

number

UBin(2)

8

8

Reserved

(binary

0)

Char(2)

10

A

Operand

1

length

UBin(2)

12

C

Operand

2

length

UBin(2)

14

E

Reserved

(binary

0)

Char(2)

16

10

Preferred/Found

time

format

UBin(2)

18

12

Reserved

(binary

0)

Char(1)

19

13

Preferred/Found

time

separator

Char(1)

20

14

Reserved

(binary

0)

Char(22)

42

2A

Data

definitional

attribute

template

list

Char(*)

42

2A

Size

of

the

DDAT

list

UBin(4)

46

2E

Number

of

DDATs

UBin(2)

48

30

Reserved

(binary

0)

Char(10)

58

3A

DDAT

offset

[*]

UBin(4)

*

*

Data

definitional

attribute

template

[*]

Char(*)

*

*

—-

End

—-

A

data

definitional

attribute

template

number

is

a

number

that

corresponds

to

the

relative

position

of

a

template

in

the

data

definitional

attribute

template

list.

For

example,

the

number

1

references

the

first

template.

The

valid

values

for

this

field

are

1

and

2.

The

DDATs

for

operands

1

and

2

must

be

valid

for

a

time.

Otherwise,

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

Operand

1

length

and

operand

2

length

are

specified

in

number

of

bytes.

If

the

data

definitional

attribute

template

numbers

for

operands

1

and

2

are

the

same,

only

data

validation

is

performed.

The

validation

will

check

for

format

and

data

value

correctness.

A

format

of

unknown

date,

time,

or

timestamp

will

indicate

that

operand

2

will

be

scanned

for

a

valid

format.

For

a

list

of

formats

that

can

be

scanned,

see

Data

Definitional

Attribute

Template.

With

an

unknown

format,

the

preferred/found

time

format

and

preferred/found

time

separator

can

be

specified

to

select

an

additional

non-scanable

format.

This

preferred

format

and

preferred

separator

will

be

used

first

to

find

a

matching

format

before

scanning

operand

2.

When

the

preferred

format

and

preferred

separator

have

a

hex

value

of

zero,

only

the

scan

occurs.

When

a

format

of

unknown

date,

time,

or

timestamp

is

specified,

the

preferred/found

time

format

and

preferred/found

time

separator

fields

will

be

set

to

the

format

and

separator

found.

The

size

of

the

DDAT

list

is

specified

in

bytes.

The

number

of

DDATs

is

the

count

of

DDATs

specified

for

this

instruction

template.

The

maximum

number

of

DDATs

that

can

be

specified

is

2.

The

DDAT

offset

is

the

number

of

bytes

from

the

start

of

the

DDAT

list

to

the

start

of

the

specific

DDAT.

There

should

be

as

many

DDAT

offsets

as

there

are

DDATs

specified.

Machine

Interface

Instructions

203

MINDTCON.htm#HDRDDAT

A

data

definitional

attribute

template

defines

the

presentation

of

the

data.

Each

template

describes

the

definitional

attributes

of

the

operands.

The

length

of

the

character

operands

will

be

defined

by

the

templates.

For

a

further

description

of

the

data

definitional

attribute

template,

see

Data

Definitional

Attribute

Template.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C16

Data

Format

Error

0C17

Data

Value

Error

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

220B

Object

Not

Available

204

iSeries:

Machine

Interface

Instructions

APIs

MINDTCON.htm#HDRDDAT
MINDTCON.htm#HDRDDAT

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Convert

Timestamp

(CVTTS)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

043F

Result

timestamp

Source

timestamp

Instruction

template

Operand

1:

Character

variable

scalar.

Operand

2:

Character

scalar.

Operand

3:

Space

pointer.

Bound

program

access

Built-in

number

for

CVTTS

is

106.

CVTTS

(

result_timestamp

:

address

source_timestamp

:

address

instruction_template

:

address

)

Description:

The

timestamp

specified

in

operand

2

is

converted

to

another

external

or

internal

presentation

and

placed

in

operand

1.

Operand

3

defines

the

data

definitional

attributes

for

operands

1

and

2.

Machine

Interface

Instructions

205

The

following

describes

the

instruction

template.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Instruction

template

Char(*)

0

0

Instruction

template

size

Bin(4)

4

4

Operand

1

data

definitional

attribute

template

number

UBin(2)

6

6

Operand

2

data

definitional

attribute

template

number

UBin(2)

8

8

Reserved

(binary

0)

Char(2)

10

A

Operand

1

length

UBin(2)

12

C

Operand

2

length

UBin(2)

14

E

Reserved

(binary

0)

Char(2)

16

10

Preferred/Found

timestamp

format

UBin(2)

18

12

Preferred/Found

date

separator

Char(1)

19

13

Preferred/Found

time

separator

Char(1)

20

14

Reserved

(binary

0)

Char(22)

42

2A

Data

definitional

attribute

template

list

Char(*)

42

2A

Size

of

the

DDAT

list

UBin(4)

46

2E

Number

of

DDATs

UBin(2)

48

30

Reserved

(binary

0)

Char(10)

58

3A

DDAT

offset

[*]

UBin(4)

*

*

Data

definitional

attribute

template

[*]

Char(*)

*

*

—-

End

—-

A

data

definitional

attribute

template

number

is

a

number

that

corresponds

to

the

relative

position

of

a

template

in

the

data

definitional

attribute

template

list.

For

example,

the

number

1

references

the

first

template.

The

valid

values

for

this

field

are

1

and

2.

The

DDATs

for

operands

1

and

2

must

be

valid

for

a

timestamp.

Otherwise,

a

template

value

invalid

(hex

3801)

exception

will

be

issued.

Operand

1

length

and

operand

2

length

are

specified

in

number

of

bytes.

If

the

data

definitional

attribute

template

numbers

for

operands

1

and

2

are

the

same,

only

data

validation

is

performed.

The

validation

will

check

for

format

and

data

value

correctness.

A

format

of

unknown

date,

time,

or

timestamp

will

indicate

that

operand

2

will

be

scanned

for

a

valid

format.

For

a

list

of

formats

that

can

be

scanned,

see

Data

Definitional

Attribute

Template.

With

an

unknown

format,

the

preferred/found

timestamp

format,

preferred/found

date

separator,

and

preferred/found

time

separator

can

be

specified

to

select

an

additional

non-scanable

format.

The

preferred

format

and

preferred

separators

will

be

used

first

to

find

a

matching

format

before

scanning

operand

2.

When

the

preferred

format

and

preferred

separators

have

a

hex

value

of

zero,

only

the

scan

occurs.

When

a

format

of

unknown

date,

time,

or

timestamp

is

specified,

the

preferred/found

timestamp

format,

preferred/found

date

separator,

and

preferred/found

time

separator

fields

will

be

set

to

the

format

and

separators

found.

The

size

of

the

DDAT

list

is

specified

in

bytes.

The

number

of

DDATs

is

the

count

of

DDATs

specified

for

this

instruction

template.

The

maximum

number

of

DDATs

that

can

be

specified

is

2.

206

iSeries:

Machine

Interface

Instructions

APIs

MINDTCON.htm#HDRDDAT

The

DDAT

offset

is

the

number

of

bytes

from

the

start

of

the

DDAT

list

to

the

start

of

the

specific

DDAT.

There

should

be

as

many

DDAT

offsets

as

there

are

DDATs

specified.

A

data

definitional

attribute

template

defines

the

presentation

of

the

data.

Each

template

describes

the

definitional

attributes

of

the

operands.

The

length

of

the

character

operands

will

be

defined

by

the

templates.

For

a

further

description

of

the

data

definitional

attribute

template,

see

Data

Definitional

Attribute

Template.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C15

Date

Boundary

Overflow

0C16

Data

Format

Error

0C17

Data

Value

Error

0C18

Date

Boundary

Underflow

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

Machine

Interface

Instructions

207

MINDTCON.htm#HDRDDAT
MINDTCON.htm#HDRDDAT

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Copy

Bits

Arithmetic

(CPYBTA)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

Operand

4

102C

Receiver

Source

Offset

Length

Operand

1:

Character

variable

scalar

or

numeric

variable

scalar.

Operand

2:

Character

variable

scalar

or

numeric

variable

scalar.

Operand

3:

Signed

or

unsigned

binary

immediate.

Operand

4:

Signed

or

unsigned

binary

immediate.

Description:

This

instruction

copies

the

signed

bit

string

source

operand

starting

at

the

specified

offset

for

a

specified

length

right

adjusted

to

the

receiver

and

pads

on

the

left

with

the

sign

of

the

bit

string

source.

208

iSeries:

Machine

Interface

Instructions

APIs

The

selected

bits

from

the

source

operand

are

treated

as

a

signed

bit

string

and

copied

to

the

receiver

value.

The

source

operand

can

be

character

or

numeric.

The

leftmost

bytes

of

the

source

operand

are

used

in

the

operation.

The

source

operand

is

interpreted

as

a

bit

string

with

the

bits

numbered

left

to

right

from

0

to

the

total

number

of

bits

in

the

string

minus

1.

The

offset

operand

indicates

which

bit

of

the

source

operand

is

to

be

copied,

with

a

offset

of

zero

indicating

the

leftmost

bit

of

the

leftmost

byte

of

the

source

operand.

The

length

operand

indicates

the

number

of

bits

that

are

to

be

copied.

If

the

sum

of

the

offset

plus

the

length

exceeds

the

length

of

the

source,

an

invalid

operand

length

(hex

2A0A)

exception

is

signalled.

Warning:

Temporary

Level

3

Header

Limitations

(Subject

to

Change)

v

v

The

length

of

the

receiver

cannot

exceed

four

bytes.

v

The

offset

must

have

a

non-negative

value.

v

The

length

operand

must

be

an

immediate

value

between

1

and

32.

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

Machine

Interface

Instructions

209

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Copy

Bits

Logical

(CPYBTL)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

Operand

4

101C

Receiver

Source

Offset

Length

Operand

1:

Character

variable

scalar

or

numeric

variable

scalar.

Operand

2:

Character

variable

scalar

or

numeric

variable

scalar.

Operand

3:

Signed

or

unsigned

binary

immediate.

Operand

4:

Signed

or

unsigned

binary

immediate.

Description:

Copies

the

unsigned

bit

string

source

operand

starting

at

the

specified

offset

for

a

specified

length

to

the

receiver.

If

the

receiver

is

shorter

than

the

length,

the

left

most

bits

are

removed

to

make

the

source

bit

string

conform

to

the

length

of

the

receiver.

No

exceptions

are

generated

when

truncation

occurs.

210

iSeries:

Machine

Interface

Instructions

APIs

The

selected

bits

from

the

source

operand

are

treated

as

an

unsigned

bit

string

and

copied

right

adjusted

to

the

receiver

and

padded

on

the

left

with

binary

0s.

The

source

operand

can

be

character

or

numeric.

The

leftmost

bytes

of

the

source

operand

are

used

in

the

operation.

The

source

operand

is

interpreted

as

a

bit

string

with

the

bits

numbered

left

to

right

from

0

to

the

total

number

of

bits

in

the

string

minus

1.

The

offset

operand

indicates

which

bit

of

the

source

operand

is

to

be

copied,

with

an

offset

of

zero

indicating

the

leftmost

bit

of

the

leftmost

byte

of

the

source

operand.

The

length

operand

indicates

the

number

of

bits

that

are

to

be

copied.

If

the

sum

of

the

offset

plus

the

length

exceeds

the

length

of

the

source,

an

invalid

operand

length

(hex

2A0A)

exception

is

signaled.

Warning:

Temporary

Level

3

Header

Limitations

(Subject

to

Change)

v

v

The

length

of

the

receiver

cannot

exceed

four

bytes.

v

The

offset

must

have

a

non-negative

value.

v

The

length

operand

must

be

an

immediate

value

between

1

and

32.

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

Machine

Interface

Instructions

211

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Copy

Bits

with

Left

Logical

Shift

(CPYBTLLS)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

102F

Receiver

Source

Shift

control

Operand

1:

Character

variable

scalar

or

numeric

variable

scalar.

Operand

2:

Character

scalar

or

numeric

scalar.

Operand

3:

Character(2)

scalar

or

unsigned

binary(2)

scalar.

Description:

This

instruction

copies

the

bit

string

value

of

the

source

operand

to

the

bit

string

defined

by

the

receiver

operand

with

a

left

logical

shift

of

the

source

bit

string

value

under

control

of

the

shift

control

operand.

The

operation

results

in

copying

the

shifted

bit

string

value

of

the

source

to

the

bit

string

of

the

receiver

while

padding

the

receiver

with

bit

values

of

0

and

truncating

bit

values

of

the

source

as

is

appropriate

for

the

specific

operation.

212

iSeries:

Machine

Interface

Instructions

APIs

No

indication

is

given

of

truncation

of

bit

values

from

the

shifted

source

value.

This

is

true

whether

the

values

truncated

are

0

or

1.

The

operation

is

performed

such

that

the

bit

string

of

the

source

is

considered

to

be

extended

on

the

left

and

right

by

an

unlimited

number

of

bit

string

positions

of

value

0.

Additionally,

a

receiver

bit

string

view

(window)

with

the

attributes

of

the

receiver

is

considered

to

overlay

this

conceptual

bit

string

value

of

the

source

starting

at

the

leftmost

bit

position

of

the

original

source

value.

A

left

logical

shift

of

the

conceptual

bit

string

value

of

the

source

is

then

performed

relative

to

the

receiver

bit

string

view

according

to

the

shift

criteria

specified

in

the

shift

control

operand.

After

the

shift,

the

bit

string

value

then

contained

within

the

receiver

bit

string

view

is

copied

to

the

receiver.

The

source

and

the

receiver

can

be

either

character

or

numeric.

Any

numeric

operands

are

interpreted

as

logical

character

strings.

Due

to

the

operation

being

treated

as

a

character

string

operation,

the

source

operand

may

not

be

specified

as

a

signed

immediate

operand.

Additionally,

for

a

source

operand

specified

as

an

unsigned

immediate

value,

only

a

1-byte

immediate

value

may

be

specified.

The

shift

control

operand

may

be

specified

as

an

immediate

operand,

as

a

character(2)

scalar,

or

as

an

unsigned

binary(2)

scalar.

It

provides

an

unsigned

binary

value

indicating

the

number

of

bit

positions

for

which

the

left

logical

shift

of

the

source

bit

string

value

is

to

be

performed.

A

zero

value

specifies

no

shift.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

Machine

Interface

Instructions

213

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Copy

Bits

with

Right

Arithmetic

Shift

(CPYBTRAS)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

101B

Receiver

Source

Shift

control

Operand

1:

Character

variable

or

numeric

variable

scalar.

Operand

2:

Character

scalar

or

numeric

scalar.

Operand

3:

Character(2)

scalar

or

unsigned

binary(2)

scalar.

Description:

The

instruction

copies

the

bit

string

value

of

the

source

operand

to

the

bit

string

defined

by

the

receiver

operand

with

a

right

arithmetic

shift

of

the

source

bit

string

value

under

control

of

the

shift

control

operand.

214

iSeries:

Machine

Interface

Instructions

APIs

The

operation

results

in

copying

the

shifted

bit

string

value

of

the

source

to

the

bit

string

of

the

receiver

while

padding

the

receiver

with

bit

values

of

0

or

1

depending

on

the

high

order

bit

value

of

the

source,

and

truncating

bit

values

of

the

source

as

is

appropriate

for

the

specific

operation.

No

indication

is

given

of

truncation

of

bit

values

from

the

shifted

source

value.

This

is

true

whether

the

values

truncated

are

0

or

1.

The

operation

is

performed

such

that

the

bit

string

of

the

source

is

considered

a

signed

numeric

binary

value,

with

the

value

of

the

sign

bit

of

the

source

conceptually

extended

on

the

left

an

unlimited

number

of

bit

string

positions,

and

conceptually

extended

on

the

right

by

an

unlimited

number

of

bit

string

positions

of

value

0.

Additionally,

a

receiver

bit

string

view

(window)

with

the

attributes

of

the

receiver

is

considered

to

overlay

this

conceptual

bit

string

value

of

the

source

starting

at

the

leftmost

bit

position

of

the

original

source

value.

A

right

arithmetic

shift

of

the

conceptual

bit

string

value

of

the

source

is

then

performed

according

to

the

shift

criteria

specified

in

the

shift

control

operand.

No

indication

is

given

of

truncation

of

bit

values

from

the

shifted

conceptual

source

value.

This

is

true

whether

the

values

truncated

are

0

or

1.

After

the

shift,

the

bit

string

value

then

contained

within

the

receiver

bit

string

view

is

copied

to

the

receiver.

Viewing

the

bit

string

value

of

the

source

and

the

bit

string

value

copied

to

the

receiver

as

signed

numeric,

the

sign

of

the

value

copied

to

the

receiver

will

be

the

same

as

the

sign

of

the

source.

Under

some

circumstances,

such

as

when

the

source

and

receiver

have

the

same

length,

a

right

shift

of

one

bit

position

is

equivalent

to

dividing

the

signed

numeric

bit

string

value

of

the

source

by

2

with

rounding

downward,

and

assigning

a

signed

numeric

bit

string

equivalent

to

that

result

to

the

receiver.

For

example,

if

the

signed

numeric

view

of

the

source

bit

string

is

+9,

shifting

one

bit

position

right

yields

+4.

However

if

the

signed

numeric

view

of

the

source

bit

string

is

-9,

shifting

one

bit

position

right

yields

-5.

If

all

the

significant

bits

of

the

conceptual

source

bit

string

are

shifted

out

of

the

field,

the

resulting

conceptual

bit

string

value

will

be

all

zero

bits

for

positive

numbers,

and

all

one

bits

for

negative

numbers.

The

source

and

the

receiver

can

be

either

character

or

numeric.

Any

numeric

operands

are

interpreted

as

logical

character

strings.

Due

to

the

operation

being

treated

as

a

character

string

operation,

the

source

operand

may

not

be

specified

as

a

signed

immediate

operand.

Additionally,

for

a

source

operand

specified

as

an

unsigned

immediate

value,

only

a

1-byte

immediate

value

may

be

specified.

The

shift

control

operand

may

be

specified

as

an

immediate

operand,

as

a

character(2)

scalar,

or

as

a

unsigned

binary(2)

scalar.

It

provides

an

unsigned

binary

value

indicating

the

number

of

bit

positions

for

which

the

right

logical

shift

of

the

source

bit

string

value

is

to

be

performed.

A

zero

value

specifies

no

shift.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

Machine

Interface

Instructions

215

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

216

iSeries:

Machine

Interface

Instructions

APIs

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Copy

Bits

with

Right

Logical

Shift

(CPYBTRLS)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

103F

Receiver

Source

Shift

control

Operand

1:

Character

variable

scalar

or

numeric

variable

scalar.

Operand

2:

Character

scalar

or

numeric

scalar.

Operand

3:

Character(2)

scalar

or

unsigned

binary(2)

scalar.

Description:

This

instruction

copies

the

bit

string

value

of

the

source

operand

to

the

bit

string

defined

by

the

receiver

operand

with

a

right

logical

shift

of

the

source

bit

string

value

under

control

of

the

shift

control

operand.

The

operation

results

in

copying

the

shifted

bit

string

value

of

the

source

to

the

bit

string

of

the

receiver

while

padding

the

receiver

with

bit

values

of

0

and

truncating

bit

values

of

the

source

as

is

appropriate

for

the

specific

operation.

No

indication

is

given

of

truncation

of

bit

values

from

the

shifted

source

value.

This

is

true

whether

the

values

truncated

are

0

or

1.

The

operation

is

performed

such

that

the

bit

string

of

the

source

is

considered

to

be

extended

on

the

left

and

right

by

an

unlimited

number

of

bit

string

positions

of

value

0.

Additionally,

a

receiver

bit

string

view

(window)

with

the

attributes

of

the

receiver

is

considered

to

overlay

this

conceptual

bit

string

value

of

the

source

starting

at

the

leftmost

bit

position

of

the

original

source

value.

A

right

logical

shift

of

the

conceptual

bit

string

value

of

the

source

is

then

performed

relative

to

the

receiver

bit

string

view

according

to

the

shift

criteria

specified

in

the

shift

control

operand.

After

the

shift,

the

bit

string

value

then

contained

within

the

receiver

bit

string

view

is

copied

to

the

receiver.

The

source

and

the

receiver

can

be

either

character

or

numeric.

Any

numeric

operands

are

interpreted

as

logical

character

strings.

Due

to

the

operation

being

treated

as

a

character

string

operation,

the

source

operand

may

not

be

specified

as

a

signed

immediate

operand.

Additionally,

for

a

source

operand

specified

as

an

unsigned

immediate

value,

only

a

1-byte

immediate

value

may

be

specified.

The

shift

control

operand

may

be

specified

as

an

immediate

operand,

as

a

character(2)

scalar,

or

as

a

unsigned

binary(2)

scalar.

It

provides

an

unsigned

binary

value

indicating

the

number

of

bit

positions

for

which

the

right

logical

shift

of

the

source

bit

string

value

is

to

be

performed.

A

zero

value

specifies

no

shift.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Machine

Interface

Instructions

217

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

218

iSeries:

Machine

Interface

Instructions

APIs

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Copy

Bytes

(CPYBYTES)

Bound

program

access

Built-in

number

for

CPYBYTES

is

9.

CPYBYTES

(

target_string

:

address

of

aggregate(*)

source_string

:

address

of

aggregate(*)

copy_length

:

unsigned

binary(4,8)

value

which

specifies

the

number

of

bytes

to

copy

)

Description:

A

copy

from

the

storage

specified

by

source

string

to

the

storage

specified

by

target

string

is

performed.

Copy

length

specifies

the

number

of

bytes

to

copy.

It

is

assumed

that

sufficient

storage

exists

at

the

locations

specified

by

source

string

and

target

string.

Pointers

cannot

be

copied

using

this

instruction.

Undefined

results

can

occur

if

the

storage

locations

specified

by

target

string

and

source

string

overlap.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

Machine

Interface

Instructions

219

2002

Machine

Check

2003

Function

Check

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Copy

Bytes

Left-Adjusted

(CPYBLA)

Op

Code

(Hex)

Operand

1

Operand

2

10B2

Receiver

Source

Operand

1:

Character

variable

scalar,

numeric

variable

scalar,

data-pointer-defined

character

scalar,

or

data-pointer-defined

numeric

scalar.

Operand

2:

Character

scalar,

numeric

scalar,

data-pointer-defined

character

scalar,

or

data-pointer-defined

numeric

scalar.

Description:

The

logical

string

value

of

the

source

operand

is

copied

to

the

logical

string

value

of

the

receiver

operand

(no

padding

done).

The

operands

can

be

either

character

or

numeric.

Any

numeric

operands

are

interpreted

as

logical

character

strings.

The

length

of

the

operation

is

equal

to

the

length

of

the

shorter

of

the

two

operands.

The

copying

begins

with

the

two

operands

left-adjusted

and

proceeds

until

the

shorter

operand

has

been

copied.

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

be

specified

for

operands

1

and

2.

The

effect

of

specifying

a

null

substring

reference

for

either

operand

is

that

no

result

is

set.

If

either

operand

is

a

character

variable

scalar,

it

may

have

a

length

as

great

as

16,776,191

bytes.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

220

iSeries:

Machine

Interface

Instructions

APIs

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0604

External

Data

Object

Not

Found

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

Machine

Interface

Instructions

221

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Copy

Bytes

Left-Adjusted

with

Pad

(CPYBLAP)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

10B3

Receiver

Source

Pad

Operand

1:

Character

variable

scalar

or

numeric

variable

scalar,

data-pointer-defined

character

scalar,

or

data-pointer-defined

numeric

scalar.

Operand

2:

Character

scalar,

numeric

scalar,

data-pointer-defined

character

scalar,

or

data-pointer-defined

numeric

scalar.

Operand

3:

Character

scalar

or

numeric

scalar.

Description:

The

logical

string

value

of

the

source

operand

is

copied

to

the

logical

string

value

of

the

receiver

operand

(padded

if

needed).

The

operands

can

be

either

character

or

numeric.

Any

numeric

operands

are

interpreted

as

logical

character

strings.

The

length

of

the

operation

is

equal

to

the

length

of

the

receiver

operand.

If

the

source

operand

is

shorter

than

the

receiver

operand,

the

source

operand

is

copied

to

the

leftmost

bytes

of

the

receiver

operand,

and

each

excess

byte

of

the

receiver

operand

is

assigned

the

single

byte

value

in

the

pad

operand.

If

the

pad

operand

is

more

than

1

byte

in

length,

only

its

leftmost

byte

is

used.

If

the

source

operand

is

longer

than

the

receiver

operand,

the

leftmost

bytes

of

the

source

operand

(equal

in

length

to

the

receiver

operand)

are

copied

to

the

receiver

operand.

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

be

specified

for

operands

1

and

2.

The

effect

of

specifying

a

null

substring

reference

for

the

source

is

that

the

bytes

of

the

receiver

are

each

set

with

the

single

byte

value

of

the

pad

operand.

The

effect

of

specifying

a

null

substring

reference

for

the

receiver

is

that

no

result

is

set.

If

either

of

the

first

two

operands

is

a

character

variable

scalar,

it

may

have

a

length

as

great

as

16,776,191.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

222

iSeries:

Machine

Interface

Instructions

APIs

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0604

External

Data

Object

Not

Found

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

Machine

Interface

Instructions

223

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Copy

Bytes

Overlap

Left-Adjusted

(CPYBOLA)

Op

Code

(Hex)

Operand

1

Operand

2

10BA

Receiver

Source

Operand

1:

Character

variable

scalar

or

numeric

variable

scalar.

Operand

2:

Character

variable

scalar

or

numeric

variable

scalar.

Description:

The

logical

string

value

of

the

source

operand

is

copied

to

the

logical

string

value

of

the

receiver

operand

(no

padding

done).

The

operands

can

be

either

character

or

numeric.

Any

numeric

operands

are

interpreted

as

logical

character

strings.

The

length

of

the

operation

is

equal

to

the

length

of

the

shorter

of

the

two

operands.

The

copying

begins

with

the

two

operands

left-adjusted

and

proceeds

until

the

shorter

operand

has

been

copied.

The

excess

bytes

in

the

longer

operand

are

not

included

in

the

operation.

Predictable

results

occur

even

if

two

operands

overlap

because

the

source

operand

is,

in

effect,

first

copied

to

an

intermediate

result.

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

be

specified

for

operands

1

and

2.

The

effect

of

specifying

a

null

substring

reference

for

either

operand

is

that

no

result

is

set.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

224

iSeries:

Machine

Interface

Instructions

APIs

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

Machine

Interface

Instructions

225

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Copy

Bytes

Overlap

Left-Adjusted

with

Pad

(CPYBOLAP)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

10BB

Receiver

Source

Pad

Operand

1:

Character

variable

scalar

or

numeric

variable

scalar.

Operand

2:

Character

variable

scalar

or

numeric

variable

scalar.

Operand

3:

Character

scalar

or

numeric

scalar.

Description:

The

logical

string

value

of

the

source

operand

is

copied

to

the

logical

string

value

of

the

receiver

operand.

The

operands

can

be

either

character

or

numeric.

Any

numeric

operands

are

interpreted

as

logical

character

strings.

The

length

of

the

operation

is

equal

to

the

length

of

the

receiver

operand.

If

the

source

operand

is

shorter

than

the

receiver

operand,

the

source

operand

is

copied

to

the

leftmost

bytes

of

the

receiver

operand

and

each

excess

byte

of

the

receiver

operand

is

assigned

the

single

byte

value

in

the

pad

operand.

If

the

pad

operand

is

more

than

1

byte

in

length,

only

its

leftmost

byte

is

used.

If

the

source

operand

is

longer

than

the

receiver

operand,

the

leftmost

bytes

of

the

source

operand

(equal

in

length

to

the

receiver

operand)

are

copied

to

the

receiver

operand.

Predictable

results

occur

even

if

two

operands

overlap

because

the

source

operand

is,

in

effect,

first

copied

to

an

intermediate

result.

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

be

specified

for

operands

1

and

2.

The

effect

of

specifying

a

null

substring

reference

for

the

source

is

that

the

bytes

of

the

receiver

are

each

set

with

the

single

byte

value

of

the

pad

operand.

The

effect

of

specifying

a

null

substring

reference

for

the

receiver

is

that

no

result

is

set.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

226

iSeries:

Machine

Interface

Instructions

APIs

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Machine

Interface

Instructions

227

Copy

Bytes

Overlapping

(CPYBO)

Bound

program

access

Built-in

number

for

CPYBO

is

570.

CPYBO

(

target_string

:

address

of

aggregate(*)

source_string

:

address

of

aggregate(*)

copy_length

:

unsigned

binary(4,8)

value

which

specifies

the

number

of

bytes

to

copy

)

Description:

A

copy

from

the

storage

specified

by

source

string

to

the

storage

specified

by

target

string

is

performed.

Copy

length

specifies

the

number

of

bytes

to

copy.

It

is

assumed

that

sufficient

storage

exists

at

the

locations

specified

by

source

string

and

target

string.

Pointers

cannot

be

copied

using

this

instruction.

Results

are

defined

if

the

storage

locations

specified

by

target

string

and

source

string

overlap.

The

result

is

equivalent

to

copying

the

source

string

first

to

a

temporary

location

and

then

from

the

temporary

location

to

the

target

string.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

228

iSeries:

Machine

Interface

Instructions

APIs

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Copy

Bytes

Repeatedly

(CPYBREP)

Op

Code

(Hex)

Operand

1

Operand

2

10BE

Receiver

Source

Operand

1:

Numeric

variable

scalar

or

character

variable

scalar.

Operand

2:

Numeric

scalar

or

character

scalar.

Description:

The

logical

string

value

of

the

source

operand

is

repeatedly

copied

to

the

receiver

operand

until

the

receiver

is

filled.

The

operands

can

be

either

character

or

numeric.

Any

numeric

operands

are

interpreted

as

logical

character

strings.

The

operation

begins

with

the

two

operands

left-adjusted

and

continues

until

the

receiver

operand

is

completely

filled.

If

the

source

operand

is

shorter

than

the

receiver,

it

is

repeatedly

copied

from

left

to

right

(all

or

in

part)

until

the

receiver

operand

is

completely

filled.

If

the

source

operand

is

longer

than

the

receiver

operand,

the

leftmost

bytes

of

the

source

operand

(equal

in

length

to

the

receiver

operand)

are

copied

to

the

receiver

operand.

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

be

specified

for

operands

1

and

2.

The

effect

of

specifying

a

null

substring

reference

for

either

operand

is

that

no

result

is

set.

If

either

operand

is

a

character

variable

scalar,

it

may

have

a

length

as

great

as

16,776,191.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

Machine

Interface

Instructions

229

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

230

iSeries:

Machine

Interface

Instructions

APIs

Copy

Bytes

Right-Adjusted

(CPYBRA)

Op

Code

(Hex)

Operand

1

Operand

2

10B6

Receiver

Source

Operand

1:

Character

variable

scalar,

numeric

variable

scalar,

data-pointer-defined

character

scalar,

or

data-pointer-defined

numeric

scalar.

Operand

2:

Character

scalar,

numeric

scalar,

data-pointer-defined

character

scalar,

or

data-pointer-defined

numeric

scalar.

Description:

The

logical

string

value

of

the

source

operand

is

copied

to

the

logical

string

value

of

the

receiver

operand

(no

padding

done).

The

operands

can

be

either

character

or

numeric.

Any

numeric

operands

are

interpreted

as

logical

character

strings.

The

length

of

the

operation

is

equal

to

the

length

of

the

shorter

of

the

two

operands.

The

rightmost

bytes

(equal

to

the

length

of

the

shorter

of

the

two

operands)

of

the

source

operand

are

copied

to

the

rightmost

bytes

of

the

receiver

operand.

The

excess

bytes

in

the

longer

operand

are

not

included

in

the

operation.

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

be

specified

for

operands

1

and

2.

The

effect

of

specifying

a

null

substring

reference

for

either

operand

is

that

no

result

is

set.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0604

External

Data

Object

Not

Found

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

Machine

Interface

Instructions

231

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Copy

Bytes

Right-Adjusted

with

Pad

(CPYBRAP)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

10B7

Receiver

Source

Pad

Operand

1:

Character

variable

scalar,

numeric

variable

scalar,

data-pointer-defined

character

scalar,

or

data-pointer-defined

numeric

scalar.

232

iSeries:

Machine

Interface

Instructions

APIs

Operand

2:

Character

scalar,

numeric

scalar,

data-pointer-defined

character

scalar,

or

data-pointer-defined

numeric

scalar.

Operand

3:

Character

scalar

or

numeric

scalar.

Description:

The

logical

string

value

of

the

source

operand

is

copied

to

the

logical

string

value

of

the

receiver

operand

(padded

if

needed).

The

operands

can

be

either

character

or

numeric.

Any

numeric

operands

are

interpreted

as

logical

character

strings.

The

length

of

the

operation

is

equal

to

the

length

of

the

receiver

operand.

If

the

source

operand

is

shorter

than

the

receiver

operand,

the

source

operand

is

copied

to

the

rightmost

bytes

of

receiver

operand,

and

each

excess

byte

is

assigned

the

single

byte

value

in

the

pad

operand.

If

the

pad

operand

is

more

than

1

byte

in

length,

only

its

leftmost

byte

is

used.

If

the

source

operand

is

longer

than

the

receiver

operand,

the

rightmost

bytes

of

the

source

operand

(equal

in

length

to

the

receiver

operand)

are

copied

to

the

receiver

operand.

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

be

specified

for

operands

1

and

2.

The

effect

of

specifying

a

null

substring

reference

for

the

source

is

that

the

bytes

of

the

receiver

are

each

set

with

the

single

byte

value

of

the

pad

operand.

The

effect

of

specifying

a

null

substring

reference

for

the

receiver

is

that

no

result

is

set.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0604

External

Data

Object

Not

Found

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

Machine

Interface

Instructions

233

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Copy

Bytes

to

Bits

Arithmetic

(CPYBBTA)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

Operand

4

104C

Receiver

Offset

Length

Source

Operand

1:

Character

variable

scalar

or

numeric

variable

scalar.

Operand

2:

Signed

binary

immediate

or

unsigned

binary

immediate.

Operand

3:

Signed

binary

immediate

or

unsigned

binary

immediate.

234

iSeries:

Machine

Interface

Instructions

APIs

Operand

4:

Character

variable

scalar

or

numeric

variable

scalar.

Description:

This

instruction

copies

a

byte

string

from

the

source

operand

to

a

bit

string

in

the

receiver

operand.

The

source

operand

is

interpreted

as

a

signed

binary

value

and

may

be

sign

extended

or

truncated

on

the

left

to

fit

into

the

bit

string

in

the

receiver

operand.

No

indication

is

given

when

truncation

occurs.

The

location

of

the

bit

string

in

the

receiver

operand

is

specified

by

the

offset

operand.

The

value

of

the

offset

operand

specifies

the

bit

offset

from

the

start

of

the

receiver

operand

to

the

start

of

the

bit

string.

Thus,

an

offset

operand

value

of

0

specifies

that

the

bit

string

starts

at

the

leftmost

bit

position

of

the

receiver

operand.

The

length

of

the

bit

string

in

the

receiver

operand

is

specified

by

the

length

operand.

The

value

of

the

length

operand

specifies

the

length

of

the

bit

string

in

bits.

Warning:

Temporary

Level

3

Header

Limitations

(Subject

to

Change)

The

following

are

limits

that

apply

to

the

functions

performed

by

this

instruction.

v

v

If

the

source

operand

and

the

bit

string

in

the

receiver

operand

overlap,

the

results

are

unpredictable.

v

A

source

operand

longer

than

4

bytes

may

not

be

specified.

v

If

the

offset

operand

is

signed

binary

immediate,

a

negative

value

may

not

be

specified.

v

A

length

operand

with

a

value

less

than

1

or

greater

than

32

may

not

be

specified.

v

The

bit

string

specified

by

the

offset

operand

and

the

length

operand

may

not

extend

outside

the

receiver

operand.

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

Machine

Interface

Instructions

235

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Copy

Bytes

to

Bits

Logical

(CPYBBTL)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

Operand

4

103C

Receiver

Offset

Length

Source

Operand

1:

Character

variable

scalar

or

numeric

variable

scalar.

Operand

2:

Signed

binary

immediate

or

unsigned

binary

immediate.

Operand

3:

Signed

binary

immediate

or

unsigned

binary

immediate.

Operand

4:

Character

variable

scalar

or

numeric

variable

scalar.

236

iSeries:

Machine

Interface

Instructions

APIs

Description:

This

instruction

copies

a

byte

string

from

the

source

operand

to

a

bit

string

in

the

receiver

operand.

The

source

operand

is

interpreted

as

an

unsigned

binary

value

and

may

be

padded

on

the

left

with

0’s

or

truncated

on

the

left

to

fit

into

the

bit

string

in

the

receiver

operand.

No

indication

is

given

when

truncation

occurs.

The

location

of

the

bit

string

in

the

receiver

operand

is

specified

by

the

offset

operand.

The

value

of

the

offset

operand

specifies

the

bit

offset

from

the

start

of

the

receiver

operand

to

the

start

of

the

bit

string.

Thus,

an

offset

operand

value

of

0

specifies

that

the

bit

string

starts

at

the

leftmost

bit

position

of

the

receiver

operand.

The

length

of

the

bit

string

in

the

receiver

operand

is

specified

by

the

length

operand.

The

value

of

the

length

operand

specifies

the

length

of

the

bit

string

in

bits.

Warning:

Temporary

Level

3

Header

Limitations

(Subject

to

Change)

The

following

are

limits

that

apply

to

the

functions

performed

by

this

instruction.

v

v

If

the

source

operand

and

the

bit

string

in

the

receiver

operand

overlap,

the

results

are

unpredictable.

v

A

source

operand

longer

than

4

bytes

may

not

be

specified.

v

If

the

offset

operand

is

signed

binary

immediate,

a

negative

value

may

not

be

specified.

v

A

length

operand

with

a

value

less

than

1

or

greater

than

32

may

not

be

specified.

v

The

bit

string

specified

by

the

offset

operand

and

the

length

operand

may

not

extend

outside

the

receiver

operand.

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

Machine

Interface

Instructions

237

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Copy

Bytes

with

Pointers

(CPYBWP)

Op

Code

(Hex)

Operand

1

Operand

2

0132

Receiver

Source

Operand

1:

Character

variable

scalar,

space

pointer

machine

object,

or

pointer

data

object.

238

iSeries:

Machine

Interface

Instructions

APIs

Operand

2:

Character

variable

scalar,

space

pointer

machine

object,

pointer

data

object

or

null.

Bound

program

access

Built-in

number

for

CPYBWP

is

14.

CPYBWP

(

receiver

:

address

source

:

address

length

:

unsigned

binary(4)

)

The

receiver

and

source

operands

correspond

to

operands

1

and

2

on

the

CPYBWP

operation.

The

length

operand

contains

the

length,

in

bytes,

of

the

receiver

and

source

operands.

It

is

expected

to

contain

a

value

between

1

and

16,776,704.

Description:

This

instruction

copies

either

the

pointer

value

or

the

byte

string

specified

for

the

source

operand

into

the

receiver

operand

depending

upon

whether

or

not

a

space

pointer

machine

object

is

specified

as

one

of

the

operands.

If

either

operand

is

a

character

variable

scalar,

it

can

have

a

length

as

great

as

16,776,191

bytes.

Operations

involving

space

pointer

machine

objects

perform

a

pointer

value

copy

operation

for

only

space

pointer

values

or

the

pointer

does

not

exist

state.

Due

to

this,

a

space

pointer

machine

object

may

only

be

specified

as

an

operand

in

conjunction

with

another

pointer

or

a

null

second

operand.

The

pointer

does

not

exist

state

is

copied

from

the

source

to

the

receiver

pointer

without

signaling

the

pointer

does

not

exist

(hex

2401)

exception.

Source

pointer

data

objects

must

either

be

not

set

or

contain

a

space

pointer

value

when

being

copied

into

a

receiver

space

pointer

machine

object.

Receiver

pointer

data

objects

will

be

set

with

either

the

system

default

pointer

does

not

exist

value

or

the

space

pointer

value

from

a

source

space

pointer

machine

object.

If

the

source

operand

is

a

synchronization

pointer,

the

pointer

will

be

copied

to

the

receiver.

However,

the

copied

pointer

is

not

useful,

because

a

synchronization

pointer

is

defined

to

reside

at

only

a

single

location

in

memory.

Attempting

to

use

a

copied

synchronization

pointer

will

cause

unpredictable

results.

Normal

pointer

alignment

checking

is

performed

on

a

pointer

data

object

specified

as

an

operand

in

conjunction

with

a

space

pointer

machine

object.

Operations

not

involving

space

pointer

machine

objects,

those

involving

just

data

objects

as

operands,

perform

a

byte

string

copy

of

the

data

for

the

specified

operands.

The

value

of

the

byte

string

specified

by

operand

2

is

copied

to

the

byte

string

specified

by

operand

1

(no

padding

done).

The

byte

string

identified

by

operand

2

can

contain

the

storage

forms

of

both

scalars

and

pointers.

Normal

pointer

alignment

checking

is

not

done.

When

the

Override

Program

Attributes

(OVRPGATR)

instruction

is

not

used

to

override

CPYBWP,

the

only

alignment

requirement

is

that

the

space

addressability

alignment

of

the

two

operands

must

be

to

the

same

position

relative

to

a

16-byte

multiple

boundary.

A

boundary

alignment

(hex

0602)

exception

is

signaled

if

the

alignment

is

incorrect.

The

pointer

attributes

of

any

complete

pointers

in

the

source

are

preserved

if

they

can

be

completely

copied

into

the

receiver.

Partial

pointer

storage

forms

are

copied

into

the

receiver

as

scalar

data.

Scalars

in

the

source

are

copied

to

the

receiver

as

scalars.

When

the

OVRPGATR

instruction

is

used

to

override

this

instruction,

the

alignment

requirement

is

removed.

If

the

space

addressability

alignment

of

the

two

operands

is

the

same

relative

to

16-byte

multiple

boundary,

then

this

instruction

will

work

the

same

as

stated

above.

If

the

space

addressability

Machine

Interface

Instructions

239

alignment

is

different,

then

this

instruction

will

work

like

a

Copy

Bytes

Left

Adjusted

(CPYBLA)

and

the

pointer

attributes

of

any

complete

pointers

in

the

source

are

not

preserved

in

the

receiver.

If

a

pointer

data

object

operand

contains

a

data

pointer

value

upon

execution

of

the

instruction,

the

pointer

storage

form

is

copied

rather

than

the

scalar

described

by

the

data

pointer

value.

The

character

variable

scalar

reference

allowed

on

either

operand

cannot

be

described

through

a

data

pointer

value.

The

length

of

the

operation

is

equal

to

the

length

of

the

shorter

of

the

two

operands.

The

copying

begins

with

the

two

operands

left-adjusted

and

proceeds

until

completion

of

the

shorter

operand.

Operand

1

can

specify

a

space

pointer

machine

object

only

when

operand

2

is

a

space

pointer

or

null.

If

operand

2

is

null,

operand

1

must

define

a

pointer

reference.

When

operand

2

is

null,

the

pointer

identified

by

operand

1

is

set

to

the

system

default

pointer

does

not

exist

value.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

240

iSeries:

Machine

Interface

Instructions

APIs

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Copy

Extended

Characters

Left-Adjusted

With

Pad

(CPYECLAP)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

1053

Receiver

Source

Pad

Operand

1:

Data-pointer-defined

character

scalar.

Operand

2:

Data-pointer-defined

character

scalar.

Operand

3:

Character(3)

scalar

or

null.

Bound

program

access

Built-in

number

for

CPYECLAP

is

412.

CPYECLAP

(

receiver_pointer

:

address

of

data

pointer

source_pointer

:

address

of

data

pointer

pad

:

address

OR

null

operand

)

Description:

The

extended

character

string

value

of

the

source

operand

is

copied

to

the

receiver

operand.

Machine

Interface

Instructions

241

The

operation

is

performed

at

the

length

of

the

receiver

operand.

If

the

source

operand

is

shorter

than

the

receiver,

the

source

operand

is

copied

to

the

leftmost

bytes

of

the

receiver

and

the

excess

bytes

of

the

receiver

are

assigned

the

appropriate

value

from

the

pad

operand.

The

pad

operand,

operand

3,

is

three

bytes

in

length

and

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Pad

operand

Char(3)

0

0

Single

byte

pad

value

Char(1)

1

1

Double

byte

pad

value

Char(2)

3

3

—-

End

—-

If

the

pad

operand

is

more

than

three

bytes

in

length,

only

its

leftmost

three

bytes

are

used.

Specifying

a

null

pad

operand

results

in

default

pad

values

of

hex

40,

for

single

byte,

and

hex

4040,

for

double

byte,

being

used.

The

single

byte

pad

value

and

the

first

byte

of

the

double

byte

pad

value

cannot

be

either

a

shift

out

control

character

(SO

=

hex

0E)

value

or

a

shift

in

control

character

(SI

=

hex

0F)

value.

Specification

of

such

an

invalid

value

results

in

the

signaling

of

the

scalar

value

invalid

(hex

3203)

exception.

Operands

1

and

2

must

be

specified

as

data

pointers

which

define

either

a

simple

(single

byte)

character

data

field

or

one

of

the

extended

(double

byte)

character

data

fields.

Support

for

usage

of

a

data

pointer

defining

an

extended

character

scalar

value

is

limited

to

this

instruction.

Usage

of

such

a

data

pointer

defined

value

on

any

other

instruction

is

not

supported

and

results

in

the

signaling

of

the

scalar

type

invalid

(hex

3201)

exception.

For

more

information

on

support

for

extended

character

data

fields,

refer

to

the

Set

Data

Pointer

Attributes

(SETDPAT)

and

Materialize

Pointer

(MATPTR)

instructions.

Four

data

types

are

supported

for

data

pointer

definition

of

extended

(double

byte)

character

fields,

OPEN,

EITHER,

ONLYNS

and

ONLYS.

Except

for

ONLYNS,

the

double

byte

character

data

must

be

surrounded

by

a

shift

out

control

character

(SO

=

hex

0E)

and

a

shift

in

control

character

(SI

=

hex

0F).

v

v

The

ONLYNS

field

only

contains

double

byte

data

with

no

SO,

SI

delimiters

surrounding

it.

v

The

ONLYS

field

can

only

contain

double

byte

character

data

within

a

SO..SI

pair.

v

The

EITHER

field

can

consist

of

double

byte

character

or

single

byte

character

data

but

only

one

type

at

a

time.

If

double

byte

character

data

is

present

it

must

be

surrounded

by

an

SO..SI

pair.

v

The

OPEN

field

can

consist

of

a

mixture

of

double

byte

character

and

single

byte

character

data.

If

double

byte

character

data

is

present

it

must

be

surrounded

by

an

SO..SI

pair.

Specifying

an

extended

character

value

which

violates

the

above

restrictions

results

in

the

signaling

of

the

invalid

extended

character

data

(hex

0C12)

exception.

The

valid

copy

operations

which

can

be

specified

on

this

instruction

are

the

following:

Table

1.

Valid

copy

operations

for

CPYECLAP

Op1

1

Op

2

Onlyns

Onlys

Open

Either

Onlyns

yes

yes

yes

yes

Onlys

yes

yes

yes

yes

Open

no

no

yes

no

242

iSeries:

Machine

Interface

Instructions

APIs

Op1

1

Op

2

Onlyns

Onlys

Open

Either

Either

no

no

yes

yes

Specifying

a

copy

operation

other

than

the

valid

operations

defined

above

results

in

the

signaling

of

the

invalid

extended

character

operation

(hex

0C13)

exception.

When

the

copy

operation

is

for

a

source

of

type

ONLYNS

(no

SO/SI

delimiters)

being

copied

to

a

receiver

which

is

not

ONLYNS,

SO

and

SI

delimiters

are

implicitly

added

around

the

source

value

as

part

of

the

copy

operation.

When

the

source

value

is

longer

than

can

be

contained

in

the

receiver,

truncation

is

necessary

and

the

following

truncation

rules

apply:

1.

Truncation

is

on

the

right

(like

simple

character

copy

operations).

2.

When

the

string

to

be

truncated

is

a

single

byte

character

string,

or

an

extended

character

string

when

the

receiver

is

ONLYNS,

bytes

beyond

those

that

fit

into

the

receiver

are

truncated

with

no

further

processing

needed.

3.

When

the

string

to

be

truncated

is

an

extended

character

string

and

the

receiver

is

not

ONLYNS,

the

bytes

that

fall

at

the

end

of

the

receiver

are

truncated

as

follows:

a.

When

the

last

byte

that

would

fit

in

the

receiver

is

the

first

byte

of

an

extended

character,

that

byte

is

truncated

and

replaced

with

an

SI

character.

b.

When

the

last

byte

that

would

fit

in

the

receiver

is

the

second

byte

of

an

extended

character,

both

bytes

of

that

extended

character

are

truncated

and

replaced

with

a

SI

character

followed

by

a

single

byte

pad

value.

This

type

of

truncation

can

only

occur

when

converting

to

an

OPEN

field.

When

the

source

value

is

shorter

than

that

which

can

be

contained

in

the

receiver,

padding

is

necessary.

One

of

three

types

of

padding

is

performed:

1.

Double

byte

(DB)

-

the

source

value

is

padded

on

the

right

with

double

byte

pad

values

out

to

the

length

of

the

receiver.

2.

Double

byte

concatenated

with

a

SI

value

(DB||SI)

-

the

source

double

byte

value

is

padded

on

the

right

with

double

byte

pad

values

out

to

the

second

to

last

byte

of

the

receiver

and

an

SI

delimiter

is

placed

in

the

last

byte

of

the

receiver.

3.

Single

byte

(SB)

-

the

source

value

is

padded

on

the

right

with

single

byte

pad

values

out

to

the

length

of

the

receiver.

The

type

of

padding

performed

is

determined

by

the

type

of

operands

involved

in

the

operation:

1.

If

the

receiver

is

ONLYNS,

DB

padding

is

performed.

2.

If

the

receiver

is

ONLYS,

DB||SI

padding

will

be

performed.

3.

If

the

receiver

is

EITHER

and

the

source

contained

a

double

byte

value,

DB||SI

padding

is

performed.

4.

If

the

receiver

is

EITHER

and

the

source

contained

a

single

byte

value,

SB

padding

is

performed.

5.

If

the

receiver

is

OPEN,

SB

padding

is

performed.

The

above

padding

rules

cover

all

the

operand

combinations

which

are

allowed

on

the

instruction.

A

complete

understanding

of

the

operand

combinations

allowed

(prior

diagram),

and

the

values

which

can

be

contained

in

the

different

operand

types

is

necessary

to

appreciate

that

these

rules

do

cover

all

the

valid

combinations.

Machine

Interface

Instructions

243

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0604

External

Data

Object

Not

Found

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C12

Invalid

Extended

Character

Data

0C13

Invalid

Extended

Character

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

244

iSeries:

Machine

Interface

Instructions

APIs

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Copy

Hex

Digit

Numeric

to

Numeric

(CPYHEXNN)

Op

Code

(Hex)

Operand

1

Operand

2

1092

Receiver

Source

Operand

1:

Numeric

variable

scalar

or

character

variable

scalar.

Operand

2:

Numeric

scalar

or

character

scalar.

Description:

The

numeric

hex

digit

value

(rightmost

4

bits)

of

the

leftmost

byte

referred

to

by

the

source

operand

is

copied

to

the

numeric

hex

digit

value

(rightmost

4

bits)

of

the

leftmost

byte

referred

to

by

the

receiver

operand.

The

operands

can

be

either

character

strings

or

numeric.

Any

numeric

operands

are

interpreted

as

logical

character

strings.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Machine

Interface

Instructions

245

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

246

iSeries:

Machine

Interface

Instructions

APIs

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Copy

Hex

Digit

Numeric

to

Zone

(CPYHEXNZ)

Op

Code

(Hex)

Operand

1

Operand

2

1096

Receiver

Source

Operand

1:

Numeric

variable

scalar

or

character

variable

scalar.

Operand

2:

Numeric

scalar

or

character

scalar.

Description:

The

numeric

hex

digit

value

(rightmost

4

bits)

of

the

leftmost

byte

referred

to

by

the

source

operand

is

copied

to

the

numeric

hex

digit

value

(rightmost

4

bits)

of

the

leftmost

byte

referred

to

by

the

receiver

operand.

The

operands

can

be

either

character

strings

or

numeric.

Any

numeric

operands

are

interpreted

as

logical

character

strings.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

Machine

Interface

Instructions

247

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Copy

Hex

Digit

Zone

To

Numeric

(CPYHEXZN)

Op

Code

(Hex)

Operand

1

Operand

2

109A

Receiver

Source

Operand

1:

Numeric

variable

scalar

or

character

variable

scalar.

Operand

2:

Numeric

scalar

or

character

scalar.

Description:

The

zone

hex

digit

value

(leftmost

4

bits)

of

the

leftmost

byte

referred

to

by

the

source

operand

is

copied

to

the

numeric

hex

digit

value

(rightmost

4

bits)

of

the

leftmost

byte

referred

to

by

the

receiver

operand.

248

iSeries:

Machine

Interface

Instructions

APIs

The

operands

can

be

either

character

strings

or

numeric.

Any

numeric

operands

are

interpreted

as

logical

character

strings.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

Machine

Interface

Instructions

249

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Copy

Hex

Digit

Zone

To

Zone

(CPYHEXZZ)

Op

Code

(Hex)

Operand

1

Operand

2

109E

Receiver

Source

Operand

1:

Numeric

variable

scalar

or

character

variable

scalar.

Operand

2:

Numeric

scalar

or

character

scalar.

Description:

The

zone

hex

digit

value

(leftmost

4

bits)

of

the

leftmost

byte

referred

to

by

the

source

operand

is

copied

to

the

zone

hex

digit

value

(leftmost

4

bits)

of

the

leftmost

byte

referred

to

by

the

receiver

operand.

The

operands

can

be

either

character

strings

or

numeric.

Any

numeric

operands

are

interpreted

as

logical

character

strings.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

250

iSeries:

Machine

Interface

Instructions

APIs

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Machine

Interface

Instructions

251

Copy

Null-Terminated

String

Constrained

(STRNCPYNULL)

Bound

program

access

Built-in

number

for

STRNCPYNULL

is

13.

STRNCPYNULL

(

target_string

:

address

of

aggregate(*)

null_terminated_source_string

:

address

of

aggregate(*)

maximum_length

:

unsigned

binary(4)

value

which

specifies

the

maximum

number

of

bytes

to

copy

)

:

space

pointer(16)

to

the

target

string

Description:

A

copy

is

performed

from

the

storage

specified

by

null

terminated

source

string

to

the

storage

specified

by

target

string.

The

copy

terminates

after

a

null

(ie.

zero)

character

is

copied

or

the

number

of

bytes

specified

by

maximum

length

have

been

copied

(which

ever

comes

first).

However,

if

a

null

character

is

not

copied,

one

will

be

appended

to

the

end

of

the

target

string.

Thus,

the

maximum

number

of

characters

which

may

be

copied

is

one

more

than

the

value

of

maximum

length.

It

is

expected

that

sufficient

storage

exists

at

the

location

specified

by

target

string.

Undefined

results

can

occur

if

the

storage

locations

specified

by

target

string

and

null

terminated

source

string

overlap.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

252

iSeries:

Machine

Interface

Instructions

APIs

Copy

Null-Terminated

String

Constrained,

Null

Padded

(STRNCPYNULLPAD)

Bound

program

access

Built-in

number

for

STRNCPYNULLPAD

is

12.

STRNCPYNULLPAD

(

target_string

:

address

of

aggregate(*)

null_terminated_source_string

:

address

of

aggregate(*)

maximum_length

:

unsigned

binary(4)

value

which

specifies

the

maximum

number

of

bytes

to

copy

)

:

space

pointer(16)

to

the

target

string

Description:

A

copy

is

performed

from

the

storage

specified

by

null

terminated

source

string

to

the

storage

specified

by

target

string.

The

copy

terminates

after

the

number

of

bytes

specified

by

maximum

length

have

been

copied.

However,

if

a

null

(ie.

zero)

character

appears

in

the

null

terminated

source

string,

no

further

data

is

copied

from

the

string.

Instead,

the

target

string

is

padded

with

null

characters.

It

is

expected

that

sufficient

storage

exists

at

the

location

specified

by

target

string.

Undefined

results

can

occur

if

the

storage

locations

specified

by

target

string

and

null

terminated

source

string

overlap.

Note:

If

a

null

character

does

not

appear

in

the

null

terminated

source

string,

the

target

string

will

not

be

a

null-terminated

string.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Machine

Interface

Instructions

253

Copy

Numeric

Value

(CPYNV)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

[3-6]

CPYNV

1042

Receiver

Source

CPYNVR

1242

Receiver

Source

CPYNVB

1C42

Branch

options

Receiver

Source

Branch

targets

CPYNVBR

1E42

Branch

options

Receiver

Source

Branch

targets

CPYNVI

1842

Indicator

options

Receiver

Source

Indicator

targets

CPYNVIR

1A42

Indicator

options

Receiver

Source

Indicator

targets

Operand

1:

Numeric

variable

scalar

or

data-pointer-defined

numeric

scalar.

Operand

2:

Numeric

scalar

or

data

pointer-defined-numeric

scalar.

Operand

3-6:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Bound

program

access

Built-in

number

for

LBCPYNV

is

129.

LBCPYNV

(

receiver

:

address

of

signed

binary

OR

address

of

unsigned

binary

OR

address

of

zoned

decimal

(1

to

63

digits)

OR

address

of

packed

decimal

(1

to

63

digits)

OR

address

of

floating

point

receiver_attributes

:

address

(See

SETDPAT

for

format

of

attributes)

source

:

address

of

signed

binary

OR

address

of

unsigned

binary

OR

address

of

zoned

decimal

(1

to

63

digits)

OR

address

of

packed

decimal

(1

to

63

digits)

OR

address

of

floating

point

source_attributes

:

address

(See

SETDPAT

for

format

of

attributes)

)

--

OR

--

Built-in

number

for

LBCPYNVR

is

478.

LBCPYNVR

(

receiver

:

address

of

signed

binary

OR

address

of

unsigned

binary

OR

address

of

zoned

decimal

(1

to

63

digits)

OR

address

of

packed

decimal

(1

to

63

digits)

receiver_attributes

:

address

(See

SETDPAT

for

format

of

attributes)

source

:

address

of

signed

binary

OR

address

of

unsigned

binary

OR

address

of

zoned

decimal

(1

to

63

digits)

OR

address

of

packed

decimal

(1

to

63

digits)

OR

address

of

floating

point

source_attributes

:

address

(See

SETDPAT

for

format

of

attributes)

)

Description:

The

numeric

value

of

the

source

operand

is

copied

to

the

numeric

receiver

operand.

254

iSeries:

Machine

Interface

Instructions

APIs

Both

operands

must

be

numeric.

If

necessary,

the

source

operand

is

converted

to

the

same

type

as

the

receiver

operand

before

being

copied

to

the

receiver

operand.

The

source

value

is

adjusted

to

the

length

of

the

receiver

operand,

aligned

at

the

assumed

decimal

point

of

the

receiver

operand,

or

both

before

being

copied

to

it.

Length

adjustment

and

decimal

point

alignment

are

performed

according

to

the

rules

of

arithmetic

operations

outlined

in

the

Arithmetic

Operations.

If

significant

digits

are

truncated

on

the

left

end

of

the

source

value,

a

size

(hex

0C0A)

exception

is

signaled.

When

the

receiver

is

binary,

the

size

(hex

0C0A)

exception

may

be

suppressed

using

program

creation

options

or

by

changing

the

suppress

binary

size

exception

attribute

program

attribute

using

the

Override

Program

Attributes

(OVRPGATR)

instruction.

If

a

decimal

to

binary

conversion

causes

a

size

(hex

0C0A)

exception

to

be

signaled

or

if

the

size

(hex

0C0A)

exception

is

suppressed,

the

binary

value

contains

the

correct

truncated

result

only

if

the

decimal

value

contains

15

or

fewer

significant

nonfractional

digits.

Conversions

between

floating-point

integers

and

integer

formats

(binary

or

decimal

with

no

fractional

digits)

is

exact,

except

when

an

exception

is

signaled.

An

invalid

floating-point

conversion

(hex

0C0C)

exception

is

signaled

when

an

attempt

is

made

to

convert

from

floating-point

to

binary

or

decimal

and

the

result

would

represent

infinity

or

NaN,

or

nonzero

digits

would

be

truncated

from

the

left

end

of

the

resultant

value.

For

the

optional

round

form

of

the

instruction,

a

floating-point

receiver

operand

is

invalid.

For

a

fixed-point

operation,

if

significant

digits

are

truncated

from

the

left

end

of

the

source

value,

a

size

(hex

0C0A)

exception

is

signaled.

For

a

floating-point

receiver,

if

the

exponent

of

the

resultant

value

is

too

large

or

too

small

to

be

represented

in

the

receiver

field,

the

floating-point

overflow

(hex

0C06)

exception

and

floating-point

underflow

(hex

0C07)

exception

are

signaled,

respectively.

Resultant

Conditions:

v

v

Positive-The

algebraic

value

of

the

numeric

scalar

receiver

operand

is

positive.

v

Negative-The

algebraic

value

of

the

numeric

scalar

receiver

operand

is

negative.

v

Zero-The

algebraic

value

of

the

numeric

scalar

receiver

operand

is

zero.

v

Unordered-The

value

assigned

a

floating-point

receiver

operand

is

NaN.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

Machine

Interface

Instructions

255

MCNPFAO.htm

0603

Range

0604

External

Data

Object

Not

Found

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C02

Decimal

Data

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

0C0A

Size

0C0C

Invalid

Floating-Point

Conversion

0C0D

Floating-Point

Inexact

Result

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

256

iSeries:

Machine

Interface

Instructions

APIs

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Copy

Numeric

Value

(CPYNV)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

[3-6]

CPYNV

1042

Receiver

Source

CPYNVR

1242

Receiver

Source

CPYNVB

1C42

Branch

options

Receiver

Source

Branch

targets

CPYNVBR

1E42

Branch

options

Receiver

Source

Branch

targets

CPYNVI

1842

Indicator

options

Receiver

Source

Indicator

targets

CPYNVIR

1A42

Indicator

options

Receiver

Source

Indicator

targets

Operand

1:

Numeric

variable

scalar

or

data-pointer-defined

numeric

scalar.

Operand

2:

Numeric

scalar

or

data

pointer-defined-numeric

scalar.

Operand

3-6:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Machine

Interface

Instructions

257

Bound

program

access

Built-in

number

for

LBCPYNV

is

129.

LBCPYNV

(

receiver

:

address

of

signed

binary

OR

address

of

unsigned

binary

OR

address

of

zoned

decimal

(1

to

63

digits)

OR

address

of

packed

decimal

(1

to

63

digits)

OR

address

of

floating

point

receiver_attributes

:

address

(See

SETDPAT

for

format

of

attributes)

source

:

address

of

signed

binary

OR

address

of

unsigned

binary

OR

address

of

zoned

decimal

(1

to

63

digits)

OR

address

of

packed

decimal

(1

to

63

digits)

OR

address

of

floating

point

source_attributes

:

address

(See

SETDPAT

for

format

of

attributes)

)

--

OR

--

Built-in

number

for

LBCPYNVR

is

478.

LBCPYNVR

(

receiver

:

address

of

signed

binary

OR

address

of

unsigned

binary

OR

address

of

zoned

decimal

(1

to

63

digits)

OR

address

of

packed

decimal

(1

to

63

digits)

receiver_attributes

:

address

(See

SETDPAT

for

format

of

attributes)

source

:

address

of

signed

binary

OR

address

of

unsigned

binary

OR

address

of

zoned

decimal

(1

to

63

digits)

OR

address

of

packed

decimal

(1

to

63

digits)

OR

address

of

floating

point

source_attributes

:

address

(See

SETDPAT

for

format

of

attributes)

)

Description:

The

numeric

value

of

the

source

operand

is

copied

to

the

numeric

receiver

operand.

Both

operands

must

be

numeric.

If

necessary,

the

source

operand

is

converted

to

the

same

type

as

the

receiver

operand

before

being

copied

to

the

receiver

operand.

The

source

value

is

adjusted

to

the

length

of

the

receiver

operand,

aligned

at

the

assumed

decimal

point

of

the

receiver

operand,

or

both

before

being

copied

to

it.

Length

adjustment

and

decimal

point

alignment

are

performed

according

to

the

rules

of

arithmetic

operations

outlined

in

the

Arithmetic

Operations.

If

significant

digits

are

truncated

on

the

left

end

of

the

source

value,

a

size

(hex

0C0A)

exception

is

signaled.

When

the

receiver

is

binary,

the

size

(hex

0C0A)

exception

may

be

suppressed

using

program

creation

options

or

by

changing

the

suppress

binary

size

exception

attribute

program

attribute

using

the

Override

Program

Attributes

(OVRPGATR)

instruction.

If

a

decimal

to

binary

conversion

causes

a

size

(hex

0C0A)

exception

to

be

signaled

or

if

the

size

(hex

0C0A)

exception

is

suppressed,

the

binary

value

contains

the

correct

truncated

result

only

if

the

decimal

value

contains

15

or

fewer

significant

nonfractional

digits.

Conversions

between

floating-point

integers

and

integer

formats

(binary

or

decimal

with

no

fractional

digits)

is

exact,

except

when

an

exception

is

signaled.

An

invalid

floating-point

conversion

(hex

0C0C)

exception

is

signaled

when

an

attempt

is

made

to

convert

from

floating-point

to

binary

or

decimal

and

the

result

would

represent

infinity

or

NaN,

or

nonzero

digits

would

be

truncated

from

the

left

end

of

the

resultant

value.

For

the

optional

round

form

of

the

instruction,

a

floating-point

receiver

operand

is

invalid.

For

a

fixed-point

operation,

if

significant

digits

are

truncated

from

the

left

end

of

the

source

value,

a

size

(hex

0C0A)

exception

is

signaled.

258

iSeries:

Machine

Interface

Instructions

APIs

MCNPFAO.htm

For

a

floating-point

receiver,

if

the

exponent

of

the

resultant

value

is

too

large

or

too

small

to

be

represented

in

the

receiver

field,

the

floating-point

overflow

(hex

0C06)

exception

and

floating-point

underflow

(hex

0C07)

exception

are

signaled,

respectively.

Resultant

Conditions:

v

v

Positive-The

algebraic

value

of

the

numeric

scalar

receiver

operand

is

positive.

v

Negative-The

algebraic

value

of

the

numeric

scalar

receiver

operand

is

negative.

v

Zero-The

algebraic

value

of

the

numeric

scalar

receiver

operand

is

zero.

v

Unordered-The

value

assigned

a

floating-point

receiver

operand

is

NaN.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0604

External

Data

Object

Not

Found

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C02

Decimal

Data

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

0C0A

Size

0C0C

Invalid

Floating-Point

Conversion

0C0D

Floating-Point

Inexact

Result

10

Damage

Encountered

1004

System

Object

Damage

State

Machine

Interface

Instructions

259

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

260

iSeries:

Machine

Interface

Instructions

APIs

Copy

Numeric

Value

(CPYNV)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

[3-6]

CPYNV

1042

Receiver

Source

CPYNVR

1242

Receiver

Source

CPYNVB

1C42

Branch

options

Receiver

Source

Branch

targets

CPYNVBR

1E42

Branch

options

Receiver

Source

Branch

targets

CPYNVI

1842

Indicator

options

Receiver

Source

Indicator

targets

CPYNVIR

1A42

Indicator

options

Receiver

Source

Indicator

targets

Operand

1:

Numeric

variable

scalar

or

data-pointer-defined

numeric

scalar.

Operand

2:

Numeric

scalar

or

data

pointer-defined-numeric

scalar.

Operand

3-6:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Bound

program

access

Built-in

number

for

LBCPYNV

is

129.

LBCPYNV

(

receiver

:

address

of

signed

binary

OR

address

of

unsigned

binary

OR

address

of

zoned

decimal

(1

to

63

digits)

OR

address

of

packed

decimal

(1

to

63

digits)

OR

address

of

floating

point

receiver_attributes

:

address

(See

SETDPAT

for

format

of

attributes)

source

:

address

of

signed

binary

OR

address

of

unsigned

binary

OR

address

of

zoned

decimal

(1

to

63

digits)

OR

address

of

packed

decimal

(1

to

63

digits)

OR

address

of

floating

point

source_attributes

:

address

(See

SETDPAT

for

format

of

attributes)

)

--

OR

--

Built-in

number

for

LBCPYNVR

is

478.

LBCPYNVR

(

receiver

:

address

of

signed

binary

OR

address

of

unsigned

binary

OR

address

of

zoned

decimal

(1

to

63

digits)

OR

address

of

packed

decimal

(1

to

63

digits)

receiver_attributes

:

address

(See

SETDPAT

for

format

of

attributes)

source

:

address

of

signed

binary

OR

address

of

unsigned

binary

OR

address

of

zoned

decimal

(1

to

63

digits)

OR

address

of

packed

decimal

(1

to

63

digits)

OR

address

of

floating

point

source_attributes

:

address

(See

SETDPAT

for

format

of

attributes)

)

Description:

The

numeric

value

of

the

source

operand

is

copied

to

the

numeric

receiver

operand.

Machine

Interface

Instructions

261

Both

operands

must

be

numeric.

If

necessary,

the

source

operand

is

converted

to

the

same

type

as

the

receiver

operand

before

being

copied

to

the

receiver

operand.

The

source

value

is

adjusted

to

the

length

of

the

receiver

operand,

aligned

at

the

assumed

decimal

point

of

the

receiver

operand,

or

both

before

being

copied

to

it.

Length

adjustment

and

decimal

point

alignment

are

performed

according

to

the

rules

of

arithmetic

operations

outlined

in

the

Arithmetic

Operations.

If

significant

digits

are

truncated

on

the

left

end

of

the

source

value,

a

size

(hex

0C0A)

exception

is

signaled.

When

the

receiver

is

binary,

the

size

(hex

0C0A)

exception

may

be

suppressed

using

program

creation

options

or

by

changing

the

suppress

binary

size

exception

attribute

program

attribute

using

the

Override

Program

Attributes

(OVRPGATR)

instruction.

If

a

decimal

to

binary

conversion

causes

a

size

(hex

0C0A)

exception

to

be

signaled

or

if

the

size

(hex

0C0A)

exception

is

suppressed,

the

binary

value

contains

the

correct

truncated

result

only

if

the

decimal

value

contains

15

or

fewer

significant

nonfractional

digits.

Conversions

between

floating-point

integers

and

integer

formats

(binary

or

decimal

with

no

fractional

digits)

is

exact,

except

when

an

exception

is

signaled.

An

invalid

floating-point

conversion

(hex

0C0C)

exception

is

signaled

when

an

attempt

is

made

to

convert

from

floating-point

to

binary

or

decimal

and

the

result

would

represent

infinity

or

NaN,

or

nonzero

digits

would

be

truncated

from

the

left

end

of

the

resultant

value.

For

the

optional

round

form

of

the

instruction,

a

floating-point

receiver

operand

is

invalid.

For

a

fixed-point

operation,

if

significant

digits

are

truncated

from

the

left

end

of

the

source

value,

a

size

(hex

0C0A)

exception

is

signaled.

For

a

floating-point

receiver,

if

the

exponent

of

the

resultant

value

is

too

large

or

too

small

to

be

represented

in

the

receiver

field,

the

floating-point

overflow

(hex

0C06)

exception

and

floating-point

underflow

(hex

0C07)

exception

are

signaled,

respectively.

Resultant

Conditions:

v

v

Positive-The

algebraic

value

of

the

numeric

scalar

receiver

operand

is

positive.

v

Negative-The

algebraic

value

of

the

numeric

scalar

receiver

operand

is

negative.

v

Zero-The

algebraic

value

of

the

numeric

scalar

receiver

operand

is

zero.

v

Unordered-The

value

assigned

a

floating-point

receiver

operand

is

NaN.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

262

iSeries:

Machine

Interface

Instructions

APIs

MCNPFAO.htm

0603

Range

0604

External

Data

Object

Not

Found

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C02

Decimal

Data

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

0C0A

Size

0C0C

Invalid

Floating-Point

Conversion

0C0D

Floating-Point

Inexact

Result

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

Machine

Interface

Instructions

263

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Cosine

(COS)

Bound

program

access

Built-in

number

for

COS

is

400.

COS

(

source

:

floating

point(8)

value

)

:

floating

point(8)

value

which

is

the

cosine

of

the

source

value

Description:

The

cosine

of

the

numeric

value

of

the

source

operand,

whose

value

is

considered

to

be

in

radians,

is

computed

and

the

result

is

returned.

The

result

is

in

the

range:

-1

<=

COS(source)

<=

1

See

floating

point

results

from

special

values

for

additional

information.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

264

iSeries:

Machine

Interface

Instructions

APIs

NCBCON.htm

0601

Space

Addressing

Violation

0C

Computation

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

0C0D

Floating-Point

Inexact

Result

0C0E

Floating-Point

Zero

Divide

Cosine

Hyperbolic

(COSH)

Bound

program

access

Built-in

number

for

COSH

is

408.

COSH

(

source

:

floating

point(8)

value

)

:

floating

point(8)

value

which

is

the

cosine

hyperbolic

of

the

source

value

Description:

The

cosine

hyperbolic

of

the

numeric

value

of

the

source

operand

is

computed

and

the

result

(in

radians)

is

returned.

The

result

is

in

the

range:

+1

<=

COSH(source)

<=

+infinity

See

floating

point

results

from

special

values

for

additional

information.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0C

Computation

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

Machine

Interface

Instructions

265

NCBCON.htm

0C0D

Floating-Point

Inexact

Result

0C0E

Floating-Point

Zero

Divide

Cotangent

(COT)

Bound

program

access

Built-in

number

for

COT

is

404.

COT

(

source

:

floating

point(8)

value

)

:

floating

point(8)

value

which

is

the

cotangent

of

the

source

value

Description:

The

cotangent

of

the

numeric

value

of

the

source

operand,

whose

value

is

considered

to

be

in

radians,

is

computed

and

the

result

is

returned.

The

result

is

in

the

range:

-infinity

<=

COT(source)

<=

+infinity

See

floating

point

results

from

special

values

for

additional

information.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0C

Computation

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

0C0D

Floating-Point

Inexact

Result

0C0E

Floating-Point

Zero

Divide

Create

Activation

Group-Based

Heap

Space

(CRTHS)

Op

Code

(Hex)

Operand

1

Operand

2

03B2

Heap

identifier

Creation

template

266

iSeries:

Machine

Interface

Instructions

APIs

NCBCON.htm

Operand

1:

Binary(4)

variable

scalar.

Operand

2:

Space

pointer.

Bound

program

access

Built-in

number

for

CRTHS

is

112.

CRTHS

(

heap_identifier

:

address

of

signed

binary(4)

OR

address

of

unsigned

binary(4)

creation_template

:

address

)

Note:

The

term

″heap

space″

in

this

instruction

refers

to

an

″activation

group-based

heap

space″.

Description:

A

heap

space

is

created

with

the

attributes

supplied

in

the

heap

space

creation

template

specified

by

operand

2.

The

heap

space

identifier

used

to

perform

allocations

and

marks

against

the

heap

space

is

returned

in

operand

1.

The

heap

identifier

returned

in

operand

1

represents

the

heap

space.

This

identifier

is

used

for

the

Allocate

Activation

Group-Based

Heap

Space

Storage

(ALCHSS),

Destroy

Activation

Group-Based

Heap

Space

(DESHS),

Set

Activation

Group-Based

Heap

Space

Storage

Mark

(SETHSSMK)

and

Materialize

Activation

Group-Based

Heap

Space

Attributes

(MATHSAT)

instructions.

The

heap

space

creation

template

identified

by

operand

2

must

be

16-byte

aligned

in

the

space.

Operand

2

is

not

modified

by

the

instruction.

The

following

is

the

format

of

the

heap

space

creation

template:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Reserved

(binary

0)

Char(8)

8

8

Maximum

single

allocation

UBin(4)

12

C

Minimum

boundary

alignment

UBin(4)

16

10

Creation

size

UBin(4)

20

14

Extension

size

UBin(4)

24

18

Domain/Storage

protection

Bin(2)

Hex

0000

=

System

should

chose

the

domain

Hex

0001

=

The

heap

space

domain

should

be

″User″

Hex

8000

=

The

heap

space

domain

should

be

″System″

26

1A

Heap

space

creation

options

Char(6)

26

1A

Allocation

strategy

Bit

0

0

=

Normal

allocation

strategy

1

=

Force

process

space

creation

on

each

allocate

26

1A

Heap

space

mark

Bit

1

0

=

Allow

heap

space

mark

1

=

Prevent

heap

space

mark

26

1A

Block

transfer

Bit

2

Machine

Interface

Instructions

267

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Transfer

the

minimum

storage

transfer

size

for

this

object

1

=

Transfer

the

machine

default

storage

transfer

size

for

this

object

26

1A

Process

access

group

member

Bit

3

0

=

Do

not

create

the

heap

space

in

the

PAG

1

=

Create

the

heap

space

in

the

PAG

26

1A

Allocation

initialization

Bit

4

0

=

Do

not

initialize

allocations

1

=

Initialize

allocations

26

1A

Overwrite

freed

allocations

Bit

5

0

=

Do

not

overwrite

freed

allocations

1

=

Overwrite

freed

allocations

26

1A

Reserved

(binary

0)

Bits

6-7

27

1B

Allocation

value

Char(1)

28

1C

Freed

value

Char(1)

29

1D

Reserved

(binary

0)

Char(3)

32

20

Reserved

(binary

0)

Char(64)

96

60

—-

End

—-

The

maximum

single

allocation

of

any

single

allocation

from

the

heap

space

is

useful

for

controlling

the

use

of

the

heap

space

and

may

also

improve

performance

for

some

cases

when

the

machine

can

optimize

access

based

on

this

attribute.

The

minimum

value

that

can

be

specified

is

0

bytes,

and

the

maximum

value

that

can

be

specified

is

(16M

-

1

page)

bytes.

To

determine

the

current

page

size

use

the

MATRMD

instruction.

If

zero

is

specified,

the

default

value

of

(16M

-

1

page)

bytes

is

used.

Values

outside

the

range

indicated

will

cause

a

template

value

invalid

(hex

3801)

exception.

The

minimum

boundary

alignment

associated

with

any

allocation

from

the

heap

space

can

be

specified

in

the

template

as

an

advisory

value.

This

value

is

expressed

in

terms

of

byte

alignment.

The

machine

will

use

the

specified

value

to

choose

an

actual

alignment

which

is

deemed

closest

to

a

machine-required

alignment

value.

This

allows

changing

machine

requirements

to

be

met

without

changing

the

advisory

value.

Storing

valid

pointers

in

heap

space

allocations

will

be

supported

for

all

advisory

values,

so

the

smallest

effective

alignment

value

is

16

byte

alignment.

The

creation

size

of

the

heap

space

can

be

specified

in

the

template.

If

zero

is

specified,

the

system

computes

a

default

value.

The

minimum

value

that

can

be

specified

is

1

page

(in

bytes).

The

maximum

value

that

can

be

specified

is

(16M

-

1

page)

bytes.

To

determine

the

current

page

size

use

the

MATRMD

instruction.

The

value

specified

is

rounded

up

to

a

storage

unit

boundary.

Values

outside

the

range

indicated

cause

a

template

value

invalid

(hex

3801)

exception.

This

is

an

advisory

value

only.

The

machine

may

decide

to

override

the

value

specified

based

on

system

resource

constraints.

The

extension

size

of

the

heap

space

can

be

specified

in

the

template.

If

zero

is

specified,

the

system

computes

a

default

value.

The

minimum

value

that

can

be

specified

is

1

page

(in

bytes).

The

maximum

value

that

can

be

specified

is

(16M

-

1

page)

bytes.

To

determine

the

current

page

size

use

the

MATRMD

instruction.

The

value

specified

is

rounded

up

to

a

storage

unit

boundary.

Values

outside

the

range

268

iSeries:

Machine

Interface

Instructions

APIs

indicated

cause

a

template

value

invalid

(hex

3801)

exception.

This

is

an

advisory

value

only.

The

machine

may

decide

to

override

the

value

specified

based

on

system

resource

constraints.

The

domain/storage

protection

field

in

the

template

allows

the

user

of

this

instruction

to

override

the

domain

for

the

heap

space

that

would

otherwise

be

chosen

by

the

machine.

The

domain/storage

protection

attribute

can

be

used

to

restrict

access

to

the

contents

of

the

heap

space

by

user

state

programs.

It

is

possible

to

limit

the

access

of

the

heap

space

by

user

state

programs

into

1

of

two

levels:

v

v

No

storage

references

(all

storage

references,

modifying

or

non-modifying

yield

an

object

domain

or

hardware

storage

protection

violation

(hex

4401)

exception).

This

is

system.

v

Full

access

(both

modifying

and

non-modifying

storage

references

are

allowed).

This

is

user.

Only

a

system

state

program

can

specify

a

heap

space

to

be

created

with

a

domain

of

system.

If

a

user

state

program

attempts

to

specify

the

domain/storage

protection

as

system,

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

Any

value

other

than

the

ones

listed

will

cause

a

template

value

invalid

(hex

3801)

exception

to

be

signaled.

The

normal

allocation

strategy

as

defined

by

the

machine

will

be

used

unless

the

force

process

space

creation

on

each

allocation

attribute

is

indicated.

This

option

should

only

be

used

in

unusual

situations,

such

as

when

necessary

for

debug

of

application

problems

caused

by

references

outside

an

allocation.

The

heap

space

mark

attribute

can

be

used

to

prevent

the

use

of

the

Set

Activation

Group-Based

Heap

Space

Storage

Mark

(SETHSSMK)

and

Free

Activation

Group-Based

Heap

Space

Storage

from

Mark(FREHSSMK)

instructions

on

a

heap

space.

Block

transfer

on

a

heap

space

is

used

to

increase

the

performance

of

a

heap

space

based

on

prior

knowledge

of

the

program

creating

the

heap

space

on

how

that

heap

space

will

be

used.

This

attribute

is

used

only

when

the

heap

space

is

not

a

member

of

a

process

access

group

(PAG).

A

heap

space

can

be

created

as

a

process

access

group

(PAG)

member

of

the

process

associated

with

the

current

thread,

if

specified

by

the

process

access

group

member

field.

It

is

possible

for

the

PAG

to

overflow

at

which

point

any

requested

heap

space

creations

or

extensions

will

not

reside

in

the

PAG.

Thus

the

specification

to

have

the

heap

space

as

a

member

of

the

PAG

is

only

an

advisory

which

the

machine

may

decide

to

override.

The

allocation

initialization

field

in

the

template

allows

the

user

of

this

instruction

to

specify

that

all

storage

allocations

from

the

heap

space

being

created

will

be

initialized

to

the

allocation

value

supplied

in

the

template.

If

the

user

chooses

not

to

initialize

heap

space

storage

allocations,

the

initial

value

of

heap

space

storage

allocations

is

unpredictable

but

will

not

expose

data

produced

by

a

different

user

profile.

The

overwrite

freed

allocations

field

in

the

template

allows

the

user

of

this

instruction

to

specify

that

all

heap

space

storage

allocations

upon

being

freed

will

be

overwritten

with

the

freed

value

supplied

in

the

template.

If

the

user

chooses

not

to

overwrite

heap

space

storage

allocations

when

freed,

the

contents

of

the

freed

allocations

will

be

unaltered.

A

default

heap

space

(heap

identifier

value

of

0)

is

automatically

available

in

each

activation

group,

without

issuing

a

Create

Activation

Group-Based

Heap

Space

(CRTHS)

instruction.

The

default

heap

space

is

created

on

the

first

allocation

request

of

the

default

heap

space.

See

Allocate

Activation

Group-Based

Heap

Space

Storage

(ALCHSS)

for

a

description

of

the

default

heap

space.

A

heap

space

is

scoped

to

an

activation

group,

thus

the

maximum

life

of

a

heap

space

is

the

life

of

the

activation

group

in

which

the

heap

space

was

created.

A

heap

space

can

only

be

destroyed

from

within

the

activation

group

in

which

it

was

created.

Machine

Interface

Instructions

269

Limitations

(Subject

to

Change):

The

following

are

limits

that

apply

to

the

functions

performed

by

this

instruction.

The

amount

of

heap

space

storage

that

can

be

allocated

for

a

single

heap

space

is

4G-512K

bytes.

Due

to

fragmentation

a

heap

space

may

grow

to

4GB-512KB

without

having

4GB-512KB

of

outstanding

heap

space

storage

allocations.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C04

Object

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

270

iSeries:

Machine

Interface

Instructions

APIs

2403

Pointer

Addressing

Invalid

Object

Type

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Create

Independent

Index

(CRTINX)

Op

Code

(Hex)

Operand

1

Operand

2

0446

Index

Index

description

template

Operand

1:

System

pointer.

Operand

2:

Space

pointer.

Bound

program

access

Built-in

number

for

CRTINX

is

34.

CRTINX

(

index

:

address

of

system

pointer

index_description_template

:

address

)

Description:

This

instruction

creates

an

independent

index

based

on

the

index

template

specified

by

operand

2

and

returns

addressability

to

the

index

in

a

system

pointer

stored

in

the

addressing

object

specified

by

operand

1.

The

format

of

the

index

description

template

pointed

to

by

operand

2

is

as

follows

(must

be

aligned

on

a

16-byte

multiple):

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Template

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

+

4

4

Number

of

bytes

available

for

materialization

Bin(4)

+

8

8

Object

identification

Char(32)

8

8

Object

type

Char(1)

+

9

9

Object

subtype

Char(1)

10

A

Object

name

Char(30)

40

28

Object

creation

options

Char(4)

40

28

Existence

attributes

Bit

0

0

=

Temporary

1

=

Permanent

40

28

Space

attribute

Bit

1

Machine

Interface

Instructions

271

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Fixed-length

1

=

Variable-length

40

28

Initial

context

Bit

2

0

=

Do

not

insert

addressability

in

context

1

=

Insert

addressability

in

context

40

28

Access

group

Bit

3

0

=

Do

not

create

as

member

of

access

group

1

=

Create

as

member

of

access

group

40

28

Reserved

(binary

0)

Bits

4-6

40

28

Initial

owner

specified

Bit

7

0

=

No

1

=

Yes

40

28

Reserved

(binary

0)

Bits

8-12

40

28

Initialize

space

Bit

13

0

=

Initialize

1

=

Do

not

initialize

40

28

Reserved

(binary

0)

Bits

14-19

40

28

Always

enforce

hardware

storage

protection

of

this

object

Bit

20

0

=

Enforce

hardware

storage

protection

of

this

object’s

encapsulated

part

only

when

hardware

storage

protection

is

being

enforced

for

all

storage.

1

=

Enforce

hardware

storage

protection

of

this

object’s

encapsulated

part

at

all

times.

40

28

Always

enforce

hardware

storage

protection

of

associated

space

Bit

21

0

=

Enforce

hardware

storage

protection

of

the

associated

space

only

when

hardware

storage

protection

is

enforced

for

all

storage.

1

=

Enforce

hardware

storage

protection

of

the

associated

space

at

all

times.

40

28

Reserved

(binary

0)

Bits

22-31

44

2C

Recovery

options

Char(4)

44

2C

Reserved

(binary

0)

Char(2)

46

2E

ASP

number

Char(2)

48

30

Size

of

space

Bin(4)

272

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

52

34

Initial

value

of

space

Char(1)

53

35

Performance

class

Char(4)

53

35

Space

alignment

Bit

0

0

=

The

space

associated

with

the

object

is

allocated

to

allow

proper

alignment

of

pointers

at

16-byte

alignments

within

the

space.

If

the

size

of

space

field

is

0,

this

value

must

be

specified.

1

=

The

space

associated

with

the

object

is

allocated

to

allow

proper

alignment

of

pointers

at

16-byte

alignments

within

the

space

as

well

as

to

allow

proper

alignment

of

input/output

buffers

at

512-byte

alignments

within

the

space.
The

value

of

this

field

is

ignored

when

a

value

of

1

is

given

for

the

machine

chooses

space

alignment

field.

53

35

Reserved

(binary

0)

Bits

1-2

53

35

Machine

chooses

space

alignment

Bit

3

0

=

The

space

alignment

indicated

by

the

space

alignment

field

is

performed.

1

=

The

machine

will

choose

the

space

alignment

most

beneficial

to

performance,

which

may

reduce

maximum

space

capacity.

When

this

value

is

specified,

the

space

alignment

field

is

ignored,

but

the

alignment

chosen

will

be

a

multiple

of

512.

53

35

Reserved

(binary

0)

Bit

4

53

35

Main

storage

pool

selection

Bit

5

0

=

Process

default

main

storage

pool

is

used

for

object.

1

=

Machine

default

main

storage

pool

is

used

for

object.

53

35

Reserved

(binary

0)

Bit

6

53

35

Block

transfer

on

implicit

access

state

modification

Bit

7

0

=

Transfer

the

minimum

storage

transfer

size

for

this

object.

1

=

Transfer

the

machine

default

storage

transfer

size

for

this

object.

53

35

Reserved

(binary

0)

Bits

8-31

57

39

Reserved

(binary

0)

Char(3)

60

3C

Extension

offset

Bin(4)

64

40

Context

System

pointer

80

50

Access

group

System

pointer

96

60

Index

attributes

Char(1)

96

60

Entry

length

attribute

Bit

0

Machine

Interface

Instructions

273

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Fixed-length

entries

1

=

Variable-length

entries

96

60

Immediate

update

Bit

1

0

=

No

immediate

update

1

=

Immediate

update

96

60

Key

insertion

Bit

2

0

=

No

insertion

by

key

1

=

Insertion

by

key

96

60

Entry

format

Bit

3

0

=

Scalar

data

only

1

=

Both

pointers

and

scalar

data

96

60

Optimized

processing

mode

Bit

4

0

=

Optimize

for

random

references

1

=

Optimize

for

sequential

references

96

60

Maximum

entry

length

(obsolete)

Bit

5

96

60

Index

coherency

tracking

Bit

6

0

=

Do

not

track

index

coherency

1

=

Track

index

coherency

96

60

Longer

template

Bit

7

0

=

The

template

is

the

original

size

1

=

The

template

is

longer

97

61

Argument

length

Bin(2)

99

63

Key

length

Bin(2)

101

65

—-

End

—-

Note:

This

instruction

ignores

the

values

associated

with

the

fields

annotated

with

a

plus

sign

(+).

The

template

identified

by

operand

2

must

be

16-byte

aligned.

There

are

two

ways

the

operand

2

template

can

be

extended.

When

the

longer

template

field

is

set

to

binary

1,

the

fields

starting

at

offset

101

in

the

longer

template

are

defined.

Also,

if

the

extension

offset

is

non-zero,

a

template

extension

is

located

by

the

extension

offset

field.

If

the

longer

template

field

is

set

to

binary

1,

then

the

longer

template

is

defined

starting

at

offset

101

of

the

operand

2

template.

The

longer

template

is

defined

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

101

65

Reserved

(binary

0)

Char(12)

113

71

Template

version

Char(1)

274

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

114

72

Index

format

Char(1)

0

=

Maximum

object

size

of

4

Gigabytes.

1

=

Maximum

object

size

of

1

Terabyte.

115

73

Reserved

(binary

0)

Char(61)

176

B0

—-

End

—-

If

the

extension

offset

is

non-zero,

a

template

extension

is

defined

at

this

offset

from

the

beginning

of

the

operand

2

template.

The

template

extension

must

be

16-byte

aligned

in

the

space.

The

following

is

the

format

of

the

template

extension:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

User

profile

System

pointer

16

10

Reserved

(binary

0)

Char(4)

20

14

Domain

assigned

to

the

object

Char(2)

22

16

Reserved

(binary

0)

Char(42)

64

40

—-

End

—-

If

the

created

object

is

permanent,

it

is

owned

by

the

user

profile

governing

thread

execution.

The

owning

user

profile

is

implicitly

assigned

all

private

authority

states

for

the

object.

The

storage

occupied

by

the

created

object

is

charged

to

this

owning

user

profile.

If

the

created

object

is

temporary,

there

is

no

owning

user

profile,

and

all

authority

states

are

assigned

as

public.

Storage

occupied

by

the

created

object

is

charged

to

the

process

associated

with

the

creating

thread.

The

object

identification

specifies

the

symbolic

name

that

identifies

the

space

within

the

machine.

An

object

type

of

hex

0E

is

implicitly

supplied

by

the

machine.

The

object

identification

is

used

to

identify

the

object

on

materialize

instructions

as

well

as

to

locate

the

object

in

a

context

that

addresses

the

object.

The

existence

attribute

specifies

that

the

index

is

to

be

created

as

a

permanent

or

a

temporary

object.

A

temporary

index,

if

not

explicitly

destroyed

by

the

user,

is

implicitly

destroyed

by

the

machine

when

machine

processing

is

terminated.

Permanent

index

objects

cannot

be

created

by

user

state

programs

when

the

system

security

level

is

40

or

above.

A

space

may

be

associated

with

the

created

object.

The

space

may

be

fixed

or

variable

in

size,

as

specified

by

the

space

attribute

field.

The

initial

allocation

is

as

specified

in

the

size

of

space

field.

The

machine

allocates

a

space

of

at

least

the

size

specified.

The

actual

size

allocated

is

dependent

on

an

algorithm

defined

by

a

specific

implementation.

If

the

initial

context

creation

attribute

field

indicates

that

addressability

is

to

be

inserted

in

a

context,

the

context

field

must

be

a

system

pointer

that

identifies

a

context

where

addressability

to

the

newly

created

object

is

to

be

placed.

If

the

initial

context

indicates

that

addressability

is

not

to

be

placed

in

a

context,

the

context

field

is

ignored.

If

the

access

group

creation

attribute

field

indicates

that

the

object

is

to

be

created

in

an

access

group,

the

access

group

field

must

be

a

system

pointer

that

identifies

an

access

group

in

which

the

object

is

to

be

created.

The

existence

attribute

must

be

temporary

for

an

object

to

be

in

an

access

group.

If

the

object

is

not

to

be

created

in

an

access

group,

the

access

group

field

is

ignored.

Machine

Interface

Instructions

275

The

initial

owner

specified

creation

option

controls

whether

or

not

the

initial

owner

of

the

independent

index

is

to

be

the

user

profile

specified

in

the

template.

When

yes

is

specified,

initial

ownership

is

assigned

to

the

user

profile

specified

in

the

user

profile

field

of

the

template

extension.

When

no

is

specified,

initial

ownership

is

assigned

to

the

user

profile

governing

thread

execution.

The

initial

owner

user

profile

is

implicitly

assigned

all

authority

states

for

the

object.

The

storage

occupied

by

the

object

is

charged

to

the

initial

owner.

The

initialize

space

creation

option

controls

whether

or

not

the

space

is

to

be

initialized.

When

initialize

is

specified,

each

byte

of

the

space

is

initialized

to

a

value

specified

by

the

initial

value

of

space

field.

Additionally,

when

the

space

is

extended

in

size,

this

byte

value

is

also

used

to

initialize

the

new

allocation.

When

do

not

initialize

is

specified,

the

initial

value

of

space

field

is

ignored

and

the

initial

value

of

the

bytes

of

the

space

are

unpredictable.

When

do

not

initialize

is

specified

for

a

space,

internal

machine

algorithms

do

ensure

that

any

storage

resources

last

used

for

allocations

to

another

object

which

are

reused

to

satisfy

allocations

for

the

space

are

reset

to

a

machine

default

value

to

avoid

possible

access

of

data

which

may

have

been

stored

in

the

other

object.

To

the

contrary,

reusage

of

storage

areas

previously

used

by

the

space

object

are

not

reset,

thereby

exposing

subsequent

reallocations

of

those

storage

areas

within

the

space

to

access

of

the

data

which

was

previously

stored

within

them.

The

always

enforce

hardware

storage

protection

of

this

object

field

is

used

to

specify

whether

the

hardware

storage

protection

defined

by

the

machine

for

this

object

type

should

be

enforced

at

all

times,

or

only

when

hardware

storage

protection

is

enforced

for

all

storage.

This

option

applies

to

all

the

encapsulated

storage

associated

with

this

object,

but

not

to

the

associated

space,

if

any.

The

always

enforce

hardware

storage

protection

of

associated

space

field

is

used

to

specify

whether

the

hardware

storage

protection

defined

by

the

machine

for

this

object

type’s

associated

space

should

be

enforced

at

all

times,

or

only

when

hardware

storage

protection

is

enforced

for

all

storage.

The

ASP

number

field

specifies

the

ASP

number

of

the

ASP

on

which

the

object

is

to

be

allocated.

A

value

of

0

indicates

an

ASP

number

is

not

specified

and

results

in

the

default

of

allocating

the

object

in

the

system

ASP.

Allocation

on

the

system

ASP

can

only

be

done

implicitly

by

not

specifying

an

ASP

number.

The

only

nonzero

values

allowed

are

2

through

255

which

provide

for

explicit

allocation

of

objects

on

a

user

ASP

or

an

independent

ASP.

The

ASP

number

must

specify

an

existing

ASP.

An

ASP

number

of

1

or

greater

than

255

results

in

a

template

value

invalid

(hex

3801)

exception

being

signalled.

The

given

ASP

number

must

be

currently

configured

on

the

system

otherwise

an

auxiliary

storage

pool

number

invalid

(hex

1C09)

exception

is

signalled.

If

the

ASP

number

identifies

an

independent

ASP,

there

must

be

an

existing

active

logical

unit

description

for

the

independent

ASP

otherwise

an

independent

asp

varied

off

(hex

1C11)

exception

is

signalled.

A

temporary

object

cannot

be

created

in

an

ASP

other

than

the

system

ASP.

If

this

is

attempted,

a

template

value

invalid

(hex

3801)

exception

is

signalled.

If

the

ASP

number

identifies

an

independent

ASP,

or

initial

context

indicates

that

addressability

is

to

be

inserted

into

a

context

that

resides

in

an

independent

ASP,

then

both

must

indicate

the

same

independent

ASP

or

belong

to

the

same

ASP

group

or

else

a

template

value

invalid

(hex

3801)

exception

is

signalled.

The

ASP

number

of

an

object

can

be

materialized,

but

cannot

be

modified.

The

performance

class

field

provides

information

allowing

the

machine

to

more

effectively

manage

the

object

considering

the

overall

performance

objectives

of

operations

involving

the

index.

If

the

entry

length

attribute

field

specifies

fixed-length

entries,

the

entry

length

of

every

index

entry

is

established

at

creation

by

the

value

in

the

argument

length

field

of

the

index

description

template.

If

the

entry

length

attribute

field

specifies

variable-length

entries,

then

entries

will

be

variable-length

(the

length

of

each

entry

is

supplied

when

the

entry

is

inserted),

and

the

argument

length

field

is

ignored.

If

the

immediate

update

field

specifies

that

an

immediate

update

should

occur,

then

every

update

to

the

index

will

be

written

to

auxiliary

storage

after

every

insert

or

remove

operation.

This

option

is

ignored

if

276

iSeries:

Machine

Interface

Instructions

APIs

the

existence

attributes

field

is

set

to

binary

0

(temporary).

In

this

case,

the

value

of

the

immediate

update

field

is

assumed

to

be

binary

0

and

updates

will

not

be

written

to

auxiliary

storage

after

every

insert

or

remove

operation.

If

the

key

insertion

field

specifies

insertion

by

key,

then

the

key

length

field

must

be

specified.

This

allows

the

specification

of

a

portion

of

the

argument

(the

key),

which

may

be

manipulated

in

either

of

the

following

ways

in

the

Insert

Index

Entry

(INSINXEN)

instruction:

v

v

The

insert

will

not

take

place

if

the

key

portion

of

the

argument

is

already

in

the

index.

v

The

insert

will

cause

the

nonkey

portion

of

the

argument

to

be

replaced

if

the

key

is

already

in

the

index.

The

entry

format

field

designates

the

index

entries

as

containing

both

pointers

and

scalar

data

or

scalar

data

only.

The

both

pointers

and

scalar

data

field

can

be

used

only

for

indexes

with

fixed-length

entries.

If

the

index

is

created

to

contain

both

pointers

and

data,

then

v

v

Entries

to

be

inserted

must

be

16-byte

aligned.

v

Each

entry

retrieved

by

the

Find

Independent

Index

Entry

(FNDINXEN)

instruction

or

the

Remove

Independent

Index

Entry

(RMVINXEN)

instruction

is

16-byte

aligned.

v

Pointers

are

allowed

in

both

the

key

and

nonkey

portions

of

an

index

entry.

v

Pointers

need

not

be

at

the

same

location

in

every

index

entry.

v

Pointers

inserted

into

the

index

remain

unchanged.

No

resolution

is

performed

before

insertion.

If

the

index

is

created

to

contain

scalar

data

only,

then:

v

v

Entries

to

be

inserted

need

not

be

aligned.

v

Entries

returned

by

the

Find

Independent

Index

Entry

(FNDINXEN)

instruction

or

the

Remove

Independent

Index

Entry

(RMVINXEN)

instruction

are

not

aligned.

v

Any

pointers

inserted

into

the

index

will

be

invalidated.

The

optimized

processing

mode

index

attribute

field

is

used

to

designate

whether

the

index

should

be

created

and

maintained

in

a

manner

that

optimizes

performance

for

either

random

or

sequential

operations.

The

maximum

entry

length

field

is

ignored.

All

indexes

are

created

with

a

maximum

entry

length

of

2,000

bytes.

Note

that

indexes

created

before

Version

3

Release

6

could

have

been

created

with

a

maximum

entry

length

of

120

bytes

or

2,000

bytes.

The

MATINXAT

instruction

can

be

used

to

materialize

this

attribute.

The

key

length

field

specifies

the

length

of

the

key

for

the

entries

that

are

inserted

into

the

index.

The

argument

length

specifies

the

length

of

the

entries

when

fixed

length

entries

are

used.

The

key

length

must

have

a

value

less

than

or

equal

to

the

argument

length

whether

specified

during

creation

(for

fixed-length

entries)

or

during

insertion

(for

variable

length).

The

key

length

is

not

used

if

the

key

insertion

field

specifies

no

insertion

by

key.

The

field

template

version

identifies

the

version

of

the

longer

template.

It

must

be

set

to

hex

00.

The

index

format

field

determines

the

format

of

the

index.

This

attribute

cannot

be

modified

after

the

index

has

been

created.

If

an

index

is

created

with

a

format

of

hex

01

(maximum

object

size

of

1

terabyte),

the

index

cannot

be

saved

to

a

target

release

earlier

than

Version

5

Release

2.

If

the

longer

template

is

not

defined

(i.e.

the

field

longer

template

is

set

to

binary

0),

the

index

format

field

defaults

to

a

value

of

hex

00

(maximum

object

size

of

4

gigabytes).

Machine

Interface

Instructions

277

If

the

index

coherency

tracking

attribute

field

specifies

track

index

coherency

then

additional

checking

is

done

when

the

index

is

referenced

for

the

first

time

after

an

IPL

to

determine

if

the

index

was

coherent

at

system

termination.

If

the

index

is

found

to

not

be

coherent

then

the

index

is

marked

as

damaged.

The

index

is

not

coherent

while

the

internal

structure

is

being

modified,

for

example,

during

an

insert

or

a

remove

operation.

If

the

system

is

not

able

to

save

its

main

storage

at

system

termination

then

it

can

not

be

determined

whether

or

not

the

index

is

coherent

and

the

index

is

marked

as

damaged

the

next

time

it

is

referenced.

If

the

index

coherency

tracking

attribute

field

specifies

do

not

track

index

coherency

then

no

additional

checking

is

done

when

the

index

is

referenced

for

the

first

time

after

an

IPL.

The

extension

offset

specifies

the

byte

offset

from

the

beginning

of

the

operand

2

template

to

the

beginning

of

the

template

extension.

An

offset

value

of

zero

specifies

that

the

template

extension

is

not

provided.

A

negative

offset

value

is

invalid.

A

non-zero

offset

must

be

a

multiple

of

16

(to

cause

16-byte

alignment

of

the

extension).

Except

for

these

restrictions,

the

offset

value

is

not

verified

for

correctness

relative

to

the

location

of

other

portions

of

the

create

template.

The

domain

assigned

to

the

object

field

in

the

template

extension

allows

the

user

of

this

instruction

to

override

the

domain

for

this

object

that

would

otherwise

be

chosen

by

the

machine.

Valid

values

for

this

field

are:

Domain

field

Domain

assigned

to

the

object

Hex

0000

The

domain

will

be

chosen

by

the

machine.

Hex

0001

The

domain

will

be

’User’.

Any

value

specified

for

the

domain

assigned

field

other

than

those

listed

above

will

result

in

a

template

value

invalid

(hex

3801)

exception

being

signalled.

Limitations

(Subject

to

Change):

The

following

are

limits

that

apply

to

the

functions

performed

by

this

instruction.

These

limits

may

change

on

different

implementations

of

the

machine.

The

size

of

the

object

specific

portion

of

the

object

is

limited

to

a

maximum

of

4

gigabytes

or

1

terabyte,

depending

on

the

value

of

the

index

format

field.

This

size

is

dependent

upon

the

amount

of

storage

needed

for

the

number

and

size

of

index

entries

and

excludes

the

size

of

the

associated

space,

if

any.

The

size

of

the

associated

space

for

this

object

is

limited

to

a

maximum

of

16MB-32

bytes

if

the

machine

does

not

choose

the

space

alignment

and

0

is

specified

for

the

space

alignment

field.

The

size

of

the

associated

space

for

this

object

is

limited

to

a

maximum

of

16MB-512

bytes

if

the

machine

does

not

choose

the

space

alignment

and

1

is

specified

for

the

space

alignment

field.

The

maximum

size

of

an

associated

space

for

this

object

if

the

machine

chooses

the

space

alignment

is

returned

by

option

Hex

0003

of

MATMDATA.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Insert

–

–

Context

identified

by

operand

2

–

User

profile

of

object

owner
v

Execute

–

–

Contexts

referenced

for

address

resolution

278

iSeries:

Machine

Interface

Instructions

APIs

Lock

Enforcement

v

v

Modify

–

–

Access

group

identified

by

operand

2

–

User

profile

of

object

owner

–

Context

identified

by

operand

2
v

Materialize

–

–

Contexts

referenced

for

address

resolution

Exceptions

02

Access

Group

0201

Object

Ineligible

for

Access

Group

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

0E

Context

Operation

0E01

Duplicate

Object

Identification

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

Machine

Interface

Instructions

279

1C04

Object

Storage

Limit

Exceeded

1C09

Auxiliary

Storage

Pool

Number

Invalid

1C0E

IASP

Resources

Exceeded

1C11

Independent

ASP

Varied

Off

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

4403

Cannot

Change

Contents

of

Protected

Context

280

iSeries:

Machine

Interface

Instructions

APIs

Create

Pointer-Based

Mutex

(CRTMTX)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

03C3

Mutex

Creation

template

Result

Operand

1:

Space

pointer.

Operand

2:

Space

pointer.

Operand

3:

Signed

binary(4)

variable

scalar.

Bound

program

access

Built-in

number

for

CRTMTX

is

161.

CRTMTX

(

mutex

:

address

creation_template

:

address

)

:

signed

binary(4)

/*

result

*/

Note:

The

term

″mutex″

in

this

instruction

refers

to

a

″pointer-based

mutex″.

Description:

A

mutex

is

created

and

associated

with

the

storage

location

of

the

mutex

whose

address

is

passed

in

operand

1.

The

mutex

is

initialized

into

the

unlocked

state

so

it

may

be

used

for

mutual

exclusion

between

threads

attempting

to

lock

the

mutex.

An

optional

name

string

can

be

associated

with

the

mutex.

A

mutex

must

be

created

before

it

can

be

used

for

synchronization

with

the

Lock

Pointer-Based

Mutex

(LOCKMTX)

and

Unlock

Pointer-Based

Mutex

(UNLKMTX)

instructions,

and

with

other

mutex

instructions

such

as

Destroy

Pointer-Based

Mutex

(DESMTX)

and

Materialize

Mutex

(MATMTX).

Result

is

used

to

indicate

the

success

or

failure

of

the

CRTMTX

instruction.

Following

a

successful

CRTMTX,

the

mutex

is

used

by

passing

its

address

as

a

parameter

to

other

mutex

instructions.

Mutexes

are

temporary

entities

that

do

not

persist

beyond

the

current

IPL

in

which

they

are

created.

Following

a

subsequent

IPL,

mutexes

must

be

re-created

before

they

can

be

used.

Similarly,

mutexes

created

in

an

independent

ASP

do

not

persist

beyond

the

current

vary

on

of

the

independent

ASP

in

which

they

are

created.

Following

a

subsequent

vary

on,

mutexes

must

be

re-created

before

they

can

be

used.

Mutexes

can

be

explicitly

destroyed

prior

to

a

subsequent

IPL

or

independent

ASP

vary

off/vary

on

cycle

by

using

the

DESMTX

instruction.

It

is

important

to

destroy

mutexes

when

they

are

no

longer

needed.

When

a

mutex

is

created,

system

resources

are

allocated

for

the

mutex.

These

resources

remain

allocated

until

the

mutex

is

destroyed

(see

DESMTX

instruction)

or

the

system

is

IPLed,

thereby

leaving

fewer

mutex

resources

available

in

the

system

for

other

threads

to

use.

In

addition,

performance

degradation

can

occur

as

unused

mutexes

accumulate

on

the

system

and

are

not

destroyed.

The

mutex

must

be

aligned

on

a

16-byte

boundary.

The

format

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Mutex

control

area

Char(16)

16

10

Optional

name

string

Char(16)

32

20

—-

End

—-

The

mutex

control

area

contains

a

synchronization

pointer.

This

field

is

initialized

by

the

CRTMTX

instruction,

and

is

used

only

by

the

machine.

The

caller

of

CRTMTX

should

simply

define

the

mutex

control

area

as

a

16-byte

character

field.

Machine

Interface

Instructions

281

The

mutex

must

be

at

least

16

bytes

in

length.

If

the

mutex

creation

template

associates

a

name

with

the

mutex,

then

the

optional

name

string

must

reside

in

the

storage

immediately

following

the

16-byte

mutex

control

area

and

be

initialized

prior

to

the

CRTMTX

call.

The

optional

name

string

is

a

character

string

which

can

be

a

maximum

of

16

bytes

long.

The

name

string

must

either

be

null-terminated

(up

to

15

bytes

of

data

followed

by

a

null

byte),

or

it

must

be

16

bytes

long,

padded

with

blanks.

If

a

null

byte

is

found

within

the

first

16

bytes

of

the

name

string,

the

name

string

is

considered

to

be

null-terminated.

No

validity

checking

is

performed

to

ensure

mutex

names

are

unique

in

the

system,

and

it

is

possible

to

have

multiple

mutexes

with

the

same

name;

however,

it

is

recommended

that

each

mutex

be

given

a

unique

name.

This

name

cannot

be

used

on

any

mutex

instructions

to

identify

the

mutex;

rather,

it

is

used

mainly

to

be

able

to

identify

the

mutex

more

easily

during

problem

determination.

The

mutex

name,

if

specified,

is

returned

from

the

MATMTX

instruction.

The

creation

template

specified

by

operand

2

is

used

to

initialize

the

mutex.

The

format

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Reserved

(binary

0)

Char(1)

1

1

Name

option

Char(1)

Hex

00

=

No

name

string

is

associated

with

this

mutex

(this

is

the

default

option

when

the

template

is

not

supplied).

Hex

01

=

Mutex

has

a

name

string

associated

with

it.

Name

string

immediately

follows

the

mutex

in

the

template.

2

2

Keep

valid

option

Char(1)

Hex

00

=

Mutex

will

be

destroyed

when

its

owning

thread

is

terminated

(this

is

the

default

option

when

the

template

is

not

supplied).

Hex

01

=

Mutex

will

remain

valid

when

its

owning

thread

is

terminated.

The

mutex

will

be

marked

as

being

in

a

pending

state.

3

3

Recursive

option

Char(1)

Hex

00

=

Recursive

attempts

to

lock

this

mutex

will

not

be

permitted

(this

is

the

default

option

when

the

template

is

not

supplied).

Hex

01

=

Recursive

attempts

to

lock

this

mutex

will

be

permitted

by

the

same

thread

that

has

already

locked

the

mutex.

4

4

Reserved

(binary

0)

Char(28)

32

20

—-

End

—-

The

name

option

field

specifies

whether

the

mutex

is

to

be

named.

The

name

option

field

must

be

set

to

hex

01

in

order

to

associate

a

name

with

the

mutex.

Setting

the

name

option

to

hex

00

will

create

a

mutex

without

a

name.

All

other

values

for

name

option

are

reserved.

282

iSeries:

Machine

Interface

Instructions

APIs

Keep

valid

option

field

specifies

whether

the

mutex

is

to

remain

valid

when

a

thread

is

terminated

while

holding

the

lock

on

the

mutex.

The

keep

valid

option

field

must

be

set

to

hex

01

to

indicate

that

the

mutex

should

remain

valid

after

thread

termination.

The

mutex

is

considered

to

be

in

a

pending

state

when

it

is

kept

valid

after

thread

termination.

The

next

thread

to

lock

a

pending

mutex

will

revalidate

the

mutex,

but

will

receive

an

EUNKNOWN

error

number

to

indicate

that

the

resource

protected

by

this

mutex

may

require

special

handling.

Appropriate

action

is

left

up

to

the

MI

user’s

discretion.

Specifying

hex

00

for

the

keep

valid

option

field

will

result

in

the

mutex

being

destroyed

during

thread

termination.

Threads

waiting

for

the

mutex

that

was

locked

by

the

terminating

thread

will

be

returned

the

EOWNERTERM

error

number.

The

recursive

option

field

specifies

whether

recursive

locking

of

the

mutex

will

be

allowed.

See

LOCKMTX

for

additional

information

on

the

recursive

behavior

of

a

pointer-based

mutex.

If

operand

2

in

a

bound

program

is

a

null

pointer

value,

the

mutex

will

be

created

with

the

default

initialization

options.

Operand

2

in

non-bound

programs

must

be

a

pointer

to

a

creation

template.

The

pointer

does

not

exist

(hex

2401)

exception

will

be

signaled

if

a

null

pointer

value

is

used

for

operand

2

in

a

non-bound

program.

If

the

mutex

is

created

by

this

instruction,

then

result

is

set

to

0.

If

an

error

occurs,

then

the

result

is

set

to

an

error

number.

The

EINVAL

error

number

will

be

returned

if

an

invalid

parameter

is

specified.

The

EPERM

error

number

is

returned

when

the

address

passed

in

operand

1

is

in

teraspace

and

the

issuing

thread

does

not

have

teraspace

write

permissions

to

that

address.

The

ENOMEM

error

number

is

returned

when

no

more

mutexes

can

be

created

due

to

lack

of

system

resources.

An

attempt

to

create

a

new

mutex

using

the

same

space

as

an

existing

mutex

will

cause

the

existing

mutex

to

be

destroyed.

An

attempt

to

create

a

new

mutex

using

the

same

space

as

a

copy

of

an

existing

mutex

will

not

cause

the

existing

mutex

to

be

destroyed,

instead,

a

new

mutex

will

be

created

in

the

space

where

the

copy

resides.

Programming

Considerations:

Although

copies

of

an

existing

mutex

can

be

made

by

other

instructions

that

copy

memory

and

preserve

pointers,

or

can

effectively

be

made

by

teraspace

memory

mapping

techniques,

making

and

using

mutex

copies

is

not

recommended.

A

copy

of

a

mutex

has

certain

restrictions,

for

example,

destroying

a

mutex

by

means

of

a

copy

of

the

mutex

is

not

permitted.

Therefore,

it

is

necessary

that

the

mutex

originally

created

by

CRTMTX

remain

intact

until

it

is

no

longer

needed.

Additional

restrictions

may

apply

to

mutex

copies

in

other

releases.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Error

conditions

The

result

will

be

set

to

one

of

the

following:

EINVAL

3021

-

The

value

specified

for

the

argument

is

not

correct.

ENOMEM

3460

-

Storage

allocation

request

failed.

EPERM

3027

-

Operation

not

permitted.

Machine

Interface

Instructions

283

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

284

iSeries:

Machine

Interface

Instructions

APIs

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Create

Space

(CRTS)

Op

Code

(Hex)

Operand

1

Operand

2

0072

Pointer

for

space

addressability

Creation

template

Operand

1:

System

pointer.

Operand

2:

Space

pointer.

Bound

program

access

Built-in

number

for

CRTS

is

25.

CRTS

(

pointer_for_space_addressability

:

address

of

system

pointer

creation_template

:

address

)

Description:

A

space

object

is

created

with

the

attributes

that

are

specified

in

the

space

creation

template

specified

by

operand

2,

and

addressability

to

the

created

space

is

placed

in

a

system

pointer

that

is

returned

in

the

addressing

object

specified

by

operand

1.

Space

objects,

unlike

other

types

of

system

objects,

are

used

to

contain

a

space

and

serve

no

other

purposes.

The

template

identified

by

operand

2

must

be

16-byte

aligned

in

the

space.

The

following

is

the

format

of

the

space

creation

template:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Template

size

specification

Char(8)

+

0

0

Size

of

template

Bin(4)

+

4

4

Number

of

bytes

available

for

materialization

Bin(4)

+

8

8

Object

identification

Char(32)

8

8

Object

type

Char(1)

+

9

9

Object

subtype

Char(1)

10

A

Object

name

Char(30)

40

28

Object

creation

options

Char(4)

40

28

Existence

attribute

Bit

0

0

=

Temporary

1

=

Permanent

40

28

Space

attribute

Bit

1

0

=

Fixed-length

1

=

Variable-length

40

28

Initial

context

Bit

2

Machine

Interface

Instructions

285

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Addressability

is

not

inserted

into

context

1

=

Addressability

is

inserted

into

context

40

28

Access

group

Bit

3

0

=

Do

not

create

as

member

of

access

group

1

=

Create

as

member

of

access

group

40

28

Reserved

(binary

0)

Bits

4-5

40

28

Public

authority

specified

Bit

6

0

=

No

1

=

Yes

40

28

Initial

owner

specified

Bit

7

0

=

No

1

=

Yes

40

28

Reserved

(binary

0)

Bits

8-11

40

28

Set

public

authority

in

operand

1

Bit

12

0

=

No

1

=

Yes

40

28

Initialize

space

Bit

13

0

=

Initialize

1

=

Do

not

initialize

40

28

Automatically

extend

space

Bit

14

0

=

No

1

=

Yes

40

28

Hardware

storage

protection

level

Bits

15-16

00

=

Reference

and

modify

allowed

for

user

state

programs

01

=

Only

reference

allowed

for

user

state

programs

10

=

Invalid

(yields

template

value

invalid

(hex

3801)

exception)

The

MODS

instruction

can

be

used

to

change

the

hardware

storage

protection

level

to

10.

11

=

No

reference

or

modify

allowed

for

user

state

programs

40

28

Process

temporary

space

accounting

Bit

17

286

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

The

temporary

space

will

be

tracked

to

the

creating

process

1

=

The

temporary

space

will

not

be

tracked

to

the

creating

process

40

28

Reserved

(binary

0)

Bits

18-20

40

28

Always

enforce

hardware

storage

protection

of

space

Bit

21

0

=

Enforce

hardware

storage

protection

of

this

space

only

when

hardware

storage

protection

is

being

enforced

for

all

storage.

1

=

Always

enforce

hardware

storage

protection

of

this

space.

40

28

Reserved

(binary

0)

Bits

22-31

44

2C

Recovery

options

Char(4)

44

2C

Reserved

(binary

0)

Char(2)

46

2E

ASP

number

Char(2)

48

30

Size

of

space

Bin(4)

52

34

Initial

value

of

space

Char(1)

53

35

Performance

class

Char(4)

53

35

Space

alignment

Bit

0

0

=

The

space

associated

with

the

object

is

allocated

to

allow

proper

alignment

of

pointers

at

16-byte

alignments

within

the

space.

If

the

size

of

space

field

is

zero,

this

value

must

be

specified.

1

=

The

space

associated

with

the

object

is

allocated

to

allow

proper

alignment

of

pointers

at

16-byte

alignments

within

the

space

as

well

as

to

allow

proper

alignment

of

input/output

buffers

at

512-byte

alignments

within

the

space.
The

value

of

this

field

is

ignored

when

a

value

of

1

is

given

for

the

machine

chooses

space

alignment

field.

53

35

Clear

the

space

into

main

memory

during

creation

Bit

1

0

=

Only

a

minimum

amount

(up

to

4K)

of

the

space

will

be

in

main

storage

upon

completion

of

the

instruction.

1

=

Most

of

the

space,

with

some

limits

enforced

by

the

machine,

will

be

in

main

storage

upon

completion

of

the

instruction.

53

35

Spread

the

space

object

among

storage

devices

Bit

2

Machine

Interface

Instructions

287

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

The

space

should

be

created

on

one

storage

device,

if

possible.

1

=

The

space

should

be

created

spread

among

available

storage

devices,

if

possible.

All

extensions

to

the

space

object

will

also

be

spread

unless

this

attribute

is

changed

using

the

Modify

Space

Attributes

(MODS)

instruction.

53

35

Machine

chooses

space

alignment

Bit

3

0

=

The

space

alignment

indicated

by

the

space

alignment

field

is

performed.

1

=

The

machine

will

choose

the

space

alignment

most

beneficial

to

performance,

which

may

reduce

maximum

space

capacity.

When

this

value

is

specified,

the

space

alignment

field

is

ignored,

but

the

alignment

chosen

will

be

a

multiple

of

512.

The

maximum

capacity

for

a

space

object

for

which

the

machine

has

chosen

the

alignment

is

returned

by

option

Hex

0003

of

MATMDATA.

The

maximum

space

capacity

for

a

particular

space

object

is

returned

by

MATS.

53

35

Reserved

(binary

0)

Bit

4

53

35

Main

storage

pool

selection

Bit

5

0

=

Process

default

main

storage

pool

is

used

for

object.

1

=

Machine

default

main

storage

pool

is

used

for

object.

53

35

Transient

storage

pool

selection

Bit

6

0

=

Default

main

storage

pool

(process

default

or

machine

default

as

specified

for

main

storage

pool

selection)

is

used

for

object.

1

=

Transient

storage

pool

is

used

for

object.

53

35

Obsolete

Bit

7

This

field

is

no

longer

used

and

will

be

ignored.

53

35

Unit

number

Bits

8-15

+

53

35

Reserved

(binary

0)

Bits

16-23

56

38

Expanded

transfer

size

advisory

Char(1)

57

39

Reserved

(binary

0)

Char(1)

58

3A

Public

authority

Char(2)

60

3C

Extension

offset

Bin(4)

64

40

Context

System

pointer

80

50

Access

group

System

pointer

96

60

—-

End

—-

288

iSeries:

Machine

Interface

Instructions

APIs

Note:

The

instruction

ignores

the

values

associated

with

template

fields

annotated

with

a

plus

sign

(+).

A

template

extension

must

be

specified

for

the

initial

owner

specified

creation

option.

Also,

the

template

extension

must

be

specified

(extension

offset

must

be

nonzero)

to

specify

any

of

the

other

template

extension

fields

(those

other

than

the

initial

owner

user

profile)

as

input

to

the

instruction.

The

template

extension

is

located

by

the

extension

offset

field.

The

template

extension

must

be

16-byte

aligned

in

the

space.

The

following

is

the

format

of

the

template

extension:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

User

profile

System

pointer

16

10

Largest

size

needed

for

space

Bin(4)

20

14

Domain

assigned

to

the

object

Char(2)

Hex

0000

=

The

domain

will

be

chosen

by

the

machine.

Hex

0001

=

The

domain

will

be

’User’.

Hex

8000

=

The

domain

will

be

’System’.

22

16

Reserved

(binary

0)

Char(42)

64

40

—-

End

—-

If

the

created

object

is

permanent,

it

is

owned

by

the

user

profile

governing

thread

execution.

The

owning

user

profile

is

implicitly

assigned

all

private

authority

states

for

the

object.

The

storage

occupied

by

the

created

object

is

charged

to

this

owning

user

profile.

If

the

created

object

is

temporary,

there

is

no

owning

user

profile,

and

all

authority

states

are

assigned

as

public.

Storage

occupied

by

the

created

space

is

charged

to

the

process.

Permanent

space

objects

cannot

be

created

by

user

state

programs

when

the

system

security

level

is

40

or

above.

The

object

identification

specifies

the

symbolic

name

that

identifies

the

space

within

the

machine.

An

object

type

of

hex

19

is

implicitly

supplied

by

the

machine.

The

object

identification

is

used

to

identify

the

object

on

materialize

instructions

as

well

as

to

locate

the

object

in

a

context

that

addresses

the

object.

The

object

subtype

must

be

hex

EF.

The

existence

attribute

specifies

whether

the

space

is

to

be

created

as

temporary

or

permanent.

A

temporary

space,

if

not

explicitly

destroyed

by

the

user,

is

implicitly

destroyed

by

the

machine

when

machine

processing

is

terminated.

A

permanent

space

exists

in

the

machine

until

it

is

explicitly

destroyed

by

the

user.

The

space

attribute

specifies

whether

the

size

of

the

space

can

vary.

The

space

may

have

a

fixed

size

or

a

variable

size.

The

initial

allocation

is

as

specified

in

the

size

of

space

field.

The

machine

allocates

a

space

of

at

least

the

size

specified.

The

actual

size

allocated

depends

on

an

algorithm

defined

by

a

specific

implementation.

A

fixed

size

space

of

zero

length

causes

a

template

value

invalid

(hex

3801)

exception

to

be

signaled.

If

the

initial

context

creation

attribute

field

indicates

that

addressability

is

inserted

into

context,

the

context

field

must

contain

a

system

pointer

that

identifies

a

context

where

addressability

to

the

newly

created

space

is

to

be

placed.

If

addressability

is

not

inserted

into

a

context,

the

context

field

is

ignored.

Machine

Interface

Instructions

289

If

the

access

group

creation

attribute

field

indicates

that

the

space

is

to

be

created

in

an

access

group,

the

access

group

field

must

be

a

system

pointer

that

identifies

the

access

group

in

which

the

space

is

to

be

created.

If

the

space

is

being

created

as

a

member

of

an

access

group,

the

existence

attribute

field

must

be

temporary

(bit

0

equals

0).

If

the

space

is

not

to

be

created

into

an

access

group,

the

access

group

field

is

ignored.

The

expanded

transfer

size

advisory

specifies

the

desired

number

of

pages

to

be

transferred

between

main

store

and

auxiliary

storage

for

implicit

access

state

changes.

This

value

is

only

an

advisory;

the

machine

may

use

a

value

of

its

choice

for

performing

access

state

changes

under

some

circumstances.

For

example,

the

machine

may

limit

the

transfer

size

to

a

smaller

value

than

is

specified.

A

value

of

zero

is

an

explicit

indication

that

the

machine

should

use

the

machine

default

storage

transfer

size

for

this

object.

The

public

authority

specified

creation

option

controls

whether

or

not

the

space

is

to

be

created

with

the

public

authority

specified

in

the

template.

When

yes

is

specified,

the

space

is

created

with

the

public

authority

specified

in

the

public

authority

field

of

the

template.

When

no

is

specified,

the

public

authority

field

is

ignored

and

the

space

is

created

with

default

public

authority.

The

default

public

authority

depends

on

the

value

of

the

existence

attribute:

An

existence

attribute

value

of

temporary

results

in

a

default

public

authority

of

all

authority;

an

existence

attribute

value

of

permanent

results

in

a

default

public

authority

of

no

authority.

The

initial

owner

specified

creation

option

controls

whether

or

not

the

initial

owner

of

the

space

is

to

be

the

user

profile

specified

in

the

template.

When

yes

is

specified,

initial

ownership

is

assigned

to

the

user

profile

specified

in

the

user

profile

field

of

the

template

extension.

When

no

is

specified,

initial

ownership

is

assigned

to

the

thread

user

profile

and

the

user

profile

field

in

the

template

extension

is

ignored.

The

initial

owner

user

profile

is

implicitly

assigned

all

authority

states

for

the

object.

The

storage

occupied

by

the

created

space

is

charged

to

the

initial

owner.

If

yes

is

specified

for

this

creation

option

when

the

existence

attribute

specifies

temporary,

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

The

set

public

authority

in

operand

1

creation

option

controls,

when

the

public

authority

specified

creation

option

has

also

been

specified

as

yes,

whether

or

not

the

public

authority

attribute

for

the

space

is

to

be

set

into

the

system

pointer

returned

in

operand

1.

When

yes

is

specified,

the

specified

public

authority

is

set

into

operand

1.

When

no

is

specified,

public

authority

is

not

set

into

operand

1.

When

the

public

authority

specified

creation

option

is

set

to

no,

this

option

can

not

be

specified

as

yes

(or

else

a

template

value

invalid

(hex

3801)

exception

will

be

signalled)

and

the

authority

set

into

operand

1

is

the

default

of

no

authority

for

a

permanent

or

all

authority

for

a

temporary

object

(as

specified

by

the

existence

attribute).

The

initialize

space

creation

option

controls

whether

or

not

the

space

is

to

be

initialized.

When

initialize

is

specified,

each

byte

of

the

space

is

initialized

to

a

value

specified

by

the

initial

value

of

space

field.

Additionally,

when

the

space

is

extended

in

size,

this

byte

value

is

also

used

to

initialize

the

new

allocation.

When

do

not

initialize

is

specified,

the

initial

value

of

space

field

is

ignored

and

the

initial

value

of

the

bytes

of

the

space

are

unpredictable.

When

do

not

initialize

is

specified

for

a

space,

internal

machine

algorithms

do

ensure

that

any

storage

resources

last

used

for

allocations

to

another

object

which

are

reused

to

satisfy

allocations

for

the

space

are

reset

to

a

machine

default

value

to

avoid

possible

access

of

data

which

may

have

been

stored

in

the

other

object.

To

the

contrary,

reusage

of

storage

areas

previously

used

by

the

space

object

are

not

reset,

thereby

exposing

subsequent

reallocations

of

those

storage

areas

within

the

space

to

access

of

the

data

which

was

previously

stored

within

them.

The

automatically

extend

space

creation

option

controls

whether

the

space

is

to

be

extended

automatically

by

the

machine

or

a

space

addressing

violation

(hex

0601)

exception

is

to

be

signaled

when

a

reference

is

made

to

an

area

beyond

the

allocated

portion

of

the

space.

When

yes

is

specified,

the

space

will

automatically

be

extended

by

an

amount

determined

through

internal

machine

algorithms.

When

no

is

specified,

the

exception

will

result.

Note

that

an

attempt

to

reference

an

area

beyond

the

maximum

size

that

a

space

can

be

allocated,

will

always

result

in

the

signaling

of

the

space

addressing

violation

(hex

290

iSeries:

Machine

Interface

Instructions

APIs

0601)

exception

independently

of

the

setting

of

this

attribute.

The

automatically

extend

space

creation

option

can

only

be

specified

when

the

space

attribute

has

been

specified

as

variable

length.

Invalid

specification

of

the

automatically

extend

space

option

results

in

the

signaling

of

the

template

value

invalid

(hex

3801)

exception.

Usage

of

the

automatically

extend

space

function

is

limited.

Predictable

results

will

occur

only

when

you

ensure

that

the

automatic

extension

of

a

space

will

not

happen

in

conjunction

with

modification

of

the

space

size

by

another

thread.

That

is,

you

must

ensure

that

when

a

thread

is

using

the

space

in

a

manner

that

could

cause

it

to

be

automatically

extended,

it

is

the

sole

thread

which

can

cause

the

space

size

to

be

modified.

Note

that

in

addition

to

implicit

modification

through

automatic

extension,

the

space

size

can

be

explicitly

modified

through

use

of

the

Modify

Space

Attributes

(MODS)

instruction.

The

hardware

storage

protection

level

can

be

used

to

restrict

access

to

the

contents

of

the

space

by

user

state

programs.

It

is

possible

to

limit

the

access

of

the

space

by

user

state

programs

into

1

of

three

levels:

v

v

Reference

only

(non-modifying

storage

references

are

allowed,

modifying

storing

storage

references

yield

an

object

domain

or

hardware

storage

protection

violation

(hex

4401)

exception).

v

No

storage

references

(all

storage

references,

modifying

or

non-modifying

yield

an

object

domain

or

hardware

storage

protection

violation

(hex

4401)

exception).

v

Full

access

(both

modifying

and

non-modifying

storage

references

are

allowed).

Process

temporary

space

accounting

can

be

used

to

detect

when

temporary

space

objects,

created

within

a

process,

still

exist

at

process

termination

time.

Temporary

spaces

that

are

created

with

the

process

temporary

space

accounting

field

set

to

0

will

be

″tracked″

to

the

process

which

created

them.

Temporary

spaces

that

are

created

with

the

process

temporary

space

accounting

field

set

to

1

will

not

be

″tracked″

to

the

creating

process.

At

process

termination

time,

any

tracked

spaces

that

exist

may

cause

the

machine

to

attempt

to

destroy

the

existing

tracked

spaces.

If

this

is

done,

the

destroy

attempts

would

be

performed

as

if

an

MI

program

issued

a

Destroy

Space

(DESS)

instruction

for

each

of

the

existing

spaces.

The

purpose

of

process

temporary

space

accounting

is

to

identify

objects

which

may

be

″lost″

in

the

system

(until

the

next

IPL).

It

should

not

intentionally

be

used

(by

MI)

as

a

method

of

cleaning

up

temporary

space

objects

at

process

termination

time.

The

machine

does

not

guarantee

that

all

spaces

(that

should

be

tracked)

will

indeed

be

tracked.

Also,

if

the

machine

is

attempting

to

destroy

tracked

spaces

at

process

termination

time,

any

failures

in

the

deletion

attempts

(such

as

if

a

space

is

locked

to

another

process)

will

be

ignored

(i.e.

the

space

will

not

be

destroyed)

and

no

indication

of

this

is

presented

to

the

MI

user.

Process

temporary

space

accounting

only

applies

to

temporary

space

objects.

A

value

of

1

for

the

process

temporary

space

accounting

field

when

creating

a

permanent

object

will

result

in

a

template

value

invalid

(hex

3801)

exception.

This

is

in

spite

of

the

fact

that

a

value

of

1

for

this

field

would

result

in

the

same

actions

as

when

creating

a

permanent

object

(i.e.

the

object

would

not

be

tracked

to

the

process).

The

exception

is

presented

because

this

field

is

undefined

for

permanent

objects.

The

always

enforce

hardware

storage

protection

of

space

field

is

used

to

specify

whether

the

hardware

storage

protection

given

in

the

hardware

storage

protection

level

field

should

be

enforced

at

all

times

for

this

space,

or

only

when

hardware

storage

protection

is

being

enforced

for

all

storage.

The

ASP

number

field

specifies

the

ASP

number

of

the

ASP

on

which

the

unit

is

to

be

allocated.

A

value

of

0

indicates

an

ASP

number

is

not

specified

and

results

in

the

default

of

allocating

the

object

in

the

system

ASP.

Allocation

on

the

system

ASP

can

only

be

done

implicitly

by

not

specifying

an

ASP

number.

The

only

non-zero

values

allowed

are

2

through

255

which

specify

the

user

ASP

on

which

the

space

object

will

be

allocated.

Independent

ASPs

have

numbers

33

through

255.

The

ASP

number

must

specify

an

existing

ASP.

An

ASP

number

of

1

or

greater

than

255

results

in

a

template

value

invalid

(hex

3801)

exception

being

signalled.

The

given

ASP

number

must

be

currently

configured

on

the

system

otherwise

Machine

Interface

Instructions

291

an

auxiliary

storage

pool

number

invalid

(hex

1C09)

exception

is

signalled.

If

the

ASP

number

identifies

an

independent

ASP,

there

must

be

an

existing

active

logical

unit

description

for

the

independent

ASP

otherwise

an

independent

asp

varied

off

(hex

1C11)

exception

is

signalled.

A

temporary

object

cannot

be

created

into

a

user

ASP.

If

this

is

attempted,

a

template

value

invalid

(hex

3801)

exception

is

signalled.

If

the

ASP

number

identifies

an

independent

ASP,

or

initial

context

indicates

that

addressability

is

to

be

inserted

into

a

context

that

resides

in

an

independent

ASP,

then

both

must

indicate

the

same

independent

ASP

or

belong

to

the

same

ASP

group

or

else

a

template

value

invalid

(hex

3801)

exception

is

signalled.

The

ASP

number

attribute

of

an

object

can

be

materialized,

but

cannot

be

modified.

The

size

of

space

field

specifies

the

amount

of

user-addressable

storage

being

requested

for

this

create.

The

performance

class

fields

provide

information

allowing

the

machine

to

more

effectively

manage

the

space

object

considering

the

overall

performance

objectives

of

operations

involving

the

space.

The

extension

offset

specifies

the

byte

offset

from

the

beginning

of

the

operand

2

template

to

the

beginning

of

the

template

extension.

An

offset

value

of

zero

specifies

that

the

template

extension

is

not

provided.

A

negative

offset

value

is

invalid.

A

non-zero

offset

must

be

a

multiple

of

16

(to

cause

16

byte

alignment

of

the

extension).

Except

for

these

restrictions,

the

offset

value

is

not

verified

for

correctness

relative

to

the

location

of

other

portions

of

the

create

template.

The

largest

size

needed

for

space

field

of

the

template

extension

specifies,

when

nonzero,

a

value

in

bytes

that

indicates

the

largest

size

that

will

be

needed

for

the

space.

This

field

is

different

from

the

size

of

space

field

which

indicates

the

size

for

the

initial

allocation

of

the

space.

This

field

can

be

used

to

communicate

to

the

machine

what

the

largest

size

needed

for

the

space

will

be.

Specification

of

a

value

larger

than

the

maximum

size

space

allowed

for

the

space

alignment

chosen

is

invalid

and

results

in

signaling

of

the

template

value

invalid

(hex

3801)

exception.

Specification

of

a

nonzero

value

that

is

less

than

the

size

of

space

field

also

results

in

the

signaling

of

the

template

value

invalid

(hex

3801)

exception.

For

more

information

on

the

maximum

allowed,

see

″Limitations

(Subject

to

Change)″

(page

292).

Specifying

the

largest

size

needed

for

space

value

allows

the

machine,

under

certain

circumstances,

to

select

usage

of

an

internal

storage

allocation

unit

which

best

utilizes

the

internal

addressing

resources

within

the

machine.

Note

that

the

internal

storage

allocation

unit

selected

can

alter

the

maximum

modification

size

of

the

associated

space

for

the

object.

However,

the

machine

will

always

use

an

internal

storage

allocation

unit

that

will

allow

for

extension

of

the

space

to

at

least

the

value

specified

in

the

largest

size

needed

for

space

field.

The

maximum

size

to

which

the

space

can

be

modified

is

dependent

upon

specific

implementations

of

the

machine

and

can

vary

with

different

machine

implementations.

For

more

information

on

the

effect

of

this

option,

see

″Limitations

(Subject

to

Change)″

(page

292).

The

domain

assigned

field

in

the

template

extension

allows

the

user

of

this

instruction

to

override

the

domain

for

this

object

that

would

otherwise

be

chosen

by

the

machine.

Any

value

specified

for

the

domain

assigned

field

other

than

those

listed

will

result

in

a

template

value

invalid

(hex

3801)

exception

being

signalled.

Limitations

(Subject

to

Change):

The

following

are

limits

that

apply

to

the

functions

performed

by

this

instruction.

These

limits

may

change

on

different

implementations

of

the

machine.

The

maximum

size

of

any

space

object

for

which

the

machine

chose

the

alignment

is

returned

by

option

Hex

0003

of

MATMDATA.

The

maximum

size

of

a

particular

space

object

is

returned

by

the

MATS

instruction.

292

iSeries:

Machine

Interface

Instructions

APIs

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Insert

–

–

User

profile

of

object

owner

–

Context

identified

in

operand

2
v

Execute

–

–

Context

referenced

for

address

resolution
v

Object

control

–

–

Operand

1

if

being

replaced

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution
v

Modify

–

–

Context

identified

in

operand

2

–

User

profile

of

object

owner

–

Access

group

identified

in

operand

2

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

0E

Context

Operation

0E01

Duplicate

Object

Identification

10

Damage

Encountered

Machine

Interface

Instructions

293

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C04

Object

Storage

Limit

Exceeded

1C09

Auxiliary

Storage

Pool

Number

Invalid

1C0E

IASP

Resources

Exceeded

1C11

Independent

ASP

Varied

Off

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

294

iSeries:

Machine

Interface

Instructions

APIs

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

4403

Cannot

Change

Contents

of

Protected

Context

Deactivate

Program

(DEACTPG)

Op

Code

(Hex)

Operand

1

0225

Program

Operand

1:

System

pointer

or

null.

Bound

program

access

Built-in

number

for

DEACTPG

is

33.

DEACTPG

(

program

:

address

of

system

pointer

OR

null

operand

)

Description:

This

instruction,

provided

that

certain

conditions

are

met,

deactivates

a

non-bound

program

or

a

bound

program

activated

for

non-bound

program

compatibility.

Subsequent

invocations

of

the

program

within

the

same

activation

group

will

cause

a

new

activation

to

be

created.

Operand

1

specifies

a

program

activation

entry

which

is

to

be

deactivated,

if

permitted.

The

activation

entry

is

inferred

by

one

of

two

means:

1.

operand

1

is

null

—

the

target

activation

entry

is

that

associated

with

the

current

invocation

2.

operand

1

is

not

null

—

the

target

activation

entry

associated

with

the

program

system

pointer

is

selected

from

one

of

the

two

default

activation

groups

The

target

activation

entry

is

deactivated

if

permitted.

An

activation

in

use

by

invocation

(hex

2C05)

exception

is

signaled

if

the

deactivation

is

not

permitted.

If

the

target

activation

entry

does

not

exist,

then

no

operation

is

performed.

If

the

program

specified

is

a

bound

program

and

not

activated

like

a

non-bound

program,

an

invalid

operation

for

program

(hex

2C15)

exception

is

signaled.

In

general,

only

those

activations

with

a

zero

invocation

count

can

be

deactivated.

The

following

two

exceptions

apply:

1.

A

program

can

deactivate

itself

if

it

is

the

only

invocation

of

that

program

in

the

process

(its

invocation

count

must

be

1.)

2.

An

invocation

exit

program

can

deactivate

the

program

on

whose

behalf

it

is

running

provided

that

the

invocation

count

of

that

program

is

no

more

than

1.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

Machine

Interface

Instructions

295

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

296

iSeries:

Machine

Interface

Instructions

APIs

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2C

Program

Execution

2C05

Activation

in

Use

by

Invocation

2C15

Invalid

Operation

for

Program

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Decompress

Data

(DCPDATA)

Op

Code

(Hex)

Operand

1

1051

Decompress

data

template

Operand

1:

Space

pointer.

Bound

program

access

Built-in

number

for

DCPDATA

is

108.

DCPDATA

(

decompress_data_template

:

address

)

Description:

The

instruction

decompresses

user

data.

Operand

1

identifies

a

template

which

identifies

the

data

to

be

decompressed.

The

template

also

identifies

the

result

space

to

receive

the

decompressed

data.

The

decompress

data

template

must

be

aligned

on

a

16-byte

boundary.

The

format

is

as

follows:

Machine

Interface

Instructions

297

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Reserved

(binary

0)

Char(4)

4

4

Result

area

length

Bin(4)

8

8

Actual

result

length

Bin(4)

+

12

C

Reserved

(binary

0)

Char(20)

32

20

Source

space

pointer

Space

pointer

48

30

Result

space

pointer

Space

pointer

64

40

—-

End

—-

Note:

The

input

value

associated

with

template

fields

annotated

with

a

plus

sign

(+)

are

ignored

by

the

instruction;

these

fields

are

updated

by

the

instruction

to

return

information

about

instruction

execution.

The

data

at

the

location

specified

by

the

source

space

pointer

is

decompressed

and

stored

at

the

location

specified

by

the

result

space

pointer.

The

actual

result

length

is

set

to

the

number

of

bytes

in

the

decompressed

result.

The

source

data

is

not

modified.

The

result

area

length

field

value

must

be

greater

than

or

equal

to

zero.

A

zero

value

means

not

specified.

The

length

of

the

source

data

is

not

supplied

in

the

template

because

this

length

is

contained

within

the

compressed

data.

If

the

decompressed

result

data

will

not

fit

in

the

result

area

(as

specified

by

the

result

area

length),

the

decompression

is

stopped

and

only

as

many

decompressed

bytes

as

will

fit

in

the

result

area

are

stored.

The

actual

result

length

is

always

set

to

the

full

length

of

the

result,

which

may

be

larger

than

the

result

area

length.

The

compressed

data

(previously

compressed

with

CPRDATA)

contains

a

signature

which

is

checked

by

DCPDATA.

The

signature

indicates

which

compression

algorithm

was

used

to

compress

the

data.

If

the

signature

is

invalid,

an

invalid

compressed

data

(hex

0C14)

exception

is

signaled.

It

is

possible

that

the

signature

appears

valid

even

though

the

compressed

data

has

been

corrupted.

In

almost

all

cases,

the

DCPDATA

instruction

will

signal

the

invalid

compressed

data

(hex

0C14)

exception.

Data

corruption

will

not

be

detected

only

in

the

case

when

the

decompression

algorithm

applied

to

the

corrupted

data

produces

the

correct

number

of

decompressed

bytes.

It

is

not

possible

to

corrupt

the

compressed

data

in

such

a

way

that

the

DCPDATA

instruction

would

fail

(that

is,

function

check)

or

fail

to

terminate

(that

is,

loop).

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

298

iSeries:

Machine

Interface

Instructions

APIs

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C14

Invalid

Compressed

Data

10

Damage

Encountered

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

Machine

Interface

Instructions

299

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Decrement

Date

(DECD)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

Operand

4

0414

Result

date

Source

date

Duration

Instruction

template

Operand

1:

Character

variable

scalar.

Operand

2:

Character

scalar.

Operand

3:

Packed

decimal

scalar.

Operand

4:

Space

pointer.

Bound

program

access

Built-in

number

for

DECD

is

96.

DECD

(

result_date

:

address

source_date

:

address

duration

:

address

of

packed

decimal

instruction_template

:

address

)

Description:

The

date

specified

by

operand

2

is

decremented

by

the

date

duration

specified

by

operand

3.

The

resulting

date

is

placed

in

operand

1.

Operand

4

defines

the

data

definitional

attributes

for

operands

1

through

3.

The

following

describes

the

instruction

template.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Instruction

template

Char(*)

0

0

Instruction

template

size

Bin(4)

4

4

Operand

1

data

definitional

attribute

template

number

UBin(2)

6

6

Operand

2

data

definitional

attribute

template

number

UBin(2)

8

8

Operand

3

data

definitional

attribute

template

number

UBin(2)

10

A

Operand

1

length

UBin(2)

12

C

Operand

2

length

UBin(2)

14

E

Operand

3

length

UBin(2)

14

E

Fractional

number

of

digits

Char(1)

15

F

Total

number

of

digits

Char(1)

16

10

Input

indicators

Char(2)

16

10

End

of

month

adjustment

Bit

0

300

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

No

adjustment

1

=

Adjustment

16

10

Tolerate

data

decimal

errors

Bit

1

0

=

No

toleration

1

=

Tolerate

16

10

Reserved

(binary

0)

Bits

2-15

18

12

Output

indicators

Char(2)

18

12

End

of

month

adjustment

Bit

0

0

=

No

adjustment

1

=

Adjustment

18

12

Reserved

(binary

0)

Bits

1-15

20

14

Reserved

(binary

0)

Char(22)

42

2A

Data

definitional

attribute

template

list

Char(*)

42

2A

Size

of

the

DDAT

list

UBin(4)

46

2E

Number

of

DDATs

UBin(2)

48

30

Reserved

(binary

0)

Char(10

58

3A

DDAT

offset

[*]

UBin(4)

*

*

Data

definitional

attribute

template

[*]

Char(*)

*

*

—-

End

—-

A

data

definitional

attribute

template

(DDAT)

number

is

a

number

that

corresponds

to

the

relative

position

of

a

template

in

the

data

definitional

attribute

template

list.

For

example,

the

number

1

references

the

first

template.

The

valid

values

for

this

field

are

1,

2,

and

3.

The

DDATs

for

operands

1

and

2

must

be

valid

for

a

date

and

must

be

identical.

The

DDAT

for

operand

3

must

be

valid

for

a

date

duration.

Otherwise,

a

template

value

invalid

(hex

3801)

exception

will

be

issued.

Operand

1

length,

operand

2

length,

and

operand

3

length

are

specified

in

number

of

bytes.

The

input

indicator,

end

of

month

adjustment,

is

used

to

allow

or

disallow

the

occurrence

of

an

end

of

month

adjustment.

The

input

indicator,

tolerate

decimal

data

errors,

is

used

to

determine

whether

errors

found

in

the

packed

data

for

the

duration

will

generate

exceptions

or

will

be

ignored.

When

the

errors

are

to

be

tolerated,

the

following

rules

will

apply:

1.

An

invalid

sign

nibble

found

in

the

packed

data

value

will

be

changed

to

a

hex

F.

2.

Any

invalid

decimal

digits

found

in

the

packed

data

value

will

be

forced

to

zero.

3.

If

all

digits

of

a

packed

data

value

become

zero,

and

no

decimal

overflow

condition

exists,

the

sign

will

be

set

to

hex

F.

If

all

digits

are

zero

and

a

decimal

overflow

condition

exists,

then

the

sign

will

not

be

changed,

but

its

representation

will

be

changed

to

the

preferred

sign

code.

Machine

Interface

Instructions

301

The

output

indicator,

end

of

month

adjustment,

is

used

to

indicate

an

end

of

month

adjustment,

when

end

of

month

adjustments

are

allowed.

End

of

month

adjustment

is

the

following

concept.

For

SAA(R),

the

result

of

subtracting

a

1

month

duration

from

the

Gregorian

date

03/31/1989

is

02/28/1989.

The

days

portion

is

adjusted

to

fit

the

month,

31

is

changed

to

28.

When

this

happens,

the

end

of

month

adjustment

output

indicator

is

set

to

adjustment.

When

end

of

month

adjustments

are

not

allowed,

the

month

and

year

definitions

in

the

data

definition

attribute

template

must

have

values

greater

than

zero,

otherwise

a

template

value

invalid

(hex

3801)

exception

will

be

signalled.

The

result

of

subtracting

a

1

month

duration

from

the

Gregorian

date

03/31/1989

is

03/01/1989,

when

the

definition

of

a

month

is

30

days.

The

size

of

the

DDAT

list

is

specified

in

bytes.

The

number

of

DDATs

is

the

count

of

DDATs

specified

for

this

instruction

template.

The

maximum

number

of

DDATs

that

can

be

specified

is

3.

The

DDAT

offset

is

the

number

of

bytes

from

the

start

of

the

DDAT

list

to

the

start

of

the

specific

DDAT.

There

should

be

as

many

DDAT

offsets

as

there

are

DDATs

specified.

A

data

definitional

attribute

template

defines

the

presentation

of

the

data.

Each

template

describes

definitional

attributes

of

the

operands.

The

length

of

the

date

and

date

duration

character

operands

will

be

defined

by

the

template.

For

a

further

description

of

the

data

definitional

attribute

template,

see

Data

Definitional

Attribute

Template.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C02

Decimal

Data

0C15

Date

Boundary

Overflow

302

iSeries:

Machine

Interface

Instructions

APIs

MINDTCON.htm#HDRDDAT
MINDTCON.htm#HDRDDAT

0C16

Data

Format

Error

0C17

Data

Value

Error

0C18

Date

Boundary

Underflow

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Machine

Interface

Instructions

303

4402

Literal

Values

Cannot

Be

Changed

Decrement

Time

(DECT)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

Operand

4

0444

Result

time

Source

time

Duration

Instruction

template

Operand

1:

Character

variable

scalar.

Operand

2:

Character

scalar.

Operand

3:

Packed

decimal

scalar.

Operand

4:

Space

pointer.

Bound

program

access

Built-in

number

for

DECT

is

98.

DECT

(

result_time

:

address

source_time

:

address

duration

:

address

of

packed

decimal

instruction_template

:

address

)

Description:

The

time

specified

by

operand

2

is

decremented

by

the

time

duration

specified

by

operand

3.

The

resulting

time

is

placed

in

operand

1.

Operand

4

defines

the

data

definitional

attributes

for

operands

1

through

3.

The

following

describes

the

instruction

template.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Instruction

template

Char(*)

0

0

Instruction

template

size

Bin(4)

4

4

Operand

1

data

definitional

attribute

template

number

UBin(2)

6

6

Operand

2

data

definitional

attribute

template

number

UBin(2)

8

8

Operand

3

data

definitional

attribute

template

number

UBin(2)

10

A

Operand

1

length

UBin(2)

12

C

Operand

2

length

UBin(2)

14

E

Operand

3

length

UBin(2)

14

E

Fractional

number

of

digits

Char(1)

15

F

Total

number

of

digits

Char(1)

16

10

Input

indicators

Char(2)

16

10

Reserved

(binary

0)

Bit

0

16

10

Tolerate

data

decimal

errors

Bit

1

0

=

No

toleration

1

=

Tolerate

16

10

Reserved

(binary

0)

Bits

2-15

18

12

Reserved

(binary

0)

Char(24)

42

2A

Data

definitional

attribute

template

list

Char(*)

304

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

42

2A

Size

of

the

DDAT

list

UBin(4

46

2E

Number

of

DDATs

UBin(2

48

30

Reserved

(binary

0)

Char(10

58

3A

DDAT

offset

[*]

UBin(4

*

*

Data

definitional

attribute

template

[*]

Char(*)

*

*

—-

End

—-

A

data

definitional

attribute

template

(DDAT)

number

is

a

number

that

corresponds

to

the

relative

position

of

a

template

in

the

data

definitional

attribute

template

list.

For

example,

the

number

1

references

the

first

template.

The

valid

values

for

this

field

are

1,

2,

and

3.

The

DDATs

for

operands

1

and

2

must

be

valid

for

a

time

and

must

be

identical.

The

DDAT

for

operand

3

must

be

valid

for

a

time

duration.

Otherwise,

a

template

value

invalid

(hex

3801)

exception

will

be

issued.

Operand

1

length,

operand

2

length,

and

operand

3

length

are

specified

in

number

of

bytes.

The

input

indicator,

tolerate

data

decimal

errors,

is

used

to

determine

whether

errors

found

in

the

packed

data

for

the

duration

will

generate

exceptions

or

will

be

ignored.

When

the

errors

are

to

be

tolerated,

the

following

rules

will

apply:

1.

An

invalid

sign

nibble

found

in

the

packed

data

value

will

be

changed

to

a

hex

F.

2.

Any

invalid

decimal

digits

found

in

the

packed

data

value

will

be

forced

to

zero.

3.

If

all

digits

of

a

packed

data

value

become

zero,

and

no

decimal

overflow

condition

exists,

the

sign

will

be

set

to

hex

F.

If

all

digits

are

zero

and

a

decimal

overflow

condition

exists,

then

the

sign

will

not

be

changed,

but

its

representation

will

be

changed

to

the

preferred

sign

code.

The

size

of

the

DDAT

list

is

specified

in

bytes.

The

number

of

DDATs

is

the

count

of

DDATs

specified

for

this

instruction

template.

The

maximum

number

of

DDATs

that

can

be

specified

is

3.

The

DDAT

offset

is

the

number

of

bytes

from

the

start

of

the

DDAT

list

to

the

start

of

the

specific

DDAT.

There

should

be

as

many

DDAT

offsets

as

there

are

DDATs

specified.

A

data

definitional

attribute

template

defines

the

presentation

of

the

data.

Each

template

describes

the

definitional

attributes

of

the

operands.

The

length

of

the

time

and

time

duration

character

operands

will

be

defined

by

the

templates.

For

a

further

description

of

the

data

definitional

attribute

template,

see

Data

Definitional

Attribute

Template.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Machine

Interface

Instructions

305

MINDTCON.htm#HDRDDAT
MINDTCON.htm#HDRDDAT

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C02

Decimal

Data

0C16

Data

Format

Error

0C17

Data

Value

Error

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

306

iSeries:

Machine

Interface

Instructions

APIs

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Decrement

Timestamp

(DECTS)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

Operand

4

042C

Result

timestamp

Source

timestamp

Duration

Instruction

template

Operand

1:

Character

variable

scalar.

Operand

2:

Character

scalar.

Operand

3:

Packed

decimal

scalar.

Operand

4:

Space

pointer.

Bound

program

access

Built-in

number

for

DECTS

is

100.

DECTS

(

result_timestamp

:

address

source_timestamp

:

address

duration

:

address

of

packed

decimal

instruction_template

:

address

)

Description:

The

timestamp

specified

by

operand

2

is

decremented

by

the

date,

time,

or

timestamp

duration

specified

by

operand

3.

The

resulting

timestamp

is

placed

in

operand

1.

Operand

4

defines

the

data

definitional

attributes

for

operands

1

through

3.

The

following

describes

the

instruction

template.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Instruction

template

Char(*)

0

0

Instruction

template

size

Bin(4)

4

4

Operand

1

data

definitional

attribute

template

number

UBin(2)

6

6

Operand

2

data

definitional

attribute

template

number

UBin(2)

Machine

Interface

Instructions

307

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Operand

3

data

definitional

attribute

template

number

UBin(2)

10

A

Operand

1

length

UBin(2)

12

C

Operand

2

length

UBin(2)

14

E

Operand

3

length

UBin(2)

14

E

Fractional

number

of

digits

Char(1)

15

F

Total

number

of

digits

Char(1)

16

10

Input

indicators

Char(2)

16

10

End

of

month

adjustment

Bit

0

0

=

No

adjustment

1

=

Adjustment

16

10

Tolerate

data

decimal

errors

Bit

1

0

=

No

toleration

1

=

Tolerate

16

10

Reserved

(binary

0)

Bits

2-15

18

12

Output

indicators

Char(2)

18

12

End

of

month

adjustment

Bit

0

0

=

No

adjustment

1

=

Adjustment

18

12

Reserved

(binary

0)

Bits

1-15

20

14

Reserved

(binary

0)

Char(22)

42

2A

Data

definitional

attribute

template

list

Char(*)

42

2A

Size

of

the

DDAT

list

UBin(4)

46

2E

Number

of

DDATs

UBin(2)

48

30

Reserved

(binary

0)

Char(10)

58

3A

DDAT

offset

[*]

UBin(4)

*

*

Data

definitional

attribute

template

[*]

Char(*)

*

*

—-

End

—-

A

data

definitional

attribute

template

(DDAT)

number

is

a

number

that

corresponds

to

the

relative

position

of

a

template

in

the

data

definitional

attribute

template

list.

For

example,

the

number

1

references

the

first

template.

The

valid

values

for

this

field

are

1,

2,

and

3.

The

DDATs

for

operands

1

and

2

must

be

valid

for

a

timestamp

and

identical.

The

DDAT

for

operand

3

must

be

valid

for

a

timestamp

duration.

Otherwise,

a

template

value

invalid

(hex

3801)

exception

will

be

issued.

Operand

1

length,

operand

2

length,

and

operand

3

length

are

specified

in

number

of

bytes.

The

input

indicator,

end

of

month

adjustment,

is

used

to

allow

or

disallow

the

occurrence

of

an

end

of

month

adjustment.

The

input

indicator,

tolerate

data

decimal

errors,

is

used

to

determine

whether

errors

found

in

the

packed

data

for

the

duration

will

generate

exceptions

or

will

be

ignored.

When

the

errors

are

to

be

tolerated,

the

following

rules

will

apply:

1.

An

invalid

sign

nibble

found

in

the

packed

data

value

will

be

changed

to

a

hex

F.

308

iSeries:

Machine

Interface

Instructions

APIs

2.

Any

invalid

decimal

digits

found

in

the

packed

data

value

will

be

forced

to

zero.

3.

If

all

digits

of

a

packed

data

value

become

zero,

and

no

decimal

overflow

condition

exists,

the

sign

will

be

set

to

hex

F.

If

all

digits

are

zero

and

a

decimal

overflow

condition

exists,

then

the

sign

will

not

be

changed,

but

its

representation

will

be

changed

to

the

preferred

sign

code.

The

output

indicator,

end

of

month

adjustment,

is

used

to

indicate

an

end

of

month

adjustment,

when

end

of

month

adjustments

are

allowed.

End

of

month

adjustment

is

the

following

concept.

For

SAA(R),

the

result

of

subtracting

a

1

month

duration

from

the

date

03/31/1989

is

02/28/1989.

The

days

portion

is

adjusted

to

fit

the

month,

31

is

changed

to

28.

When

this

happens,

the

end

of

month

adjustment

output

indicator

is

set

to

adjustment.

When

end

of

month

adjustments

are

not

allowed,

the

month

and

year

definitions

in

the

data

definition

attribute

template

must

have

values

greater

than

zero,

otherwise

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

The

result

of

subtracting

a

1

month

duration

from

the

Gregorian

date

03/31/1989

is

03/01/1989,

when

the

definition

of

a

month

is

30

days.

The

size

of

the

DDAT

list

is

specified

in

bytes.

The

number

of

DDATs

is

the

count

of

DDATs

specified

for

this

instruction

template.

The

maximum

number

of

DDATs

that

can

be

specified

is

3.

The

DDAT

offset

is

the

number

of

bytes

from

the

start

of

the

DDAT

list

to

the

start

of

the

specific

DDAT.

There

should

be

as

many

DDAT

offsets

as

there

are

DDATs

specified.

A

data

definitional

attribute

template

defines

the

presentation

of

the

data.

Each

template

describes

the

definitional

attributes

of

the

operands.

The

length

of

the

timestamp

and

duration

character

operands

will

be

defined

by

the

template.

For

a

further

description

of

the

data

definitional

attribute

template,

see

Data

Definitional

Attribute

Template.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

Machine

Interface

Instructions

309

MINDTCON.htm#HDRDDAT
MINDTCON.htm#HDRDDAT

0C

Computation

0C02

Decimal

Data

0C15

Date

Boundary

Overflow

0C16

Data

Format

Error

0C17

Data

Value

Error

0C18

Date

Boundary

Underflow

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

310

iSeries:

Machine

Interface

Instructions

APIs

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Dequeue

(DEQ)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

4-5

DEQ

1033

Message

prefix

Message

text

Queue

or

queue

template

DEQB

1C33

Branch

options

Message

prefix

Message

text

Queue

or

queue

template

Branch

targets

DEQI

1833

Indicator

options

Message

prefix

Message

text

Queue

or

queue

template

Indicator

targets

Operand

1:

Character

variable

scalar.

Operand

2:

Space

pointer.

Operand

3:

System

pointer

or

space

pointer

data

object.

Operand

4-5:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Machine

Interface

Instructions

311

Bound

program

access

Built-in

number

for

DEQ

is

41.

DEQ

(

message_prefix

:

address

message_text

:

address

queue

:

address

of

system

pointer

OR

address

of

space

pointer(16)

)

:

signed

binary(4)

/*

return_code

*/

The

return

code

is

set

as

follows:

Return

code

Meaning

1

Message

Dequeued.

0

Message

Not

Dequeued.

This

built-in

function

corresponds

to

the

branch

and

indicator

forms

of

the

DEQ

operation.

--

OR

--

Built-in

number

for

DEQWAIT

is

42.

DEQWAIT

(

message_prefix

:

address

message_text

:

address

queue

:

address

of

system

pointer

OR

address

of

space

pointer(16)

)

This

built-in

function

corresponds

to

the

non-branch

and

non-indicator

form

of

the

DEQ

operation.

Description:

Retrieves

a

queue

message

based

on

the

queue

type

(FIFO,

LIFO,

or

keyed)

specified

during

the

queue’s

creation.

If

the

queue

was

created

with

the

keyed

option,

messages

can

be

retrieved

by

any

of

the

following

relationships

between

an

enqueued

message

key

and

a

selection

key

specified

in

operand

1

of

the

Dequeue

instruction:

=,

<>,

>,

<,

<=,

and

>=.

If

the

queue

was

created

with

either

the

LIFO

or

FIFO

attribute,

then

only

the

next

message

can

be

retrieved

from

the

queue.

If

a

message

is

not

found

that

satisfies

the

dequeue

selection

criterion

and

the

branch

or

indicator

options

are

not

specified,

the

thread

waits

until

a

message

arrives

to

satisfy

the

dequeue

or

until

the

dequeue

wait

time-out

expires.

If

branch

or

indicator

options

are

specified,

the

thread

is

not

placed

in

the

dequeue

wait

state

and

either

the

control

flow

is

altered

according

to

the

branch

options,

or

indicator

values

are

set

based

on

the

presence

or

absence

of

a

message

to

be

dequeued.

If

operand

3

is

a

system

pointer,

the

message

is

dequeued

from

the

queue

specified

by

operand

3.

If

operand

3

is

a

space

pointer,

the

message

is

dequeued

from

the

queue

which

is

specified

in

the

template

pointed

to

by

the

space

pointer.

The

format

of

this

template

is

given

later

in

this

section.

The

criteria

for

message

selection

are

given

in

the

message

prefix

specified

by

operand

1.

The

message

text

is

returned

in

the

space

specified

by

operand

2,

and

the

message

prefix

is

returned

in

the

scalar

specified

by

operand

1.

If

an

exception

is

signaled,

the

message

text

and

message

prefix

may

be

changed,

but

do

not

contain

valid

data.

Improper

alignment

results

in

an

exception

being

signaled.

The

format

of

the

message

prefix

is

as

follows:

312

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Timestamp

of

enqueue

of

message

Char(8)

++

8

8

Dequeue

wait

time-out

value

Char(8)

+

(ignored

if

branch

options

specified)

16

10

Size

of

message

dequeued

Bin(4)

++

(The

maximum

allowable

size

of

a

queue

message

is

64

K

bytes.)

20

14

Access

state

modification

option

indicator

and

message

selection

criteria

Char(1)

+

20

14

Access

state

modification

option

when

entering

Dequeue

wait

Bit

0

+

0

=

Access

state

is

not

modified

1

=

Access

state

is

modified

20

14

Access

state

modification

option

when

leaving

Dequeue

wait

Bit

1

+

0

=

Access

state

is

not

modified

1

=

Access

state

is

modified

20

14

Multiprogramming

level

option

Bit

2

+

0

=

Leave

current

MPL

set

at

Dequeue

wait

1

=

Remain

in

current

MPL

set

at

Dequeue

wait

20

14

Time-out

option

Bit

3

+

0

=

Wait

for

specified

time,

then

signal

time-out

exception

1

=

Wait

indefinitely

20

14

Actual

key

to

input

key

relationship

Bits

4-7

+

(for

keyed

queue)

0010

=

Greater

than

0100

=

Less

than

0110

=

Not

equal

1000

=

Equal

1010

=

Greater

than

or

equal

1100

=

Less

than

or

equal

21

15

Search

key

(ignored

for

FIFO/LIFO

queues

but

must

be

present

for

FIFO/LIFO

queues

with

nonzero

key

length

values)

Char(key

length)

+

*

*

Message

key

Char(key

length)

++

*

*

—-

End

—-

Note:

Fields

shown

here

with

one

plus

sign

(+)

indicate

input

to

the

instruction,

and

fields

shown

here

with

two

plus

signs

(++)

are

returned

by

the

machine.

A

nonzero

dequeue

wait

time-out

value

overrides

any

dequeue

wait

time-out

value

specified

as

the

current

process

attribute.

A

zero

dequeue

wait

time-out

value

causes

the

wait

time-out

value

to

be

taken

from

the

current

process

attribute.

If

all

wait

time-out

values

are

0

(from

the

Dequeue

instruction

and

the

current

process

attribute),

a

dequeue

time-out

(hex

3A01)

exception

is

signaled.

See

“Standard

Time

Format”

on

page

1272

for

additional

information

on

the

format

of

the

dequeue

wait

time-out.

The

maximum

dequeue

Machine

Interface

Instructions

313

wait

time-out

interval

allowed

is

a

value

equal

to

(248

-

1)

microseconds.

Any

value

that

indicates

more

time

than

the

maximum

wait

time-out

causes

the

maximum

wait

time-out

to

be

used.

The

size

of

message

dequeued

is

returned

in

the

message

prefix.

The

size

of

message

dequeued

can

be

less

than

or

equal

to

the

maximum

size

of

message

specified

when

the

queue

was

created.

When

dequeuing

from

a

keyed

queue,

the

length

of

the

search

key

field

and

the

length

of

the

message

key

field

(in

the

message

key

prefix

specified

in

operand

1)

are

determined

implicitly

by

the

attributes

of

the

queue

being

accessed.

If

the

message

text

on

the

queue

contains

pointers,

the

message

text

operand

must

be

16-byte

aligned.

The

access

state

of

the

process

access

group

is

modified

when

a

Dequeue

instruction

results

in

a

wait

and

the

following

conditions

exist:

v

v

The

process’

instruction

wait

initiation

access

state

control

attribute

specifies

allow

access

state

modification

v

The

dequeue

access

state

modification

option

specifies

modify

access

state

v

The

multiprogramming

level

option

specifies

leave

MPL

set

during

wait.

v

The

process

is

not

multi-threaded

(i.e.

the

waiting

thread

is

the

only

thread

in

the

process)

The

thread

will

remain

in

the

current

MPL

set

for

an

implementation-defined

period

which

will

not

exceed

2

seconds,

if

the

multiprogramming

level

option

specifies

remain

in

current

MPL

set

at

Dequeue

wait.

If

the

wait

has

not

been

satisfied

at

the

end

of

this

period,

the

thread

will

automatically

be

removed

from

the

current

MPL

set.

The

automatic

removal

does

not

change

or

affect

the

total

wait

time

specified

for

the

thread

by

the

dequeue

wait

time-out

value.

Operand

3

can

be

a

system

pointer

or

a

space

pointer.

If

it

is

a

system

pointer,

this

pointer

will

be

addressing

the

queue

from

which

the

message

is

to

be

dequeued.

If

it

is

a

space

pointer,

this

pointer

will

be

addressing

a

template

which

will

contain

the

system

pointer

to

the

queue

as

well

as

the

dequeue

template

extension.

The

queue

template

is

32

bytes

in

length

and

must

be

aligned

on

a

16-byte

boundary

with

the

format

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Queue

System

pointer

16

10

Dequeue

template

extension

Char(16)

16

10

Extension

options

16

10

Modify

thread

event

mask

option

0

=

Do

not

modify

thread

event

mask

1

=

Modify

thread

event

mask

16

10

Asynchronous

signals

processing

option

0

=

Do

not

allow

asynchronous

signal

processing

1

=

Allow

asynchronous

signal

processing

during

16

10

Reserved

(binary

0)

17

11

Extension

area

17

11

New

thread

event

mask

19

13

Previous

thread

event

mask

21

15

Reserved

(binary

0)

32

20

—-

End

—-

Note:

Fields

shown

here

with

one

plus

sign

(+)

indicate

input

to

the

instruction,

and

fields

shown

here

with

two

plus

signs

(++)

are

returned

by

the

machine.

314

iSeries:

Machine

Interface

Instructions

APIs

The

modify

thread

event

mask

option

controls

the

state

of

the

event

mask

in

the

thread

executing

this

instruction.

If

the

modify

thread

event

mask

option

field

specifies

to

modify

thread

event

mask,

the

thread

event

mask

will

be

changed

as

specified

by

the

new

thread

event

mask

field.

When

the

thread

event

mask

is

changed,

the

current

thread

event

mask

will

be

returned

in

the

previous

thread

event

mask

field.

The

previous

thread

event

mask

is

only

returned

when

the

modify

thread

event

mask

option

is

set

to

1.

If

the

system

security

level

machine

attribute

is

hex

40

or

greater

and

the

thread

is

running

in

user

state,

a

template

value

invalid

(hex

3801)

exception

is

signalled

if

the

modify

thread

event

mask

option

is

set

to

modify

thread

event

mask.

If

the

thread

event

mask

is

in

the

masked

state,

the

machine

does

not

schedule

signaled

event

monitors

in

the

thread.

The

event

monitors

continue

to

be

signaled

by

the

machine

or

other

threads.

When

the

thread

is

modified

to

the

unmasked

state,

event

handlers

are

scheduled

to

handle

those

events

that

occurred

while

the

thread

was

masked

and

those

events

occurring

while

in

the

unmasked

state.

The

number

of

signals

retained

while

the

thread

is

masked

is

specified

by

the

attributes

of

the

event

monitor

associated

with

the

process

or

thread.

The

thread

is

automatically

masked

by

the

machine

when

event

handlers

are

invoked.

If

the

thread

is

unmasked

in

the

event

handler,

other

events

can

be

handled

if

another

enabled

event

monitor

within

that

thread

is

signaled.

If

the

thread

is

masked

when

it

exits

from

the

event

handler,

the

machine

explicitly

unmasks

the

thread.

Valid

masking

values

are:

0

Masked

256

Unmasked

Other

values

are

reserved

and

must

not

be

specified.

If

any

other

values

are

specified,

a

template

value

invalid

(hex

3801)

exception

is

signaled.

Whether

masking

or

unmasking

the

current

thread,

the

new

mask

takes

effect

upon

completion

of

a

satisfied

dequeue.

The

asynchronous

signals

processing

option

controls

the

action

to

be

taken

if

an

asynchronous

signal

is

pending

or

received

while

in

a

Dequeue

wait.

If

an

asynchronous

signal

that

is

not

blocked

or

ignored

is

generated

for

the

process

and

the

asynchronous

signals

processing

option

indicates

allow

asynchronous

signal

processing

during

Dequeue

wait,

the

Dequeue

wait

will

be

terminated

and

an

asynchronous

signal

terminated

MI

wait

(hex

4C01)

exception

is

signaled.

Otherwise,

when

the

asynchronous

signals

processing

option

indicates

do

not

allow

asynchronous

signal

processing

during

Dequeue

wait,

the

process

remains

in

the

wait

until

a

message

arrives

to

satisfy

the

dequeue

or

until

the

dequeue

wait

time-out

value

expires.

Warning:

Temporary

Level

3

Header

Resultant

Conditions

v

v

Equal

-

message

dequeued

v

Not

equal

-

message

not

dequeued

Authorization

Required

v

v

Retrieve

–

Machine

Interface

Instructions

315

–

Operand

3
v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C0E

IASP

Resources

Exceeded

1C11

Independent

ASP

Varied

Off

20

Machine

Support

2002

Machine

Check

2003

Function

Check

316

iSeries:

Machine

Interface

Instructions

APIs

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

30

Journal

3002

Entry

Not

Journaled

32

Scalar

Specification

3203

Scalar

Value

Invalid

38

Template

Specification

3801

Template

Value

Invalid

3A

Wait

Time-Out

3A01

Dequeue

Time-Out

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

4C

Signals

Management

4C01

Asynchronous

Signal

Terminated

MI

Wait

Machine

Interface

Instructions

317

Dequeue

(DEQ)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

4-5

DEQ

1033

Message

prefix

Message

text

Queue

or

queue

template

DEQB

1C33

Branch

options

Message

prefix

Message

text

Queue

or

queue

template

Branch

targets

DEQI

1833

Indicator

options

Message

prefix

Message

text

Queue

or

queue

template

Indicator

targets

Operand

1:

Character

variable

scalar.

Operand

2:

Space

pointer.

Operand

3:

System

pointer

or

space

pointer

data

object.

Operand

4-5:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Bound

program

access

Built-in

number

for

DEQ

is

41.

DEQ

(

message_prefix

:

address

message_text

:

address

queue

:

address

of

system

pointer

OR

address

of

space

pointer(16)

)

:

signed

binary(4)

/*

return_code

*/

The

return

code

is

set

as

follows:

Return

code

Meaning

1

Message

Dequeued.

0

Message

Not

Dequeued.

This

built-in

function

corresponds

to

the

branch

and

indicator

forms

of

the

DEQ

operation.

--

OR

--

Built-in

number

for

DEQWAIT

is

42.

DEQWAIT

(

message_prefix

:

address

message_text

:

address

queue

:

address

of

system

pointer

OR

address

of

space

pointer(16)

)

This

built-in

function

corresponds

to

the

non-branch

and

non-indicator

form

of

the

DEQ

operation.

318

iSeries:

Machine

Interface

Instructions

APIs

Description:

Retrieves

a

queue

message

based

on

the

queue

type

(FIFO,

LIFO,

or

keyed)

specified

during

the

queue’s

creation.

If

the

queue

was

created

with

the

keyed

option,

messages

can

be

retrieved

by

any

of

the

following

relationships

between

an

enqueued

message

key

and

a

selection

key

specified

in

operand

1

of

the

Dequeue

instruction:

=,

<>,

>,

<,

<=,

and

>=.

If

the

queue

was

created

with

either

the

LIFO

or

FIFO

attribute,

then

only

the

next

message

can

be

retrieved

from

the

queue.

If

a

message

is

not

found

that

satisfies

the

dequeue

selection

criterion

and

the

branch

or

indicator

options

are

not

specified,

the

thread

waits

until

a

message

arrives

to

satisfy

the

dequeue

or

until

the

dequeue

wait

time-out

expires.

If

branch

or

indicator

options

are

specified,

the

thread

is

not

placed

in

the

dequeue

wait

state

and

either

the

control

flow

is

altered

according

to

the

branch

options,

or

indicator

values

are

set

based

on

the

presence

or

absence

of

a

message

to

be

dequeued.

If

operand

3

is

a

system

pointer,

the

message

is

dequeued

from

the

queue

specified

by

operand

3.

If

operand

3

is

a

space

pointer,

the

message

is

dequeued

from

the

queue

which

is

specified

in

the

template

pointed

to

by

the

space

pointer.

The

format

of

this

template

is

given

later

in

this

section.

The

criteria

for

message

selection

are

given

in

the

message

prefix

specified

by

operand

1.

The

message

text

is

returned

in

the

space

specified

by

operand

2,

and

the

message

prefix

is

returned

in

the

scalar

specified

by

operand

1.

If

an

exception

is

signaled,

the

message

text

and

message

prefix

may

be

changed,

but

do

not

contain

valid

data.

Improper

alignment

results

in

an

exception

being

signaled.

The

format

of

the

message

prefix

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Timestamp

of

enqueue

of

message

Char(8)

++

8

8

Dequeue

wait

time-out

value

Char(8)

+

(ignored

if

branch

options

specified)

16

10

Size

of

message

dequeued

Bin(4)

++

(The

maximum

allowable

size

of

a

queue

message

is

64

K

bytes.)

20

14

Access

state

modification

option

indicator

and

message

selection

criteria

Char(1)

+

20

14

Access

state

modification

option

when

entering

Dequeue

wait

Bit

0

+

0

=

Access

state

is

not

modified

1

=

Access

state

is

modified

20

14

Access

state

modification

option

when

leaving

Dequeue

wait

Bit

1

+

0

=

Access

state

is

not

modified

1

=

Access

state

is

modified

20

14

Multiprogramming

level

option

Bit

2

+

0

=

Leave

current

MPL

set

at

Dequeue

wait

1

=

Remain

in

current

MPL

set

at

Dequeue

wait

20

14

Time-out

option

Bit

3

+

0

=

Wait

for

specified

time,

then

signal

time-out

exception

1

=

Wait

indefinitely

20

14

Actual

key

to

input

key

relationship

Bits

4-7

+

Machine

Interface

Instructions

319

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

(for

keyed

queue)

0010

=

Greater

than

0100

=

Less

than

0110

=

Not

equal

1000

=

Equal

1010

=

Greater

than

or

equal

1100

=

Less

than

or

equal

21

15

Search

key

(ignored

for

FIFO/LIFO

queues

but

must

be

present

for

FIFO/LIFO

queues

with

nonzero

key

length

values)

Char(key

length)

+

*

*

Message

key

Char(key

length)

++

*

*

—-

End

—-

Note:

Fields

shown

here

with

one

plus

sign

(+)

indicate

input

to

the

instruction,

and

fields

shown

here

with

two

plus

signs

(++)

are

returned

by

the

machine.

A

nonzero

dequeue

wait

time-out

value

overrides

any

dequeue

wait

time-out

value

specified

as

the

current

process

attribute.

A

zero

dequeue

wait

time-out

value

causes

the

wait

time-out

value

to

be

taken

from

the

current

process

attribute.

If

all

wait

time-out

values

are

0

(from

the

Dequeue

instruction

and

the

current

process

attribute),

a

dequeue

time-out

(hex

3A01)

exception

is

signaled.

See

“Standard

Time

Format”

on

page

1272

for

additional

information

on

the

format

of

the

dequeue

wait

time-out.

The

maximum

dequeue

wait

time-out

interval

allowed

is

a

value

equal

to

(248

-

1)

microseconds.

Any

value

that

indicates

more

time

than

the

maximum

wait

time-out

causes

the

maximum

wait

time-out

to

be

used.

The

size

of

message

dequeued

is

returned

in

the

message

prefix.

The

size

of

message

dequeued

can

be

less

than

or

equal

to

the

maximum

size

of

message

specified

when

the

queue

was

created.

When

dequeuing

from

a

keyed

queue,

the

length

of

the

search

key

field

and

the

length

of

the

message

key

field

(in

the

message

key

prefix

specified

in

operand

1)

are

determined

implicitly

by

the

attributes

of

the

queue

being

accessed.

If

the

message

text

on

the

queue

contains

pointers,

the

message

text

operand

must

be

16-byte

aligned.

The

access

state

of

the

process

access

group

is

modified

when

a

Dequeue

instruction

results

in

a

wait

and

the

following

conditions

exist:

v

v

The

process’

instruction

wait

initiation

access

state

control

attribute

specifies

allow

access

state

modification

v

The

dequeue

access

state

modification

option

specifies

modify

access

state

v

The

multiprogramming

level

option

specifies

leave

MPL

set

during

wait.

v

The

process

is

not

multi-threaded

(i.e.

the

waiting

thread

is

the

only

thread

in

the

process)

The

thread

will

remain

in

the

current

MPL

set

for

an

implementation-defined

period

which

will

not

exceed

2

seconds,

if

the

multiprogramming

level

option

specifies

remain

in

current

MPL

set

at

Dequeue

wait.

If

the

wait

has

not

been

satisfied

at

the

end

of

this

period,

the

thread

will

automatically

be

removed

from

the

current

MPL

set.

The

automatic

removal

does

not

change

or

affect

the

total

wait

time

specified

for

the

thread

by

the

dequeue

wait

time-out

value.

Operand

3

can

be

a

system

pointer

or

a

space

pointer.

If

it

is

a

system

pointer,

this

pointer

will

be

addressing

the

queue

from

which

the

message

is

to

be

dequeued.

If

it

is

a

space

pointer,

this

pointer

will

320

iSeries:

Machine

Interface

Instructions

APIs

be

addressing

a

template

which

will

contain

the

system

pointer

to

the

queue

as

well

as

the

dequeue

template

extension.

The

queue

template

is

32

bytes

in

length

and

must

be

aligned

on

a

16-byte

boundary

with

the

format

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Queue

System

pointer

16

10

Dequeue

template

extension

Char(16)

16

10

Extension

options

16

10

Modify

thread

event

mask

option

0

=

Do

not

modify

thread

event

mask

1

=

Modify

thread

event

mask

16

10

Asynchronous

signals

processing

option

0

=

Do

not

allow

asynchronous

signal

process

1

=

Allow

asynchronous

signal

processing

du

16

10

Reserved

(binary

0)

17

11

Extension

area

17

11

New

thread

event

mask

19

13

Previous

thread

event

mask

21

15

Reserved

(binary

0)

32

20

—-

End

—-

Note:

Fields

shown

here

with

one

plus

sign

(+)

indicate

input

to

the

instruction,

and

fields

shown

here

with

two

plus

signs

(++)

are

returned

by

the

machine.

The

modify

thread

event

mask

option

controls

the

state

of

the

event

mask

in

the

thread

executing

this

instruction.

If

the

modify

thread

event

mask

option

field

specifies

to

modify

thread

event

mask,

the

thread

event

mask

will

be

changed

as

specified

by

the

new

thread

event

mask

field.

When

the

thread

event

mask

is

changed,

the

current

thread

event

mask

will

be

returned

in

the

previous

thread

event

mask

field.

The

previous

thread

event

mask

is

only

returned

when

the

modify

thread

event

mask

option

is

set

to

1.

If

the

system

security

level

machine

attribute

is

hex

40

or

greater

and

the

thread

is

running

in

user

state,

a

template

value

invalid

(hex

3801)

exception

is

signalled

if

the

modify

thread

event

mask

option

is

set

to

modify

thread

event

mask.

If

the

thread

event

mask

is

in

the

masked

state,

the

machine

does

not

schedule

signaled

event

monitors

in

the

thread.

The

event

monitors

continue

to

be

signaled

by

the

machine

or

other

threads.

When

the

thread

is

modified

to

the

unmasked

state,

event

handlers

are

scheduled

to

handle

those

events

that

occurred

while

the

thread

was

masked

and

those

events

occurring

while

in

the

unmasked

state.

The

number

of

signals

retained

while

the

thread

is

masked

is

specified

by

the

attributes

of

the

event

monitor

associated

with

the

process

or

thread.

The

thread

is

automatically

masked

by

the

machine

when

event

handlers

are

invoked.

If

the

thread

is

unmasked

in

the

event

handler,

other

events

can

be

handled

if

another

enabled

event

monitor

within

that

thread

is

signaled.

If

the

thread

is

masked

when

it

exits

from

the

event

handler,

the

machine

explicitly

unmasks

the

thread.

Valid

masking

values

are:

0

Masked

256

Unmasked

Machine

Interface

Instructions

321

Other

values

are

reserved

and

must

not

be

specified.

If

any

other

values

are

specified,

a

template

value

invalid

(hex

3801)

exception

is

signaled.

Whether

masking

or

unmasking

the

current

thread,

the

new

mask

takes

effect

upon

completion

of

a

satisfied

dequeue.

The

asynchronous

signals

processing

option

controls

the

action

to

be

taken

if

an

asynchronous

signal

is

pending

or

received

while

in

a

Dequeue

wait.

If

an

asynchronous

signal

that

is

not

blocked

or

ignored

is

generated

for

the

process

and

the

asynchronous

signals

processing

option

indicates

allow

asynchronous

signal

processing

during

Dequeue

wait,

the

Dequeue

wait

will

be

terminated

and

an

asynchronous

signal

terminated

MI

wait

(hex

4C01)

exception

is

signaled.

Otherwise,

when

the

asynchronous

signals

processing

option

indicates

do

not

allow

asynchronous

signal

processing

during

Dequeue

wait,

the

process

remains

in

the

wait

until

a

message

arrives

to

satisfy

the

dequeue

or

until

the

dequeue

wait

time-out

value

expires.

Warning:

Temporary

Level

3

Header

Resultant

Conditions

v

v

Equal

-

message

dequeued

v

Not

equal

-

message

not

dequeued

Authorization

Required

v

v

Retrieve

–

–

Operand

3
v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

322

iSeries:

Machine

Interface

Instructions

APIs

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C0E

IASP

Resources

Exceeded

1C11

Independent

ASP

Varied

Off

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

30

Journal

3002

Entry

Not

Journaled

32

Scalar

Specification

Machine

Interface

Instructions

323

3203

Scalar

Value

Invalid

38

Template

Specification

3801

Template

Value

Invalid

3A

Wait

Time-Out

3A01

Dequeue

Time-Out

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

4C

Signals

Management

4C01

Asynchronous

Signal

Terminated

MI

Wait

Destroy

Activation

Group-Based

Heap

Space

(DESHS)

Op

Code

(Hex)

Operand

1

03B1

Heap

identifier

Operand

1:

Binary(4)

variable

scalar.

Bound

program

access

Built-in

number

for

DESHS

is

113.

DESHS

(

heap_identifier

:

address

of

signed

binary(4)

OR

address

of

unsigned

binary(4)

)

Note:

The

term

″heap

space″

in

this

instruction

refers

to

an

″activation

group-based

heap

space″.

Description:

This

instruction

destroys

and

removes

from

the

current

activation

group

the

heap

space

specified

by

the

heap

identifier

in

operand

1.

Subsequent

use

of

this

heap

identifier

within

the

activation

group

will

result

in

an

invalid

heap

identifier

(hex

4501)

exception.

The

heap

identifier

was

returned

on

the

Create

Activation

Group-Based

Heap

Space

(CRTHS)

instruction.

An

attempt

to

destroy

the

default

heap

space

(heap

identifier

value

of

0)

will

result

in

an

invalid

request

(hex

4502)

exception.

Space

pointer

references

to

heap

space

allocations

from

a

destroyed

heap

space

will

cause

unpredictable

results.

All

heap

spaces

are

implicitly

destroyed

when

the

activation

group

in

which

they

were

created

is

destroyed.

Operand

1

is

not

modified

by

the

instruction.

324

iSeries:

Machine

Interface

Instructions

APIs

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

45

Heap

Space

Machine

Interface

Instructions

325

4501

Invalid

Heap

Identifier

4502

Invalid

Request

4505

Heap

Space

Destroyed

4506

Invalid

Heap

Space

Condition

Destroy

Independent

Index

(DESINX)

Op

Code

(Hex)

Operand

1

0451

Index

Operand

1:

System

pointer.

Bound

program

access

Built-in

number

for

DESINX

is

35.

DESINX

(

index

:

address

of

system

pointer

)

Description:

A

previously

created

index

identified

by

operand

1

is

destroyed,

and

addressability

to

the

object

is

removed

from

any

context

in

which

addressability

exists.

The

system

pointer

identified

by

operand

1

is

not

modified

by

the

instruction,

and

a

subsequent

reference

to

the

destroyed

index

through

the

pointer

results

in

an

object

destroyed

(hex

2202)

exception.

Permanent

index

objects

cannot

be

destroyed

by

user

state

programs

when

the

system

security

level

is

40

or

above.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Object

control

–

–

Operand

1
v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution
v

Object

control

–

–

Operand

1
v

Modify

–

–

Access

group

which

contains

operand

1

326

iSeries:

Machine

Interface

Instructions

APIs

–

Context

which

addresses

operand

1

–

User

profile

which

owns

index

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C11

Independent

ASP

Varied

Off

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

Machine

Interface

Instructions

327

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Destroy

Pointer-Based

Mutex

(DESMTX)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

03C7

Mutex

Mutex

destroy

options

Result

Operand

1:

Space

pointer.

Operand

2:

Space

pointer.

Operand

3:

Signed

binary(4)

variable

scalar.

Bound

program

access

Built-in

number

for

DESMTX

is

162.

DESMTX

(

mutex

:

address

mutex_destroy_options

:

address

of

unsigned

binary(4)

value

)

:

signed

binary(4)

/*

result

*/

Note:

The

term

″mutex″

in

this

instruction

refers

to

a

″pointer-based

mutex″.

Description:

The

mutex

whose

address

is

referenced

by

operand

1

is

destroyed.

The

mutex

is

set

to

binary

zero.

All

threads

currently

in

the

mutex

wait

state

for

this

mutex

are

removed

from

the

wait

state

and

an

EDESTROYED

error

number

result

is

returned

to

each

waiting

thread.

The

ETYPE

error

is

returned

when

the

mutex

operand

references

a

synchronization

object

that

is

not

a

pointer-based

mutex.

The

ENOTSUP

error

is

returned

when

an

attempt

is

made

to

destroy

the

mutex

using

a

mutex

operand

that

is

a

copy

of

the

original

mutex.

See

the

CRTMTX

instruction

for

additional

information

regarding

mutex

copies.

The

space

pointed

to

by

operand

2

contains

the

mutex

destroy

options.

Result

is

used

to

indicate

the

success

or

failure

of

the

DESMTX

instruction.

328

iSeries:

Machine

Interface

Instructions

APIs

Mutexes

are

temporary

entities

that

do

not

persist

beyond

the

current

IPL

in

which

they

are

created.

Following

a

subsequent

IPL,

mutexes

must

be

re-created

before

they

can

be

used.

Similarly,

mutexes

created

in

an

independent

ASP

do

not

persist

beyond

the

current

vary

on

of

the

independent

ASP

in

which

they

are

created.

Following

a

subsequent

vary

on,

mutexes

must

be

re-created

before

they

can

be

used.

Mutexes

can

be

explicitly

destroyed

prior

to

a

subsequent

IPL

or

independent

ASP

vary

off/vary

on

cycle

by

using

the

DESMTX

instruction.

It

is

important

to

destroy

mutexes

when

they

are

no

longer

needed.

When

a

mutex

is

created,

system

resources

are

allocated

for

the

mutex.

These

resources

remain

allocated

until

the

mutex

is

destroyed

or

the

system

is

IPLed,

thereby

leaving

fewer

mutex

resources

available

in

the

system

for

other

threads

to

use.

In

addition,

performance

degradation

can

occur

as

unused

mutexes

accumulate

on

the

system

and

are

not

destroyed.

The

mutex

must

be

aligned

on

a

16-byte

boundary.

The

mutex

destroy

options

referenced

by

operand

2

can

have

the

following

values:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Mutex

destroy

options

UBin(4)

0

=

Destroy

mutex

(this

is

the

default

option)

4

4

—-

End

—-

The

mutex

destroy

options

should

be

set

to

0

in

order

to

destroy

a

mutex.

The

mutex

will

not

be

destroyed

if

it

is

locked

by

another

thread.

An

attempt

to

destroy

a

mutex

when

another

thread

has

it

locked

will

result

in

an

EBUSY

error

number

result.

All

other

values

for

mutex

destroy

options

are

reserved

and

will

cause

an

EINVAL

error

number

result

to

be

returned.

If

operand

2

in

a

bound

program

is

a

null

pointer

value,

the

default

mutex

destroy

options

are

used.

Operand

2

in

non-bound

programs

must

be

a

pointer

to

mutex

destroy

options.

The

pointer

does

not

exist

(hex

2401)

exception

is

signaled

if

a

null

pointer

value

is

used

for

operand

2

in

a

non-bound

program.

If

the

mutex

is

destroyed

by

this

instruction,

then

result

is

set

to

0.

If

an

error

occurs,

then

the

result

is

set

to

an

error

condition.

The

EINVAL

error

number

is

returned

when

an

invalid

operand

is

specified.

The

EPERM

error

number

is

returned

when

the

address

passed

in

operand

1

is

in

teraspace

and

the

issuing

thread

does

not

have

teraspace

write

permissions

to

that

address.

The

mutex

must

have

been

previously

created

by

the

CRTMTX

instruction.

Attempting

to

destroy

a

mutex

that

was

not

created

or

whose

contents

have

been

altered

will

cause

one

of

the

pointer

specification

exceptions

to

occur.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Machine

Interface

Instructions

329

Error

conditions

The

result

is

set

to

one

of

the

following:

EBUSY

3029

-

Resource

busy.

EINVAL

3021

-

The

value

specified

for

the

argument

is

not

correct.

ENOTSUP

3440

-

Operation

not

supported.

EPERM

3027

-

Operation

not

permitted.

ETYPE

3493

-

Object

type

mismatch.

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

330

iSeries:

Machine

Interface

Instructions

APIs

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Destroy

Space

(DESS)

Op

Code

(Hex)

Operand

1

0025

Space

to

be

destroyed

Operand

1:

System

pointer.

Bound

program

access

Built-in

number

for

DESS

is

26.

DESS

(

space_to_be_destroyed

:

address

of

system

pointer

)

Description:

The

designated

space

is

destroyed,

and

addressability

to

the

space

is

deleted

from

a

context

if

it

is

currently

addressing

the

object.

The

pointer

identified

by

operand

1

is

not

modified

by

the

instruction,

and

a

subsequent

reference

to

the

pointer

causes

an

object

destroyed

(hex

2202)

exception.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Contexts

referenced

for

address

resolution
v

Object

control

–

–

Operand

1

Lock

Enforcement

v

v

Modify

–

–

User

profile

owning

object

Machine

Interface

Instructions

331

–

Context

addressing

object

–

Access

group

containing

object
v

Object

control

–

–

Operand

1

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C11

Independent

ASP

Varied

Off

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

332

iSeries:

Machine

Interface

Instructions

APIs

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Divide

(DIV)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-7]

DIV

104F

Quotient

Dividend

Divisor

DIVR

124F

Quotient

Dividend

Divisor

DIVI

184F

Indicator

options

Quotient

Dividend

Divisor

Indicator

targets

DIVIR

1A4F

Indicator

options

Quotient

Dividend

Divisor

Indicator

targets

DIVB

1C4F

Branch

options

Quotient

Dividend

Divisor

Branch

targets

DIVBR

1E4F

Branch

options

Quotient

Dividend

Divisor

Branch

targets

Operand

1:

Numeric

variable

scalar.

Operand

2:

Numeric

scalar.

Operand

3:

Numeric

scalar.

Operand

4-7:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Machine

Interface

Instructions

333

Warning:

Temporary

Level

3

Header

Short

forms

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

[3-6]

DIVS

114F

Quotient/Dividend

Divisor

DIVSR

134F

Quotient/Dividend

Divisor

DIVIS

194F

Indicator

options

Quotient/Dividend

Divisor

Indicator

targets

DIVISR

1B4F

Indicator

options

Quotient/Dividend

Divisor

Indicator

targets

DIVBS

1D4F

Branch

options

Quotient/Dividend

Divisor

Branch

targets

DIVBSR

1F4F

Branch

options

Quotient/Dividend

Divisor

Branch

targets

Operand

1:

Numeric

variable

scalar.

Operand

2:

Numeric

scalar.

Operand

3-6:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

The

quotient

is

the

result

of

dividing

the

dividend

by

the

divisor.

Operands

can

have

floating-point,

packed

or

zoned

decimal,

signed

or

unsigned

binary

type.

Source

operands

are

the

dividend

and

divisor.

The

receiver

operand

is

the

quotient.

If

operands

are

not

of

the

same

type,

source

operands

are

converted

according

to

the

following

rules:

1.

If

any

one

of

the

operands

has

floating

point

type,

source

operands

are

converted

to

floating

point

type.

2.

Otherwise,

if

any

one

of

the

operands

has

zoned

or

packed

decimal

type,

source

operands

are

converted

to

packed

decimal.

3.

Otherwise,

the

binary

operands

are

converted

to

a

like

type.

Note:

unsigned

binary(2)

scalars

are

logically

treated

as

signed

binary(4)

scalars.

Source

operands

are

divided

according

to

their

type.

Floating

point

operands

are

divided

using

floating

point

division.

Packed

decimal

operands

are

divided

using

packed

decimal

division.

Unsigned

binary

division

is

used

with

unsigned

source

operands.

Signed

binary

operands

are

divided

using

two’s

complement

binary

division.

Better

performance

can

be

obtained

if

all

operands

have

the

same

type.

Signed

and

unsigned

binary

division

execute

faster

than

either

packed

decimal

or

floating

point

division.

All

of

the

operands

must

be

numeric

with

any

implicit

conversions

occurring

according

to

the

rules

of

arithmetic

operations

as

outlined

in

Arithmetic

Operations.

Decimal

operands

used

in

floating-point

operations

cannot

contain

more

than

15

total

digit

positions.

334

iSeries:

Machine

Interface

Instructions

APIs

MCNPFAO.htm

If

the

divisor

has

a

numeric

value

of

zero,

a

zero

divide

(hex

0C0B)

exception

or

floating-point

zero

divide

(hex

0C0E)

exception

is

signaled

respectively

for

fixed-point

versus

floating-point

operations.

If

the

dividend

has

a

value

of

zero,

the

result

of

the

division

is

a

zero

quotient

value.

For

a

decimal

operation,

the

precision

of

the

result

of

the

divide

operation

is

determined

by

the

number

of

fractional

digit

positions

specified

for

the

quotient.

In

other

words,

the

divide

operation

will

be

performed

so

as

to

calculate

a

resultant

quotient

of

the

same

precision

as

that

specified

for

the

quotient

operand.

If

necessary,

internal

alignment

of

the

assumed

decimal

point

for

the

dividend

and

divisor

operands

is

performed

to

ensure

the

correct

precision

for

the

resultant

quotient

value.

These

internal

alignments

are

not

subject

to

detection

of

the

decimal

point

alignment

exception.

An

internal

quotient

value

will

be

calculated

for

any

combination

of

decimal

attributes

which

may

be

specified

for

the

instruction’s

operands.

However,

the

assignment

of

the

result

to

the

quotient

operand

is

subject

to

detection

of

the

size

(hex

0C0A)

exception

thereby

limiting

the

assignment

to,

at

most,

the

rightmost

31

digits

of

the

calculated

result.

Floating-point

division

uses

exponent

subtraction

and

significand

division.

If

the

dividend

operand

is

shorter

than

the

divisor

operand,

it

is

logically

adjusted

to

the

length

of

the

divisor

operand.

For

fixed-point

computations

and

for

the

significand

division

of

a

floating-point

computation,

the

division

operation

is

performed

according

to

the

rules

of

algebra.

Unsigned

binary

is

treated

as

a

positive

number

for

the

algebra.

For

a

floating-point

computation,

the

operation

is

performed

as

if

to

infinite

precision.

The

result

of

the

operation

is

copied

into

the

quotient

operand.

If

this

operand

is

not

the

same

type

as

that

used

in

performing

the

operation,

the

resultant

value

is

converted

to

its

type.

If

necessary,

the

resultant

value

is

adjusted

to

the

length

of

the

quotient

operand,

aligned

at

the

assumed

decimal

point

of

the

quotient

operand,

or

both

before

being

copied

to

it.

Length

adjustment

and

decimal

point

alignment

are

performed

according

to

the

rules

for

arithmetic

operations

as

outlined

in

Arithmetic

Operations.

If

significant

digits

are

truncated

on

the

left

end

of

the

resultant

value,

a

size

(hex

0C0A)

exception

is

signaled.

If

a

decimal

to

binary

conversion

causes

a

size

(hex

0C0A)

exception

to

be

signaled,

the

binary

value

contains

the

correct

truncated

result

only

if

the

decimal

value

contains

15

or

fewer

significant

nonfractional

digits.

For

the

optional

round

form

of

the

instruction,

specification

of

a

floating-point

receiver

operand

is

invalid.

For

fixed-point

operations

in

programs

that

request

to

be

notified

of

size

(hex

0C0A)

exceptions,

if

nonzero

digits

are

truncated

from

the

left

end

of

the

resultant

value,

a

size

(hex

0C0A)

exception

is

signaled.

For

floating-point

operations

that

involve

a

fixed-point

receiver

field,

if

nonzero

digits

would

be

truncated

from

the

left

end

of

the

resultant

value,

an

invalid

floating-point

conversion

(hex

0C0C)

exception

is

signaled.

For

a

floating-point

quotient

operand,

if

the

exponent

of

the

resultant

value

is

either

too

large

or

too

small

to

be

represented

in

the

quotient

field,

the

floating-point

overflow

(hex

0C06)

exception

and

floating-point

underflow

(hex

0C07)

exception

are

signaled,

respectively.

Resultant

Conditions:

v

Machine

Interface

Instructions

335

MCNPFAO.htm

v

Positive-The

algebraic

value

of

the

numeric

scalar

quotient

is

positive.

v

Negative-The

algebraic

value

of

the

numeric

scalar

quotient

is

negative.

v

Zero-The

algebraic

value

of

the

numeric

scalar

quotient

is

zero.

v

Unordered-The

value

assigned

a

floating-point

quotient

operand

is

NaN.

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C02

Decimal

Data

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

0C0A

Size

0C0B

Zero

Divide

0C0C

Invalid

Floating-Point

Conversion

0C0D

Floating-Point

Inexact

Result

0C0E

Floating-Point

Zero

Divide

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

336

iSeries:

Machine

Interface

Instructions

APIs

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Divide

with

Remainder

(DIVREM)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

4

Operand

[5-7]

DIVREM

1074

Quotient

Dividend

Divisor

Remainder

DIVREMR

1274

Quotient

Dividend

Divisor

Remainder

DIVREMI

1874

Indicator

options

Quotient

Dividend

Divisor

Remainder

Indicator

targets

DIVREMIR

1A74

Indicator

options

Quotient

Dividend

Divisor

Remainder

Indicator

targets

DIVREMB

1C74

Branch

options

Quotient

Dividend

Divisor

Remainder

Branch

targets

Machine

Interface

Instructions

337

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

4

Operand

[5-7]

DIVREMBR

1E74

Branch

options

Quotient

Dividend

Divisor

Remainder

Branch

targets

Operand

1:

Numeric

variable

scalar.

Operand

2:

Numeric

scalar.

Operand

3:

Numeric

scalar.

Operand

4:

Numeric

variable

scalar.

Operand

5-7:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-6]

DIVREMS

1174

Quotient/Dividend

Divisor

Remainder

DIVREMSR

1374

Quotient/Dividend

Divisor

Remainder

DIVREMIS

1974

Indicator

options

Quotient/Dividend

Divisor

Remainder

Indicator

targets

DIVREMISR

1B74

Indicator

options

Quotient/Dividend

Divisor

Remainder

Indicator

targets

DIVREMBS

1D74

Branch

options

Quotient/Dividend

Divisor

Remainder

Branch

targets

DIVREMBSR

1F74

Branch

options

Quotient/Dividend

Divisor

Remainder

Branch

targets

Operand

1:

Numeric

variable

scalar.

Operand

2:

Numeric

scalar.

Operand

3:

Numeric

variable

scalar.

Operand

4-6:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

The

quotient

is

the

result

of

dividing

the

dividend

by

the

divisor.

The

remainder

is

the

dividend

minus

the

product

of

the

divisor

and

quotient.

Operands

can

have

packed

or

zoned

decimal,

signed

or

unsigned

binary

type.

Source

operands

are

the

dividend

and

divisor.

The

receiver

operands

are

the

quotient

and

remainder.

If

operands

are

not

of

the

same

type,

source

operands

are

converted

according

to

the

following

rules:

1.

If

any

one

of

the

operands

has

zoned

or

packed

decimal

type,

source

operands

are

converted

to

packed

decimal.

338

iSeries:

Machine

Interface

Instructions

APIs

2.

Otherwise,

the

binary

operands

are

converted

to

a

like

type.

Note:

unsigned

binary(2)

scalars

are

logically

treated

as

signed

binary(4)

scalars.

Source

operands

are

divided

according

to

their

type.

Packed

decimal

operands

are

divided

using

packed

decimal

division.

Unsigned

binary

division

is

used

with

unsigned

source

operands.

Signed

binary

operands

are

divided

using

two’s

complement

binary

division.

Better

performance

can

be

obtained

if

all

operands

have

the

same

type.

Signed

and

unsigned

binary

division

execute

faster

than

packed

decimal

division.

The

operands

must

be

numeric

with

any

implicit

conversions

occurring

according

to

the

rules

for

arithmetic

operations

as

outlined

in

Arithmetic

Operations.

Floating-point

is

not

supported

for

this

instruction.

If

the

divisor

operand

has

a

numeric

value

of

0,

a

zero

divide

(hex

0C0B)

exception

is

signaled.

If

the

dividend

operand

has

a

value

of

0,

the

result

of

the

division

is

a

zero

value

quotient

and

remainder.

For

a

decimal

operation,

the

precision

of

the

result

of

the

divide

operation

is

determined

by

the

number

of

fractional

digit

positions

specified

for

the

quotient.

In

other

words,

the

divide

operation

will

be

performed

so

as

to

calculate

a

resultant

quotient

of

the

same

precision

as

that

specified

for

the

quotient

operand.

If

necessary,

internal

alignment

of

the

assumed

decimal

point

for

the

dividend

and

divisor

operands

is

performed

to

ensure

the

correct

precision

for

the

resultant

quotient

value.

These

internal

alignments

are

not

subject

to

detection

of

the

decimal

point

alignment

exception.

An

internal

quotient

value

will

be

calculated

for

any

combination

of

decimal

attributes

which

may

be

specified

for

the

instruction’s

operands.

However,

the

assignment

of

the

result

to

the

quotient

operand

is

subject

to

detection

of

the

size

(hex

0C0A)

exception

thereby

limiting

the

assignment

to,

at

most,

the

rightmost

31

digits

of

the

calculated

result.

If

the

dividend

operand

is

shorter

than

the

divisor

operand,

it

is

logically

adjusted

to

the

length

of

the

divisor

operand.

The

division

operation

is

performed

according

to

the

rules

of

algebra.

Unsigned

binary

is

treated

as

a

positive

number

for

the

algebra.

The

quotient

result

of

the

operation

is

copied

into

the

quotient

operand.

If

this

operand

is

not

the

same

type

as

that

used

in

performing

the

operation,

the

resultant

value

is

converted

to

its

type.

If

necessary,

the

resultant

value

is

adjusted

to

the

length

of

the

quotient

operand,

aligned

at

the

assumed

decimal

point

of

the

quotient

operand,

or

both

before

being

copied

to

it.

Length

adjustment

and

decimal

point

alignment

are

performed

according

to

the

rules

of

arithmetic

operations

as

outlined

in

Arithmetic

Operations.

If

significant

digits

are

truncated

on

the

left

end

of

the

resultant

value,

a

size

(hex

0C0A)

exception

is

signaled.

After

the

quotient

numeric

value

has

been

determined,

the

numeric

value

of

the

remainder

operand

is

calculated

as

follows:

Remainder

=

Dividend

-

(Quotient*Divisor)

If

the

optional

round

form

of

this

instruction

is

being

used,

the

rounding

applies

to

the

quotient

but

not

the

remainder.

The

quotient

value

used

to

calculate

the

remainder

is

the

resultant

value

of

the

division.

The

resultant

value

of

the

calculation

is

copied

into

the

remainder

operand.

The

sign

of

the

remainder

is

the

same

as

that

of

the

dividend

operand

unless

the

remainder

has

a

value

of

0,

in

which

case

its

sign

is

positive.

If

the

remainder

operand

is

not

the

same

type

as

that

used

in

performing

the

operation,

the

resultant

value

is

converted

to

its

type.

If

necessary,

the

resultant

value

is

adjusted

to

the

length

of

the

remainder

operand,

aligned

at

the

assumed

decimal

point

of

the

remainder

operand,

or

both

before

being

copied

to

it.

Length

adjustment

and

decimal

point

alignment

are

performed

according

to

the

rules

of

arithmetic

operations

as

outlined

in

the

Arithmetic

Operations.

If

significant

digits

are

truncated

off

the

left

end

of

the

resultant

value,

a

size

(hex

0C0A)

exception

is

signaled.

Machine

Interface

Instructions

339

MCNPFAO.htm
MCNPFAO.htm
MCNPFAO.htm

If

a

decimal

to

binary

conversion

causes

a

size

(hex

0C0A)

exception

to

be

signaled

(in

programs

that

request

size

exceptions

to

be

signaled),

the

binary

value

contains

the

correct

truncated

result

only

if

the

decimal

value

contains

15

or

fewer

significant

nonfractional

digits.

Warning:

Temporary

Level

3

Header

Resultant

Conditions

The

algebraic

value

of

the

numeric

scalar

quotient

is

v

v

Positive

v

Negative

v

Zero

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C02

Decimal

Data

0C0A

Size

0C0B

Zero

Divide

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

340

iSeries:

Machine

Interface

Instructions

APIs

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Edit

(EDIT)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

10E3

Receiver

Source

Edit

mask

Operand

1:

Character

variable

scalar

or

data-pointer-defined

character

scalar.

Operand

2:

Numeric

scalar

or

data-pointer-defined

numeric

scalar.

Machine

Interface

Instructions

341

Operand

3:

Character

variable

scalar

or

data-pointer-defined

character

scalar.

Bound

program

access

Built-in

number

for

LBEDIT

is

137.

LBEDIT

(

receiver

:

address

receiver_length

:

address

of

unsigned

binary(4)

source

:

address

of

signed

binary(4)

OR

address

of

unsigned

binary(4)

OR

address

of

packed

decimal

(1

to

63

digits)

OR

address

of

zoned

decimal

(1

to

63

digits)

source_attributes

:

address

mask

:

address

mask_length

:

address

of

unsigned

binary(4)

)

The

receiver,

source

and

mask

parameters

correspond

to

operands

1,

2

and

3

on

the

EDIT

operation.

The

source_attributes

is

a

structure

which

describes

the

data

attributes

of

the

source

value.

The

format

of

this

structure

matches

that

of

the

third

operand

on

the

CVTCN

and

CVTNC

operations.

The

receiver_length

and

mask_length

parameters

contain

the

length,

in

bytes,

of

the

receiver

and

mask.

They

are

expected

to

contain

a

value

between

1

and

256.

--

OR

--

EDITPD

(

receiver

:

address

receiver_length

:

unsigned

binary(4)

source

:

address

of

packed

decimal

(1

to

63

digits)

source_length

:

unsigned

binary(4)

mask

:

address

mask_length

:

unsigned

binary(4)

)

This

built-in

function

supports

the

EDIT

operation

when

the

source

contains

a

packed

decimal

value.

The

receiver,

source

and

mask

parameters

correspond

to

operands

1,

2

and

3

on

the

EDIT

operation.

The

source_length

parameter

contains

the

length,

in

digits,

of

the

source.

It

is

expected

to

contain

a

value

between

1

and

63.

The

receiver_length

and

mask_length

parameters

contain

the

length,

in

bytes,

of

the

receiver

and

mask.

They

are

expected

to

contain

a

value

between

1

and

256.

Description:

The

value

of

a

numeric

scalar

is

transformed

from

its

internal

form

to

character

form

suitable

for

display

at

a

source/sink

device.

The

following

general

editing

functions

can

be

performed

during

transforming

of

the

source

operand

to

the

receiver

operand:

v

v

Unconditional

insertion

of

a

source

value

digit

with

a

zone

as

a

function

of

the

source

value’s

algebraic

sign

v

Unconditional

insertion

of

a

mask

operand

character

string

v

Conditional

insertion

of

one

of

two

possible

edit

mask

operand

character

strings

as

a

function

of

the

source

value’s

algebraic

sign

v

Conditional

insertion

of

a

source

value

digit

or

an

edit

mask

operand

replacement

character

as

a

function

of

source

value

leading

zero

suppression

v

Conditional

insertion

of

either

an

edit

mask

operand

character

string

or

a

series

of

replacement

characters

as

a

function

of

source

value

leading

zero

suppression

v

Conditional

floating

insertion

of

one

of

two

possible

edit

mask

operand

character

strings

as

a

function

of

both

the

algebraic

sign

of

the

source

value

and

leading

zero

suppression

The

operation

is

performed

by

transforming

the

source

(operand

2)

under

control

of

the

edit

mask

(operand

3)

and

placing

the

result

in

the

receiver

(operand

1).

342

iSeries:

Machine

Interface

Instructions

APIs

The

edit

mask

operand

(operand

3)

is

limited

to

no

more

than

256

bytes.

Mask

Syntax:

The

source

field

is

converted

to

packed

decimal

format.

The

edit

mask

contains

both

control

character

and

data

character

strings.

Both

the

edit

mask

and

the

source

fields

are

processed

left

to

right,

and

the

edited

result

is

placed

in

the

result

field

from

left

to

right.

If

the

number

of

digits

in

the

source

field

is

even,

the

four

high-order

bits

of

the

source

field

are

ignored

and

not

checked

for

validity.

All

other

source

digits

as

well

as

the

sign

are

checked

for

validity,

and

a

decimal

data

(hex

0C02)

exception

is

signaled

when

one

is

invalid.

Overlapping

of

any

of

these

fields

gives

unpredictable

results.

Nine

fixed

value

control

characters

can

be

in

the

edit

mask,

hex

AA

through

hex

AD

and

hex

AF

through

hex

B3.

Four

of

these

control

characters

specify

strings

of

characters

to

be

inserted

into

the

result

field

under

certain

conditions;

and

the

other

five

indicate

that

a

digit

from

the

source

field

should

be

checked

and

the

appropriate

action

taken.

One

variable

value

control

character

can

be

in

the

edit

mask.

This

control

character

indicates

the

end

of

a

string

of

characters.

The

value

of

the

end-of-string

character

can

vary

with

each

execution

of

the

instruction

and

is

determined

by

the

value

of

the

first

character

in

the

edit

mask.

If

the

first

character

of

the

edit

mask

is

a

value

less

than

hex

40,

then

that

value

is

used

as

the

end-of-string

character.

If

the

first

character

of

the

edit

mask

is

a

value

equal

to

or

greater

than

hex

40,

then

hex

AE

is

used

as

the

end-of-string

character.

A

significance

indicator

is

set

to

the

off

state

at

the

start

of

the

execution

of

this

instruction.

It

remains

in

this

state

until

a

nonzero

source

digit

is

encountered

in

the

source

field

or

until

one

of

the

four

unconditional

digits

(hex

AA

through

hex

AD)

or

an

unconditional

string

(hex

B3)

is

encountered

in

the

edit

mask.

When

significance

is

detected,

the

selected

floating

string

is

overlaid

into

the

result

field

immediately

before

(to

the

left

of)

the

first

significant

result

character.

When

the

significance

indicator

is

set

to

the

on

state,

the

first

significant

result

character

has

been

reached.

The

state

of

the

significance

indicator

determines

whether

the

fill

character

or

a

digit

from

the

source

field

is

to

be

inserted

into

the

result

field

for

conditional

digits

and

characters

in

conditional

strings

specified

in

the

edit

mask

field.

The

fill

character

is

a

hex

40

until

it

is

replaced

by

the

first

character

following

the

floating

string

specification

control

character

(hex

B1).

When

the

significance

indicator

is

in

the

off

state:

v

v

A

conditional

digit

control

character

in

the

edit

mask

causes

the

fill

character

to

be

moved

to

the

result

field.

v

A

character

in

a

conditional

string

in

the

edit

mask

causes

the

fill

character

to

be

moved

to

the

result

field.

When

the

significance

indicator

is

in

the

on

state:

v

v

A

conditional

digit

control

character

in

the

edit

mask

causes

a

source

digit

to

be

moved

to

the

result

field.

v

A

character

in

a

conditional

string

in

the

edit

mask

is

moved

to

the

result

field.

The

following

control

characters

are

found

in

the

edit

mask

field.

End-of-String

Character:

One

of

these

control

characters

(a

value

less

than

hex

40

or

hex

AE)

indicates

the

end

of

a

character

string

and

must

be

present

even

if

the

string

is

null.

Machine

Interface

Instructions

343

Static

Field

Character:

Hex

AF

This

control

character

indicates

the

start

of

a

static

field.

A

static

field

is

used

to

indicate

that

one

of

two

mask

character

strings

immediately

following

this

character

is

to

be

inserted

into

the

result

field,

depending

upon

the

algebraic

sign

of

the

source

field.

If

the

sign

is

positive,

the

first

string

is

to

be

inserted

into

the

result

field;

if

the

sign

is

negative,

the

second

string

is

to

be

inserted.

Static

field

format:

<Hex

AF>

<positive

string>.

.

.<less

than

hex

40>

<negative

string>.

.

.<hex

AE>

OR

<Hex

AF>

<positive

string>.

.

.<hex

AE>

<negative

string>.

.

.<hex

AE>

Floating

String

Specification

Field

Character:

Hex

B1

This

control

character

indicates

the

start

of

a

floating

string

specification

field.

The

first

character

of

the

field

is

used

as

the

fill

character;

following

the

fill

character

are

two

strings

delimited

by

the

end-of-string

control

character.

If

the

algebraic

sign

of

the

source

field

is

positive,

the

first

string

is

to

be

overlaid

into

the

result

field;

if

the

sign

is

negative,

the

second

string

is

to

be

overlaid.

The

string

selected

to

be

overlaid

into

the

result

field,

called

a

floating

string,

appears

immediately

to

the

left

of

the

first

significant

result

character.

If

significance

is

never

set,

neither

string

is

placed

in

the

result

field.

Conditional

source

digit

positions

(hex

B2

control

characters)

must

be

provided

in

the

edit

mask

immediately

following

the

hex

B1

field

to

accommodate

the

longer

of

the

two

floating

strings;

otherwise,

a

length

conformance

(hex

0C08)

exception

is

signaled.

For

each

of

these

B2

strings,

the

fill

character

is

inserted

into

the

result

field,

and

source

digits

are

not

consumed.

This

ensures

that

the

floating

string

never

overlays

bytes

preceding

the

receiver

operand.

Floating

string

specification

field

format:

<Hex

B1>

<fill

character>

<positive

string>.

.

.

<end-of-string

character>

<negative

string>.

.

.<end-of-string

character>

followed

by

<Hex

B2>.

.

.

344

iSeries:

Machine

Interface

Instructions

APIs

Conditional

String

Character:

Hex

B0

This

control

character

indicates

the

start

of

a

conditional

string,

which

consists

of

any

characters

delimited

by

the

end-of-string

control

character.

Depending

on

the

state

of

the

significance

indicator,

this

string

or

fill

characters

replacing

it

is

inserted

into

the

result

field.

If

the

significance

indicator

is

off,

a

fill

character

for

every

character

in

the

conditional

string

is

placed

in

the

result

field.

If

the

indicator

is

on,

the

characters

in

the

conditional

string

are

placed

in

the

result

field.

Conditional

string

format:

<Hex

B0>

<conditional

string>.

.

.<end-of-string

character>

Unconditional

String

Character:

Hex

B3

This

control

character

turns

on

the

significance

indicator

and

indicates

the

start

of

an

unconditional

string

that

consists

of

any

characters

delimited

by

the

end-of-string

control

character.

This

string

is

unconditionally

inserted

into

the

result

field

regardless

of

the

state

of

the

significance

indicator.

If

the

indicator

is

off

when

a

B3

control

character

is

encountered,

the

appropriate

floating

string

is

overlaid

into

the

result

field

before

(to

the

left

of)

the

B3

unconditional

string

(or

to

the

left

of

where

the

unconditional

string

would

have

been

if

it

were

not

null).

Unconditional

string

format:

<Hex

B3>

<unconditional

string>.

.

.<end-of-string

character>

Control

Characters

That

Correspond

to

Digits

in

the

Source

Field:

Hex

B2

This

control

character

specifies

that

either

the

corresponding

source

field

digit

or

the

floating

string

(hex

B1)

fill

character

is

inserted

into

the

result

field,

depending

on

the

state

of

the

significance

indicator.

If

the

significance

indicator

is

off,

the

fill

character

is

placed

in

the

result

field;

if

the

indicator

is

on,

the

source

digit

is

placed.

When

a

source

digit

is

moved

to

the

result

field,

the

zone

supplied

is

hex

F.

When

significance

(that

is,

a

nonzero

source

digit)

is

detected,

the

floating

string

is

overlaid

to

the

left

of

the

first

significant

character.

Control

characters

hex

AA,

hex

AB,

hex

AC,

and

hex

AD

turn

on

the

significance

indicator.

If

the

indicator

is

off

when

one

of

these

control

characters

is

encountered,

the

appropriate

floating

string

is

overlaid

into

the

result

field

before

(to

the

left

of)

the

result

digit.

Hex

AA

This

control

character

specifies

that

the

corresponding

source

field

digit

is

unconditionally

placed

in

the

4

low-order

bits

of

the

result

field

with

the

zone

set

to

a

hex

F.

Hex

AB

This

control

character

specifies

that

the

corresponding

source

field

digit

is

unconditionally

placed

in

the

result

field.

If

the

sign

of

the

source

field

is

positive,

the

zoned

portion

of

the

digit

is

set

to

hex

F

(the

preferred

positive

sign);

if

the

sign

is

negative,

the

zone

portion

is

set

to

hex

D

(the

preferred

negative

sign).

Hex

AC

This

control

character

specifies

that

the

corresponding

source

field

digit

is

unconditionally

placed

in

the

result

field.

If

the

algebraic

sign

of

the

source

field

is

positive,

the

zone

portion

of

the

result

is

set

to

hex

F

(the

preferred

positive

sign);

otherwise,

the

source

sign

field

is

moved

to

the

result

zone

field.

Hex

AD

This

control

character

specifies

that

the

corresponding

source

field

digit

is

unconditionally

placed

in

the

result

field.

If

the

algebraic

sign

of

the

source

field

is

negative,

the

zone

is

set

to

hex

D

(the

preferred

negative

sign);

otherwise,

the

source

field

sign

is

moved

to

the

zone

position

of

the

result

byte.

Machine

Interface

Instructions

345

The

following

table

provides

an

overview

of

the

results

obtained

with

the

valid

edit

conditions

and

sequences.

Table

1.

Valid

Edit

Conditions

and

Results

Mask

Character

Previous

Significance

Indicator

Source

Digit

Source

Sign

Result

Character(s)

Resulting

Significance

Indicator

AF

Off/On

Any

Positive

Positive

string

inserted

No

Change

Off/On

Any

Negative

Negative

string

inserted

No

Change

AA

Off

0-9

Positive

Positive

floating

string

overlaid;

hex

F,

source

digit

On

Off

0-9

Negative

Negative

floating

string

overlaid;

hex

F,

source

digit

On

On

0-9

Any

Hex

F,

source

digit

On

AB

Off

0-9

Positive

Positive

floating

string

overlaid;

hex

F,

source

digit

On

Off

0-9

Negative

Negative

floating

string

overlaid;

hex

D,

source

digit

On

On

0-9

Positive

Hex

F,

source

digit

On

On

0-9

Negative

Hex

D,

source

digit

On

AC

Off

0-9

Positive

Positive

floating

string

overlaid;

hex

F,

source

digit

Off

0-9

Negative

Negative

floating

string

overlaid;

source

sign

and

digit

On

On

0-9

Positive

Hex

F,

source

digit

On

On

0-9

Negative

Source

sign

and

digit

On

AD

Off

0-9

Positive

Positive

floating

string

overlaid;

source

sign

and

digit

On

Off

0-9

Negative

Negative

floating

string

overlaid;

hex

D,

source

digit

On

On

0-9

Positive

Source

sign

and

digit

On

On

0-9

Negative

Hex

D,

source

digit

On

B0

Off

Any

Any

Insert

fill

character

for

each

B0

string

character

Off

On

Any

Any

Insert

B0

character

string

On

B1

(including

necessary

B2s)

Off

Any

Any

Insert

the

fill

character

for

each

B2

character

that

corresponds

to

a

character

in

the

longer

of

the

two

floating

strings

No

Change

B2

(not

for

a

B1

field)

Off

0

Any

Insert

fill

character

Off

Off

1-9

Positive

Overlay

positive

floating

string

and

insert

hex

F,

source

digit

On

Off

1-9

Negative

Overlay

negative

floating

string

and

insert

hex

F,

source

digit

On

On

0-9

Any

Hex

F,

source

digit

B3

Off

Any

Positive

Overlay

positive

floating

string

and

insert

B3

character

string

On

Off

Any

Negative

Overlay

negative

floating

string

and

insert

B3

character

string

On

On

Any

Any

Insert

B3

character

string

On

346

iSeries:

Machine

Interface

Instructions

APIs

Mask

Character

Previous

Significance

Indicator

Source

Digit

Source

Sign

Result

Character(s)

Resulting

Significance

Indicator

Note:

1.

Any

character

is

a

valid

fill

character,

including

the

end-of-string

character.

2.

Hex

AF,

hex

B1,

hex

B0,

and

hex

B3

strings

must

be

terminated

by

the

end-of-string

character

even

if

they

are

null

strings.

3.

If

a

hex

B1

field

has

not

been

encountered

(specified)

when

the

significance

indicator

is

turned

on,

the

floating

string

is

considered

to

be

a

null

string

and

is

therefore

not

used

to

overlay

into

the

result

field.

4.

If

the

positive

and

negative

strings

of

a

static

field

are

of

unequal

length,

additional

static

fields

are

necessary

to

ensure

that

the

sum

of

the

lengths

of

the

positive

strings

equal

the

sum

of

the

lengths

of

the

negative

strings;

otherwise,

a

length

conformance

(hex

0C08)

exception

is

signaled

because

the

receiver

length

does

not

correspond

to

the

length

implied

by

the

edit

mask

and

source

field

sign.

The

following

figure

indicates

the

valid

ordering

of

control

characters

in

an

edit

mask

field.

Figure

1.

Edit

Mask

Field

Control

Characters

Explanation:

Condition

Definition

Machine

Interface

Instructions

347

0

Both

X

and

Y

can

appear

in

the

edit

mask

field

in

either

order.

1

Y

cannot

precede

X.

2

X

cannot

precede

Y.

3

Both

control

characters
(two

B1’s)

cannot

appear

in

an

edit

mask

field.

Violation

of

any

of

the

above

rules

will

result

in

an

edit

mask

syntax

(hex

0C05)

exception.

The

following

steps

are

performed

when

the

editing

is

done:

v

v

Convert

Source

Value

to

Packed

Decimal

–

–

The

numeric

value

in

the

source

operand

is

converted

to

a

packed

decimal

intermediate

value

before

the

editing

is

done.

If

the

source

operand

is

binary,

the

attributes

of

the

intermediate

packed

field

before

the

edit

are

calculated

as

follows:

Binary(2)

=

packed

(5,0)

or

Binary(4)

=

packed

(10,0)

A

data-pointer-defined

source

operand

with

8

byte

binary

attributes

is

not

supported

and

will

cause

a

scalar

value

invalid

(hex

3203)

exception

to

be

signaled.
v

Edit

–

–

The

editing

of

the

source

digits

and

mask

insertion

characters

into

the

receiver

operand

is

done

from

left

to

right.
v

Insert

Floating

String

into

Receiver

Field

–

–

If

a

floating

string

is

to

be

inserted

into

the

receiver

field,

this

is

done

after

the

other

editing.

Edit

Digit

Count

Exception:

An

edit

digit

count

(hex

0C04)

exception

is

signaled

when:

v

v

The

end

of

the

source

field

is

reached

and

there

are

more

control

characters

that

correspond

to

digits

in

the

edit

mask

field.

v

The

end

of

the

edit

mask

field

is

reached

and

there

are

more

digit

positions

in

the

source

field.

Edit

Mask

Syntax

Exception:

An

edit

mask

syntax

(hex

0C05)

exception

is

signaled

when

an

invalid

edit

mask

control

character

is

encountered

or

when

a

sequence

rule

is

violated.

Length

Conformance

Exception:

A

length

conformance

(hex

0C08)

exception

is

signaled

when:

v

v

The

end

of

the

edit

mask

field

is

reached

and

there

are

more

character

positions

in

the

result

field.

v

The

end

of

the

result

field

is

reached

and

more

positions

remain

in

the

edit

mask

field.

v

The

number

of

B2s

following

a

B1

field

cannot

accommodate

the

longer

of

the

two

floating

strings.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

348

iSeries:

Machine

Interface

Instructions

APIs

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0604

External

Data

Object

Not

Found

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C02

Decimal

Data

0C04

Edit

Digit

Count

0C05

Edit

Mask

Syntax

0C08

Length

Conformance

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

Machine

Interface

Instructions

349

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Edit

(EDIT)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

10E3

Receiver

Source

Edit

mask

Operand

1:

Character

variable

scalar

or

data-pointer-defined

character

scalar.

Operand

2:

Numeric

scalar

or

data-pointer-defined

numeric

scalar.

350

iSeries:

Machine

Interface

Instructions

APIs

Operand

3:

Character

variable

scalar

or

data-pointer-defined

character

scalar.

Bound

program

access

Built-in

number

for

LBEDIT

is

137.

LBEDIT

(

receiver

:

address

receiver_length

:

address

of

unsigned

binary(4)

source

:

address

of

signed

binary(4)

OR

address

of

unsigned

binary(4)

OR

address

of

packed

decimal

(1

to

63

digits)

OR

address

of

zoned

decimal

(1

to

63

digits)

source_attributes

:

address

mask

:

address

mask_length

:

address

of

unsigned

binary(4)

)

The

receiver,

source

and

mask

parameters

correspond

to

operands

1,

2

and

3

on

the

EDIT

operation.

The

source_attributes

is

a

structure

which

describes

the

data

attributes

of

the

source

value.

The

format

of

this

structure

matches

that

of

the

third

operand

on

the

CVTCN

and

CVTNC

operations.

The

receiver_length

and

mask_length

parameters

contain

the

length,

in

bytes,

of

the

receiver

and

mask.

They

are

expected

to

contain

a

value

between

1

and

256.

--

OR

--

EDITPD

(

receiver

:

address

receiver_length

:

unsigned

binary(4)

source

:

address

of

packed

decimal

(1

to

63

digits)

source_length

:

unsigned

binary(4)

mask

:

address

mask_length

:

unsigned

binary(4)

)

This

built-in

function

supports

the

EDIT

operation

when

the

source

contains

a

packed

decimal

value.

The

receiver,

source

and

mask

parameters

correspond

to

operands

1,

2

and

3

on

the

EDIT

operation.

The

source_length

parameter

contains

the

length,

in

digits,

of

the

source.

It

is

expected

to

contain

a

value

between

1

and

63.

The

receiver_length

and

mask_length

parameters

contain

the

length,

in

bytes,

of

the

receiver

and

mask.

They

are

expected

to

contain

a

value

between

1

and

256.

Description:

The

value

of

a

numeric

scalar

is

transformed

from

its

internal

form

to

character

form

suitable

for

display

at

a

source/sink

device.

The

following

general

editing

functions

can

be

performed

during

transforming

of

the

source

operand

to

the

receiver

operand:

v

v

Unconditional

insertion

of

a

source

value

digit

with

a

zone

as

a

function

of

the

source

value’s

algebraic

sign

v

Unconditional

insertion

of

a

mask

operand

character

string

v

Conditional

insertion

of

one

of

two

possible

edit

mask

operand

character

strings

as

a

function

of

the

source

value’s

algebraic

sign

v

Conditional

insertion

of

a

source

value

digit

or

an

edit

mask

operand

replacement

character

as

a

function

of

source

value

leading

zero

suppression

v

Conditional

insertion

of

either

an

edit

mask

operand

character

string

or

a

series

of

replacement

characters

as

a

function

of

source

value

leading

zero

suppression

v

Conditional

floating

insertion

of

one

of

two

possible

edit

mask

operand

character

strings

as

a

function

of

both

the

algebraic

sign

of

the

source

value

and

leading

zero

suppression

The

operation

is

performed

by

transforming

the

source

(operand

2)

under

control

of

the

edit

mask

(operand

3)

and

placing

the

result

in

the

receiver

(operand

1).

Machine

Interface

Instructions

351

The

edit

mask

operand

(operand

3)

is

limited

to

no

more

than

256

bytes.

Mask

Syntax:

The

source

field

is

converted

to

packed

decimal

format.

The

edit

mask

contains

both

control

character

and

data

character

strings.

Both

the

edit

mask

and

the

source

fields

are

processed

left

to

right,

and

the

edited

result

is

placed

in

the

result

field

from

left

to

right.

If

the

number

of

digits

in

the

source

field

is

even,

the

four

high-order

bits

of

the

source

field

are

ignored

and

not

checked

for

validity.

All

other

source

digits

as

well

as

the

sign

are

checked

for

validity,

and

a

decimal

data

(hex

0C02)

exception

is

signaled

when

one

is

invalid.

Overlapping

of

any

of

these

fields

gives

unpredictable

results.

Nine

fixed

value

control

characters

can

be

in

the

edit

mask,

hex

AA

through

hex

AD

and

hex

AF

through

hex

B3.

Four

of

these

control

characters

specify

strings

of

characters

to

be

inserted

into

the

result

field

under

certain

conditions;

and

the

other

five

indicate

that

a

digit

from

the

source

field

should

be

checked

and

the

appropriate

action

taken.

One

variable

value

control

character

can

be

in

the

edit

mask.

This

control

character

indicates

the

end

of

a

string

of

characters.

The

value

of

the

end-of-string

character

can

vary

with

each

execution

of

the

instruction

and

is

determined

by

the

value

of

the

first

character

in

the

edit

mask.

If

the

first

character

of

the

edit

mask

is

a

value

less

than

hex

40,

then

that

value

is

used

as

the

end-of-string

character.

If

the

first

character

of

the

edit

mask

is

a

value

equal

to

or

greater

than

hex

40,

then

hex

AE

is

used

as

the

end-of-string

character.

A

significance

indicator

is

set

to

the

off

state

at

the

start

of

the

execution

of

this

instruction.

It

remains

in

this

state

until

a

nonzero

source

digit

is

encountered

in

the

source

field

or

until

one

of

the

four

unconditional

digits

(hex

AA

through

hex

AD)

or

an

unconditional

string

(hex

B3)

is

encountered

in

the

edit

mask.

When

significance

is

detected,

the

selected

floating

string

is

overlaid

into

the

result

field

immediately

before

(to

the

left

of)

the

first

significant

result

character.

When

the

significance

indicator

is

set

to

the

on

state,

the

first

significant

result

character

has

been

reached.

The

state

of

the

significance

indicator

determines

whether

the

fill

character

or

a

digit

from

the

source

field

is

to

be

inserted

into

the

result

field

for

conditional

digits

and

characters

in

conditional

strings

specified

in

the

edit

mask

field.

The

fill

character

is

a

hex

40

until

it

is

replaced

by

the

first

character

following

the

floating

string

specification

control

character

(hex

B1).

When

the

significance

indicator

is

in

the

off

state:

v

v

A

conditional

digit

control

character

in

the

edit

mask

causes

the

fill

character

to

be

moved

to

the

result

field.

v

A

character

in

a

conditional

string

in

the

edit

mask

causes

the

fill

character

to

be

moved

to

the

result

field.

When

the

significance

indicator

is

in

the

on

state:

v

v

A

conditional

digit

control

character

in

the

edit

mask

causes

a

source

digit

to

be

moved

to

the

result

field.

v

A

character

in

a

conditional

string

in

the

edit

mask

is

moved

to

the

result

field.

The

following

control

characters

are

found

in

the

edit

mask

field.

End-of-String

Character:

One

of

these

control

characters

(a

value

less

than

hex

40

or

hex

AE)

indicates

the

end

of

a

character

string

and

must

be

present

even

if

the

string

is

null.

352

iSeries:

Machine

Interface

Instructions

APIs

Static

Field

Character:

Hex

AF

This

control

character

indicates

the

start

of

a

static

field.

A

static

field

is

used

to

indicate

that

one

of

two

mask

character

strings

immediately

following

this

character

is

to

be

inserted

into

the

result

field,

depending

upon

the

algebraic

sign

of

the

source

field.

If

the

sign

is

positive,

the

first

string

is

to

be

inserted

into

the

result

field;

if

the

sign

is

negative,

the

second

string

is

to

be

inserted.

Static

field

format:

<Hex

AF>

<positive

string>.

.

.<less

than

hex

40>

<negative

string>.

.

.<hex

AE>

OR

<Hex

AF>

<positive

string>.

.

.<hex

AE>

<negative

string>.

.

.<hex

AE>

Floating

String

Specification

Field

Character:

Hex

B1

This

control

character

indicates

the

start

of

a

floating

string

specification

field.

The

first

character

of

the

field

is

used

as

the

fill

character;

following

the

fill

character

are

two

strings

delimited

by

the

end-of-string

control

character.

If

the

algebraic

sign

of

the

source

field

is

positive,

the

first

string

is

to

be

overlaid

into

the

result

field;

if

the

sign

is

negative,

the

second

string

is

to

be

overlaid.

The

string

selected

to

be

overlaid

into

the

result

field,

called

a

floating

string,

appears

immediately

to

the

left

of

the

first

significant

result

character.

If

significance

is

never

set,

neither

string

is

placed

in

the

result

field.

Conditional

source

digit

positions

(hex

B2

control

characters)

must

be

provided

in

the

edit

mask

immediately

following

the

hex

B1

field

to

accommodate

the

longer

of

the

two

floating

strings;

otherwise,

a

length

conformance

(hex

0C08)

exception

is

signaled.

For

each

of

these

B2

strings,

the

fill

character

is

inserted

into

the

result

field,

and

source

digits

are

not

consumed.

This

ensures

that

the

floating

string

never

overlays

bytes

preceding

the

receiver

operand.

Floating

string

specification

field

format:

<Hex

B1>

<fill

character>

<positive

string>.

.

.

<end-of-string

character>

<negative

string>.

.

.<end-of-string

character>

followed

by

<Hex

B2>.

.

.

Machine

Interface

Instructions

353

Conditional

String

Character:

Hex

B0

This

control

character

indicates

the

start

of

a

conditional

string,

which

consists

of

any

characters

delimited

by

the

end-of-string

control

character.

Depending

on

the

state

of

the

significance

indicator,

this

string

or

fill

characters

replacing

it

is

inserted

into

the

result

field.

If

the

significance

indicator

is

off,

a

fill

character

for

every

character

in

the

conditional

string

is

placed

in

the

result

field.

If

the

indicator

is

on,

the

characters

in

the

conditional

string

are

placed

in

the

result

field.

Conditional

string

format:

<Hex

B0>

<conditional

string>.

.

.<end-of-string

character>

Unconditional

String

Character:

Hex

B3

This

control

character

turns

on

the

significance

indicator

and

indicates

the

start

of

an

unconditional

string

that

consists

of

any

characters

delimited

by

the

end-of-string

control

character.

This

string

is

unconditionally

inserted

into

the

result

field

regardless

of

the

state

of

the

significance

indicator.

If

the

indicator

is

off

when

a

B3

control

character

is

encountered,

the

appropriate

floating

string

is

overlaid

into

the

result

field

before

(to

the

left

of)

the

B3

unconditional

string

(or

to

the

left

of

where

the

unconditional

string

would

have

been

if

it

were

not

null).

Unconditional

string

format:

<Hex

B3>

<unconditional

string>.

.

.<end-of-string

character>

Control

Characters

That

Correspond

to

Digits

in

the

Source

Field:

Hex

B2

This

control

character

specifies

that

either

the

corresponding

source

field

digit

or

the

floating

string

(hex

B1)

fill

character

is

inserted

into

the

result

field,

depending

on

the

state

of

the

significance

indicator.

If

the

significance

indicator

is

off,

the

fill

character

is

placed

in

the

result

field;

if

the

indicator

is

on,

the

source

digit

is

placed.

When

a

source

digit

is

moved

to

the

result

field,

the

zone

supplied

is

hex

F.

When

significance

(that

is,

a

nonzero

source

digit)

is

detected,

the

floating

string

is

overlaid

to

the

left

of

the

first

significant

character.

Control

characters

hex

AA,

hex

AB,

hex

AC,

and

hex

AD

turn

on

the

significance

indicator.

If

the

indicator

is

off

when

one

of

these

control

characters

is

encountered,

the

appropriate

floating

string

is

overlaid

into

the

result

field

before

(to

the

left

of)

the

result

digit.

Hex

AA

This

control

character

specifies

that

the

corresponding

source

field

digit

is

unconditionally

placed

in

the

4

low-order

bits

of

the

result

field

with

the

zone

set

to

a

hex

F.

Hex

AB

This

control

character

specifies

that

the

corresponding

source

field

digit

is

unconditionally

placed

in

the

result

field.

If

the

sign

of

the

source

field

is

positive,

the

zoned

portion

of

the

digit

is

set

to

hex

F

(the

preferred

positive

sign);

if

the

sign

is

negative,

the

zone

portion

is

set

to

hex

D

(the

preferred

negative

sign).

Hex

AC

This

control

character

specifies

that

the

corresponding

source

field

digit

is

unconditionally

placed

in

the

result

field.

If

the

algebraic

sign

of

the

source

field

is

positive,

the

zone

portion

of

the

result

is

set

to

hex

F

(the

preferred

positive

sign);

otherwise,

the

source

sign

field

is

moved

to

the

result

zone

field.

Hex

AD

This

control

character

specifies

that

the

corresponding

source

field

digit

is

unconditionally

placed

in

the

result

field.

If

the

algebraic

sign

of

the

source

field

is

negative,

the

zone

is

set

to

hex

D

(the

preferred

negative

sign);

otherwise,

the

source

field

sign

is

moved

to

the

zone

position

of

the

result

byte.

354

iSeries:

Machine

Interface

Instructions

APIs

The

following

table

provides

an

overview

of

the

results

obtained

with

the

valid

edit

conditions

and

sequences.

Table

1.

Valid

Edit

Conditions

and

Results

Mask

Character

Previous

Significance

Indicator

Source

Digit

Source

Sign

Result

Character(s)

Resulting

Significance

Indicator

AF

Off/On

Any

Positive

Positive

string

inserted

No

Change

Off/On

Any

Negative

Negative

string

inserted

No

Change

AA

Off

0-9

Positive

Positive

floating

string

overlaid;

hex

F,

source

digit

On

Off

0-9

Negative

Negative

floating

string

overlaid;

hex

F,

source

digit

On

On

0-9

Any

Hex

F,

source

digit

On

AB

Off

0-9

Positive

Positive

floating

string

overlaid;

hex

F,

source

digit

On

Off

0-9

Negative

Negative

floating

string

overlaid;

hex

D,

source

digit

On

On

0-9

Positive

Hex

F,

source

digit

On

On

0-9

Negative

Hex

D,

source

digit

On

AC

Off

0-9

Positive

Positive

floating

string

overlaid;

hex

F,

source

digit

Off

0-9

Negative

Negative

floating

string

overlaid;

source

sign

and

digit

On

On

0-9

Positive

Hex

F,

source

digit

On

On

0-9

Negative

Source

sign

and

digit

On

AD

Off

0-9

Positive

Positive

floating

string

overlaid;

source

sign

and

digit

On

Off

0-9

Negative

Negative

floating

string

overlaid;

hex

D,

source

digit

On

On

0-9

Positive

Source

sign

and

digit

On

On

0-9

Negative

Hex

D,

source

digit

On

B0

Off

Any

Any

Insert

fill

character

for

each

B0

string

character

Off

On

Any

Any

Insert

B0

character

string

On

B1

(including

necessary

B2s)

Off

Any

Any

Insert

the

fill

character

for

each

B2

character

that

corresponds

to

a

character

in

the

longer

of

the

two

floating

strings

No

Change

B2

(not

for

a

B1

field)

Off

0

Any

Insert

fill

character

Off

Off

1-9

Positive

Overlay

positive

floating

string

and

insert

hex

F,

source

digit

On

Off

1-9

Negative

Overlay

negative

floating

string

and

insert

hex

F,

source

digit

On

On

0-9

Any

Hex

F,

source

digit

B3

Off

Any

Positive

Overlay

positive

floating

string

and

insert

B3

character

string

On

Off

Any

Negative

Overlay

negative

floating

string

and

insert

B3

character

string

On

On

Any

Any

Insert

B3

character

string

On

Machine

Interface

Instructions

355

Mask

Character

Previous

Significance

Indicator

Source

Digit

Source

Sign

Result

Character(s)

Resulting

Significance

Indicator

Note:

1.

Any

character

is

a

valid

fill

character,

including

the

end-of-string

character.

2.

Hex

AF,

hex

B1,

hex

B0,

and

hex

B3

strings

must

be

terminated

by

the

end-of-string

character

even

if

they

are

null

strings.

3.

If

a

hex

B1

field

has

not

been

encountered

(specified)

when

the

significance

indicator

is

turned

on,

the

floating

string

is

considered

to

be

a

null

string

and

is

therefore

not

used

to

overlay

into

the

result

field.

4.

If

the

positive

and

negative

strings

of

a

static

field

are

of

unequal

length,

additional

static

fields

are

necessary

to

ensure

that

the

sum

of

the

lengths

of

the

positive

strings

equal

the

sum

of

the

lengths

of

the

negative

strings;

otherwise,

a

length

conformance

(hex

0C08)

exception

is

signaled

because

the

receiver

length

does

not

correspond

to

the

length

implied

by

the

edit

mask

and

source

field

sign.

The

following

figure

indicates

the

valid

ordering

of

control

characters

in

an

edit

mask

field.

Figure

1.

Edit

Mask

Field

Control

Characters

Explanation:

Condition

Definition

356

iSeries:

Machine

Interface

Instructions

APIs

0

Both

X

and

Y

can

appear

in

the

edit

mask

field

in

either

order.

1

Y

cannot

precede

X.

2

X

cannot

precede

Y.

3

Both

control

characters
(two

B1’s)

cannot

appear

in

an

edit

mask

field.

Violation

of

any

of

the

above

rules

will

result

in

an

edit

mask

syntax

(hex

0C05)

exception.

The

following

steps

are

performed

when

the

editing

is

done:

v

v

Convert

Source

Value

to

Packed

Decimal

–

–

The

numeric

value

in

the

source

operand

is

converted

to

a

packed

decimal

intermediate

value

before

the

editing

is

done.

If

the

source

operand

is

binary,

the

attributes

of

the

intermediate

packed

field

before

the

edit

are

calculated

as

follows:

Binary(2)

=

packed

(5,0)

or

Binary(4)

=

packed

(10,0)

A

data-pointer-defined

source

operand

with

8

byte

binary

attributes

is

not

supported

and

will

cause

a

scalar

value

invalid

(hex

3203)

exception

to

be

signaled.
v

Edit

–

–

The

editing

of

the

source

digits

and

mask

insertion

characters

into

the

receiver

operand

is

done

from

left

to

right.
v

Insert

Floating

String

into

Receiver

Field

–

–

If

a

floating

string

is

to

be

inserted

into

the

receiver

field,

this

is

done

after

the

other

editing.

Edit

Digit

Count

Exception:

An

edit

digit

count

(hex

0C04)

exception

is

signaled

when:

v

v

The

end

of

the

source

field

is

reached

and

there

are

more

control

characters

that

correspond

to

digits

in

the

edit

mask

field.

v

The

end

of

the

edit

mask

field

is

reached

and

there

are

more

digit

positions

in

the

source

field.

Edit

Mask

Syntax

Exception:

An

edit

mask

syntax

(hex

0C05)

exception

is

signaled

when

an

invalid

edit

mask

control

character

is

encountered

or

when

a

sequence

rule

is

violated.

Length

Conformance

Exception:

A

length

conformance

(hex

0C08)

exception

is

signaled

when:

v

v

The

end

of

the

edit

mask

field

is

reached

and

there

are

more

character

positions

in

the

result

field.

v

The

end

of

the

result

field

is

reached

and

more

positions

remain

in

the

edit

mask

field.

v

The

number

of

B2s

following

a

B1

field

cannot

accommodate

the

longer

of

the

two

floating

strings.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Machine

Interface

Instructions

357

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0604

External

Data

Object

Not

Found

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C02

Decimal

Data

0C04

Edit

Digit

Count

0C05

Edit

Mask

Syntax

0C08

Length

Conformance

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

358

iSeries:

Machine

Interface

Instructions

APIs

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Edit

(EDIT)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

10E3

Receiver

Source

Edit

mask

Operand

1:

Character

variable

scalar

or

data-pointer-defined

character

scalar.

Operand

2:

Numeric

scalar

or

data-pointer-defined

numeric

scalar.

Machine

Interface

Instructions

359

Operand

3:

Character

variable

scalar

or

data-pointer-defined

character

scalar.

Bound

program

access

Built-in

number

for

LBEDIT

is

137.

LBEDIT

(

receiver

:

address

receiver_length

:

address

of

unsigned

binary(4)

source

:

address

of

signed

binary(4)

OR

address

of

unsigned

binary(4)

OR

address

of

packed

decimal

(1

to

63

digits)

OR

address

of

zoned

decimal

(1

to

63

digits)

source_attributes

:

address

mask

:

address

mask_length

:

address

of

unsigned

binary(4)

)

The

receiver,

source

and

mask

parameters

correspond

to

operands

1,

2

and

3

on

the

EDIT

operation.

The

source_attributes

is

a

structure

which

describes

the

data

attributes

of

the

source

value.

The

format

of

this

structure

matches

that

of

the

third

operand

on

the

CVTCN

and

CVTNC

operations.

The

receiver_length

and

mask_length

parameters

contain

the

length,

in

bytes,

of

the

receiver

and

mask.

They

are

expected

to

contain

a

value

between

1

and

256.

--

OR

--

EDITPD

(

receiver

:

address

receiver_length

:

unsigned

binary(4)

source

:

address

of

packed

decimal

(1

to

63

digits)

source_length

:

unsigned

binary(4)

mask

:

address

mask_length

:

unsigned

binary(4)

)

This

built-in

function

supports

the

EDIT

operation

when

the

source

contains

a

packed

decimal

value.

The

receiver,

source

and

mask

parameters

correspond

to

operands

1,

2

and

3

on

the

EDIT

operation.

The

source_length

parameter

contains

the

length,

in

digits,

of

the

source.

It

is

expected

to

contain

a

value

between

1

and

63.

The

receiver_length

and

mask_length

parameters

contain

the

length,

in

bytes,

of

the

receiver

and

mask.

They

are

expected

to

contain

a

value

between

1

and

256.

Description:

The

value

of

a

numeric

scalar

is

transformed

from

its

internal

form

to

character

form

suitable

for

display

at

a

source/sink

device.

The

following

general

editing

functions

can

be

performed

during

transforming

of

the

source

operand

to

the

receiver

operand:

v

v

Unconditional

insertion

of

a

source

value

digit

with

a

zone

as

a

function

of

the

source

value’s

algebraic

sign

v

Unconditional

insertion

of

a

mask

operand

character

string

v

Conditional

insertion

of

one

of

two

possible

edit

mask

operand

character

strings

as

a

function

of

the

source

value’s

algebraic

sign

v

Conditional

insertion

of

a

source

value

digit

or

an

edit

mask

operand

replacement

character

as

a

function

of

source

value

leading

zero

suppression

v

Conditional

insertion

of

either

an

edit

mask

operand

character

string

or

a

series

of

replacement

characters

as

a

function

of

source

value

leading

zero

suppression

v

Conditional

floating

insertion

of

one

of

two

possible

edit

mask

operand

character

strings

as

a

function

of

both

the

algebraic

sign

of

the

source

value

and

leading

zero

suppression

The

operation

is

performed

by

transforming

the

source

(operand

2)

under

control

of

the

edit

mask

(operand

3)

and

placing

the

result

in

the

receiver

(operand

1).

360

iSeries:

Machine

Interface

Instructions

APIs

The

edit

mask

operand

(operand

3)

is

limited

to

no

more

than

256

bytes.

Mask

Syntax:

The

source

field

is

converted

to

packed

decimal

format.

The

edit

mask

contains

both

control

character

and

data

character

strings.

Both

the

edit

mask

and

the

source

fields

are

processed

left

to

right,

and

the

edited

result

is

placed

in

the

result

field

from

left

to

right.

If

the

number

of

digits

in

the

source

field

is

even,

the

four

high-order

bits

of

the

source

field

are

ignored

and

not

checked

for

validity.

All

other

source

digits

as

well

as

the

sign

are

checked

for

validity,

and

a

decimal

data

(hex

0C02)

exception

is

signaled

when

one

is

invalid.

Overlapping

of

any

of

these

fields

gives

unpredictable

results.

Nine

fixed

value

control

characters

can

be

in

the

edit

mask,

hex

AA

through

hex

AD

and

hex

AF

through

hex

B3.

Four

of

these

control

characters

specify

strings

of

characters

to

be

inserted

into

the

result

field

under

certain

conditions;

and

the

other

five

indicate

that

a

digit

from

the

source

field

should

be

checked

and

the

appropriate

action

taken.

One

variable

value

control

character

can

be

in

the

edit

mask.

This

control

character

indicates

the

end

of

a

string

of

characters.

The

value

of

the

end-of-string

character

can

vary

with

each

execution

of

the

instruction

and

is

determined

by

the

value

of

the

first

character

in

the

edit

mask.

If

the

first

character

of

the

edit

mask

is

a

value

less

than

hex

40,

then

that

value

is

used

as

the

end-of-string

character.

If

the

first

character

of

the

edit

mask

is

a

value

equal

to

or

greater

than

hex

40,

then

hex

AE

is

used

as

the

end-of-string

character.

A

significance

indicator

is

set

to

the

off

state

at

the

start

of

the

execution

of

this

instruction.

It

remains

in

this

state

until

a

nonzero

source

digit

is

encountered

in

the

source

field

or

until

one

of

the

four

unconditional

digits

(hex

AA

through

hex

AD)

or

an

unconditional

string

(hex

B3)

is

encountered

in

the

edit

mask.

When

significance

is

detected,

the

selected

floating

string

is

overlaid

into

the

result

field

immediately

before

(to

the

left

of)

the

first

significant

result

character.

When

the

significance

indicator

is

set

to

the

on

state,

the

first

significant

result

character

has

been

reached.

The

state

of

the

significance

indicator

determines

whether

the

fill

character

or

a

digit

from

the

source

field

is

to

be

inserted

into

the

result

field

for

conditional

digits

and

characters

in

conditional

strings

specified

in

the

edit

mask

field.

The

fill

character

is

a

hex

40

until

it

is

replaced

by

the

first

character

following

the

floating

string

specification

control

character

(hex

B1).

When

the

significance

indicator

is

in

the

off

state:

v

v

A

conditional

digit

control

character

in

the

edit

mask

causes

the

fill

character

to

be

moved

to

the

result

field.

v

A

character

in

a

conditional

string

in

the

edit

mask

causes

the

fill

character

to

be

moved

to

the

result

field.

When

the

significance

indicator

is

in

the

on

state:

v

v

A

conditional

digit

control

character

in

the

edit

mask

causes

a

source

digit

to

be

moved

to

the

result

field.

v

A

character

in

a

conditional

string

in

the

edit

mask

is

moved

to

the

result

field.

The

following

control

characters

are

found

in

the

edit

mask

field.

End-of-String

Character:

One

of

these

control

characters

(a

value

less

than

hex

40

or

hex

AE)

indicates

the

end

of

a

character

string

and

must

be

present

even

if

the

string

is

null.

Machine

Interface

Instructions

361

Static

Field

Character:

Hex

AF

This

control

character

indicates

the

start

of

a

static

field.

A

static

field

is

used

to

indicate

that

one

of

two

mask

character

strings

immediately

following

this

character

is

to

be

inserted

into

the

result

field,

depending

upon

the

algebraic

sign

of

the

source

field.

If

the

sign

is

positive,

the

first

string

is

to

be

inserted

into

the

result

field;

if

the

sign

is

negative,

the

second

string

is

to

be

inserted.

Static

field

format:

<Hex

AF>

<positive

string>.

.

.<less

than

hex

40>

<negative

string>.

.

.<hex

AE>

OR

<Hex

AF>

<positive

string>.

.

.<hex

AE>

<negative

string>.

.

.<hex

AE>

Floating

String

Specification

Field

Character:

Hex

B1

This

control

character

indicates

the

start

of

a

floating

string

specification

field.

The

first

character

of

the

field

is

used

as

the

fill

character;

following

the

fill

character

are

two

strings

delimited

by

the

end-of-string

control

character.

If

the

algebraic

sign

of

the

source

field

is

positive,

the

first

string

is

to

be

overlaid

into

the

result

field;

if

the

sign

is

negative,

the

second

string

is

to

be

overlaid.

The

string

selected

to

be

overlaid

into

the

result

field,

called

a

floating

string,

appears

immediately

to

the

left

of

the

first

significant

result

character.

If

significance

is

never

set,

neither

string

is

placed

in

the

result

field.

Conditional

source

digit

positions

(hex

B2

control

characters)

must

be

provided

in

the

edit

mask

immediately

following

the

hex

B1

field

to

accommodate

the

longer

of

the

two

floating

strings;

otherwise,

a

length

conformance

(hex

0C08)

exception

is

signaled.

For

each

of

these

B2

strings,

the

fill

character

is

inserted

into

the

result

field,

and

source

digits

are

not

consumed.

This

ensures

that

the

floating

string

never

overlays

bytes

preceding

the

receiver

operand.

Floating

string

specification

field

format:

<Hex

B1>

<fill

character>

<positive

string>.

.

.

<end-of-string

character>

<negative

string>.

.

.<end-of-string

character>

followed

by

<Hex

B2>.

.

.

362

iSeries:

Machine

Interface

Instructions

APIs

Conditional

String

Character:

Hex

B0

This

control

character

indicates

the

start

of

a

conditional

string,

which

consists

of

any

characters

delimited

by

the

end-of-string

control

character.

Depending

on

the

state

of

the

significance

indicator,

this

string

or

fill

characters

replacing

it

is

inserted

into

the

result

field.

If

the

significance

indicator

is

off,

a

fill

character

for

every

character

in

the

conditional

string

is

placed

in

the

result

field.

If

the

indicator

is

on,

the

characters

in

the

conditional

string

are

placed

in

the

result

field.

Conditional

string

format:

<Hex

B0>

<conditional

string>.

.

.<end-of-string

character>

Unconditional

String

Character:

Hex

B3

This

control

character

turns

on

the

significance

indicator

and

indicates

the

start

of

an

unconditional

string

that

consists

of

any

characters

delimited

by

the

end-of-string

control

character.

This

string

is

unconditionally

inserted

into

the

result

field

regardless

of

the

state

of

the

significance

indicator.

If

the

indicator

is

off

when

a

B3

control

character

is

encountered,

the

appropriate

floating

string

is

overlaid

into

the

result

field

before

(to

the

left

of)

the

B3

unconditional

string

(or

to

the

left

of

where

the

unconditional

string

would

have

been

if

it

were

not

null).

Unconditional

string

format:

<Hex

B3>

<unconditional

string>.

.

.<end-of-string

character>

Control

Characters

That

Correspond

to

Digits

in

the

Source

Field:

Hex

B2

This

control

character

specifies

that

either

the

corresponding

source

field

digit

or

the

floating

string

(hex

B1)

fill

character

is

inserted

into

the

result

field,

depending

on

the

state

of

the

significance

indicator.

If

the

significance

indicator

is

off,

the

fill

character

is

placed

in

the

result

field;

if

the

indicator

is

on,

the

source

digit

is

placed.

When

a

source

digit

is

moved

to

the

result

field,

the

zone

supplied

is

hex

F.

When

significance

(that

is,

a

nonzero

source

digit)

is

detected,

the

floating

string

is

overlaid

to

the

left

of

the

first

significant

character.

Control

characters

hex

AA,

hex

AB,

hex

AC,

and

hex

AD

turn

on

the

significance

indicator.

If

the

indicator

is

off

when

one

of

these

control

characters

is

encountered,

the

appropriate

floating

string

is

overlaid

into

the

result

field

before

(to

the

left

of)

the

result

digit.

Hex

AA

This

control

character

specifies

that

the

corresponding

source

field

digit

is

unconditionally

placed

in

the

4

low-order

bits

of

the

result

field

with

the

zone

set

to

a

hex

F.

Hex

AB

This

control

character

specifies

that

the

corresponding

source

field

digit

is

unconditionally

placed

in

the

result

field.

If

the

sign

of

the

source

field

is

positive,

the

zoned

portion

of

the

digit

is

set

to

hex

F

(the

preferred

positive

sign);

if

the

sign

is

negative,

the

zone

portion

is

set

to

hex

D

(the

preferred

negative

sign).

Hex

AC

This

control

character

specifies

that

the

corresponding

source

field

digit

is

unconditionally

placed

in

the

result

field.

If

the

algebraic

sign

of

the

source

field

is

positive,

the

zone

portion

of

the

result

is

set

to

hex

F

(the

preferred

positive

sign);

otherwise,

the

source

sign

field

is

moved

to

the

result

zone

field.

Hex

AD

This

control

character

specifies

that

the

corresponding

source

field

digit

is

unconditionally

placed

in

the

result

field.

If

the

algebraic

sign

of

the

source

field

is

negative,

the

zone

is

set

to

hex

D

(the

preferred

negative

sign);

otherwise,

the

source

field

sign

is

moved

to

the

zone

position

of

the

result

byte.

Machine

Interface

Instructions

363

The

following

table

provides

an

overview

of

the

results

obtained

with

the

valid

edit

conditions

and

sequences.

Table

1.

Valid

Edit

Conditions

and

Results

Mask

Character

Previous

Significance

Indicator

Source

Digit

Source

Sign

Result

Character(s)

Resulting

Significance

Indicator

AF

Off/On

Any

Positive

Positive

string

inserted

No

Change

Off/On

Any

Negative

Negative

string

inserted

No

Change

AA

Off

0-9

Positive

Positive

floating

string

overlaid;

hex

F,

source

digit

On

Off

0-9

Negative

Negative

floating

string

overlaid;

hex

F,

source

digit

On

On

0-9

Any

Hex

F,

source

digit

On

AB

Off

0-9

Positive

Positive

floating

string

overlaid;

hex

F,

source

digit

On

Off

0-9

Negative

Negative

floating

string

overlaid;

hex

D,

source

digit

On

On

0-9

Positive

Hex

F,

source

digit

On

On

0-9

Negative

Hex

D,

source

digit

On

AC

Off

0-9

Positive

Positive

floating

string

overlaid;

hex

F,

source

digit

Off

0-9

Negative

Negative

floating

string

overlaid;

source

sign

and

digit

On

On

0-9

Positive

Hex

F,

source

digit

On

On

0-9

Negative

Source

sign

and

digit

On

AD

Off

0-9

Positive

Positive

floating

string

overlaid;

source

sign

and

digit

On

Off

0-9

Negative

Negative

floating

string

overlaid;

hex

D,

source

digit

On

On

0-9

Positive

Source

sign

and

digit

On

On

0-9

Negative

Hex

D,

source

digit

On

B0

Off

Any

Any

Insert

fill

character

for

each

B0

string

character

Off

On

Any

Any

Insert

B0

character

string

On

B1

(including

necessary

B2s)

Off

Any

Any

Insert

the

fill

character

for

each

B2

character

that

corresponds

to

a

character

in

the

longer

of

the

two

floating

strings

No

Change

B2

(not

for

a

B1

field)

Off

0

Any

Insert

fill

character

Off

Off

1-9

Positive

Overlay

positive

floating

string

and

insert

hex

F,

source

digit

On

Off

1-9

Negative

Overlay

negative

floating

string

and

insert

hex

F,

source

digit

On

On

0-9

Any

Hex

F,

source

digit

B3

Off

Any

Positive

Overlay

positive

floating

string

and

insert

B3

character

string

On

Off

Any

Negative

Overlay

negative

floating

string

and

insert

B3

character

string

On

On

Any

Any

Insert

B3

character

string

On

364

iSeries:

Machine

Interface

Instructions

APIs

Mask

Character

Previous

Significance

Indicator

Source

Digit

Source

Sign

Result

Character(s)

Resulting

Significance

Indicator

Note:

1.

Any

character

is

a

valid

fill

character,

including

the

end-of-string

character.

2.

Hex

AF,

hex

B1,

hex

B0,

and

hex

B3

strings

must

be

terminated

by

the

end-of-string

character

even

if

they

are

null

strings.

3.

If

a

hex

B1

field

has

not

been

encountered

(specified)

when

the

significance

indicator

is

turned

on,

the

floating

string

is

considered

to

be

a

null

string

and

is

therefore

not

used

to

overlay

into

the

result

field.

4.

If

the

positive

and

negative

strings

of

a

static

field

are

of

unequal

length,

additional

static

fields

are

necessary

to

ensure

that

the

sum

of

the

lengths

of

the

positive

strings

equal

the

sum

of

the

lengths

of

the

negative

strings;

otherwise,

a

length

conformance

(hex

0C08)

exception

is

signaled

because

the

receiver

length

does

not

correspond

to

the

length

implied

by

the

edit

mask

and

source

field

sign.

The

following

figure

indicates

the

valid

ordering

of

control

characters

in

an

edit

mask

field.

Figure

1.

Edit

Mask

Field

Control

Characters

Explanation:

Condition

Definition

Machine

Interface

Instructions

365

0

Both

X

and

Y

can

appear

in

the

edit

mask

field

in

either

order.

1

Y

cannot

precede

X.

2

X

cannot

precede

Y.

3

Both

control

characters
(two

B1’s)

cannot

appear

in

an

edit

mask

field.

Violation

of

any

of

the

above

rules

will

result

in

an

edit

mask

syntax

(hex

0C05)

exception.

The

following

steps

are

performed

when

the

editing

is

done:

v

v

Convert

Source

Value

to

Packed

Decimal

–

–

The

numeric

value

in

the

source

operand

is

converted

to

a

packed

decimal

intermediate

value

before

the

editing

is

done.

If

the

source

operand

is

binary,

the

attributes

of

the

intermediate

packed

field

before

the

edit

are

calculated

as

follows:

Binary(2)

=

packed

(5,0)

or

Binary(4)

=

packed

(10,0)

A

data-pointer-defined

source

operand

with

8

byte

binary

attributes

is

not

supported

and

will

cause

a

scalar

value

invalid

(hex

3203)

exception

to

be

signaled.
v

Edit

–

–

The

editing

of

the

source

digits

and

mask

insertion

characters

into

the

receiver

operand

is

done

from

left

to

right.
v

Insert

Floating

String

into

Receiver

Field

–

–

If

a

floating

string

is

to

be

inserted

into

the

receiver

field,

this

is

done

after

the

other

editing.

Edit

Digit

Count

Exception:

An

edit

digit

count

(hex

0C04)

exception

is

signaled

when:

v

v

The

end

of

the

source

field

is

reached

and

there

are

more

control

characters

that

correspond

to

digits

in

the

edit

mask

field.

v

The

end

of

the

edit

mask

field

is

reached

and

there

are

more

digit

positions

in

the

source

field.

Edit

Mask

Syntax

Exception:

An

edit

mask

syntax

(hex

0C05)

exception

is

signaled

when

an

invalid

edit

mask

control

character

is

encountered

or

when

a

sequence

rule

is

violated.

Length

Conformance

Exception:

A

length

conformance

(hex

0C08)

exception

is

signaled

when:

v

v

The

end

of

the

edit

mask

field

is

reached

and

there

are

more

character

positions

in

the

result

field.

v

The

end

of

the

result

field

is

reached

and

more

positions

remain

in

the

edit

mask

field.

v

The

number

of

B2s

following

a

B1

field

cannot

accommodate

the

longer

of

the

two

floating

strings.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

366

iSeries:

Machine

Interface

Instructions

APIs

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0604

External

Data

Object

Not

Found

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C02

Decimal

Data

0C04

Edit

Digit

Count

0C05

Edit

Mask

Syntax

0C08

Length

Conformance

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

Machine

Interface

Instructions

367

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

End

(END)

Op

Code

(Hex)

0260

Description:

The

instruction

delimits

the

end

of

a

program’s

instruction

stream.

When

this

instruction

is

encountered

in

execution,

it

causes

a

return

to

the

preceding

invocation

(if

present)

or

causes

termination

of

the

process

phase

if

the

instruction

is

executed

in

the

highest-level

invocation

for

the

initial

thread

of

the

process.

The

End

instruction

delineates

the

end

of

the

instruction

stream.

When

it

is

encountered

in

execution,

the

instruction

functions

as

a

Return

External

instruction

with

a

null

operand.

Refer

to

the

Return

External

(RTX)

instruction

for

a

description

of

that

instruction.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

368

iSeries:

Machine

Interface

Instructions

APIs

Exceptions

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2208

Object

Compressed

220B

Object

Not

Available

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

Enqueue

(ENQ)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

036B

Queue

Message

prefix

Message

text

Operand

1:

System

pointer.

Operand

2:

Character

scalar.

Operand

3:

Space

pointer.

Bound

program

access

Built-in

number

for

ENQ

is

43.

ENQ

(

queue

:

address

of

system

pointer

message_prefix

:

address

message_text

:

address

)

Description:

A

message

is

enqueued

according

to

the

queue

type

attribute

specified

during

the

queue’s

creation.

Machine

Interface

Instructions

369

If

keyed

sequence

is

specified,

enqueued

messages

are

sequenced

in

ascending

binary

collating

order

according

to

the

key

value.

If

a

message

to

be

enqueued

has

a

key

value

equal

to

an

existing

enqueued

key

value,

the

message

being

added

is

enqueued

following

the

existing

message.

If

the

queue

was

defined

with

either

last

in,

first

out

(LIFO)

or

first

in,

first

out

(FIFO)

sequencing,

then

enqueued

messages

are

ordered

chronologically

with

the

latest

enqueued

message

being

either

first

on

the

queue

or

last

on

the

queue,

respectively.

A

key

can

be

provided

and

associated

with

messages

enqueued

in

a

LIFO

or

FIFO

queue;

however,

the

key

does

not

establish

a

message’s

position

in

the

queue.

The

key

can

contain

pointers,

but

the

pointers

are

not

considered

to

be

pointers

when

they

are

placed

on

the

queue

by

an

Enqueue

instruction.

Operand

1

specifies

the

queue

to

which

a

message

is

to

be

enqueued.

Operand

2

specifies

the

message

prefix,

and

operand

3

specifies

the

message

text.

The

format

of

the

message

prefix

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Size

of

message

to

be

enqueued

Bin(4)

4

4

Enqueue

key

value

(ignored

for

FIFO/LIFO

queues

with

key

lengths

equal

to

0)

Char(key

length)

*

*

—-

End

—-

The

size

of

message

to

be

enqueued

is

supplied

to

inform

the

machine

of

the

number

of

bytes

in

the

space

that

are

to

be

considered

message

text.

The

size

of

the

message

is

then

considered

the

lesser

of

the

size

of

message

to

be

enqueued

attribute

and

the

maximum

message

size

specified

on

queue

creation.

The

message

text

can

contain

pointers.

When

pointers

are

in

message

text,

the

operand

3

space

pointer

must

be

16-byte

aligned.

Improper

alignment

will

result

in

an

exception

being

signaled.

If

the

enqueued

message

causes

the

number

of

messages

to

exceed

the

maximum

number

of

messages

attribute

of

the

queue,

one

of

the

following

occurs:

v

v

If

the

queue

is

not

extendable,

or

if

the

maximum

number

of

extends

specified

by

the

user

at

queue

creation

has

been

reached,

then

the

queue

full

(hex

2602)

exception

is

signaled.

The

message

is

not

enqueued.

v

If

the

queue

is

extendable,

the

queue

is

implicitly

extended

by

the

extension

value

attribute.

The

message

is

enqueued.

No

exception

is

signaled.

Limitations

(Subject

to

Change):

The

maximum

allowable

queue

size,

including

all

messages

currently

enqueued

and

the

machine

overhead,

is

2

gigabytes.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Insert

–

–

Operand

1
v

Execute

–

–

Contexts

referenced

for

address

resolution

370

iSeries:

Machine

Interface

Instructions

APIs

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C04

Object

Storage

Limit

Exceeded

1C0E

IASP

Resources

Exceeded

1C11

Independent

ASP

Varied

Off

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

Machine

Interface

Instructions

371

2202

Object

Destroyed

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

26

Process

Management

2602

Queue

full

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

30

Journal

3002

Entry

Not

Journaled

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Ensure

Object

(ENSOBJ)

Op

Code

(Hex)

Operand

1

0381

System

object

Operand

1:

System

pointer.

Bound

program

access

Built-in

number

for

ENSOBJ

is

67.

ENSOBJ

(

system_object

:

address

of

system

pointer

)

Description:

The

system

object

identified

by

operand

1

is

protected

from

volatile

storage

loss.

The

machine

ensures

that

any

changes

made

to

the

specified

object

are

recorded

on

nonvolatile

storage

media.

The

access

state

of

the

object

is

not

changed

by

this

instruction.

If

operand

1

addresses

a

temporary

372

iSeries:

Machine

Interface

Instructions

APIs

object,

no

operation

is

performed

because

temporary

objects

are

not

preserved

during

a

machine

failure.

No

exception

is

signaled

if

temporary

objects

are

referenced.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

Machine

Interface

Instructions

373

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2204

Object

Not

Eligible

for

Operation

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

30

Journal

3002

Entry

Not

Journaled

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Exchange

Bytes

(EXCHBY)

Op

Code

(Hex)

Operand

1

Operand

2

10CE

Source

1

Source

2

Operand

1:

Character

variable

scalar

or

numeric

variable

scalar.

374

iSeries:

Machine

Interface

Instructions

APIs

Operand

2:

Character

variable

scalar

or

numeric

variable

scalar.

Description:

The

logical

character

string

values

of

the

two

source

operands

are

exchanged.

The

value

of

the

second

source

operand

is

placed

in

the

first

source

operand

and

the

value

of

the

first

source

operand

is

placed

in

the

second

operand.

The

operands

can

be

either

character

or

numeric.

Any

numeric

operands

are

interpreted

as

logical

character

strings.

Both

operands

must

have

the

same

length.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

Machine

Interface

Instructions

375

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Exclusive

Or

(XOR)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-5]

XOR

109B

Receiver

Source

1

Source

2

XORI

189B

Indicator

options

Receiver

Source

1

Source

2

Indicator

targets

XORB

1C9B

Branch

options

Receiver

Source

1

Source

2

Branch

targets

Operand

1:

Character

variable

scalar

or

numeric

variable

scalar.

Operand

2:

Character

scalar

or

numeric

scalar.

Operand

3:

Character

scalar

or

numeric

scalar.

Operand

4-5:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Short

forms:

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

[3-4]

XORS

119B

Receiver/Source

1

Source

2

XORIS

199B

Indicator

options

Receiver/Source

1

Source

2

Indicator

targets

376

iSeries:

Machine

Interface

Instructions

APIs

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

[3-4]

XORBS

1D9B

Branch

options

Receiver/Source

1

Source

2

Branch

targets

Operand

1:

Character

variable

scalar

or

numeric

variable

scalar.

Operand

2:

Character

scalar

or

numeric

scalar.

Operand

3-4:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

The

Boolean

exclusive

or

operation

is

performed

on

the

string

values

in

the

source

operands.

The

resulting

string

is

placed

in

the

receiver

operand.

The

operands

may

be

character

or

numeric

scalars.

They

are

both

interpreted

as

bit

strings.

Substringing

is

supported

for

both

character

and

numeric

operands.

The

length

of

the

operation

is

equal

to

the

length

of

the

longer

of

the

two

source

operands.

The

shorter

of

the

two

operands

is

padded

on

the

right.

The

operation

begins

with

the

two

source

operands

left-adjusted

and

continues

bit

by

bit

until

they

are

completed.

The

bit

values

of

the

result

are

determined

as

follows:

Source

1

Bit

Source

2

Bit

Result

Bit

0

0

0

0

1

1

1

0

1

1

1

0

The

result

value

is

then

placed

(left-adjusted)

in

the

receiver

operand

with

truncating

or

padding

taking

place

on

the

right.

The

pad

value

used

in

this

instruction

is

a

hex

00.

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

be

specified

for

operands

1,

2,

and

3.

The

effect

of

specifying

a

null

substring

reference

for

one

source

operand

is

that

the

other

source

operand

is

exclusive

ored

with

an

equal

length

string

of

all

hex

00s.

When

a

null

substring

reference

is

specified

for

both

source

operands,

the

result

is

all

zero

and

the

instruction’s

resultant

condition

is

zero.

When

a

null

substring

reference

is

specified

for

the

receiver,

a

result

is

not

set

and

the

instruction’s

resultant

condition

is

zero

regardless

of

the

values

of

the

source

operands.

If

operands

overlap

but

do

not

share

all

of

the

same

bytes,

results

of

operations

performed

on

these

operands

are

not

predictable.

If

overlapped

operands

share

all

of

the

same

bytes,

the

results

are

predictable

when

direct

addressing

is

used.

If

indirect

addressing

is

used

(that

is,

based

operands,

parameters,

strings

with

variable

lengths,

and

arrays

with

variable

subscripts),

the

results

are

not

always

predictable.

When

the

receiver

operand

is

a

numeric

variable

scalar,

it

is

possible

that

the

result

produced

will

not

be

a

valid

value

for

the

numeric

type.

This

can

occur

due

to

padding

with

hex

00,

due

to

truncation,

or

due

to

the

resultant

bit

string

produced

by

the

instruction.

The

instruction

completes

normally

and

signals

no

exceptions

for

these

conditions.

Machine

Interface

Instructions

377

Resultant

Conditions:

v

v

Zero-The

bit

value

for

the

bits

of

the

scalar

receiver

operand

is

either

all

zero

or

a

null

substring

reference

is

specified

for

the

receiver.

v

Not

zero-The

bit

value

for

the

bits

of

the

scalar

receiver

operand

is

not

all

zero.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

378

iSeries:

Machine

Interface

Instructions

APIs

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Exponential

Function

of

E

(EEXP)

Bound

program

access

Built-in

number

for

EEXP

is

405.

EEXP

(

source

:

floating

point(8)

value

)

:

floating

point(8)

value

which

is

e

raised

to

the

power

of

the

source

value

Description:

The

computation

e

source

is

performed

and

the

result

returned.

The

result

is

in

the

range:

0

<=

EEXP(source)

<=

+infinity

See

floating

point

results

from

special

values

for

additional

information.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Machine

Interface

Instructions

379

NCBCON.htm

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0C

Computation

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

0C0D

Floating-Point

Inexact

Result

0C0E

Floating-Point

Zero

Divide

Extended

Character

Scan

(ECSCAN)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

4

Operand

[5-7]

ECSCAN

10D4

Receiver

Base

Compare

operand

Mode

operand

ECSCANB

1CD4

Branch

options

Receiver

Base

Compare

operand

Mode

operand

Branch

targets

ECSCANI

18D4

Indicator

options

Receiver

Base

Compare

operand

Mode

operand

Indicator

targets

Operand

1:

Binary

variable

scalar

or

binary

array.

Operand

2:

Character

variable

scalar.

Operand

3:

Character

scalar.

Operand

4:

Character(1)

scalar.

Operand

5-7:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

This

instruction

scans

the

string

value

of

the

base

operand

for

occurrences

of

the

string

value

of

the

compare

operand

and

indicates

the

relative

locations

of

these

occurrences

in

the

receiver

operand.

The

character

string

value

of

the

base

operand

is

scanned

for

occurrences

of

the

character

string

value

of

the

compare

operand

under

control

of

the

mode

operand

and

mode

control

characters

embedded

in

the

base

string.

The

base

and

compare

operands

must

both

be

character

strings.

The

length

of

the

compare

operand

must

not

be

greater

than

that

of

the

base

string.

The

base

and

compare

operand

are

interpreted

as

containing

a

mixture

of

1-byte

(simple)

and

2-byte

(extended)

character

codes.

The

mode,

simple

or

extended,

with

which

the

string

is

to

be

interpreted,

is

controlled

initially

by

the

mode

operand

and

thereafter

by

mode

control

characters

embedded

in

the

strings.

The

mode

control

characters

are

as

follows:

380

iSeries:

Machine

Interface

Instructions

APIs

*

Hex

0E

=

Shift

out

of

simple

character

mode

to

extended

mode.

*

Hex

0F

=

Shift

into

simple

character

mode

from

extended

mode.

This

is

recognized

only

if

it

occurs

in

the

first

byte

position

of

an

extended

character

code.

The

format

of

the

mode

operand

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Mode

operand

Char(1)

0

0

Operand

2

initial

mode

indicator

Bit

0

0

=

Operand

starts

in

simple

character

mode.

1

=

Operand

starts

in

extended

character

mode.

0

0

Operand

3

initial

mode

indicator

Bit

1

0

=

Operand

starts

in

simple

character

mode.

1

=

Operand

starts

in

extended

character

mode.

0

0

Reserved

(binary

0)

Bits

2-7

1

1

—-

End

—-

The

operation

begins

at

the

left

end

of

the

base

string

and

continues

character

by

character,

left

to

right.

When

the

base

string

is

interpreted

in

simple

character

mode,

the

operation

moves

through

the

base

string

1

byte

at

a

time.

When

the

base

string

is

interpreted

in

extended

character

mode,

the

operation

moves

through

the

base

string

2

bytes

at

a

time.

The

compare

operand

value

is

the

entire

byte

string

specified

for

the

compare

operand.

The

mode

operand

determines

the

initial

mode

of

the

compare

operand.

The

first

character

of

the

compare

operand

value

is

assumed

to

be

a

valid

character

for

the

initial

mode

of

the

compare

operand

and

not

a

mode

control

character.

Mode

control

characters

in

the

compare

operand

value

participate

in

comparisons

performed

during

the

scan

function

except

that

a

mode

control

character

as

the

first

character

of

the

compare

operand

causes

unpredictable

results.

The

base

string

is

scanned

until

the

mode

of

the

characters

being

processed

is

the

same

as

the

initial

mode

of

the

compare

operand

value.

The

operation

continues

comparing

the

characters

of

the

base

string

with

those

of

the

compare

operand

value.

The

starting

character

of

the

characters

being

compared

in

the

base

string

is

always

a

valid

character

for

the

initial

mode

of

the

compare

operand

value.

A

mode

control

character

encountered

in

the

base

string

that

changed

the

base

string

mode

to

match

the

initial

mode

of

the

compare

operand

value

does

not

participate

in

the

comparison.

The

length

of

the

comparison

is

equal

to

the

length

of

the

compare

operand

value

and

the

comparison

is

performed

the

same

as

performed

by

the

Compare

Bytes

Left

Adjusted

(CMPBLA)

instruction.

If

a

set

of

bytes

that

matches

the

compare

operand

value

is

found,

the

binary

value

for

the

relative

location

of

the

leftmost

base

string

character

of

the

set

of

bytes

is

placed

in

the

receiver

operand.

If

the

receiver

operand

is

a

scalar,

only

the

first

occurrence

of

the

compare

operand

is

noted.

If

the

receiver

operand

is

an

array,

as

many

occurrences

as

there

are

elements

in

the

array

are

noted.

If

a

mode

change

is

encountered

in

the

base

string,

the

base

string

is

again

scanned

until

the

mode

of

the

characters

being

processed

is

the

same

as

the

initial

mode

of

the

compare

operand

value,

and

then

the

comparisons

are

resumed.

The

operation

continues

until

no

more

occurrences

of

the

compare

operand

value

can

be

noted

in

the

receiver

operand

or

until

the

number

of

bytes

remaining

to

be

scanned

in

the

base

string

is

less

than

the

Machine

Interface

Instructions

381

length

of

the

compare

operand

value.

When

the

second

condition

occurs,

the

receiver

value

is

set

to

zero.

If

the

receiver

operand

is

an

array,

all

its

remaining

elements

are

also

set

to

zero.

If

the

escape

code

encountered

result

condition

is

specified

(through

a

branch

or

indicator

option),

verifications

are

performed

on

the

base

string

as

it

is

scanned.

Each

byte

of

the

base

string

is

checked

for

a

value

less

than

hex

40.

When

a

value

less

than

hex

40

is

encountered,

it

is

then

determined

if

it

is

a

valid

mode

control

character.

If

a

byte

value

of

less

than

hex

40

is

not

a

valid

mode

control

character,

it

is

considered

to

be

an

escape

code.

The

binary

value

for

the

relative

location

of

the

character

(simple

or

extended)

being

interrogated

is

placed

in

the

receiver

operand,

and

the

appropriate

action

(indicator

or

branch)

is

performed

according

to

the

specification

of

the

escape

code

encountered

result

condition.

If

the

receiver

operand

is

an

array,

the

next

array

element

after

any

elements

set

with

locations

or

prior

occurrences

of

the

compare

operand,

is

set

with

the

location

of

the

character

containing

the

escape

code

and

all

the

remaining

array

elements

are

set

to

zero.

If

the

escape

encountered

result

condition

is

not

specified,

verifications

of

the

character

codes

in

the

base

string

are

not

performed.

Resultant

Conditions:

v

v

Positive-The

numeric

value(s)

of

the

receiver

operand

is

positive.

v

Zero-The

numeric

value(s)

of

the

receiver

operand

is

zero.

In

the

case

where

the

receiver

operand

is

an

array,

the

resultant

condition

is

zero

if

all

elements

are

zero.

v

Escape

code

encountered-An

escape

character

code

value

was

encountered

during

the

scanning

of

the

base

string.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C08

Length

Conformance

382

iSeries:

Machine

Interface

Instructions

APIs

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

Machine

Interface

Instructions

383

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Extract

Exponent

(EXTREXP)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

[3-6]

EXTREXP

1072

Receiver

Source

EXTREXPB

1C72

Branch

options

Receiver

Source

Branch

targets

EXTREXPI

1872

Indicator

options

Receiver

Source

Indicator

targets

Operand

1:

Binary

variable

scalar.

Operand

2:

Floating-point

scalar.

Operand

3-6:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

This

instruction

extracts

the

exponent

portion

of

a

floating-point

scalar

source

operand

and

places

it

into

the

receiver

operand

as

a

binary

variable

scalar.

The

operands

must

be

the

numeric

types

indicated

because

no

conversions

are

performed.

The

source

floating-point

field

is

interrogated

to

determine

the

binary

floating-point

value

represented

and

either

a

signed

exponent,

for

number

values,

or

a

special

identifier,

for

infinity

and

NaN

values,

is

placed

in

the

binary

variable

scalar

receiver

operand.

The

value

to

be

assigned

to

the

receiver

is

dependent

upon

the

floating-point

value

represented

in

the

source

operand

as

described

below.

It

is

a

signed

binary

integer

value

and

a

numeric

assignment

of

the

value

is

made

to

the

receiver.

When

the

source

represents

a

normalized

number,

the

biased

exponent

contained

in

the

exponent

field

of

the

source

is

converted

to

the

corresponding

signed

exponent

by

subtracting

the

bias

of

127

for

short

or

1,023

for

long

to

determine

the

value

to

be

returned.

The

resulting

value

ranges

from

-126

to

+127

for

short

format,

-1,022

to

+1,023

for

long

format.

When

the

receiver

is

unsigned

binary,

a

negative

exponent

will

result

in

a

size

(hex

0C0A)

exception

unless

size

exceptions

are

suppressed.

When

the

source

represents

a

denormalized

number,

the

value

to

be

returned

is

determined

by

adjusting

the

signed

exponent

of

the

denormalized

number.

The

signed

exponent

of

a

denormalized

number

is

a

fixed

value

of

-126

for

the

short

format

and

-1,022

for

the

long

format.

It

is

adjusted

to

the

value

the

signed

exponent

would

be

if

the

source

value

was

adjusted

to

a

normalized

number.

The

resulting

value

ranges

from

-127

to

-149

for

short

format,

-1,023

to

-1,074

for

long

format.

When

the

source

represents

a

value

of

zero,

the

value

returned

is

zero.

When

the

source

represents

infinity,

the

value

returned

is

+32,767.

When

the

source

represents

a

not-a-number,

the

value

returned

is

-32,768

for

a

signed

binary

receiver.

For

an

unsigned

binary(2)

a

value

of

32,768

is

returned,

and

for

a

unsigned

binary(4)

a

value

of

4,294,934,528

is

returned.

384

iSeries:

Machine

Interface

Instructions

APIs

Resultant

Conditions:

v

v

Normalized-The

source

operand

value

represents

a

normalized

binary

floating-point

number.

The

signed

exponent

is

stored

in

the

receiver.

v

Denormalized-The

source

operand

value

represents

a

denormalized

binary

floating-point

number.

An

adjusted

signed

exponent

is

stored

in

the

receiver.

v

Infinity-The

source

operand

value

represents

infinity.

The

receiver

is

set

with

a

value

of

+32,767.

v

NaN-The

source

operand

value

represents

a

not-a-number.

The

receiver

is

set

with

a

value

of

-32,768

when

signed

binary,

with

a

value

of

32,768

when

unsigned

binary(2),

and

with

a

value

of

4,294,934,528

when

unsigned

binary(4).

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

0C

Computation

0C0A

Size

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

Machine

Interface

Instructions

385

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Extract

Magnitude

(EXTRMAG)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

[3-6]

EXTRMAG

1052

Receiver

Source

EXTRMAGI

1852

Indicator

options

Receiver

Source

Indicator

targets

EXTRMAGB

1C52

Branch

options

Receiver

Source

Branch

targets

Operand

1:

Numeric

variable

scalar.

Operand

2:

Numeric

scalar.

386

iSeries:

Machine

Interface

Instructions

APIs

Operand

3-6:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Warning:

Temporary

Level

3

Header

Short

forms

Op

Code

(Hex)

Extender

Operand

1

Operand

[2-5]

EXTRMAGS

1152

Receiver/Source

EXTRMAGIS

1952

Indicator

options

Receiver/Source

Indicator

targets

EXTRMAGBS

1D52

Branch

options

Receiver/Source

Branch

targets

Operand

1:

Numeric

variable

scalar.

Operand

2-5:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

The

numeric

value

of

the

source

operand

is

converted

to

its

absolute

value

and

placed

in

the

numeric

variable

scalar

receiver

operand.

The

absolute

value

is

formed

from

the

source

operand

as

follows:

v

v

Signed

binary

–

–

Extract

the

numeric

value

and

form

twos

complement

if

the

source

operand

is

negative.
v

Unsigned

signed

binary

–

–

Extract

the

numeric

value.
v

Packed/Zoned

–

–

Extract

the

numeric

value

and

force

the

source

operand’s

sign

to

positive.
v

Floating-point

–

–

Extract

the

numeric

value

and

force

the

significand

sign

to

positive.

The

result

of

the

operation

is

copied

into

the

receiver

operand

according

to

the

rules

of

the

Copy

Numeric

Value

(CPYNV)

instruction.

If

this

operand

is

not

the

same

type

as

that

used

in

performing

the

operation,

the

resultant

value

is

converted

to

its

type.

If

necessary,

the

resultant

value

is

adjusted

to

the

length

of

the

receiver

operand,

or

aligned

at

the

assumed

decimal

point

of

the

receiver

operand,

or

both

before

being

copied

to

it.

Length

adjustment

and

decimal

point

alignment

are

performed

according

to

the

rules

of

arithmetic

operations

outlined

in

Arithmetic

Operations.

If

significant

digits

are

truncated

on

the

left

end

of

the

resultant

value,

a

size

(hex

0C0A)

exception

is

signaled.

An

attempt

to

extract

the

magnitude

of

a

maximum

negative

binary

value

to

a

binary

scalar

of

the

same

size

also

results

in

a

size

(hex

0C0A)

exception.

Machine

Interface

Instructions

387

MCNPFAO.htm

When

the

source

floating-point

operand

represents

not-a-number,

the

sign

field

of

the

source

is

not

forced

to

positive

and

this

value

is

not

altered

in

the

receiver.

If

a

decimal

to

binary

conversion

causes

a

size

(hex

0C0A)

exception

to

be

signaled,

the

binary

value

contains

the

correct

truncated

result

only

if

the

decimal

value

contains

15

or

fewer

significant

nonfractional

digits.

For

a

fixed-point

operation,

if

significant

digits

are

truncated

from

the

left

end

of

the

resultant

value,

a

size

(hex

0C0A)

exception

is

signaled.

An

attempt

to

extract

the

absolute

value

of

a

maximum

negative

binary

value

into

a

binary

scalar

of

the

same

size

also

results

in

a

size

(hex

0C0A)

exception.

For

floating-point

operations

that

involve

a

fixed-point

receiver

field,

if

nonzero

digits

would

be

truncated

from

the

left

end

of

the

resultant

value,

an

invalid

floating-point

conversion

(hex

0C0C)

exception

is

signaled.

For

a

floating-point

receiver

operand,

if

the

exponent

of

the

resultant

value

is

either

too

large

or

too

small

to

be

represented

in

the

receiver,

the

floating-point

overflow

(hex

0C06)

exception

or

the

floating-point

underflow

(hex

0C07)

exception

is

signaled.

Resultant

Conditions:

v

v

Positive-The

algebraic

value

of

the

receiver

operand

is

positive.

v

Zero-The

algebraic

value

of

the

receiver

operand

is

zero.

v

Unordered-The

value

assigned

a

floating-point

receiver

operand

is

NaN.

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C02

Decimal

Data

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

388

iSeries:

Machine

Interface

Instructions

APIs

0C0A

Size

0C0C

Invalid

Floating-Point

Conversion

0C0D

Floating-Point

Inexact

Result

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Machine

Interface

Instructions

389

4402

Literal

Values

Cannot

Be

Changed

Find

Byte

(FINDBYTE)

Bound

program

access

Built-in

number

for

FINDBYTE

is

20.

FINDBYTE

(

source_string

:

address

of

aggregate(*)

search_character

:

signed

binary(4)

-

rightmost

byte

specifies

the

search

character

OR

unsigned

binary(1)

OR

aggregate(1)

)

:

space

pointer(16)

to

the

first

character

in

the

string

that

matches

the

search

character

Description:

The

string

specified

by

source

string

is

searched

for

the

value

specified

by

search

character.

The

search

terminates

when

the

value

is

found

and

a

space

pointer

to

the

character

is

returned.

The

results

are

undefined

if

the

source

string

does

not

contain

the

search

character.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

390

iSeries:

Machine

Interface

Instructions

APIs

Find

Character

Constrained

(MEMCHR)

Bound

program

access

Built-in

number

for

MEMCHR

is

22.

MEMCHR

(

source_string

:

address

of

aggregate(*)

search_character

:

signed

binary(4)

-

rightmost

byte

specifies

the

search

character

OR

unsigned

binary(1)

OR

aggregate(1)

maximum_length

:

unsigned

binary(4)

value

which

specifies

the

maximum

number

of

characters

to

search

)

:

space

pointer(16)

to

the

first

character

in

the

string

that

matches

the

search

character.

If

the

character

is

not

found,

null

pointer

value

is

returned

Description:

The

string

specified

by

source

string

is

searched

for

the

value

specified

by

search

character.

The

search

terminates

if

the

value

is

found

or

the

number

of

characters

specified

by

maximum

length

have

been

searched.

If

the

value

is

found,

a

space

pointer

to

the

character

is

returned.

Otherwise,

a

null

pointer

value

is

returned.

If

maximum

length

is

0,

a

null

pointer

value

is

returned.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Find

Independent

Index

Entry

(FNDINXEN)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

Operand

4

0494

Receiver

Index

Option

list

Search

argument

Machine

Interface

Instructions

391

Operand

1:

Space

pointer.

Operand

2:

System

pointer.

Operand

3:

Space

pointer.

Operand

4:

Space

pointer.

Bound

program

access

Built-in

number

for

FNDINXEN

is

36.

FNDINXEN

(

receiver

:

address

index

:

address

of

system

pointer

option_list

:

address

search_argument

:

address

)

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Description:

Search

the

independent

index

identified

by

index

(operand

2)

according

to

the

search

criteria

specified

in

the

option

list

(operand

3)

and

the

search

argument

(operand

4);

then

return

the

desired

entry

or

entries

in

the

receiver

operand

(operand

1).

The

maximum

size

of

the

independent

index

entry

is

either

120

bytes

or

2,000

bytes

depending

on

how

the

maximum

entry

length

attribute

field

was

specified

when

the

index

was

created.

Note

that

all

indexes

created

in

Version

3

Release

6

or

later

have

a

maximum

entry

length

of

2,000

bytes.

The

option

list

is

a

variable-length

area

that

identifies

the

type

of

search

to

be

performed,

the

length

of

the

search

argument(s),

the

maximum

number

of

entries

to

be

returned,

the

number

of

entries

returned,

the

length

of

each

entry

returned,

and

the

offsets

to

the

entries

within

the

receiver

identified

by

the

receiver

(operand

1)

space

pointer.

The

option

list

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Rule

option

Char(2)

2

2

Argument

length

UBin(2)

4

4

Argument

offset

Bin(2)

6

6

Occurrence

count

Bin(2)

8

8

Return

count

Bin(2)

10

A

Returned

index

entry

[*]

Char(4)

(Repeated

return

count

times)

10

A

Entry

length

UBin(2)

12

C

Offset

Bin(2)

*

*

—-

End

—-

The

rule

option

identifies

the

type

of

search

to

be

performed

and

has

the

following

meaning:

Search

Type

Value

(Hex)

Meaning

=

0001

Find

equal

occurrences

of

operand

4.

This

option

will

return

entries

that

match

the

search

argument

or

begin

with

the

search

argument.

>

0002

Find

occurrences

that

are

greater

than

operand

4.

<

0003

Find

occurrences

that

are

less

than

operand

4.

>=

0004

Find

occurrences

that

are

greater

than

or

equal

to

operand

4.

392

iSeries:

Machine

Interface

Instructions

APIs

Search

Type

Value

(Hex)

Meaning

<=

0005

Find

occurrences

that

are

less

than

or

equal

to

operand

4.

First

0006

Find

the

first

index

entry

or

entries.

Last

0007

Find

the

last

index

entry

or

entries.

Between

0008

Find

all

entries

between

the

two

arguments

specified

by

operand

4

(inclusive).

With

this

option,

entries

that

match

either

search

argument

or

begin

with

either

search

argument

will

be

included.

The

rule

option

to

find

between

requires

that

operand

4

be

a

2-element

array

in

which

element

1

is

the

starting

argument

and

element

2

is

the

ending

argument.

All

arguments

between

(and

including)

the

starting

and

ending

arguments

are

returned,

but

the

occurrence

count

specified

is

not

exceeded.

If

the

index

was

created

to

contain

both

pointers

and

scalar

data,

then

the

search

argument

must

be

16-byte

aligned.

For

the

option

to

find

between

limits,

both

search

arguments

must

be

16-byte

aligned.

The

rule

option

and

the

argument

length

determine

the

search

criteria

used

for

the

index

search.

The

argument

length

must

be

greater

than

or

equal

to

one.

The

argument

length

for

fixed-length

entries

must

be

less

than

or

equal

to

the

argument

length

specified

when

the

index

is

created.

The

argument

length

input

field

specifies

the

length

of

the

search

argument

(operand

4)

to

be

used

for

the

index

search.

When

the

rule

option

equals

first

or

last,

the

argument

length

field

is

ignored.

For

the

rule

option

to

find

between,

the

argument

length

field

specifies

the

length

of

one

array

element.

The

lengths

of

the

array

elements

must

be

equal.

The

argument

offset

input

field

specifies

the

offset

of

the

second

search

argument

from

the

beginning

of

the

entire

search

argument

field

(operand

4).

The

argument

offset

field

is

ignored

unless

the

rule

option

is

find

between.

The

occurrence

count

input

field

specifies

the

maximum

number

of

index

entries

that

satisfy

the

search

criteria

to

be

returned.

This

field

is

limited

to

a

maximum

value

of

4,095.

If

this

value

is

exceeded,

a

template

value

invalid

(hex

3801)

exception

is

signaled.

The

return

count

output

field

specifies

the

number

of

index

entries

satisfying

the

search

criteria

that

were

returned

in

the

receiver

(operand

1).

If

this

field

is

0,

no

index

arguments

satisfied

the

search

criteria.

There

are

two

output

fields

in

the

option

list

for

each

entry

returned

in

the

receiver

(operand

1).

The

entry

length

is

the

length

of

the

entry

retrieved

from

the

index.

The

offset

has

the

following

meaning:

v

v

For

the

first

entry,

the

offset

is

the

number

of

bytes

from

the

beginning

of

the

receiver

(operand

1)

to

the

first

byte

of

the

first

entry.

v

For

any

succeeding

entry,

the

offset

is

the

number

of

bytes

from

the

beginning

of

the

immediately

preceding

entry

to

the

first

byte

of

the

entry

returned.

The

entries

that

are

retrieved

as

a

result

of

the

Find

Independent

Index

Entry

instruction

are

always

returned

starting

with

the

entry

that

is

closest

to

or

equal

to

the

search

argument

and

then

proceeding

away

from

the

search

argument.

For

example,

a

search

that

is

for

<

(less

than)

or

<=

(less

than

or

equal

to)

returns

the

entries

in

order

of

decreasing

value.

All

the

entries

that

satisfy

the

search

criteria

(up

to

the

occurrence

count)

are

returned

in

the

space

starting

at

the

location

designated

by

the

receiver

(operand

1)

space

pointer.

Machine

Interface

Instructions

393

If

the

index

was

created

to

contain

both

pointers

and

scalar

data,

then

each

returned

entry

is

16-byte

aligned.

If

the

index

was

created

to

contain

scalar

data

only,

then

returned

entries

are

contiguous.

Every

entry

retrieved

causes

the

count

of

the

find

operations

to

be

incremented

by

1.

The

current

value

of

this

count

is

available

through

the

Materialize

Independent

Index

Attributes

(MATINXAT)

instruction.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Retrieve

–

–

Operand

2
v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Operand

2

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

394

iSeries:

Machine

Interface

Instructions

APIs

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

3802

Template

Size

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Machine

Interface

Instructions

395

Find

Relative

Invocation

Number

(FNDRINVN)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

0543

Relative

invocation

number

Search

range

Search

criterion

template

Operand

1:

Signed

binary(4)

variable

scalar.

Operand

2:

Character(48)

scalar

or

null.

Operand

3:

Space

pointer.

Bound

program

access

Built-in

number

for

FNDRINVN

is

124.

FNDRINVN

(

relative_invocation_number

:

address

of

signed

binary(4)

search_range

:

address

OR

null

operand

search_criterion_template

:

address

)

Note

It

is

recommended

that

you

use

search

options

8,

9

and

10

for

8-byte

invocation,

activation

and

activation

group

marks,

respectively,

rather

than

search

options

4,

5

and

6.

4-byte

marks

can

wrap

and

produce

unexpected

results.

Description:

The

invocations

identified

by

operand

2

are

searched

in

the

order

specified

by

operand

2

until

an

invocation

is

found

which

satisfies

the

search

criterion

specified

in

the

operand

3

template.

The

identity

of

the

first

invocation

(in

search

order)

to

satisfy

the

search

criterion

is

returned

in

operand

1.

If

no

invocation

in

the

specified

range

satisfies

the

search

criterion,

then

either

an

exception

is

signaled,

or

a

value

of

zero

is

returned

in

operand

1,

depending

on

the

modifiers

specified

in

the

operand

3

template.

Operand

1

is

returned

as

a

signed

binary(4)

value

identifying

the

first

invocation

found

that

satisfies

the

specified

search

criterion.

It

is

specified

relative

to

the

starting

invocation

identified

by

operand

2.

A

positive

number

indicates

a

displacement

in

the

direction

of

newer

invocations,

while

a

negative

number

indicates

a

displacement

in

the

direction

of

older

invocations.

A

zero

value

can

either

indicate

that

no

invocation

in

the

specified

range

matched

the

specified

criterion,

or

the

starting

invocation

satisfied

the

specified

criterion,

depending

on

the

modifiers

specified

in

the

operand

3

template.

Operand

1

is

not

modified

in

the

event

that

the

instruction

terminates

with

an

exception.

Note

that

a

modifier

in

the

operand

3

template

determines

if

the

starting

invocation

identified

by

operand

2

is

to

be

skipped.

If

the

starting

invocation

is

specified

to

be

skipped

during

the

search

then

a

result

of

zero

in

operand

1

indicates

failure

to

find

an

invocation

that

satisfies

the

criterion.

If

the

starting

invocation

is

specified

not

to

be

skipped,

then

a

result

of

zero

indicates

the

starting

invocation

has

satisfied

the

specified

criterion.

If

the

starting

invocation

is

specified

not

to

be

skipped

and

no

invocation

is

found

that

satisfies

the

search

criterion,

an

exception

will

be

signaled.

Operand

2

identifies

the

starting

invocation

and

the

range

of

the

search.

If

operand

2

is

specified

as

a

null

operand,

then

operand

2

is

assumed

to

identify

a

range

starting

with

the

current

invocation

and

proceeding

through

all

existing

older

invocations.

Operand

3

is

a

space

pointer

to

a

template

that

identifies

the

search

criterion

and

search

modifiers

for

the

find

operation.

Operand

2:

The

value

specified

by

operand

2

identifies

the

range

of

invocations

to

be

searched.

This

operand

can

be

null

(which

indicates

the

range

which

starts

with

the

current

invocation

and

proceeds

396

iSeries:

Machine

Interface

Instructions

APIs

through

all

existing

older

invocations),

or

it

can

contain

either

an

invocation

pointer

to

an

invocation

or

a

null

pointer

(which

indicates

a

range

starting

with

the

current

invocation).

Operand

2

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Starting

invocation

offset

Bin(4)

4

4

Originating

invocation

offset

(ignored)

Bin(4)

8

8

Invocation

range

Bin(4)

12

C

Reserved

(binary

0)

Char(4)

16

10

Starting

invocation

pointer

Invocation

pointer

32

20

Reserved

(binary

0)

Char(16)

48

30

—-

End

—-

If

a

non-null

pointer

is

specified

for

starting

invocation

pointer,

then

operand

2

must

be

16-byte

aligned

in

the

space.

Terminology:

Requesting

invocation

The

invocation

executing

the

FNDRINVN

instruction.

Note

that,

in

many

cases,

this

invocation

belongs

to

a

system

or

language

run-time

procedure/program,

and

the

instruction

is

actually

being

executed

on

behalf

of

another

procedure

or

program.

Starting

invocation

The

invocation

which

serves

as

the

starting

point

for

the

search.

Field

descriptions:

Starting

invocation

offset

A

signed

numerical

value

indicating

an

invocation

relative

to

the

invocation

located

by

the

starting

invocation

pointer.

A

value

of

zero

denotes

the

invocation

addressed

by

the

starting

invocation

pointer,

with

increasingly

positive

numbers

denoting

increasingly

later

invocations

in

the

stack,

and

increasingly

negative

numbers

denoting

increasingly

earlier

invocations

in

the

stack.

If

the

starting

invocation

pointer

is

valid

or

null,

but

the

invocation

identified

by

this

offset

does

not

exist

in

the

stack,

an

invocation

offset

outside

range

of

current

stack

(hex

2C1A)

exception

will

be

signaled.

Originating

invocation

offset

This

field

is

used

by

other

instructions

but

is

ignored

by

FNDRINVN.

Invocation

range

Invocation

range

is

a

signed

numerical

value

which

specifies

the

direction

of

the

search

and

the

maximum

number

of

invocations

to

be

examined.

The

magnitude

of

invocation

range

specifies

the

maximum

number

of

invocations

to

be

searched

exclusive

of

the

starting

invocation.

It

is

not

an

error

if

this

magnitude

is

greater

than

the

number

of

existing

invocations

in

the

specified

direction.

If

the

sign

of

invocation

range

is

positive

(and

non-zero),

the

search

is

performed

in

the

direction

of

newer

invocations,

while

if

the

sign

is

negative,

the

search

is

performed

in

the

direction

of

older

invocations.

Note

that

the

bypass

starting

invocation

modifier

in

operand

3

affects

how

the

starting

invocation

is

treated.

If

this

modifier

is

binary

0,

then

the

starting

invocation

is

the

first

invocation

examined.

If

invocation

range

is

zero

in

this

case

then

only

the

starting

invocation

is

examined.

If,

on

the

other

hand,

bypass

starting

invocation

is

binary

1,

then

the

starting

invocation

does

not

participate

in

the

search,

and,

if

invocation

range

is

zero,

no

invocations

are

searched

and

a

value

of

zero

is

returned

for

operand

1.

Machine

Interface

Instructions

397

Starting

invocation

pointer

An

invocation

pointer

to

an

invocation.

If

null,

then

the

current

invocation

is

indicated.

If

not

null,

then

operand

2

must

be

16-byte

aligned

in

the

space.

If

the

pointer

identifies

an

invocation

in

another

thread,

a

process

object

access

invalid

(hex

2C11)

exception

will

be

signaled.

If

the

invocation

identified

by

this

pointer

does

not

exist

in

the

stack,

an

object

destroyed

(hex

2202)

exception

will

be

signaled.

Usage

note:

In

cases

where

starting

invocation

pointer

is

null,

operand

2

may

be

a

constant.

Operand

3:

The

search

criterion

template

identified

by

operand

3

must

be

aligned

on

a

16-byte

boundary.

The

template

is

a

32-byte

value

with

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Reserved

(binary

0)

Char(8)

8

8

Search

option

Bin(4)

12

C

Search

modifiers

Char(4)

12

C

Bypass

starting

invocation

Bit

0

0

=

The

starting

invocation

identified

by

operand

2

is

the

first

invocation

tested.

An

invocation

not

found

(hex

1E02)

exception

is

signaled

if

the

search

criterion

is

not

satisfied.

1

=

The

starting

invocation

identified

by

operand

2

is

skipped

and

no

exception

is

signaled

if

the

search

criterion

is

not

satisfied.

12

C

Compare

for

mismatch

Bit

1

0

=

The

instruction

identifies

the

first

invocation

(in

specified

search

order)

which

matches

the

specified

search

criterion

1

=

The

instruction

identifies

the

first

invocation

(in

specified

search

order)

which

does

not

match

the

specified

search

criterion

12

C

Reserved

(binary

0)

Bits

2-31

16

10

Search

argument

Char(16)

32

20

—-

End

—-

Search

option

Specifies

the

invocation

attribute

to

be

examined:

398

iSeries:

Machine

Interface

Instructions

APIs

1

Routine

type.

Search

argument

is

a

one-byte

routine

type,

left

aligned.

Allowed

search

argument

values

are:

Hex

01

=

Non-Bound

Program

Hex

02

=

Bound

Program

Entry

Procedure

(PEP)

Hex

03

=

Bound

Program

Procedure

Note:

Bound

program

procedures

are

contained

within

bound

programs,

bound

service

programs,

and

Java(TM)

programs.

All

discussion

of

bound

program

procedure

semantics

also

apply

to

Java

program

procedures.

2

Invocation

type.

Search

argument

is

a

one-byte

invocation

type,

left

aligned.

Allowed

search

argument

values

are:

Hex

01

=

Call

external

Hex

02

=

Transfer

control

Hex

03

=

Event

handler

Hex

04

=

External

exception

handler

(for

non-bound

program)

Hex

05

=

Initial

program

in

process

problem

state

Hex

06

=

Initial

program

in

process

initiation

state

Hex

07

=

Initial

program

in

process

termination

state

Hex

08

=

Invocation

exit

(for

non-bound

program)

Hex

09

=

Return

or

return/XCTL

trap

handler

Hex

0A

=

Call

program

Hex

0B

=

Cancel

handler

(bound

program

only)

Hex

0C

=

Exception

handler

(bound

program

only)

Hex

0D

=

Call

bound

procedure/call

with

procedure

pointer

Hex

0E

=

Process

Default

Exception

Handler

3

Invocation

status.

Search

argument

consists

of

two

four-byte

fields,

left

aligned.

The

invocation

status

of

each

examined

invocation

is

ANDed

with

the

first

field

and

then

compared

to

the

second

field.

Machine

Interface

Instructions

399

4

Invocation

mark.

Search

argument

is

a

four-byte

invocation

mark,

left

aligned.

If

the

search

is

in

the

direction

of

older

invocations,

the

result

identifies

the

first

invocation

found

with

an

invocation

mark

less

than

or

equal

to

the

search

argument.

If

the

search

is

in

the

direction

of

newer

invocations,

the

result

identifies

the

first

invocation

found

with

an

invocation

mark

greater

than

or

equal

to

the

search

argument.

If

invocation

range

is

zero,

then

the

search

is

satisfied

only

if

the

invocation

mark

of

the

starting

invocation

exactly

matches

the

search

argument,

and

this

can

occur

only

if

bypass

starting

invocation

is

binary

0.

For

this

option

compare

for

mismatch

is

ignored.

5

Activation

mark.

Search

argument

is

a

four-byte

activation

mark,

left

aligned.

The

activation

mark

of

the

program

or

module

activation

corresponding

to

each

examined

invocation

is

compared

to

search

argument.

Invocations

with

no

activation

(ie,

the

invocations

of

non-bound

reentrant

programs,

and

the

invocation

stack

base

entry)

are

considered

to

have

an

activation

mark

of

binary

0.

6

Activation

group

mark.

Search

argument

is

a

four-byte

activation

group

mark,

left

aligned.

The

activation

group

mark

of

each

examined

invocation

is

compared

to

search

argument.

The

activation

group

mark

of

each

examined

invocation

is

determined

from

the

activation

associated

with

the

invocation.

(Each

activation

belongs

to

a

single

activation

group.)

However,

v

if

no

activation

exists

for

the

invocation,

or

v

if

an

activation

exists

and

it

belongs

to

an

shared

activation

group

owned

by

another

process

then,

the

activation

group

mark

for

the

examined

invocation

is

taken

to

be,

1

for

a

system-state

invocation

2

for

a

user-state

invocation

7

Program

pointer.

Search

argument

is

a

system

pointer

to

a

program.

The

program

corresponding

to

each

examined

invocation

is

compared

to

the

program

identified

by

the

pointer.

8

Invocation

mark.

Search

argument

is

an

eight-byte

invocation

mark,

left

aligned.

If

the

search

is

in

the

direction

of

older

invocations,

the

result

identifies

the

first

invocation

found

with

an

invocation

mark

less

than

or

equal

to

the

search

argument.

If

the

search

is

in

the

direction

of

newer

invocations,

the

result

identifies

the

first

invocation

found

with

an

invocation

mark

greater

than

or

equal

to

the

search

argument.

If

invocation

range

is

zero,

then

the

search

is

satisfied

only

if

the

invocation

mark

of

the

starting

invocation

exactly

matches

the

search

argument,

and

this

can

occur

only

if

bypass

starting

invocation

is

binary

0.

For

this

option

compare

for

mismatch

is

ignored.

9

Activation

mark.

Search

argument

is

an

eight-byte

activation

mark,

left

aligned.

The

activation

mark

of

the

program

or

module

activation

corresponding

to

each

examined

invocation

is

compared

to

search

argument.

Invocations

with

no

activation

(ie,

the

invocations

of

non-bound

reentrant

programs,

and

the

invocation

stack

base

entry)

are

considered

to

have

an

activation

mark

of

binary

0.

10

Activation

group

mark.

Search

argument

is

an

eight-byte

activation

group

mark,

left

aligned.

The

activation

group

mark

of

each

examined

invocation

is

compared

to

search

argument.

The

activation

group

mark

of

each

examined

invocation

is

determined

from

the

activation

associated

with

the

invocation.

(Each

activation

belongs

to

a

single

activation

group.)

However,

v

if

no

activation

exists

for

the

invocation,

or

v

if

an

activation

exists

and

it

belongs

to

a

shared

activation

group

owned

by

another

process

then,

the

activation

group

mark

for

the

examined

invocation

is

taken

to

be,

1

for

a

system-state

invocation

400

iSeries:

Machine

Interface

Instructions

APIs

2

for

a

user-state

invocation

Bypass

starting

invocation

If

bypass

starting

invocation

is

binary

0,

then

the

starting

invocation

specified

by

operand

2

is

the

first

invocation

examined.

In

this

case,

if

the

invocation

range

of

operand

2

is

exhausted

without

satisfying

the

search

criterion

then

a

template

value

invalid

(hex

3801)

exception

is

signaled,

with

the

search

argument

field

of

operand

3

identified

as

the

erroneous

field.

If

bypass

starting

invocation

is

binary

1,

then

the

starting

invocation

specified

by

operand

2

is

skipped,

and

a

failure

to

satisfy

the

search

criterion

is

indicated

by

returning

a

binary

0

value

in

operand

1.

Compare

for

mismatch

If

compare

for

mismatch

is

binary

0,

then

the

search

criterion

is

satisfied

when

an

invocation

is

found

whose

attribute

matches

the

search

argument.

If

compare

for

mismatch

is

binary

1,

however,

then

the

search

criterion

is

satisfied

when

an

invocation

is

found

whose

attribute

does

not

match

the

search

argument.

Search

argument

A

value

of

between

one

and

16

bytes

as

described

above.

Unused

bytes

are

ignored.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

16

Exception

Management

1603

Invalid

Invocation

Address

Machine

Interface

Instructions

401

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1E

Machine

Observation

1E02

Invocation

Not

Found

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C11

Process

Object

Access

Invalid

2C1A

Invocation

Offset

Outside

Range

of

Current

Stack

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

402

iSeries:

Machine

Interface

Instructions

APIs

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Free

Activation

Group-Based

Heap

Space

Storage

(FREHSS)

Op

Code

(Hex)

Operand

1

03B5

Space

allocation

Operand

1:

Space

pointer.

Bound

program

access

Built-in

number

for

FREHSS

is

114.

FREHSS

(

space_allocation

:

address

)

Note:

The

term

″heap

space″

in

this

instruction

refers

to

an

″activation

group-based

heap

space″.

Description:

The

heap

space

storage

allocation

beginning

at

the

byte

addressed

by

operand

1

is

de-allocated

from

the

heap

space

which

supplied

the

allocation.

De-allocation

makes

the

storage

available

for

reuse

by

subsequent

Allocate

Activation

Group-Based

Heap

Space

Storage

(ALCHSS)

instructions.

The

entire

space

allocation

is

de-allocated;

partial

de-allocation

is

not

supported.

A

free

of

heap

space

storage

can

be

performed

without

regard

to

the

activation

group

in

which

it

was

allocated,

as

long

as

the

allocation

was

done

by

a

thread

in

the

same

process.

Operand

1

must

be

exactly

equal

to

the

space

pointer

that

was

returned

by

some

previous

Allocate

Activation

Group-Based

Heap

Space

Storage

(ALCHSS)

or

Reallocate

Activation

Group-Based

Heap

Space

Storage

(REALCHSS)

instruction.

If

it

is

not,

an

invalid

request

(hex

4502)

exception

will

be

signaled.

Subsequent

references

to

space

allocations

which

have

been

freed

cause

unpredictable

results.

FREHSS

will

signal

an

object

domain

or

hardware

storage

protection

violation

(hex

4401)

exception

if

a

program

running

user

state

attempts

to

de-allocate

heap

space

storage

in

a

heap

space

with

a

domain

of

system.

Operand

1

is

not

modified

by

the

instruction.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

Machine

Interface

Instructions

403

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

45

Heap

Space

4502

Invalid

Request

4505

Heap

Space

Destroyed

4506

Invalid

Heap

Space

Condition

Free

Activation

Group-Based

Heap

Space

Storage

From

Mark

(FREHSSMK)

Op

Code

(Hex)

Operand

1

03B9

Mark

identifier

Operand

1:

Space

pointer

data

object.

404

iSeries:

Machine

Interface

Instructions

APIs

Bound

program

access

Built-in

number

for

FREHSSMK

is

115.

FREHSSMK

(

mark_identifier

:

address

of

space

pointer(16)

)

Note:

The

term

″heap

space″

in

this

instruction

refers

to

an

″activation

group-based

heap

space″.

Description:

All

heap

space

allocations

which

have

occurred

from

the

heap

space

since

it

was

marked,

with

the

mark

identifier

supplied

in

operand

1,

are

freed.

This

may

include

heap

space

storage

marked

by

intervening

Set

Activation

Group-Based

Heap

Space

Storage

Mark

(SETHSSMK)

instructions.

The

mark

identifier

specified

in

operand

1

and

all

mark

identifiers

obtained

since

the

heap

space

was

marked

by

operand

1

are

cleared

from

the

heap

space.

An

attempt

to

free

heap

space

storage

from

a

mark

that

has

already

been

cleared

by

a

previous

FREHSSMK

instruction

will

result

in

an

invalid

mark

identifier

(hex

4507)

exception.

A

free

of

heap

space

storage

can

be

performed

without

regard

to

the

activation

group

in

which

it

was

allocated,

as

long

as

the

allocation

was

done

by

a

thread

in

the

same

process.

FREHSSMK

will

signal

an

object

domain

or

hardware

storage

protection

violation

(hex

4401)

exception

if

a

program

running

user

state

attempts

a

Free

Activation

Group-Based

Heap

Space

Storage

From

Mark

for

a

heap

space

with

a

domain

of

system.

Operand

1

is

not

modified

by

the

instruction.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

Machine

Interface

Instructions

405

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C04

Object

Storage

Limit

Exceeded

1C09

Auxiliary

Storage

Pool

Number

Invalid

20

Machine

Support

2002

Machine

Check

2003

Function

Check

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

45

Heap

Space

4502

Invalid

Request

4505

Heap

Space

Destroyed

4506

Invalid

Heap

Space

Condition

4507

Invalid

Mark

Identifier

Generate

Universal

Unique

Identifier

(GENUUID)

Op

Code

(Hex)

Operand

1

011D

UUID

return

template

Operand

1:

Space

pointer.

Bound

program

access

Built-in

number

for

GENUUID

is

461.

GENUUID

(

UUID_return_template

:

address

)

Description:

This

instruction

generates

a

universal

unique

identifier

and

returns

it

in

the

template

provided.

The

UUID

is

unique

as

an

identifier

across

all

time

and

space

and

is

consistent

with

the

Open

Systems

Foundation

(OSF)

Distributed

Computing

Environments

(DCE)

version

1

UUID

specification

described

in

the

DCE’s

″Architecture

Environment

Specification/Distributed

Computing:

for

Remote

Procedure

Calls″,

Appendix

A.

The

template

identified

by

operand

1

must

be

16

byte

aligned.

The

16

byte

Universal

Unique

Identifier

(UUID)

is

returned

in

the

UUID

return

template.

406

iSeries:

Machine

Interface

Instructions

APIs

The

UUID

return

template

(operand

1)

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Return

template

size

specification

Char(8)

0

0

Number

of

bytes

provided

UBin(4)

4

4

Number

of

bytes

available

UBin(4)

8

8

Reserved

(binary

0)

Char(8)

16

10

Returned

UUID

Char(16)

32

20

—-

End

—-

The

first

4

bytes

of

the

template

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

The

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

32

causes

a

template

size

invalid

(hex

3802)

exception

to

be

signaled.

The

second

4

bytes

of

the

template

identify

the

total

number

of

bytes

available

to

be

returned.

This

value

is

output.

The

value

is

the

size

of

the

template.

The

reserved

field

must

be

set

to

zeros

or

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

The

returned

UUID

field

contains

the

generated

UUID.

The

UUID

is

a

DCE

version

1

UUID.

Note:

There

are

certain

restrictions

on

the

UUID

that

should

be

remembered:

v

v

Operations

on

the

UUID

should

be

limited

to:

–

–

Equality

comparison

(equal

or

not

equal)

–

Lexical

ordering

-

UUIDs

can

be

ordered

based

on

the

most

significant

byte

that

differs

between

the

compared

UUIDs.

–

String

conversion

-

based

on

the

DCE

architecture

string

representation

of

a

UUID.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

08

Argument/Parameter

0801

Parameter

Reference

Violation

20

Machine

Support

Machine

Interface

Instructions

407

2002

Machine

Check

2003

Function

Check

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

32

Scalar

Specification

3201

Scalar

Type

Invalid

38

Template

Specification

3801

Template

Value

Invalid

3802

Template

Size

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Increment

Date

(INCD)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

Operand

4

0404

Result

date

Source

date

Duration

Instruction

template

Operand

1:

Character

variable

scalar.

Operand

2:

Character

scalar.

Operand

3:

Packed

decimal

scalar.

Operand

4:

Space

pointer.

Bound

program

access

Built-in

number

for

INCD

is

95.

INCD

(

result_date

:

address

source_date

:

address

duration

:

address

of

packed

decimal

instruction_template

:

address

)

Description:

The

date

specified

by

operand

2

is

incremented

by

the

date

duration

specified

by

operand

3.

The

resulting

date

is

placed

in

operand

1.

Operand

4

defines

the

data

definitional

attributes

for

operands

1

through

3.

408

iSeries:

Machine

Interface

Instructions

APIs

The

following

describes

the

instruction

template.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Instruction

template

Char(*)

0

0

Instruction

template

size

Bin(4)

4

4

Operand

1

data

definitional

attribute

template

number

UBin(2)

6

6

Operand

2

data

definitional

attribute

template

number

UBin(2)

8

8

Operand

3

data

definitional

attribute

template

number

UBin(2)

10

A

Operand

1

length

UBin(2)

12

C

Operand

2

length

UBin(2)

14

E

Operand

3

length

UBin(2)

14

E

Fractional

number

of

digits

Char(1)

15

F

Total

number

of

digits

Char(1)

16

10

Input

indicators

Char(2)

16

10

End

of

month

adjustment

Bit

0

0

=

No

adjustment

1

=

Adjustment

16

10

Tolerate

data

decimal

errors

Bit

1

0

=

No

toleration

1

=

Tolerate

16

10

Reserved

(binary

0)

Bits

2-1

18

12

Output

indicators

Char(2)

18

12

End

of

month

adjustment

Bit

0

0

=

No

adjustment

1

=

Adjustment

18

12

Reserved

(binary

0)

Bits

1-1

20

14

Reserved

(binary

0)

Char(22)

42

2A

Data

definitional

attribute

template

list

Char(*)

42

2A

Size

of

the

DDAT

list

UBin(4

46

2E

Number

of

DDATs

UBin(2

48

30

Reserved

(binary

0)

Char(10

58

3A

DDAT

offset

[*]

UBin

*

*

Data

definitional

attribute

template

[*]

Cha

*

*

—-

End

—-

A

data

definitional

attribute

template

(DDAT)

number

is

a

number

that

corresponds

to

the

relative

position

of

a

template

in

the

data

definitional

attribute

template

list.

For

example,

the

number

1

references

the

first

template.

The

valid

values

for

this

field

are

1,

2,

and

3.

The

DDATs

for

operands

1

and

2

must

be

valid

for

a

date

and

identical.

The

DDAT

for

operand

3

must

be

valid

for

a

date

duration.

Otherwise,

a

template

value

invalid

(hex

3801)

exception

will

be

issued.

Operand

1

length,

operand

2

length,

and

operand

3

length

are

specified

in

number

of

bytes.

Machine

Interface

Instructions

409

The

input

indicator,

end

of

month

adjustment,

is

used

to

allow

or

disallow

the

occurrence

of

an

end

of

month

adjustment.

The

input

indicator,

tolerate

data

decimal

errors,

is

used

to

determine

whether

errors

found

in

the

packed

data

for

the

duration

will

generate

exceptions

or

will

be

ignored.

When

the

errors

are

to

be

tolerated,

the

following

rules

will

apply:

1.

An

invalid

sign

nibble

found

in

the

packed

data

value

will

be

changed

to

a

hex

F.

2.

Any

invalid

decimal

digits

found

in

the

packed

data

value

will

be

forced

to

zero.

3.

If

all

digits

of

a

packed

data

value

become

zero,

and

no

decimal

overflow

condition

exists,

the

sign

will

be

set

to

hex

F.

If

all

digits

are

zero

and

a

decimal

overflow

condition

exists,

then

the

sign

will

not

be

changed,

but

its

representation

will

be

changed

to

the

preferred

sign

code.

The

output

indicator,

end

of

month

adjustment,

is

used

to

indicate

an

end

of

month

adjustment,

when

end

of

month

adjustments

are

allowed.

End

of

month

adjustment

is

the

following

concept.

For

SAA(R),

the

result

of

adding

a

1

month

duration

to

the

date

01/31/1989

is

02/28/1989.

The

days

portion

is

adjusted

to

fit

the

month,

31

is

changed

to

28.

When

this

happens,the

end

of

month

adjustment

output

indicator

is

set

to

adjustment.

When

end

of

month

adjustments

are

not

allowed,

the

month

and

year

definitions

in

the

data

definition

attribute

template

must

have

values

greater

than

zero,

otherwise

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

The

result

of

adding

a

1

month

duration

to

the

Gregorian

date

01/31/1989

is

03/02/1989,

when

the

definition

of

a

month

is

30

days.

The

size

of

the

DDAT

list

is

specified

in

bytes.

The

number

of

DDATs

is

the

count

of

DDATs

specified

for

this

instruction

template.

The

maximum

number

of

DDATs

that

can

be

specified

is

3.

The

DDAT

offset

is

the

number

of

bytes

from

the

start

of

the

DDAT

list

to

the

start

of

the

specific

DDAT.

There

should

be

as

many

DDAT

offsets

as

there

are

DDATs

specified.

A

data

definitional

attribute

template

defines

the

presentation

of

the

data.

Each

template

describes

definitional

attributes

of

the

operands.

The

length

of

the

date

and

date

duration

character

operands

will

be

defined

by

the

template.

For

a

further

description

of

the

data

definitional

attribute

template,

see

Data

Definitional

Attribute

Template.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

410

iSeries:

Machine

Interface

Instructions

APIs

MINDTCON.htm#HDRDDAT
MINDTCON.htm#HDRDDAT

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C02

Decimal

Data

0C15

Date

Boundary

Overflow

0C16

Data

Format

Error

0C17

Data

Value

Error

0C18

Date

Boundary

Underflow

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

Machine

Interface

Instructions

411

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Increment

Time

(INCT)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

Operand

4

0434

Result

time

Source

time

Duration

Instruction

template

Operand

1:

Character

variable

scalar.

Operand

2:

Character

scalar.

Operand

3:

Packed

decimal

scalar.

Operand

4:

Space

pointer.

Bound

program

access

Built-in

number

for

INCT

is

97.

INCT

(

result_time

:

address

source_time

:

address

duration

:

address

of

packed

decimal

instruction_template

:

address

)

Description:

The

time

specified

by

operand

2

is

incremented

by

the

time

duration

specified

by

operand

3.

The

resulting

time

is

placed

in

operand

1.

Operand

4

defines

the

data

definitional

attributes

for

operands

1

through

3.

The

following

describes

the

instruction

template.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Instruction

template

Char(*)

0

0

Instruction

template

size

Bin(4)

4

4

Operand

1

data

definitional

attribute

template

number

UBin(2)

6

6

Operand

2

data

definitional

attribute

template

number

UBin(2)

8

8

Operand

3

data

definitional

attribute

template

number

UBin(2)

10

A

Operand

1

length

UBin(2)

12

C

Operand

2

length

UBin(2)

14

E

Operand

3

length

UBin(2)

412

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

14

E

Fractional

number

of

digits

Char(1)

15

F

Total

number

of

digits

Char(1)

16

10

Input

indicators

Char(2)

16

10

Reserved

(binary

0)

Bit

0

16

10

Tolerate

data

decimal

errors

Bit

1

0

=

No

toleration

1

=

Tolerate

16

10

Reserved

(binary

0)

Bits

2-15

18

12

Reserved

(binary

0)

Char(24)

42

2A

Data

definitional

attribute

template

list

Char(*)

42

2A

Size

of

the

DDAT

list

UBin(4)

46

2E

Number

of

DDATs

UBin(2)

48

30

Reserved

(binary

0)

Char(10

58

3A

DDAT

offset

[*]

UBin

*

*

Data

definitional

attribute

template

[*]

Char

*

*

—-

End

—-

A

data

definitional

attribute

template

number

(DDAT)

is

a

number

that

corresponds

to

the

relative

position

of

a

template

in

the

data

definitional

attribute

template

list.

For

example,

the

number

1

references

the

first

template.

The

valid

values

for

this

field

are

1,

2,

and

3.

The

DDATs

for

operands

1

and

2

must

be

valid

for

a

time

and

identical.

The

DDAT

for

operand

3

must

be

valid

for

a

time

duration.

Otherwise,

a

template

value

invalid

(hex

3801)

exception

will

be

issued.

Operand

1

length,

operand

2

length,

and

operand

3

length

are

specified

in

number

of

bytes.

The

input

indicator,

tolerate

data

decimal

errors,

is

used

to

determine

whether

errors

found

in

the

packed

data

for

the

duration

will

generate

exceptions

or

will

be

ignored.

When

the

errors

are

to

be

tolerated,

the

following

rules

will

apply:

1.

An

invalid

sign

nibble

found

in

the

packed

data

value

will

be

changed

to

a

hex

F.

2.

Any

invalid

decimal

digits

found

in

the

packed

data

value

will

be

forced

to

zero.

3.

If

all

digits

of

a

packed

data

value

become

zero,

and

no

decimal

overflow

condition

exists,

the

sign

will

be

set

to

hex

F.

If

all

digits

are

zero

and

a

decimal

overflow

condition

exists,

then

the

sign

will

not

be

changed,

but

its

representation

will

be

changed

to

the

preferred

sign

code.

The

size

of

the

DDAT

list

is

specified

in

bytes.

The

number

of

DDATs

is

the

count

of

DDATs

specified

for

this

instruction

template.

The

maximum

number

of

DDATs

that

can

be

specified

is

3.

The

DDAT

offset

is

the

number

of

bytes

from

the

start

of

the

DDAT

list

to

the

start

of

the

specific

DDAT.

There

should

be

as

many

DDAT

offsets

as

there

are

DDATs

specified.

A

data

definitional

attribute

template

defines

the

presentation

of

the

data.

Each

template

describes

the

definitional

attributes

of

the

operands.

The

length

of

the

time

and

time

duration

character

operands

will

be

defined

by

the

templates.

For

a

further

description

of

the

data

definitional

attribute

template,

see

Data

Definitional

Attribute

Template.

Machine

Interface

Instructions

413

MINDTCON.htm#HDRDDAT
MINDTCON.htm#HDRDDAT

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C02

Decimal

Data

0C16

Data

Format

Error

0C17

Data

Value

Error

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

220B

Object

Not

Available

24

Pointer

Specification

414

iSeries:

Machine

Interface

Instructions

APIs

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Increment

Timestamp

(INCTS)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

Operand

4

040C

Result

timestamp

Source

timestamp

Duration

Instruction

template

Operand

1:

Character

variable

scalar.

Operand

2:

Character

scalar.

Operand

3:

Packed

decimal

scalar.

Operand

4:

Space

pointer.

Bound

program

access

Built-in

number

for

INCTS

is

99.

INCTS

(

result_timestamp

:

address

source_timestamp

:

address

duration

:

address

of

packed

decimal

instruction_template

:

address

)

Description:

The

timestamp

specified

by

operand

2

is

incremented

by

the

date,

time,

or

timestamp

duration

specified

by

operand

3.

The

resulting

timestamp

is

placed

in

operand

1.

Operand

4

defines

the

data

definitional

attributes

for

operands

1

through

3.

Machine

Interface

Instructions

415

The

following

describes

the

instruction

template.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Instruction

template

Char(*)

0

0

Instruction

template

size

Bin(4)

4

4

Operand

1

data

definitional

attribute

template

number

UBin(2)

6

6

Operand

2

data

definitional

attribute

template

number

UBin(2)

8

8

Operand

3

data

definitional

attribute

template

number

UBin(2)

10

A

Operand

1

length

UBin(2)

12

C

Operand

2

length

UBin(2)

14

E

Operand

3

length

UBin(2)

14

E

Fractional

number

of

digits

Char(1)

15

F

Total

number

of

digits

Char(1)

16

10

Input

indicators

Char(2)

16

10

End

of

month

adjustment

Bit

0

0

=

No

adjustment

1

=

Adjustment

16

10

Tolerate

data

decimal

errors

Bit

1

0

=

No

toleration

1

=

Tolerate

16

10

Reserved

(binary

0)

Bits

2-15

18

12

Output

indicators

Char(2)

18

12

End

of

month

adjustment

Bit

0

0

=

No

adjustment

1

=

Adjustment

18

12

Reserved

(binary

0)

Bits

1-15

20

14

Reserved

(binary

0)

Char(22)

42

2A

Data

definitional

attribute

template

list

Char(*)

42

2A

Size

of

the

DDAT

list

UBin(4)

46

2E

Number

of

DDATs

UBin(2)

48

30

Reserved

(binary

0)

Char(10)

58

3A

DDAT

offset

[*]

UBin(4)

*

*

Data

definitional

attribute

template

[*]

Char(*)

*

*

—-

End

—-

A

data

definitional

attribute

template

(DDAT)

number

is

a

number

that

corresponds

to

the

relative

position

of

a

template

in

the

data

definitional

attribute

template

list.

For

example,

the

number

1

references

the

first

template.

The

valid

values

for

this

field

are

1,

2,

and

3.

The

DDATs

for

operands

1

and

2

must

be

valid

for

a

timestamp

and

identical.

The

DDAT

for

operand

3

must

be

valid

for

a

timestamp

duration.

Otherwise,

a

template

value

invalid

(hex

3801)

exception

will

be

issued.

Operand

1

length,

operand

2

length,

and

operand

3

length

are

specified

in

number

of

bytes.

416

iSeries:

Machine

Interface

Instructions

APIs

The

input

indicator,

end

of

month

adjustment,

is

used

to

allow

or

disallow

the

occurrence

of

an

end

of

month

adjustment.

The

input

indicator,

tolerate

decimal

data

errors,

is

used

to

determine

whether

errors

found

in

the

packed

data

for

the

duration

will

generate

exceptions

or

will

be

ignored.

When

the

errors

are

to

be

tolerated,

the

following

rules

will

apply:

1.

An

invalid

sign

nibble

found

in

the

packed

data

value

will

be

changed

to

a

hex

F.

2.

Any

invalid

decimal

digits

found

in

the

packed

data

value

will

be

forced

to

zero.

3.

If

all

digits

of

a

packed

data

value

become

zero,

and

no

decimal

overflow

condition

exists,

the

sign

will

be

set

to

hex

F.

If

all

digits

are

zero

and

a

decimal

overflow

condition

exists,

then

the

sign

will

not

be

changed,

but

its

representation

will

be

changed

to

the

preferred

sign

code.

The

output

indicator,

end

of

month

adjustment,

is

used

to

indicate

an

end

of

month

adjustment,

when

end

of

month

adjustments

are

allowed.

End

of

month

adjustment

is

the

following

concept.

For

SAA(R),

the

result

of

adding

a

1

month

duration

to

the

date

01/31/1989

is

02/28/1989.

The

days

portion

is

adjusted

to

fit

the

month,

31

is

changed

to

28.

When

this

happens,

the

end

of

month

adjustment

output

indicator

is

set

to

on.

When

end

of

month

adjustments

are

not

allowed,

the

month

and

year

definitions

in

the

data

definition

attribute

template

must

have

values

greater

than

zero,

otherwise

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

The

result

of

adding

a

1

month

duration

to

the

Gregorian

date

01/31/1989

is

03/02/1989,

when

the

definition

of

a

month

is

30

days.

The

size

of

the

DDAT

list

is

specified

in

bytes.

The

number

of

DDATs

is

the

count

of

DDATs

specified

for

this

instruction

template.

The

maximum

number

of

DDATs

that

can

be

specified

is

3.

The

DDAT

offset

is

the

number

of

bytes

from

the

start

of

the

DDAT

list

to

the

start

of

the

specific

DDAT.

There

should

be

as

many

DDAT

offsets

as

there

are

DDATs

specified.

A

data

definitional

attribute

template

defines

the

presentation

of

the

data.

Each

template

describes

the

definitional

attributes

of

the

operands.

The

length

of

the

timestamp

and

duration

character

operands

will

be

defined

by

the

template.

For

a

further

description

of

the

data

definitional

attribute

template,

see

Data

Definitional

Attribute

Template.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

Machine

Interface

Instructions

417

MINDTCON.htm#HDRDDAT
MINDTCON.htm#HDRDDAT

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C02

Decimal

Data

0C15

Date

Boundary

Overflow

0C16

Data

Format

Error

0C17

Data

Value

Error

0C18

Date

Boundary

Underflow

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

418

iSeries:

Machine

Interface

Instructions

APIs

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Initialize

Exception

Handler

Control

Actions

(INITEHCA)

Bound

program

access

Built-in

number

for

INITEHCA

is

384.

INITEHCA

(

)

Description:

The

″invocation-class″

control

action

fields

associated

with

exception

handlers

scoped

to

the

current

procedure

are

initialized.

The

initial

value

of

each

control

action

field

is

defined

by

the

exception

handler

dictionary

entry

associated

with

the

handler.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

v

v

None

Insert

Independent

Index

Entry

(INSINXEN)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

04A3

Index

Argument

Option

list

Operand

1:

System

pointer.

Operand

2:

Space

pointer.

Machine

Interface

Instructions

419

Operand

3:

Space

pointer.

Bound

program

access

Built-in

number

for

INSINXEN

is

37.

INSINXEN

(

index

:

address

of

system

pointer

argument

:

address

option_list

:

address

)

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Description:

Insert

one

or

more

new

entries

into

the

independent

index

identified

by

operand

1

according

to

the

criteria

specified

in

the

option

list

(operand

3).

Each

entry

is

inserted

into

the

index

at

the

appropriate

location

based

on

the

binary

value

of

the

argument.

No

other

collating

sequence

is

supported.

The

maximum

length

allowed

for

the

independent

index

entry

is

either

120

bytes

or

2,000

bytes

depending

on

how

the

maximum

entry

length

attribute

field

was

specified

when

the

index

was

created.

Note

that

all

indexes

created

in

Version

3

Release

6

or

later

have

a

maximum

entry

length

of

2,000

bytes.

The

argument

(operand

2)

and

the

option

list

(operand

3)

have

the

same

format

as

the

search

argument

and

option

list

for

the

Find

Independent

Index

Entry

(FNDINXEN)

instruction.

The

rule

option

identifies

the

type

of

insert

to

be

performed

and

has

the

following

meaning:

Insert

Type

Value

(Hex)

Meaning

Authorization

Insert

0001

Insert

unique

argument

Insert

Insert

with

replacement

0002

Insert

argument,

replacing

the

nonkey

portion

if

the

key

is

already

in

the

index

Update

Insert

without

replacement

0003

Insert

argument

only

if

the

key

is

not

already

in

the

index

Insert

The

insert

rule

option

is

valid

only

for

indexes

not

containing

keys.

The

insert

with

replacement

rule

option

and

the

insert

without

replacement

rule

option

are

valid

for

indexes

containing

either

fixed-

or

variable-length

entries

with

keys.

The

duplicate

key

argument

in

index

(hex

1801)

exception

is

signaled

for

the

following

conditions:

v

v

If

the

rule

option

is

insert

and

the

argument

to

be

inserted

(operand

2)

is

already

in

the

index

v

If

the

rule

option

is

insert

without

replacement

and

the

key

portion

of

the

argument

to

be

inserted

(operand

2)

is

already

in

the

index

The

argument

length

and

argument

offset

fields

are

ignored,

however,

the

entry

length

and

offset

fields

must

be

entered

for

every

entry

which

is

to

be

inserted

into

the

index.

The

occurrence

count

specifies

the

number

of

arguments

to

be

inserted.

This

field

is

limited

to

a

maximum

value

of

4,095.

If

this

value

is

exceeded,

a

template

value

invalid

(hex

3801)

exception

is

signaled.

If

the

index

was

created

to

contain

both

pointers

and

scalar

data,

then

each

entry

to

be

inserted

must

be

16-byte

aligned.

If

the

index

was

created

to

contain

variable-length

entries,

then

the

entry

length

and

offset

fields

must

be

specified

in

the

option

list

for

each

argument

in

the

space

identified

by

operand

2.

The

entry

length

is

the

length

of

the

entry

to

be

inserted.

420

iSeries:

Machine

Interface

Instructions

APIs

If

the

index

was

created

to

contain

both

pointers

and

scalar

data,

the

offset

field

in

the

option

list

must

be

supplied

for

each

entry

to

be

inserted.

The

offset

is

the

number

of

bytes

from

the

beginning

of

the

previous

entry

to

the

beginning

of

the

entry

to

be

inserted.

For

the

first

entry,

this

is

the

offset

from

the

start

of

the

space

identified

by

operand

2.

The

return

count

specifies

the

number

of

entries

inserted

into

the

index.

If

the

index

was

created

to

contain

scalar

data

only,

then

any

pointers

inserted

are

invalidated.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Insert

or

update

depending

on

insert

type

–

–

Operand

1
v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution
v

Modify

–

–

Operand

1

Exceptions

02

Access

Group

0201

Object

Ineligible

for

Access

Group

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

Machine

Interface

Instructions

421

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

18

Independent

Index

1801

Duplicate

Key

Argument

in

Index

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C04

Object

Storage

Limit

Exceeded

1C0E

IASP

Resources

Exceeded

1C11

Independent

ASP

Varied

Off

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

422

iSeries:

Machine

Interface

Instructions

APIs

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

3802

Template

Size

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Invocation

Pointer

(INVP)

Bound

program

access

Built-in

number

for

INVP

is

6.

INVP

(

relative_invocation

:

unsigned

binary(4)

literal

value

which

specifies

the

relative

invocation

)

:

invocation

pointer

which

references

the

invocation

specified

by

relative_invocation

Description:

The

relative

invocation

is

a

literal

value

between

0

and

scope-1

where

scope

is

the

procedure’s

scoping

level.

A

value

of

0

indicates

that

an

invocation

pointer

to

the

currently

executing

procedure

is

to

be

returned.

A

value

of

1

indicates

that

an

invocation

pointer

for

the

most

recent

invocation

of

the

procedure

identified

as

the

owner

of

the

currently

executing

procedure

is

returned.

Increasing

values

for

relative

invocation

refer

to

the

further

static

nesting

of

the

currently

executing

procedure,

where

invocation

pointers

to

the

most

recent

invocations

of

those

uplevel

procedures

are

returned.

The

invocation

pointer

is

only

valid

while

the

procedure

invocation

referenced

by

it

still

exists.

Restriction

The

relative

invocation

must

be

0.

Values

greater

than

0

are

currently

not

supported.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

v

v

None

Machine

Interface

Instructions

423

Lock

Object

(LOCK)

Op

Code

(Hex)

Operand

1

03F5

Lock

request

template

Operand

1:

Space

pointer.

Bound

program

access

Built-in

number

for

LOCK

is

46.

LOCK

(

lock_request_template

:

address

)

Description:

Locks

for

system

objects

identified

by

system

pointers

in

the

space

identified

by

operand

1

are

allocated

to

the

requesting

thread

or

its

containing

process

or

a

transaction

control

structure.

The

lock

state

desired

for

each

object

is

specified

by

a

value

associated

with

each

system

pointer

in

the

lock

request

template

(operand

1).

The

lock

request

template

must

be

aligned

on

a

16-byte

boundary.

The

format

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Number

of

lock

requests

in

template

Bin(4)

4

4

Offset

to

lock

state

selection

values

Bin(2)

6

6

Wait

time-out

value

for

instruction

Char(8)

14

E

Lock

request

options

Char(2)

14

E

Lock

request

type

00

=

Immediate

request-

If

all

locks

cannot

be

immediately

granted,

signal

lock

request

not

grantable

(hex

1A02)

exception.

01

=

Synchronous

request-

Wait

until

all

locks

can

be

granted.

10

=

Asynchronous

request-

Allow

processing

to

continue

and

signal

event

when

the

object

is

available.

14

E

Access

state

modifications

14

E

When

the

thread

is

entering

lock

wait

for

synchronous

0

=

Access

state

should

not

be

modified.

1

=

Access

state

should

be

modified.

14

E

When

the

thread

is

leaving

lock

wait:

0

=

Access

state

should

not

be

modified.

1

=

Access

state

should

be

modified.

14

E

Reserved

(binary

0)

14

E

Time-out

option

0

=

Wait

for

specified

time,

then

signal

time-out

exception.

1

=

Wait

indefinitely.

14

E

Template

extension

specified

424

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Template

extension

is

not

specified.

1

=

Template

extension

is

specified.

14

E

Lock

scope

0

=

Lock

is

scoped

to

the

lock

scope

object

type.

1

=

Lock

is

scoped

to

the

current

thread.

14

E

Lock

scope

object

type

0

=

Process

containing

the

current

thread.

1

=

Transaction

control

structure

attached

to

the

current

thread.

14

E

Reserved

(binary

0)

16

10

—-

End

—-

The

lock

object

template

extension

is

only

present

if

template

extension

specified

is

indicated

above.

Otherwise,

the

object(s)

to

be

locked

should

immediately

follow.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Lock

object

template

extension

Char(16)

0

0

Extension

options

0

0

Modify

thread

event

mask

option

0

=

Do

not

modify

thread

event

mask

1

=

Modify

thread

event

mask

0

0

Asynchronous

signals

processing

option

0

=

Do

not

allow

asynchronous

signal

process

1

=

Allow

asynchronous

signal

processing

du

0

0

Reserved

(binary

0)

1

1

Extension

area

1

1

New

thread

event

mask

3

3

Previous

thread

event

mask

5

5

Reserved

(binary

0)

16

10

Object(s)

to

be

locked

[*]

System

pointer

This

should

be

repeated

as

specified

by

number

of

lock

requests

in

template

above.

*

*

—-

End

—-

The

lock

state

selection

is

located

by

adding

the

offset

to

lock

state

selection

values

above

to

operand

1.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Lock

state

selection

[*]

Char(1)

(repeated

for

each

pointer

in

the

template)

0

0

Requested

lock

state

Bits

0-4

Machine

Interface

Instructions

425

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

(1

=

lock

requested,

0

=

lock

not

requested)

Only

one

state

may

be

requested.

0

0

LSRD

lock

Bit

0

0

0

LSRO

lock

Bit

1

0

0

LSUP

lock

Bit

2

0

0

LEAR

lock

Bit

3

0

0

LENR

lock

Bit

4

0

0

Reserved

(binary

0)

Bits

5-6

+

0

0

Entry

active

indicator

Bit

7

0

=

Entry

not

active

-

This

entry

is

not

used.

1

=

Entry

active

-

Obtain

this

lock.

*

*

—-

End

—-

Note:

Fields

indicated

with

a

plus

sign

(+)

are

ignored

by

the

instruction.

Lock

Allocation

Procedure:

A

single

Lock

Object

instruction

can

request

the

allocation

of

one

or

more

lock

states

on

one

or

more

objects.

Locks

are

allocated

sequentially

until

all

locks

requested

are

allocated.

When

two

or

more

threads

are

competing

for

a

conflicting

lock

allocation

on

a

system

object,

the

machine

attempts

to

first

satisfy

the

lock

allocation

request

of

the

thread

with

the

highest

priority.

Within

that

priority,

the

machine

attempts

to

satisfy

the

request

that

has

been

waiting

longest.

If

any

exception

is

identified

during

the

instruction’s

execution,

any

locks

already

granted

by

the

instruction

are

released,

and

the

lock

request

is

canceled.

For

each

system

object

lock,

counts

are

kept

by

lock

state

and

by

thread,

process,

or

transaction

control

structure.

When

a

lock

request

is

granted,

the

appropriate

lock

count(s)

of

each

lock

state

specified

is

incremented

by

1.

If

a

transfer

of

a

lock

from

another

thread

causes

a

previously

unsatisfied

lock

request

to

become

satisfied,

the

lock

request

and

the

transfer

lock

are

treated

independently

relative

to

lock

accounting.

The

appropriate

lock

counts

are

incremented

for

both

the

lock

request

and

the

transfer

lock

function.

The

offset

to

lock

state

selection

values

specifies

an

offset

from

the

beginning

of

the

lock

request.

This

offset

is

used

to

locate

the

lock

state

selection

values.

The

wait

time-out

value

for

instruction

field

establishes

the

maximum

amount

of

time

that

a

thread

competes

for

the

requested

set

of

locks

when

lock

request

type

is

either

synchronous

or

asynchronous.

When

lock

scope

object

type

has

a

value

of

binary

1,

the

lock

wait

time

interval

value

for

the

transaction

control

structure

attached

to

the

current

thread

is

used

to

establish

the

maximum

amount

of

time

that

the

thread

competes

for

the

set

of

locks.

See

“Standard

Time

Format”

on

page

1272

for

additional

information

on

the

format

of

the

wait

time-out

value

for

instruction.

The

maximum

wait

time-out

interval

allowed

is

a

value

equal

to

(248

-

1)

microseconds.

Any

value

that

indicates

more

time

than

the

maximum

wait

time-out

causes

the

maximum

wait

time-out

to

be

used.

If

the

wait

time-out

field

is

specified

with

a

value

of

binary

0,

then

the

value

associated

with

the

default

wait

time-out

field

in

the

process

definition

template

establishes

the

time

interval.

426

iSeries:

Machine

Interface

Instructions

APIs

When

a

requested

lock

state

cannot

be

immediately

granted,

any

locks

already

allocated

by

this

Lock

Object

instruction

are

released,

and

the

lock

request

type

specified

in

the

lock

request

template

establishes

the

machine

action.

The

lock

request

types

are

described

in

the

following

paragraphs.

v

v

Immediate

request-

If

the

requested

locks

cannot

be

granted

immediately,

this

option

causes

the

lock

request

not

grantable

(hex

1A02)

exception

to

be

signaled.

No

locks

are

granted

and

the

lock

request

is

canceled.

v

Synchronous

request-

This

option

causes

the

thread

requesting

the

locks

to

be

placed

in

the

wait

state

until

all

requested

locks

can

be

granted.

If

the

locks

cannot

be

granted

in

the

time

interval

established

by

the

wait

time-out

field

specified

in

the

lock

request

template,

the

lock

time-out

(hex

3A02)

exception

is

signaled

to

the

requesting

thread

at

the

end

of

the

interval.

No

locks

are

granted,

and

the

lock

request

is

canceled.

v

Asynchronous

request-

This

option

allows

the

requesting

thread

to

proceed

with

execution

while

the

machine

asynchronously

attempts

to

satisfy

the

lock

request.

When:

v

the

thread

requesting

the

locks

is

the

only

thread

in

the

process

at

the

time

of

the

lock

request,

and

v

the

synchronous

request

option

is

specified,

and

v

the

requested

locks

cannot

be

immediately

allocated,

the

access

state

modification

field

in

the

lock

request

template

specifies

whether

the

access

state

of

the

process

access

group

is

to

be

modified

on

entering

and/or

returning

from

the

lock

wait.

The

field

has

no

effect

if

the

process

instruction

wait

access

state

control

attribute

specifies

that

no

access

state

modification

is

allowed.

If

the

process

attribute

value

specifies

that

access

state

modification

is

allowed

and

the

wait

on

event

access

state

modification

option

specifies

modify

access

state,

the

machine

modifies

the

access

state

for

the

specified

process

access

group.

If

the

thread

requesting

the

locks

belongs

to

a

multi-threaded

process,

no

access

state

modification

is

performed.

If

the

lock

request

type

is

synchronous

and

the

invocation

containing

the

lock

instruction

is

terminated,

then

the

lock

request

is

canceled.

If

the

lock

request

type

is

asynchronous

and

the

invocation

containing

the

Lock

Object

instruction

is

terminated,

then

the

lock

request

remains

active.

The

lock

scope

field

and

the

lock

scope

object

type

field

determines

which

scope

all

specified

lock

requests

will

be

allocated

to,

either

a

thread,

process

or

transaction

control

structure.

When

lock

scope

has

a

value

of

binary

0

and

lock

scope

object

type

has

a

value

of

0,

the

lock

scope

will

be

the

process

containing

the

current

thread.

When

lock

scope

has

a

value

of

binary

0

and

lock

scope

object

type

has

a

value

of

1,

the

lock

scope

will

be

the

transaction

control

structure

that

is

attached

to

the

current

thread.

If

the

current

thread

does

not

have

a

transaction

control

structure

attached,

then

the

lock

scope

will

be

the

process

containing

the

current

thread.

When

lock

scope

has

a

value

of

binary

1

the

lock

scope

will

be

to

the

current

thread

and

the

value

of

the

lock

scope

object

type

will

be

used

to

determine

how

lock

conflicts

are

detected.

Locks

scoped

to

a

thread

with

a

lock

scope

object

type

value

of

process

containing

the

current

thread

can

never

conflict

with

a

lock

scoped

to

its

containing

process,

but

may

conflict

with

a

lock

scoped

to

a

different

process,

a

transaction

control

structure,

or

any

other

thread

(depending

on

the

lock

states

involved).

Locks

scoped

to

a

thread

with

a

lock

scope

object

type

value

of

transaction

control

structure

attached

to

the

current

thread

can

never

conflict

with

a

lock

scoped

to

the

transaction

control

structure,

but

may

conflict

with

a

lock

scoped

to

a

different

transaction

control

structure,

a

process,

or

any

other

thread

(depending

on

the

lock

states

involved).

Machine

Interface

Instructions

427

If

lock

scope

object

type

has

a

value

of

transaction

control

structure

attached

to

the

current

thread

and

the

transaction

control

structure

state

does

not

allow

objects

to

be

locked

on

behalf

of

the

transaction

control

structure,

a

object

not

eligible

for

operation

(hex

2204)

exception

is

signaled.

Allocated

process

scope

locks

are

released

when

the

process

terminates.

Allocated

thread

scope

locks

are

released

when

the

thread

terminates.

If

a

thread

requested

a

process

scope

lock,

the

process

will

continue

to

hold

that

lock

after

termination

of

the

requesting

thread.

If

a

thread

requested

a

transaction

control

structure

scope

lock,

the

transaction

control

structure

will

continue

to

hold

that

lock

after

the

termination

of

the

requesting

thread.

If

a

thread

is

terminated

while

waiting

for

a

lock

with

a

lock

request

type

of

either

synchronous

or

asynchronous,

the

lock

request

is

canceled

regardless

of

the

scope

of

the

requested

lock.

The

modify

thread

event

mask

option

controls

the

state

of

the

event

mask

in

the

thread

executing

this

instruction.

If

the

event

mask

is

in

the

masked

state,

the

machine

does

not

schedule

signaled

event

monitors

in

the

thread.

The

event

monitors

continue

to

be

signaled

by

the

machine

or

other

threads.

When

the

thread

is

modified

to

the

unmasked

state,

event

handlers

are

scheduled

to

handle

those

events

that

occurred

while

the

thread

was

masked

and

those

events

occurring

while

in

the

unmasked

state.

The

number

of

events

retained

while

the

thread

is

masked

is

specified

by

the

attributes

of

the

event

monitor

associated

with

the

thread.

A

lock

request

with

an

asynchronous

lock

request

type

cannot

have

the

modify

thread

event

mask

option

set

to

1.

If

the

system

security

level

machine

attribute

is

hex

40

or

greater

and

the

thread

is

running

in

user

state,

then

the

modify

thread

event

mask

option

is

not

allowed

and

a

template

value

invalid

(hex

3801)

exception

is

signalled.

When

the

modify

thread

event

mask

is

set

to

1,

the

previous

thread

event

mask

will

be

returned

and

the

new

thread

event

mask

will

take

effect

only

when

the

lock(s)

have

been

successfully

granted.

If

the

lock

request

is

not

successful,

the

previous

thread

event

mask

value

is

not

returned,

nor

does

the

new

thread

event

mask

take

effect.

Whether

masking

or

unmasking

the

current

thread,

the

new

mask

takes

effect

upon

completion

of

a

satisfied

lock

object.

Valid

masking

values

are:

0

Masked

256

Unmasked

Other

values

are

reserved.

If

any

other

values

are

specified,

a

template

value

invalid

(hex

3801)

exception

is

signaled.

The

thread

is

automatically

masked

by

the

machine

when

event

handlers

are

invoked.

If

the

thread

is

unmasked

in

the

event

handler,

other

events

can

be

handled

if

another

enabled

event

monitor

within

that

thread

is

signaled.

If

the

thread

is

masked

when

it

exits

from

the

event

handler,

the

machine

explicitly

unmasks

the

thread.

The

asynchronous

signals

processing

option

controls

the

action

to

be

taken

if

an

asynchronous

signal

is

pending

or

received

while

in

Lock

wait.

If

an

asynchronous

signal

that

is

not

blocked

or

ignored

is

generated

for

the

thread

and

the

asynchronous

signals

processing

option

indicates

allow

asynchronous

signals

processing

during

Lock

wait,

the

Lock

wait

will

be

terminated

and

an

asynchronous

signal

terminated

MI

wait

(hex

4C01)

exception

is

signaled.

Otherwise,

when

the

asynchronous

signals

processing

option

indicates

do

not

allow

asynchronous

signals

processing

during

Lock

wait,

the

thread

remains

in

the

wait

until

all

requested

locks

can

be

granted

or

until

the

wait

time-out

value

for

instruction

expires.

428

iSeries:

Machine

Interface

Instructions

APIs

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Some

authority

or

ownership

–

–

Objects

to

be

locked
v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1A02

Lock

Request

Not

Grantable

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C06

Machine

Lock

Limit

Exceeded

Machine

Interface

Instructions

429

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2204

Object

Not

Eligible

for

Operation

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

3A

Wait

Time-Out

3A02

Lock

Time-Out

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

4C

Signals

Management

4C01

Asynchronous

Signal

Terminated

MI

Wait

430

iSeries:

Machine

Interface

Instructions

APIs

Lock

Object

Location

(LOCKOL)

Op

Code

(Hex)

Operand

1

03C1

Lock

request

template

Operand

1:

Space

pointer.

Bound

program

access

Built-in

number

for

LOCKOL

is

498.

LOCKOL

(

lock_request_template

:

address

)

Description:

The

instruction

requests

that

the

object

locations

identified

in

the

lock

request

template

(operand

1)

be

granted

to

the

issuing

thread.

The

lock

request

template

identified

by

operand

1

must

be

aligned

on

a

16-byte

boundary.

The

format

of

the

lock

request

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Number

of

object

location

lock

requests

in

template

UBin(4)

4

4

Offset

to

lock

state

selection

values

UBin(4)

8

8

Wait

time-out

value

for

instruction

Char(8)

16

10

Lock

request

options

Char(3)

16

10

Reserved

(binary

0)

16

10

Lock

request

type

0

=

Immediate

request-If

all

locks

cannot

be

immediately

granted,

signal

exception.

1

=

Synchronous

request-Wait

until

all

locks

can

be

granted.

16

10

Access

state

modifications

16

10

When

the

process

is

entering

lock

wait

for

synchronous

0

=

Access

state

should

not

be

modified.

1

=

Access

state

should

be

modified.

16

10

When

the

process

is

leaving

lock

wait:

0

=

Access

state

should

not

be

modified.

1

=

Access

state

should

be

modified.

16

10

Reserved

(binary

0)

16

10

Time-out

option

0

=

Wait

for

specified

time,

then

signal

time-out

exception.

1

=

Wait

indefinitely.

16

10

Reserved

(binary

0)

16

10

Asynchronous

signals

processing

option

0

=

Do

not

allow

asynchronous

signal

processing

during

Lock

Object

Location

wait.

1

=

Allow

asynchronous

signal

processing

during

Lock

Object

Location

wait.

16

10

Reserved

(binary

0)

Machine

Interface

Instructions

431

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

19

13

Reserved

(binary

0)

Char(13)

32

20

Object

location(s)

to

be

locked

[*]

Object

pointer

This

should

be

repeated

as

specified

by

the

number

of

object

location

lock

requests

in

template

field

above.

*

*

—-

End

—-

The

lock

state

selection

field

is

located

by

adding

the

offset

to

lock

state

selection

values

above

to

operand

1.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Lock

state

selection

[*]

Char(1)

(repeated

for

each

object

pointer

in

the

template)

0

0

Requested

lock

state

Bits

0-4

(1

=

lock

requested,

0

=

lock

not

requested)

Only

one

state

may

be

requested;

else

the

template

value

invalid

(hex

3801)

exception

is

signaled.

0

0

LSRD

lock

Bit

0

0

0

LSRO

lock

Bit

1

0

0

LSUP

lock

Bit

2

0

0

LEAR

lock

Bit

3

0

0

LENR

lock

Bit

4

0

0

Reserved

(binary

0)

Bits

5-6

0

0

Entry

active

indicator

Bit

7

0

=

Entry

not

active-

This

entry

is

not

used.

1

=

Entry

active-

Obtain

this

lock.

*

*

—-

End

—-

Lock

Allocation

Procedure:

A

single

Lock

Object

Location

instruction

can

request

the

allocation

of

one

or

more

locks

on

one

or

more

object

locations.

Object

location

locks

are

granted

sequentially

until

all

the

locks

requested

are

granted.

The

wait

time-out

field

establishes

the

maximum

amount

of

time

that

a

thread

competes

for

the

requested

set

of

locks

when

the

lock

request

type

is

synchronous.

See

“Standard

Time

Format”

on

page

1272

for

additional

information

on

the

format

of

the

wait

time-out.

The

maximum

wait

time-out

interval

allowed

is

a

value

equal

to

(248

-

1)

microseconds.

Any

value

that

indicates

more

time

than

the

maximum

wait

time-out

causes

the

maximum

wait

time-out

to

be

used.

If

the

wait

time-out

field

is

specified

with

a

value

of

binary

0,

the

default

wait

time-out

for

the

process

is

used

as

the

time

interval.

When

a

requested

lock

state

cannot

be

immediately

granted,

any

locks

already

granted

by

this

Lock

Object

Location

instruction

are

released,

and

the

lock

request

type

specified

in

the

lock

request

template

establishes

the

machine

action.

The

lock

request

type

values

are

described

in

the

following

paragraphs.

v

v

Immediate

request-

If

the

requested

object

location

locks

cannot

be

granted

immediately,

this

option

causes

the

lock

request

not

grantable

(hex

1A02)

exception

to

be

signaled.

No

object

location

locks

are

granted,

and

the

lock

request

is

canceled.

v

Synchronous

request-

This

option

causes

the

thread

requesting

the

locks

to

be

placed

in

the

wait

state

until

all

requested

locks

can

be

granted.

If

the

locks

cannot

be

granted

in

the

time

interval

established

432

iSeries:

Machine

Interface

Instructions

APIs

by

the

wait

time-out

field

specified

in

the

lock

request

template,

the

object

location

lock

wait

time-out

(hex

3A05)

exception

is

signaled

to

the

requesting

thread

at

the

end

of

the

interval.

No

locks

are

granted,

and

the

lock

request

is

canceled.

When:

v

the

thread

requesting

the

locks

is

the

only

thread

contained

in

the

process

at

the

time

of

the

lock

request,

and

v

the

lock

request

type

is

synchronous,

and

v

the

requested

locks

cannot

be

immediately

granted,

the

access

state

modifications

field

in

the

lock

request

template

specifies

whether

the

access

state

of

the

process

access

group

is

to

be

modified

on

entering

and/or

returning

from

the

lock

wait.

The

parameter

has

no

effect

if

the

process

instruction

wait

access

state

control

attribute

specifies

that

no

access

state

modification

is

allowed.

If

the

process

attribute

value

specifies

that

access

state

modification

is

allowed

and

the

wait

on

event

access

state

modification

option

specifies

modify

access

state,

the

machine

modifies

the

access

state

for

the

specified

process

access

group.

If

the

thread

requesting

the

locks

belongs

to

a

multi-threaded

process,

no

access

state

modification

is

performed.

If

the

lock

request

type

is

synchronous

and

the

invocation

containing

the

Lock

Object

Location

instruction

is

terminated,

then

the

lock

request

is

canceled.

Allocated

object

location

locks

are

removed

when

the

thread

holding

the

locks

terminates.

If

a

thread

terminates

while

waiting

for

an

object

location

lock,

the

lock

request

is

canceled.

The

asynchronous

signals

processing

option

controls

the

action

to

be

taken

if

an

asynchronous

signal

is

pending

or

received

while

in

Lock

Object

Location

wait.

If

an

asynchronous

signal

that

is

not

blocked

or

ignored

is

generated

for

the

thread

and

the

asynchronous

signals

processing

option

indicates

allow

asynchronous

signals

processing

during

Lock

Object

Location

wait,

the

Lock

Object

Location

wait

will

be

terminated

and

an

asynchronous

signal

terminated

MI

wait

(hex

4C01)

exception

is

signaled.

Otherwise,

when

the

asynchronous

signals

processing

option

indicates

do

not

allow

asynchronous

signals

processing

during

Lock

Object

Location

wait,

the

thread

remains

in

the

wait

until

all

requested

locks

can

be

granted

or

until

the

wait

time-out

value

for

instruction

expires.

If

any

exception

is

identified

during

the

instruction’s

execution,

any

locks

already

granted

by

the

instruction

are

released,

and

the

lock

request

is

canceled.

For

each

object

location

lock,

counts

are

kept

by

lock

state

and

by

thread.

When

a

lock

request

is

granted,

the

appropriate

lock

count

of

each

lock

state

specified

is

incremented

by

1.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

Machine

Interface

Instructions

433

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1A

Lock

State

1A02

Lock

Request

Not

Grantable

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C06

Machine

Lock

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3203

Scalar

Value

Invalid

434

iSeries:

Machine

Interface

Instructions

APIs

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

3A

Wait

Time-Out

3A05

Object

Location

Lock

Wait

Time-Out

4C

Signals

Management

4C01

Asynchronous

Signal

Terminated

MI

Wait

Lock

Pointer-Based

Mutex

(LOCKMTX)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

03D3

Mutex

Lock

request

template

Result

Operand

1:

Space

pointer.

Operand

2:

Space

pointer.

Operand

3:

Signed

binary(4)

variable

scalar.

Bound

program

access

Built-in

number

for

LOCKMTX

is

157.

LOCKMTX

(

mutex

:

address

lock_request_template

:

address

)

:

signed

binary(4)

/*

result

*/

Note:

The

term

″mutex″

in

this

instruction

refers

to

a

″pointer-based

mutex″.

Description:

The

mutex,

whose

address

is

contained

in

operand

1,

is

allocated

exclusively

to

the

issuing

thread.

Mutual

exclusion

is

achieved

between

the

thread

with

the

allocated

mutex

lock

and

all

other

threads

attempting

to

acquire

the

same

mutex

lock.

If

the

mutex

lock

is

successful,

LOCKMTX

returns

with

the

issuing

thread

as

its

holder.

The

mutex

must

have

been

previously

created

by

the

CRTMTX

instruction

or

be

a

copy

of

a

mutex

that

was

previously

created

by

the

CRTMTX

instruction

prior

to

attempting

to

lock

the

mutex.

See

the

CRTMTX

instruction

for

additional

information

regarding

mutex

copies.

The

lock

request

template

whose

address

is

passed

in

operand

2

is

used

to

determine

if

and

for

how

long

the

issuer

will

wait

for

the

mutex

to

become

available

in

the

event

the

mutex

is

already

locked.

The

lock

options

are

used

to

place

the

issuer

into

the

mutex

wait

state.

If

an

invalid

option

is

specified,

an

EINVAL

error

number

is

returned.

If

operand

2

in

a

bound

program

is

a

null

pointer

value,

the

default

lock

request

template

is

used

(the

binary

0

value

is

the

default

action).

Operand

2

in

non-bound

programs

must

be

a

pointer

to

a

lock

request

template.

The

pointer

does

not

exist

(hex

2401)

exception

is

signaled

if

a

Machine

Interface

Instructions

435

null

pointer

value

is

used

for

operand

2

in

a

non-bound

program.

If

the

mutex

lock

can

be

immediately

allocated

to

the

issuer,

then

the

lock

request

template

is

ignored.

Result

is

used

to

indicate

the

success

or

failure

of

the

LOCKMTX

instruction.

If

the

mutex

is

locked

by

this

instruction,

then

result

is

set

to

0.

If

an

error

occurs,

then

the

result

is

set

to

an

error

condition.

Mutexes

can

have

either

non-recursive

or

recursive

behavior,

which

is

specified

at

the

time

of

creation.

See

the

CRTMTX

instruction

for

more

information

on

mutex

creation.

A

non-recursive

mutex

can

only

be

locked

once

by

a

thread.

Additional

attempts

to

lock

the

same

non-recursive

mutex

by

a

thread,

will

cause

the

EDEADLK

error

number

to

be

returned.

If

a

mutex

was

created

as

a

recursive

mutex

then

LOCKMTX

can

be

used

to

recursively

lock

the

mutex.

The

machine

keeps

track

of

the

number

of

recursive

locks

for

the

mutex

and

requires

that

the

thread

use

the

Unlock

Pointer-Based

Mutex

(UNLKMTX)

instruction

the

same

number

of

times

to

unlock

the

mutex

before

the

mutex

can

be

locked

by

a

different

thread.

The

maximum

number

of

recursive

locks

is

32,767.

The

ERECURSE

error

number

is

returned

if

the

maximum

number

of

recursive

locks

is

exceeded.

The

mutex

must

be

aligned

on

a

16-byte

boundary.

The

format

of

the

lock

request

template

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Time-out

option

Char(1)

1

1

Lock

options

Char(1)

1

1

Reserved

(must

be

0)

Bit

0

1

1

Wait

time-out

format

Bit

1

0

=

Time-out

value

is

specified

in

seconds/microseconds

1

=

Time-out

value

is

specified

as

a

64-bit

binary

value

1

1

MPL

(multiprogramming

level)

control

during

wait

Bit

2

0

=

Remain

in

the

current

MPL

set

1

=

Do

not

remain

in

the

current

MPL

set

1

1

Asynchronous

signals

processing

option

Bit

3

0

=

Do

not

allow

asynchronous

signal

processing

during

mutex

wait

1

=

Allow

asynchronous

signal

processing

during

mutex

wait

1

1

Wait

type

Bit

4

0

=

Normal

wait

1

=

Restricted

wait

1

1

Reserved

(binary

0)

Bits

5-7

2

2

Reserved

(binary

0)

Char(6)

8

8

Wait

time-out

value

Char(8)

8

8

Seconds

Bin(4)

12

C

Microseconds

Bin(4)

16

10

—-

End

—-

436

iSeries:

Machine

Interface

Instructions

APIs

The

time-out

option

describes

the

action

taken

when

LOCKMTX

cannot

allocate

the

mutex

to

the

issuer

immediately.

Hex

00

=

Wait

indefinitely

for

the

mutex.

Hex

01

=

Wait

for

the

mutex

for

the

specified

amount

of

time.

If

the

mutex

still

cannot

be

obtained,

the

EAGAIN

error

number

is

returned.

Hex

02

=

Return

immediately

with

an

EBUSY

error

number.

All

other

values

for

time-out

option

are

reserved.

The

lock

options

describes

the

action

taken

when

LOCKMTX

causes

the

issuer

to

be

put

into

a

mutex

wait

state.

The

wait

time-out

format

option

determines

the

format

of

the

wait

time-out

value.

If

the

wait

time-out

format

is

specified

as

0,

then

the

wait

time-out

value

consists

of

two

4-byte

fields,

specifying

the

number

of

seconds

and

the

number

of

microseconds

to

wait

for

the

mutex

if

it

cannot

be

locked

immediately.

If

the

wait

time-out

format

is

specified

as

1,

then

the

wait

time-out

value

consists

of

a

single

8-byte

field.

See

“Standard

Time

Format”

on

page

1272

for

additional

information

on

the

format

of

the

wait

time-out

value

if

wait

time-out

format

is

specified

as

1.

The

MPL

control

during

wait

option

controls

whether

the

thread

is

removed

from

the

current

MPL

(multiprogramming

level)

set

or

remains

in

the

current

MPL

set

when

the

thread

enters

a

mutex

wait.

When

entering

a

mutex

wait

state,

the

thread

will

normally

remain

in

the

current

MPL

set

for

an

implementation-defined

period

which

will

not

exceed

2

seconds.

If

the

mutex

wait

has

not

been

satisfied

by

the

end

of

this

period,

the

thread

is

automatically

removed

from

the

current

MPL

set.

The

automatic

removal

does

not

change

or

affect

the

total

wait

time

specified

on

the

LOCKMTX

instruction.

If

the

MPL

control

during

wait

option

specifies

do

not

remain

in

current

MPL

set

(value

of

1),

then

the

thread

will

leave

the

MPL

set

immediately.

The

asynchronous

signals

processing

option

controls

the

action

to

be

taken

if

an

asynchronous

signal

is

pending

or

received

while

in

a

mutex

wait.

If

an

asynchronous

signal

that

is

not

blocked

or

ignored

is

generated

for

the

thread

and

the

asynchronous

signals

processing

option

indicates

allow

asynchronous

signal

processing

during

mutex

wait,

the

mutex

wait

is

terminated

and

the

result

set

to

EINTR.

Otherwise,

when

the

asynchronous

signals

processing

option

indicates

do

not

allow

asynchronous

signal

processing

during

mutex

wait,

the

thread

remains

in

the

wait

until

the

mutex

is

allocated

exclusively

to

the

thread

or

until

the

wait

time-out

value

expires.

The

wait

type

option

is

used

by

kernel-mode

programs

or

procedures

to

specify

what

type

of

wait

to

perform.

The

wait

type

field

is

ignored

when

the

thread

execution

mode

is

not

kernel-mode.

The

wait

time-out

value

establishes

the

maximum

amount

of

time

that

the

issuer

waits

for

the

requested

mutex

when

the

mutex

lock

cannot

be

immediately

obtained

and

the

time-out

option

is

set

to

wait

for

a

specified

period

of

time

(hex

01).

The

format

of

this

field

differs

depending

on

which

value

is

specified

by

the

wait

time-out

format.

If

the

wait

time-out

format

is

0,

then

the

wait

time-out

value

consists

of

two

4-byte

values,

specifying

the

number

of

seconds

and

the

number

of

microseconds

to

wait

for

the

mutex.

If

the

wait

time-out

format

is

1,

then

the

wait

time-out

value

is

a

64-bit

unsigned

binary

value,

with

the

bits

being

numbered

from

0

to

63,

and

bit

48

is

equal

to

8

microseconds.

See

“Standard

Time

Format”

on

page

1272

for

additional

information

on

the

format

of

the

wait

time-out

value

if

wait

time-out

format

is

specified

as

1.

Note:

Regardless

of

the

format

used

for

the

wait

time-out

value,

the

timer

is

architected

to

be

updated

once

every

8

microseconds.

Increased

granularity

of

the

time-out

period

cannot

be

assumed

by

specifying

wait

time-out

format

as

0

rather

than

as

1.

The

maximum

time-out

value

allowed

is

a

value

equal

to

(248

-

1)

microseconds.

Any

value

that

indicates

more

time

than

the

maximum

time-out

value

causes

the

maximum

time-out

value

to

be

used.

If

the

wait

Machine

Interface

Instructions

437

time-out

value

is

binary

0,

then

the

process

default

wait

time-out

value

is

used.

This

field

is

only

applicable

if

the

time-out

option

is

set

to

hex

01.

If

the

time-out

option

is

not

set

to

hex

01,

this

field

is

ignored.

If

a

mutex

is

destroyed

while

another

thread

has

a

pending

request

to

lock

the

mutex,

an

EDESTROYED

error

number

is

returned

to

the

waiting

thread.

The

ETYPE

error

number

is

returned

if

the

mutex

operand

references

a

synchronization

object

that

is

not

a

pointer-based

mutex.

The

keep

valid

option

on

the

Create

Mutex

(CRTMTX)

instruction

specifies

whether

the

mutex

is

to

remain

valid

when

a

thread

is

terminated

while

holding

the

lock

on

the

mutex.

The

keep

valid

option

must

be

set

to

hex

01

if

a

mutex

should

be

remain

valid

after

thread

termination.

The

mutex

is

considered

to

be

in

a

pending

state

when

it

is

kept

valid

after

thread

termination.

The

next

thread

to

lock

a

pending

mutex

will

revalidate

the

mutex,

but

will

receive

an

EUNKNOWN

error

number

to

indicate

that

the

resource

protected

by

this

mutex

may

need

special

handling.

Appropriate

action

is

left

up

to

the

MI

user’s

discretion.

Specifying

hex

00

for

the

keep

valid

option

will

result

in

the

locked

mutex

being

destroyed

during

thread

termination.

Threads

waiting

on

the

destroyed

mutex

will

receive

an

EOWNERTERM

error

number.

If

the

space

where

a

mutex

resides

is

destroyed

or

corrupted,

the

system

may

detect

this

condition

and

attempt

to

clean

up

the

mutex

resource.

This

cleanup

action

will

cause

any

thread

waiting

on

the

mutex

to

awaken

with

a

return

value

of

EINVAL.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Error

conditions

The

result

is

set

to

one

of

the

following:

EAGAIN

3406

-

Operation

would

have

caused

the

process

to

be

suspended.

EBUSY

3029

-

Resource

busy.

ECANCEL

3456

-

Operation

canceled.

EDEADLK

3459

-

Resource

deadlock

avoided.

EDESTROYED

3463

-

The

synchronization

object

was

destroyed,

or

the

object

no

longer

exists.

EINTR

3407

-

Interrupted

function

call.

EINVAL

3021

-

The

value

specified

for

the

argument

is

not

correct.

EOWNERTERM

3462

-

The

synchronization

object

no

longer

exists

because

the

owner

is

no

longer

running.

438

iSeries:

Machine

Interface

Instructions

APIs

ERECURSE

3419

-

Recursive

attempt

rejected.

Recursion

limit

exceeded

for

a

recursive

mutex.

ETERM

3464

-

Operation

terminated.

ETYPE

3493

-

Object

type

mismatch.

A

synchronization

object

at

this

address

is

not

a

pointer-based

mutex.

EUNKNOWN

3474

-

Unknown

system

state.

Owner

of

mutex

was

previously

terminated

leaving

the

mutex

in

a

pending

state.

EUNKNOWN

is

returned

to

the

first

locker

following

this

scenario.

See

CRTMTX

for

additional

information.

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

Machine

Interface

Instructions

439

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Lock

Space

Location

(LOCKSL)

Op

Code

(Hex)

Operand

1

Operand

2

03F6

Space

location

or

lock

request

template

Lock

request

Operand

1:

Space

pointer

data

object.

Operand

2:

Character(1)

scalar

or

null.

Bound

program

access

Built-in

number

for

LOCKSL

is

47.

LOCKSL

(

space_location

:

address

of

space

pointer(16)

lock_request

:

address

OR

null

operand

)

Description:

When

operand

2

is

not

null,

a

thread

scoped

lock

specified

by

operand

2

is

requested

by

the

current

thread

for

the

space

location

(operand

1).

When

operand

2

is

null,

thread

scoped

space

location

locks

identified

in

the

lock

request

template

(operand

1)

are

requested

by

the

current

thread.

Locking

a

space

location

does

not

prevent

any

byte

operation

from

referencing

that

location,

nor

does

it

prevent

the

space

from

being

extended,

truncated,

or

destroyed.

Space

location

locks

follow

the

normal

locking

rules

with

respect

to

conflicts

and

waits

but

are

strictly

symbolic

in

nature.

A

space

pointer

machine

object

cannot

be

specified

for

operand

1.

If

operand

1

points

to

teraspace

an

unsupported

space

use

(hex

0607)

exception

is

signaled.

The

LOCKTSL

instruction

can

however

be

used

with

teraspace

locations.

440

iSeries:

Machine

Interface

Instructions

APIs

The

following

is

the

format

of

operand

2

when

not

null:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Lock

request

Char(1)

0

0

Lock

state

selection

Bits

0-4

(1

=

lock

requested,

0

=

lock

not

requested)

Only

one

state

may

be

requested.

0

0

LSRD

lock

Bit

0

0

0

LSRO

lock

Bit

1

0

0

LSUP

lock

Bit

2

0

0

LEAR

lock

Bit

3

0

0

LENR

lock

Bit

4

0

0

Reserved

(binary

0)

Bits

5-7

1

1

—-

End

—-

For

this

format,

if

the

requested

lock

cannot

be

immediately

granted,

the

thread

will

enter

a

synchronous

wait

for

the

lock

for

a

period

of

up

to

the

interval

specified

by

the

process

default

time-out

value.

If

the

wait

exceeds

this

time

limit,

a

space

location

lock

wait

time-out

(hex

3A04)

exception

is

signaled,

and

the

requested

lock

is

not

granted.

During

the

wait,

the

process

access

state

may

be

modified.

This

can

occur

if

the

process’

instruction

wait

access

state

control

attribute

is

set

to

allow

access

state

modification,

and

if

the

process

contains

a

single

thread

at

the

time

of

the

lock

request.

Process

access

states

are

not

modified

for

multi-threaded

processes.

When

operand

2

is

null,

the

lock

request

template

identified

by

operand

1

must

be

aligned

on

a

16-byte

boundary.

The

format

of

operand

1

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Number

of

space

location

lock

requests

in

the

template

Bin(4)

4

4

Offset

to

lock

state

selection

values

Bin(2)

6

6

Wait

time-out

value

for

instruction

Char(8)

14

E

Lock

request

options

Char(3)

14

E

Reserved

(binary

0)

14

E

Lock

request

type

0

=

Immediate

request-If

all

locks

cannot

be

immediately

granted,

signal

exception.

1

=

Synchronous

request-Wait

until

all

locks

can

be

granted.

14

E

Access

state

modifications

14

E

When

the

process

is

entering

lock

wait

for

synchronous

0

=

Access

state

should

not

be

modified.

1

=

Access

state

should

be

modified.

14

E

When

the

process

is

leaving

lock

wait:

0

=

Access

state

should

not

be

modified.

1

=

Access

state

should

be

modified.

14

E

Reserved

(binary

0)

14

E

Time-out

option

Machine

Interface

Instructions

441

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Wait

for

specified

time,

then

signal

time-out

exception.

1

=

Wait

indefinitely.

14

E

Reserved

(binary

0)

14

E

Modify

thread

event

mask

option

0

=

Do

not

modify

thread

event

mask

1

=

Modify

thread

event

mask

14

E

Asynchronous

signals

processing

option

0

=

Do

not

allow

asynchronous

signal

processing

during

Lock

Space

Location

wait.

1

=

Allow

asynchronous

signal

processing

during

Lock

Space

Location

wait.

14

E

Reserved

(binary

0)

17

11

Modify

thread

event

mask

control

Char(4)

17

11

New

thread

event

mask

19

13

Previous

thread

event

mask

21

15

Reserved

(binary

0)

Char(11)

32

20

Space

location(s)

to

be

locked

[*]

Space

pointer

This

should

be

repeated

as

specified

by

number

of

space

location

lock

requests

in

template

above.

*

*

—-

End

—-

The

lock

state

selection

is

located

by

adding

the

offset

to

lock

state

selection

values

above

to

operand

1.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Lock

state

selection

[*]

Char(1)

(repeated

for

each

pointer

in

the

template)

0

0

Requested

lock

state

Bits

0-4

(1

=

lock

requested,

0

=

lock

not

requested)

Only

one

state

may

be

requested

per

entry.

0

0

LSRD

lock

Bit

0

0

0

LSRO

lock

Bit

1

0

0

LSUP

lock

Bit

2

0

0

LEAR

lock

Bit

3

0

0

LENR

lock

Bit

4

0

0

Reserved

(binary

0)

Bits

5-6

0

0

Entry

active

indicator

Bit

7

0

=

Entry

not

active-

This

entry

is

not

used.

1

=

Entry

active-

Obtain

this

lock.

*

*

—-

End

—-

Lock

Allocation

Procedure:

A

single

Lock

Space

Location

instruction

can

request

the

allocation

of

one

or

more

lock

states

on

one

or

more

space

locations.

Space

location

locks

are

granted

sequentially

until

all

the

locks

requested

are

granted.

442

iSeries:

Machine

Interface

Instructions

APIs

The

wait

time-out

field

establishes

the

maximum

amount

of

time

that

a

thread

competes

for

the

requested

set

of

locks

when

the

lock

request

type

is

synchronous.

See

“Standard

Time

Format”

on

page

1272

for

additional

information

on

the

format

of

the

wait

time-out.

The

maximum

wait

time-out

interval

allowed

is

a

value

equal

to

(248

-

1)

microseconds.

Any

value

that

indicates

more

time

than

the

maximum

wait

time-out

causes

the

maximum

wait

time-out

to

be

used.

If

the

wait

time-out

field

is

specified

with

a

value

of

binary

0,

then

the

value

associated

with

the

default

wait

time-out

parameter

in

the

process

definition

template

establishes

the

time

interval.

When

a

requested

lock

state

cannot

be

immediately

granted,

any

locks

already

granted

by

this

Lock

Space

Location

instruction

are

released,

and

the

lock

request

type

specified

in

the

lock

request

template

establishes

the

machine

action.

The

lock

request

type

values

are

described

in

the

following

paragraphs.

v

v

Immediate

request-

If

the

requested

space

location

locks

cannot

be

granted

immediately,

this

option

causes

the

lock

request

not

grantable

(hex

1A02)

exception

to

be

signaled.

No

space

location

locks

are

granted,

and

the

lock

request

is

canceled.

v

Synchronous

request-

This

option

causes

the

thread

requesting

the

locks

to

be

placed

in

the

wait

state

until

all

requested

locks

can

be

granted.

If

the

locks

cannot

be

granted

in

the

time

interval

established

by

the

wait

time-out

field

specified

in

the

lock

request

template,

the

space

location

lock

wait

time-out

(hex

3A04)

exception

is

signaled

to

the

requesting

thread

at

the

end

of

the

interval.

No

locks

are

granted,

and

the

lock

request

is

canceled.

When:

v

the

thread

requesting

the

locks

is

the

only

thread

in

the

process

at

the

time

of

the

lock

request,

and

v

the

lock

request

type

is

synchronous,

and

v

the

requested

locks

cannot

be

immediately

granted,

the

access

state

modifications

field

in

the

lock

request

template

specifies

whether

the

access

state

of

the

process

access

group

is

to

be

modified

on

entering

and/or

returning

from

the

lock

wait.

The

parameter

has

no

effect

if

the

process

instruction

wait

access

state

control

attribute

specifies

that

no

access

state

modification

is

allowed.

If

the

process

attribute

value

specifies

that

access

state

modification

is

allowed

and

the

wait

on

event

access

state

modification

option

specifies

modify

access

state,

the

machine

modifies

the

access

state

for

the

specified

process

access

group.

If

the

thread

requesting

the

locks

belongs

to

a

multi-threaded

process,

no

access

state

modification

is

performed.

If

the

lock

request

type

is

synchronous

and

the

invocation

containing

the

Lock

Space

Location

instruction

is

terminated,

then

the

lock

request

is

canceled.

Allocated

space

location

locks

are

removed

when

the

thread

holding

the

locks

terminates.

If

a

thread

terminates

while

waiting

for

a

space

location

lock,

the

lock

request

is

canceled.

The

modify

thread

event

mask

option

controls

the

state

of

the

event

mask

in

the

thread

executing

this

instruction.

When

the

thread

event

mask

is

in

the

masked

state,

the

machine

does

not

schedule

signaled

event

monitors

in

the

thread.

The

event

monitors

continue

to

be

signaled

by

the

machine

or

other

threads.

When

the

thread

event

mask

is

modified

to

the

unmasked

state,

event

handlers

are

scheduled

to

handle

those

events

that

occurred

while

the

thread

was

masked

and

those

events

occurring

while

in

the

unmasked

state.

If

the

system

security

level

machine

attribute

is

hex

40

or

greater

and

the

thread

is

running

in

user

state,

then

the

modify

thread

event

mask

option

is

not

allowed

and

a

template

value

invalid

(hex

3801)

exception

is

signalled.

Machine

Interface

Instructions

443

When

the

modify

thread

event

mask

is

set

to

1,

the

previous

thread

event

mask

will

be

returned

and

the

new

thread

event

mask

will

take

effect

only

when

the

space

location

lock(s)

have

been

successfully

granted.

If

the

space

location

lock

request

is

not

successful,

the

previous

thread

event

mask

value

is

not

returned,

nor

does

the

new

thread

event

mask

take

effect.

The

thread

event

mask

values

are

validity

checked

only

when

the

modify

thread

event

mask

is

set

to

1,

and

ignored

otherwise.

Valid

masking

values

are:

0

Masked

256

Unmasked

Other

values

are

reserved

and

must

not

be

specified,

otherwise

a

template

value

invalid

(hex

3801)

exception

is

signaled.

The

asynchronous

signals

processing

option

controls

the

action

to

be

taken

if

an

asynchronous

signal

is

pending

or

received

while

in

Lock

Space

Location

wait.

If

an

asynchronous

signal

that

is

not

blocked

or

ignored

is

generated

for

the

thread

and

the

asynchronous

signals

processing

option

indicates

allow

asynchronous

signals

processing

during

Lock

Space

Location

wait,

the

Lock

Space

Location

wait

will

be

terminated

and

an

asynchronous

signal

terminated

MI

wait

(hex

4C01)

exception

is

signaled.

Otherwise,

when

the

asynchronous

signals

processing

option

indicates

do

not

allow

asynchronous

signals

processing

during

Lock

Space

Location

wait,

the

thread

remains

in

the

wait

until

all

requested

locks

can

be

granted

or

until

the

wait

time-out

value

for

instruction

expires.

If

any

exception

is

identified

during

the

instruction’s

execution,

any

locks

already

granted

by

the

instruction

are

released,

and

the

lock

request

is

canceled.

For

each

space

location

lock,

counts

are

kept

by

lock

state

and

by

thread.

When

a

lock

request

is

granted,

the

appropriate

lock

count

of

each

lock

state

specified

is

incremented

by

1.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0607

Unsupported

Space

Use

08

Argument/Parameter

0801

Parameter

Reference

Violation

444

iSeries:

Machine

Interface

Instructions

APIs

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1A

Lock

State

1A02

Lock

Request

Not

Grantable

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C06

Machine

Lock

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

Machine

Interface

Instructions

445

3A

Wait

Time-Out

3A04

Space

Location

Lock

Wait

Time-Out

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

4C

Signals

Management

4C01

Asynchronous

Signal

Terminated

MI

Wait

Lock

Teraspace

Storage

Location

(LOCKTSL)

Op

Code

(Hex)

Operand

1

0315

Lock

request

template

Operand

1:

Space

pointer

data

object.

Bound

program

access

Built-in

number

for

LOCKTSL

is

621.

LOCKTSL

(

lock_request_template

:

address

of

space

pointer(16)

)

Description:

The

locks

identified

in

the

lock

request

template

(operand

1)

are

requested

by

the

current

thread.

By

default,

these

locks

are

obtained

thread

scoped.

Process

and

Transaction

Control

Structure

scoped

locks

are

also

supported.

The

LOCKTSL

instruction

can

be

used

to

lock

teraspace

storage

locations

symbolically

or

as

resolved

single-level

store

addresses,

as

well

as

any

location

which

can

be

locked

by

the

LOCKSL

instruction.

A

maximum

of

4093

locations

can

be

locked

with

one

LOCKTSL

instruction.

If

the

type

of

teraspace

storage

location

lock

field

in

the

lock

request

template

is

set

to

binary

0,

then

all

teraspace

storage

locations

will

be

locked

symbolically.

This

implies

that

only

the

thread

which

is

performing

the

lock

operation

and

any

other

threads

in

the

same

process

will

ever

conflict

on

teraspace

storage

location

locks.

If

the

type

of

teraspace

storage

location

lock

field

in

the

lock

request

template

is

set

to

binary

1,

then

the

resolved

single-level

store

location

mapped

to

the

teraspace

storage

location

will

be

locked.

This

requires

that

each

teraspace

storage

location

be

either

previously

allocated

or

mapped.

If

they

are

not,

an

unsupported

space

use

(hex

0607)

exception

is

signaled

and

no

locations

are

locked.

If

multiple

threads,

either

in

the

same

process

or

different

processes,

resolve

their

teraspace

storage

addresses

to

a

common

single-level

store

location,

and

the

type

of

teraspace

storage

location

lock

field

was

set

to

binary

1

when

the

lock

requests

were

made

by

the

threads,

then

the

locks

will

conflict

according

to

the

normal

locking

rules,

even

though

the

individual

teraspace

storage

addresses

are

apparently

different.

If

the

location

to

be

locked

is

not

a

teraspace

storage

location,

the

type

of

teraspace

storage

location

lock

field

is

ignored.

446

iSeries:

Machine

Interface

Instructions

APIs

Locking

a

teraspace

storage

location

does

not

prevent

any

byte

operation

from

referencing

that

location,

nor

does

it

prevent

the

space

from

being

extended,

truncated,

or

destroyed.

Teraspace

storage

location

locks

follow

the

normal

locking

rules

with

respect

to

conflicts

and

waits.

The

lock

request

template

identified

by

operand

1

must

be

aligned

on

a

16-byte

boundary

or

an

boundary

alignment

(hex

0602)

exception

is

signaled.

The

format

of

operand

1

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Number

of

lock

requests

in

the

template

(max

4093)

UBin(4)

4

4

Offset

to

lock

state

selection

values

UBin(2)

6

6

Wait

time-out

value

for

instruction

Char(8)

14

E

Lock

request

options

Char(3)

14

E

Reserved

(binary

0)

14

E

Lock

request

type

0

=

Immediate

request.

1

=

Synchronous

request.

14

E

Access

state

modifications

14

E

When

the

process

is

entering

lock

wait

for

synchronous

0

=

Access

state

should

not

be

modified.

1

=

Access

state

should

be

modified.

14

E

When

the

process

is

leaving

lock

wait

for

synchronous

r

0

=

Access

state

should

not

be

modified.

1

=

Access

state

should

be

modified.

14

E

Type

of

teraspace

storage

location

lock

0

=

Lock

the

teraspace

storage

location

symbolically.

1

=

Lock

the

resolved

single-level

store

location

mapped

to

the

teraspace

storage

location.

14

E

Reserved

(binary

0)

14

E

Time-out

option

0

=

Wait

for

specified

time,

then

signal

time-out

exception.

1

=

Wait

indefinitely.

14

E

Reserved

(binary

0)

14

E

Lock

scope

0

=

Lock

is

scoped

to

the

current

thread

1

=

Lock

is

scoped

to

the

lock

scope

object

type

14

E

Lock

scope

object

type

0

=

Process

containing

the

current

thread

1

=

Transaction

control

structure

attached

to

the

current

thread.

14

E

Reserved

(binary

0)

14

E

Modify

thread

event

mask

option

0

=

Do

not

modify

thread

event

mask

1

=

Modify

thread

event

mask

14

E

Asynchronous

signals

processing

option

Machine

Interface

Instructions

447

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Do

not

allow

asynchronous

signal

processing

during

Lock

Teraspace

Storage

Location

wait.

1

=

Allow

asynchronous

signal

processing

during

Lock

Teraspace

Storage

Location

wait.

14

E

Reserved

(binary

0)

17

11

Modify

thread

event

mask

control

Char(4)

17

11

New

thread

event

mask

19

13

Previous

thread

event

mask

21

15

Reserved

(binary

0)

Char(11)

32

20

Location(s)

to

be

locked

[*]

Space

pointer

(This

should

be

repeated

as

specified

by

number

of

lock

requests

in

the

template

above.)

*

*

—-

End

—-

The

lock

state

selection

is

located

by

adding

the

offset

to

lock

state

selection

values

above

to

operand

1.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Lock

state

selection

[*]

Char(1)

(repeated

for

each

pointer

in

the

template)

0

0

Requested

lock

state

Bits

0-4

(1

=

lock

requested,

0

=

lock

not

requested)

Only

one

state

may

be

requested

per

entry.

0

0

LSRD

lock

Bit

0

0

0

LSRO

lock

Bit

1

0

0

LSUP

lock

Bit

2

0

0

LEAR

lock

Bit

3

0

0

LENR

lock

Bit

4

0

0

Reserved

(binary

0)

Bits

5-6

0

0

Entry

active

indicator

Bit

7

0

=

Entry

not

active-

This

entry

is

to

be

ignored.

1

=

Entry

active-

Obtain

this

lock.

*

*

—-

End

—-

Lock

Allocation

Procedure:

A

single

Lock

Teraspace

Storage

Location

instruction

can

request

the

allocation

of

one

or

more

lock

states

on

one

or

more

storage

locations.

The

locks

are

granted

sequentially

until

all

the

locks

requested

are

granted.

However,

all

teraspace

storage

locations

are

treated

the

same

as

specified

by

the

type

of

teraspace

storage

location

lock

field

in

the

template.

The

type

of

teraspace

storage

location

lock

field

determines

if

teraspace

storage

locations

are

to

be

locked

symbolically

or

if

the

single-level

store

location

mapped

to

the

teraspace

storage

location

will

be

locked.

If

this

field

is

set

to

binary

1,

then

all

teraspace

storage

locations

specified

in

the

template

will

be

resolved

to

their

single-level

store

location

before

being

locked.

This

allows

locks

on

shared

memory

mapped

locations

to

conflict

even

though

the

teraspace

storage

locations

are

different.

The

teraspace

storage

location

is

required

to

have

been

previously

allocated

or

mapped

by

each

thread

performing

the

lock

operation.

If

the

teraspace

storage

location

has

not

been

allocated

or

mapped,

an

unsupported

space

use

(hex

0607)

exception

is

signaled.

448

iSeries:

Machine

Interface

Instructions

APIs

If

the

type

of

teraspace

storage

location

lock

field

is

set

to

binary

0,

then

all

teraspace

storage

locations

specified

in

the

template

will

be

treated

as

symbolic

locations.

Therefore,

if

two

different

teraspace

storage

locations

map

to

the

same

single-level

store

location,

and

the

field

is

set

to

binary

0,

then

the

locks

will

never

conflict,

even

within

a

single

process.

Note

that

when

locks

are

materialized

using

Materialize

Process

Locks,

(MATPRLK),

if

the

lock

was

acquired

with

the

type

of

teraspace

storage

location

lock

field

set

to

binary

1,

then

a

null

pointer

value

will

be

returned.

In

addition,

if

the

process

whose

locks

are

being

materialized

is

not

the

current

process,

then

a

null

pointer

value

is

returned

for

any

lock

on

a

teraspace

storage

location.

If

the

current

process

is

materializing

its

own

locks,

then

a

space

pointer

to

the

teraspace

is

generated

when

the

lock

was

acquired

with

the

type

of

teraspace

storage

location

lock

field

set

to

binary

0.

The

wait

time-out

value

for

instruction

field

establishes

the

maximum

amount

of

time

that

a

thread

competes

for

the

requested

set

of

locks

when

the

lock

request

type

is

synchronous.

See

“Standard

Time

Format”

on

page

1272

for

additional

information

on

the

format

of

the

wait

time-out

value

for

instruction

field.

The

maximum

wait

time-out

interval

allowed

is

a

value

equal

to

(2

48

-

1)

microseconds.

Any

value

that

indicates

more

time

than

the

maximum

wait

time-out

interval

causes

the

maximum

wait

time-out

interval

to

be

used.

If

the

wait

time-out

value

for

instruction

field

is

set

to

a

value

of

binary

0,

then

the

value

associated

with

the

default

wait

time-out

parameter

in

the

process

definition

template

is

used.

When

a

requested

lock

state

cannot

be

immediately

granted,

any

locks

already

granted

by

this

Lock

Teraspace

Storage

Location

instruction

are

released

and

the

lock

request

type

specified

in

the

lock

request

template

establishes

the

machine

action.

The

lock

request

type

values

are

described

in

the

following

paragraphs.

v

v

Immediate

request-

If

the

requested

locks

cannot

be

granted

immediately,

this

option

causes

the

lock

request

not

grantable

(hex

1A02)

exception

to

be

signaled.

No

location

locks

are

granted,

and

the

lock

request

is

canceled.

v

Synchronous

request-

This

option

causes

the

thread

requesting

the

locks

to

be

placed

in

the

wait

state

until

all

requested

locks

can

be

granted.

If

the

locks

cannot

be

granted

in

the

time

interval

established

by

the

wait

time-out

value

for

instruction

field

specified

in

the

lock

request

template,

a

space

location

lock

wait

time-out

(hex

3A04)

exception

is

signaled

to

the

requesting

thread

at

the

end

of

the

interval.

No

locks

are

granted,

and

the

lock

request

is

canceled.

When:

v

the

thread

requesting

the

locks

is

the

only

thread

in

the

process

at

the

time

of

the

lock

request,

and

v

the

lock

request

type

is

synchronous,

and

v

the

requested

locks

cannot

be

immediately

granted,

the

access

state

modifications

field

in

the

lock

request

template

specifies

whether

the

access

state

of

the

process

access

group

is

to

be

modified

on

entering

and/or

returning

from

the

lock

wait.

The

parameter

has

no

effect

if

the

process

instruction

wait

access

state

control

attribute

specifies

that

no

access

state

modification

is

allowed.

If

the

process

attribute

value

specifies

that

access

state

modification

is

allowed

and

the

wait

on

event

access

state

modification

option

specifies

modify

access

state,

the

machine

modifies

the

access

state

for

the

specified

process

access

group.

If

the

lock

request

type

is

synchronous

and

the

invocation

containing

the

Lock

Teraspace

Storage

Location

instruction

is

terminated,

then

the

lock

request

is

canceled.

Allocated

space

location

locks

are

removed

when

the

thread

holding

the

locks

terminates.

If

a

thread

terminates

while

waiting

for

a

teraspace

storage

location

lock,

the

lock

request

is

canceled.

The

lock

scope

field

and

the

lock

scope

object

type

field

determine

which

scope

all

specified

lock

requests

will

be

allocated

to,

either

a

thread,

process

or

transaction

control

structure:

Machine

Interface

Instructions

449

v

v

When

lock

scope

has

a

value

of

lock

is

scoped

to

the

lock

scope

object

type

and

lock

scope

object

type

has

a

value

of

process

containing

the

current

thread,

the

lock

scope

will

be

the

process

containing

the

current

thread.

v

When

lock

scope

has

a

value

of

lock

is

scoped

to

the

lock

scope

object

type

and

lock

scope

object

type

has

a

value

of

transaction

control

structure

attached

to

the

current

thread,

the

lock

scope

will

be

the

transaction

control

structure

that

is

attached

to

the

current

thread.

If

the

current

thread

does

not

have

a

transaction

control

structure

attached,

then

the

lock

scope

will

be

the

process

containing

the

current

thread.

v

When

lock

scope

has

a

value

of

lock

is

scoped

to

the

current

thread,

the

lock

scope

will

be

to

the

current

thread.

Locks

scoped

to

a

thread

with

a

lock

space

object

type

value

of

process

containing

the

current

thread

can

never

conflict

with

a

lock

scoped

to

its

containing

process,

but

may

conflict

with

a

lock

scoped

to

a

different

process,

a

transaction

control

structure,

or

any

other

thread

(depending

on

the

lock

states

involved).

Locks

scoped

to

a

thread

with

a

lock

space

object

type

value

of

transaction

control

structure

attached

to

the

current

thread

can

never

conflict

with

a

lock

scoped

to

the

transaction

control

structure,

but

may

conflict

with

a

lock

scoped

to

a

different

transaction

control

structure,

a

process,

or

any

other

thread

(depending

on

the

lock

states

involved).

If

lock

scope

object

type

has

a

value

of

transaction

control

structure

attached

to

the

current

thread

and

the

transaction

control

structure

state

does

not

allow

objects

to

be

locked

on

behalf

of

the

transaction

control

structure,

a

object

not

eligible

for

operation

(hex

2204)

exception

is

signaled.

Allocated

process

scope

locks

and

any

thread

scoped

locks,

allocated

by

the

initial

thread

of

the

process,

are

released

when

the

initial

thread

terminates.

Allocated

thread

scope

locks

are

released

when

the

thread

terminates.

If

a

thread

requested

a

process

scope

lock,

the

process

will

continue

to

hold

that

lock

after

termination

of

the

requesting

thread.

If

a

thread

requested

a

transaction

control

structure

scope

lock,

the

transaction

control

structure

will

continue

to

hold

that

lock

after

the

termination

of

the

requesting

thread.

The

modify

thread

event

mask

option

controls

the

state

of

the

event

mask

in

the

thread

executing

this

instruction.

When

the

thread

event

mask

is

in

the

masked

state,

the

machine

does

not

schedule

signaled

event

monitors

in

the

thread.

The

event

monitors

continue

to

be

signaled

by

the

machine

or

other

threads.

When

the

thread

event

mask

is

modified

to

the

unmasked

state,

event

handlers

are

scheduled

to

handle

those

events

that

occurred

while

the

thread

was

masked

and

those

events

occurring

while

in

the

unmasked

state.

If

the

system

security

level

machine

attribute

is

hex

40

or

greater

and

the

thread

is

running

in

user

state,

then

the

modify

thread

event

mask

option

is

not

allowed

and

a

template

value

invalid

(hex

3801)

exception

is

signalled.

When

the

modify

thread

event

mask

is

set

to

1,

the

previous

thread

event

mask

will

be

returned

and

the

new

thread

event

mask

will

take

effect

only

when

lock(s)

have

been

successfully

granted.

If

the

lock

request

is

not

successful,

the

previous

thread

event

mask

value

is

not

returned,

nor

does

the

new

thread

event

mask

take

effect.

The

thread

event

mask

values

are

validity

checked

only

when

the

modify

thread

event

mask

is

set

to

1,

and

ignored

otherwise.

Valid

masking

values

are:

0

Masked

256

Unmasked

Other

values

are

reserved

and

must

not

be

specified,

otherwise

a

template

value

invalid

(hex

3801)

exception

is

signaled.

450

iSeries:

Machine

Interface

Instructions

APIs

The

asynchronous

signals

processing

option

controls

the

action

to

be

taken

if

an

asynchronous

signal

is

pending

or

received

while

in

lock

wait.

If

an

asynchronous

signal

that

is

not

blocked

or

ignored

is

generated

for

the

thread

and

the

asynchronous

signals

processing

option

indicates

allow

asynchronous

signals

processing

during

Lock

Teraspace

Storage

Location

wait,

the

Lock

Teraspace

Storage

Location

wait

will

be

terminated

and

an

asynchronous

signal

terminated

MI

wait

(hex

4C01)

exception

is

signaled.

Otherwise,

when

the

asynchronous

signals

processing

option

indicates

do

not

allow

asynchronous

signals

processing

during

Lock

Teraspace

Storage

Location

wait,

the

thread

remains

in

the

wait

until

all

requested

locks

can

be

granted

or

until

the

wait

time-out

value

for

instruction

expires.

If

any

exception

is

identified

during

the

instruction’s

execution,

any

locks

already

granted

by

the

instruction

are

released,

and

the

lock

request

is

canceled.

For

each

lock,

counts

are

kept

by

lock

state

and

by

thread.

When

a

lock

request

is

granted,

the

appropriate

lock

count

of

each

lock

state

specified

is

incremented

by

1.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0607

Unsupported

Space

Use

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1A

Lock

State

1A02

Lock

Request

Not

Grantable

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

Machine

Interface

Instructions

451

1C06

Machine

Lock

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2204

Object

Not

Eligible

for

Operation

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

3A

Wait

Time-Out

3A04

Space

Location

Lock

Wait

Time-Out

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

4C

Signals

Management

4C01

Asynchronous

Signal

Terminated

MI

Wait

452

iSeries:

Machine

Interface

Instructions

APIs

Logarithm

Base

E

(Natural

Logarithm)

(LN)

Bound

program

access

Built-in

number

for

LN

is

406.

LN

(

source

:

floating

point(8)

value

)

:

floating

point(8)

value

which

is

the

natural

logarithm

of

the

source

value

Description:

The

natural

logarithm

of

the

source

operand

value

is

computed

and

the

result

is

returned.

The

result

is

in

the

range:

-infinity

<=

LN(source)

<=

+infinity

See

floating

point

results

from

special

values

for

additional

information.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0C

Computation

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

0C0D

Floating-Point

Inexact

Result

0C0E

Floating-Point

Zero

Divide

Materialize

Access

Group

Attributes

(MATAGAT)

Op

Code

(Hex)

Operand

1

Operand

2

03A2

Receiver

Access

group

Operand

1:

Space

pointer.

Machine

Interface

Instructions

453

NCBCON.htm

Operand

2:

System

pointer.

Bound

program

access

Built-in

number

for

MATAGAT

is

68.

MATAGAT

(

receiver

:

address

access_group

:

address

of

system

pointer

)

Description:

The

attributes

of

the

access

group

and

the

identification

of

objects

currently

contained

in

the

access

group

are

materialized

into

the

receiving

object

specified

by

operand

1.

Objects

requested

to

be

in

the

access

group

may:

v

v

exist

entirely

in

the

access

group,

v

exist

partially

in

the

access

group

and

partially

outside

the

access

group,

v

or

exist

entirely

outside

the

access

group.

The

machine

may

also

use

the

access

group

for

enabling

programs

to

run

within

a

process.

In

this

case,

the

Process

Control

Space

(PCS)

object

is

considered

to

exist

partially

in

the

access

group,

even

if

the

access

group

membership

was

not

requested

when

the

PCS

was

created.

Only

objects

which

exist

wholly

or

partially

in

the

access

group

will

be

materialized.

The

materialization

must

be

aligned

on

a

16-byte

boundary.

The

format

is:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Object

identification

Char(32)

8

8

Object

type

Char(1)

9

9

Object

subtype

Char(1)

10

A

Object

name

Char(30)

40

28

Object

creation

options

Char(4)

40

28

Existence

attributes

Bit

0

0

=

Temporary

1

=

Reserved

40

28

Space

attribute

Bit

1

0

=

Fixed-length

1

=

Variable-length

40

28

Context

Bit

2

0

=

Addressability

not

in

context

1

=

Addressability

in

context

40

28

Reserved

(binary

0)

Bits

3-12

40

28

Initialize

space

Bit

13

40

28

Reserved

(binary

0)

Bits

14-31

44

2C

Reserved

(binary

0)

Char(4)

48

30

Size

of

space

Bin(4)

52

34

Initial

value

of

space

Char(1)

454

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

53

35

Performance

class

Char(4)

53

35

Space

alignment

Bit

0

0

=

The

space

associated

with

the

object

is

allocated

to

allow

proper

alignment

of

pointers

at

16-byte

alignments

within

the

space.

If

no

space

is

specified

for

the

object,

this

value

must

be

specified

for

the

performance

class.

1

=

The

space

associated

with

the

object

is

allocated

to

allow

proper

alignment

of

pointers

at

16-byte

alignments

within

the

space

as

well

as

to

allow

proper

alignment

of

input/output

buffers

at

512-byte

alignments

within

the

space.

53

35

Reserved

(binary

0)

Bits

1-4

53

35

Default

main

storage

pool

Bit

5

0

=

Process

main

storage

pool

is

used

for

this

object.

1

=

Machine

default

main

storage

pool

is

used

for

this

object.

53

35

Reserved

(binary

0)

Bit

6

53

35

Block

transfer

on

implicit

access

state

modification

Bit

7

0

=

Transfer

the

minimum

storage

transfer

size

for

this

object.

1

=

Transfer

the

machine

default

storage

transfer

size

for

this

object.

53

35

Reserved

(binary

0)

Bits

8-31

57

39

Reserved

(binary

0)

Char(7)

64

40

Context

System

pointer

80

50

Reserved

(binary

0)

Char(16)

96

60

Access

group

size

UBin(4)

100

64

Available

space

in

the

access

group

UBin(4)

104

68

Number

of

objects

in

the

access

group

UBin(4)

108

6C

Reserved

(binary

0)

Char(4)

112

70

Access

group

object

system

pointer

[*]

System

pointer

(repeated

for

each

object

currently

contained

in

the

access

group)

*

*

—-

End

—-

The

receiver

space

contains

the

access

group’s

attributes,

the

current

status

of

the

access

group,

and

a

system

pointer

to

each

object

assigned

to

the

access

group.

The

number

of

bytes

provided

indicates

the

size

of

the

materialization

template.

The

number

of

bytes

available

is

set

by

the

instruction

to

indicate

the

actual

number

of

bytes

available

to

be

returned.

In

no

case

does

the

instruction

return

more

bytes

of

information

than

number

of

bytes

provided.

The

access

group

size

represents

the

total

amount

of

space

that

has

been

allocated

to

the

access

group.

The

available

space

in

the

access

group

represents

the

amount

of

space

that

is

available

in

the

access

group

for

additional

objects.

Machine

Interface

Instructions

455

The

number

of

objects

in

the

access

group

is

a

count

of

the

number

of

objects

that

are

currently

contained

in

the

access

group.

This

value

is

also

the

number

of

times

that

the

access

group

object

system

pointer

below

is

repeated.

There

is

one

access

group

object

system

pointer

for

each

object

currently

assigned

to

the

access

group.

The

authorization

field

within

each

system

pointer

is

not

set.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Retrieve

–

–

Operand

2
v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Operand

2

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

456

iSeries:

Machine

Interface

Instructions

APIs

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Machine

Interface

Instructions

457

Materialize

Activation

Attributes

(MATACTAT)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

MATACTAT2

0233

Receiver

Activation

mark

Attribute

selection

MATACTAT

0213

Receiver

Activation

mark

Attribute

selection

Operand

1:

Space

pointer.

Operand

2

for

MATACTAT2:

Char(8)

scalar.

Operand

2

for

MATACTAT:

Unsigned

binary(4)

scalar.

Operand

3:

Character(1)

scalar.

Bound

program

access

Built-in

number

for

MATACTAT2

is

659.

MATACTAT2

(

receiver

:

address

activation_mark

:

address

of

unsigned

binary(8)

attribute_selection

:

address

)

OR

Built-in

number

for

MATACTAT

is

121.

MATACTAT

(

receiver

:

address

activation_mark

:

address

of

unsigned

binary(4)

attribute_selection

:

address

)

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Note

It

is

recommended

that

you

use

the

MATACTAT2

instruction

which

supports

8-byte

activation

marks

and

that

you

use

the

8-byte

activation

and

activation

group

marks

at

the

end

of

the

Basic

Activation

Attributes

template.

4-byte

marks

can

wrap

and

produce

unexpected

results.

Description:

This

instruction

will

materialize

the

information

selected

by

operand

3

for

the

program

activation

specified

by

operand

2

and

return

the

information

in

the

template

supplied

by

operand

1.

The

operand

3

selection

operand

is

provided

to

deal

with

the

variable-length

nature

of

some

of

the

returned

information.

All

″length-of-list″

type

information

can

be

gathered

by

selecting

the

first

option

described

below.

Operand

3

can

have

the

following

values:

v

v

Hex

00

—

basic

activation

attributes

v

Hex

01

—

static

storage

frame

list

v

Hex

02

—

dependent

activation

mark

list

MATACTAT2

returns

a

list

of

8-byte

activation

marks.

MATACTAT

returns

a

list

of

4-byte

activation

marks.

Any

value

for

operand

3

other

than

those

listed

will

cause

a

scalar

value

invalid

(hex

3203)

exception.

458

iSeries:

Machine

Interface

Instructions

APIs

Operand

2

is

different

for

the

MATACTAT

and

MATACTAT2

instructions.

Operand

2

for

MATACTAT2:

Operand

2

supplies

the

8-byte

activation

mark

of

the

activation

for

which

information

is

to

be

returned.

Operand

2

for

MATACTAT:

Operand

2

supplies

the

4-byte

activation

mark

of

the

activation

for

which

information

is

to

be

returned.

The

activation

mark

uniquely

identifies

an

activation

within

a

process.

A

value

of

zero

is

interpreted

to

be

a

request

for

information

about

the

activation

of

the

invoking

program.

The

materialization

template

identified

by

operand

1

must

be

16-byte

aligned

in

the

space.

This

materialization

template

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Template

size

specification

Char(16)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Reserved

(binary

0)

Char(8)

16

10

Returned

information

Char(*)

*

*

—-

End

—-

The

number

of

bytes

provided

indicates

the

size

of

the

materialization

template.

This

includes

the

length

of

the

template

header

(16

bytes)

plus

the

number

of

bytes

provided

for

returned

information.

If

a

value

of

8

is

specified,

then

no

data

will

actually

be

materialized

and

the

number

of

bytes

required

to

materialize

the

requested

data

will

be

returned

in

number

of

bytes

available.

Note

that

a

value

greater

than

8,

but

less

than

16

will

result

in

no

data

being

materialized,

since

bytes

9-16

are

reserved.

If

the

number

of

bytes

provided

is

less

than

8,

then

a

materialization

length

invalid

(hex

3803)

exception

is

signaled.

The

number

of

bytes

available

is

set

by

the

instruction

to

indicate

the

actual

number

of

bytes

available

to

be

returned.

The

number

of

bytes

available

also

includes

the

length

of

the

template

header

(16

bytes).

In

no

case

does

the

instruction

return

more

bytes

of

information

than

those

available.

The

format

of

returned

information

is

described

in

the

following

paragraphs.

Basic

Activation

Attributes:

The

following

information

is

returned

when

operand

3

is

hex

00.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Program

System

pointer

32

20

Activation

mark

UBin(4)

36

24

Activation

group

mark

UBin(4)

40

28

Invocation

count

UBin(4)

44

2C

Static

frame

count

UBin(4)

48

30

Program

type

Char(1)

Hex

00

=

Non-bound

program

Hex

01

=

Bound

program,

bound

service

program,

or

Java(TM)

program

Hex

02-FF

=

Reserved

Machine

Interface

Instructions

459

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

49

31

Activation

attributes

Char(1)

49

31

Activation

status

Bit

0

0

=

Inactive

1

=

Active

49

31

Reserved

(binary

0)

Bits

1-7

50

32

Target

activation

group

Char(1)

0

=

Default

activation

group

1

=

Caller’s

activation

group

2

=

Named

activation

group

3

=

Unnamed

activation

group

4

=

Named

shared

activation

group

5

=

Unnamed

shared

activation

group

6-255

Reserved

51

33

Reserved

(binary

0)

Char(1)

52

34

Dependent

activation

count

UBin(4)

56

38

Activation

mark

UBin(8)

For

Non-Bound

programs,

the

following

datatype

should

be

used:

56

38

Activation

mark

(Non-Bound

program)

Char(8)

64

40

Activation

group

mark

UBin(8)

For

Non-Bound

programs,

the

following

datatype

should

be

used:

64

40

Activation

group

mark

(Non-Bound

program)

Char(8)

72

48

—-

End

—-

A

description

of

the

fields

follows.

Program

This

is

a

pointer

to

the

program.

The

system

pointer

returned

does

not

contain

authority.

Within

a

process,

a

program

may

have

more

than

one

activation.

Activation

mark

The

activation

mark

identifies

the

activation

within

the

process.

This

field

provides

the

actual

activation

mark

when

the

special

zero

value

was

supplied

for

operand

2.

Otherwise,

this

field

has

the

same

value

as

operand

2.

The

value

returned

in

the

4-byte

activation

mark

may

have

wrapped.

Activation

group

mark

This

identifies

the

activation

group

which

contains

the

activation.

The

value

returned

in

the

4-byte

activation

group

mark

may

have

wrapped.

Invocation

count

This

is

a

count

of

the

number

of

program

invocations

which

currently

exist

for

this

activation

of

the

program.

The

count

includes

all

threads

in

the

process

which

owns

the

identified

activation.

Recall

that

a

program

invocation

results

from

a

program

call

operation

like

Call

Program.

Static

frame

count

This

is

the

number

of

static

storage

frames

allocated

for

this

activation.

Program

type

The

type

of

the

program.

A

program

is

either

a

non-bound

program,

bound

program,

bound

service

program

or

Java

program.

Activation

status

The

activation

status

identifies

whether

the

program

is

active.

Target

activation

group

This

is

the

target

activation

group

attribute

of

the

program

object

associated

with

this

activation.

Dependent

activation

count

This

is

the

number

of

dependent

program

activations

directly

bound

to

the

program

identified

by

the

activation

mark

in

operand

2.

460

iSeries:

Machine

Interface

Instructions

APIs

Static

Storage

Frame

List:

The

following

information

is

returned

when

operand

3

is

hex

01.

This

is

a

list

of

static

storage

frame

descriptors.

The

static

frame

count

(available

in

the

basic

activation

attributes

template)

indicates

how

many

entries

must

be

accommodated

by

the

template.

The

static

storage

frame

list

can

be

materialized

only

if

the

source

activation

group

is

permitted

access

to

the

target

activation

group

as

determined

by

the

activation

group

access

protection

mechanism.

If

access

is

not

permitted,

then

an

activation

group

access

violation

(hex

2C12)

exception

is

signaled.

The

format

of

the

list

is:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Static

storage

frame

list

entry

[*]

Char(32)

(repeated

static

frame

count

times)

16

10

Static

frame

base

Space

pointer

This

is

a

pointer

to

the

first

byte

of

the

static

frame.

32

20

Static

frame

size

UBin(4)

This

is

the

size,

in

machine

dependent

units

(currently

bytes),

of

the

static

frame.

36

24

Reserved

Char(12)

*

*

—-

End

—-

Dependent

Activation

Mark

List:

The

following

information

is

returned

when

operand

3

is

hex

02.

This

is

a

list

of

activation

marks

of

all

the

dependent

programs

directly

bound

to

the

program

specified

in

operand

2.

The

dependent

activation

count

(available

in

the

basic

activation

attributes

template)

indicates

how

many

entries

must

be

accommodated

by

the

template.

The

format

of

the

list

is

different

for

the

MATACTAT

and

MATACTAT2

instructions.

Format

of

the

dependent

activation

mark

list

for

MATACTAT2:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Activation

mark

[*]

UBin(8)

(repeated

dependent

activation

count

times)

This

is

the

activation

mark

of

a

dependent

program

activation.

For

Non-Bound

programs,

the

following

datatype

should

be

used:

16

10

Activation

mark

(Non-Bound

program)

Char(8)

*

*

—-

End

—-

Format

of

the

dependent

activation

mark

list

for

MATACTAT:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Activation

mark

[*]

UBin(4)

Machine

Interface

Instructions

461

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

(repeated

dependent

activation

count

times)

This

is

the

activation

mark

of

a

dependent

program

activation.

The

value

returned

in

this

field

may

have

wrapped.

*

*

—-

End

—-

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C04

Object

Storage

Limit

Exceeded

1C09

Auxiliary

Storage

Pool

Number

Invalid

20

Machine

Support

2002

Machine

Check

2003

Function

Check

462

iSeries:

Machine

Interface

Instructions

APIs

22

Object

Access

2202

Object

Destroyed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2C

Program

Execution

2C11

Process

Object

Access

Invalid

2C12

Activation

Group

Access

Violation

2C16

Program

Activation

Not

Found

32

Scalar

Specification

3203

Scalar

Value

Invalid

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Machine

Interface

Instructions

463

Materialize

Activation

Export

(MATACTEX)

Bound

program

access

Built-in

number

for

MATACTEX2

is

660.

MATACTEX2

(

activation_mark

:

unsigned

binary(8)

ident_type

:

unsigned

binary(4)

number

:

unsigned

binary(4)

name

:

address

pointer

:

address

of

procedure

pointer(16)

OR

address

of

space

pointer(16)

export_type

:

address

of

unsigned

binary(4)

)

OR

Built-in

number

for

MATACTEX

is

460.

MATACTEX

(

activation_mark

:

unsigned

binary(4)

ident_type

:

unsigned

binary(4)

number

:

unsigned

binary(4)

name

:

address

pointer

:

address

of

procedure

pointer(16)

OR

address

of

space

pointer(16)

export_type

:

address

of

unsigned

binary(4)

)

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Note

It

is

recommended

that

you

use

the

MATACTEX2

instruction

which

supports

8-byte

activation

marks.

4-byte

marks

can

wrap

and

produce

unexpected

results.

Description:

This

instruction

returns

the

address

of

an

export

identified

by

name

or

export

identifier

from

a

specified

program

activation.

The

type

of

the

export

item,

either

data

or

procedure,

is

also

returned.

If

the

item

is

not

found,

an

indicator

is

returned

via

the

export

type

operand;

no

exception

is

signaled

in

this

case.

Operands

are

as

follows,

v

v

activation

mark

(input)

specifies

the

activation

mark

of

a

bound

service

program.

If

the

specified

program

activation

does

not

exist

then

a

program

activation

not

found

(hex

2C16)

exception

is

signaled.

If

the

activation

mark

does

not

correspond

to

a

bound

service

program

then

an

invalid

operation

for

program

(hex

2C15)

exception

is

signaled.

v

ident

type

(input)

specifies

how

the

export

is

identified.

0

=

reserved

1

=

by

export

ID.

The

item

is

identified

by

export

identifier

(or

export

ID.)

The

number

operand

specifies

the

export

ID

of

the

item.

An

export

ID

is

the

ordinal

position,

starting

from

1,

of

the

item

in

the

bound

service

program’s

export

list.

2

=

by

name.

The

item

is

identified

by

name.

The

name

operand

provides

the

symbolic

name

of

the

item.

The

length

of

the

name

is

specified

by

the

number

operand.

>2

=

reserved

Use

of

a

reserved

value

causes

a

scalar

value

invalid

(hex

3203)

exception

to

be

signaled.

v

number

(input)

specifies

either

the

export

ID

or

length

of

the

character

string

which

supplies

the

name.

464

iSeries:

Machine

Interface

Instructions

APIs

v

name

(input)

specifies

the

character

string

name.

This

operand

is

ignored

if

ident

type

is

not

2,

but

must

always

be

specified.

v

pointer

(address

in,

value

out)

specifies

either

a

procedure

pointer

or

space

pointer

to

the

exported

item.

If

the

requested

export

does

not

exist,

16

bytes

of

storage

at

the

location

indicated

by

this

operand

are

set

to

binary

0.

v

export

type

(address

in,

value

out)

identifies

the

type

of

export,

0

=

item

not

found

1

=

procedure

export

2

=

data

export

3

=

inaccessible

data

export

If

the

item

was

not

found

the

pointer

is

also

set

to

binary

0.

The

thread

must

have

execute

authority

to

the

program

specified

by

the

activation

mark

in

order

to

obtain

the

address

of

an

exported

item.

In

addition,

a

user

state

program

may

only

materialize

data

exports

from

activations

within

the

same

activation

group.

An

attempt

to

materialize

a

data

export

from

another

activation

group

will

result

in

a

value

of

3

for

export

type

and

binary

0

being

returned

in

the

pointer

operand.

A

system

state

program

may

materialize

data

exports

from

any

activation.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Program

specified

by

activation

mark.

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

Machine

Interface

Instructions

465

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C15

Invalid

Operation

for

Program

2C16

Program

Activation

Not

Found

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Activation

Group

Attributes

(MATAGPAT)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

MATAGPAT2

02C3

Receiver

Activation

group

mark

Attribute

selection

MATAGPAT

02D3

Receiver

Activation

group

mark

Attribute

selection

Operand

1:

Space

pointer.

466

iSeries:

Machine

Interface

Instructions

APIs

Operand

2

for

MATAGPAT2:

Char(8)

scalar.

Operand

2

for

MATAGPAT:

Unsigned

binary(4)

scalar.

Operand

3:

Character(1)

scalar.

Bound

program

access

Built-in

number

for

MATAGPAT2

is

661.

MATAGPAT2

(

receiver

:

address

activation_group_mark

:

address

of

unsigned

binary(8)

attribute_selection

:

address

)

OR

Built-in

number

for

MATAGPAT

is

120.

MATAGPAT

(

receiver

:

address

activation_group_mark

:

address

of

unsigned

binary(4)

attribute_selection

:

address

)

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Note:

The

terms

″heap″

and

″heap

space″

in

this

instruction

refer

to

an

″activation

group-based

heap

space″.

Note

It

is

recommended

that

you

use

the

MATAGPAT2

instruction

which

supports

8-byte

activation

and

activation

group

marks.

The

8-byte

activation

group

mark

in

the

basic

activation

group

attributes

should

also

be

used.

4-byte

marks

can

wrap

and

produce

unexpected

results.

Description:

This

instruction

will

materialize

the

information

selected

by

operand

3

for

the

activation

group

specified

by

operand

2

and

return

the

information

in

the

template

supplied

by

operand

1.

If

the

activation

group

mark

specified

by

operand

2

is

zero,

then

information

about

the

activation

group

associated

with

the

current

invocation

is

returned.

However,

if

the

current

invocation

is

associated

with

an

activation

which

resides

in

a

shared

activation

group

owned

by

another

process,

or

if

no

activation

exists

for

the

current

invocation,

then

information

about

the

default

activation

group

with

the

same

state

as

the

invocation

is

returned.

In

order

to

deal

with

the

variable-length

nature

of

some

activation

group

attributes,

the

attribute_selection

option

is

provided.

All

of

the

″length-of-list″

type

information

can

be

gathered

by

selecting

the

first

option

described

below.

Operand

3

can

have

the

following

values:

v

v

Hex

00

—

basic

activation

group

attributes

v

Hex

01

—

activation

group

heap

list

option

v

Hex

02

—

program

activation

list

option

MATAGPAT2

returns

a

list

of

8-byte

activation

marks.

MATAGPAT

returns

a

list

of

4-byte

activation

marks.

Any

value

for

operand

3

other

than

those

listed

will

cause

a

scalar

value

invalid

(hex

3203)

exception.

The

materialization

template

identified

by

operand

1

must

be

16-byte

aligned

in

the

space.

This

materialization

template

has

the

following

format:

Machine

Interface

Instructions

467

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Reserved

(binary

0)

Char(8)

16

10

Returned

information

Char(*)

*

*

—-

End

—-

The

number

of

bytes

provided

indicates

the

number

of

bytes

provided

for

returned

information

by

the

user

of

the

instruction.

In

all

cases

if

the

number

of

bytes

provided

is

less

than

8,

then

a

materialization

length

invalid

(hex

3803)

exception

will

be

signaled.

The

number

of

bytes

available

is

set

by

the

instruction

to

indicate

the

actual

number

of

bytes

available

to

be

returned.

In

no

case

does

the

instruction

return

more

bytes

of

information

than

those

available.

The

format

of

returned

information

is

described

in

the

following

paragraphs.

Basic

Activation

Group

Attributes:

The

following

information

is

returned

when

operand

3

is

hex

00.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Root

program

System

pointer

or

Null

32

20

Reserved

(binary

0)

Char(16)

48

30

Storage

address

recycling

key

System

pointer

or

Null

64

40

Activation

group

name

Char(30)

94

5E

Reserved

(binary

0)

Char(2)

96

60

Activation

group

mark

UBin(4)

100

64

Reserved

(binary

0)

Char(4)

104

68

Heap

space

count

UBin(4)

108

6C

Activation

count

UBin(4)

112

70

Static

storage

size

UBin(4)

116

74

Reserved

(binary

0)

UBin(4)

120

78

Attributes

Char(1)

120

78

Reserved

Bit

0

120

78

Activation

group

state

Bit

1

0

=

User

1

=

System

120

78

Is

activation

group

named?

Bit

2

0

=

No

1

=

Yes

120

78

Destroy

pending?

Bit

3

0

=

No

1

=

Yes

120

78

Shared

activation

group?

Bit

4

0

=

No

1

=

Yes

468

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

120

78

Storage

model

Bit

5

0

=

Single

level

storage

1

=

Teraspace

storage

120

78

Reserved

(binary

0)

Bits

6-7

121

79

Process

access

group

(PAG)

membership

advisory

attributes

Char(1)

121

79

Reserved

(binary

0)

Bit

0

121

79

Static

storage

Bit

1

0

=

Do

not

create

in

PAG

1

=

Permit

creation

in

PAG

121

79

Default

heap

storage

Bit

2

0

=

Do

not

create

in

PAG

1

=

Permit

creation

in

PAG

121

79

Reserved

(binary

0)

Bits

3-7

122

7A

Reserved

(binary

0)

Char(6)

128

80

Activation

group

mark

UBin(8)

For

Non-Bound

programs,

the

following

datatype

should

be

used:

128

80

Activation

group

mark

(Non-Bound

program)

Char(8)

136

88

—-

End

—-

Additional

Description:

Root

program

Those

activation

groups

which

are

created

by

the

machine

(the

default

activation

groups)

do

not

have

root

programs,

in

which

case

this

field

is

null.

Storage

address

recycling

key

A

system

pointer

is

returned

only

if

the

activation

group

state

is

specified

as

user,

otherwise

the

field

is

null.

Activation

group

name

For

activation

groups

which

do

not

have

a

symbolic

name,

this

field

contains

all

blanks.

Heap

space

count

This

is

the

number

of

heap

spaces

currently

associated

with

the

activation

group.

Activation

count

This

is

the

number

of

programs

which

are

currently

active

within

the

activation

group.

Static

storage

size

This

is

the

maximum

amount

of

static

storage,

in

machine

dependent

units,

which

has

been

allocated

to

the

activation

group

at

any

particular

time.

Note

that

this

does

not

necessarily

reflect

the

amount

of

storage

currently

in

use.

Is

activation

group

named?

Indicates

whether

the

activation

group

is

named

or

unnamed.

The

activation

group

name

field

contains

blanks

for

unnamed

activation

groups.

The

default

activation

groups

and

those

created

with

the

″unnamed″

attribute

are

unnamed.

Storage

model

Indicates

the

storage

model

of

the

activation

group.

A

single

level

storage

activation

group

provides

single

level

storage

static

storage

to

program

activations

while

a

teraspace

storage

activation

group

supplies

teraspace

storage.

Machine

Interface

Instructions

469

Activation

Group

Heap

List:

When

operand

3

is

hex

01,

the

format

of

the

returned

information

is

an

array

of

heap

identifiers.

This

is

a

list

of

the

heaps

which

are

currently

associated

with

the

activation

group.

The

heap

space

count

(available

in

the

basic

template)

indicates

how

many

entries

must

be

accommodated

by

the

template.

The

format

of

the

list

is:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Activation

group

heap

list

entry

[*]

Bin(4)

(repeated

heap

space

count

times)

*

*

—-

End

—-

Information

about

a

specific

heap

may

be

obtained

from

the

Materialize

Activation

Group-Based

Heap

Space

Attributes

(MATHSAT)

instruction.

Program

Activation

List:

When

operand

3

is

hex

02,

the

format

of

the

returned

information

is

an

array

of

activation

marks.

Each

activation

mark

represents

a

program

activation

within

the

activation

group.

(The

activation

mark

is

a

number

which

uniquely

identifies

the

activation

within

a

process.)

The

activation

count

(available

in

the

basic

template)

indicates

how

many

entries

must

be

accommodated

by

the

template.

The

format

of

the

list

is

different

for

the

MATAGPAT

and

MATAGPAT2

instructions.

Format

of

program

activation

list

for

MATAGPAT2:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Program

activation

list

entry

[*]

UBin(8)

(repeated

activation

count

times)

For

Non-Bound

programs,

the

following

datatype

should

be

used:

16

10

Program

activation

list

entry

(Non-Bound

program)

Char(8)

*

*

—-

End

—-

Format

of

program

activation

list

for

MATAGPAT:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Program

activation

list

entry

[*]

UBin(4)

(repeated

activation

count

times)

*

*

—-

End

—-

Information

about

a

specific

activation

may

be

obtained

from

the

Materialize

Activation

Attributes

(MATACTAT)

instruction.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

470

iSeries:

Machine

Interface

Instructions

APIs

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C04

Object

Storage

Limit

Exceeded

1C09

Auxiliary

Storage

Pool

Number

Invalid

20

Machine

Support

2002

Machine

Check

2003

Function

Check

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2C

Program

Execution

2C13

Activation

Group

Not

Found

32

Scalar

Specification

3203

Scalar

Value

Invalid

38

Template

Specification

3803

Materialization

Length

Invalid

Machine

Interface

Instructions

471

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Activation

Group-Based

Heap

Space

Attributes

(MATHSAT)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

MATHSAT2

03E7

Materialize

template

Heap

identifier

template

Attribute

selection

MATHSAT

03B7

Materialize

template

Heap

identifier

template

Attribute

selection

Operand

1:

Space

pointer.

Operand

2:

Space

pointer.

Operand

3:

Character(1)

scalar.

Bound

program

access

Built-in

number

for

MATHSAT2

is

665.

MATHSAT2

(

materialize_template

:

address

heap_identifier_template

:

address

attribute_selection

:

address

)

OR

Built-in

number

for

MATHSAT

is

116.

MATHSAT

(

materialize_template

:

address

heap_identifier_template

:

address

attribute_selection

:

address

)

Note:

The

term

″heap

space″

in

this

instruction

refers

to

an

″activation

group-based

heap

space″.

Note

It

is

recommended

that

you

use

the

MATHSAT2

instruction

which

supports

8-byte

activation

group

marks.

4-byte

activation

group

marks

can

wrap

and

produce

unexpected

results.

Description:

This

instruction

will

materialize

the

information

selected

by

operand

3

for

the

heap

space

specified

by

operand

2

and

return

the

selected

information

in

the

template

indicated

by

operand

1.

Operand

3

can

have

three

possible

values:

v

v

Hex

00

-

Return

heap

space

attributes

v

Hex

01

-

Return

heap

space

attributes

and

mark

information.

v

Hex

02

-

Return

heap

space

attributes,

mark

information

and

allocation

information.

Any

value

for

operand

3

other

than

those

listed

will

cause

a

scalar

value

invalid

(hex

3203)

exception.

The

heap

space

attributes

template

identified

by

operand

1

must

be

16-byte

aligned

in

the

space.

472

iSeries:

Machine

Interface

Instructions

APIs

If

operand

3

is

equal

to

hex

00,

then

only

the

heap

space

attributes

template

information

is

returned.

The

format

of

the

attributes

template

information

is

as

follows

(see

the

Create

Activation

Group-Based

Heap

Space

(CRTHS)

instruction

for

a

description

of

these

fields).

If

operand

3

is

equal

to

hex

02

AND

the

heap

being

used

is

a

default

heap,

then

not

all

the

allocation

information

is

available.

Specifically,

the

following

fields

in

the

template

will

always

be

zero:

v

v

Current

number

of

outstanding

allocations

v

Total

number

of

frees

v

Total

number

of

allocations

v

Maximum

number

of

outstanding

allocations

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Template

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Maximum

single

allocation

UBin(4)

12

C

Minimum

boundary

requirement

UBin(4)

16

10

Creation

size

UBin(4)

20

14

Extension

size

UBin(4)

24

18

Domain

Bin(2)

Hex

0001

=

The

heap

space

domain

is

″User″

Hex

8000

=

The

heap

space

domain

is

″System″

26

1A

Heap

space

creation

options

Char(6)

26

1A

Allocation

strategy

Bit

0

0

=

Normal

allocation

strategy

1

=

Force

implicit

space

creation

on

each

allocate

26

1A

Heap

space

mark

Bit

1

0

=

Allow

heap

space

mark

1

=

Prevent

heap

space

mark

26

1A

Block

transfer

Bit

2

0

=

Transfer

the

minimum

storage

transfer

size

for

this

object

1

=

Transfer

the

machine

default

storage

transfer

size

for

this

object

26

1A

Process

access

group

member

Bit

3

0

=

Do

not

create

the

heap

space

in

the

PAG

1

=

Create

the

heap

space

in

the

PAG

26

1A

Initialization

allocations

Bit

4

0

=

Do

not

initialize

allocations

1

=

Initialize

allocations

26

1A

Overwrite

freed

allocations

Bit

5

0

=

Do

not

overwrite

freed

allocations

1

=

Overwrite

freed

allocations

Machine

Interface

Instructions

473

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

26

1A

Reserved

(binary

0)

Bits

6-7

27

1B

Allocation

value

Char(1)

28

1C

Freed

value

Char(1)

29

1D

Reserved

(binary

0)

Char(3)

32

20

Reserved

(binary

0)

Char(64)

96

60

Current

number

of

outstanding

allocations

UBin(4)

100

64

Total

number

of

reallocations

UBin(4)

104

68

Total

number

of

frees

UBin(4)

108

6C

Total

number

of

allocations

UBin(4)

112

70

Maximum

number

of

outstanding

allocations

UBin(4)

116

74

Size

of

the

heap

space

in

basic

storage

units

UBin(4)

120

78

Number

of

outstanding

marks

UBin(4)

124

7C

Total

number

of

extensions

UBin(4)

128

80

—-

End

—-

The

first

4

bytes

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

a

materialization

length

invalid

(hex

3803)

exception.

The

second

4

bytes

that

are

materialized

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

exceptions

(other

than

the

materialization

length

exception

described

previously)

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization.

If

operand

3

is

equal

to

hex

01,

then

the

mark

template

information

is

added

to

the

heap

space

attributes

template

information.

The

mark

template

information

is

repeated

for

the

number

of

outstanding

marks.

This

information

follows

the

heap

space

attributes

template

information.

The

format

of

the

mark

template

information

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Mark

template

information

[*]

Char(16)

0

0

Mark

identifier

Space

pointer

*

*

—-

End

—-

Given

the

list

of

mark

identifiers

with

a

mark

identifier

being

entry

N

and

an

allocation

belonging

to

mark

identifier

N,

that

allocation

also

belongs

to

mark

identifier

N-X,

where

X

has

values

1

to

N-1

for

all

N>1.

If

operand

3

is

equal

to

hex

02,

then

the

allocation

template

information

is

added

to

the

heap

space

attributes

and

mark

template

information.

The

allocation

template

information

is

repeated

for

current

number

of

outstanding

allocations.

This

information

follows

the

mark

information

template.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Allocation

template

[*]

Char(48)

0

0

Allocation

address

Space

pointer

16

10

Mark

identifier

Space

pointer

474

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

32

20

Allocation

size

UBin(4)

36

24

Reserved

Char(12)

*

*

—-

End

—-

If

mark

identifier

is

null,

this

allocation

is

not

associated

with

any

mark.

If

it

is

not

null

it

contains

the

most

recent

mark

identifier

to

which

the

allocation

belongs.

The

heap

identifier

template

identified

by

operand

2

must

be

16-byte

aligned

in

the

space.

The

format

of

the

template

is

different

for

the

MATHSAT

and

MATHSAT2

instructions.

Format

of

heap

identifier

template

for

MATHSAT2

instruction:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Heap

identifier

template

Char(16)

0

0

Activation

group

mark

identifier

U

For

Non-Bound

programs,

the

following

datatype

should

be

used:

0

0

Activation

group

mark

identifier

(Non-Bound

program)

8

8

Reserved

(binary

0)

C

12

C

Heap

identifier

U

16

10

—-

End

—-

Format

of

heap

identifier

template

for

MATHSAT

instruction:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Heap

identifier

template

Char(8)

0

0

Activation

group

mark

identifier

UBin(4)

4

4

Heap

identifier

UBin(4)

8

8

—-

End

—-

The

activation

group

mark

identifier

may

be

zero,

indicating

the

heap

space

specified

by

the

heap

identifier

is

in

the

current

activation

group.

The

value

returned

in

the

4-byte

activation

group

mark

identifier

may

have

wrapped.

MATHSAT

will

signal

an

activation

group

access

violation

(hex

2C12)

exception

if

a

program

attempts

to

materialize

heap

space

attributes

of

a

heap

space

in

an

activation

group

to

which

the

program

does

not

have

access.

Operands

1,

2

and

3

are

not

modified

by

the

instruction.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Machine

Interface

Instructions

475

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C04

Object

Storage

Limit

Exceeded

1C09

Auxiliary

Storage

Pool

Number

Invalid

20

Machine

Support

2002

Machine

Check

2003

Function

Check

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2C

Program

Execution

2C12

Activation

Group

Access

Violation

2C13

Activation

Group

Not

Found

32

Scalar

Specification

3203

Scalar

Value

Invalid

476

iSeries:

Machine

Interface

Instructions

APIs

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

45

Heap

Space

4501

Invalid

Heap

Identifier

4502

Invalid

Request

4505

Heap

Space

Destroyed

4506

Invalid

Heap

Space

Condition

Materialize

Allocated

Object

Locks

(MATAOL)

Op

Code

(Hex)

Operand

1

Operand

2

03FA

Receiver

Designated

lockable

item

Operand

1:

Space

pointer.

Operand

2:

System

pointer,

object

pointer

or

space

pointer

data

object.

Bound

program

access

Built-in

number

for

MATAOL

is

48.

MATAOL

(

receiver

:

address

designated_lockable_item

:

address

of

system

pointer

OR

address

of

object

pointer

OR

address

of

space

pointer(16)

)

Description:

This

instruction

materializes

the

current

allocated

locks

on

a

designated

lockable

item.

If

operand

2

is

a

system

pointer,

the

current

allocated

locks

on

the

object

identified

by

the

system

pointer

specified

by

operand

2

are

materialized

into

the

template

specified

by

operand

1.

If

operand

2

is

an

object

pointer,

the

current

allocated

locks

on

the

specified

object

location

are

materialized

into

the

template

specified

by

operand

1.

If

operand

2

is

a

space

pointer,

the

current

allocated

locks

on

the

specified

space

location

are

materialized

into

the

template

specified

by

operand

1.

The

materialization

template

identified

by

operand

1

must

be

16-byte

aligned.

The

format

of

the

materialization

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Current

cumulative

lock

status

Char(3)

8

8

Lock

states

currently

allocated

(1

=

yes)

Char(1)

8

8

LSRD

Bit

0

Machine

Interface

Instructions

477

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

LSRO

Bit

1

8

8

LSUP

Bit

2

8

8

LEAR

Bit

3

8

8

LENR

Bit

4

8

8

Locks

implicitly

set

Bit

5

8

8

Reserved

(binary

0)

Bits

6-7

9

9

Reserved

(binary

0)

Char(2)

11

B

Reserved

(binary

0)

Char(1)

12

C

Number

of

lock

state

descriptions

Bin(2)

14

E

Reserved

(binary

0)

Char(2)

16

10

Lock

state

descriptions

[*]

Char(32)

(repeated

number

of

lock

state

descriptions

times)

16

10

Lock

holder

System

pointer

32

20

Lock

state

Char(1)

Hex

80

=

LSRD

lock

request

Hex

40

=

LSRO

lock

request

Hex

20

=

LSUP

lock

request

Hex

10

=

LEAR

lock

request

Hex

08

=

LENR

lock

request

All

other

values

are

reserved

33

21

Status

of

lock

request

Char(1)

33

21

Lock

scope

object

type

Bit

0

0=

Process

control

space

1=

Transaction

control

structure

33

21

Lock

scope

Bit

1

0=

Lock

is

scoped

to

the

lock

scope

object

type

1=

Lock

is

scoped

to

the

thread

33

21

Reserved

(binary

0)

Bits

2-5

33

21

Implicit

lock

(machine

applied)

Bit

6

33

21

Lock

held

by

a

process,

thread

or

transaction

control

structure

Bit

7

34

22

Lock

information

Char(1)

A

value

of

1

in

the

corresponding

bit

indicates

the

condition

is

true:

34

22

Reserved

(binary

0)

Bits

0-5

478

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

34

22

Lock

is

held

by

some

process,

thread,

or

transaction

control

structure

other

than

the

current

process

or

thread

Bit

6

34

22

Lock

is

held

by

the

machine

Bit

7

35

23

Reserved

(binary

0)

Char(1)

36

24

Unopened

thread

handle

UBin(4)

40

28

Thread

ID

Char(8)

*

*

—-

End

—-

The

first

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

eight

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

Other

than

the

materialization

length

invalid

(hex

3803)

exception,

no

exceptions

are

signaled

should

the

receiver

contain

insufficient

area

for

the

materialization.

As

a

result,

the

number

of

lock

descriptions

may

be

more

than

the

number

of

lock

descriptors

that

follow,

since

an

insufficient

area

was

provided

to

return

the

descriptors.

Locks

may

be

implicitly

applied

by

the

machine

(implicit

lock

is

binary

1).

If

the

implicit

lock

is

held

for

a

process

or

thread,

a

pointer

to

the

associated

process

control

space

is

returned

in

the

lock

holder

field.

If

the

implicit

lock

is

held

for

a

transaction

control

structure,

a

pointer

to

the

associated

transaction

control

structure

is

returned

in

the

lock

holder

field.

Locks

held

by

the

machine,

but

not

related

to

a

specific

process,

thread,

or

transaction

control

structure,

cause

the

lock

holder,

unopened

thread

handle,

and

thread

ID

fields

to

each

be

assigned

a

value

of

binary

0.

When

the

lock

is

held

by

a

process

or

a

thread,

the

system

security

level

is

40

or

greater,

and

the

invoker

of

this

instruction

is

a

user

state

program,

then

the

process

control

space

system

pointer

associated

with

the

lock

will

be

returned

in

the

lock

holder

field

if

the

lock

is

held

by

the

current

thread

or

its

containing

process.

This

field

will

be

set

to

binary

0

if

the

lock

is

held

by

some

other

process

or

thread.

When

system

security

level

30

or

less

is

in

effect

or

when

the

invoking

program

is

in

system

state,

then

the

lock

holder

field

will

always

be

returned

with

the

appropriate

process

control

space

system

pointer

value

(which

may

be

binary

0

if

the

machine

holds

the

lock).

Locks

may

be

held

by

a

transaction

control

structure.

If

lock

scope

object

type

has

a

value

of

transaction

control

structure,

then

the

lock

holder

field

will

contain

a

system

pointer

to

the

transaction

control

structure

that

holds

the

lock

and

the

unopened

thread

handle,

and

thread

ID

fields

will

be

assigned

a

value

of

binary

0.

The

lock

information

will

be

set

appropriately

regardless

of

security

level

and

program

state.

Only

a

single

lock

state

is

returned

for

each

lock

state

description

entry.

A

space

pointer

machine

object

cannot

be

specified

for

operand

2.

The

lock

scope

field

has

no

meaning

if

lock

held

by

a

process,

thread

or

transaction

control

structure

is

binary

0.

Machine

Interface

Instructions

479

A

lock

state

description

for

a

lock

held

by

a

process

will

have

a

value

of

binary

0

for

the

unopened

thread

handle

and

for

the

thread

ID.

A

lock

state

description

for

a

lock

held

by

a

thread

will

have

a

non-zero

value

for

the

unopened

thread

handle

and

for

the

thread

ID

to

identify

the

specific

thread

within

the

process

that

is

holding

the

lock.

When

the

invoker

of

this

instruction

is

a

user

state

program,

then

the

unopened

thread

handle

and

thread

ID

fields

will

be

returned

if

the

lock

is

held

by

the

current

thread.

These

fields

will

be

set

to

binary

0

if

the

lock

is

held

by

some

other

process

or

thread.

When

the

invoking

program

is

in

system

state,

then

the

unopened

thread

handle

and

thread

ID

fields

will

always

be

returned

with

the

appropriate

values

(which

may

be

binary

0

if

the

machine

holds

the

lock).

The

maximum

number

of

locks

that

can

be

materialized

with

this

instruction

is

32,767.

No

exception

will

be

signaled

if

more

than

32,767

exist

and

only

the

first

32,767

locks

found

will

be

materialized.

If

operand

2

is

a

space

pointer

to

a

teraspace

storage

location,

and

the

teraspace

storage

location

is

mapped,

(from

the

current

processes

view),

to

a

single

level

store

location,

then

the

locks

on

the

single

level

store

location

will

be

materialized.

If

the

teraspace

storage

location

is

not

mapped,

then

locks

on

the

teraspace

storage

location

will

be

materialized.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1A

Lock

State

480

iSeries:

Machine

Interface

Instructions

APIs

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Machine

Interface

Instructions

481

Materialize

Authority

(MATAU)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

0153

Receiver

System

object

User

profile

or

source

template

Operand

1:

Space

pointer.

Operand

2:

System

pointer.

Operand

3:

System

pointer

or

space

pointer

data

object

or

null.

Bound

program

access

Built-in

number

for

MATAU

is

58.

MATAU

(

receiver

:

address

system_object

:

address

of

system

pointer

user_profile_or_source_template

:

address

of

system

pointer

OR

address

of

space

pointer(16)

OR

null

operand

)

Description:

This

instruction

materializes

the

specific

types

of

authority

for

a

system

object

available

to

the

specified

user

profile.

The

private

authorization

that

the

user

profile

specified

by

operand

3

has

to

the

permanent

system

object

specified

by

operand

2,

and

the

object’s

public

authorization

is

materialized

in

operand

1.

If

operand

3

is

null,

then

only

the

object’s

public

authorization

is

materialized,

and

the

private

authorization

field

in

the

materialization

is

set

to

binary

0.

Except

for

certain

special

cases,

the

authority

to

be

materialized

is

determined

by

first

checking

for

direct

authority

to

the

object

itself,

then

checking

for

indirect

authority

to

the

object

through

authority

to

an

authority

list

containing

the

object.

The

first

source

of

authority

found

is

materialized

and

the

source

is

indicated

in

the

materialization.

The

special

case

of

the

operand

3

user

profile

having

all

object

special

authority

overrides

any

explicit

private

authorities

that

the

user

profile

might

hold

to

the

object

or

its

containing

authority

list

and

results

in

a

materialization

showing

that

the

profile

holds

all

private

authorities

directly

to

the

object.

The

special

case

of

the

operand

2

object

being

in

an

authority

list

which

has

the

override

specific

object

authority

attribute

in

effect

results

in

the

authorization

or

lack

of

authorization

held

to

the

authority

list

completely

overriding

the

explicit

private

authorities

that

the

user

profile

might

hold

to

the

object.

This

case

results

in

a

materialization

showing

that

the

profile

has

just

the

private

authorities

it

holds

or

doesn’t

hold

to

the

authority

list.

That

is,

if

the

user

profile

has

private

authority

to

the

object,

but

doesn’t

have

private

authority

to

the

authority

list,

the

materialization

will

show

that

the

user

does

not

have

any

private

authority

to

the

object.

Similarly,

if

the

user

profile

has

both

private

authority

to

the

object

and

to

the

authority

list,

the

materialization

will

show

that

the

user

has

only

the

private

authority

through

the

authority

list.

If

operand

3

is

null,

then

only

the

object’s

public

authorization

is

materialized,

and

the

private

authorization

field

in

the

materialization

is

set

to

binary

0s.

Operand

3

may

be

specified

as

a

system

pointer

which

directly

addresses

the

user

profile

to

be

checked

as

a

source

of

authority

or

as

a

space

pointer

to

a

source

template

which

identifies

the

source

user

profile.

Specifying

a

template

allows

for

additional

controls

over

how

the

materialize

operation

is

to

be

performed.

The

format

of

the

source

template

is

the

following:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Source

flags

Char(2)

0

0

Ignore

all

object

special

authority

Bit

0

482

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

No

1

=

Yes

0

0

Reserved

(binary

0)

Bits

1-15

2

2

Reserved

(binary

0)

Char(14)

16

10

User

profile

System

pointer

32

20

—-

End

—-

The

ignore

all

object

special

authority

source

flag

specifies

whether

special

authority

is

to

be

ignored

during

the

materialize

operation.

When

yes

is

specified,

just

the

explicitly

held

private

authority

that

the

specified

user

profile

holds

either

directly

to

the

object

or

indirectly

to

an

authority

list

containing

the

object

will

be

materialized.

When

no

is

specified,

the

authority

provided

by

all

object

special

authority,

if

held

by

the

source

user

profile,

is

included

and

results

in

a

materialization

showing

that

the

profile

holds

all

private

authorities

directly

to

the

object.

No

is

the

default

for

this

flag

value

when

the

source

template

is

not

specified.

The

user

profile

field

specifies

the

user

profile

to

be

checked

as

a

source

of

authority.

The

format

of

the

materialization

(operand

1)

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

(contains

a

value

of

16

for

this

instruction)

8

8

Private

authorization

(1

=

authorized)

Char(2)

8

8

Object

control

Bit

0

8

8

Object

management

Bit

1

8

8

Authorized

pointer

Bit

2

8

8

Space

authority

Bit

3

8

8

Retrieve

Bit

4

8

8

Insert

Bit

5

8

8

Delete

Bit

6

8

8

Update

Bit

7

8

8

Ownership

(1

=

yes)

Bit

8

8

8

Excluded

Bit

9

8

8

Authority

list

management

Bit

10

8

8

Execute

Bit

11

8

8

Alter

Bit

12

8

8

Reference

Bit

13

8

8

Reserved

(binary

0)

Bits

14-15

10

A

Public

authorization

(1

=

authorized)

Char(2)

10

A

Object

control

Bit

0

10

A

Object

management

Bit

1

10

A

Authorized

pointer

Bit

2

10

A

Space

authority

Bit

3

10

A

Retrieve

Bit

4

10

A

Insert

Bit

5

Machine

Interface

Instructions

483

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

10

A

Delete

Bit

6

10

A

Update

Bit

7

10

A

Reserved

(binary

0)

Bit

8

10

A

Excluded

Bit

9

10

A

Authority

list

management

Bit

10

10

A

Execute

Bit

11

10

A

Alter

Bit

12

10

A

Reference

Bit

13

10

A

Reserved

(binary

0)

Bits

14-15

12

C

Private

authorization

source

UBin(2)

0

=

Authority

to

object

1

=

Authority

to

authority

list

2

=

Authority

to

object

via

primary

group

3

=

Authority

to

authority

list

via

primary

group

14

E

Public

authorization

source

UBin(2)

0

=

Authority

from

object

1

=

Authority

from

authority

list

16

10

—-

End

—-

The

first

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception.

The

second

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

available

to

be

materialized

(16

for

this

instruction).

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

exceptions

(other

than

the

materialization

length

exception)

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization.

Any

of

the

four

authorizations-

retrieve,

insert,

delete,

or

update-constitute

operational

authority.

If

this

instruction

references

a

temporary

object,

all

public

authority

states

are

materialized.

Private

authority

states

are

not

materialized.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Operational

–

–

Operand

3
v

Execute

–

–

Contexts

referenced

for

address

resolution

484

iSeries:

Machine

Interface

Instructions

APIs

Lock

Enforcement

v

v

Materialize

–

–

Operand

2

–

Operand

3

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1002

Machine

Context

Damage

State

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

Machine

Interface

Instructions

485

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Authority

List

(MATAL)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

01B3

Receiver

Authority

list

or

Authority

list

extension

Materialization

options

Operand

1:

Space

pointer

Operand

2:

System

pointer

or

open

pointer

Operand

3:

Space

pointer

Bound

program

access

Built-in

number

for

MATAL

is

59.

MATAL

(

receiver

:

address

authority_list

:

address

of

system

pointer

OR

address

of

open

pointer

materialization_options

:

address

)

486

iSeries:

Machine

Interface

Instructions

APIs

Description:

Based

on

the

contents

of

the

materialization

options

specified

by

operand

3,

the

symbolic

identification

and/or

system

pointers

to

all,

or

a

selected

set,

of

the

objects

contained

in

the

authority

list

or

authority

list

extension

specified

by

operand

2

are

materialized

into

the

receiver

specified

by

operand

1.

A

space

pointer

machine

object

may

not

be

specified

for

operand

2.

The

materialization

options

operand

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

control

Char(2)

0

0

Information

requirements

Char(1)

Hex

12

=

Materialize

count

of

entries

matching

the

criteria

Hex

22

=

Materialize

identification

of

entries

matching

the

criteria

and

return

information

using

short

description

format

Hex

32

=

Materialize

identification

of

entries

matching

the

criteria

and

return

information

using

long

description

format

1

1

Selection

criteria

Char(1)

Hex

00

=

All

authority

list

or

authority

list

extension

entries

Hex

01

=

Type

code

selection

Hex

02

=

Type

code/subtype

code

selection

2

2

Reserved

(binary

0)

Bin(2)

4

4

Type

code

Char(1)

5

5

Subtype

code

Char(1)

6

6

Reserved

(binary

0)

Char(30)

36

24

—-

End

—-

The

information

requirements

field

specifies

the

type

of

materialization,

just

a

count

of

entries,

short

descriptions,

or

long

descriptions,

which

is

being

requested.

The

selection

criteria

field

specifies

the

criteria

to

be

used

in

selecting

the

authority

list

or

authority

list

extension

entries

for

which

information

is

to

be

presented.

The

type

code

and

subtype

code

fields

contain

the

selection

criteria

when

a

selective

materialization

is

specified.

When

type

code

or

type/subtype

codes

are

part

of

the

selection

criteria,

only

entries

that

have

the

specified

codes

are

considered.

The

format

of

the

materialization

(operand

1)

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

Machine

Interface

Instructions

487

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Authority

list

identification

Char(32)

8

8

Object

type

Char(1)

9

9

Object

subtype

Char(1)

10

A

Object

name

Char(30)

40

28

Authority

list

creation

options

Char(4)

40

28

Existence

attributes

Bit

0

1

=

Permanent

(always

permanent)

40

28

Space

attribute

Bit

1

0

=

Fixed

length

1

=

Variable

length

40

28

Reserved

(binary

0)

Bits

2-31

44

2C

Reserved

(binary

0)

Char(4)

48

30

Size

of

space

Bin(4)

52

34

Initial

value

of

space

Char(1)

53

35

Performance

class

Char(4)

57

39

Reserved

Char(7)

64

40

Context

System

pointer

80

50

Reserved

Char(16)

96

60

Authority

list

attributes

Char(4)

96

60

Override

specific

object

authority

Bit

0

0

=

No

1

=

Yes

96

60

Reserved

(binary

0)

Bits

1-31

100

64

Reserved

(binary

0)

Char(28)

128

80

Entries

header

Char(16)

128

80

Number

of

entries

available

UBin(4)

132

84

Reserved

Char(12)

144

90

—-

End

—-

If

no

description

(information

requirements

=

hex

12)

is

requested

in

the

materialization

options

operand,

the

above

constitutes

the

information

available

for

materialization.

If

a

description

(short

or

long)

is

requested

by

the

materialization

options

operand,

a

description

entry

is

present

(assuming

a

sufficient

size

receiver)

for

each

object

materialized

into

the

receiver.

Either

of

the

following

entry

formats

may

be

selected.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Short

description

entry

Char(32)

0

0

Type

code

Char(1)

1

1

Subtype

code

Char(1)

2

2

Reserved

Char(14)

16

10

System

object

System

pointer

32

20

—-

End

—-

488

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Long

description

entry

Char(128)

0

0

Type

code

Char(1)

1

1

Subtype

code

Char(1)

2

2

Object

name

Char(30)

32

20

Reserved

Char(16)

48

30

System

object

System

pointer

64

40

Object

owning

user

profile

System

pointer

80

50

Context

Char(48)

80

50

Type

code

C

81

51

Subtype

code

C

82

52

Context

name

C

112

70

Context

pointer

S

128

80

—-

End

—-

The

first

four

bytes

of

the

materialization

output

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

and

pointers

as

can

be

contained

in

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested

for

materialization,

the

excess

bytes

are

unchanged.

No

exceptions

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization,

other

than

the

materialization

length

invalid

(hex

3803)

exception

signaled

above.

The

creation

attributes

(bytes

40

through

127)

are

not

returned

when

materializing

an

authority

list

extension.

These

fields

of

the

template

will

be

set

to

hex

zero.

The

fields

are:

v

Authority

list

creation

options

v

Size

of

space

v

Initial

value

of

space

v

Performance

class

v

Context

v

Authority

list

attributes

When

an

authority

list

extension

is

materialized,

a

null

pointer

value

will

be

returned

for

object

owning

user

profile.

The

number

of

entries

available

field

specifies

the

number

of

authority

list

entries

which

satisfied

the

selection

criteria

and

were

therefore

materialized.

A

value

of

zero

indicates

no

entries

were

available.

The

object

identification

information

(in

the

short

and

long

description

entries),

if

requested

by

the

materialization

options

operand,

is

present

for

each

entry

in

the

authority

list

or

authority

list

extension

that

satisfies

the

search

criteria.

The

object

pointer

information

(in

the

long

description

entry

only),

if

requested

by

the

materialization

options

operand,

is

present

for

each

entry

in

the

authority

list

or

authority

list

extension

that

satisfies

the

search

criteria.

Machine

Interface

Instructions

489

If

the

object

addressed

by

the

system

pointer

is

not

addressed

by

a

context,

the

context

type

field

is

set

to

hex

00

or

if

the

object

is

addressed

by

a

machine

context,

the

context

type

field

is

set

to

hex

81.

Additionally,

in

either

of

these

cases,

the

context

pointer

is

set

to

a

null

pointer

value.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Retrieve

Operand

2
v

All

object

special

authority

–

–

Operand

2

if

authority

list

extension

Lock

Enforcement

v

v

Materialization

Operand

2

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

0A04

Special

Authorization

Required

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

490

iSeries:

Machine

Interface

Instructions

APIs

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Machine

Interface

Instructions

491

4402

Literal

Values

Cannot

Be

Changed

Materialize

Authorized

Objects

(MATAUOBJ)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

013B

Receiver

User

profile

or

User

profile

extension

Materialization

options/template

Operand

1:

Space

pointer

Operand

2:

System

pointer

or

open

pointer

Operand

3:

Character

scalar

Bound

program

access

Built-in

number

for

MATAUOBJ

is

60.

MATAUOBJ

(

receiver

:

address

user_profile

:

address

of

system

pointer

OR

address

of

open

pointer

materialization_options

:

address

)

Description:

This

instruction

materializes

the

identification

and

the

system

pointers

to

all

or

selected

system

objects

that

are

privately

owned

and/or

authorized

by

a

specified

user

profile

or

user

profile

extension,

and/or

for

which

the

profile

is

the

primary

group.

For

the

user

profile

or

user

profile

extension

(operand

2),

the

materialization

options

(operand

3)

specify

object

selection

criteria

and

the

format

and

location

of

the

object

materialization

data.

The

receiver

space

(operand

1)

always

indicates

the

number

of

objects

materialized,

and

contains

the

object

materialization

data

unless

the

materialization

options

specify

an

independent

index

to

contain

the

data.

A

space

pointer

machine

object

may

not

be

specified

for

operand

2.

When

format

of

operand

3

is

operand

3

is

a

Char(1)

scalar,

operand

3

is

viewed

as

a

Char(1)

scalar.

This

option

does

not

permit

object

selection

by

type

and

subtype,

does

not

allow

a

continuation

point

to

be

specified,

and

returns

all

object

materialization

data

in

the

receiver

(operand

1).

The

short

template

header

format

is

used.

Following

are

the

valid

operand

3

values

which

may

be

used

with

the

short

template

header

format

(operand

1):

Value

(hex)

Meaning

07

Verify

user

profile

integrity

for

all

authorized,

owned

objects,

and

objects

for

which

profile

is

the

primary

group.

11

Materialize

count

of

owned

objects.

12

Materialize

count

of

authorized

objects.

13

Materialize

count

of

all

authorized

and

owned

objects.

14

Materialize

count

of

objects

for

which

profile

is

the

primary

group.

15

Materialize

count

of

owned

objects

and

objects

for

which

profile

is

the

primary

group.

16

Materialize

count

of

authorized

objects

and

objects

for

which

profile

is

the

primary

group.

17

Materialize

count

of

all

authorized,

owned

objects,

and

objects

for

which

profile

is

the

primary

group.

21

Materialize

identification

of

owned

objects

using

short

description

entry

format.

22

Materialize

identification

of

authorized

objects

using

short

description

entry

format.

23

Materialize

identification

of

all

authorized

and

owned

objects

using

short

description

entry

format.

24

Materialize

identification

of

objects

for

which

profile

is

the

primary

group

using

short

description

entry

format.

25

Materialize

identification

of

owned

objects

and

objects

for

which

profile

is

the

primary

group

using

short

description

entry

format.

492

iSeries:

Machine

Interface

Instructions

APIs

Value

(hex)

Meaning

26

Materialize

identification

of

authorized

objects

and

objects

for

which

profile

is

the

primary

group

using

short

description

entry

format.

27

Materialize

identification

of

all

authorized,

owned

objects,

and

objects

for

which

profile

is

the

primary

group

using

short

description

entry

format.

31

Materialize

identification

of

owned

objects

using

long

description

entry

format.

32

Materialize

identification

of

authorized

objects

using

long

description

entry

format.

33

Materialize

identification

of

all

authorized

and

owned

objects

using

long

description

entry

format.

34

Materialize

identification

of

objects

for

which

profile

is

the

primary

group

using

long

description

entry

format.

35

Materialize

identification

of

owned

objects

and

objects

for

which

profile

is

the

primary

group

using

long

description

entry

format.

36

Materialize

identification

of

authorized

objects

and

objects

for

which

profile

is

the

primary

group

using

long

description

entry

format.

37

Materialize

identification

of

all

authorized,

owned

objects,

and

objects

for

which

profile

is

the

primary

group

using

long

description

entry

format.

Usage

note:

Although

damage

in

a

user

profile

is

extremely

rare,

option

hex

07

can

be

used

to

verify

the

integrity

of

the

user

profile

without

referencing

any

owned

or

authorized

objects.

This

allows

the

caller

to

quickly

verify

a

user

profile

before

a

lengthy

procedure,

such

as

a

product

install.

If

any

integrity

problems

are

found,

the

user

profile

will

be

damaged

and

a

system

object

damage

state

(hex

1004)

exception

will

be

signaled.

Following

are

the

valid

operand

3

values

which

may

be

used

with

the

long

template

header

format

(operand

1):

Value

(hex)

Meaning

51-57

These

long

template

header

materialization

options

are

the

same

as

the

short

template

header

materialization

options

11-17

(hex).

61-67

These

long

template

header

materialization

options

are

the

same

as

the

short

template

header

materialization

options

21-27

(hex).

71-77

These

long

template

header

materialization

options

are

the

same

as

the

short

template

header

materialization

options

31-37

(hex)

except

that

the

context

extension

is

materialized

for

each

object

as

well.

When

format

of

operand

3

is

set

to

operand

3

is

variable

length,

operand

3

is

viewed

as

variable-length,

must

be

16-byte

aligned

in

the

space,

and

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

options

Char(1)

Valid

values

are

hex

91-97,

A1-A7,

B1-B7,

D1-D7,

E1-E7,

and

F1-F7.

They

have

the

same

meanings

as

the

corresponding

values

with

format

of

operand

3

set

to

binary

0

(i.e.,

hex

91

has

the

same

meaning

as

hex

11).

0

0

Format

of

operand

3

Bit

0

0

=

Operand

3

is

a

Char(1)

scalar

1

=

Operand

3

is

variable

length

Machine

Interface

Instructions

493

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

identifier

Bits

1-7

1

1

Materialization

flags

Char(1)

1

1

Restrict

information

scope

Bit

0

This

is

an

input

bit

which

only

has

meaning

when

materialization

data

is

being

returned

in

the

operand

1

receiver

template.

When

there

is

more

data

to

be

materialized

than

can

be

contained

in

the

template,

then

when

this

bit

is

set

to

binary

1,

the

number

of

bytes

available

for

materialization,

the

number

of

objects

owned

by

user

profile,

the

number

of

objects

for

which

the

profile

is

the

primary

group,

and

the

number

of

objects

privately

authorized

to

user

profile

output

fields

are

restricted

to

reflect

only

the

information

returned

in

the

template;

when

set

to

binary

0,

the

output

fields

reflect

the

total

amount

of

materialization

data

available,

even

though

the

template

may

not

be

large

enough

to

contain

it

all.

1

1

More

materialization

data

available

Bit

1

This

output

bit

has

meaning

only

when

materialization

data

is

being

returned

in

the

operand

1

receiver

template.

When

set

to

binary

1,

it

indicates

that

objects

exist

beyond

those

for

which

materialization

data

was

returned

in

the

template;

when

set

to

binary

0

it

indicates

the

end

of

the

objects

was

reached.

1

1

Continuation

point

specified

Bit

2

This

is

an

input

bit.

When

set

to

binary

1,

it

indicates

that

a

continuation

point

is

specified

in

the

continuation

point

field;

when

set

to

binary

0,

continuation

processing

is

ignored.

1

1

Avoid

storage

correction

Bit

3

This

is

an

input

bit.

When

set

to

binary

1,

it

indicates

that

storage

correction

is

avoided

on

owned

objects.

When

set

to

binary

0,

storage

correction

is

performed

as

required.

1

1

Reserved

(binary

0)

Bits

4-7

2

2

Reserved

(binary

0)

Char(30)

32

20

Independent

Index

pointer

System

pointer

If

the

pointer

does

not

exist,

the

instruction

returns

all

object

materialization

data

in

the

receiver

(operand

1).

Otherwise

it

returns

only

the

template

header

in

the

receiver

and

returns

the

object

materialization

data

in

the

independent

index.

48

30

Continuation

point

Char(16)

or

System

pointer

If

the

continuation

point

specified

bit

is

on,

when

the

instruction

begins,

if

this

field

contains

a

system

pointer

or

the

storage

form

of

a

system

pointer,

then

materialization

data

is

returned

for

objects

found

in

the

profile

following

the

object

identified

by

the

continuation

point;

otherwise,

materialization

data

is

returned

beginning

with

the

object

which

is

logically

first.

64

40

Object

type/subtype

range

array

Bin(2)

494

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

Indicates

the

number

of

object

type/subtype

ranges

specified

in

the

array

immediately

following.

If

zero,

objects

of

all

types

and

subtypes

are

materialized.

If

larger

than

zero,

only

objects

included

in

one

or

more

of

the

type/subtype

ranges

specified

in

the

array

are

materialized.

66

42

Object

type/subtype

array

[*]

Char(4)

An

array

of

object

type/subtype

ranges

qualifying

the

objects

materialized.

Each

array

element

represents

a

range

of

object

type/subtypes

and

has

the

following

format:

66

42

Start

of

range

Char(2)

66

42

Object

type

code

Char(1)

67

43

Object

subtype

code

Char(1)

68

44

End

of

range

Char(2)

68

44

Object

type

code

Char(1)

69

45

Object

subtype

code

Char(1)

*

*

—-

End

—-

All

materialization

options

with

the

low

order

bit

on

(except

for

option

hex

07)

also

verify

and

correct

the

user

profile’s

system

storage

utilization

(storage

used

on

the

system

ASP

and

basic

ASPs)

and

varied

on

independent

ASP

storage

utilization.

The

corrected

storage

utilization

is

not

returned

by

MATAUOBJ

and

the

MATUP

instruction

must

be

used

to

obtain

the

storage

utilization

values.

The

storage

utilization

is

not

corrected

if

either

of

the

following

are

true:

v

v

The

extended

form

of

operand

3

is

used

and

a

valid

continuation

point

is

specified,

or

v

The

avoid

storage

correction

field

is

set

to

binary

1.

The

avoid

storage

correction

field

indicates

whether

or

not

system

storage

utilization

for

the

user

profile

should

be

verified

or

corrected

at

this

time.

This

may

improve

performance

significantly

when

avoid

storage

correction

is

set

to

binary

1.

The

order

of

materialization

is

owned

objects,

objects

privately

authorized

to

the

user

profile,

and

objects

for

which

the

profile

is

the

primary

group

(as

specified

in

the

materialization

options

operand).

No

authorizations

are

stored

in

the

system

pointers

that

are

returned.

The

template

identified

by

operand

1

must

be

16-byte

aligned

in

the

space.

For

options

hex

07

through

hex

37

and

hex

91

through

hex

B7,

the

short

template

header

is

materialized.

It

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Number

of

objects

owned

by

user

profile

Bin(2)

10

A

Number

of

objects

privately

authorized

to

user

profile

Bin(2)

12

C

Number

of

objects

for

which

the

user

profile

is

the

primary

group

Bin(2)

14

E

Reserved

(binary

0)

Char(2)

16

10

—-

End

—-

For

options

hex

51

through

77

and

hex

D1

through

hex

F7,

the

long

template

header

is

materialized.

It

has

the

following

format:

Machine

Interface

Instructions

495

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Number

of

objects

owned

by

user

profile

Bin(4)

12

C

Number

of

objects

privately

authorized

to

user

profile

Bin(4)

The

following

header

information

is

only

provided

when

an

option

requesting

primary

group

is

selected

(for

example

hex

54

-

57,

64

-

67

and

74

-

77

etc).

16

10

Number

of

objects

for

which

the

profile

is

the

primary

group

Bin(4)

20

14

Reserved

(binary

0)

Char(12)

32

20

—-

End

—-

The

first

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

exceptions

(other

than

the

materialization

length

invalid

(hex

3803)

exception)

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization.

If

the

restrict

information

scope

flag

is

binary

1,

then

the

field

contains

the

number

of

bytes

materialized,

rather

than

the

number

of

bytes

available

to

be

materialized.

The

number

of

objects

owned

by

user

profile,

the

number

of

objects

for

which

the

profile

is

the

primary

group,

and

the

number

of

objects

privately

authorized

to

user

profile

will

contain

the

appropriate

counts

for

each

type

of

authorized/owned

object.

For

options

greater

than

hex

07,

the

authorized/owned

objects

are

verified

and

these

counts

are

corrected.

For

option

hex

07,

the

counts

are

not

verified.

If

the

restrict

information

scope

flag

is

binary

1,

then

the

number

of

objects

owned

by

user

profile

and

the

number

of

objects

privately

authorized

by

user

profile

fields

reflect

the

number

of

objects

for

which

complete

materialization

data

is

returned,

rather

than

the

total

number

of

such

objects.

If

no

description

is

requested

in

the

materialization

options

field,

the

above

constitutes

the

information

available

for

materialization.

If

a

description

(short,

long,

or

long

with

context

extension)

is

requested

by

the

materialization

options

field,

a

description

entry

is

present

for

each

object

materialized

into

the

receiver

(assuming

it

is

of

sufficient

size)

or

into

the

independent

index.

Object

materialization

data

is

in

one

of

the

following

formats

depending

on

the

materialization

options

and

the

object

into

which

it

is

materialized:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Short

description

entry

materialized

into

receiver

Char(32)

0

0

Object

type

code

Char(1)

1

1

Object

subtype

code

Char(1)

2

2

Private

authorization

Char(2)

4

4

Reserved

(binary

0)

Char(10)

14

E

Independent

ASP

number

Char(2)

16

10

Object

pointer

System

pointer

32

20

—-

End

—-

496

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Long

description

entry

materialized

into

receiver

Char(64)

0

0

Object

type

code

Char(1)

1

1

Object

subtype

code

Char(1)

2

2

Object

name

Char(30)

32

20

Private

authorization

Char(2)

34

22

Public

authorization

Char(2)

36

24

Reserved

(binary

0)

Char(10)

46

2E

Independent

ASP

number

Char(2)

48

30

Object

pointer

System

pointer

64

40

—-

End

—-

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Long

description

entry

with

context

extension

materialized

into

receiver

Char(112)

0

0

Object

type

code

Char(1)

1

1

Object

subtype

code

Char(1)

2

2

Object

name

Char(30)

32

20

Private

authorization

Char(2)

34

22

Public

authorization

Char(2)

36

24

Reserved

(binary

0)

Char(10)

46

2E

Independent

ASP

number

Char(2)

48

30

Object

pointer

System

pointer

64

40

Context

type

code

Char(1)

65

41

Context

subtype

code

Char(1)

66

42

Context

name

Char(30)

96

60

Context

pointer

System

pointer

112

70

—-

End

—-

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Short

description

entry

materialized

into

independent

index

Char(32)

0

0

Entry

type

code

Char(1)

Hex

40

=

Owned

object

Hex

80

=

Authorized

object

Hex

A0

=

Profile

is

primary

group

of

object

1

1

Object

type

code

Char(1)

2

2

Object

subtype

code

Char(1)

3

3

Private

authorization

Char(2)

5

5

Reserved

(binary

0)

Char(9)

14

E

Independent

ASP

number

Char(2)

16

10

Object

pointer

System

pointer

32

20

—-

End

—-

Machine

Interface

Instructions

497

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Long

description

entry

materialized

into

independent

index

Char(64)

0

0

Entry

type

code

Char(1)

Hex

40

=

Owned

object

Hex

80

=

Authorized

object

Hex

A0

=

Profile

is

primary

group

of

object

1

1

Object

type

code

Char(1)

2

2

Object

subtype

code

Char(1)

3

3

Object

name

Char(30)

33

21

Private

authorization

Char(2)

35

23

Reserved

(binary

0)

Char(2)

37

25

Public

authorization

Char(2)

39

27

Reserved

(binary

0)

Char(7)

46

2E

Independent

ASP

number

Char(2)

48

30

Object

pointer

System

pointer

64

40

—-

End

—-

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Long

description

entry

with

context

extension

materialized

into

independent

index

Char(112)

0

0

Entry

type

code

Char(1)

Hex

40

=

Owned

object

Hex

80

=

Authorized

object

Hex

A0

=

Profile

is

primary

group

of

object

1

1

Context

type

code

Char(1)

2

2

Context

subtype

code

Char(1)

3

3

Context

name

Char(30)

33

21

Object

type

code

Char(1)

34

22

Object

subtype

code

Char(1)

35

23

Object

name

Char(30)

65

41

Private

authorization

Char(2)

67

43

Reserved

(binary

0)

Char(2)

69

45

Public

authorization

Char(2)

71

47

Reserved

(binary

0)

Char(7)

78

4E

Independent

ASP

number

Char(2)

80

50

Object

pointer

System

pointer

96

60

Context

pointer

System

pointer

112

70

—-

End

—-

Following

is

the

format

of

the

authorization

information:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Private

authorization

Char(2)

498

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

(1

=

authorized)

0

0

Object

control

Bit

0

0

0

Object

management

Bit

1

0

0

Authorized

pointer

Bit

2

0

0

Space

authority

Bit

3

0

0

Retrieve

Bit

4

0

0

Insert

Bit

5

0

0

Delete

Bit

6

0

0

Update

Bit

7

0

0

Ownership

(1

=

yes)

Bit

8

0

0

Excluded

Bit

9

0

0

Authority

list

management

Bit

10

0

0

Execute

Bit

11

0

0

Alter

Bit

12

0

0

Reference

Bit

13

0

0

Reserved

(binary

0)

Bits

14-15

2

2

Public

authorization

Char(2)

(1

=

authorized)

2

2

Object

control

Bit

0

2

2

Object

management

Bit

1

2

2

Authorized

pointer

Bit

2

2

2

Space

authority

Bit

3

2

2

Retrieve

Bit

4

2

2

Insert

Bit

5

2

2

Delete

Bit

6

2

2

Update

Bit

7

2

2

Reserved

(binary

0)

Bit

8

2

2

Excluded

Bit

9

2

2

Authority

list

management

Bit

10

2

2

Execute

Bit

11

2

2

Alter

Bit

12

2

2

Reference

Bit

13

2

2

Reserved

(binary

0)

Bits

14-15

4

4

—-

End

—-

When

context

information

is

materialized,

if

the

object

addressed

by

the

system

pointer

is

not

addressed

by

a

context,

the

context

type

field

is

set

to

hex

00

or

if

the

object

is

addressed

by

the

machine

context,

the

context

type

field

is

set

to

hex

81.

Additionally,

in

either

of

these

cases,

the

context

pointer

is

set

to

the

system

default

pointer

does

not

exist

value.

When

the

more

materialization

data

available

flag

is

binary

1,

the

pointer

to

the

object

within

the

last

entry

in

the

operand

1

receiver

template

may

be

specified

as

the

continuation

point

on

a

subsequent

invocation

of

this

instruction,

to

cause

materialization

to

continue,

starting

with

the

″logically

next″

object.

To

determine

whether

the

continuation

point

is

within

the

owned

or

authorized

objects,

the

ownership

bit

in

the

private

authorizations

of

the

last

materialized

object

may

be

tested.

This

instruction

does

not

guarantee

an

atomic

snapshot

of

the

user

profile

or

user

profile

extension

across

a

continuation

request.

The

following

considerations

apply

when

object

materialization

data

is

returned

in

an

independent

index:

v

Machine

Interface

Instructions

499

v

System

pointers

returned

in

index

entries

are

not

set

unless

the

index

is

created

to

contain

both

pointer

and

scalar

data.

v

Entry

data

may

be

truncated

or

padded

on

the

right

with

hex

zeroes

to

conform

to

the

index’s

key

and/or

fixed

entry

lengths.

v

An

entry

is

added

to

the

index

for

each

qualifying

object.

Previously

existing

entries

which

are

thereby

duplicated

are

replaced.

v

In

order

to

ensure

that

index

entries

inserted

within

the

same

execution

of

this

instruction

are

not

duplicates

of

each

other,

the

index

entry

length

(if

fixed)

and

key

length

(if

keyed)

must

be

sufficiently

large

to

include

the

object

pointer

within

the

entry

data.

Authorization

Required

v

v

Operational

–

–

Operand

2
v

All

object

special

authority

–

–

Operand

2

if

user

profile

extension
v

Execute

–

–

Contexts

referenced

for

address

resolution
v

Retrieve

–

–

Operand

2

if

materializing

owned

objects
v

Insert

–

–

Independent

index

if

identified

by

operand

3

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

–

Operand

2

if

materializing

owned

objects
v

Modify

–

–

Independent

index

if

identified

by

operand

3

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

500

iSeries:

Machine

Interface

Instructions

APIs

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

0A04

Special

Authorization

Required

10

Damage

Encountered

1002

Machine

Context

Damage

State

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C04

Object

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2204

Object

Not

Eligible

for

Operation

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

Machine

Interface

Instructions

501

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Authorized

Users

(MATAUU)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

0143

Receiver

System

object

Materialization

options

Operand

1:

Space

pointer.

Operand

2:

System

pointer.

Operand

3:

Character(1)

scalar.

Bound

program

access

Built-in

number

for

MATAUU

is

61.

MATAUU

(

receiver

:

address

system_object

:

address

of

system

pointer

materialization_options

:

address

)

Description:

The

instruction

materializes

the

authorization

states

and

the

identification

of

the

user

profile(s).

The

materialization

options

(operand

3)

for

the

system

object

(operand

2)

are

returned

in

the

receiver

(operand

1).

The

materialization

options

for

operand

3

have

the

following

format:

Value

(Hex)

Meaning

11

Materialize

public

authority.

12

Materialize

public

authority

and

number

of

privately

authorized

profiles.

21

Materialize

identification

of

owning

profile

using

short

description

entry

format.

22

Materialize

identification

of

privately

authorized

profiles

using

short

description

entry

format.

23

Materialize

identification

of

owning

and

privately

authorized

profiles

using

short

description

entry

format.

502

iSeries:

Machine

Interface

Instructions

APIs

Value

(Hex)

Meaning

24

Materialize

identification

of

primary

group

profile

using

short

description

entry

format.

25

Materialize

identification

of

owning

profile

and

primary

group

profile

using

short

description

entry

format.

26

Materialize

identification

of

privately

authorized

profiles

and

primary

group

profile

using

short

description

entry

format.

27

Materialize

identification

of

owning

profile,

primary

group

profile,

and

privately

authorized

profiles

using

short

description

entry

format.

31

Materialize

identification

of

owning

profile

using

long

description

entry

format.

32

Materialize

identification

of

privately

authorized

profiles

using

long

description

entry

format.

33

Materialize

identification

of

owning

and

privately

authorized

profiles

using

long

description

entry

format.

34

Materialize

identification

of

primary

group

profile

using

long

description

entry

format.

35

Materialize

identification

of

owning

profile

and

primary

group

profile

using

long

description

entry

format.

36

Materialize

identification

of

privately

authorized

profiles

and

primary

group

profile

using

long

description

entry

format.

37

Materialize

identification

of

owning

profile,

primary

group

profile,

and

privately

authorized

profiles

using

long

description

entry

format.

The

order

of

materialization

is

an

entry

for

the

owning

user

profile,

an

entry

for

the

primary

group

profile,

followed

by

a

list

(0

to

n

entries)

of

entries

for

user

profiles

having

private

authorization

to

the

object

(as

specified

in

the

materialization

options

operand).

The

authorization

field

within

the

system

pointers

will

not

be

set.

If

the

primary

group

profile

for

the

object

is

not

set

(there

is

no

primary

group

for

the

object),

and

the

primary

group

profile

is

requested

by

the

materialization

options

operand,

the

entry

for

the

primary

group

profile

will

be

set

to

binary

0.

The

template

identified

by

operand

1

must

be

16-byte

aligned

in

the

space

and

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Public

authorization

Char(2)

(1

=

authorized)

8

8

Object

control

Bit

0

8

8

Object

management

Bit

1

8

8

Authorized

pointer

Bit

2

8

8

Space

authority

Bit

3

8

8

Retrieve

Bit

4

8

8

Insert

Bit

5

8

8

Delete

Bit

6

8

8

Update

Bit

7

8

8

Reserved

(binary

0)

Bit

8

8

8

Excluded

Bit

9

8

8

Authority

list

management

Bit

10

8

8

Execute

Bit

11

8

8

Alter

Bit

12

8

8

Reference

Bit

13

8

8

Reserved

(binary

0)

Bits

14-15

10

A

Number

of

privately

authorized

user

profiles

Bin(2)

12

C

Reserved

(binary

0)

Char(4)

Machine

Interface

Instructions

503

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

—-

End

—-

The

first

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception.

The

second

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

exceptions

(other

than

the

materialization

length

invalid

(hex

3803)

exception)

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization.

If

no

description

is

requested

by

the

materialization

options

field,

the

template

identified

by

operand

1

constitutes

the

information

available

for

materialization.

If

a

description

(short

or

long)

is

requested

by

the

materialization

options

field,

a

description

entry

is

present

(assuming

there

is

a

sufficient

sized

receiver)

for

each

user

profile

materialized

or

available

to

be

materialized

into

the

receiver.

Either

of

the

following

entry

types

may

be

selected.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Short

description

entry

Char(32)

0

0

User

profile

type

code

Char(1)

1

1

User

profile

subtype

code

Char(1)

2

2

Private

authorization

Char(2)

(1

=

authorized)

2

2

Object

control

Bit

0

2

2

Object

management

Bit

1

2

2

Authorized

pointer

Bit

2

2

2

Space

authority

Bit

3

2

2

Retrieve

Bit

4

2

2

Insert

Bit

5

2

2

Delete

Bit

6

2

2

Update

Bit

7

2

2

Ownership

(1

=

yes)

Bit

8

2

2

Excluded

Bit

9

2

2

Authority

list

management

Bit

1

2

2

Execute

Bit

1

2

2

Alter

Bit

1

2

2

Reference

Bit

1

2

2

Reserved

(binary

0)

Bits

4

4

Reserved

(binary

0)

Char(12)

16

10

User

profile

System

pointer

32

20

—-

End

—-

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Long

description

entry

Char(64)

0

0

User

profile

type

code

Char(1)

1

1

User

profile

subtype

code

Char(1)

2

2

User

profile

name

Char(30)

32

20

Private

authorization

Char(2)

504

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

(1

=

authorized)

32

20

Object

control

Bit

0

32

20

Object

management

Bit

1

32

20

Authorized

pointer

Bit

2

32

20

Space

authority

Bit

3

32

20

Retrieve

Bit

4

32

20

Insert

Bit

5

32

20

Delete

Bit

6

32

20

Update

Bit

7

32

20

Ownership

(1

=

yes)

Bit

8

32

20

Excluded

Bit

9

32

20

Authority

list

management

Bit

10

32

20

Execute

Bit

11

32

20

Alter

Bit

12

32

20

Reference

Bit

13

32

20

Reserved

(binary

0)

Bits

14-

34

22

Reserved

(binary

0)

Char(14)

48

30

User

profile

System

pointer

64

40

—-

End

—-

If

this

instruction

references

a

temporary

object,

all

public

authority

states

are

materialized.

The

privately

authorized

user,

primary

group,

and

owner

profile(s)

descriptions

are

not

materialized

(binary

0).

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Contexts

referenced

for

address

resolution
v

Object

management

or

ownership

–

–

Operand

2

object

(when

object

is

not

an

authority

list)
v

Authority

list

management

or

ownership

–

–

Operand

2

object

(when

object

is

an

authority

list)

Lock

Enforcement

v

v

Materialize

–

–

Operand

2

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

Machine

Interface

Instructions

505

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

506

iSeries:

Machine

Interface

Instructions

APIs

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Bound

Program

(MATBPGM)

Op

Code

(Hex)

Operand

1

Operand

2

02C6

Materialization

request

template

Bound

program

or

bound

service

program

Operand

1:

Space

pointer.

Operand

2:

System

pointer.

Bound

program

access

Built-in

number

for

MATBPGM

is

109.

MATBPGM

(

materialization_request_template

:

address

bound_program_or_bound_service_program

:

address

of

system

pointer

)

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Note:

The

terms

″heap″

and

″heap

space″

in

this

instruction

refer

to

an

″activation

group-based

heap

space″.

Description:

The

bound

program

or

bound

service

program

identified

by

operand

2

is

materialized

according

to

the

specifications

provided

by

operand

1.

Operand

2

is

a

system

pointer

that

identifies

the

bound

program

or

bound

service

program

to

be

materialized.

If

operand

2

does

not

refer

to

a

program

object,

a

pointer

addressing

invalid

object

type

(hex

2403)

exception

will

be

signaled.

If

operand

2

refers

to

a

program,

but

not

to

a

bound

program

or

bound

service

program,

then

a

program

not

eligible

for

operation

(hex

220A)

exception

will

be

signaled.

Machine

Interface

Instructions

507

The

values

in

the

materialization

relate

to

the

current

attributes

of

the

materialized

bound

program.

Components

are

the

materializable

parts

of

a

bound

program

or

bound

service

program.

Components

may

not

be

available

for

materialization

because

they

were

not

encapsulated

during

bound

program

creation.

Other

components

may

not

be

available

for

materialization

because

they

contain

no

data.

This

instruction

does

not

process

teraspace

addresses

used

for

its

operands,

nor

used

in

any

space

pointer

contained

in

a

template.

Any

teraspace

address

use

will

cause

an

unsupported

space

use

(hex

0607)

exception

to

be

signaled,

whether

the

issuing

program

is

teraspace

capable

or

not.

Note:

The

bound

program

materialization

request

template

takes

the

form

of

a

variable

length

array

of

materialization

requests.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Template

size

specification

Char(8)

0

0

Number

of

bytes

provided

4

4

Reserved

(binary

0)

8

8

Number

of

materialization

requests

UBin(4)

12

C

Reserved

(binary

0)

Char(4)

16

10

Array

of

materialization

requests

[*]

Char(32)

16

10

Receiver

32

20

Bound

program

materialization

options

32

20

General

bound

program

materialization

options

32

20

General

bound

pro

0

=

Do

not

m

1

=

Materiali

32

20

Reserved

Note:

Reserved

32

20

Program

copyright

0

=

Do

not

m

1

=

Materiali

32

20

Bound

service

prog

0

=

Do

not

m

1

=

Materiali

32

20

Bound

modules

inf

0

=

Do

not

m

1

=

Materiali

32

20

Bound

program

str

0

=

Do

not

m

1

=

Materiali

32

20

Bound

program

lim

0

=

Do

not

m

1

=

Materiali

32

20

Reserved

Note:

Reserved

32

20

Activation

group

d

0

=

Do

not

m

1

=

Materiali

32

20

Activation

group

d

508

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Do

no

1

=

Mater

32

20

Reserved

(binar

34

22

Specific

bound

program

materialization

options

34

22

Specific

bound

0

=

Do

no

1

=

Mater

34

22

Reserved

(binar

35

23

Specific

bound

service

program

materialization

options

35

23

Reserved

(binar

35

23

Signatures

infor

0

=

Do

no

1

=

Mater

35

23

Exported

progr

0

=

Do

no

1

=

Mater

35

23

Exported

progr

0

=

Do

no

1

=

Mater

35

23

Reserved

(binar

36

24

Bound

module

materialization

options

36

24

General

module

information

0

=

Do

not

materialize

1

=

Materialize

36

24

Reserved

Note:

Reserved

for

IBM

Internal

Use

Only.

If

used,

u

36

24

Module

string

directory

component

0

=

Do

not

materialize

1

=

Materialize

36

24

Reserved

Note:

Reserved

for

IBM

Internal

Use

Only.

If

used,

u

36

24

Reserved

(binary

0)

36

24

Module

copyright

strings

0

=

Do

not

materialize

1

=

Materialize

36

24

Reserved

Note:

Reserved

for

IBM

Internal

Use

Only.

If

used,

u

36

24

Reserved

(binary

0)

40

28

Bound

module

materialization

number

44

2C

Reserved

(binary

0)

*

*

—-

End

—-

Machine

Interface

Instructions

509

Description

of

bound

program

materialization

request

template

fields:

Each

of

the

reserved

fields

must

be

set

to

binary

0s,

or

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

Number

of

bytes

provided

This

is

the

size

in

bytes

of

the

materialization

request

template.

If

this

size

does

not

correspond

to

the

actual

number

of

bytes

in

the

materialization

request

template,

then

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

This

does

not

include

any

storage

for

returned

data.

That

storage

is

pointed

to

by

the

receiver

values.

Number

of

materialization

requests

The

number

of

requests

in

the

array

of

materialization

requests

is

specified

by

this

value.

If

this

number

is

greater

than

the

actual

number

of

materialization

requests

provided,

then

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

510

iSeries:

Machine

Interface

Instructions

APIs

Materialization

requests

This

is

an

array

of

materialization

requests.

A

materialization

request

consists

of

one

or

more

bits,

and

an

optional

module

number

specified

to

be

materialized

into

the

corresponding

receiver.

Each

materialization

request

consists

of

the

following

fields.

Receiver

This

is

a

pointer

to

a

space

which

will

hold

the

materialized

data.

The

space

pointed

to

must

be

aligned

on

a

16-byte

boundary,

and

must

be

at

least

8

bytes

long.

This

is

so

that

it

can

hold

the

bytes

provided

and

bytes

available

field

of

the

receiver.

If

the

space

is

not

at

least

8

bytes

long

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

Bound

program

materialization

options

This

bit

mapped

field

specifies

the

parts

of

the

bound

program

object

to

be

materialized.

A

materialization

request

need

not

specify

any

program

materialization

options.

If

no

bits

are

set,

a

bit

must

be

set

in

the

bound

module

materialization

options

field,

or

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

Multiple

options

may

be

specified.

When

multiple

options

are

specified,

all

of

the

requested

data

will

be

materialized

into

one

receiver.

The

pieces

requested

on

the

materialization

will

be

placed

in

the

receiver

in

the

order

that

the

option

bits

are

defined.

If

options

are

also

specified

on

the

bound

module

materialization

options

field,

the

materialized

data

for

those

options

will

follow

that

data

materialized

for

the

bound

program

materialization

options.

The

bound

program

materialization

options

are

split

into

three

distinct

materialization

bit

sets.

1.

The

general

bound

program

materialization

options

contains

bits

that

represent

data

that

can

be

materialized

for

either

bound

programs

or

bound

service

programs.

2.

The

specific

bound

program

materialization

options

contains

bits

that

represent

data

that

can

be

materialized

only

for

bound

programs,

and

not

for

bound

service

programs.

3.

The

specific

bound

service

program

materialization

options

contains

bits

that

represent

data

that

can

be

materialized

only

for

bound

service

programs.

If

a

bit

is

on

to

materialize

information

that

is

not

contained

in

the

type

of

bound

program

being

materialized,

then

an

indication

that

the

information

is

not

materializable

will

be

provided

in

the

receiver

header.

No

exception,

in

this

case,

will

be

signaled.

Each

of

the

requested

pieces

will

be

placed

on

a

16-byte

boundary

within

the

receiver.

The

general

bound

program

information

field

specifies

that

general

information

about

the

bound

program

object

should

be

Machine

Interface

Instructions

511

Format

of

materialized

data:

Format

of

Receiver:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Number

of

bytes

provided

for

materialization

UBin(4)

4

4

Number

of

bytes

available

for

materialization

UBin(4)

8

8

Reserved

(binary

0)

Char(8)

16

10

Materialized

data

Char(*)

*

*

—-

End

—-

Bytes

provided

This

is

the

number

of

bytes

the

user

is

providing

to

hold

the

materialized

data.

It

must

be

greater

than

or

equal

to

eight.

If

it

is

equal

to

eight,

then

no

data

will

actually

be

materialized,

and

the

number

of

bytes

required

to

materialize

the

requested

data

will

be

placed

in

bytes

available.

If

the

value

provided

is

greater

than

eight,

but

less

than

the

number

of

bytes

required

to

hold

the

requested

data,

the

data

will

be

truncated

and

no

exception

will

be

signaled.

Note

that

a

value

greater

than

eight,

but

less

than

16

will

result

in

no

data

being

materialized,

since

bytes

9-16

are

reserved.

If

the

receiver

is

smaller

than

the

size

indicated

by

bytes

provided,

and

the

materialized

data

is

larger

than

the

space

provided

in

receiver,

the

space

addressing

violation

(hex

0601)

exception

will

be

signaled

unless

receiver

is

an

automatically

extendable

space

object.

If

receiver

is

an

automatically

extendable

space

object,

the

space

will

be

extended,

up

to

its

maximum

size.

Bytes

available

If

bytes

provided

is

greater

than

eight,

this

contains

the

number

of

bytes

that

have

been

used

for

the

materialization,

including

any

reserved

bytes

or

bytes

used

for

padding.

If

bytes

provided

is

equal

to

eight,

this

contains

the

total

size

of

the

receiver

needed

to

hold

the

requested

materialization.

A

value

of

zero

is

returned

if

there

is

no

data

to

materialize.

512

iSeries:

Machine

Interface

Instructions

APIs

Materialized

data

For

each

bit

on

in

the

bound

program

materialization

options

and

bound

module

materialization

options,

this

will

contain

the

associated

data.

Each

entry

will

be

preceded

by

a

common

header

which

identifies

the

type

of

data

and

the

offset

to

the

next

entry.

When

multiple

bits

are

on

in

the

same

request,

the

data

is

returned

in

the

order

defined

by

the

bound

program

materialization

options

and

the

bound

module

materialization

options.

No

exception

is

signaled

when

the

size

of

the

receiver,

as

specified

by

bytes

provided

is

not

large

enough

to

hold

data

for

all

requested

bound

program

materialization

options

and

bound

module

materialization

options.

Instead,

the

data

is

truncated

and

bytes

provided

only

reflects

the

actual

amount

of

data

returned.

One

of

several

conditions

may

arise,

each

with

a

different

result.

If

the

receiver

is

not

large

enough

to

hold

the

materialization

header,

no

data

is

returned

for

that

bound

program

materialization

option

or

bound

module

materialization

option.

The

offset

to

next

entry

field

in

the

previous

materialization

header,

if

one

exists,

is

set

to

0,

and

the

bytes

available

field

is

set

to

reflect

the

amount

of

data

actually

materialized

for

the

bound

program

materialization

options

or

bound

module

materialization

options

that

have

already

been

processed.

Bytes

available

will

be

set

to

8,

or

bytes

provided

;

whichever

is

less,

if

the

receiver

is

not

big

enough

to

hold

the

first

materialization

header.

If

the

receiver

is

big

enough

to

hold

the

materialization

header,

but

not

big

enough

to

hold

all

of

the

data

requested

by

the

bound

program

materialization

option

or

bound

module

materialization

option,

the

partial

data

flag

will

be

set

in

the

materialization

header

and

as

much

data

will

be

returned

for

which

there

is

room.

For

data

which

consists

of

one

continuous

stream2

(page

539)

the

receiver

will

be

filled

and

bytes

available

will

equal

bytes

provided.

For

data

which

consists

of

an

option

specific

header

followed

by

an

array

of

homogenous

elements3

(page

539)

data

will

be

returned

in

such

a

way

that

no

partial

option

specific

header

or

array

element

will

be

returned.

If

there

is

not

enough

room

to

hold

the

entire

option

specific

header,

none

of

it

will

be

returned.

If

there

is

room

for

the

option

specific

header,

but

not

all

of

the

entries,

only

those

entries

that

will

fit

will

be

returned.

The

number

of

entries

in

the

option

specific

header

will

reflect

the

number

of

entries

returned

rather

than

the

actual

number

of

entires

available

in

the

module.

Bytes

available

will

reflect

the

actual

amount

of

data

returned

and

may

not

equal

bytes

provided.

Note

that

because

many

option

specific

headers

and

entries

are

larger

than

the

common

materialization

header,

there

may

be

more

than

one

option

for

which

partial

data

is

returned.

Format

of

Common

Materialization

Header:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Offset

to

next

entry

UBin(4)

4

4

Bound

program

materialization

identifier

Char(4)

8

8

Bound

module

materialization

identifier

Char(4)

12

C

Bound

module

materialization

number

identifier

UBin(4)

16

10

Flags

Char(4)

16

10

Entry

presence

Bit

0

0

=

No

data

present

for

entry

1

=

Data

present

for

entry

16

10

Partial

data

Bit

1

Machine

Interface

Instructions

513

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

All

data

in

materialization

was

returned

1

=

Partial

data

was

returned

because

receiver

was

too

small

to

hold

all

data

for

the

requested

option

16

10

Valid

materialization

data

Bit

2

0

=

The

data

requested

in

this

materialization

request

is

never

present

for

the

type

of

bound

program

being

materialized.

1

=

The

data

requested

in

this

materialization

request

may

be

present

for

the

type

of

bound

program

being

materialized.

16

10

Reserved

(binary

0)

Bits

3-31

20

14

Reserved

(binary

0)

Char(12)

32

20

—-

End

—-

Offset

to

next

entry

This

contains

the

offset

from

the

beginning

of

this

entry

to

the

beginning

of

the

next

entry.

It

will

contain

zero

if

this

is

the

last

entry.

Bound

program

materialization

identifier

This

indicates

which

portion

of

the

bound

program

is

contained

in

this

entry.

It

is

the

bit

which

was

on

in

bound

program

materialization

options

that

resulted

in

this

data

being

materialized.

Either

no

bits,

or

a

single

bit

of

this

field

will

be

on.

If

no

bits

of

this

field

are

on,

then

the

data

contained

in

this

entry

is

indicated

by

the

bound

module

materialization

identifier

field.

Bound

module

materialization

identifier

This

indicates

which

portion

of

the

module,

indicated

by

the

bound

module

materialization

number

identifier

field,

is

contained

in

this

entry.

It

is

the

bit

which

was

on

in

the

bound

module

materialization

options

field

that

resulted

in

this

data

being

materialized.

Either

a

single

bit

or

no

bit

of

this

field

will

be

on.

If

no

bit

is

on,

then

the

data

contained

in

this

entry

is

indicated

by

the

bound

program

materialization

identifier

field.

If

a

bit

is

set

on,

then

that

type

of

information

will

be

returned

in

the

entry.

Bound

module

materialization

number

identifier

If

a

bit

of

the

bound

module

materialization

identifier

field

is

on,

then

this

is

the

number

of

the

module

for

which

information

has

been

materialized

in

this

entry,

and

this

field

will

not

be

0.

If

no

bits

of

the

bound

module

materialization

identifier

field

are

on,

then

this

field

will

be

0.

514

iSeries:

Machine

Interface

Instructions

APIs

Flags

This

field

specifies

information

about

the

item

being

materialized.

The

entry

presence

field

specifies

whether

there

is

data

available

for

the

requested

item.

Some

items

may

not

be

encapsulated

into

the

object,

so

no

data

will

be

returned

when

their

materialization

is

requested.

The

partial

data

field

specifies

that

only

a

portion

of

the

data

was

returned

because

sufficient

space

was

not

present

in

the

receiver

to

hold

all

of

the

data

for

the

requested

materialization

option.

The

valid

materialization

field

specifies

whether

the

requested

information

is

valid

to

be

materialized

for

the

type

of

bound

program

that

is

being

materialized.

For

example,

specific

bound

program

information

is

not

valid

for

a

bound

service

program.

Even

if

data

may

be

present

for

the

type

of

bound

program

being

materialized

does

not

mean

that

it

actually

is.

Refer

to

the

entry

present

field

to

see

if

it

is.

Format

of

materialized

general

bound

program

information:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Length

in

bytes

of

materialization

UBin(4)

4

4

Reserved

Char(264)

Note:

Reserved

for

IBM

Internal

Use

Only.

If

used,

unpredictable

results

may

occur.

268

10C

Number

of

secondary

associated

spaces

UBin(4)

272

110

Activation

group

attributes

Char(4)

272

110

Target

activation

group

Char(1)

0

=

Default

activation

group

1

=

Caller’s

activation

group

2

=

Named

activation

group

3

=

Unnamed

activation

group

4

=

Named

shared

activation

group

5

=

Unnamed

shared

activation

group

6-255

Reserved

273

111

Reserved

Char(3)

Note:

Reserved

for

IBM

Internal

Use

Only.

If

used,

unpredictable

results

may

occur.

276

114

Activation

group

name

Char(30)

306

132

Reserved

Char(14)

Note:

Reserved

for

IBM

Internal

Use

Only.

If

used,

unpredictable

results

may

occur.

320

140

Coded

character

set

identifier

UBin(2)

322

142

Composite

language

version

UBin(2)

Machine

Interface

Instructions

515

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

All

versions

are

represented

as

16

bit

values

mapped

as

follows.

Bits

0-3

Reserved

(binary

0)

Bits

4-7

Version

Bits

8-11

Release

Bits

12-15

Modification

324

144

Composite

machine

version

for

modules

UBin(2)

All

versions

are

represented

as

16

bit

values

mapped

as

follows.

Bits

0-3

Reserved

(binary

0)

Bits

4-7

Version

Bits

8-11

Release

Bits

12-15

Modification

326

146

Earliest

version

UBin(2)

All

versions

are

represented

as

16

bit

values

mapped

as

follows.

Bits

0-3

Reserved

(binary

0)

Bits

4-7

Version

Bits

8-11

Release

Bits

12-15

Modification

328

148

Creation

target

version

UBin(2)

All

versions

are

represented

as

16

bit

values

mapped

as

follows.

Bits

0-3

Reserved

(binary

0)

Bits

4-7

Version

Bits

8-11

Release

Bits

12-15

Modification

330

14A

Version

on

which

creation

occurred

UBin(2)

All

versions

are

represented

as

16

bit

values

mapped

as

follows.

Bits

0-3

Reserved

(binary

0)

Bits

4-7

Version

Bits

8-11

Release

Bits

12-15

Modification

332

14C

Bound

program

identifier

Char(1)

516

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Reserved

1

=

Bound

Program

2

=

Bound

Service

Program

3-255

=

Reserved

333

14D

Compression

status

Char(1)

333

14D

Executable

portion

Bit

0

0

=

Executable

portion

is

not

compressed

1

=

Executable

portion

is

compressed

333

14D

Observable

portion

Bit

1

0

=

Observable

portion

is

not

compressed

1

=

Observable

portion

is

compressed

If

the

compression

status

of

the

observable

portion

of

the

program

is

uncompressed,

it

is

not

a

guarantee

that

the

observable

portion

exists.

The

observable

portion

status

should

be

checked

to

ensure

that

the

observable

portion

exists

before

attempting

to

access

the

observable

portion

of

the

program.

333

14D

Reserved

(binary

0)

Bits

2-7

334

14E

Composite

low

optimization

level

UBin(2)

336

150

Composite

high

optimization

level

UBin(2)

338

152

Observable

portion

status

Char(1)

338

152

Extended

observability

storage

area

exists

Bit

0

0

=

Extended

observability

storage

area

does

not

exist

1

=

Extended

observability

storage

area

exists

Note

that

a

value

of

zero

in

this

field

just

means

that

no

observable

data

exists

separate

from

the

portion

that

is

encapsulated

in

the

executable

portion

of

the

program.

For

more

information

see

the

Observability

Provided

and

Encapsulated

Observability

Attributes

in

the

materialized

general

bound

program

information.

338

152

Program

creation

data

existence

Bit

1

0

=

The

program

creation

data

does

not

exist

1

=

The

program

creation

data

does

exist

338

152

Module

creation

data

existence

Bit

2

0

=

Some

or

all

of

the

module

creation

data

does

not

exist

1

=

All

of

the

module

creation

data

does

exist

338

152

Reserved

(binary

0)

Bits

3-7

Machine

Interface

Instructions

517

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

339

153

Program

application

profiling

attributes

Char(1)

339

153

Program

procedure

order

profiled

Bit

0

0

=

Program

is

not

procedure

order

profiled

1

=

Program

is

procedure

order

profiled

339

153

Program

basic

block

reordering

attempted

Bit

1

0

=

No

modules

bound

in

the

program

have

been

basic

block

reordered

1

=

Basic

block

reordering

was

attempted

for

one

or

more

of

the

modules

bound

in

the

program

339

153

Program

ready

for

application

profiling

collection

Bit

2

0

=

No

modules

bound

in

the

program

are

hooked

for

application

profiling

1

=

One

or

more

of

the

modules

bound

in

the

program

are

hooked

for

application

profiling

339

153

Reserved

(binary

0)

Bits

3-7

340

154

Number

of

modules

with

application

profiling

attributes

UBin(4)

344

158

Teraspace

attributes

Char(1)

344

158

Program

contains

teraspace

capable

modules

Bit

0

0

=

No

modules

bound

in

the

program

are

teraspace

capable

1

=

One

or

more

modules

bound

in

the

program

are

teraspace

capable

344

158

Program

entry

procedure

teraspace

capable

Bit

1

0

=

Program

entry

procedure

is

not

teraspace

capable

1

=

Program

entry

procedure

is

teraspace

capable

518

iSeries:

Machine

Interface

Instructions

APIs

344

158

All

modules

teraspace

capable

Bit

2

0

=

One

or

more

modules

in

the

bound

program

are

not

teraspace

capable

1

=

All

modules

in

the

bound

program

are

teraspace

capable

344

158

Program

automatic

and

static

storage

location

Bits

3-4

00

=

Automatic

and

static

storage

are

allocated

from

single

level

store

01

=

Automatic

and

static

storage

are

allocated

from

teraspace

10

=

Automatic

and

static

storage

are

allocated

from

either

single

level

store

or

teraspace,

depending

upon

the

activation

11

=

Reserved

344

158

Reserved

(binary

0)

Bits

5-7

345

159

Reserved

(binary

0)

Char(167)

512

200

—-

End

—-

Length

in

bytes

of

materialization

This

is

the

number

of

bytes

materialized.

For

the

general

bound

program

information

this

will

always

be

a

constant

512.

Number

of

secondary

associated

spaces

This

is

the

number

of

secondary

associated

spaces

currently

associated

with

the

object.

Activation

group

attributes

The

activation

group

attributes

specify

characteristics

of

the

activation

group

into

which

the

program

will

be

activated.

Target

activation

group

This

is

the

target

activation

group

value

specified

when

the

bound

program

or

bound

service

program

was

created.

Activation

group

name

This

is

the

activation

group

name

specified

when

the

bound

program

or

bound

service

program

was

created.

Coded

character

set

identifier

This

is

the

CCSID

value

of

the

bound

program

or

bound

service

program.

Composite

language

version

This

is

the

earliest

version

of

the

operating

system

on

which

the

languages

used

for

the

bound

modules

will

allow

the

bound

program

object

to

be

saved.

This

is

a

composite4

(page

539)

of

all

of

the

language

versions

of

the

modules

bound

into

this

program.

Composite

machine

version

for

modules

This

is

the

earliest

version

of

the

operating

system

on

which

all

of

the

modules

bound

into

the

program

can

be

re-created,

assuming

the

required

module

creation

templates

are

encapsulated

in

the

program.

Earliest

version

This

is

the

earliest

version

of

the

operating

system

for

which

the

machine

will

allow

the

bound

program

to

be

saved.

Creation

target

version

This

is

the

version

of

the

operating

system

for

which

the

bound

program

object

was

created.

Version

on

which

creation

occurred

This

is

the

version

of

the

operating

system

on

which

the

bound

program

object

was

created.

Bound

program

identifier

This

field

identifies

the

type

of

bound

program

being

materialized.

Machine

Interface

Instructions

519

Compression

status

This

field

identifies

whether

the

executable

or

the

observable

portions

of

the

bound

program

or

bound

service

program

are

compressed.

Composite

low

optimization

level

This

field

reflects

the

lowest

level

of

optimization

of

all

the

modules

bound

into

the

program.

Some

modules

of

the

program

may

have

a

higher

optimization

level

than

indicated

by

this

field.

Composite

high

optimization

level

This

field

reflects

the

highest

level

of

optimization

of

all

the

modules

bound

into

the

program.

Some

modules

of

the

program

may

have

a

lower

optimization

level

than

indicated

by

this

field.

Observable

portion

status

This

field

describes

the

status

of

the

observability

data

of

the

program.

It

includes

the

following

flag

fields

Extended

observability

storage

area

exists

This

field

specifies

whether

the

extended

storage

area

for

observability

data

exists

for

the

program.

It

is

an

indication

of

whether

or

not

any

observable

segments

exist

in

the

program.

Program

creation

data

existence

This

field

specifies

whether

the

program

creation

data

that

was

provided

when

the

program

was

created

still

exists

in

the

program.

Module

creation

data

existence

This

field

specifies

whether

all

of

the

module

creation

data

that

was

provided

when

the

modules

were

created

still

exists

in

the

program.

In

order

for

a

program

to

be

eligible

for

retranslation,

the

program

creation

data

existence

bit

must

be

set.

If

the

module

creation

data

existence

bit

is

also

set,

this

is

an

indication

that

the

program

has

the

required

observability

for

retranslation.

If

the

module

creation

data

existence

field

is

not

set,

the

observable

status

of

each

of

the

modules

can

be

found.

520

iSeries:

Machine

Interface

Instructions

APIs

Program

application

profiling

attributes

These

attributes

identify

application

profiling

attributes

of

the

program

object.

Program

procedure

order

profiled

This

attribute

indicates

whether

the

bound

program

was

created

with

a

procedure

order

list.

Packaging

order

of

the

procedures

can

affect

run

time

performance.

Program

basic

block

reordering

attempted

This

attribute

indicates

whether

the

bound

program

contains

any

modules

for

which

basic

block

reordering

was

attempted

(i.e.

application

profiling

data

that

was

collected

was

applied

to

one

or

more

modules

bound

into

this

program).

The

packaging

order

of

code

in

the

procedures

within

the

modules

can

affect

run

time

performance.

Program

ready

for

application

profiling

collection

This

attribute

indicates

whether

the

bound

program

contains

any

modules

that

are

hooked

for

application

profiling

collection

(i.e.

the

modules

contain

hooks

that

enable

data

to

be

collected

by

application

profiling).

Number

of

modules

with

application

profiling

attributes

This

is

the

number

of

modules

bound

into

the

program

that

are

either

hooked

for

application

profiling

data

collection

or

have

been

basic

block

reordered.

To

determine

to

which

attributes

this

number

applies,

use

the

program

ready

for

application

profiling

collection

and

the

program

basic

block

reordering

attempted

bits

of

the

program

application

profiling

attributes.

They

are

mutually

exclusive.

Machine

Interface

Instructions

521

Teraspace

attributes

These

attributes

identify

teraspace

attributes

of

the

program

object.

Program

contains

teraspace

capable

modules

This

attribute

indicates

whether

or

not

one

or

more

bound

modules

are

teraspace

capable.

If

so,

then

a

call

from

a

procedure

in

that

module

will

only

be

able

to

pass

a

teraspace

address

to

procedures

in

other

teraspace

capable

programs.

Program

entry

procedure

teraspace

capable

This

attribute

indicates

whether

or

not

the

program

entry

procedure

was

created

teraspace

capable.

If

so,

it

may

be

called

with

parameters

stored

in

teraspace

and

after

being

called

will

be

allowed

to

address

teraspace.

All

modules

teraspace

capable

This

attribute

indicates

whether

all

modules

in

the

bound

program

are

teraspace

capable.

If

so,

then

any

procedure

can

be

passed

a

teraspace

address

when

called.

Automatic

and

static

storage

location

This

attribute

identifies

where

the

automatic

and

static

storage

for

the

program

will

be

allocated

at

run

time.

If

the

attribute

has

a

value

of

single

level

store,

the

automatic

and

static

storage

will

be

allocated

from

single

level

store.

A

value

of

teraspace

means

the

automatic

and

static

storage

will

be

in

teraspace.

A

value

of

either

indicates

that

the

program

is

capable

of

running

in

single

level

store

and

teraspace,

and

the

activation

group

into

which

the

program

is

activated

will

determine

from

which

type

of

storage

the

automatic

and

static

storage

are

allocated.

Format

of

materialized

program

copyright

strings:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Length

in

bytes

of

materialization

UBin(4)

4

4

Version

of

copyright

creation

extension

UBin(4)

8

8

Number

of

copyright

statements

in

the

pool

UBin(4)

12

C

Reserved

Char(4)

16

10

Copyright

string

pool

Char(*)

*

*

—-

End

—-

Length

in

bytes

of

materialization

This

is

the

number

of

bytes

materialized.

Version

of

copyright

creation

extension

This

is

the

version

of

the

copyrights

when

the

module

was

created.

Number

of

copyright

strings

in

the

pool

This

is

the

number

of

copyright

strings

that

follow.

Copyright

statement

pool

This

is

the

data

for

all

of

the

copyright

strings.

Each

copyright

string

consists

of

a

4

byte

length

followed

by

the

text

of

the

string.

The

length

reflects

the

actual

length

of

the

copyright

string

and

does

not

include

the

length

of

the

length

field.

All

copyright

strings

along

with

their

lengths

are

placed

contiguously

in

the

buffer

with

no

intervening

padding.

522

iSeries:

Machine

Interface

Instructions

APIs

Format

of

the

materialized

bound

service

programs

information:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Length

in

bytes

of

materialization

UBin(4)

4

4

Number

of

service

programs

bound

to

this

program

UBin(4)

8

8

Reserved

(binary

0)

Char(8)

16

10

Array

of

bound

service

program

records

[*]

Char(48)

16

10

Bound

service

program

ID

Char(24)

16

10

Bound

service

program

context

object

type

C

17

11

Bound

service

program

context

object

subtype

C

18

12

Bound

service

program

context

name

C

28

1C

Bound

service

program

object

type

C

29

1D

Bound

service

program

object

subtype

C

30

1E

Bound

service

program

name

C

40

28

Referentially

bound

program

signature

Char(16)

56

38

Reserved

(binary

0)

Char(8)

*

*

—-

End

—-

Length

in

bytes

of

materialization

The

number

of

bytes

materialized.

This

will

be

16

+

(N

*

48)

where

N

is

the

number

of

bound

service

programs-

those

programs

that

contain

exports

that

resolve

imports

in

the

bound

program.

Number

of

service

programs

bound

to

this

program

This

is

the

number

of

bound

service

programs

bound

to

the

bound

program.

Machine

Interface

Instructions

523

Array

of

bound

service

program

records

This

array

contains

one

record

for

each

bound

service

program

bound

to

the

bound

program.

Each

record

contains

the

following

information

Bound

service

program

context

type

This

is

the

object

type

of

the

context

with

the

given

name.

Bound

service

program

context

subtype

This

is

the

object

subtype

of

the

context

with

the

given

name.

Bound

service

program

context

name

This

is

the

context

specified

during

program

creation

where

this

bound

service

program

was

found

when

the

bound

program

was

created.

This

value

could

be

set

with

all

hex

zeroes,

in

which

case

the

name

resolution

list

is

used

to

locate

the

given

bound

service

program.

The

context

name

or

name

resolution

list

is

searched

using

the

name

space

of

the

thread

in

which

the

activation

occurs

(See

the

RSLVSP

instruction

for

a

description

of

name

spaces.)

Bound

service

program

type

This

is

the

object

type

of

the

program

with

the

given

name.

Bound

service

program

subtype

This

is

the

object

subtype

of

the

program

with

the

given

name.

Bound

service

program

name

This

is

the

name

of

the

bound

service

program

specified

during

program

creation.

Bound

service

program

signature

This

is

the

signature

of

the

bound

service

program

that

was

used

to

match

against

the

current

signature

of

the

bound

program.

Format

of

the

materialized

bound

modules

information:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Length

in

bytes

of

materialization

UBin(4)

4

4

Number

of

modules

bound

into

this

program

UBin(4)

8

8

Reserved

(binary

0)

Char(8)

16

10

Array

of

bound

module

records

[*]

Char(80)

16

10

Bound

module

ID

Char(60)

524

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Module

qualifier

Char(30

46

2E

Module

name

Char(30

76

4C

Reserved

(binary

0)

Char(20)

*

*

—-

End

—-

Length

in

bytes

of

materialization

The

number

of

bytes

materialized.

This

will

be

16

+

(N

*

80)

where

N

is

the

number

of

modules

bound

into

the

bound

program.

Number

of

modules

bound

into

this

program

This

is

the

number

of

modules

bound

into

the

bound

program.

Array

of

bound

module

records

This

array

contains

one

record

for

each

module

bound

into

the

bound

program.

Each

record

contains

the

following

information

Module

qualifier

This

is

the

qualifier

specified

during

program

creation

where

this

module

was

found

when

the

bound

program

was

created.

The

module

qualifier

is

used

to

differentiate

between

two

different

modules

of

the

same

name.

This

usually

contains

a

context

name.

Module

name

This

is

the

name

of

the

module.

Format

of

the

materialized

bound

program

string

directory

component:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Length

in

bytes

of

materialization

UBin(4)

4

4

Reserved

(binary

0)

Char(12)

16

10

String

pool

Char(*)

16

10

Length

of

the

string

UBin(4)

20

14

CCSID

of

the

string

UBin(2)

22

16

String

Char(*)

*

*

—-

End

—-

Length

in

bytes

of

materialization

The

number

of

bytes

materialized.

This

will

be

16

+

the

length

of

the

string

pool.

String

pool

A

memory

area

containing

the

strings

defined

for

this

program.

It

can

be

of

any

length

addressable

by

a

UBin(4).

It

contains

a

series

of

strings

and

lengths.

String

IDs

specified

in

other

materialized

components

can

be

used

as

indexes

into

this

string

pool.

Length

of

string

The

length

of

the

next

string.

This

field

contains

the

length

of

the

string

only,

and

does

not

include

the

length

of

the

either

the

length

or

the

CCSID

field.

The

length

field

of

a

string

is

not

subject

to

alignment

considerations.

CCSID

of

string

The

character

code

set

identifier

of

this

string.

This

string

is

encoded

in

the

given

CCSID,

which

is

the

CCSID

of

the

module

object

from

which

this

string

is

originally

declared.

The

CCSID

field

of

a

string

is

not

subject

to

alignment

considerations.

String

Character

buffer

which

contains

one

string.

Its

length

is

defined

by

the

length

field.

Machine

Interface

Instructions

525

Format

of

the

materialized

bound

program

limits:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Length

in

bytes

of

materialization

UBin(4)

4

4

Reserved

(binary

0)

Char(12)

16

10

Current

size

of

bound

program

UBin(4)

20

14

Maximum

number

of

associated

spaces

UBin(4)

24

18

Current

number

of

associated

spaces

UBin(4)

28

1C

Maximum

number

of

modules

bindable

into

program

UBin(4)

32

20

Current

number

of

modules

bound

into

program

UBin(4)

36

24

Maximum

number

of

service

programs

bindable

to

program

UBin(4)

40

28

Current

number

of

service

programs

bound

to

program

UBin(4)

44

2C

Maximum

size

of

bound

program

string

directory

UBin(4)

48

30

Current

size

of

bound

program

string

directory

UBin(4)

52

34

Maximum

size

of

bound

program

copyright

strings

UBin(4)

56

38

Current

size

of

bound

program

copyright

strings

UBin(4)

60

3C

Maximum

number

of

auxiliary

storage

segments

UBin(4)

64

40

Current

number

of

auxiliary

storage

segments

UBin(4)

68

44

Maximum

number

of

static

storage

frames

UBin(4)

72

48

Current

number

of

static

storage

frames

UBin(4)

76

4C

Maximum

number

of

program

procedure

exports

UBin(4)

80

50

Current

number

of

program

procedure

exports

UBin(4)

84

54

Maximum

number

of

program

data

exports

UBin(4)

88

58

Current

number

of

program

data

exports

UBin(4)

92

5C

Maximum

number

of

signatures

UBin(4)

96

60

Current

number

of

signatures

UBin(4)

100

64

Minimum

amount

of

static

storage

required

UBin(4)

104

68

Maximum

amount

of

static

storage

required

UBin(4)

108

6C

Reserved

(binary

0)

Char(4)

112

70

Eight

byte

version

of

minimum

amount

of

static

storage

required

UBin(8)

120

78

Eight

byte

version

of

maximum

amount

of

static

storage

required

UBin(8)

128

80

Reserved

(binary

0)

Char(128)

256

100

—-

End

—-

Length

in

bytes

of

materialization

The

number

of

bytes

materialized.

This

will

always

be

a

constant

256.

Current

size

of

bound

program

This

is

the

current

size,

in

machine-dependent

units,

of

the

bound

program

being

materialized.

Maximum

number

of

associated

spaces

This

is

the

maximum

number

of

associated

spaces

allowed

for

the

bound

program

being

materialized.

Current

number

of

associated

spaces

This

is

the

current

number

of

associated

spaces

allocated

to

the

bound

program

being

materialized.

Maximum

number

of

modules

bindable

into

program

This

is

the

maximum

number

of

modules

that

can

be

bound

into

a

bound

program.

Current

number

of

modules

bound

into

program

This

is

the

current

number

of

modules

bound

into

the

bound

program

being

materialized.

Maximum

number

of

service

programs

bindable

to

program

This

is

the

maximum

number

of

bound

service

programs

that

can

be

bound

to

a

bound

program.

These

bound

service

programs

contain

exports

to

which

imports

from

a

bound

program

resolve.

526

iSeries:

Machine

Interface

Instructions

APIs

Current

number

of

service

programs

bound

to

program

This

is

the

current

number

of

bound

service

programs

bound

to

the

bound

program

being

materialized.

Maximum

size

of

bound

program

string

directory

This

is

the

maximum

size,

in

bytes,

of

the

bound

program

string

directory.

Current

size

of

bound

program

string

directory

This

is

the

current

size,

in

bytes,

of

the

bound

program

string

directory.

Maximum

size

of

bound

program

copyright

strings

This

is

the

maximum

size,

in

bytes,

of

the

bound

program

copyright

strings.

Current

size

of

bound

program

copyright

strings

This

is

the

current

size,

in

bytes,

of

the

bound

program

copyright

strings.

Maximum

number

of

auxiliary

storage

segments

This

is

the

maximum

number

of

auxiliary

storage

segments

allowed

for

a

bound

program.

Current

number

of

auxiliary

storage

segments

This

is

the

current

number

of

auxiliary

storage

segments

in

the

bound

program

being

materialized.

Maximum

number

of

static

storage

frames

This

is

the

maximum

number

of

static

storage

frames

allowed

for

a

bound

program.

Current

number

of

static

storage

frames

This

is

the

current

number

of

static

storage

frames

required

by

the

bound

program

being

materialized.

Maximum

number

of

procedure

exports

This

is

the

maximum

number

of

procedures

that

are

allowed

to

be

exported

from

a

bound

program.

If

the

bound

program

being

materialized

is

not

a

bound

service

program,

then

this

value

will

be

zero.

Current

number

of

procedure

exports

This

is

the

current

number

of

procedures

exported

from

the

bound

program

being

materialized.

If

the

bound

program

being

materialized

is

not

a

bound

service

program,

then

this

value

will

be

zero.

Maximum

number

of

data

exports

This

is

the

maximum

number

of

data

items

that

are

allowed

to

be

exported

from

a

bound

program.

If

the

bound

program

being

materialized

is

not

a

bound

service

program,

then

this

value

will

be

zero.

Current

number

of

data

exports

This

is

the

current

number

of

data

items

exported

from

the

bound

program

being

materialized.

If

the

bound

program

being

materialized

is

not

a

bound

service

program,

then

this

value

will

be

zero.

Maximum

number

of

signatures

This

is

the

maximum

number

of

signatures

allowed

for

a

bound

program.

If

the

bound

program

being

materialized

is

not

a

bound

service

program,

then

this

value

will

be

zero.

Current

number

of

signatures

This

is

the

current

number

of

signatures

contained

in

the

bound

program

being

materialized.

If

the

bound

program

being

materialized

is

not

a

bound

service

program,

then

this

value

will

be

zero.

Minimum

amount

of

static

storage

required.

This

is

the

smallest

amount

of

static

storage

that

is

required

for

the

bound

program

or

service

program.

This

measure

is

in

bytes.

The

actual

amount

of

static

storage

that

is

used

may

be

anywhere

between

the

minimum

and

the

maximum

amounts

of

required

static

storage,

inclusive.

If

the

size

is

4

gigabytes

(4,294,967,296)

or

more,

a

value

of

4,294,967,295

will

be

returned

in

the

field.

In

this

case,

the

eight

byte

version

of

minimum

amount

of

static

storage

required

field

should

be

used

to

get

the

size

in

bytes.

Maximum

amount

of

static

storage

required.

This

is

the

largest

amount

of

static

storage

that

may

be

required

for

the

bound

program

or

service

program.

This

measure

is

in

bytes.

The

actual

amount

of

static

storage

that

is

used

may

be

anywhere

between

the

minimum

and

the

maximum

amounts

of

required

static

storage,

inclusive.

If

the

size

is

4

gigabytes

(4,294,967,296)

or

more,

a

value

of

4,294,967,295

will

be

returned

in

the

field.

In

this

case,

the

eight

byte

version

of

maximum

amount

of

static

storage

required

field

should

be

used

to

get

the

size

in

bytes.

Eight

byte

version

of

minimum

amount

of

static

storage

required

This

is

the

smallest

amount

of

static

storage

that

is

required

for

the

bound

program

or

service

program.

This

measure

is

in

bytes.

The

actual

amount

of

static

storage

that

is

used

may

be

anywhere

between

the

minimum

and

the

maximum

amounts

of

required

static

storage,

inclusive.

Machine

Interface

Instructions

527

Eight

byte

version

of

maximum

amount

of

static

storage

required

This

is

the

largest

amount

of

static

storage

that

may

be

required

for

the

bound

program

or

service

program.

This

measure

is

in

bytes.

The

actual

amount

of

static

storage

that

is

used

may

be

anywhere

between

the

minimum

and

the

maximum

amounts

of

required

static

storage,

inclusive.

Format

of

the

materialized

activation

group

data

imports:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Length

in

bytes

of

materialization

UBin(4)

4

4

Number

of

activation

group

data

imports

UBin(4)

8

8

Reserved

(binary

0)

Char(8)

16

10

Array

of

activation

group

data

imports

[*]

Char(16)

16

10

String

ID

UBin(4)

20

14

Reserved

(binary

0)

Char(12)

*

*

—-

End

—-

Length

in

bytes

of

materialization

The

number

of

bytes

materialized.

This

will

be

(N+1)*16,

where

N

is

the

number

of

activation

group

data

imports

contained

in

the

bound

program

or

bound

service

program.

Number

of

activation

group

data

imports

The

number

of

activation

group

data

imports

contained

in

the

bound

program

or

bound

service

program.

Array

of

activation

group

data

imports

This

array

contains

one

record

for

each

data

item

contained

in

the

program

or

bound

service

program.

Each

record

contains

the

following

information:

String

ID

This

is

the

identification

used

to

extract

the

name

of

this

data

item

from

the

program

string

directory.

Format

of

the

materialized

activation

group

data

exports:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Length

in

bytes

of

materialization

UBin(4)

4

4

Number

of

activation

group

data

exports

UBin(4)

8

8

Reserved

(binary

0)

Char(8)

16

10

Array

of

activation

group

data

exports

[*]

Char(16)

16

10

String

ID

UBin(4)

20

14

Strength

of

data

item

Char(1)

0

=

Reserved

1

=

Export

Strongly

2

=

Export

Weakly

3-255

=

Reserved

21

15

Reserved

(binary

0)

Char(3)

24

18

Length

of

data

item

UBin(4)

28

1C

Reserved

(binary

0)

Char(4)

*

*

—-

End

—-

528

iSeries:

Machine

Interface

Instructions

APIs

Length

in

bytes

of

materialization

The

number

of

bytes

materialized.

This

will

be

(N+1)*16,

where

N

is

the

number

of

activation

group

data

exports

contained

in

the

bound

program

or

bound

service

program.

Number

of

activation

group

data

exports

The

number

of

activation

group

data

exports

contained

in

the

bound

program

or

bound

service

program.

Array

of

activation

group

data

exports

This

array

contains

one

record

for

each

data

item

contained

in

the

program

or

bound

service

program.

Each

record

contains

the

following

information:

String

ID

This

is

the

identification

used

to

extract

the

name

of

this

data

item

from

the

program

string

directory.

Strength

of

data

item

This

field

indicates

whether

the

activation

group

export

is

exported

strongly

or

weakly.

Length

of

data

item

The

size

in

bytes

of

the

activation

group

export.

Format

of

the

materialized

specific

bound

program

information:

Specific

bound

program

information

can

only

be

materialized

for

bound

programs,

and

not

for

bound

service

programs.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Length

in

bytes

of

materialization

UBin(4)

4

4

Reserved

(binary

0)

Char(12)

16

10

Program

entry

procedure

information

Char(16)

16

10

Module

number

containing

program

entry

procedure

UBin(4)

20

14

Program

entry

procedure

string

ID

UBin(4)

24

18

Minimum

parameters

UBin(2)

26

1A

Maximum

parameters

UBin(2)

28

1C

Reserved

(binary

0)

Char(4)

32

20

Reserved

(binary

0)

Char(32)

64

40

—-

End

—-

Length

in

bytes

of

materialization

The

number

of

bytes

materialized.

This

will

always

be

a

constant

64.

Module

number

containing

program

entry

procedure

This

is

the

number,

in

the

bound

modules

information,

of

the

module

which

contains

the

program

entry

procedure

for

this

bound

program.

Program

entry

procedure

string

ID

This

is

the

string

ID

for

the

name

of

this

program

entry

procedure.

Minimum

parameters

This

is

the

minimum

number

of

parameters

that

the

program

entry

procedure

can

accept.

Maximum

parameters

This

is

the

maximum

number

of

parameters

that

the

program

entry

procedure

can

accept.

Format

of

the

materialized

signatures

information:

Signatures

information

can

only

be

materialized

for

bound

service

programs,

and

not

for

bound

programs.

Machine

Interface

Instructions

529

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Length

in

bytes

of

materialization

UBin(4)

4

4

Number

of

signatures

contained

in

the

program

UBin(4)

8

8

Reserved

(binary

0)

Char(8)

16

10

Array

of

signatures

[*]

Char(16)

16

10

Signature

Char(16)

*

*

—-

End

—-

Length

in

bytes

of

materialization

The

number

of

bytes

materialized.

This

will

be

(N+1)*16,

where

N

is

the

number

of

signatures

contained

in

the

program.

Number

of

signatures

contained

in

the

program

This

is

the

number

of

signatures

contained

in

the

program.

Array

of

signatures

This

array

contains

one

record

for

each

signature

contained

in

the

program.

Each

record

contains

the

following

information.

The

first

record

contains

the

current

signature.

Signature

A

signature

of

the

service

program.

Format

of

the

materialized

exported

program

procedure

information:

Exported

program

procedure

information

can

only

be

materialized

for

bound

service

programs,

and

not

for

bound

programs.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Length

in

bytes

of

materialization

UBin(4)

4

4

Number

of

exported

procedures

UBin(4)

8

8

Reserved

(binary

0)

Char(8)

16

10

Array

of

program

exports

[*]

Char(16)

16

10

String

ID

for

procedure

export

UBin(4)

20

14

Export

number

UBin(4)

24

18

Procedure

parameter

mask

Char(2)

26

1A

Reserved

(binary

0)

Char(6)

*

*

—-

End

—-

Length

in

bytes

of

materialization

The

number

of

bytes

materialized.

This

will

be

(N+1)*16,

where

N

is

the

number

of

exported

procedures.

Number

of

exported

procedures

This

is

the

number

of

procedures

exported

from

the

service

program.

530

iSeries:

Machine

Interface

Instructions

APIs

Array

of

program

exports

This

array

contains

one

record

for

each

procedure

exported

from

the

service

program.

Each

record

contains

the

following

information:

String

ID

for

procedure

export

This

is

the

identification

used

to

extract

the

name

of

this

exported

procedure

from

the

program

string

directory.

Export

number

This

is

the

number

of

this

exported

procedure.

Procedure

parameter

mask

The

procedure

parameter

mask

indicates

the

parameter

characteristics

of

the

procedure.

The

procedure

parameter

mask

will

be

binary

zero

if

the

program

using

this

instruction

is

executing

in

user-state.

Format

of

the

materialized

exported

program

data

information:

Exported

program

data

information

can

only

be

materialized

for

bound

service

programs,

and

not

for

bound

programs.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Length

in

bytes

of

materialization

UBin(4)

4

4

Number

of

exported

data

items

UBin(4)

8

8

Reserved

(binary

0)

Char(8)

16

10

Array

of

data

exports

[*]

Char(16)

16

10

String

ID

for

data

export

UBin(4)

20

14

Export

number

UBin(4)

24

18

Data

item

size

UBin(4)

28

1C

Reserved

(binary

0)

Char(4)

*

*

—-

End

—-

Length

in

bytes

of

materialization

The

number

of

bytes

materialized.

This

will

be

(N+1)*16,

where

N

is

the

number

of

exported

data

items.

Number

of

exported

data

items

This

is

the

number

of

data

items

exported

from

the

service

program.

Machine

Interface

Instructions

531

Array

of

data

exports

This

array

contains

one

record

for

each

data

item

exported

from

the

service

program.

Each

record

contains

the

following

information:

String

ID

for

data

export

This

is

the

identification

used

to

extract

the

name

of

this

exported

data

item

from

the

program

string

directory.

Export

number

This

is

the

number

of

this

exported

data

item.

Data

item

size

This

is

the

size

in

bytes

of

the

exported

data

item

Format

of

materialized

general

module

information:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Length

in

bytes

of

materialization

UBin(4)

4

4

Reserved

Char(12)

16

10

Reserved

Char(276)

Note:

Reserved

for

IBM

Internal

Use

Only.

If

used,

unpredictable

results

may

occur.

292

124

Coded

character

set

identifier

UBin(2)

294

126

Data

required

for

machine

retranslation

Char(1)

294

126

All

data

required

for

machine

retranslation

is

present

Bit

0

0

=

No

1

=

Yes

294

126

Reserved

(binary

0)

Bits

1-7

295

127

Reserved

Char(9)

304

130

Creation

target

version

Char(2)

All

versions

are

represented

as

16

bit

values

mapped

as

follows.

Bits

0-3

Reserved

(0)

Bits

4-7

Version

Bits

8-11

Release

Bits

12-15

Modification

306

132

Language

version

Char(2)

532

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

All

versions

are

represented

as

16

bit

values

mapped

as

follows.

Bits

0-3

Reserved

(0)

Bits

4-7

Version

Bits

8-11

Release

Bits

12-15

Modification

308

134

Version

on

which

creation

occurred

Char(2)

All

versions

are

represented

as

16

bit

values

mapped

as

follows.

Bits

0-3

Reserved

(0)

Bits

4-7

Version

Bits

8-11

Release

Bits

12-15

Modification

310

136

Earliest

version

Char(2)

All

versions

are

represented

as

16

bit

values

mapped

as

follows.

Bits

0-3

Reserved

(0)

Bits

4-7

Version

Bits

8-11

Release

Bits

12-15

Modification

312

138

Reserved

Char(16)

328

148

Number

of

secondary

associated

spaces

UBin(4)

332

14C

Reserved

Char(16)

348

15C

Reserved

Char(2)

Note:

Reserved

for

IBM

Internal

Use

Only.

If

used,

unpredictable

results

may

occur.

350

15E

Module

state

UBin(2)

Hex

0001

=

User

state

Hex

8000

=

System

state

Hex

0000

=

Inherit

state

352

160

Compiler

name

Char(20)

372

174

Program

entry

procedure

Char(16)

372

174

Program

entry

procedure

attributes

Char(4)

372

174

Program

entry

procedure

exists

Bit

0

0

=

Program

entry

procedure

does

not

exist

in

this

module

1

=

Program

entry

procedure

exists

in

this

module

372

174

Reserved

(binary

0)

Bits

1-31

376

178

Program

entry

procedure

dictionary

ID

UBin(4)

Machine

Interface

Instructions

533

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

380

17C

Program

entry

procedure

string

ID

UBin(4)

384

180

Program

entry

procedure

minimum

parms

UBin(2)

386

182

Program

entry

procedure

maximum

parms

UBin(2)

388

184

Module

application

profiling

attributes

Char(1)

388

184

Hooks

for

application

profiling

are

present

Bit

0

0

=

Hooks

are

not

present

1

=

Hooks

are

present

388

184

Basic

block

reordering

attempted

Bit

1

0

=

Basic

block

reordering

on

the

procedures

in

this

module

has

not

been

attempted.

1

=

Basic

block

reordering

on

the

procedures

in

this

module

has

been

attempted.

The

procedure

basic

block

attributes

under

the

procedure

definitions

further

identifies

which

procedures

have

been

basic

block

reordered.

388

184

Reserved

(binary

0)

Bits

2-7

389

185

Module

teraspace

attributes

Char(1)

389

185

Module

teraspace

capable

Bit

0

0

=

Module

is

not

teraspace

capable

1

=

Module

is

teraspace

capable

389

185

Module

automatic

and

static

storage

location

Bits

1-2

00

=

Automatic

and

static

storage

are

allocated

from

single

level

store

01

=

Automatic

and

static

storage

are

allocated

from

teraspace

10

=

Automatic

and

static

storage

are

allocated

from

either

single

level

store

or

teraspace,

depending

upon

the

activation

group

into

which

the

program

is

activated.

11

=

Reserved

389

185

Reserved

(binary

0)

Bits

3-7

390

186

Reserved

Char(122)

512

200

—-

End

—-

Length

in

bytes

of

materialization

This

is

the

number

of

bytes

materialized.

For

the

general

module

information

this

will

always

be

a

constant

512.

Coded

character

set

identifier

The

CCSID

defines

the

code

page

of

the

symbols

in

the

string

directory.

Creation

target

version

This

is

the

version

of

the

operating

system

for

which

the

module

object

was

created.

Data

required

for

machine

retranslation

This

indicates

whether

the

data

required

for

machine

retranslation

is

present.

This

data

can

be

present

even

if

the

encapsulated

observability

attributes

indicated

the

component

is

not

present.

Language

version

This

is

the

earliest

version

of

the

operating

system

on

which

language

used

will

allow

the

module

object

to

be

saved.

534

iSeries:

Machine

Interface

Instructions

APIs

Version

on

which

creation

occurred

This

is

the

version

of

the

operating

system

that

was

running

on

the

system

where

the

module

object

was

created.

Earliest

version

This

is

the

earliest

version

of

the

operating

system

for

which

the

machine

will

allow

the

module

object

to

be

saved.

Number

of

secondary

associated

spaces

This

is

the

number

of

secondary

associated

spaces

currently

associated

with

the

object.

Module

state

This

is

the

state

of

the

module

object.

Compiler

name

This

identifies

the

compiler

which

translated

the

user’s

source

language.

Program

entry

procedure

This

identifies

the

program

entry

procedure

if

one

is

present

in

the

module.

Program

entry

procedure

attributes

This

bit

mapped

field

identifies

attributes

of

the

program

entry

procedure.

The

program

entry

procedure

existence

field

specifies

whether

a

program

entry

procedure

is

present

in

the

module

being

materialized.

Program

entry

procedure

dictionary

ID

The

dictionary

ID

is

used

as

a

handle

to

uniquely

identify

the

procedure.

Program

entry

procedure

string

ID

The

string

ID

may

be

used

to

extract

the

character

string

which

is

the

procedure

name

from

the

string

pool.

Program

entry

procedure

minimum

parms

This

is

the

minimum

number

of

parameters

allowed

by

the

program

entry

procedure.

Program

entry

procedure

maximum

parms

This

is

the

maximum

number

of

parameters

allowed

by

the

program

entry

procedure.

Module

application

profiling

attributes

This

bit

mapped

field

identifies

the

application

profiling

attributes

of

the

module.

The

hooks

for

application

profiling

are

present

field

specifies

whether

the

module

is

ready

for

application

profiling

data

collection

when

it

is

bound

into

a

program.

The

basic

block

reordering

attempted

field

specifies

whether

reordering

of

the

basic

blocks

within

the

procedures

of

this

module

has

been

attempted.

To

determine

which

procedures

have

basic

blocks

reordered

see

the

procedure

basic

block

attributes

under

the

procedure

definitions.

Machine

Interface

Instructions

535

Module

teraspace

attributes

This

bit

mapped

field

identifies

the

teraspace

attributes

of

the

module.

The

module

teraspace

capable

field

specifies

whether

or

not

the

module

is

allowed

to

use

teraspace

at

run

time.

The

module

automatic

and

static

storage

location

field

indicates

where

the

automatic

and

static

storage

for

this

module

will

be

allocated

at

run

time,

when

the

module

is

bound

into

a

program.

The

possible

values

are

single

level

store,

teraspace,

or

either

single

level

store

or

teraspace,

depending

upon

the

activation

group

into

which

the

program

is

activated.

Format

of

the

materialized

module

string

directory

component:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Length

in

bytes

of

materialization

UBin(4)

4

4

Reserved

(binary

0)

Char(12)

16

10

String

pool

Char(*)

16

10

Length

of

the

string

UBin(4)

20

14

String

Char(*)

*

*

—-

End

—-

Length

in

bytes

of

materialization

The

number

of

bytes

materialized.

This

will

be

16

+

the

length

of

the

string

pool.

String

pool

A

memory

area

containing

the

strings

defined

for

this

module.

It

can

be

of

any

length

addressable

by

a

UBin(4).

It

contains

a

series

of

strings

and

lengths.

String

IDs

specified

in

other

materialized

components

can

be

used

as

indexes

into

this

string

pool.

Length

of

string

The

length

of

the

next

string.

This

field

contains

the

length

of

the

string

only,

and

does

not

include

the

length

of

the

length

field,

itself.

The

length

field

of

a

string

is

not

subject

to

alignment

considerations.

String

Character

buffer

which

contains

one

string.

Its

length

is

defined

by

the

length

field.

Format

of

the

materialized

module

copyright

strings:

The

format

of

the

materialized

module

copyright

strings

is

the

same

as

for

the

materialized

program

copyright

strings.

Template

Value

Invalid

exception

reason

codes:

This

instruction

supports

setting

of

the

optional

reason

code

field

in

the

exception

data

which

can

be

retrieved

when

the

template

value

invalid

exception

is

signaled.

When

the

first

byte

of

the

reason

code

is

not

zero,

the

exception

is

being

signaled

because

one

of

the

materialization

receivers

is

not

valid.

00

Bound

Program

Materialization

Template

(pointed

to

by

operand

1

of

this

instruction)

01

Size

of

template

is

not

sufficient

to

hold

number

of

requests

specified.

536

iSeries:

Machine

Interface

Instructions

APIs

0n

nth

materialization

request

is

not

valid.

01

The

receiver

is

not

aligned

on

a

16

byte

boundary.

02

The

materialization

request

bytes

provided

is

less

than

8.

03

The

materialization

request

contains

no

materialization

options

or

invalid

materialization

options.

If

the

length

of

field

data

is

8,

then

no

materialization

options

were

specified

and

the

offset

in

field

in

bits

data

will

be

0.

Otherwise,

an

invalid

option

was

specified

and

the

provided

offset

to

field

in

bytes

and

offset

in

field

in

bits

data

will

identify

the

invalid

materialization

option.

04

The

materialization

request

contains

a

module

materialization

number

that

is

greater

than

the

number

of

modules

bound

into

the

program.

05

The

materialization

request

contains

a

non-zero

module

materialization

number,

but

no

module

materialization

options.

06

The

materialization

request

contains

a

non-zero

reserved

field.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Retrieve

–

–

Operand

2
v

Execute

–

–

Contexts

referenced

for

address

resolution

–

Bound

service

programs

required

to

activate

the

program

referenced

by

operand

2

Lock

Enforcement

v

v

Materialize

–

–

Operand

2

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0607

Unsupported

Space

Use

08

Argument/Parameter

Machine

Interface

Instructions

537

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2204

Object

Not

Eligible

for

Operation

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220A

Program

Not

Eligible

for

Operation

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

538

iSeries:

Machine

Interface

Instructions

APIs

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

3802

Template

Size

Invalid

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Footnotes:

1

Referential

extensions

are

data

streams

that

are

not

included

in

the

creation

templates,

but

are

pointed

to

by

a

space

pointer

in

the

template.

This

also

includes

the

module

creation

template

extension.

2

The

items

that

fall

into

this

category

are

general

bound

program

information,

bound

program

limits,

specific

bound

program

information,

specific

bound

service

program

information,

general

module

information,

bound

program

string

directory

component,

module

string

directory

component

and

module

copyright

strings.

3

The

items

which

fall

into

this

category

are

bound

service

programs

information,

bound

modules

information,

signatures

information,

program

copyright

strings,

exported

program

procedure

information,

activation

group

data

imports,

activation

group

data

exports,

and

exported

program

data

information.

4

A

composite

version

is

defined

to

be

the

latest

version,

in

time,

of

all

of

the

versions

comprising

the

composite.

Given

back-level

compatibility,

this

would

be

the

earliest

version

of

the

operating

system

on

which

all

of

the

comprising

versions

would

be

compatible.

Materialize

Context

(MATCTX)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

0133

Receiver

Context

Materialization

options

Operand

1:

Space

pointer.

Operand

2:

System

pointer

or

null.

Machine

Interface

Instructions

539

Operand

3:

Character

scalar.

Bound

program

access

Built-in

number

for

MATCTX

is

57.

MATCTX

(

receiver

:

address

context

:

address

of

system

pointer

OR

null

operand

materialization_options

:

address

)

Description:

Based

on

the

contents

of

the

materialization

options

specified

by

operand

3,

the

symbolic

identification

and/or

system

pointers

to

all,

or

a

selected

set,

of

the

objects

addressed

by

the

context

specified

by

operand

2

are

materialized

into

the

receiver

specified

by

operand

1.

If

operand

2

is

a

null

operand

and

the

machine

context

selection

field

is

zero,

then

the

machine

context

for

the

system

ASP

is

materialized.

If

operand

2

is

a

null

operand

and

the

machine

context

selection

field

is

one,

then

the

independent

ASP

machine

context

for

the

independent

ASP

number

specified

is

materialized.

Usage

note:

To

get

a

list

of

every

context

on

a

system,

first

use

the

MATRMD

instruction

to

retrieve

a

list

of

every

independent

ASP

(and

the

system

ASP)

on

the

system,

using

selection

option

hex

1F.

For

every

independent

ASP

in

the

list,

the

field

independent

ASP

will

be

set

to

binary

1.

For

each

independent

ASP

(and

the

system

ASP),

the

ASP

number

will

be

materialized.

Each

of

the

machine

contexts

can

then

be

materialized

using

the

MATCTX

instruction.

For

each

call

to

this

instruction,

the

independent

ASP

number

should

be

set

to

one

of

the

ASP

number

values

materialized

from

MATRMD.

The

machine

context

selection

field

should

be

set

to

binary

1,

the

object

ID

selection

field

should

be

set

to

hex

1,

and

the

type

code

should

be

set

to

hex

04.

The

materialization

options

operand

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

control

Char(2)

0

0

Information

requirements

(1

=

materialize)

0

0

Reserved

(binary

0)

0

0

Extended

context

attributes

0

0

Validation

0

=

Validate

system

pointers

1

=

No

validation

0

0

System

pointers

0

0

Symbolic

identification

1

1

Selection

criteria

1

1

Reserved

(binary

0)

1

1

Materialize

hidden

contexts

0

=

Do

not

materialize

hidden

contexts

within

the

op

1

=

Materialize

all

contexts

including

hidden

contexts

1

1

Machine

context

selection

0

=

Materialize

the

system

machine

context.

1

=

Materialize

the

independent

ASP

machine

context

1

1

Modification

date/time

selection

540

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Do

not

select

by

modification

date/time

1

=

Select

by

modification

date/time

1

1

Object

ID

selection

Hex

0

=

All

entries

Hex

1

=

Type

code

selection

Hex

2

=

Type

code/subtype

code

selection

Hex

4

=

Name

selection

Hex

5

=

Type

code/name

selection

Hex

6

=

Type

code/subtype

code/name

selection

Hex

E

=

Context

entries

collating

at

and

above

the

spec

2

2

Length

of

name

to

be

used

for

search

argument

Bin(2)

4

4

Type

code

Char(1)

5

5

Subtype

code

Char(1)

6

6

Name

Char(30)

36

24

Timestamp

Char(8)

44

2C

Independent

ASP

number

Char(2)

46

2E

—-

End

—-

The

materialization

control

information

requirements

field

in

the

materialization

options

operand

specifies

the

information

to

be

materialized

for

each

selected

entry.

Symbolic

identification

and

system

pointers

identifying

objects

addressed

by

the

context

can

be

materialized

based

on

the

bit

setting

of

this

field.

If

the

information

requirements

field

is

binary

0,

the

context

attributes

are

materialized

with

no

context

entries.

In

this

case,

the

modification

date/time

selection

and

object

ID

selection

fields

are

ignored.

If

the

information

requirements

field

is

set

to

just

return

the

extended

context

attributes,

the

context

attributes

and

extended

attributes

are

materialized

with

no

context

entries.

In

this

case,

the

modification

date/time

selection

and

object

ID

selection

fields

are

ignored.

If

the

system

pointers

field

is

set

to

binary

1,

then

the

system

pointers

to

objects

in

the

context

are

returned

in

the

object

pointer

field.

If

the

symbolic

identification

field

is

set

to

binary

1,

then

the

information

in

the

object

identification

field

is

materialized

for

objects

in

the

context.

If

the

validation

attribute

indicates

no

validation

is

to

be

performed,

no

object

validation

occurs

and

a

significant

performance

improvement

results.

When

no

validation

occurs,

some

of

the

following

pointers

may

be

erroneous:

v

v

Pointers

to

destroyed

objects

v

Pointers

to

objects

that

are

no

longer

in

the

context

v

Multiple

pointers

to

the

same

object

Machine

Interface

Instructions

541

If

the

materialize

hidden

contexts

field

is

binary

1,

then

hidden

contexts

are

materialized

into

the

receiver

(in

addition

to

non-hidden

contexts

and

other

object

types).

A

hidden

context

is

denoted

by

the

hidden

attribute

of

a

context.

Since

contexts

can

only

be

contained

in

a

machine

context,

the

materialize

hidden

contexts

option

is

only

useful

when

a

machine

context

is

being

materialized.

This

option

can

only

be

specified

when

the

thread

is

in

system

state.

Otherwise

a

template

value

invalid

(hex

3801)

exception

will

be

signalled.

The

materialization

control

modification

date/time

selection

and

object

ID

selection

fields

specify

the

context

entries

from

which

information

is

to

be

presented.

The

type

code,

subtype

code,

and

name

fields

contain

the

selection

criteria

when

a

selective

materialization

is

specified.

When

type

code

or

type/subtype

codes

are

part

of

the

selection

criteria,

only

entries

that

have

the

specified

codes

are

considered.

When

a

name

is

specified

as

part

of

the

selection

criteria,

the

N

characters

in

the

search

criteria

are

compared

against

the

N

characters

of

the

context

entry,

where

N

is

defined

by

the

length

of

name

to

be

used

for

search

argument

field

in

the

materialization

options.

The

remaining

characters

(if

any)

in

the

context

entry

are

not

used

in

the

comparison.

If

modification

date/time

selection

is

0

and

object

ID

selection

is

0

and

the

number

of

bytes

provided

in

the

receiver

does

not

allow

for

materialization

of

at

least

one

context

entry,

requests

that

as

much

of

the

context

attributes

as

will

fit

be

materialized

into

the

receiver

and

that

an

estimate

of

the

byte

size

correlating

to

the

full

list

of

context

entries

currently

in

the

context

be

set

into

the

number

of

bytes

available

for

materialization

field

of

the

receiver.

This

capability

of

requesting

an

estimate

of

the

size

of

a

full

materialization

of

the

context

provides

a

low

overhead

way

of

getting

a

close

approximation

of

the

amount

of

space

that

will

be

needed

for

an

actual

materialize

of

all

context

entries.

This

approximation

may

be

either

high

or

low

by

a

few

entries

due

to

abnormal

system

terminations.

If

the

number

of

bytes

provided

in

the

receiver

allows

for

materialization

of

at

least

one

context

entry,

the

number

of

bytes

available

for

materialization

field

is

set

with

the

byte

size

correlating

to

the

full

list

of

context

entries

that

matched

the

selection

criteria

whether

or

not

the

receiver

provided

enough

room

for

the

full

list

to

be

materialized.

If

object

ID

selection

has

a

value

from

hex

1

through

hex

6,

as

many

context

entries

as

will

fit

which

match

the

associated

type

code/subtype

code/name

criteria

are

materialized

into

the

receiver.

Object

ID

selection

value

hex

E

requests

that

as

many

context

entries

as

will

fit

which

collate

at

or

higher

(are

equal

to

or

greater)

than

the

specified

type

code/subtype

code/name

criteria

be

materialized

into

the

receiver.

When

operand

2

is

a

null

operand,

the

machine

context

selection

field

is

used

to

select

which

machine

context

to

materialize.

If

0

is

specified

for

the

machine

context

selection

field,

the

system

machine

context

is

materialized.

If

1

is

specified

for

the

machine

context

selection

field,

the

independent

ASP

machine

context

specified

by

the

independent

ASP

number

field

is

materialized.

If

the

value

specified

for

the

independent

ASP

number

is

not

valid

then

a

template

value

invalid

(hex

3801)

exception

is

signaled.

If

the

associated

independent

ASP

for

the

independent

ASP

number

is

not

varied

on,

then

a

object

not

available

(hex

220B)

exception

is

signaled.

If

operand

2

is

not

a

null

operand,

then

both

the

machine

context

selection

field

and

the

independent

ASP

number

field

must

be

zero

else

a

template

value

invalid

(hex

3801)

exception

is

signaled.

If

modification

date/time

selection

is

specified,

then

entries

are

selected

according

to

the

time

of

last

modification

in

addition

to

any

object

identification

selection

specified.

The

timestamp

in

the

materialization

control

is

used

to

determine

which

entries

will

be

selected.

Entries

with

modification

timestamps

greater

than

or

equal

to

the

timestamp

specified

in

the

control

will

be

selected.

Besides

the

additional

selection

done

as

above,

the

materialize

will

work

the

same

as

specified

in

the

other

controls.

Programming

note:

If

the

specified

timestamp

is

for

a

date/time

earlier

than

the

date/time

currently

associated

with

the

changed

object

list,

all

objects

in

the

context

will

be

inspected

for

their

modification

date.

This

may

degrade

system

performance.

542

iSeries:

Machine

Interface

Instructions

APIs

The

format

of

the

materialization

(operand

1)

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Context

identification

Char(32)

8

8

Object

type

Char(1)

9

9

Object

subtype

Char(1)

10

A

Object

name

Char(30)

40

28

Context

options

Char(4)

40

28

Existence

attributes

Bit

0

0

=

Temporary

1

=

Permanent

40

28

Space

attribute

Bit

1

0

=

Fixed-length

1

=

Variable-length

40

28

Reserved

(binary

0)

Bit

2

40

28

Access

group

Bit

3

0

=

Not

a

member

of

access

group

1

=

Member

of

access

group

40

28

Reserved

(binary

0)

Bits

4-31

44

2C

Recovery

options

Char(4)

44

2C

Automatic

damaged

context

rebuild

option

Bit

0

0

=

Do

not

rebuild

at

IMPL

1

=

Rebuild

at

IMPL

44

2C

Reserved

(binary

0)

Bits

1-31

48

30

Size

of

space

Bin(4)

52

34

Initial

value

of

space

Char(1)

53

35

Performance

class

Char(4)

53

35

Space

alignment

Bit

0

0

=

The

space

associated

with

the

object

is

allocated

to

allow

proper

alignment

of

pointers

at

16-byte

alignments

within

the

space.

1

=

The

space

associated

with

the

object

is

allocated

to

allow

proper

alignment

of

pointers

at

16-byte

alignments

within

the

space

as

well

as

to

allow

proper

alignment

of

input/output

buffers

at

512-byte

alignments

within

the

space.
Ignore

the

value

of

this

field

when

the

machine

chooses

space

alignment

field

has

a

value

of

1.

53

35

Reserved

(binary

0)

Bits

1-2

53

35

Machine

chooses

space

alignment

Bit

3

Machine

Interface

Instructions

543

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

The

space

alignment

indicated

by

the

space

alignment

field

is

in

effect.

1

=

The

machine

chose

the

space

alignment

most

beneficial

to

performance,

which

may

have

reduced

maximum

space

capacity.

The

alignment

chosen

is

a

multiple

of

512.

Ignore

the

value

of

the

space

alignment

field.

53

35

Reserved

(binary

0)

Bit

4

53

35

Main

storage

pool

selection

Bit

5

0

=

Process

default

main

storage

pool

is

used

for

object.

1

=

Machine

default

main

storage

pool

is

used

for

object.

53

35

Reserved

(binary

0)

Bit

6

53

35

Block

transfer

on

implicit

access

state

modification

Bit

7

0

=

Transfer

the

minimum

storage

transfer

size

for

this

object.

1

=

Transfer

the

machine

default

storage

transfer

size

for

this

object.

53

35

Reserved

(binary

0)

Bits

8-31

57

39

Reserved

(binary

0)

Char(7)

64

40

Reserved

(binary

0)

Char(16)

80

50

Access

group

System

pointer

96

60

Extended

context

attributes

(if

requested)

Char(1)

96

60

Changed

object

list

Bit

0

0

=

A

changed

object

list

does

not

exist

1

=

A

changed

object

list

does

exist

96

60

Useable

changed

object

list

Bit

1

0

=

Changed

object

list

is

in

a

useable

state

1

=

Changed

object

list

is

not

in

a

useable

state

96

60

Protected

Bit

2

0

=

The

context

is

not

protected

from

changes

1

=

The

context

is

protected

from

changes

96

60

Hidden

Bit

3

0

=

The

context

is

visible

1

=

The

context

is

hidden

96

60

Reserved

(binary

0)

Bits

4-7

97

61

Reserved

(binary

0)

Char(7)

104

68

Current

timestamp

Char(8)

112

70

Context

entry

[*]

Char(16-48)

(repeated

for

each

selected

entry)

112

70

Object

identification

(if

requested)

Char(32)

544

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

112

70

Type

code

Char(1)

113

71

Subtype

code

Char(1)

114

72

Name

Char(30

144

90

Object

pointer

(if

requested)

System

pointer

*

*

—-

End

—-

The

first

4

bytes

of

the

materialization

output

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

instruction

materializes

as

many

bytes

and

pointers

as

can

be

contained

in

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested

for

materialization,

the

excess

bytes

are

unchanged.

No

exceptions

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization,

other

than

the

materialization

length

invalid

(hex

3803)

exception

described

above.

When

the

protected

attribute

is

set

to

binary

1,

any

attempt

to

insert

an

entry

into

the

context

or

to

change

an

entry

in

the

context

signals

a

cannot

change

contents

of

protected

context

(hex

4403)

exception.

Deleting

an

entry

from

the

context

will

not

cause

this

exception

to

be

signaled.

The

hidden

attribute

determines

whether

or

not

this

context

is

addressable.

If

a

context

is

hidden,

it

affects

the

way

the

RSLVSP

and

MATCTX

instructions

behave.

RSLVSP

will

not

address

hidden

contexts.

When

MATCTX

is

used

to

materialize

a

machine

context,

hidden

contexts

in

that

machine

context

will

only

be

materialized

when

the

materialize

hidden

contexts

option

is

set

to

binary

1.

The

context

entry

object

identification

information,

if

requested

by

the

materialization

options

field,

is

present

for

each

entry

in

the

context

that

satisfies

the

search

criteria.

If

both

system

pointers

and

symbolic

identification

are

requested

by

the

materialization

options

field,

the

system

pointer

immediately

follows

the

object

identification

for

each

entry.

The

order

of

the

materialization

of

a

context

is

by

object

type

code,

object

subtype

code,

and

object

name,

all

in

ascending

sequence.

Authorization

Required

v

v

Retrieve

–

–

Operand

2

–

Device

description

for

the

specified

Independent

ASP

number

(when

the

field

Machine

context

selection

is

set

to

binary

1).

Lock

Enforcement

v

v

Materialization

–

–

Operand

2

Exceptions

06

Addressing

0601

Space

Addressing

Violation

Machine

Interface

Instructions

545

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1002

Machine

Context

Damage

State

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

546

iSeries:

Machine

Interface

Instructions

APIs

2C

Program

Execution

2C07

Instruction

Termination

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Data

Space

Record

Locks

(MATDRECL)

Op

Code

(Hex)

Operand

1

Operand

2

032E

Receiver

Record

selection

template

Operand

1:

Space

pointer.

Operand

2:

Space

pointer.

Bound

program

access

Built-in

number

for

MATDRECL

is

49.

MATDRECL

(

receiver

:

address

record_selection_template

:

address

)

Description:

The

locks

currently

allocated

on

the

specified

data

space

record

are

materialized.

The

current

lock

status

of

the

data

space

record

identified

by

the

template

in

operand

2

is

materialized

into

the

space

identified

by

operand

1.

Machine

Interface

Instructions

547

The

record

selection

template

identified

by

operand

2

must

be

16-byte

aligned.

The

format

of

the

record

selection

template

is

as

follows.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Record

selection

Char(24)

0

0

Data

space

identification

System

pointer

16

10

Record

number

UBin(4)

20

14

Reserved

Char(4)

24

18

Lock

selection

Char(1)

24

18

Materialize

data

space

locks

held

Bit

0

0

=

Do

not

materialize

1

=

Materialize

24

18

Materialize

data

space

locks

waited

for

Bit

1

0

=

Do

not

materialize

1

=

Materialize

24

18

Reserved

Bits

2-7

25

19

Template

options

Char(1)

25

19

Format

for

number

of

locks

Bit

0

1

=

Use

Bin(4)

for

number

of

locks

0

=

Use

UBin(2)

for

number

of

locks

25

19

Reserved

Bits

1-7

26

1A

Reserved

Char(6)

32

20

—-

End

—-

The

data

space

identification

must

be

a

system

pointer

to

a

data

space.

The

record

number

is

a

relative

record

number

within

that

data

space.

If

the

record

number

is

zero

then

all

locks

on

the

specified

data

space

will

be

materialized.

If

the

record

number

is

not

valid

for

the

specified

data

space

a

template

value

invalid

(hex

3801)

exception

is

signaled.

Both

of

the

fields

specified

under

lock

selection

are

bits

which

determine

the

locks

to

be

materialized.

If

the

materialize

data

space

locks

held

is

materialize,

the

current

holders

of

the

specified

data

space

record

lock

are

materialized.

If

the

materialize

data

space

locks

waited

for

is

materialize,

process

information

is

materialized

for

any

thread

contained

in

the

process

that

is

waiting

to

lock

the

specified

data

space

record.

The

format

for

number

of

locks

bit

determines

the

format

of

the

number

of

locks

held

and

Number

of

locks

waited

for

fields

in

the

materialization

template.

If

the

bit

is

set

to

binary

1

then

Bin(4)

counts

are

used,

else

Bin(2)

counts

are

used.

The

materialization

template

identified

by

operand

1

must

be

16-byte

aligned.

The

format

of

the

materialization

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Materialization

data

(2

possible

formats)

Char(8)

548

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

If

format

for

number

of

locks

bit=1

8

8

Number

of

lock

held

descriptions

Bin(4)

12

C

Number

of

lock

waited

for

descriptions

Bin(4)

16

10

—-

End

of

bit=1

—-

If

format

for

number

of

locks

bit=0

8

8

Number

of

lock

held

descriptions

UBin(2)

10

A

Number

of

lock

waited

for

descriptions

UBin(2)

12

C

Reserved

Char(4)

16

10

—-

End

of

bit=0

—-

16

10

Lock

held

descriptions

[*]

Char(32)

(repeated

number

of

lock

held

descriptions

times)

16

10

Lock

holder

System

pointer

32

20

Record

number

UBin(4)

36

24

Lock

state

Char(1)

Hex

30

=

DLWK

(Database

lock

weak)

lock

state

Hex

C0

=

DLRD

(Database

lock

read)

lock

state

Hex

F8

=

DLUP

(Database

lock

update)

lock

state

All

other

values

are

reserved.

37

25

Lock

holder

information

Char(1)

37

25

Lock

scope

object

type

Bit

0

0

=

Process

control

space

1

=

Transaction

control

structure

37

25

Lock

scope

Bit

1

0

=

Lock

is

scoped

to

the

lock

scope

object

type

1

=

Lock

is

scoped

to

the

thread

37

25

Reserved

Bits

2-7

38

26

Reserved

(binary

0)

Char(2)

40

28

Thread

ID

Char(8)

*

*

Lock

waited

for

descriptions

[*]

Char(32)

(repeated

number

of

lock

waited

for

descriptions

times)

*

*

Process

control

space

System

pointer

*

*

Record

number

UBin(4)

*

*

Lock

state

requested

Char(1)

Machine

Interface

Instructions

549

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

Hex

30

=

DLWK

(Database

lock

weak)

lock

state

Hex

C0

=

DLRD

(Database

lock

read)

lock

state

Hex

F8

=

DLUP

(Database

lock

update)

lock

state

All

other

values

are

reserved.

*

*

Lock

waiter

information

Char(1)

*

*

Lock

scope

object

type

Bit

0

0

=

Process

control

space

1

=

Transaction

control

structure

*

*

Lock

scope

Bit

1

0

=

Lock

is

scoped

to

the

lock

scope

object

type

1

=

Lock

is

scoped

to

the

thread

*

*

Reserved

Bits

2-7

*

*

Reserved

Char(2)

*

*

Thread

ID

Char(8)

*

*

—-

End

—-

The

first

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

the

excess

bytes

are

unchanged.

No

exceptions

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization,

other

than

the

materialization

length

exception

described

previously.

The

number

of

lock

held

descriptions

contains

the

number

of

locks

held.

A

system

pointer

to

the

lock

holder

(the

object

that

holds

the

lock),

the

relative

record

number

which

is

locked,

and

the

lock

state

are

materialized

in

the

area

identified

as

lock

held

descriptions.

The

lock

holder

can

be

either

a

process

control

space

(PCS)

or

a

transaction

control

structure.

The

object

type

is

determined

by

the

value

of

the

lock

scope

object

type

field.

When

lock

scope

has

a

value

of

lock

is

scoped

to

the

thread,

the

thread

ID

field

identifies

the

thread

that

holds

the

lock.

Otherwise

it

is

set

to

binary

0.

These

fields

contain

data

only

if

materialize

data

space

locks

held

is

materialize.

The

number

of

lock

waited

for

descriptions

contains

the

number

of

locks

being

waited

for.

A

system

pointer

to

the

process

control

space

(PCS)

for

each

thread

waiting

for

a

lock,

the

relative

record

number,

and

the

lock

state

which

the

thread

is

waiting

for

are

materialized

in

the

area

identified

as

lock

waited

for

descriptions.

The

process

control

space

and

the

thread

ID

fields

will

identify

the

thread

that

is

waiting

for

the

lock,

regardless

of

the

lock

scope

value.

These

fields

contain

data

only

if

materialize

data

space

locks

waited

for

is

materialize.

A

database

weak

record

lock

is

only

acquired

thread-scoped

and

it

only

conflicts

with

update

record

locks

which

are

thread-scoped

to

a

different

thread.

The

weak

record

lock

does

not

conflict

in

any

other

situation.

550

iSeries:

Machine

Interface

Instructions

APIs

If

UBin(2)

fields

are

requested

for

the

number

of

lock

held

descriptions

and

number

of

lock

waited

for

descriptions,

then

the

maximum

number

that

can

be

returned

in

each

count

is

32,767.

If

the

actual

number

is

greater

than

32,767

for

a

number

then

that

number

will

be

set

to

32,767,

only

the

first

32,767

locks

will

be

materialized

and

no

exception

will

be

signaled.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

Machine

Interface

Instructions

551

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Dump

Space

(MATDMPS)

Op

Code

(Hex)

Operand

1

Operand

2

04DA

Receiver

Dump

space

Operand

1:

Space

pointer.

552

iSeries:

Machine

Interface

Instructions

APIs

Operand

2:

System

pointer.

Bound

program

access

Built-in

number

for

MATDMPS

is

83.

MATDMPS

(

receiver

:

address

dump_space

:

address

of

system

pointer

)

Description:

The

current

attributes

of

the

dump

space

specified

by

operand

2

are

materialized

into

the

receiver

specified

by

operand

1.

The

template

identified

by

operand

1

must

be

16-byte

aligned

in

the

space.

The

format

of

the

materialization

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

(always

128

for

this

instruction)

8

8

Object

identification

Char(32)

8

8

Object

type

Char(1)

9

9

Object

subtype

Char(1)

10

A

Object

name

Char(30)

40

28

Object

creation

options

Char(4)

40

28

Existence

attributes

Bit

0

0

=

Temporary

1

=

Permanent

40

28

Space

attribute

Bit

1

0

=

Fixed

length

1

=

Variable

length

40

28

Context

Bit

2

0

=

Addressability

not

in

context

1

=

Addressability

in

context

40

28

Reserved

(binary

0)

Bits

3-12

40

28

Initialize

space

Bit

13

40

28

Reserved

(binary

0)

Bits

14-31

44

2C

Recovery

options

Char(4)

48

30

Size

of

space

Bin(4)

52

34

Initial

value

of

space

Char(1)

53

35

Performance

class

Char(4)

57

39

Reserved

Char(7)

64

40

Context

System

pointer

80

50

Reserved

Char(16)

96

60

Dump

space

size

Char(4)

100

64

Dump

data

size

Char(4)

104

68

Dump

data

size

limit

Char(4)

108

6C

Reserved

Char(20)

128

80

—-

End

—-

Machine

Interface

Instructions

553

The

first

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

eight

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

exceptions

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization,

other

than

the

materialization

length

invalid

(hex

3803)

exception

described

previously.

The

dump

space

size

field

is

set

with

the

current

size

value

for

the

number

of

512-byte

blocks

of

space

allocated

for

storage

of

dump

data

within

the

dump

space.

The

dump

data

size

field

is

set

with

the

current

size

value

for

the

number

of

512-byte

blocks

of

dump

data

contained

in

the

dump

space.

This

value

specifies

the

number

of

blocks

from

the

start

of

the

dump

space

through

the

block

of

dump

data

which

has

been

placed

into

the

dump

space

at

the

largest

dump

space

offset

value.

A

value

of

zero

indicates

that

the

dump

space

currently

contains

no

dump

data.

The

dump

data

size

limit

field

is

set

with

the

current

size

limit

for

the

number

of

512-byte

blocks

of

dump

data

which

may

be

stored

in

the

dump

space.

A

value

of

zero

indicates

that

no

explicit

limitation

is

placed

on

the

amount

of

dump

data

which

may

be

stored

in

the

dump

space.

The

machine

implicitly

places

a

limit

on

the

maximum

size

of

a

dump

space.

This

value

of

this

limitation

is

dependent

upon

the

specific

implementation

of

the

machine.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Operational

–

–

Operand

2
v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Operand

2

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

554

iSeries:

Machine

Interface

Instructions

APIs

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

Machine

Interface

Instructions

555

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Exception

Description

(MATEXCPD)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

03D7

Attribute

receiver

Exception

description

Materialization

option

Operand

1:

Space

pointer.

Operand

2:

Exception

description.

Operand

3:

Character(1)

scalar.

Description:

The

instruction

materializes

the

attributes

(operand

3)

of

an

exception

description

(operand

2)

into

the

receiver

specified

by

operand

1.

The

template

identified

by

operand

1

must

be

a

16-byte

aligned

area

in

the

space

if

the

materialization

option

is

hex

00.

Operand

2

identifies

the

exception

description

to

be

materialized.

The

value

of

operand

3

specifies

the

materialization

option.

If

the

materialization

option

is

hex

00,

the

format

of

the

exception

description

materialization

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Template

size

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Control

flags

Char(2)

8

8

Exception

handling

action

Bits

0-2

556

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

000

=

Do

not

handle.

(Ignore

occurrence

of

exception

and

continue

processing.)

001

=

Do

not

handle.

(Disable

this

exception

description

and

continue

to

search

this

invocation

for

another

exception

description

to

handle

the

exception.)

010

=

Do

not

handle.

(Continue

to

search

for

an

exception

description

by

resignaling

the

exception

to

the

preceding

invocation.)

100

=

Defer

handling.

(Save

exception

data

for

later

exception

handling.)

101

=

Pass

control

to

the

specified

exception

handler.

8

8

No

data

Bit

3

0

=

Exception

data

is

returned

1

=

Exception

data

is

not

returned

8

8

Reserved

(binary

0)

Bit

4

8

8

User

data

indicator

Bit

5

0

=

User

data

not

present

1

=

User

data

present

8

8

Reserved

(binary

0)

Bits

6-7

8

8

Exception

handler

type

Bits

8-9

00

=

External

entry

point

01

=

Internal

entry

point

10

=

Branch

point

8

8

Reserved

(binary

0)

Bits

10-15

10

A

Instruction

number

to

be

given

control

UBin(2)

(if

exception

handler

type

is

internal

entry

point

or

branch

point;

otherwise,

0)

12

C

Length

of

compare

value

(maximum

of

32

bytes)

Bin(2)

14

E

Compare

value

(size

established

by

value

of

length

of

compare

value

field)

Char(32)

46

2E

Number

of

exception

IDs

Bin(2)

48

30

System

pointer

to

the

exception

handling

program

(if

exception

handler

type

is

external

entry

point)

System

pointer

64

40

Pointer

to

user

data

(not

present

if

value

of

user

data

indicator

is

0)

Space

pointer

80

50

Exception

ID

(one

for

each

exception

ID

dictated

by

the

number

of

exception

IDs

field)

[*]

Char(2)

*

*

—-

End

—-

If

the

materialization

option

is

hex

01,

the

format

of

the

materialization

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Template

size

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

Machine

Interface

Instructions

557

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Control

flags

Char(2)

8

8

Exception

handling

action

Bits

0-2

000

=

Do

not

handle.

(Ignore

occurrence

of

exception

and

continue

processing.)

001

=

Do

not

handle.

(Disable

this

exception

description

and

continue

to

search

this

invocation

for

another

exception

description

to

handle

the

exception.)

010

=

Do

not

handle.

(Continue

to

search

for

an

exception

description

by

resignaling

the

exception

to

the

preceding

invocation.)

100

=

Defer

handling.

(Save

exception

data

for

later

exception

handling.)

101

=

Pass

control

to

the

specified

exception

handler.

8

8

No

data

Bit

3

0

=

Exception

data

is

returned

1

=

Exception

data

is

not

returned

8

8

Reserved

(binary

0)

Bits

4-15

10

A

—-

End

—-

If

the

materialization

option

is

hex

02,

the

format

of

the

materialization

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Template

size

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Compare

value

length

(maximum

of

32

bytes)

Bin(2)

10

A

Compare

value

Char(32)

42

2A

—-

End

—-

The

first

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

exceptions

(other

than

the

materialization

length

invalid

(hex

3803)

exception)

are

signaled

in

the

event

that

the

receiver

operand

contains

insufficient

area

for

the

materialization.

558

iSeries:

Machine

Interface

Instructions

APIs

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

Machine

Interface

Instructions

559

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Independent

Index

Attributes

(MATINXAT)

Op

Code

(Hex)

Operand

1

Operand

2

0462

Receiver

Index

Operand

1:

Space

pointer.

Operand

2:

System

pointer.

Bound

program

access

Built-in

number

for

MATINXAT

is

38.

MATINXAT

(

receiver

:

address

index

:

address

of

system

pointer

)

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Description:

The

instruction

materializes

the

creation

attributes

and

current

operational

statistics

of

the

independent

index

identified

by

operand

2

into

the

space

identified

by

operand

1.

The

format

of

the

attributes

materialized

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

560

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Object

identification

Char(32)

8

8

Object

type

Char(1)

9

9

Object

subtype

Char(1)

10

A

Object

name

Char(30)

40

28

Object

creation

options

Char(4)

40

28

Existence

attributes

Bit

0

0

=

Temporary

1

=

Reserved

40

28

Space

attribute

Bit

1

0

=

Fixed-length

1

=

Variable-length

40

28

Context

Bit

2

0

=

Addressability

not

in

context

1

=

Addressability

in

context

40

28

Access

group

Bit

3

0

=

Not

a

member

of

access

group

1

=

Member

of

access

group

40

28

Reserved

(binary

0)

Bits

4-12

40

28

Initialize

space

Bit

13

0

=

Initialize

1

=

Do

not

initialize

40

28

Automatically

extend

space

Bit

14

0

=

No

1

=

Yes

40

28

Hardware

storage

protection

level

Bits

15-16

00

=

Reference

and

modify

allowed

for

user

state

programs

01

=

Only

reference

allowed

for

user

state

programs

10

=

Only

reference

allowed

in

any

state

11

=

No

reference

or

modify

allowed

for

user

state

programs

40

28

Reserved

(binary

0)

Bits

17-19

40

28

Always

enforce

hardware

storage

protection

of

this

index

Bit

20

Machine

Interface

Instructions

561

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Enforce

hardware

storage

protection

of

this

index

only

when

hardware

storage

protection

is

enforced

for

all

storage.

1

=

Enforce

hardware

storage

protection

of

this

index

at

all

times.

40

28

Always

enforce

hardware

storage

protection

of

the

associated

space

Bit

21

0

=

Enforce

hardware

storage

protection

of

this

space

only

when

hardware

storage

protection

is

enforced

for

all

storage.

1

=

Enforce

hardware

storage

protection

of

this

space

at

all

times.

40

28

Reserved

(binary

0)

Bits

22-31

44

2C

Reserved

(binary

0)

Char(4)

48

30

Size

of

space

Bin(4)

52

34

Initial

value

of

space

Char(1)

53

35

Performance

class

Char(4)

53

35

Space

alignment

Bit

0

0

=

The

space

associated

with

the

object

is

allocated

to

allow

proper

alignment

of

pointers

at

16-byte

alignments

within

the

space.

1

=

The

space

associated

with

the

object

is

allocated

to

allow

proper

alignment

of

pointers

at

16-byte

alignments

within

the

space

as

well

as

to

allow

proper

alignment

of

input/output

buffers

at

512-byte

alignments

within

the

space.
Ignore

the

value

of

this

field

when

the

machine

chooses

space

alignment

field

has

a

value

of

1.

53

35

Reserved

(binary

0)

Bits

1-2

53

35

Machine

chooses

space

alignment

Bit

3

0

=

The

space

alignment

indicated

by

the

space

alignment

field

is

in

effect.

1

=

The

machine

chose

the

space

alignment

most

beneficial

to

performance,

which

may

have

reduced

maximum

space

capacity.

The

alignment

chosen

is

a

multiple

of

512.

Ignore

the

value

of

the

space

alignment

field.

53

35

Reserved

(binary

0)

Bit

4

53

35

Main

storage

pool

selection

Bit

5

562

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Process

default

main

storage

pool

used

for

object.

1

=

Machine

default

main

storage

pool

used

for

object.

53

35

Reserved

(binary

0)

Bit

6

53

35

Block

transfer

on

implicit

access

state

modification

Bit

7

0

=

Transfer

the

minimum

storage

transfer

size

for

this

object.

1

=

Transfer

the

machine

default

storage

transfer

size

for

this

object.

53

35

Reserved

(binary

0)

Bits

8-31

57

39

Reserved

(binary

0)

Char(7)

64

40

Context

System

pointer

80

50

Access

group

System

pointer

96

60

Index

attributes

Char(1)

96

60

Entry

length

attribute

Bit

0

0

=

Fixed-length

entries

1

=

Variable-length

entries

96

60

Immediate

update

Bit

1

0

=

No

immediate

update

1

=

Immediate

update

96

60

Key

insertion

Bit

2

0

=

No

insertion

by

key

1

=

Insertion

by

key

96

60

Entry

format

Bit

3

0

=

Scalar

data

only

1

=

Both

pointers

and

scalar

data

96

60

Optimized

processing

mode

Bit

4

0

=

Optimize

for

random

references

1

=

Optimize

for

sequential

references

96

60

Maximum

entry

length

Bit

5

0

=

Maximum

entry

length

is

120

bytes

1

=

Maximum

entry

length

is

2,000

bytes

96

60

Index

coherency

tracking

Bit

6

0

=

Do

not

track

index

coherency

1

=

Track

index

coherency

96

60

Longer

template

Bit

7

Machine

Interface

Instructions

563

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

The

template

is

the

original

size

1

=

The

template

is

longer

97

61

Argument

length

Bin(2)

99

63

Key

length

Bin(2)

101

65

Index

statistics

Char(12)

101

65

Entries

inserted

UBin(4)

105

69

Entries

removed

UBin(4)

109

6D

Find

operations

UBin(4)

113

71

—-

End

—-

If

the

bit

longer

template

is

set

to

binary

1,

then

the

longer

template

is

defined

starting

at

offset

113

of

the

operand

1

template.

The

longer

template

is

defined

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

113

71

Template

version

Char(1)

114

72

Index

format

Char(1)

0

=

Maximum

object

size

of

4

Gigabytes.

1

=

Maximum

object

size

of

1

Terabyte.

115

73

Reserved

(binary

0)

Char(61)

176

B0

—-

End

—-

The

first

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

provided

that

may

be

used

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

exceptions

other

than

the

materialization

length

invalid

(hex

3803)

exception

described

previously

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization.

The

template

identified

by

the

operand

1

space

pointer

must

be

16-byte

aligned.

Values

in

the

template

remain

the

same

as

the

values

specified

at

the

creation

of

the

independent

index

except

that

the

object

identification,

context,

size

of

space,

index

attributes,

and

index

statistics

contain

current

values.

If

the

entry

length

is

fixed,

then

the

argument

length

is

the

value

supplied

in

the

template

when

the

index

was

created.

If

the

entry

length

is

variable,

then

the

argument

length

field

is

equal

to

the

length

of

the

longest

entry

that

has

ever

been

inserted

into

the

index.

The

number

of

arguments

in

the

index

equals

the

number

of

entries

inserted

minus

entries

removed.

The

value

of

the

find

operations

field

is

initialized

to

0

each

time

the

index

is

materialized.

The

value

may

not

be

correct

after

an

abnormal

system

termination.

The

field

template

version

identifies

the

version

of

the

longer

template.

It

must

be

set

to

hex

00.

564

iSeries:

Machine

Interface

Instructions

APIs

The

index

format

field

determines

the

format

of

the

index.

This

attribute

cannot

be

modified

after

the

index

has

been

created.

If

an

index

is

created

with

a

format

of

hex

01

(maximum

size

of

1

terabyte),

the

index

cannot

be

saved

to

a

target

release

earlier

than

Version

5

Release

2.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Operational

–

–

Operand

2
v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Operand

2

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

Machine

Interface

Instructions

565

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Instruction

Attributes

(MATINAT)

Op

Code

(Hex)

Operand

1

Operand

2

0526

Receiver

Selection

template

Operand

1:

Space

pointer.

566

iSeries:

Machine

Interface

Instructions

APIs

Operand

2:

Character

scalar.

Bound

program

access

Built-in

number

for

MATINAT

is

466.

MATINAT

(

receiver

:

address

selection_template

:

address

)

Description:

This

instruction

materializes

the

attributes

of

the

non-bound

program

instruction

that

are

selected

in

operand

2

and

places

them

in

the

receiver

indicated

by

operand

1.

Operand

2

is

a

16-byte

selection

template.

Only

the

first

16

bytes

are

used.

Any

excess

bytes

are

ignored.

Operand

2

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Selection

template

Char(16)

0

0

Invocation

number

Bin(2)

2

2

Instruction

number

Bin(4)

6

6

Reserved

(binary

0)

Char(10)

16

10

—-

End

—-

The

invocation

number

is

a

specific

identifier

for

the

target

invocation,

in

the

thread,

that

is

to

be

materialized.

This

program

must

be

observable

or

the

program

not

observable

(hex

1E01)

exception

is

signaled.

The

instruction

number

specifies

the

instruction

in

the

specified

program

invocation

that

is

to

be

materialized.

Operand

1

addresses

a

16-byte

aligned

template

where

the

materialized

data

is

placed.

The

format

of

the

data

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

by

the

user

Bin(4)

4

4

Number

of

bytes

available

to

be

materialized

Bin(4)

8

8

Object

identification

Char(32)

8

8

Program

type

Char(1)

9

9

Program

subtype

Char(1)

10

A

Program

name

Char(30)

40

28

Offset

to

instruction

attributes

Bin(4)

44

2C

Reserved

(binary

0)

Char(8)

52

34

Instruction

attributes

Char(*)

52

34

Instruction

type

Char(2)

52

34

Instruction

version

Bits

0-3

Hex

0000

=

2-byte

operand

references

Hex

0001

=

3-byte

operand

references

52

34

Reserved

(binary

0)

Bits

4-1

54

36

Instruction

length

as

input

to

Create

Program

Bin(2)

Machine

Interface

Instructions

567

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

56

38

Offset

to

instruction

form

specified

as

input

to

Create

Program

Bin(4)

60

3C

Reserved

(binary

0)

Char(4)

64

40

Number

of

instruction

operands

Bin(2)

66

42

Operand

attributes

offsets

Char(*)

66

42

An

offset

is

materialized

for

each

of

the

operands

of

the

instruction

specifying

the

offset

to

the

attributes

for

the

operand

[*]

Bin(4)

*

*

Instruction

form

specified

as

input

to

Create

Program

Char(*)

*

*

Instruction

operation

code

Char(2)

*

*

Optional

extender

field

and

operand

fields

Char(*)

*

*

Operand

attributes

Char(*)

A

set

of

attributes

following

this

format

is

materialized

for

each

of

the

operands

of

the

instruction.

Compound

operand

references

result

in

materialization

of

only

one

set

of

attributes

for

the

operand

which

describe

the

substring

or

array

element

as

is

appropriate.

See

the

specific

format

described

below

for

each

operand

type.

*

*

Operand

type

Bin(2)

1

=

Data

object

2

=

Constant

data

object

3

=

Instruction

number

reference

4

=

Argument

list

5

=

Exception

description

6

=

Null

operand

7

=

Space

pointer

machine

object

*

*

Operand

specific

attributes

Char(*)

See

descriptions

below

for

detailed

formats.

Nothing

is

provided

for

null

operands.

*

*

—-

End

—-

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Data

object

Char(32)

For

a

data

object,

the

following

operand

attributes

are

materialized.

0

0

Operand

type

=

1

Bin(2)

2

2

Data

object

specific

attributes

Char(7)

2

2

Element

type

Char(1)

568

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

Hex

00

=

Binary

Hex

01

=

Floating-point

Hex

02

=

Zoned

decimal

Hex

03

=

Packed

decimal

Hex

04

=

Character

Hex

08

=

Pointer

3

3

Element

length

Char(2)

If

binary,

or

character,

or

floating-point:

3

3

Length

B

If

zoned

decimal

or

packed

decimal:

3

3

Fractional

digits

B

3

3

Total

digits

B

If

pointer:

3

3

Length

=

16

B

5

5

Array

size

Bin(4)

If

scalar,

then

value

of

0.

If

array,

then

number

of

elements.

9

9

Reserved

(binary

0)

Char(6)

15

F

Data

object

addressability

Char(17)

15

F

Addressability

indicator

Char(1)

Hex

00

=

Addressability

was

not

established

Hex

01

=

Addressability

was

established

16

10

Space

pointer

to

the

object

if

addressability

could

be

established

Space

pointer

32

20

—-

End

—-

Machine

Interface

Instructions

569

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Constant

data

object

Char(*)

For

a

constant

data

object,

the

following

operand

attributes

are

materialized

(immediate

operands

as

constants,

signed

immediates

as

binary,

and

unsigned

immediates

as

character).

0

0

Operand

type

=

2

Bi

2

2

Constant

specific

attributes

Ch

2

2

Element

type

Hex

00

=

Binary

Hex

01

=

Floating-point

Hex

02

=

Zoned

decimal

Hex

03

=

Packed

decimal

Hex

04

=

Character

3

3

Element

length

If

binary,

or

charac

3

3

Length

If

zoned

decimal

o

3

3

Fractional

digits

3

3

Total

digits

5

5

Reserved

(binary

0)

9

9

Reserved

(binary

0)

Ch

16

10

Constant

value

Ch

*

*

—-

End

—-

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Instruction

references

Char(*)

For

instruction

references,

either

through

instruction

definition

lists

or

immediate

operands,

the

following

operand

attributes

are

materialized.

0

0

Operand

type

=

3

Bin(2)

2

2

Number

of

instruction

reference

elements

Bin(2)

1

=

Single

instruction

reference

>1

=

Instruction

definition

list

4

4

Reserved

(binary

0)

Char(12)

16

10

Reference

list

Char(*)

The

instruction

number

of

each

instruction

reference

is

materialized

in

the

order

in

which

they

are

defined.

*

*

—-

End

—-

570

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Argument

list

Char(*)

For

an

argument

list,

the

following

operand

attributes

are

materialized.

0

0

Operand

type

=

4

2

2

Argument

list

specific

attributes

2

2

Actual

number

of

list

entries

4

4

Maximum

number

of

list

entries

6

6

Reserved

(binary

0)

16

10

Addressability

to

list

entries

16

10

Space

pointer

to

each

list

entry

for

the

number

of

actual

A

value

of

all

zeros

is

materialized

if

addressability

coul

*

*

—-

End

—-

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Exception

description

Char(48)

For

an

exception

description,

the

following

operand

attributes

are

materialized.

0

0

Operand

type

=

5

2

2

Reserved

(binary

0)

12

C

Control

flags

12

C

Exception

handling

action

000

=

Ignore

occurrence

of

exception

and

continue

p

001

=

Disabled

exception

description

010

=

Continue

search

for

an

exception

description

b

100

=

Defer

handling

101

=

Pass

control

to

the

specified

exception

handler

12

C

Reserved

(binary

0)

14

E

Compare

value

length

16

10

Compare

value

48

30

—-

End

—-

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Space

pointer

machine

object

Char(32)

For

a

space

pointer

machine

object,

the

following

operand

attributes

are

materialized.

0

0

Operand

type

=

7

2

2

Reserved

(binary

0)

15

F

Pointer

addressability

15

F

Pointer

value

indicator

Hex

00=

Addressability

value

is

not

valid

Hex

01=

Addressability

value

is

valid

16

10

Space

pointer

data

object

containing

the

space

pointer

m

32

20

—-

End

—-

Machine

Interface

Instructions

571

The

first

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

provided

by

the

user

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

excess

bytes

are

unchanged.

The

materialization

available

for

an

instruction

depends

on

the

execution

status

of

the

program

that

the

instruction

is

in.

If

the

program

has

not

executed

to

the

point

of

the

instruction,

little

or

no

meaningful

information

about

the

instruction

can

be

materialized.

If

the

program

executes

the

instruction

multiple

times,

the

materialization

will

vary

with

each

execution.

No

exceptions

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization,

other

than

the

materialization

length

invalid

(hex

3803)

exception

described

previously.

This

instruction

is

valid

only

when

the

program

instruction

to

be

materialized

is

from

a

non-bound

program.

If

the

invocation

indicated

by

operand

2

is

for

any

other

invocation

type,

then

an

instruction

not

valid

for

invocation

type

(hex

2C1C)

exception

is

signaled.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

572

iSeries:

Machine

Interface

Instructions

APIs

1E

Machine

Observation

1E01

Program

Not

Observable

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C1C

Instruction

Not

Valid

for

Invocation

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

3803

Materialization

Length

Invalid

Machine

Interface

Instructions

573

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Invocation

(MATINV)

Op

Code

(Hex)

Operand

1

Operand

2

0516

Receiver

Selection

information

Operand

1:

Space

pointer.

Operand

2:

Space

pointer.

Bound

program

access

Built-in

number

for

MATINV

is

149.

MATINV

(

receiver

:

address

selection_information

:

address

)

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Description:

The

attributes

of

the

invocation

selected

through

operand

2

are

materialized

into

the

receiver

designated

by

operand

1.

Operand

2

is

a

space

pointer

that

addresses

a

template

that

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Control

information

Char(2)

0

0

Template

extension

Bit

0

+

0

=

Template

extension

is

not

present.

1

=

Template

extension

is

present.

0

0

Invocation

number

Bits

1-15

2

2

Offset

to

list

of

parameters

Bin(4)

+

6

6

Number

of

parameter

ODV

numbers

Char(2)

+

8

8

Offset

to

list

of

exception

descriptions

Bin(4)

+

12

C

Number

of

exception

description

ODV

numbers

Char(2)

+

14

E

Template

extension

(optional)

Char(14)

+

14

E

Offset

to

list

of

space

pointer

machine

objects

Bin(4)

+

18

12

Number

of

space

pointer

machine

object

ODV

numbers

Char(2)

+

20

14

Reserved

(binary

0)

Char(8)

28

1C

—-

End

—-

Note:

Fields

annotated

with

a

(+)

must

be

set

to

all

binary

0s

if

the

invocation

is

not

for

a

non-bound

program.

Otherwise,

a

template

value

invalid

(hex

3801)

exception

is

signaled.

The

offset

to

list

of

space

pointer

machine

objects,

offset

to

list

of

parameters,

and

the

offset

to

list

of

exception

descriptions

are

relative

to

the

start

of

the

operand

2

template.

Each

list

is

an

array

of

Char(2)

574

iSeries:

Machine

Interface

Instructions

APIs

ODV

numbers.

The

number

of

space

pointer

machine

object

ODV

numbers,

number

of

parameter

ODV

numbers,

and

the

number

of

exception

description

ODV

numbers

define

the

sizes

of

the

arrays.

Operand

1

is

a

space

pointer

that

addresses

a

16-byte

aligned

template

into

which

the

materialized

data

is

placed.

The

format

of

the

data

is:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

by

the

user

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Object

identification

Char(32)

8

8

Program

type

Char(1)

9

9

Program

subtype

Char(1)

10

A

Program

name

Char(30)

40

28

Trace

specification

Char(2)

40

28

Invocation

trace

status

Bit

0

0

=

Not

tracing

new

invocations

1

=

Tracing

new

invocations

40

28

Return

trace

Bit

1

0

=

Not

tracing

returns

1

=

Tracing

returns

40

28

Invocation

trace

propagation

Bit

2

0

=

Not

propagating

invocation

trace

1

=

Propagating

invocation

trace

40

28

Return

trace

propagation

Bit

3

0

=

Not

propagating

return

trace

1

=

Propagating

return

trace

40

28

Reserved

(binary

0)

Bits

4-15

42

2A

—-

End

—-

The

following

fields

are

returned

only

for

non-bound

program

invocations.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

42

2A

Instruction

number

UBin(2)

44

2C

Offset

to

parameter

values

Bin(4)

48

30

Offset

to

exception

description

value

Bin(4)

52

34

Offset

to

space

pointer

machine

object

values

Bin(4)

(Optional-This

data

is

present

only

if

the

template

extension

is

present

in

the

selection

information.)

*

*

Space

pointer

machine

objects

Char(*)

(Optional-This

data

is

present

only

if

the

template

extension

is

present

in

the

selection

information.)

*

*

For

each

ODV

number

specified

for

a

space

pointer

machine

object,

the

value

of

the

space

pointer

machine

object

is

materialized

as

follows:

[*]

Char(32)

*

*

Reserved

(binary

0)

Cha

*

*

Pointer

value

indicator

Cha

Machine

Interface

Instructions

575

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

00

=

Addressability

value

is

not

valid

01

=

Addressability

value

is

valid

*

*

Space

pointer

data

object

containing

the

space

pointer

machine

object

value

if

addressability

value

is

valid.

Space

pointer

*

*

Parameters

Char(*)

*

*

For

each

parameter

ODT

number

specified,

the

address

of

the

parameter

data

is

materialized

(If

no

parameter

ODT

numbers

are

materialized,

this

parameter

is

binary

0.)

[*]

Space

pointer

*

*

Exception

description

Char(*)

*

*

For

each

exception

description

ODT

number

specified,

the

following

is

materialized:

[*]

Char(36)

*

*

Control

flags

Char(2)

*

*

Exception

handling

action

000

=

Ignore

occurrenc

of

exception

and

continue

processin

001

=

Disabled

exception

descriptio

010

=

Continue

search

for

an

exception

descriptio

by

resignalin

the

exception

to

the

immedia

preceding

invocatio

100

=

Defer

handling

101

=

Pass

control

to

the

specified

exception

handler

*

*

Reserved

(binary

0)

*

*

Compare

value

length

Bin(2)

*

*

Compare

value

Char(32

*

*

—-

End

—-

576

iSeries:

Machine

Interface

Instructions

APIs

The

first

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

excess

bytes

are

unchanged.

No

exceptions

(other

than

the

materialization

length

invalid

(hex

3803)

exception)

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization.

The

instruction

number

returned

depends

on

how

control

was

passed

from

the

invocation:

Exit

Type

Instruction

Number

Call

External

Locates

the

Call

External

instruction

Event

Locates

the

next

instruction

to

execute

Exception

Locates

the

instruction

that

caused

the

exception

The

space

pointers

that

address

parameter

values

are

returned

in

the

same

order

as

the

corresponding

ODT

numbers

in

the

input

array.

The

same

is

true

for

the

exception

description

values.

If

the

offset

to

list

of

parameters

or

the

number

of

parameter

ODT

numbers

is

0,

no

parameters

are

returned

and

the

offset

to

parameters

value

is

0.

If

any

parameters

are

returned,

they

are

16-byte

aligned.

If

the

offset

to

list

of

exception

descriptions

or

the

number

of

exception

description

ODT

numbers

is

0,

no

exception

descriptions

are

returned

and

the

offset

to

exception

description

values

are

0.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

Machine

Interface

Instructions

577

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1E

Machine

Observation

1E01

Program

Not

Observable

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3202

Scalar

Attributes

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

3802

Template

Size

Invalid

3803

Materialization

Length

Invalid

578

iSeries:

Machine

Interface

Instructions

APIs

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Invocation

Attributes

(MATINVAT)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

0533

Receiver

Invocation

identification

Attribute

selection

template

Operand

1:

Space

pointer.

Operand

2:

Character(48)

scalar

or

null.

Operand

3:

Space

pointer.

Bound

program

access

Built-in

number

for

MATINVAT

is

125.

MATINVAT

(

receiver

:

address

invocation_identification

:

address

OR

null

operand

attribute_selection_template

:

address

)

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Note

It

is

recommended

that

you

use

attribute

IDs

33,

34

and

35

for

8-byte

invocation,

activation

and

activation

group

marks,

respectively,

rather

than

attribute

IDs

12,

13

and

14.

4-byte

marks

can

wrap

and

produce

unexpected

results.

Description:

The

attributes

specified

by

operand

3

of

the

invocation

specified

by

operand

2

are

materialized

into

the

receiver

specified

by

operand

1.

In

addition

to

specifying

the

attributes

to

be

materialized,

operand

3

controls

how

they

are

arranged

in

the

operand

1

receiver.

Operand

1

is

a

space

pointer

to

an

area

that

is

to

receive

the

materialized

attribute

values.

The

format

of

this

area

is

determined

by

the

value

of

the

attribute

selection

template.

Operand

2

identifies

the

source

invocation

whose

attributes

are

to

be

materialized.

It

also

identifies

the

originating

invocation

whose

activation

group

access

right

to

the

source

invocation’s

activation

group

is

to

be

verified.

If

operand

2

is

null,

the

invocation

issuing

the

instruction

is

both

the

source

invocation

and

the

originating

invocation.

Operand

3

is

a

space

pointer

to

a

template

that

selects

the

invocation

attributes

to

be

materialized

and

specifies

how

they

are

to

be

arranged

in

the

receiver

template.

Operand

2

The

value

specified

by

operand

2

identifies

the

source

and

originating

invocations.

This

operand

can

be

null

(which

indicates

the

current

invocation

is

to

be

used

for

the

source

and

originating

invocations)

or

it

can

contain

either

a

invocation

pointer

to

an

invocation

or

a

null

pointer

(which

indicates

the

current

invocation).

Machine

Interface

Instructions

579

Operand

2

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Source

invocation

offset

Bin(4)

4

4

Originating

invocation

offset

Bin(4)

8

8

Invocation

range

(ignored)

Bin(4)

12

C

Reserved

(binary

0)

Char(4)

16

10

Source

invocation

pointer

Invocation

pointer

32

20

Reserved

(binary

0)

Char(16)

48

30

—-

End

—-

If

a

non-null

pointer

is

specified

for

source

invocation

pointer,

then

operand

2

must

be

16-byte

aligned

in

the

space.

Terminology:

Requesting

invocation

The

invocation

executing

the

MATINVAT

instruction.

Note

that,

in

many

cases,

this

invocation

belongs

to

a

system

or

language

run-time

procedure/program,

and

the

instruction

is

actually

being

executed

on

behalf

of

another

procedure

or

program.

Originating

invocation

The

invocation

on

whose

behalf

the

instruction

is

being

executed.

It

may

be

necessary

to

identify

this

invocation

since

its

″activation

group

access

rights″

may

need

to

be

checked.

This

allows,

for

example,

the

requesting

invocation

to

be

a

system

state

invocation

with

the

instruction

still

performing

an

″activation

group

access

rights″

check

that

reflects

the

rights

of

the

user.

Source

invocation

The

invocation

whose

attributes

are

to

be

materialized.

Activation

group

access

rights

The

rights

that

invocations

executing

in

one

activation

group

may

have

to

access

and

modify

the

resources

of

another

activation

group.

Field

descriptions:

Source

invocation

offset

A

signed

numerical

value

indicating

an

invocation

relative

to

the

invocation

located

by

the

source

invocation

pointer.

A

value

of

zero

denotes

the

invocation

addressed

by

the

source

invocation

pointer,

with

increasingly

positive

numbers

denoting

increasingly

later

invocations

in

the

stack,

and

increasingly

negative

numbers

denoting

increasingly

earlier

invocations

in

the

stack.

If

the

source

invocation

pointer

is

not

valid

or

the

invocation

identified

by

this

offset

does

not

exist

in

the

stack,

an

invocation

offset

outside

range

of

current

stack

(hex

2C1A)

exception

will

be

signaled.

Originating

invocation

offset

A

signed

numerical

value

identifying

the

originating

invocation

relative

to

the

current

invocation.

Since

this

is

an

offset

relative

to

the

current

invocation,

only

zero

or

negative

values

are

allowed.

If

the

invocation

identified

by

this

offset

does

not

exist

in

the

stack,

an

invocation

offset

outside

range

of

current

stack

(hex

2C1A)

exception

will

be

signaled.

Invocation

range

This

field

is

used

by

FNDRINVN

and

is

ignored

by

this

instruction.

Source

invocation

pointer

An

invocation

pointer

to

an

invocation.

If

null,

then

the

current

invocation

is

indicated.

If

the

pointer

identifies

an

invocation

in

another

thread,

a

process

object

access

invalid

(hex

2C11)

exception

will

be

signaled.

If

the

invocation

identified

by

this

pointer

does

not

exist

in

the

stack,

an

object

destroyed

(hex

2202)

exception

will

be

signaled.

580

iSeries:

Machine

Interface

Instructions

APIs

Activation

group

access

rights

checking:

This

instruction

sometimes

(depending

on

the

attributes

materialized)

requires

that

activation

group

access

rights

to

the

activation

group

of

the

source

invocation

be

verified.

In

such

cases,

the

originator

offset

field

of

operand

2

identifies

the

invocation

whose

right

of

access

is

to

be

checked.

(That

is,

it

identifies

the

invocation

which

is

considered

to

have

originated

the

request

and

on

whose

behalf

the

instruction

is

being

executed.)

If

originator

offset

is

not

zero,

then

the

activation

group

of

the

requesting

invocation

must

have

the

right

to

access

the

activation

group

of

the

invocation

identified

by

originator

offset.

This

check

is

made

whether

or

not

access

rights

to

the

source

invocation

need

to

be

checked.

In

the

event

that

appropriate

access

rights

are

not

found,

an

activation

group

access

violation

(hex

2C12)

exception

is

signaled.

Note:

The

originating

invocation

identified

by

the

originating

invocation

offset

must

be

equal

to

or

″newer″

than

the

invocation

identified

as

the

source

invocation.

Otherwise,

an

invalid

origin

invocation

(hex

2C19)

exception

will

be

signaled.

Usage

note:

In

cases

where

source

invocation

pointer

is

null,

operand

2

may

be

a

constant.

Operand

3

The

attribute

selection

template

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Selection

template

header

Char(16)

0

0

Number

of

attributes

4

4

Control

flags

4

4

Attribute

index

indirect

0

=

Offset

to

attribute

index

specifies

directly

the

loc

1

=

Offset

to

attribute

index

specifies

the

location

of

value

4

4

Reserved

(binary

0)

5

5

Reserved

(binary

0)

8

8

Offset

to

attribute

index

12

C

Length

of

attribute

index

16

10

Attribute

selection

entries

Char(*)

*

*

—-

End

—-

The

attribute

selection

entries

are

each

16

bytes

long

and

have

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Attribute

ID

Bin(4)

4

4

Control

flags

Char(1)

4

4

Indirect

Bit

0

0

=

Offset

to

receiver

specifies

directly

the

location

of

the

attribute

value

1

=

Offset

to

receiver

specifies

the

location

of

a

space

pointer

which

in

turn

specifies

the

location

of

the

attribute

value

Machine

Interface

Instructions

581

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

4

4

Return

length

Bit

1

0

=

A

length

field

is

not

present

with

the

attribute

1

=

A

length

field

precedes

the

attribute

4

4

Return

status

Bit

2

0

=

A

status

field

is

not

present

with

the

attribute

1

=

A

status

field

precedes

the

attribute

4

4

Pad

Bit

3

0

=

No

pad

field

is

assumed

to

precede

the

attribute

1

=

A

pad

field

of

zero,

eight,

or

twelve

bytes

is

assumed

to

precede

the

attribute

4

4

Reserved

(binary

0)

Bits

4-7

5

5

Reserved

(binary

0)

Char(3)

8

8

Offset

to

receiver

Bin(4)

12

C

Length

of

receiver

Bin(4)

16

10

—-

End

—-

Basic

structure:

The

attribute

selection

template

allows

the

user

of

MATINVAT

considerable

flexibility

in

deciding

what

invocation

attributes

are

to

be

materialized

and

where

their

materializations

are

to

be

returned.

This

flexibility

is

achieved

by

having

the

attribute

selection

template

consist

of

a

header,

followed

by

a

series

of

entries,

each

of

which

identifies

an

attribute

to

be

materialized,

the

location

where

it

is

to

be

materialized,

and

the

amount

of

space

reserved

for

its

materialization.

The

template

header

specifies

the

number

of

attribute

entries

present

in

the

template,

and

it

also

allows

the

specification

of

an

optional

attribute

index

field.

The

attribute

index

field,

if

present,

identifies

the

first

attribute

selection

entry

to

be

processed

(causing

entries

prior

to

that

one

to

be

skipped).

In

addition,

if

the

attribute

index

field

is

present,

it

is

updated

upon

the

normal

or

abnormal

completion

of

the

instruction

to

contain

either

zero

(if

completion

is

normal)

or

the

number

of

the

entries

being

processed

(if

the

instruction

ends

with

an

exception).

Each

attribute

selection

entry

identifies

the

attribute

to

be

materialized

and

the

area

where

the

materialization

is

to

be

returned.

The

attribute

may

be

returned

directly

into

the

area

addressed

by

the

operand

1

space

pointer,

or

it

may

be

returned

into

an

area

addressed

by

a

space

pointer

which

is,

in

turn,

contained

in

the

area

addressed

by

the

operand

1

space

pointer.

These

two

cases

are

distinguished

by

the

indirect

bit.

In

addition,

each

attribute

selection

entry

contains:

v

v

An

offset

value

which

is

the

offset

relative

to

the

operand

1

space

pointer

where

either

the

attribute’s

materialization

area

or

the

pointer

to

the

attributes’

materialization

area

is

contained.

v

A

length

value

identifying

the

maximum

number

of

bytes

of

data

to

be

materialized

for

the

attribute.

v

A

flag

indicating

whether

the

length

of

the

attribute

is

to

be

materialized.

v

A

flag

indicating

whether

the

status

of

the

attribute

is

to

be

materialized.

582

iSeries:

Machine

Interface

Instructions

APIs

v

A

flag

indicating

whether

a

pad

field

precedes

the

attribute

(or

its

pointer,

if

indirect

is

specified).

If

present,

the

length

of

this

″pad″

field

is

automatically

adjusted

so

that

the

combined

length

of

the

length,

status,

and

pad

fields

is

either

zero

or

16,

maintaining

the

relative

quadword

alignment

of

the

modification

value

if

the

length

and/or

status

fields

are

present.

Note

that,

for

the

sake

of

regularity,

the

fields

of

the

attribute

selection

template

header

are

arranged

in

the

same

general

fashion

as

those

in

the

attribute

selection

entries.

Field

descriptions:

Number

of

attributes

Specifies

how

many

16-byte

attribute

selection

entries

follow.

Attribute

index

indirect

If

attribute

index

indirect

is

binary

0,

then

offset

to

attribute

index

specifies

the

location

where

the

attribute

index

is

stored

as

an

offset

from

the

location

addressed

by

the

operand

1

space

pointer.

If

attribute

index

indirect

is

binary

1,

then

the

location

identified

by

attribute

index

offset

must

be

quadword

aligned

and

must

contain

a

space

pointer.

This

space

pointer

in

turn

addresses

the

location

where

the

attribute

index

value

is

stored.

Offset

to

attribute

index

Specifies

the

offset

to

the

attribute

index

or

the

offset

to

a

pointer

to

the

attribute

index,

depending

on

the

value

of

attribute

index

indirect.

Length

of

attribute

index

Specifies

the

length

of

the

area

where

the

attribute

index

value

is

stored.

This

field

must

have

a

value

of

either

zero

or

four.

If

this

field

has

a

value

of

zero,

then

the

first

attribute

entry

to

be

processed

is

the

first

attribute

entry

in

the

template,

and

no

feedback

is

given

as

to

which

attribute

entry

was

being

processed

at

the

time

of

an

exception.

Attribute

index

indirect

and

attribute

index

offset

are

ignored.

If

this

field

has

a

value

of

four,

then

the

value

of

the

attribute

index,

treated

as

a

signed

bin(4)

value,

must

be

greater

than

or

equal

to

one

and

less

than

or

equal

to

number

of

attributes.

In

this

case

the

attribute

index

identifies

the

attribute

entry

to

be

processed

first

(with

the

first

entry

in

the

template

having

an

index

of

one),

and,

in

the

event

of

an

exception,

the

attribute

index

value

is

modified

by

this

instruction

such

that

it

identifies

the

attribute

entry

being

processed

at

the

time

of

the

exception.

If

the

instruction

completes

without

an

exception,

then

the

attribute

index

value

is

set

to

zero.

Attribute

ID

Specifies

the

attribute

to

be

materialized.

Values

that

may

be

specified

are:

1

Invocation

pointer

to

specified

invocation.

(16

bytes,

quadword

aligned.)

2

Automatic

storage

pointer.

Space

pointer

to

the

automatic

storage

for

this

invocation.

If

no

automatic

storage

exists

for

this

invocation,

then

a

null

pointer

is

returned.

(16

bytes,

quadword

aligned,

access

rights

required.)

3

Static

storage

pointer.

Space

pointer

to

the

static

storage

for

a

non-bound

program

invocation,

if

any

exists.

Otherwise,

a

null

pointer

value

is

returned.

(16

bytes,

quadword

aligned,

access

rights

required.)

Note:

For

bound

program

procedure

invocations

there

is

no

single

″distinguished″

static

storage

area,

but

instead

there

may

be

multiple

static

storage

areas.

The

list

of

static

storage

areas

corresponding

to

the

invocation’s

activation

can

be

obtained

by

using

the

Materialize

Activation

Attributes

(MATACTAT)

instruction.

Machine

Interface

Instructions

583

4

Parameter

list

pointer.

Space

pointer

to

the

parameter

list

passed

to

this

invocation

(bound

program

procedure

invocations

only).

If

the

procedure

for

this

invocation

does

not

have

a

parameter

list,

or

if

this

invocation

is

for

a

program

entry

procedure

or

a

non-bound

program,

then

a

null

pointer

value

is

returned.

(16

bytes,

quadword

aligned,

access

rights

required.)

6

Program

pointer.

System

pointer

to

the

program

for

this

invocation.

If

the

program

no

longer

exists

then

a

null

pointer

is

returned.

(16

bytes,

quadword

aligned,

access

rights

required.)

7

Space

pointer

to

module

associated

space.

For

bound

program

procedures,

this

space

pointer

addresses

the

secondary

associated

space

in

the

bound

program

that

was

propagated

from

the

primary

associated

space

of

the

bound

program

module.

For

non-bound

programs,

this

space

pointer

addresses

the

program’s

primary

associated

space.

If

the

appropriate

associated

space

does

not

exist

in

the

program

or

if

the

program

no

longer

exists,

then

a

null

pointer

is

returned.

For

both

bound

and

non-bound

program

invocations

the

requesting

invocation

must

have

space

authority

to

the

program.

(16

bytes,

quadword

aligned,

access

rights

required.)

8

Pointer

to

containing

scope.

If

the

specified

invocation

is

in

a

nested

scope,

then

this

is

an

invocation

pointer

to

the

invocation

of

the

containing

scope.

Otherwise

a

null

pointer

is

returned.

(16

bytes,

quadword

aligned.)

9

Relative

invocation

offset

to

containing

scope.

If

the

specified

invocation

is

in

a

nested

scope,

then

this

is

the

relative

invocation

offset

to

the

invocation

of

the

containing

scope.

Otherwise,

a

value

of

zero

is

returned.

Note

that

the

relative

invocation

offset

will

be

a

negative

number

and

is

relative

to

the

specified

invocation.

(4

bytes.)

10

Lexical

level

number.

Outer

procedures

have

a

lexical

level

number

of

1.

(4

bytes.)

11

Invocation

number.

(2

bytes.)

12

Invocation

mark.

(4

bytes.)

13

Activation

mark.

If

no

activation

exists

for

this

invocation,

then

a

zero

value

is

returned.

(4

bytes.)

14

Activation

group

mark.

(4

bytes.)

If

the

activation

resides

in

a

shared

activation

group

owned

by

another

process,

or

if

no

activation

exists

for

the

invocation,

then

the

value

returned

is

as

follows:

1

if

this

is

a

system

state

invocation

2

if

this

is

a

user

state

invocation

15

Invocation

type.

The

possible

values

for

invocation

type

are:

Hex

01

=

Call

external

Hex

02

=

Transfer

control

Hex

03

=

Event

handler

Hex

04

=

External

exception

handler

(for

non-bound

program)

Hex

05

=

Initial

program

in

process

problem

state

584

iSeries:

Machine

Interface

Instructions

APIs

Hex

06

=

Initial

program

in

process

initiation

state

Hex

07

=

Initial

program

in

process

termination

state

Hex

08

=

Invocation

exit

(for

non-bound

program)

Hex

09

=

Return

or

return/XCTL

trap

handler

Hex

0A

=

Call

program

Hex

0B

=

Cancel

handler

(bound

program

only)

Hex

0C

=

Exception

handler

(bound

program

only)

Hex

0D

=

Call

bound

procedure/call

with

procedure

pointer

Hex

0E

=

Process

Default

Exception

Handler

(1

byte.)

16

Routine

type.

The

possible

values

for

routine

type

are:

Hex

01

=

Non-Bound

Program

Hex

02

=

Bound

Program

Entry

Procedure

(PEP)

Hex

03

=

Bound

Program

Procedure

Note:

Bound

program

procedures

are

contained

within

bound

programs,

bound

service

programs,

and

Java

programs.

All

discussion

of

bound

program

procedure

semantics

also

apply

to

Java

program

procedures.

(1

byte.)

17

State

invocation

was

invoked

with.

(2

bytes.)

Hex

8000

=

System

state

Hex

0001

=

User

state

18

State

for

invocation.

(2

bytes.)

Hex

8000

=

System

state

Hex

0001

=

User

state

19

Invocation

status

of

the

specified

invocation

(including

invocation

flags).

Bit

0

Cancelled

Bit

1

Machine

Interface

Instructions

585

Ending

—

a

return

operation

has

been

initiated

from

within

the

invocation

or

the

actual

termination

of

a

cancelled

invocation

has

begun.

Bit

2

Invocation

interrupted

by

exception

Bit

3

Invocation

interrupted

by

event

(reserved)

Bit

4

Invocation

is

a

non-bound

program

CALLX

exception

handler

Bit

5

Invocation

contains

a

non-bound

program

CALLI

exception

handler

Bit

6

Invocation

contains

a

signalled

non-bound

program

branchpoint

handler

Bit

7

Retry

not

allowed

Bit

8

Resume

not

allowed

Bit

9

Resume

point

has

been

modified

Bit

10

Invocation

is

a

program

entry

procedure

and

is

marked

as

the

oldest

in

the

activation

group

(This

is

also

known

as

a

hard

control

boundary.)

Bit

11

Invocation

is

a

soft

control

boundary.

Bit

12

Invocation

created

an

unnamed

activation

group.

Bits

13-15

Reserved

Bits

16-31

Invocation

flags

586

iSeries:

Machine

Interface

Instructions

APIs

(4

bytes.)

Performance

consideration:

When

the

only

invocation

status

information

required

is

the

invocation

flags,

there

may

be

a

significant

performance

advantage

if

the

following

attribute

is

materialized

instead

of

this

one.

20

Invocation

flags

of

the

specified

invocation.

This

attribute

has

the

same

format

as

the

invocation

status

attribute,

except

that

the

first

two

bytes

are

returned

as

zero.

(4

bytes.)

23

Cancel

reason

of

the

specified

invocation.

(4

bytes.)

24

Suspend

point.

Suspend

pointer

identifying

the

location

within

the

invocation’s

routine

where

execution

was

suspended

due

to

a

call,

interrupt,

or

machine

operation.

If

the

program

no

longer

exists

then

a

null

pointer

is

returned.

(16

bytes,

quadword

aligned,

access

rights

required.)

25

Resume

point.

A

suspend

pointer

identifying

the

location

within

the

invocation’s

routine

where

execution

will

resume

if

execution

is

allowed

to

resume

in

the

invocation.

If

the

invocation

is

suspended

for

some

cause

that

permits

resumption,

then

this

is

initially

set

to

the

location

that

logically

follows

the

suspend

point.

If

the

invocation

is

suspended

for

some

cause

that

does

not

permit

resumption,

then

this

is

initially

set

to

be

a

null

pointer.

If

the

resume

point

is

modified

via

Modify

Invocation

Attributes

then

a

suspend

pointer

(or

null

pointer)

corresponding

to

the

modified

resume

point

is

returned.

If

the

program

no

longer

exists

or

if

the

invocation

is

cancelled

or

ending,

then

a

null

pointer

is

returned.

(16

bytes,

access

rights

required,

quadword

aligned.)

26

Interrupt

message

invocation.

If

the

invocation

is

interrupted

due

to

an

exception

interrupt,

and

the

message

causing

the

interrupt

has

not

been

removed

or

modified

to

a

non-interrupt

state,

then

this

is

an

invocation

pointer

which

addresses

the

invocation

to

which

the

interrupt

message

is

enqueued.

If

no

interrupt

cause

currently

exists,

then

a

null

pointer

is

returned.

(16

bytes,

quadword

aligned.)

27

Interrupt

message

reference

key.

If

the

invocation

is

interrupted

due

to

an

exception

interrupt,

and

the

message

causing

the

interrupt

has

not

been

removed

or

modified

to

a

non-interrupt

state,

then

this

is

the

message

reference

key

of

the

interrupt

cause

message.

If

no

interrupt

cause

currently

exists,

then

a

value

of

zero

is

returned.

(4

bytes.)

28

External

exception

handler’s

monitoring

invocation.

If

the

specified

invocation

is

an

external

exception

handler

for

a

non-bound

program,

then

this

is

an

invocation

pointer

identifying

the

invocation

which

enabled

the

handler

(also

the

invocation

where

the

exception

message

is

currently

enqueued).

Otherwise,

a

null

pointer

is

returned.

(16

bytes,

quadword

aligned.)

29

External

exception

handler’s

message

reference

key.

If

the

specified

invocation

is

an

external

exception

handler

for

a

non-bound

program,

then

this

is

the

message

reference

key

of

the

corresponding

exception

message.

Otherwise,

a

zero

value

is

returned.

(4

bytes.)

30

Non-bound

program

internal

exception

handler’s

message

reference

key.

If

the

specified

invocation

is

a

non-bound

program

invocation

with

an

internal

exception

handler

active,

then

this

is

the

message

reference

key

of

the

exception

message

corresponding

to

the

currently

active

internal

exception

handler.

Otherwise,

a

zero

value

is

returned.

(4

bytes.)

31

Non-bound

program

branchpoint

exception

handler’s

message

reference

key.

If

the

specified

invocation

is

a

non-bound

program

invocation

with

a

branchpoint

exception

handler

in

a

signalled

state,

then

this

is

the

message

reference

key

of

the

exception

message

corresponding

to

the

most

recently

signalled

branchpoint

exception

exception

handler.

Otherwise,

a

zero

value

is

returned.

(4

bytes.)

32

Trap

handler’s

message

reference

key.

If

the

specified

invocation

was

invoked

as

a

trap

handler,

then

this

is

the

message

reference

key

of

the

corresponding

trap

message.

(Note

that

the

trapped

invocation

is,

by

definition,

the

immediately

preceding

invocation.)

Otherwise,

a

zero

value

is

returned.

(4

bytes.)

33

Invocation

mark.

(8

bytes.)

34

Activation

mark.

If

no

activation

exists

for

this

invocation,

then

a

zero

value

is

returned.

(8

bytes.)

35

Activation

group

mark.

(8

bytes.)

If

the

activation

resides

in

a

shared

activation

group

owned

by

another

process,

or

if

no

activation

exists

for

the

invocation,

then

the

value

returned

is

as

follows:

1

if

this

is

a

system

state

invocation

2

if

this

is

a

user

state

invocation

Machine

Interface

Instructions

587

Where

″access

rights

required″

is

specified

above,

the

activation

group

of

the

invocation

identified

as

the

originating

invocation

must

have

activation

group

access

rights

to

the

activation

group

of

the

source

invocation

or

else

an

activation

group

access

violation

(hex

2C12)

exception

is

signaled.

The

invocation

with

an

invocation

number

of

1

is

always

the

first

invocation

in

the

stack.

Indirect

If

indirect

is

binary

0,

then

offset

to

receiver

specifies

the

location

where

the

selected

attribute

value

is

to

be

materialized

as

as

offset

from

the

location

addressed

by

operand

1.

If

indirect

is

binary

1,

then

the

location

identified

by

offset

to

receiver,

after

accounting

for

any

length,

status,

or

pad

fields

specified,

must

be

quadword

aligned

and

must

contain

a

space

pointer.

This

space

pointer

in

turn

addresses

the

location

where

the

selected

attribute

value

is

to

be

materialized.

Return

length

If

return

length

and

return

status

are

both

binary

0,

then

only

the

attribute

itself

is

materialized.

If

return

length

is

binary

1,

then

the

attribute

(or

attribute

pointer,

if

indirect

is

true)

is

preceded

by

a

four-byte

value

which

specifies

the

length

of

the

attribute

(exclusive

of

the

length

value

itself,

and

the

status

and

pad

fields,

if

present).

Return

status

If

return

status

is

binary

1,

then

the

attribute

(or

attribute

pointer,

if

indirect

is

true)

is

preceded

by

a

four-byte

value

which

contains

the

status

of

the

attribute.

If

the

status

value

is

returned,

it

has

the

following

format:

Bits

0-2

Reserved

(binary

0)

Bit

3

Attribute

unavailable

at

this

time.

(Eg,

asking

for

the

system

pointer

to

a

destroyed

non-bound

program.)

The

result

returned

is

zeros

for

the

minimum

length

defined.

Bit

4

Attribute

not

defined

in

this

context.

(Eg,

asking

for

lexical

level

number

from

non-bound

program

invocation.)

The

result

returned

is

zeros

for

the

minimum

length

defined.

Bit

5

Attribute

not

defined

at

this

time.

(Eg,

asking

for

interrupt

message

invocation

when

the

invocation

is

not

interrupted.)

The

result

returned

is

zeros

for

the

minimum

length

defined.

Bit

6

Attribute

defined

but

null.

(Eg,

when

asking

for

the

resume

point

for

an

invocation

for

which

resume

is

not

currently

allowed.)

The

result

returned

is

zeros

for

the

minimum

length

defined.

Bit

7

Attribute

truncated.

Indicates

that

the

specified

length

of

receiver

was

too

small

to

allow

the

entire

attribute

to

be

returned.

The

truncated

result

is

returned,

as

described

earlier.

Bits

8-31

Reserved

(binary

0)

If

return

length

and

return

status

are

both

binary

1

then

the

length

field

comes

first,

followed

immediately

by

the

status

field.

Pad

If

either

return

length

or

return

status

is

binary

1,

and

pad

is

also

binary

1,

then

twelve

bytes

of

pad

are

assumed

between

the

length

or

status

value

and

the

attribute

(or

attribute

pointer,

if

indirect

is

true).

If

both

return

length

and

return

status

are

binary

1,

and

pad

is

also

binary

1,

then

eight

bytes

of

pad

are

assumed

between

the

status

value

and

the

attribute

(or

attribute

pointer).

If

return

length

and

return

status

are

both

binary

0,

then

no

padding

occurs,

regardless

of

the

value

of

pad.

The

area

occupied

by

the

pad

is

not

modified

by

this

instruction.

Note:

Pad

makes

it

easier

to

quadword

align

the

area

to

receive

the

materialized

attribute

(if

indirect

is

false)

or

the

area

containing

the

attribute

pointer

(if

indirect

is

true)

when

return

status

and/or

return

length

are

also

specified.

Offset

to

receiver

Specifies

the

offset

to

the

location

where

the

selected

attribute

value

is

to

be

materialized,

or

the

offset

to

a

pointer

to

the

location,

depending

on

the

value

of

indirect.

Length

of

receiver

Specifies

the

length

of

the

area

where

the

attribute

value

is

to

be

materialized.

This

length

indicates

the

length

of

the

actual

area

available

for

materializing

the

attribute,

and

does

not

include

the

length

of

any

length,

status,

or

pad

field.

If

the

number

of

bytes

of

attribute

data

available

to

be

materialized

(exclusive

of

the

status,

length,

and

pad

fields,

if

any)

exceeds

length

of

receiver,

then

only

length

of

receiver

bytes

of

data

are

returned.

No

exception

is

signalled

in

this

case.

If

indirect

is

a

binary

0,

then

length

of

receiver

indicates

the

length

of

the

area

located

by

offset

to

receiver.

If

indirect

is

a

binary

1,

then

length

of

receiver

indicates

the

length

of

the

area

located

by

the

indirect

space

pointer

identified

by

offset

to

receiver.

588

iSeries:

Machine

Interface

Instructions

APIs

In

the

case

that

length

of

receiver

is

sufficient

to

receive

only

part

of

a

field

in

an

attribute

structure,

then

the

partial

field

may

or

may

not

be

materialized.

Individual

attribute

entries

are

processed

in

order,

with

the

attributes

specified

by

each

entry

being

materialized

before

processing

of

the

next

entry

begins.

If

an

exception

occurs

while

processing

an

attribute

entry,

then

the

attributes

materialized

due

to

the

preceding

attribute

entries

will

still

be

present

in

their

specified

result

locations.

For

attributes

which

include

pointers,

the

specified

direct

or

indirect

value

location,

after

accounting

for

any

length,

status,

or

pad

fields,

must

be

quadword

aligned

or

a

boundary

alignment

(hex

0602)

exception

may

occur.

(The

exception

is

not

guaranteed

to

occur,

eg,

in

the

case

where

length

of

receiver

is

insufficient

to

include

the

materialized

pointer,

or

when

a

null

pointer

is

returned.)

If

the

value

locations

of

individual

attribute

entries

overlap,

then

the

values

will

be

overlaid

in

the

sequence

implied

by

the

attribute

entry

order.

If

the

value

location

of

a

non-indirect

result

overlays

the

location

of

the

space

pointer

for

an

indirect

result,

then

the

validity

of

the

space

pointer

will

depend

on

the

order

of

the

associated

entries.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Activation

group

access

–

–

From

the

activation

group

of

the

invocation

issuing

the

instruction

to

the

activation

group

of

the

originating

invocation

identified

by

operand

2

–

When

an

attribute

annotated

with

″access

rights

required″

is

specified:

From

the

activation

group

of

the

originating

invocation

identified

by

operand

2

to

the

activation

group

of

the

source

invocation

identified

by

operand

2
v

Space

authority

–

–

For

the

module

associated

space

option,

the

requesting

invocation

must

have

space

authority

to

the

program

executing

in

the

source

invocation

identified

by

operand

2

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

Machine

Interface

Instructions

589

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C11

Process

Object

Access

Invalid

2C12

Activation

Group

Access

Violation

2C19

Invalid

Origin

Invocation

2C1A

Invocation

Offset

Outside

Range

of

Current

Stack

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

590

iSeries:

Machine

Interface

Instructions

APIs

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Invocation

Entry

(MATINVE)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

0547

Receiver

Selection

information

Materialization

options

Operand

1:

Character

variable

scalar.

Operand

2:

Character(8)

scalar

or

null.

Operand

3:

Character(1)

scalar

or

null.

Bound

program

access

Built-in

number

for

MATINVE

is

479.

MATINVE

(

receiver

:

address

materialization_options

:

unsigned

binary(4)

literal

)

Note:

There

is

no

operand

to

identify

an

invocation.

Only

the

current

invocation

can

be

materialized

with

this

instruction.

Thus

the

operand

2

description

below

does

not

apply.

Note:

The

materialization

options

operand

must

be

specified.

It

is

referred

to

as

operand

3

in

the

description

below.

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Note

It

is

recommended

that

you

use

Short

Materialization

Type

6

for

an

8-byte

invocation

mark

rather

than

Short

Materialization

Type

2

and

that

you

use

the

8-byte

invocation

mark

and

the

8-byte

thread

mark

counter

from

the

end

of

the

Long

Materialization

receiver.

4-byte

marks

can

wrap

and

produce

unexpected

results.

Description:

This

instruction

materializes

the

attributes

of

the

specified

invocation

entry

within

the

thread

issuing

the

instruction.

The

attributes

specified

by

operand

3

of

the

invocation

selected

through

operand

2

are

materialized

into

the

receiver

designated

by

operand

1.

Operand

2

is

an

8-byte

template

or

a

null

operand.

If

operand

2

is

null,

it

indicates

that

the

attributes

of

the

current

invocation

are

to

be

materialized.

If

operand

2

is

not

null,

it

must

be

an

8-byte

template

which

specifies

the

invocation

to

be

materialized.

Only

the

first

8

bytes

are

used.

Any

excess

bytes

are

ignored.

It

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Selection

information

Char(8)

0

0

Relative

invocation

number

Char(2)

2

2

Reserved

Char(6)

Machine

Interface

Instructions

591

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

—-

End

—-

If

operand

2

is

not

null,

it

is

restricted

to

a

constant

with

the

relative

invocation

number

field

specifying

a

value

of

zero,

which

indicates

that

the

attributes

of

the

current

invocation

are

to

be

materialized.

Operand

3

is

a

1-byte

value

or

a

null

operand.

If

operand

3

is

null,

it

indicates

that

the

attributes

for

a

materialization

options

value

of

hex

00

are

to

be

materialized.

If

operand

3

is

not

null,

it

must

be

a

1-byte

value

which

specifies

the

type

of

materialization

to

be

performed.

Option

values

that

are

not

defined

below

are

reserved

values

and

may

not

be

specified.

Only

the

first

byte

is

used.

Any

excess

bytes

are

ignored.

It

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

options

Char(1)

Hex

00

=

Long

materialization

Hex

01

=

Short

materialization

type

1

Hex

02

=

Short

materialization

type

2

Hex

03

=

Short

materialization

type

3

Hex

04

=

Short

materialization

type

4

Hex

05

=

Short

materialization

type

5

Hex

06

=

Short

materialization

type

6

1

1

—-

End

—-

If

operand

3

is

not

null,

it

is

restricted

to

a

constant

character

scalar

or

an

immediate

value.

Operand

1

specifies

a

receiver

into

which

the

materialized

data

is

placed.

It

must

specify

a

character

scalar

with

a

minimum

length

which

is

dependent

upon

the

materialization

options

specified

for

operand

3.

If

the

length

specified

for

operand

1

is

less

than

the

required

minimum,

an

exception

is

signaled.

Only

the

bytes

up

to

the

required

minimum

length

are

used.

Any

excess

bytes

are

ignored.

For

the

materialization

options

which

produce

pointers

in

the

materialized

data,

16-byte

space

alignment

is

required

for

the

receiver.

The

data

placed

into

the

receiver

differs

depending

upon

the

materialization

options

specified.

The

following

descriptions

detail

the

formats

of

the

optional

materializations.

Long

Materialization:

For

a

materialization

options

value

of

hex

00,

the

minimum

length

for

the

receiver

is

144

bytes.

It

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Long

materialization

Char(144)

0

0

Reserved

Char(12)

12

C

Thread

mark

counter

Bin(4)

16

10

Reserved

Char(32)

48

30

Associated

program

pointer

System

pointer

(zero

for

data

base

select/omit

program)

64

40

Invocation

number

Bin(2)

592

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

66

42

Invocation

type

Char(1)

Hex

00=

Data

base

select/omit

program

Hex

01

=

Call

external

Hex

02

=

Transfer

control

Hex

03

=

Event

handler

Hex

04

=

External

exception

handler

Hex

05

=

Initial

program

in

process

problem

state

Hex

06

=

Initial

program

in

process

initiation

state

Hex

07

=

Initial

program

in

process

termination

state

Hex

08

=

Invocation

exit

Hex

09

=

Return

trap

handler

or

return/XCTL

trap

handler

Hex

0A

=

Call

program

Hex

0B

=

Reserved

Hex

0C

=

Reserved

Hex

0D

=

Reserved

Hex

0E

=

Process

Default

Exception

Handler

67

43

Reserved

(binary

0)

Char(1)

68

44

Invocation

mark

Bin(4)

72

48

State

invocation

was

invoked

with

Char(2)

Hex

8000

=

System

state

Hex

0001

=

User

state

74

4A

State

for

invocation

Char(2)

Hex

8000

=

System

state

Hex

0001

=

User

state

76

4C

Reserved

Char(4)

80

50

Automatic

storage

frame

(ASF)

pointer

Space

pointer

96

60

Static

storage

frame

(SSF)

pointer

Space

pointer

112

70

Invocation

mark

UBin(8)

Machine

Interface

Instructions

593

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

For

Non-Bound

programs,

the

following

datatype

should

be

used:

112

70

Invocation

mark

(Non-Bound

program)

Cha

120

78

Thread

mark

counter

UBin(8)

For

Non-Bound

programs,

the

following

datatype

should

be

used:

120

78

Thread

mark

counter

(Non-Bound

program)

Cha

128

80

Reserved

Char(16)

144

90

—-

End

—-

Short

Materialization

Type

1:

For

a

materialization

options

value

of

hex

01,

the

minimum

length

for

the

receiver

is

16

bytes.

It

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Short

materialization

type

1

Char(16)

0

0

Associated

program

pointer

System

pointer

(null

for

data

base

select/omit

program)

16

10

—-

End

—-

Short

Materialization

Type

2:

For

a

materialization

options

value

of

hex

02,

the

minimum

length

for

the

receiver

is

4

bytes.

It

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Short

materialization

type

2

Char(4)

0

0

Invocation

mark

Bin(4)

4

4

—-

End

—-

Short

Materialization

Type

3:

For

a

materialization

options

value

of

hex

03,

the

minimum

length

for

the

receiver

is

16

bytes.

It

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Short

materialization

type

3

Char(16)

0

0

ASF

(Automatic

Storage

Frame)

pointer

Space

pointer

16

10

—-

End

—-

Short

Materialization

Type

4:

For

a

materialization

options

value

of

hex

04,

the

minimum

length

for

the

receiver

is

16

bytes.

It

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Short

materialization

type

4

Char(16)

0

0

SSF

(Static

Storage

Frame)

pointer

Space

pointer

16

10

—-

End

—-

594

iSeries:

Machine

Interface

Instructions

APIs

Short

Materialization

Type

5:

For

a

materialization

options

value

of

hex

05,

the

minimum

length

for

the

receiver

is

4

bytes.

It

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Short

materialization

type

5

Char(4)

0

0

State

invocation

was

invoked

with

Char(2)

2

2

State

for

invocation

Char(2)

4

4

—-

End

—-

Short

Materialization

Type

6:

For

a

materialization

options

value

of

hex

06,

the

minimum

length

for

the

receiver

is

8

bytes.

It

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Short

materialization

type

6

Char(8)

0

0

Invocation

mark

UBin(8)

For

Non-Bound

programs,

the

following

datatype

should

be

used:

0

0

Invocation

mark

(Non-Bound

program)

Char(8)

8

8

—-

End

—-

The

thread

mark

counter

is

a

thread-specific

counter

maintained

by

the

machine.

It

is

used

to

assign

invocation

marks

within

the

thread.

The

current

value

of

the

thread

mark

counter

at

the

time

the

instruction

executes

is

returned

in

the

8-byte

thread

mark

counter

field.

The

low

order

4

bytes

is

returned

in

the

4-byte

thread

mark

counter

field.

The

associated

program

pointer

is

a

system

pointer

that

locates

the

program

associated

with

the

invocation

entry.

The

invocation

number

is

the

stack

depth

of

the

invocation

within

the

invocation

stack.

The

invocation

number

of

a

new

invocation

entry

is

one

more

than

that

in

the

calling

invocation.

The

first

invocation

in

the

current

thread

has

an

invocation

number

of

one.

The

invocation

type

indicates

how

the

associated

program

was

invoked.

The

invocation

mark

identifies

the

invocation

within

the

thread.

The

state

invocation

was

invoked

with

value

represents

the

state

in

which

the

machine

was

running

when

the

program

was

called

or

transferred

to.

The

state

for

invocation

value

represents

the

state

in

which

the

machine

is

running

the

program.

The

ASF

(Automatic

Storage

Frame)

pointer

is

a

space

pointer

that

is

set

to

address

the

start

of

the

ASF

associated

with

the

invocation.

The

associated

program’s

automatic

data

starts

64

bytes

after

the

area

addressed

by

this

pointer.

The

SSF

(Static

Storage

Frame)

pointer

is

a

space

pointer

that

is

set

to

address

the

start

of

the

static

storage

frame

(SSF)

associated

with

the

invocation.

The

associated

program’s

static

data

starts

64

bytes

after

the

area

addressed

by

this

pointer.

This

pointer

will

be

set

to

a

value

of

all

zeros

if

the

invoked

program

does

not

have

static

data.

Machine

Interface

Instructions

595

The

fields

labeled

reserved

in

the

descriptions

of

the

optional

materializations

are

currently

reserved

for

future

use.

These

fields

may

be

altered

by

this

instruction

depending

upon

the

particular

implementation

of

the

machine.

Any

values

set

into

these

fields

are

meaningless.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

596

iSeries:

Machine

Interface

Instructions

APIs

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Invocation

Stack

(MATINVS)

Op

Code

(Hex)

Operand

1

Operand

2

0546

Receiver

Process

Operand

1:

Space

pointer.

Operand

2:

System

pointer

or

null.

Bound

program

access

Built-in

number

for

MATINVS

is

150.

MATINVS

(

receiver

:

address

process

:

address

of

system

pointer

OR

null

operand

)

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Note

It

is

recommended

that

you

use

Materialize

Invocation

Attributes

(MATINVAT)

or

Materialize

Invocation

Entry

(MATINVE)

to

materialize

an

8-byte

invocation

mark.

4-byte

marks

can

wrap

and

produce

unexpected

results.

Description:

The

invocation

stack

of

either

the

current

thread,

or

the

initial

thread

of

another

process

is

materialized.

The

materialization

starts

with

the

oldest

invocation

and

proceeds

toward

the

newest

invocation.

Machine

Interface

Instructions

597

Invocation

stack

entry

attributes

from

the

selected

thread

are

returned

in

the

template

specified

by

operand

1.

Operand

2

identifies

the

selected

thread

as

follows.

If

operand

2

is

either

null

or

a

system

pointer

to

the

process

control

space

of

the

current

process,

then

the

invocation

stack

of

the

current

thread

will

be

materialized.

If

operand

2

identifies

a

process

other

than

the

current

process,

then

the

invocation

stack

of

the

initial

thread

of

that

process

will

be

materialized.

In

this

latter

case

the

process

must

be

the

original

initiator

of

the

target

process,

or

must

have

process

control

special

authorization.

Operand

1

is

a

space

pointer

that

addresses

a

16-byte

aligned

template

into

which

is

placed

the

materialized

data.

The

format

of

the

data

is:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

by

the

user

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Number

of

invocation

entries

Bin(4)

12

C

Thread

mark

counter

Bin(4)

+

16

10

Invocation

entries

[*]

Char(128)

(An

invocation

entry

is

materialized

for

each

of

the

invocations

currently

on

the

invocation

stack

of

the

specified

process.)

*

*

—-

End

—-

The

invocation

entries

materialized

are

each

128

bytes

long

and

have

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Reserved

Char(32)

32

20

Associated

program

pointer

System

pointer

(null

pointer

value

for

a

destroyed

program)

48

30

Invocation

number

Bin(2)

50

32

Invocation

mechanism

Char(1)

598

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

Hex

01

=

Call

external

Hex

02

=

Transfer

control

Hex

03

=

Event

handler

Hex

04

=

External

exception

handler

(for

non-bound

program)

Hex

05

=

Initial

program

in

process

problem

state

Hex

06

=

Initial

program

in

process

initiation

state

Hex

07

=

Initial

program

in

process

termination

state

Hex

08

=

Invocation

exit

(for

non-bound

program)

Hex

09

=

Return

or

return/XCTL

trap

handler

Hex

0A

=

Call

program

Hex

0B

=

Cancel

handler

(bound

program

only)

Hex

0C

=

Exception

handler

(bound

program

only)

Hex

0D

=

Call

bound

procedure/call

with

procedure

pointer

Hex

0E

=

Process

Default

Exception

Handler

51

33

Invocation

type

Char(1)

Hex

01

=

Non-Bound

Program

Hex

02

=

Bound

Program

Entry

Procedure

(PEP)

Hex

03

=

Bound

Program

Procedure

Note:

Bound

program

procedures

are

contained

within

bound

programs,

bound

service

programs,

and

Java

programs.

All

discussion

of

bound

program

procedure

semantics

also

apply

to

Java

program

procedures.

52

34

Invocation

mark

Bin(4)

+

56

38

Instruction

identifier

Bin(4)

(zero

for

destroyed,

damaged,

or

suspended

program)

60

3C

Activation

group

mark

Bin(4)

+

Machine

Interface

Instructions

599

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

This

is

the

mark

of

the

activation

group

which

owns

the

activation

associated

with

the

invocation.

However,

if

no

activation

exists

for

the

invocation,

or

if

an

activation

exists

and

it

resides

in

a

shared

activation

group

owned

by

another

process,

then

the

activation

group

mark

is

returned

as

follows:

1

for

a

system

state

invocation

2

for

a

user

state

invocation

64

40

Suspend

point

Suspend

pointer

(null

pointer

value

for

destroyed

program)

80

50

Reserved

Char(48)

128

80

—-

End

—-

Note:

Fields

annotated

with

a

plus

sign

(+)

are

not

materialized

if

operand

2

identifies

a

process

other

than

the

current

process.

Fields

not

materialized

are

set

to

binary

0s.

The

number

of

invocation

entries

value

specifies

the

number

of

invocation

entries

available

to

be

materialized.

The

thread

mark

counter

is

a

thread-specific

counter

maintained

by

the

machine.

It

is

used

to

assign

invocation

marks

within

the

thread.

The

value

is

the

low

order

4

bytes

of

the

current

value

of

the

thread

mark

counter

at

the

time

the

instruction

executes.

The

associated

program

pointer

is

a

system

pointer

that

locates

the

program

associated

with

the

invocation

entry.

The

invocation

number

is

a

number

that

uniquely

identifies

each

invocation

in

the

invocation

stack.

When

an

invocation

is

allocated,

the

invocation

number

of

the

new

invocation

entry

is

one

more

than

that

in

the

calling

invocation.

The

first

invocation

in

the

current

process

state

has

an

invocation

number

of

one.

The

invocation

type

indicates

how

the

associated

program

was

invoked.

The

invocation

mark

identifies

the

invocation

within

the

thread.

If

the

invocation

type

is

a

non-bound

program

the

instruction

identifier

field

will

contain

the

instruction

number

which

specifies

the

number

of

the

instruction

last

being

executed

when

the

invocation

passed

control

to

the

next

invocation

on

the

stack.

If

the

invocation

type

is

a

bound

program

entry

or

a

procedure,

the

instruction

identifier

field

will

contain

the

statement

identifier,

which

is

a

compiler

supplied

number

which

allows

the

compiler

to

identify

the

source

statement

associated

with

a

particular

sequence

of

instructions.

Note:

If

the

program

is

damaged

or

destroyed

or

if

a

statement

identifier

was

not

supplied

by

the

compiler,

a

value

of

0

is

set.

The

suspend

point

is

a

suspend

pointer

which

identifies

the

instruction

last

being

executed

when

the

invocation

passed

control

to

the

next

invocation

on

the

stack.

The

fields

labeled

reserved

are

currently

reserved

for

future

use.

These

fields

may

be

altered

by

this

instruction

depending

upon

the

particular

implementation

of

the

machine.

Any

values

set

into

these

fields

are

meaningless.

600

iSeries:

Machine

Interface

Instructions

APIs

The

first

4

bytes

of

the

materialization

identifies

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

materialization

identifies

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

the

excess

bytes

are

unchanged.

No

exceptions

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization,

other

than

the

materialization

length

exception

described

previously.

When

the

materialization

is

performed

for

a

thread

in

a

different

process,

the

instruction

attempts

to

interrogate

and

snapshot

the

invocation

stack

of

the

other

thread

concurrently

with

the

ongoing

execution

of

that

thread.

In

this

case,

the

interrogating

thread

and

subject

thread

may

have

interleaving

usage

of

the

processor

resource.

Due

to

this,

the

accuracy

and

integrity

of

the

materialization

is

relative

to

the

state,

static

or

dynamic,

of

the

invocation

stack

in

the

subject

thread

over

the

time

of

the

interrogation.

If

the

invocation

stack

in

the

subject

thread

is

in

a

very

static

state,

not

changing

over

the

period

of

interrogation,

the

materialization

may

represent

a

good

approximation

of

a

snapshot

of

its

invocation

stack.

To

the

contrary,

if

the

invocation

stack

in

the

subject

thread

is

in

a

very

dynamic

state,

radically

changing

over

the

period

of

interrogation,

the

materialization

is

potentially

totally

inaccurate

and

may

describe

a

sequence

of

invocations

that

was

never

an

actual

sequence

that

occurred

within

the

thread.

In

addition

to

the

above

exposures

to

inaccuracy

in

attempting

to

take

the

snapshot,

the

ongoing

status

of

the

invocation

stack

of

the

subject

thread

may

substantially

differ

from

that

reflected

in

the

materialization,

due

to

its

continuing

execution

after

completion

of

this

instruction.

When

the

materialization

is

performed

for

the

current

thread,

it

does

provide

an

accurate

reflection

of

its

invocation

stack.

In

this

case,

concurrent

execution

of

this

instruction

with

execution

of

other

instructions

in

the

thread

is

precluded.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Process

control

special

authorization

–

–

For

materializing

a

thread

in

a

different

process.
v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialization

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

Machine

Interface

Instructions

601

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

28

Process/Thread

State

2802

Process

Control

Space

Not

Associated

with

a

Process

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3202

Scalar

Attributes

Invalid

36

Space

Management

3601

Space

Extension/Truncation

602

iSeries:

Machine

Interface

Instructions

APIs

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Journal

Port

Attributes

(MATJPAT)

Op

Code

(Hex)

Operand

1

Operand

2

05A6

Receiver

Journal

port

or

materialize

template

Operand

1:

Space

pointer.

Operand

2:

System

pointer

or

space

pointer

data

object.

Bound

program

access

Built-in

number

for

MATJPAT

is

84.

MATJPAT

(

receiver

:

address

journal_port_or_materialize_template

:

address

of

system

pointer

OR

address

of

space

pointer(16)

)

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Description:

This

instruction

materializes

the

creation

attributes

of

the

journal

port

specified

by

operand

2

and

places

the

attributes

in

the

receiver

specified

by

operand

1.

The

format

of

the

materialization

data

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

length

Char(8)

0

0

Number

of

bytes

provided

by

user

Bin(4)

4

4

Number

of

bytes

available

to

be

materialized

Bin(4)

8

8

Object

identification

Char(32)

8

8

Object

type

Char(1)

9

9

Object

subtype

Char(1)

10

A

Object

name

Char(30)

40

28

Object

creation

options

Char(4)

40

28

Existence

attributes

(binary

1)

Bit

0

40

28

Space

attributes

Bit

1

0

=

Fixed-length

1

=

Variable-length

40

28

Initial

context

Bit

2

40

28

Access

group

Bit

3

40

28

Replace

option

Bit

4

40

28

Reserved

Bits

5-12

Machine

Interface

Instructions

603

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

40

28

Initialize

space

Bit

13

40

28

Reserved

Bits

14-18

40

28

Use

system

storage

Bit

19

0

=

System

storage

not

used

1

=

System

storage

used

40

28

Reserved

Bits

20-31

44

2C

Recovery

options

Char(4)

48

30

Size

of

space

Bin(4)

52

34

Initial

value

of

space

Char(1)

53

35

Performance

class

Char(4)

57

39

Reserved

Char(7)

64

40

Context

System

pointer

80

50

Access

group

System

pointer

96

60

Length

of

timestamp

in

prefix

Bin(2)

98

62

Length

of

process

name

in

prefix

Bin(2)

100

64

Length

of

user

profile

name

in

prefix

Bin(2)

102

66

Length

of

program

name

in

prefix

Bin(2)

104

68

Number

of

journal

spaces

attached

to

the

journal

port

Bin(2)

106

6A

Journal

entry

force

count

Bin(4)

110

6E

Journal

port

flags

Char(1)

110

6E

Default

journal

port

Bit

0

0

=

Not

a

default

journal

port

for

implicitly

journaled

objects.

1

=

Default

journal

port

for

implicitly

journaled

objects.

110

6E

Journal

port

commit

quiesce

status

Bit

1

0

=

No

quiesce

of

all

commit

activity

to

a

transaction

boundary

is

in

progress

against

this

journal

port.

1

=

The

quiesce

of

all

commit

activity

to

a

transaction

boundary

is

in

progress

against

this

journal

port.

110

6E

Discard

transient

entries

Bit

2

0

=

Do

not

discard

transient

entries

in

the

permanent

journal

space.

1

=

Discard

transient

entries

in

the

permanent

journal

space.

110

6E

Remote

journal

port

Bit

3

0

=

Not

a

remote

journal

port

1

=

Remote

journal

port

110

6E

Obsolete

Bit

4

110

6E

Prevent

objects

from

being

journaled

Bit

5

0

=

Objects

are

allowed

to

be

journaled

to

this

journal

port

1

=

Objects

are

prevented

from

being

journaled

to

this

journal

port

110

6E

Standby

mode

Bit

6

604

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Port

is

not

in

standby

mode

1

=

Port

is

in

standby

mode

110

6E

Caching

mode

Bit

7

0

=

Port

is

not

in

caching

mode

1

=

Port

is

in

caching

mode

111

6F

Default

journal

port

ID

Char(2)

113

71

Remote

journal

attributes

Char(3)

113

71

Receiving

environment

attribute

flags

Char(1)

113

71

Remote

journal

environment

Bit

0

0

=

A

remote

journal

receiving

environment

does

not

exist

for

this

journal

port

1

=

A

remote

journal

receiving

environment

does

exist

for

this

journal

port

113

71

Delivery

mode

Bit

1

0

=

Synchronous

delivery

mode

1

=

Asynchronous

delivery

mode

113

71

Reserved

(binary

0)

Bits

2-7

114

72

Transport

mechanism

Char(1)

Hex

01

=

Bus

transport

Hex

02

=

SNA

Hex

03

=

TCP/IP

115

73

Environment

status

Char(1)

Hex

00

=

Unknown

Hex

01

=

Active

Hex

02

=

Catch-up

in

progress

Hex

03

=

Controlled

end

in

progress

Hex

04

=

Suspended

Hex

05

=

Error

116

74

Number

of

remote

sending

environments

UBin(4)

120

78

Number

of

journaled

objects

UBin(4)

124

7C

Fixed

length

data

Char(1)

124

7C

Include

program

context

name

and

ASP

number

Bit

0

0

=

Program

context

name

and

ASP

number

will

not

be

in

journal

entries.

1

=

Program

context

name

and

ASP

number

will

be

in

journal

entries.

124

7C

Include

system

sequence

number

Bit

1

0

=

System

sequence

number

will

not

be

in

journal

entries.

1

=

System

sequence

number

will

be

in

journal

entries.

Machine

Interface

Instructions

605

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

124

7C

Include

remote

address

Bit

2

0

=

Remote

address

will

not

be

in

journal

entries.

1

=

Remote

address

will

be

in

journal

entries.

124

7C

Include

thread

ID

Bit

3

0

=

Thread

identifier

will

not

be

in

journal

entries.

1

=

Thread

identifier

will

be

in

journal

entries.

124

7C

Include

logical

unit

of

work

Bit

4

0

=

Logical

unit

of

work

will

not

be

in

journal

entries.

1

=

Logical

unit

of

work

will

be

in

journal

entries.

124

7C

Include

transaction

identifier

Bit

5

0

=

Transaction

identifier

will

not

be

in

journal

entries.

1

=

Transaction

identifier

will

be

in

journal

entries.

124

7C

Reserved

(binary

0)

Bits

6-7

125

7D

Quiesced

Status

Char(1)

Hex

00

=

Journal

port

is

not

currently

quiesced

’S’=

Journal

port

has

been

quiesced

such

that

there

are

no

current

open

commit

cycles

and

no

additional

cycles

are

allowed

to

start

(this

is

the

quiesced

state

achieved

in

support

of

traditional

Save

While

Active)

’R’=

Journal

port

has

been

quiesced

only

to

the

point

where

no

operations

are

in

flux.

This

does

not

assure

that

commit

cycles

are

closed.

(this

is

the

quiesced

state

achieved

in

support

of

Ragged

Save

While

Active)

126

7E

Reserved

(binary

0)

Char(2)

128

80

Journal

spaces

(0

to

n)

[*]

System

pointer

*

*

Sending

environment

templates

(0

to

m)

[*]

Char(48)

*

*

Minimal

entry

array

Char(32)

*

*

—-

End

—-

The

receiver

must

be

aligned

on

a

16-byte

boundary.

The

first

4

bytes

of

the

receiver

identify

the

total

number

of

bytes

provided

by

the

user

for

the

materialization

and

the

next

4

specify

the

total

number

of

bytes

available

to

be

materialized.

If

fewer

than

8

bytes

are

available

in

the

space

identified

by

the

receiver,

operand

1,

a

materialization

length

invalid

(hex

3803)

exception

is

signaled.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

receiver’s

space.

If

the

space

of

the

receiver

is

greater

than

that

required

to

contain

the

information

requested

for

materialization,

the

excess

bytes

are

unchanged.

No

exceptions

are

signaled

in

the

event

that

the

receiver

contains

insufficient

space

for

the

materialization

other

than

the

materialization

length

invalid

(hex

3803)

exception

described

previously.

606

iSeries:

Machine

Interface

Instructions

APIs

Each

journal

space

currently

attached

to

the

journal

port

will

be

identified

in

the

journal

space

list.

This

list

has

as

many

entries

as

are

identified

in

the

number

of

journal

spaces

attached

to

the

journal

port

field.

The

journal

entry

force

count

is

the

value

which

is

used

to

determine

how

many

journal

entries

are

allowed

to

be

deposited

on

the

journal

before

forcing

those

entries

to

disk.

The

discard

transient

entries

value

indicates

whether

entries

of

a

transient

nature,

those

used

strictly

for

the

recovery

of

objects

at

IPL

time,

should

be

permanently

associated

with

the

journal

space.

The

remote

journal

port

field

indicates

whether

this

is

a

remote

journal

port.

A

remote

journal

port

receives

entries

from

another

journal

port

via

a

remote

journal

receiving

environment.

No

entries

can

be

deposited

to

a

remote

journal

port.

The

prevent

entries

from

being

deposited

field

indicates

whether

journal

entries

are

currently

allowed

to

be

deposited

to

the

journal

port.

Any

attempt

to

deposit

other

entries

to

a

journal

with

this

attribute

in

effect

will

result

in

an

entry

not

journaled

(hex

3002)

exception

being

signaled.

This

field

does

not

apply

to

remote

journal

ports

and

will

contain

binary

0

if

the

remote

journal

port

field

contains

a

value

of

binary

1.

The

default

journal

port

ID

will

be

zeros

if

the

journal

port

is

not

a

default

journal.

The

prevent

objects

from

being

journaled

field

indicates

whether

objects

are

allowed

to

be

journaled

to

this

journal

port.

The

standby

mode

field

indicates

whether

the

port

is

currently

in

standby

mode.

Those

ports

which

are

in

standby

mode

allow

only

a

small

select

subset

of

critical

journal

entries

to

be

deposited

into

the

journal

space.

The

caching

mode

field

indicates

whether

the

port

is

currently

in

caching

mode.

Those

ports

which

are

in

caching

mode

do

not

immediately

write

all

journal

entries

to

disk.

Rather,

they

allow

most

journal

entries

to

linger

within

a

main

memory

cache

until

the

cache

is

nearly

full.

The

remote

journal

attributes

fields

indicate

the

status

of

the

receiving

environment

for

remote

journal

ports.

The

values

in

these

fields

only

apply

to

remote

journal

ports

and

will

be

binary

0’s

for

non-remote

journal

ports.

The

remote

journal

environment

field

indicates

whether

a

remote

journal

receiving

environment

exists

for

this

journal

port.

The

delivery

mode

field

indicates

how

journal

entries

are

sent

to

this

journal

port.

A

synchronous

delivery

mode

means

that

journal

entries

are

sent

to

this

journal

concurrently

with

the

entry

being

deposited

on

the

journal

port

on

the

source

system.

An

asynchronous

delivery

mode

means

that

journal

entries

are

sent

to

this

journal

port

at

some

time

after

entries

have

been

deposited

on

the

journal

port

on

the

source

system.

The

delivery

mode

does

not

apply

and

will

contain

a

value

of

binary

0

if

a

remote

journal

receiving

environment

does

not

exist

for

the

journal

port

or

the

environment

status

field

indicates

that

the

environment

is

in

a

suspended

or

unknown

state.

The

transport

mechanism

field

indicates

whether

bus-level

support

or

communications-level

support

is

being

used

to

transport

the

journal

entries.

The

transport

mechanism

field

in

the

remote

journal

attributes

section

of

the

materialize

template

indicates

the

mechanism

used

by

this

remote

journal

port

to

receive

entries

from

another

source

journal

port.

The

transport

mechanism

field

does

not

apply

and

will

contain

a

value

of

binary

0

if

a

remote

journal

receiving

environment

does

not

exist

for

the

journal

port.

The

transport

mechanism

field

in

the

sending

environment

template(s)

indicates

the

mechanism

used

to

send

journal

entries

from

this

journal

port

to

the

remote

journal

port.

Machine

Interface

Instructions

607

The

environment

status

field

indicates

the

current

state

of

the

remote

journal

environment.

A

value

of

hex

01

indicates

an

active

remote

journaling

environment.

A

value

of

hex

02

indicates

a

remote

journal

port

is

currently

in

the

process

of

catching

up

journal

entries

from

a

source

journal

port.

The

catch-up

phase

is

considered

complete

when

the

transition

is

made

to

either

synchronous

or

asynchronous

remote

journaling.

A

value

of

hex

02

in

the

environment

status

field

in

the

remote

journal

attributes

section

of

the

materialize

template

indicates

this

remote

journal

port

is

currently

catching

up

entries

from

another

source

journal

port.

A

value

of

hex

02

in

the

environment

status

field

in

the

sending

environment

template(s)

indicates

the

remote

journal

port

is

currently

in

the

process

of

catching

up

journal

entries

from

this

journal

port.

A

value

of

hex

03

indicates

that

the

remote

environment

is

ending

controlled.

A

value

of

hex

04

indicates

that

the

environment

has

been

suspended

because

the

environment

did

not

successfully

transition

to

an

active

state

following

the

catch-up

phase.

A

value

of

hex

05

indicates

that

an

error

has

been

detected

and

the

environment

is

waiting

to

be

deleted.

The

environment

status

field

in

the

remote

journaling

attributes

section

of

the

materialize

template

does

not

apply

and

will

have

a

value

of

binary

0

if

a

remote

journal

receiving

environment

does

not

exist

for

the

journal

port.

The

number

of

remote

sending

environments

field

indicates

the

number

of

remote

journal

ports

that

this

journal

port

is

actively

sending

journal

entries

to.

Information

about

each

of

the

remote

journal

ports

is

provided

in

the

sending

environment

template(s)

below.

The

number

of

journaled

objects

field

indicates

the

number

of

objects

actively

being

journaled

to

this

port.

This

includes

both

implicitly

and

explicitly

journaled

objects.

The

fixed

length

data

field

indicates

whether

various

fixed

length

data

is

in

the

journal

entries.

A

value

of

binary

1

for

any

of

the

following

fields

indicates

that

that

specific

data

will

be

included

in

each

journal

entry

in

the

journal

space

attached

to

the

journal

port.

v

include

logical

unit

of

work

v

include

transaction

identifier

v

include

remote

address

v

include

program

context

name

and

ASP

number

v

include

system

sequence

number

v

include

thread

identifier

A

value

of

binary

0

indicates

that

that

specific

data

will

NOT

be

included

in

those

journal

entries.

The

minimal

entry

array

field

is

defined

as

an

array

of

bits,

numbered

from

0

to

255,

one

bit

per

entry

type.

Each

bit

indicates

that

minimal

journal

entries

may

or

may

not

be

deposited

to

this

port

for

the

corresponding

entry

type.

For

an

entry

type

N,

minimal

entry

by

entry

type

bit

N

=

0

indicates

that

minimal

entries

are

NOT

accepted

for

the

entry

type

N.

Minimal

entry

by

entry

type

bit

N

=

1

indicates

that

minimal

entries

are

accepted

for

the

entry

type

N.

The

entry

type

indicates

the

type

of

object

which

is

having

its

change

activity

journaled.

In

most

cases,

the

entry

type

corresponds

directly

to

the

object’s

MI

type.

However,

some

MI

types

are

used

to

represent

more

than

one

flavor

of

object.

For

this

reason,

the

entry

type

for

Data

Area’s

is

hex

A0.

All

other

objects

use

the

MI

type.

The

sending

environment

template

is

repeated

for

each

sending

environment.

The

format

of

the

sending

environment

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Sending

environment

template

Char(48)

0

0

Remote

journal

ID

Char(10)

10

A

Sending

enviroment

attributes

Char(1)

10

A

Delivery

mode

Bit

0

608

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Synchronous

delivery

mode

1

=

Asynchronous

delivery

mode

10

A

Reserved

(binary

0)

Bits

1-7

11

B

Transport

mechanism

Char(1)

Hex

01

=

Bus

transport

Hex

02

=

SNA

Hex

03

=

TCP/IP

12

C

Environment

status

Char(1)

Hex

00

=

Unknown

Hex

01

=

Active

Hex

02

=

Catch-up

in

progress

Hex

03

=

Controlled

end

in

progress

Hex

04

=

Suspended

Hex

05

=

Error

13

D

Reserved

(binary

0)

Char(3)

16

10

Priority

of

asynchronous

sending

task

Char(1)

17

11

Reserved

(binary

0)

Char(31)

48

30

—-

End

—-

The

priority

of

asynchronous

sending

task

field

contains

the

priority

of

the

task

sending

journal

entries

to

the

remote

journal

port

relative

to

the

priority

of

processes

on

the

machine.

This

field

only

applies

to

asynchronous

remote

journal

sending

environments

and

will

contain

a

value

of

binary

0

for

synchronous

remote

journal

sending

environments

associated

with

the

journal

port.

If

operand

2

is

a

system

pointer,

it

identifies

the

input

journal

port

object.

If

operand

2

is

a

space

pointer,

it

provides

addressability

to

the

materialize

template.

The

materialize

template

is

used

to

identify

default

journal

ports

by

ASP

and

default

journal

port

ID.

Returned

in

the

materialize

template

is

a

system

pointer

to

the

currently

known

default

journal

port

with

the

specified

ID.

The

format

of

the

materialize

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialize

template

Char(32)

0

0

ASP

Char(2)

+

2

2

Default

journal

port

ID

Char(2)

+

4

4

Reserved

(binary

0)

Char(12)

16

10

Journal

port

System

pointer

32

20

—-

End

—-

Note:

The

fields

marked

with

a

plus

sign

(+)

are

input

to

this

instruction.

The

materialize

template

must

be

aligned

on

a

16-byte

boundary.

Machine

Interface

Instructions

609

The

ASP

field

indicates

the

ASP

on

which

the

default

journal

port

resides.

The

default

journal

port

ID

uniquely

identifies

the

default

journal

port

on

the

specified

ASP.

The

journal

port

currently

known

as

the

default

journal

port

of

the

specified

ID

and

ASP

is

returned.

If

there

is

no

known

default

port,

a

null

pointer

value

will

be

returned.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Contexts

referenced

for

address

resolution
v

Operational

–

–

Operand

2

(if

system

pointer)

Lock

Enforcement

v

v

Materialization

–

–

Operand

2

(if

system

pointer)

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1A

Lock

State

1A01

Invalid

Lock

State

610

iSeries:

Machine

Interface

Instructions

APIs

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Machine

Interface

Instructions

611

Materialize

Journal

Space

Attributes

(MATJSAT)

Op

Code

(Hex)

Operand

1

Operand

2

05BE

Receiver

Journal

space

Operand

1:

Space

pointer.

Operand

2:

System

pointer.

Bound

program

access

Built-in

number

for

MATJSAT

is

85.

MATJSAT

(

receiver

:

address

journal_space

:

address

of

system

pointer

)

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Description:

This

instruction

materializes

the

current

attributes

of

the

journal

space

specified

by

operand

2

and

places

the

attributes

in

the

receiver

specified

by

operand

1.

The

format

of

the

materialization

data

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

length

Char(8)

0

0

Number

of

bytes

provided

by

user

Bin(4)

4

4

Number

of

bytes

available

to

be

materialized

Bin(4)

8

8

Object

identification

Char(32)

8

8

Object

type

Char(1)

9

9

Object

subtype

Char(1)

10

A

Object

name

Char(30)

40

28

Object

creation

options

Char(4)

40

28

Existence

attributes

(binary

1)

Bit

0

40

28

Primary

associated

space

attributes

Bit

1

0

=

Fixed-length

1

=

Variable-length

40

28

Initial

context

Bit

2

40

28

Access

group

Bit

3

40

28

Replace

option

Bit

4

40

28

Reserved

Bits

5-12

40

28

Initialize

primary

associated

space

Bit

13

40

28

Reserved

Bits

14-18

40

28

Use

system

storage

Bit

19

0

=

System

storage

not

used

1

=

System

storage

used

40

28

Reserved

(binary

0)

Bits

20-31

44

2C

Recovery

options

Char(4)

48

30

Size

of

primary

associated

space

Bin(4)

52

34

Initial

value

of

primary

associated

space

Char(1)

53

35

Performance

class

Char(4)

612

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

57

39

Reserved

(binary

0)

Char(7)

64

40

Context

System

pointer

80

50

Access

group

System

pointer

96

60

Narrow

maximum

threshold

(in

bytes)

Bin(4)

100

64

Narrow

minimum

threshold

value

(in

bytes)

Bin(4)

104

68

Percent

threshold

Bin(2)

106

6A

Journal

space

flags

Char(1)

106

6A

Reserved

(binary

0)

Bit

0

106

6A

Default

journal

space

Bit

1

0

=

Not

a

default

journal

space

1

=

Default

journal

space

106

6A

Reserved

Bits

2-7

107

6B

Journal

space

capacity

value

Char(1)

Hex

00

=

Maximum

sequence

number:

2,147,483,136

and

maximum

journal

space

size:

2

Gigabytes

Hex

01

=

Maximum

sequence

number:

9,999,999,999

and

maximum

journal

space

size:

1

Terabyte

Hex

02

=

Maximum

sequence

number:

9,999,999,999

and

maximum

journal

space

size:

1

Terabyte

and

Maximum

entry

size:

4,000,000,000

bytes

Hex

03

=

Maximum

sequence

number:

18,446,744,073,709,551,600

and

maximum

journal

space

size:

1

Terabyte

and

Maximum

entry

size:

4,000,000,000

bytes

108

6C

Reserved

(binary

0)

Char(16)

124

7C

Narrow

last

confirmed

sequence

number

Bin(4)

128

80

Journal

port

System

pointer

144

90

Narrow

number

of

journal

entries

Bin(4)

148

94

Narrow

first

sequence

number

Bin(4)

152

98

Narrow

last

sequence

number

Bin(4)

156

9C

Generation

number

UBin(4)

160

A0

Time

journal

space

attached

to

journal

port

Char(8)

168

A8

Time

journal

space

detached

from

journal

port

Char(8)

176

B0

Length

of

timestamp

Bin(2)

178

B2

Length

of

process

name

Bin(2)

180

B4

Length

of

user

profile

name

Bin(2)

182

B6

Length

of

program

name

Bin(2)

184

B8

Fixed

length

data

Char(1)

184

B8

Include

program

context

name

and

ASP

number

Bit

0

0

=

Program

context

name

and

ASP

number

will

not

be

in

journal

entries.

1

=

Program

context

name

and

ASP

number

will

be

in

journal

entries.

184

B8

Include

system

sequence

number

Bit

1

Machine

Interface

Instructions

613

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

System

sequence

number

will

not

be

in

journal

entries.

1

=

System

sequence

number

will

be

in

journal

entries.

184

B8

Include

remote

address

Bit

2

0

=

Remote

address

will

not

be

in

journal

entries.

1

=

Remote

address

will

be

in

journal

entries.

184

B8

Include

thread

ID

Bit

3

0

=

Thread

identifier

will

not

be

in

journal

entries.

1

=

Thread

identifier

will

be

in

journal

entries.

184

B8

Include

logical

unit

of

work

Bit

4

0

=

Logical

unit

of

work

will

not

be

in

journal

entries.

1

=

Logical

unit

of

work

will

be

in

journal

entries.

184

B8

Include

transaction

identifier

Bit

5

0

=

Transaction

identifier

will

not

be

in

journal

entries.

1

=

Transaction

identifier

will

be

in

journal

entries.

184

B8

Reserved

(binary

0)

Bits

6-7

185

B9

Reserved

(binary

0)

Char(3)

188

BC

Narrow

last

journal

entry

dumped

Bin(4)

192

C0

Journal

space

status

Char(2)

192

C0

Operable

journal

space

Bit

0

0

=

Journal

space

is

operable

1

=

Journal

space

is

not

operable

192

C0

Missing

journal

entries

Bit

1

0

=

No

entries

missing

1

=

1

or

more

entries

missing

192

C0

Journal

space

size

extension

Bit

2

0

=

Journal

space

could

be

extended

1

=

Journal

space

could

not

be

extended

192

C0

Maximum

sequence

number

reached

Bit

3

0

=

Maximum

sequence

number

has

not

been

reached

1

=

Maximum

sequence

number

has

been

reached

192

C0

Journal

failure

Bit

4

0

=

No

journal

failure

has

occurred

1

=

A

journal

failure

has

occurred

192

C0

Recoverable

commit

boundary

Bit

5

614

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

All

objects

with

changes

journaled

to

this

journal

space

are

at

a

recoverable

commit

boundary

1

=

One

or

more

objects

with

changes

journaled

to

this

journal

space

are

not

at

a

recoverable

commit

boundary

192

C0

Journal

space

is

attached

Bit

6

0

=

Journal

space

is

not

attached

to

a

journal

port

1

=

Journal

space

is

attached

to

a

journal

port

192

C0

Reserved

(binary

0)

Bits

7-15

194

C2

Entry

specific

data

longest

length

table

Char(*)

194

C2

Number

of

entries

in

table

Bin(4)

198

C6

Entry

specific

data

length

elements

[*]

Char(6)

198

C6

Entry

specific

data

ID

Char(2

200

C8

Entry

specific

data

longest

length

UBin(4

*

*

Maximum

threshold

(in

basic

storage

units)

Bin(4)

*

*

Minimum

threshold

value

(in

basic

storage

units)

Bin(4)

*

*

Last

confirmed

sequence

number

Char(8)

*

*

Number

of

journal

entries

Char(8)

*

*

First

sequence

number

Char(8)

*

*

Last

sequence

number

Char(8)

*

*

Last

journal

entry

dumped

Char(8)

*

*

Minimal

entry

array

by

entry

type

Char(32)

*

*

—-

End

—-

The

receiver

must

be

aligned

on

a

16-byte

boundary.

The

first

4

bytes

of

the

receiver

identify

the

total

number

of

bytes

provided

by

the

user

for

the

materialization

and

the

next

4

specify

on

output

the

total

number

of

bytes

available

to

be

materialized.

If

fewer

than

8

bytes

are

available

in

the

space

identified

by

the

receiver

(operand

1),

a

materialization

length

invalid

(hex

3803)

exception

is

signaled.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

receiver’s

space.

If

the

space

of

the

receiver

is

greater

than

that

required

to

contain

the

information

requested

for

materialization,

the

excess

bytes

are

unchanged.

No

exceptions

are

signaled

in

the

event

that

the

receiver

contains

insufficient

space

for

the

materialization

other

than

the

materialization

length

invalid

(hex

3803)

exception

described

previously.

The

journal

space

capacity

value

field

returns

the

upper

limits

that

are

being

imposed

on

both

the

maximum

size

of

this

journal

space,

the

maximum

journal

sequence

number

allowed,

and

the

maximum

size

for

a

journal

entry.

The

last

confirmed

sequence

number

field

contains

the

journal

sequence

number

of

the

last

valid

journal

entry

contained

in

this

journal

space.

If

the

number

of

journal

entries

field

contains

a

value

of

0,

this

field

will

also

contain

a

value

of

0.

The

journal

port

field

contains

a

system

pointer

to

the

journal

port

to

which

the

designated

journal

space

is

currently

attached.

If

the

journal

space

is

not

currently

attached

to

a

journal

port,

this

field

will

contain

binary

0’s.

The

number

of

journal

entries

field

contains

the

number

of

journal

entries

currently

in

the

journal

space.

If

this

field

contains

a

value

of

0,

the

journal

space

has

never

been

attached

to

a

journal

port.

Machine

Interface

Instructions

615

The

first

sequence

number

field

contains

the

journal

sequence

number

of

the

first

journal

entry

contained

in

this

journal

space.

If

the

number

of

journal

entries

field

contains

a

value

of

0,

this

field

will

also

contain

a

value

of

0.

The

last

sequence

number

field

contains

the

journal

sequence

number

of

the

last

journal

entry

contained

in

this

journal

space.

If

the

number

of

journal

entries

field

contains

a

value

of

0,

this

field

will

also

contain

a

value

of

0.

If

journal

entries

are

cloaked

in

the

journal

space,

this

field

will

be

the

sequence

number

of

the

last

uncloaked

journal

entry.

The

generation

number

field

contains

the

count

of

the

number

of

times

the

sequence

number

had

been

reset

at

the

time

the

journal

space

was

attached.

The

time

journal

space

attached

to

journal

port

field

contains

a

timestamp

that

indicates

the

time

the

journal

space

was

attached

to

a

journal

port.

If

the

journal

space

has

never

been

attached

to

a

journal

port,

a

value

of

0

will

be

returned

in

this

field.

The

time

journal

space

detached

from

journal

port

field

contains

a

timestamp

that

indicates

the

time

the

journal

space

was

detached

from

a

journal

port.

If

the

journal

space

has

never

been

attached

to

a

journal

port

or

is

currently

attached

to

a

journal

port,

a

value

of

0

will

be

returned

in

this

field.

The

length

of

timestamp

field

contains

the

length

of

the

timestamp

field

in

the

journal

prefix

of

journal

entries

contained

on

the

journal

space.

If

the

journal

space

has

never

been

attached

to

a

journal

receiver

(number

of

journal

entries

is

equal

to

0),

this

field

will

contain

a

value

of

0.

The

length

of

process

name

field

contains

the

length

of

the

process

name

field

in

the

journal

prefix

of

journal

entries

contained

on

the

journal

space.

If

the

journal

space

has

never

been

attached

to

a

journal

receiver

(number

of

journal

entries

is

equal

to

0),

this

field

will

contain

a

value

of

0.

The

length

of

user

profile

name

field

contains

the

length

of

the

user

profile

name

field

in

the

journal

prefix

of

journal

entries

contained

on

the

journal

space.

If

the

journal

space

has

never

been

attached

to

a

journal

receiver

(number

of

journal

entries

is

equal

to

0),

this

field

will

contain

a

value

of

0.

The

length

of

program

name

field

contains

the

length

of

the

program

name

field

in

the

journal

prefix

of

journal

entries

contained

on

the

journal

space.

If

the

journal

space

has

never

been

attached

to

a

journal

receiver

(number

of

journal

entries

is

equal

to

0),

this

field

will

contain

a

value

of

0.

The

fixed

length

data

field

indicates

whether

various

fixed

length

data

is

in

the

journal

entries.

A

value

of

binary

1

for

the

following

fields

indicates

that

that

specific

data

will

be

included

in

each

journal

entry

in

the

journal

space

attached

to

the

journal

port.

v

include

logical

unit

of

work

v

include

transaction

identifier

v

include

remote

address

v

include

program

context

name

and

ASP

number

v

include

system

sequence

number

v

include

thread

identifier

A

value

of

binary

0

indicates

that

that

specific

data

will

NOT

be

included

in

those

journal

entries.

The

last

journal

entry

dumped

field

contains

the

journal

sequence

number

of

the

last

complete

journal

entry

that

has

been

dumped

from

this

journal

space.

If

no

dump

operation

has

been

performed

on

this

journal

space,

a

value

of

0

will

be

returned.

The

journal

space

status

fields

indicate

whether

or

not

the

journal

space

is

currently

actively

receiving

journal

entries

or

successfully

received

all

journal

entries

while

it

was

attached

to

a

journal

port.

These

616

iSeries:

Machine

Interface

Instructions

APIs

fields

also

indicate

the

reason

journal

entries

were

not

placed

on

the

journal

space

and

whether

all

objects

with

changes

journaled

to

this

journal

space

are

currently

at

a

recoverable

commit

boundary.

The

operable

journal

space

field

indicates

whether

or

not

journal

entries

are

being

placed

in

the

journal

space

while

it

is

attached

to

the

indicated

journal

port.

If

the

journal

space

is

no

longer

attached

to

a

journal

port,

this

field

indicates

the

status

of

the

journal

space

when

it

was

detached

from

the

journal

port.

The

missing

journal

entries

field

indicates

whether

or

not

journal

entries

have

been

created,

while

this

journal

space

was

attached

to

a

journal

port,

that

were

not

recorded

on

this

journal

space.

The

journal

space

size

extension

field

indicates

whether

or

not

the

journal

space

can

be

extended.

A

value

of

binary

1

in

this

field

indicates

a

user

profile

storage

limit

exceeded

(hex

2E01)

exception

was

encountered

while

trying

to

extend

the

journal

space.

The

journal

failure

field

indicates

whether

or

not

a

journal

failure

occurred

while

this

journal

space

was

attached

to

a

journal

port.

The

recoverable

commit

boundary

field

indicates

whether

all

objects

with

changes

journaled

to

this

journal

space

are

at

a

recoverable

commit

boundary.

A

value

of

binary

0

in

this

field

indicates

that

all

objects

are

at

a

recoverable

commit

boundary.

The

minimal

entry

array

by

entry

type

field

is

defined

as

an

array

of

bits,

numbered

from

0

to

255,

one

bit

per

entry

type.

Each

bit

indicates

that

minimal

journal

entries

may

or

may

not

have

been

deposited

to

this

space

for

the

corresponding

entry

type.

For

an

entry

type

N,

minimal

entry

array

by

entry

type

bit

N

=

0

indicates

that

minimal

entries

do

NOT

exist

within

the

space

for

the

entry

type

N.

Minimal

entry

array

by

entry

type

bit

N

=

1

indicates

that

minimal

entries

might

exist

within

the

space

for

the

entry

type

N.

Entry

types

are

defined

in

the

MATJPAT

instruction.

The

entry

specific

data

longest

length

table

contains

the

longest

length

associated

with

each

entry

specific

data

ID

found

on

the

journal

space.

If

the

journal

space

has

never

been

attached

to

a

journal

port

or

there

are

no

entries

on

the

journal

space,

a

value

of

0

will

be

returned

in

the

number

of

entries

in

table

field.

Note:

A

number

of

fields

(

last

confirmed

sequence

number,number

of

journal

entries,first

sequence

number,last

sequence

number,last

journal

entry

dumped

)

deliberately

appear

twice

in

the

materialization

data,

once

in

a

’Narrow’

representation

and

again

in

a

wider

(UBin

8)

representation.

When

the

value

returned

for

each

such

field

is

less

than

2G

(2,147,483,648)

it

will

be

returned

in

both

the

wide

and

narrow

representation.

However,

when

the

actual

value

is

too

large

to

be

represented

in

a

Bin(4)

field,

the

narrow

instance

of

such

a

field

will

contain,

instead,

the

value

of

-1.

In

a

similar

fashion,

both

the

maximum

threshold

and

minimum

threshold

value

fields

appear

twice.

The

’Narrow’

designated

representation

is

the

traditional

byte

count

while

the

ordinary

representation

is

expressed

in

basic

storage

units.

For

a

small

capacity

journal

space

both

fields

will

contain

proper

values

in

their

respective

units.

However,

for

a

large

capacity

(i.e.

1

Terabyte)

journal

space

the

thresholds

may

be

too

large

to

be

represented

as

a

byte

count.

In

that

instance

the

’Narrow’

representations

will

each

contain

the

value

of

-1

and

the

true

threshold

sizes

will

be

present

only

in

the

ordinary

threshold

fields.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

Machine

Interface

Instructions

617

–

–

Contexts

referenced

for

address

resolution
v

Operational

–

–

Operand

2

Lock

Enforcement

v

v

Materialization

–

–

Operand

2

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

618

iSeries:

Machine

Interface

Instructions

APIs

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Machine

Attributes

(MATMATR)

Op

Code

(Hex)

Operand

1

Operand

2

0636

Materialization

Machine

attributes

Operand

1:

Space

pointer.

Machine

Interface

Instructions

619

Operand

2:

Character(2)

scalar

or

space

pointer.

Bound

program

access

Built-in

number

for

MATMATR1

is

92.

MATMATR1

(

materialization

:

address

machine_attributes

:

address

(of

just

a

selector

value)

)

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Description:

The

instruction

makes

available

the

unique

values

of

machine

attributes.

Unless

otherwise

stated,

all

options

materialize

the

value

of

machine

attributes

for

the

current

partition.

The

values

of

various

machine

attributes

are

placed

in

the

receiver.

Operand

2

specifies

options

for

the

type

of

information

to

be

materialized.

Operand

2

is

specified

as

an

attribute

selection

value

(character(2)

scalar)

or

as

an

attribute

selection

template

(space

pointer

to

a

character(2)

scalar).

The

machine

attributes

are

divided

into

nine

groups.

Byte

0

of

the

attribute

selection

operand

specifies

from

which

group

the

machine

attributes

are

to

be

materialized.

Byte

1

of

the

options

operand

selects

a

specific

subset

of

that

group

of

machine

attributes.

Operand

1

specifies

a

space

pointer

to

the

area

where

the

materialization

is

to

be

placed.

The

format

of

the

materialization

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

by

the

user

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Attribute

specification

Char(*)

(as

defined

by

the

attribute

selection)

*

*

—-

End

—-

The

first

4

bytes

of

the

materialization

(operand

1)

identify

the

total

number

of

bytes

provided

by

the

user

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

available

for

materialization.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested

for

materialization,

then

the

excess

bytes

are

unchanged.

No

exceptions

(other

than

the

materialization

length

invalid

(hex

3803)

exception)

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization.

Table

1.

MATMATR

Selection

Values

Selection

value

Attribute

Description

Page

0004

Machine

serial

identification

reference

#1

(page

)

0100

Time-of-day

clock

(local

time)

reference

#2

(page

)

0101

Time-of-day

clock

with

clock-offset

reference

#3

(page

)

0104

Primary

initial

process

definition

template

reference

#4

(page

)

0108

Machine

initialization

status

record

reference

#5

(page

)

620

iSeries:

Machine

Interface

Instructions

APIs

Selection

value

Attribute

Description

Page

0118

Uninterruptible

power

supply

delay

time

and

calculated

delay

time

reference

#6

(page

)

012C

Vital

product

data

reference

#7

(page

)

0130

Network

attributes

reference

#8

(page

)

0134

Date

format

reference

#9

(page

)

0138

Leap

year

adjustment

reference

#10

(page

)

013C

Timed

power

on

reference

#11

(page

)

0140

Timed

power

on

enable/disable

reference

#12

(page

)

0144

Remote

power

on

enable/disable

reference

#13

(page

)

0148

Auto

power

restart

enable/disable

reference

#14

(page

)

014C

Date

separator

reference

#15

(page

)

0151

System

security

indicators

reference

#16

(page

)

0161

Perform

hardware

checks

on

IPL

reference

#17

(page

)

0164

Uninterruptible

power

supply

type

reference

#18

(page

)

0168

Panel

status

request

reference

#19

(page

)

016C

Extended

machine

initialization

status

record

reference

#20

(page

)

0170

Alternate

initial

process

definition

template

reference

#21

(page

)

0178

Hardware

storage

protection

enforcement

state

reference

#22

(page

)

0180

Time

separator

reference

#23

(page

)

0184

Software

error

logging

reference

#24

(page

)

0188

Machine

task

or

secondary

thread

termination

event

control

option

reference

#25

(page

)

01A8

Service

attributes

reference

#26

(page

)

01B0

Signal

controls

reference

#27

(page

)

01C8

Cryptography

attributes

reference

#28

(page

)

01D0

Communication

network

attributes

reference

#29

(page

)

01DC

Installed

processor

count

reference

#30

(page

)

01E0

Partitioning

information

reference

#31

(page

)

01EC

Additional

load

source

reserved

space

reference

#32

(page

)

01F4

Processor

on

demand

information

reference

#33

(page

)

01F6

Memory

on

demand

information

reference

#34

(page

)

01F8

IPL

identifier

reference

#36

(page

)

01FC

Electronic

licensing

identifier

reference

#37

(page

)

0200

Wait

state

performance

information

reference

#38

(page

)

0204

Hardware

Management

Console

(HMC)

information

reference

#39

(page

)

The

machine

attributes

selected

by

operand

2

are

materialized

according

to

the

following

selection

values:

Selection

Attribute

Value

Description

(Ref

#1.)

Hex

0004

Machine

serial

identification

The

machine

serial

identification

that

is

materialized

is

an

8-byte

character

field

that

contains

the

unique

physical

machine

identifier.

This

identifier

is

the

same

for

all

partitions

of

a

physical

machine.

(Ref

#2.)

Machine

Interface

Instructions

621

Hex

0100

Time-of-day

clock

(local

time)

The

time-of-day

clock

option

is

used

to

return

the

time-of-day

clock

as

the

local

time

for

the

system.

The

MATMDATA

or

MATTODAT

instruction

can

be

used

to

return

the

time-of-day

clock

as

the

Coordinated

Universal

TIme

(UTC)

for

the

system.

See

“Standard

Time

Format”

on

page

1272

for

additional

information

on

the

time-of-day

clock.

The

maximum

unsigned

binary

value

that

the

time

of

day

clock

can

be

modified

to

contain

is

hex

DFFFFFFFFFFFFFFF.

(Ref

#3.)

Hex

0101

Time-of-day

clock

with

clock-offset

In

addition

to

returning

the

system

time-of-day

(TOD)

clock

(as

defined

for

selection

value

hex

0100

described

previously),

the

time-of-day

clock

with

clock-offset

option

will

also

return

a

clock-offset

which

can

be

used

to

convert

clocks

from

different

partitions

(on

a

partitioned

system)

to

values

referencing

the

common

hardware

clock

used

by

all

partitions

on

the

same

system.

This

enables

users/administrators

of

a

partitioned

system

to

analyze

and

compare

events

taking

place

in

different

partitions.

See

“Standard

Time

Format”

on

page

1272

for

additional

information

on

the

time-of-day

clock.

The

clock-offset

is

defined

as

the

difference

between

the

time-of-day

clock

for

the

current

partition

and

the

value

of

the

hardware

clock

counter.

The

materialize

format

of

the

time-of-day

clock

with

clock-offset

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Time-of-day

clock

Char(8)

16

10

Clock-offset

Char(8)

24

18

—-

End

—-

(Ref

#4.)

Hex

0104

Primary

initial

process

definition

template

The

primary

initial

process

definition

template

is

used

by

the

machine

to

perform

an

initial

program

load.

No

check

is

made

and

no

exception

is

signaled

if

the

values

in

the

template

are

invalid;

however,

the

next

initial

program

load

will

not

be

successful.

(Ref

#5.)

622

iSeries:

Machine

Interface

Instructions

APIs

Hex

0108

Machine

initialization

status

record

The

MISR

(machine

initialization

status

record)

is

used

to

report

the

status

of

the

machine.

The

status

is

initially

collected

at

IPL

and

then

updated

as

system

status

changes.

The

materialize

format

of

the

MISR

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

MISR

status

Char(6)

8

8

Restart

IMPL

Bit

0

0

=

IMPL

was

not

initiated

by

the

Terminate

instruction

1

=

IMPL

was

initiated

by

the

Terminate

instruction

8

8

Manual

power

on

Bit

1

0

=

Power

on

not

due

to

Manual

power

on

1

=

Manual

power

on

occurred

8

8

Timed

power

on

Bit

2

0

=

Power

on

not

due

to

Timed

power

on

1

=

Timed

power

on

occurred

8

8

Remote

power

on

Bit

3

0

=

Power

on

not

due

to

remote

power

on

1

=

Remote

power

on

occurred

8

8

Machine

Interface

Instructions

623

Hex

0118

Uninterruptible

power

supply

delay

time

and

calculated

delay

time.

Note:

The

UPS

delay

time

is

meaningful

only

if

a

UPS

is

installed.

The

format

of

the

template

for

the

uninterruptible

power

supply

delay

time

(including

the

8-byte

prefix)

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

UPS

Delay

time

Bin(4)

12

C

Calculated

UPS

Delay

time

Bin(4)

The

delay

time

interval

is

the

amount

of

time

the

system

waits

for

the

return

of

utility

power.

If

a

utility

power

failure

occurs,

the

system

will

continue

operating

on

the

UPS

supplied

power.

If

utility

power

does

not

return

within

the

user

specified

delay

time,

the

system

will

perform

a

quick

power

down.

The

delay

time

interval

is

set

by

the

customer.

The

calculated

delay

time

is

determined

by

the

amount

of

main

storage

and

DASD

that

exists

on

the

system.

Both

values

are

in

seconds.

16

10

—-

End

—-

(Ref

#7.)

624

iSeries:

Machine

Interface

Instructions

APIs

Hex

012C

Vital

product

data

The

VPD

(vital

product

data)

is

a

template

that

contains

information

for

memory

card

VPD,

processor

VPD,

Columbia/Colomis

VPD,

central

electronic

complex

(CEC)

VPD

and

the

panel

VPD.

The

VPD

information

that

is

materialized

is

the

same

for

all

partitions

of

a

physical

machine.

The

materialize

format

of

the

VPD

(Including

the

8-byte

prefix)

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Reserved

Char(8)

16

10

System

VPD

location

Char(32)

16

10

Offset

to

memory

VPD

Bin(4)

20

14

Offset

to

processor

VPD

Bin(4)

24

18

Offset

to

Columbia/Colomis

Bin(4)

28

1C

Offset

to

CEC

VPD

Bin(4)

32

20

Offset

to

panel

VPD

Bin(4)

36

24

Reserved

Char(12)

48

30

Main

store

memory

VPD

Char(1040)

48

30

Usable

memory

installed

Bin(2)

(In

megabytes)

50

32

Minimum

memory

required

Machine

Interface

Instructions

625

Hex

0130

Network

attributes

The

network

attributes

is

a

template

that

contains

information

concerning

APPN

network

attributes.

The

materialize

format

of

the

network

attributes

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Network

data

Char(190)

8

8

System

name

Char(8)

16

10

System

name

length

Bin(2)

18

12

New

system

name

Char(8)

26

1A

New

system

name

length

Bin(2)

28

1C

Local

system

network

identification

Char(8)

36

24

Local

system

network

identification

length

Bin(2)

38

26

End

node

data

compression

Bin(4)

42

2A

Intermediate

node

data

compression

Bin(4)

46

2E

Reserved

Char(2)

48

30

Local

system

control

point

name

Char(8)

56

38

Local

system

control

point

name

length

Bin(2)

58

3A

Maximum

APPN

LUDs

on

virtual

APPN

CDs

626

iSeries:

Machine

Interface

Instructions

APIs

Hex

0134

Date

format

The

date

format

is

the

format

in

which

the

date

will

be

presented

to

the

customer.

The

possible

values

are

YMD,

MDY,

DMY

where

Y

=

Year,

M

=

Month,

D

=

Day

and

JUL

=

Julian.

The

format

of

the

template

for

date

format

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Date

format

Char(3)

11

B

—-

End

—-

(Ref

#10.)

Hex

0138

Leap

year

adjustment

The

leap

year

adjustment

is

added

to

the

leap

year

calculations

to

determine

the

year

in

which

the

leap

should

occur.

The

valid

values

are

0,

1,

2,

3.

The

format

of

the

template

for

leap

year

adjustment

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Leap

year

adjustment

Bin(2)

10

A

—-

End

—-

(Ref

#11.)

Machine

Interface

Instructions

627

Hex

013C

Timed

power

on

The

timed

power

on

is

the

time

and

date

at

which

the

system

should

automatically

power

on

if

it

is

not

already

powered

on.

If

the

physical

machine

is

powered

off,

and

the

time

and

date

at

which

a

partition

is

automatically

powered

is

set

to

occur

before

the

time

and

date

at

which

the

physical

machine

is

set

to

automatically

power

on

(according

to

their

respective

time

of

day

clocks),

then

the

partition

will

be

powered

on

when

the

physical

machine

is

powered

on.

The

format

of

the

template

for

timed

power

on

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Minute

Bin(2)

10

A

Hour

Bin(2)

12

C

Day

Bin(2)

14

E

Month

Bin(2)

16

10

Year

Bin(2)

18

12

—-

End

—-

(Ref

#12.)

628

iSeries:

Machine

Interface

Instructions

APIs

Hex

0140

Timed

power

on

enable/disable

The

timed

power

on

enable/disable

allows

the

timed

power

on

function

to

be

queried

to

determine

if

the

function

is

enabled

or

disabled.

The

format

of

the

template

for

timed

power

on

enable/disable

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Enable/disable

Bin(2)

Hex

8000

=

Timed

power

on

is

enabled

Hex

0000

=

Timed

power

on

is

disabled

10

A

—-

End

—-

(Ref

#13.)

Machine

Interface

Instructions

629

Hex

0144

Remote

power

on

enable/disable

The

remote

power

on

enable/disable

allows

the

remote

power

on

function

to

be

queried

to

determine

if

the

function

is

enabled

or

disabled.

The

format

of

the

template

for

remote

power

on

enable/disable

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Enable/disable

Bin(2)

Hex

8000

=

Remote

power

on

is

enabled

Hex

0000

=

Remote

power

on

is

disabled

10

A

—-

End

—-

(Ref

#14.)

630

iSeries:

Machine

Interface

Instructions

APIs

Hex

0148

Auto

power

restart

enable/disable

The

auto

power

restart

enable/disable

allows

the

auto

power

restart

function

to

be

queried

to

determine

if

the

function

is

enabled

or

disabled.

The

format

of

the

template

for

auto

power

restart

enable/disable

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Enable/disable

Bin(2)

Hex

8000

=

Auto

power

restart

is

enabled

Hex

0000

=

Auto

power

restart

is

disabled

10

A

—-

End

—-

(Ref

#15.)

Hex

014C

Date

separator

The

date

separator

is

used

when

the

date

is

presented

to

the

customer.

The

valid

values

are

a

slash(/),

dash(-),

period(.),

comma(,)

and

a

blank(

).

The

format

of

the

template

for

the

date

separator

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Date

separator

Char(1)

9

9

—-

End

—-

(Ref

#16.)

Machine

Interface

Instructions

631

Hex

0151

System

security

indicators

(Can

only

be

materialized)

The

system

security

indicators

return

the

current

setting

of

the

system

security

flags.

The

format

of

the

template

for

system

security

indicators

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

System

security

indicators

Char(1)

8

8

Reserved

Bits

0-4

8

8

Restrict

change

of

service

tool

user

ID

passwords

by

operating

system

Bit

5

0

=

Not

restricted

1

=

Restricted

8

8

Restrict

change

of

operating

system

security

values

Bit

6

0

=

Not

restricted

1

=

Restricted

8

8

Restrict

adds

to

digital

certificates

store

Bit

7

0

=

Not

restricted

1

=

Restricted

9

9

Reserved

(binary

0)

Char(11)

20

14

—-

End

—-

632

iSeries:

Machine

Interface

Instructions

APIs

Hex

0161

Perform

hardware

checks

on

IPL

The

perform

hardware

checks

on

IPL

option

retrieves

the

current

setting

that

indicates

if

the

system

is

skipping

hardware

checks

on

all

physical

machine

IPLs.

The

IPL

checks

are

performed

only

when

the

physical

machine

is

IPLed.

The

format

of

the

template

for

perform

hardware

checks

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Perform/not

perform

Bin(2)

Hex

8000

=

The

system

is

doing

hardware

checks

on

IPLs.

Hex

0000

=

The

system

is

not

checking

the

hardware

on

IPLs.

10

A

—-

End

—-

(Ref

#18.)

Machine

Interface

Instructions

633

Hex

0164

Uninterruptible

power

supply

type

Note:

The

UPS

type

is

meaningful

only

if

a

UPS

is

installed.

The

uninterruptible

power

supply

type

option

allows

the

MI

user

to

tell

the

machine

how

much

of

the

system

is

powered

by

a

UPS

(ie,

what

type

of

UPS

is

installed).

A

full

UPS

will

power

all

racks

in

the

system.

A

limited

UPS

will

have

enough

power

to

perform

main

store

dump.

A

mini

UPS

will

power

the

racks

containing

the

CEC

and

the

load

source.

The

format

of

the

template

for

UPS

Type

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

UPS

type

Bin(2)

Hex

0000

=

Indicates

a

full

UPS

is

installed

(all

racks

have

a

UPS

installed)

Hex

4000

=

Indicates

a

limited

UPS

is

installed

(the

UPS

only

has

enough

power

to

do

a

main

store

dump)

Hex

8000

=

Indicates

a

mini

UPS

is

installed

(only

the

minimum

number

of

racks

are

powered)

10

A

—-

End

—-

(Ref

#19.)

634

iSeries:

Machine

Interface

Instructions

APIs

Hex

0168

Panel

status

request

The

panel

status

request

option

returns

the

current

status

of

the

operations

panel.

The

format

of

the

template

for

panel

status

request

is

as

follows

(including

the

usual

8-byte

prefix):

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Current

IPL

type

Char(1)

9

9

Panel

status

Char(2)

9

9

Uninterrupted

power

supply

installed

Bit

0

0

=

UPS

not

installed

1

=

UPS

installed,

ready

for

use

9

9

Utility

power

failed,

running

on

UPS

Bit

1

0

=

Running

on

utility

power

1

=

Running

on

UPS

9

9

Uninterrupted

power

supply

(UPS)

bypass

active

Bit

2

0

=

UPS

bypass

not

active

1

=

UPS

bypass

active

9

9

Uninterrupted

power

supply

(UPS)

battery

low

Bit

3

0

=

UPS

battery

not

low

1

=

UPS

battery

low

Machine

Interface

Instructions

635

Hex

016C

Extended

machine

initialization

status

record

The

XMISR

(extended

machine

initialization

status

record)

is

used

to

report

the

status

of

the

machine.

The

materialize

format

of

the

XMISR

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Save

storage

status

Char(4)

8

8

Reserved

(binary

0)

Bit

0

8

8

Completion

status

Bit

1

0

=

Save

storage

did

not

complete

1

=

Save

storage

completed

8

8

System

restored

status

Bit

2

0

=

Save

storage

did

not

restore

the

system

1

=

Save

storage

restored

the

system

8

8

Save

storage

attempted

Bit

3

0

=

Save

storage

not

attempted

1

=

Save

storage

was

attempted

8

8

Unreadable

sectors

Bit

4

0

=

Unreadable

sectors

were

not

found

1

=

Unreadable

sectors

were

found

during

save

operation

636

iSeries:

Machine

Interface

Instructions

APIs

Hex

0170

Alternate

initial

process

definition

template

The

alternate

initial

process

definition

template

is

used

by

the

machine

when

performing

an

automatic

install.

No

check

is

made

and

no

exception

is

signaled

if

the

values

in

the

template

are

invalid;

however,

the

next

automatic

install

will

not

be

successful.

(Ref

#22.)

Machine

Interface

Instructions

637

Hex

0178

Hardware

storage

protection

enforcement

state

Note:

Hardware

storage

protection

is

meaningful

only

on

version

2

hardware

or

later.

Hardware

storage

protection

is

not

supported

at

all

on

version

1

hardware.

The

hardware

storage

protection

(HSP)

mechanism

is

always

in

effect.

However,

HSP

is

enforced

for

individual

storage

areas

in

two

different

ways.

For

some

storage

areas,

HSP

is

always

enforced.

For

others,

HSP

is

enforced

only

when

this

machine

attribute

is

active.

Attempted

use

of

any

storage

area

in

a

manner

inconsistent

with

its

storage

protection

attributes

will

result

in

object

domain

or

hardware

storage

protection

violation

(hex

4401)

exception

when

HSP

is

being

enforced

for

that

storage.

System

objects

for

which

HSP

is

always

enforced

are:

v

programs

(object

type

hex

02)

v

modules

(object

type

hex

03)

v

XOM

objects

(object

type

hex

20)

v

any

objects

with

type

values

greater

than

hex

20.

HSP

is

also

always

enforced

for

secondary

associated

spaces.

In

addition,

some

individual

objects

of

type

space

or

index,

and

the

primary

associated

spaces

of

all

MI

objects,

can

optionally

be

protected

with

HSP

enforcement

at

all

times.

The

format

of

the

template

for

the

hardware

storage

protection

enforcement

state

option

is

as

follows

(including

the

usual

8-byte

prefix):

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Hardware

storage

protection

enforcement

state

Bin(2)

Hex

0000

=

Indicates

hardware

storage

protection

is

enforced

only

for

storage

that

is

always

protected

Hex

8000

=

Indicates

hardware

storage

protection

is

enforced

for

all

storage

10

A

—-

End

—-

(Ref

#23.)

638

iSeries:

Machine

Interface

Instructions

APIs

Hex

0180

Time

separator

The

time

separator

is

used

when

the

time

is

presented

to

the

customer.

The

valid

values

are

a

colon(:),

period(.),

comma(,)

and

a

blank(

).

The

format

of

the

template

for

the

time

separator

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Time

separator

Char(1)

9

9

—-

End

—-

(Ref

#24.)

Hex

0184

Software

error

logging

The

software

error

logging

machine

attribute

is

used

to

allow

the

MI

user

to

determine

whether

or

not

software

error

logging

is

active

for

the

machine

The

format

of

the

template

for

software

error

logging

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Software

error

logging

Bin(2)

Hex

8000

=

Software

error

logging

is

active

Hex

0000

=

Software

error

logging

is

not

active

10

A

—-

End

—-

(Ref

#25.)

Machine

Interface

Instructions

639

Hex

0188

Machine

task

or

secondary

thread

termination

event

control

option

The

machine

task

or

secondary

thread

termination

event

option

controls

whether

the

machine

will

signal

events

when

machine

tasks

or

secondary

threads

terminate.

The

default,

which

is

established

every

IPL,

is

to

signal

neither

machine

task

nor

secondary

thread

termination

events.

There

are

different

events

associated

with

the

termination

of

machine

tasks

and

secondary

threads.

The

machine

task

or

secondary

thread

termination

event

option

is

a

bit

mask,

with

individual

bits

corresponding

to

machine

tasks

or

secondary

threads,

and

their

associated

events.

If

a

bit

is

binary

1,

the

corresponding

event

will

be

signalled;

if

binary

0,

it

will

not.

The

events

are

signalled

to

the

process

containing

the

thread

which

most

recently

executed

Modify

Machine

Attributes

(MODMATR),

specifying

the

machine

task

or

secondary

thread

termination

event

control

option

attribute

selection.

If

a

process

terminates

while

it

is

the

process

to

which

the

machine

task

or

secondary

thread

termination

events

are

to

be

signalled,

the

signalling

of

these

events

is

stopped.

The

format

of

the

template

for

the

machine

task

or

secondary

thread

termination

event

option

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Machine

task

or

secondary

thread

termination

event

option

Char(2)

8

8

Signal

machine

task

termination

events

Bit

0

8

8

Signal

secondary

thread

termination

events

Bit

1

8

8

Reserved

(binary

0)

Bits

2-15

10

A

—-

End

—-

(Ref

#26.)

640

iSeries:

Machine

Interface

Instructions

APIs

Hex

01A8

Service

attributes

The

service

attributes

is

a

template

that

contains

system

serviceability

information.

The

materialize

format

of

the

service

attributes

(including

the

8-byte

prefix)

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Service

attribute

flags

Char(1)

8

8

Automatic

problem

analysis

Bit

0

0

=

Automatic

problem

analysis

is

not

enabled

1

=

Automatic

problem

analysis

is

enabled

8

8

Automatic

problem

notification

Bit

1

0

=

Automatic

problem

notification

is

not

enabled

1

=

Automatic

problem

notification

is

enabled

8

8

Service

attributes

status

Bit

2

0

=

Service

attribute

values

are

not

set

1

=

Service

attribute

values

are

set

8

8

Allow

remote

service

access

Bit

3

0

=

Remote

service

access

is

not

allowed

1

=

Remote

service

access

is

allowed

8

8

Allow

auto

service

processor

reporting

Machine

Interface

Instructions

641

Hex

01B0

Signal

controls

The

materialization

format

of

the

Signal

Controls

(including

the

8-byte

prefix)

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Reserved

Char(8)

16

10

Signal

blocking

mask

Char(8)

16

10

Reserved

(binary

0)

Bit

0

16

10

Blocked/unblocked

option

Bits

1-63

0

=

Signal

is

blocked.

Signal

action

for

the

signal

monitor

is

to

be

deferred.

1

=

Signal

is

unblocked.

Signal

action

for

the

signal

monitor

is

eligible

to

be

scheduled.

24

18

Number

of

signal

monitors

Bin(4)

28

1C

Reserved

(binary

0)

Char(4)

32

20

Signal

monitor

data

[*]

Char(16)

(repeated

for

each

signal

monitor)

32

20

Signal

number

Bin(4)

36

24

Signal

action

Bin(2)

-1

=

Signal

associated

with

this

signal

monitor

is

642

iSeries:

Machine

Interface

Instructions

APIs

Hex

01C8

Cryptography

attributes

The

format

of

the

template

for

cryptography

attributes

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Number

of

algorithm

entries

to

follow

UBin(2)

10

A

Algorithm

entry

[*]

Char(6)

(repeated

number

of

algorithm

entries

to

follow

times)

10

A

Algorithm

identifier

Char(2)

Hex

0001

=

MAC

-

Message

Authentication

Code

Hex

0002

=

MD5

Hex

0003

=

SHA-1

-

Secure

Hash

Algorithm

Hex

0004

=

DES

(encrypt

only)

-

Data

Encryption

Standard

Hex

0005

=

DES

(encrypt

and

decrypt)

Hex

0006

=

RC4

Hex

0007

=

RC5

Hex

0008

=

DESX

Hex

0009

=

Triple-DES

Hex

000A

=

DSA

-

Digital

Signature

Algorithm

Hex

000B

=

RSA

-

Rivest-Shamir-Adleman

Hex

000C

=

Diffie-Hellman

Hex

000D

=

CDMF

-

Commercial

Data

Masking

Facility

Hex

000E

=

RC2

Hex

000F

=

AES

-

Advanced

Encryption

Standard

Machine

Interface

Instructions

643

Hex

01D0

Communication

network

attributes

(can

be

materialized

and

modified)

The

communication

network

attribute

is

a

template

that

contains

information

concerning

communication

attributes.

The

format

of

the

template

for

the

communication

network

attributes

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Communication

attribute

Char(256)

8

8

Modem

country

identifier

UBin(4)

12

C

Reserved

(binary

0)

Char(252)

264

108

—-

End

—-

The

modem

country

identifier

specifies

the

country-specific

identifier

for

modems

which

are

internal

to

I/O

Adapters.

This

value

must

be

configured

correctly

to

ensure

proper

operation

and,

in

some

countries,

to

meet

legal

requirements.

There

can

only

be

one

modem

country

identifier

for

each

partition

of

a

physical

machine

The

supported

modem

country

identifiers

are

as

follows:

Country

Modem

Country

ID

(Hex

value)

Argentina

00004152

Aruba

00004157

Australia

00004155

Austria

00004154

Bahrain

00004248

Belgium

00004245

Brazil

00004252

Brunei

0000424E

Canada

00004341

Cayman

Islands

00004B59

Chile

0000434C

China

0000434E

Colombia

0000434F

Costa

Rica

00004352

644

iSeries:

Machine

Interface

Instructions

APIs

Hex

01DC

Installed

processor

count

This

option

makes

available

the

installed

processor

count

for

the

physical

machine.

The

materialization

format

of

installed

processor

count

information

(including

the

8-byte

prefix

for

number

of

bytes

provided

and

number

of

bytes

available)

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Number

of

installed

processors

UBin(2)

10

A

—-

End

—-

Number

of

installed

processors

is

the

number

of

processors

installed

on

the

physical

machine.

If

the

physical

machine

has

the

on-demand

processors

feature,

number

of

installed

processors

=

number

of

permanently

activated

processors

+

number

of

temporarily

activated

processors

+

number

of

processors

which

are

not

activated.

(Ref

#31.)

Machine

Interface

Instructions

645

Hex

01E0

Partitioning

information

This

option

makes

available

partitioning

information

for

the

physical

machine

and

the

current

partition.

The

materialization

format

of

partitioning

information

(including

the

8-byte

prefix

for

number

of

bytes

provided

and

number

of

bytes

available)

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Current

number

of

partitions

Char(1)

9

9

Current

partition

identifier

Char(1)

10

A

Primary

partition

identifier

Char(1)

11

B

Service

partition

identifier

Char(1)

12

C

Firmware

level

Char(1)

13

D

Reserved

(binary

0)

Char(3)

16

10

Logical

serial

number

Char(10)

26

1A

Reserved

(binary

0)

Char(5)

31

1F

Partition

attributes

Char(1)

31

1F

Partition

physical

processor

sharing

attribute

Bit

0

0

=

Partition

does

not

share

physical

processors

1

=

Partition

shares

physical

processors

31

1F

Partition

uncapped

attribute

646

iSeries:

Machine

Interface

Instructions

APIs

Hex

01EC

Additional

load

source

reserved

space

(Can

be

modified

and

materialized)

Use

this

selection

to

check

if

additional

load

source

disk

space

is

allowed

to

be

reserved

for

system

use

and

if

that

space

has

already

been

reserved.

If

the

indicators

show

that

additional

load

source

disk

space

is

allowed

for

system

use

and

that

LIC

has

not

reserved

the

space

yet,

after

IPL,

LIC

will

reserve

this

space

and

it

cannot

be

freed.

The

format

of

the

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Reserved

disk

space

indicators

Char(1)

8

8

Space

reserved

indicator

Bit

0

This

indicator

indicates

what

can

take

effect

on

the

next

IPL.

0

=

LIC

cannot

reserve

load

source

disk

space.

1

=

LIC

can

reserve

load

source

disk

space

on

the

next

IPL.

8

8

Load

source

space

reserved

Bit

1

0

=

LIC

has

not

reserved

load

source

disk

space.

1

=

LIC

has

reserved

load

source

disk

space.

8

8

Reserved

(binary

0)

Bits

2-7

9

9

—-

End

—-

The

space

reserved

indicator

field

indicates

whether

additional

load

source

disk

space

can

be

reserved

by

LIC

or

not

on

the

next

IPL.

Once

the

space

is

reserved

by

LIC,

that

is,

the

value

of

load

source

space

reserved

is

binary

1,

the

value

of

this

field

no

longer

has

any

meaning.

The

load

source

space

reserved

field

indicates

whether

additional

load

source

disk

space

has

been

reserved

by

LIC

or

not.

(Ref

#33.)

Machine

Interface

Instructions

647

Hex

01F4

On-demand

processor

information

(Can

only

be

materialized)

Use

this

selection

to

materialize

the

information

of

on-demand

processors

on

the

system.

If

the

system

does

not

have

the

on-demand

processor

feature

installed,

all

non-reserved

values

returned

will

be

blanks

(hex

40s)

except

the

enabled

and

active

indicators

will

be

hex

00s,

and

the

current

time

of

day

will

be

set.

Also,

some

features

may

support

limited

on-demand

functions,

such

as

Capacity

Upgrade

on

Demand

(CUoD)

but

not

On/Off

Capacity

on

Demand

(CoD)

for

processors.

In

such

a

case,

the

values

returned

for

the

unsupported

function

will

be

blanks

(hex

40s).

The

format

of

the

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

System

type

Char(4)

12

C

System

serial

number

Char(10)

22

16

Capacity

card

CCIN

Char(4)

26

1A

Capacity

card

serial

number

Char(10)

36

24

Capacity

card

unique

identifier

Char(16)

52

34

Capacity

Upgrade

on

Demand

activation

feature

Char(4)

56

38

Activated

Capacity

Upgrade

on

Demand

units

Char(4)

60

3C

Capacity

Upgrade

on

Demand

sequence

number

Char(4)

64

40

Capacity

Upgrade

on

Demand

entry

check

Char(2)

66

42

Capacity

Upgrade

on

Demand

maximum

processors

that

can

be

purchased

Char(4)

70

46

On/Off

Capacity

on

Demand

enabled

648

iSeries:

Machine

Interface

Instructions

APIs

Hex

01F6

On-demand

memory

information

(Can

only

be

materialized)

Use

this

selection

to

materialize

the

information

of

on-demand

memory

on

the

system.

If

the

system

does

not

have

the

on-demand

memory

feature

installed,

all

non-reserved

values

returned

will

be

blanks

(hex

40s)

except

the

enabled

and

active

indicators

will

be

hex

00s,

and

the

current

time

of

day

will

be

set.

Also,

some

features

may

support

limited

on-demand

functions,

such

as

Capacity

Upgrade

on

Demand

but

not

On/Off

Capacity

on

Demand

for

memory.

In

such

a

case,

the

values

returned

for

the

unsupported

function

will

be

blanks

(hex

40s).

The

format

of

the

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

System

type

Char(4)

12

C

System

serial

number

Char(10)

22

16

Capacity

card

CCIN

Char(4)

26

1A

Capacity

card

serial

number

Char(10)

36

24

Capacity

card

unique

identifier

Char(16)

52

34

Capacity

Upgrade

on

Demand

activation

feature

Char(4)

56

38

Activated

Capacity

Upgrade

on

Demand

units

Char(4)

60

3C

Capacity

Upgrade

on

Demand

sequence

number

Char(4)

64

40

Capacity

Upgrade

on

Demand

entry

check

Char(2)

66

42

Capacity

Upgrade

on

Demand

maximum

memory

that

can

be

purchased

Char(4)

70

46

On/Off

Capacity

on

Demand

enabled

Machine

Interface

Instructions

649

Hex

01F7

On-demand

memory

information

(Can

only

be

materialized)

(Internal

use

only)

This

option

can

only

be

used

in

a

program

running

in

system

state.

The

scalar

value

invalid

(hex

3203)

exception

will

be

signaled

if

the

program

that

issues

this

option

is

running

in

user

state.

Use

this

selection

to

materialize

the

information

of

on-demand

memory

on

the

system,

including

information

required

to

verify

resource

usage.

If

the

system

does

not

have

the

on-demand

memory

feature

installed,

all

non-reserved

values

returned

will

be

blanks

(hex

40s)

except

the

enabled

and

active

indicators

will

be

hex

00s,

and

the

current

time

of

day

will

be

set.

Also,

some

features

may

support

limited

on-demand

functions,

such

as

Capacity

Upgrade

on

Demand

but

not

On/Off

Capacity

on

Demand

for

memory.

In

such

a

case,

the

values

returned

for

the

unsupported

function

will

be

blanks

(hex

40s).

The

format

of

the

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

System

type

Char(4)

12

C

System

serial

number

Char(10)

22

16

Capacity

card

CCIN

Char(4)

26

1A

Capacity

card

serial

number

Char(10)

36

24

Capacity

card

unique

identifier

Char(16)

52

34

Capacity

Upgrade

on

Demand

activation

feature

Char(4)

56

38

Activated

Capacity

Upgrade

on

Demand

units

Char(4)

60

3C

Capacity

Upgrade

on

Demand

sequence

number

Char(4)

64

40

Capacity

Upgrade

on

Demand

entry

check

Char(2)

66

42

650

iSeries:

Machine

Interface

Instructions

APIs

Hex

01F8

IPL

identifier

(Can

only

be

materialized)

Use

this

selection

to

materialize

the

IPL

identifier.

This

value

changes

with

each

IPL.

The

format

of

the

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

IPL

identifier

UBin(4)

12

C

—-

End

—-

The

IPL

identifier

is

a

value

that

is

unique

for

each

system

IPL.

The

value

increases

for

each

system

IPL.

(Ref

#37.)

Hex

01FC

Electronic

licensing

identifier

(Can

be

modified

and

materialized)

The

format

of

the

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Electronic

licensing

identifier

Char(5)

13

D

—-

End

—-

The

electronic

licensing

identifier

field

is

the

value

of

version,

release

and

modification

level

of

the

OS/400

to

be

installed

during

the

next

upgrade

whose

license

is

accepted

by

the

customers.

The

format

of

the

electronic

licensing

identifier

is

vrmnn

where

v

is

the

version,

r,

the

release,

m,

the

modication

level,

and

nn

are

operating

system

assigned

values.

(Ref

#38.)

Machine

Interface

Instructions

651

Hex

0200

Wait

state

performance

information

(Can

only

be

materialized)

Use

this

selection

to

materialize

the

wait

state

performance

information.

The

format

of

the

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Reserved

(binary

0)

Char(8)

16

10

Offset

to

descriptor

table

entries

UBin(4)

20

14

Offset

to

mapping

table

entries

UBin(4)

24

18

Number

of

descriptor

table

entries

UBin(2)

26

1A

Number

of

mapping

table

entries

UBin(2)

28

1C

Reserved

(binary

0)

Char(20)

48

30

Descriptor

table

entry

[*]

Char(64)

(repeated

number

of

descriptor

table

entries

times)

48

30

Collection

bucket

number

UBin(2)

50

32

Collection

bucket

descriptor

Char(50)

100

64

Reserved

(binary

0)

Char(12)

*

*

Mapping

table

entry

[*]

Char(16)

(repeated

number

of

mapping

table

entries

times)

652

iSeries:

Machine

Interface

Instructions

APIs

Hex

0204

Hardware

management

console

information

The

format

of

the

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Number

of

entries

returned

UBin(4)

12

C

Reserved

(binary

0)

Char(4)

16

10

Hardware

Management

Console

(HMC)

information

[*]

Char(1036)

(repeated

for

number

of

entries

returned)

16

10

HMC

information

length

UBin(2)

18

12

HMC

information

Char(1034)

*

*

—-

End

—-

The

number

of

entries

returned

field

returns

the

number

of

Hardware

Management

Console

(HMC)

information

entries

returned.

On

a

non-HMC

managed

system,

the

value

returned

will

be

binary

0.

The

HMC

information

field

returns

a

string

containing

the

following

data:

v

HMC

name

v

HMC

host

name

v

IP

address

v

HMC

state

The

data

returned

is

in

7-bit

ASCII

and

its

format

is

as

follows:

keyword1=its_value;keyword2=its_value;etc.

where

a

keyword

can

be

HscName,

HscHostName,

HscIPAddr,

or

HmcStat.

Each

keyword

is

followed

by

an

equal

sign

(=),

its

value,

and

ends

with

a

semi-colon

(;).

For

example,

an

HMC

information

string

can

look

like

this:

HscName=679231U*23WW193;

HscHostName=hosta.company.xyz.com;

HscIPAddr=3.103.123.118;HmcStat=1;

Keywords

and

their

values

in

the

HMC

information

string

can

be

in

any

order.

There

is

no

carriage

return

<CR>

(hex

0D)

or

line

feed

<LF>

(hex

0A),

and

the

string

is

not

NULL

terminated.

The

values

of

HMC

state

can

be

v

1

=

the

HMC

is

operating

successfully.

v

2

=

the

HMC

has

indicated

it

is

temporarily

disconnecting

Machine

Interface

Instructions

653

Hex

0208

Keep

current

disk

configuration

during

install

(can

be

modified

and

materialized)

This

option

is

used

to

materialize

the

indicator

that

indicates

whether

or

not

all

non

configured

disk

units

should

be

added

to

the

system

ASP

during

an

automatic

install

operation.

The

format

of

the

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Keep

current

disk

configuration

indicator

Char(1)

Hex

00

=

Add

all

non

configured

disk

units

to

the

system

ASP.

Hex

01

=

Keep

current

disk

configuration.

9

9

Reserved

(binary

0)

Char(7)

16

10

—-

End

—-

Limitations

(Subject

to

Change):

Data-pointer-defined

scalars

are

not

allowed

as

a

primary

operand

for

this

instruction.

An

invalid

operand

type

(hex

2A06)

exception

is

signaled

if

this

occurs.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

654

iSeries:

Machine

Interface

Instructions

APIs

0603

Range

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C0A

Service

Processor

Unable

to

Process

Request

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

Machine

Interface

Instructions

655

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Machine

Attributes

(MATMATR)

Op

Code

(Hex)

Operand

1

Operand

2

0636

Materialization

Machine

attributes

Operand

1:

Space

pointer.

Operand

2:

Character(2)

scalar

or

space

pointer.

Bound

program

access

Built-in

number

for

MATMATR1

is

92.

MATMATR1

(

materialization

:

address

machine_attributes

:

address

(of

just

a

selector

value)

)

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Description:

The

instruction

makes

available

the

unique

values

of

machine

attributes.

Unless

otherwise

stated,

all

options

materialize

the

value

of

machine

attributes

for

the

current

partition.

The

values

of

various

machine

attributes

are

placed

in

the

receiver.

Operand

2

specifies

options

for

the

type

of

information

to

be

materialized.

Operand

2

is

specified

as

an

attribute

selection

value

(character(2)

scalar)

or

as

an

attribute

selection

template

(space

pointer

to

a

character(2)

scalar).

The

machine

attributes

are

divided

into

nine

groups.

Byte

0

of

the

attribute

selection

operand

specifies

from

which

group

the

machine

attributes

are

to

be

materialized.

Byte

1

of

the

options

operand

selects

a

specific

subset

of

that

group

of

machine

attributes.

Operand

1

specifies

a

space

pointer

to

the

area

where

the

materialization

is

to

be

placed.

The

format

of

the

materialization

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

by

the

user

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Attribute

specification

Char(*)

(as

defined

by

the

attribute

selection)

*

*

—-

End

—-

The

first

4

bytes

of

the

materialization

(operand

1)

identify

the

total

number

of

bytes

provided

by

the

user

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

656

iSeries:

Machine

Interface

Instructions

APIs

The

second

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

available

for

materialization.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested

for

materialization,

then

the

excess

bytes

are

unchanged.

No

exceptions

(other

than

the

materialization

length

invalid

(hex

3803)

exception)

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization.

Table

1.

MATMATR

Selection

Values

Selection

value

Attribute

Description

Page

0004

Machine

serial

identification

reference

#1

(page

)

0100

Time-of-day

clock

(local

time)

reference

#2

(page

)

0101

Time-of-day

clock

with

clock-offset

reference

#3

(page

)

0104

Primary

initial

process

definition

template

reference

#4

(page

)

0108

Machine

initialization

status

record

reference

#5

(page

)

0118

Uninterruptible

power

supply

delay

time

and

calculated

delay

time

reference

#6

(page

)

012C

Vital

product

data

reference

#7

(page

)

0130

Network

attributes

reference

#8

(page

)

0134

Date

format

reference

#9

(page

)

0138

Leap

year

adjustment

reference

#10

(page

)

013C

Timed

power

on

reference

#11

(page

)

0140

Timed

power

on

enable/disable

reference

#12

(page

)

0144

Remote

power

on

enable/disable

reference

#13

(page

)

0148

Auto

power

restart

enable/disable

reference

#14

(page

)

014C

Date

separator

reference

#15

(page

)

0151

System

security

indicators

reference

#16

(page

)

0161

Perform

hardware

checks

on

IPL

reference

#17

(page

)

0164

Uninterruptible

power

supply

type

reference

#18

(page

)

0168

Panel

status

request

reference

#19

(page

)

016C

Extended

machine

initialization

status

record

reference

#20

(page

)

0170

Alternate

initial

process

definition

template

reference

#21

(page

)

0178

Hardware

storage

protection

enforcement

state

reference

#22

(page

)

0180

Time

separator

reference

#23

(page

)

0184

Software

error

logging

reference

#24

(page

)

0188

Machine

task

or

secondary

thread

termination

event

control

option

reference

#25

(page

)

01A8

Service

attributes

reference

#26

(page

)

01B0

Signal

controls

reference

#27

(page

)

01C8

Cryptography

attributes

reference

#28

(page

)

01D0

Communication

network

attributes

reference

#29

(page

)

01DC

Installed

processor

count

reference

#30

(page

)

01E0

Partitioning

information

reference

#31

(page

)

01EC

Additional

load

source

reserved

space

reference

#32

(page

)

01F4

Processor

on

demand

information

reference

#33

(page

)

01F6

Memory

on

demand

information

reference

#34

(page

)

01F8

IPL

identifier

reference

#36

(page

)

01FC

Electronic

licensing

identifier

reference

#37

(page

)

0200

Wait

state

performance

information

reference

#38

(page

)

Machine

Interface

Instructions

657

Selection

value

Attribute

Description

Page

0204

Hardware

Management

Console

(HMC)

information

reference

#39

(page

)

The

machine

attributes

selected

by

operand

2

are

materialized

according

to

the

following

selection

values:

Selection

Attribute

Value

Description

(Ref

#1.)

Hex

0004

Machine

serial

identification

The

machine

serial

identification

that

is

materialized

is

an

8-byte

character

field

that

contains

the

unique

physical

machine

identifier.

This

identifier

is

the

same

for

all

partitions

of

a

physical

machine.

(Ref

#2.)

Hex

0100

Time-of-day

clock

(local

time)

The

time-of-day

clock

option

is

used

to

return

the

time-of-day

clock

as

the

local

time

for

the

system.

The

MATMDATA

or

MATTODAT

instruction

can

be

used

to

return

the

time-of-day

clock

as

the

Coordinated

Universal

TIme

(UTC)

for

the

system.

See

“Standard

Time

Format”

on

page

1272

for

additional

information

on

the

time-of-day

clock.

The

maximum

unsigned

binary

value

that

the

time

of

day

clock

can

be

modified

to

contain

is

hex

DFFFFFFFFFFFFFFF.

(Ref

#3.)

Hex

0101

Time-of-day

clock

with

clock-offset

In

addition

to

returning

the

system

time-of-day

(TOD)

clock

(as

defined

for

selection

value

hex

0100

described

previously),

the

time-of-day

clock

with

clock-offset

option

will

also

return

a

clock-offset

which

can

be

used

to

convert

clocks

from

different

partitions

(on

a

partitioned

system)

to

values

referencing

the

common

hardware

clock

used

by

all

partitions

on

the

same

system.

This

enables

users/administrators

of

a

partitioned

system

to

analyze

and

compare

events

taking

place

in

different

partitions.

See

“Standard

Time

Format”

on

page

1272

for

additional

information

on

the

time-of-day

clock.

The

clock-offset

is

defined

as

the

difference

between

the

time-of-day

clock

for

the

current

partition

and

the

value

of

the

hardware

clock

counter.

The

materialize

format

of

the

time-of-day

clock

with

clock-offset

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Time-of-day

clock

Char(8)

16

10

Clock-offset

Char(8)

24

18

—-

End

—-

(Ref

#4.)

658

iSeries:

Machine

Interface

Instructions

APIs

Hex

0104

Primary

initial

process

definition

template

The

primary

initial

process

definition

template

is

used

by

the

machine

to

perform

an

initial

program

load.

No

check

is

made

and

no

exception

is

signaled

if

the

values

in

the

template

are

invalid;

however,

the

next

initial

program

load

will

not

be

successful.

(Ref

#5.)

Machine

Interface

Instructions

659

Hex

0108

Machine

initialization

status

record

The

MISR

(machine

initialization

status

record)

is

used

to

report

the

status

of

the

machine.

The

status

is

initially

collected

at

IPL

and

then

updated

as

system

status

changes.

The

materialize

format

of

the

MISR

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

MISR

status

Char(6)

8

8

Restart

IMPL

Bit

0

0

=

IMPL

was

not

initiated

by

the

Terminate

instruction

1

=

IMPL

was

initiated

by

the

Terminate

instruction

8

8

Manual

power

on

Bit

1

0

=

Power

on

not

due

to

Manual

power

on

1

=

Manual

power

on

occurred

8

8

Timed

power

on

Bit

2

0

=

Power

on

not

due

to

Timed

power

on

1

=

Timed

power

on

occurred

8

8

Remote

power

on

Bit

3

0

=

Power

on

not

due

to

remote

power

on

1

=

Remote

power

on

occurred

8

8

660

iSeries:

Machine

Interface

Instructions

APIs

Hex

0118

Uninterruptible

power

supply

delay

time

and

calculated

delay

time.

Note:

The

UPS

delay

time

is

meaningful

only

if

a

UPS

is

installed.

The

format

of

the

template

for

the

uninterruptible

power

supply

delay

time

(including

the

8-byte

prefix)

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

UPS

Delay

time

Bin(4)

12

C

Calculated

UPS

Delay

time

Bin(4)

The

delay

time

interval

is

the

amount

of

time

the

system

waits

for

the

return

of

utility

power.

If

a

utility

power

failure

occurs,

the

system

will

continue

operating

on

the

UPS

supplied

power.

If

utility

power

does

not

return

within

the

user

specified

delay

time,

the

system

will

perform

a

quick

power

down.

The

delay

time

interval

is

set

by

the

customer.

The

calculated

delay

time

is

determined

by

the

amount

of

main

storage

and

DASD

that

exists

on

the

system.

Both

values

are

in

seconds.

16

10

—-

End

—-

(Ref

#7.)

Machine

Interface

Instructions

661

Hex

012C

Vital

product

data

The

VPD

(vital

product

data)

is

a

template

that

contains

information

for

memory

card

VPD,

processor

VPD,

Columbia/Colomis

VPD,

central

electronic

complex

(CEC)

VPD

and

the

panel

VPD.

The

VPD

information

that

is

materialized

is

the

same

for

all

partitions

of

a

physical

machine.

The

materialize

format

of

the

VPD

(Including

the

8-byte

prefix)

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Reserved

Char(8)

16

10

System

VPD

location

Char(32)

16

10

Offset

to

memory

VPD

Bin(4)

20

14

Offset

to

processor

VPD

Bin(4)

24

18

Offset

to

Columbia/Colomis

Bin(4)

28

1C

Offset

to

CEC

VPD

Bin(4)

32

20

Offset

to

panel

VPD

Bin(4)

36

24

Reserved

Char(12)

48

30

Main

store

memory

VPD

Char(1040)

48

30

Usable

memory

installed

Bin(2)

(In

megabytes)

50

32

Minimum

memory

required

662

iSeries:

Machine

Interface

Instructions

APIs

Hex

0130

Network

attributes

The

network

attributes

is

a

template

that

contains

information

concerning

APPN

network

attributes.

The

materialize

format

of

the

network

attributes

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Network

data

Char(190)

8

8

System

name

Char(8)

16

10

System

name

length

Bin(2)

18

12

New

system

name

Char(8)

26

1A

New

system

name

length

Bin(2)

28

1C

Local

system

network

identification

Char(8)

36

24

Local

system

network

identification

length

Bin(2)

38

26

End

node

data

compression

Bin(4)

42

2A

Intermediate

node

data

compression

Bin(4)

46

2E

Reserved

Char(2)

48

30

Local

system

control

point

name

Char(8)

56

38

Local

system

control

point

name

length

Bin(2)

58

3A

Maximum

APPN

LUDs

on

virtual

APPN

CDs

Machine

Interface

Instructions

663

Hex

0134

Date

format

The

date

format

is

the

format

in

which

the

date

will

be

presented

to

the

customer.

The

possible

values

are

YMD,

MDY,

DMY

where

Y

=

Year,

M

=

Month,

D

=

Day

and

JUL

=

Julian.

The

format

of

the

template

for

date

format

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Date

format

Char(3)

11

B

—-

End

—-

(Ref

#10.)

Hex

0138

Leap

year

adjustment

The

leap

year

adjustment

is

added

to

the

leap

year

calculations

to

determine

the

year

in

which

the

leap

should

occur.

The

valid

values

are

0,

1,

2,

3.

The

format

of

the

template

for

leap

year

adjustment

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Leap

year

adjustment

Bin(2)

10

A

—-

End

—-

(Ref

#11.)

664

iSeries:

Machine

Interface

Instructions

APIs

Hex

013C

Timed

power

on

The

timed

power

on

is

the

time

and

date

at

which

the

system

should

automatically

power

on

if

it

is

not

already

powered

on.

If

the

physical

machine

is

powered

off,

and

the

time

and

date

at

which

a

partition

is

automatically

powered

is

set

to

occur

before

the

time

and

date

at

which

the

physical

machine

is

set

to

automatically

power

on

(according

to

their

respective

time

of

day

clocks),

then

the

partition

will

be

powered

on

when

the

physical

machine

is

powered

on.

The

format

of

the

template

for

timed

power

on

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Minute

Bin(2)

10

A

Hour

Bin(2)

12

C

Day

Bin(2)

14

E

Month

Bin(2)

16

10

Year

Bin(2)

18

12

—-

End

—-

(Ref

#12.)

Machine

Interface

Instructions

665

Hex

0140

Timed

power

on

enable/disable

The

timed

power

on

enable/disable

allows

the

timed

power

on

function

to

be

queried

to

determine

if

the

function

is

enabled

or

disabled.

The

format

of

the

template

for

timed

power

on

enable/disable

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Enable/disable

Bin(2)

Hex

8000

=

Timed

power

on

is

enabled

Hex

0000

=

Timed

power

on

is

disabled

10

A

—-

End

—-

(Ref

#13.)

666

iSeries:

Machine

Interface

Instructions

APIs

Hex

0144

Remote

power

on

enable/disable

The

remote

power

on

enable/disable

allows

the

remote

power

on

function

to

be

queried

to

determine

if

the

function

is

enabled

or

disabled.

The

format

of

the

template

for

remote

power

on

enable/disable

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Enable/disable

Bin(2)

Hex

8000

=

Remote

power

on

is

enabled

Hex

0000

=

Remote

power

on

is

disabled

10

A

—-

End

—-

(Ref

#14.)

Machine

Interface

Instructions

667

Hex

0148

Auto

power

restart

enable/disable

The

auto

power

restart

enable/disable

allows

the

auto

power

restart

function

to

be

queried

to

determine

if

the

function

is

enabled

or

disabled.

The

format

of

the

template

for

auto

power

restart

enable/disable

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Enable/disable

Bin(2)

Hex

8000

=

Auto

power

restart

is

enabled

Hex

0000

=

Auto

power

restart

is

disabled

10

A

—-

End

—-

(Ref

#15.)

Hex

014C

Date

separator

The

date

separator

is

used

when

the

date

is

presented

to

the

customer.

The

valid

values

are

a

slash(/),

dash(-),

period(.),

comma(,)

and

a

blank(

).

The

format

of

the

template

for

the

date

separator

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Date

separator

Char(1)

9

9

—-

End

—-

(Ref

#16.)

668

iSeries:

Machine

Interface

Instructions

APIs

Hex

0151

System

security

indicators

(Can

only

be

materialized)

The

system

security

indicators

return

the

current

setting

of

the

system

security

flags.

The

format

of

the

template

for

system

security

indicators

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

System

security

indicators

Char(1)

8

8

Reserved

Bits

0-4

8

8

Restrict

change

of

service

tool

user

ID

passwords

by

operating

system

Bit

5

0

=

Not

restricted

1

=

Restricted

8

8

Restrict

change

of

operating

system

security

values

Bit

6

0

=

Not

restricted

1

=

Restricted

8

8

Restrict

adds

to

digital

certificates

store

Bit

7

0

=

Not

restricted

1

=

Restricted

9

9

Reserved

(binary

0)

Char(11)

20

14

—-

End

—-

Machine

Interface

Instructions

669

Hex

0161

Perform

hardware

checks

on

IPL

The

perform

hardware

checks

on

IPL

option

retrieves

the

current

setting

that

indicates

if

the

system

is

skipping

hardware

checks

on

all

physical

machine

IPLs.

The

IPL

checks

are

performed

only

when

the

physical

machine

is

IPLed.

The

format

of

the

template

for

perform

hardware

checks

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Perform/not

perform

Bin(2)

Hex

8000

=

The

system

is

doing

hardware

checks

on

IPLs.

Hex

0000

=

The

system

is

not

checking

the

hardware

on

IPLs.

10

A

—-

End

—-

(Ref

#18.)

670

iSeries:

Machine

Interface

Instructions

APIs

Hex

0164

Uninterruptible

power

supply

type

Note:

The

UPS

type

is

meaningful

only

if

a

UPS

is

installed.

The

uninterruptible

power

supply

type

option

allows

the

MI

user

to

tell

the

machine

how

much

of

the

system

is

powered

by

a

UPS

(ie,

what

type

of

UPS

is

installed).

A

full

UPS

will

power

all

racks

in

the

system.

A

limited

UPS

will

have

enough

power

to

perform

main

store

dump.

A

mini

UPS

will

power

the

racks

containing

the

CEC

and

the

load

source.

The

format

of

the

template

for

UPS

Type

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

UPS

type

Bin(2)

Hex

0000

=

Indicates

a

full

UPS

is

installed

(all

racks

have

a

UPS

installed)

Hex

4000

=

Indicates

a

limited

UPS

is

installed

(the

UPS

only

has

enough

power

to

do

a

main

store

dump)

Hex

8000

=

Indicates

a

mini

UPS

is

installed

(only

the

minimum

number

of

racks

are

powered)

10

A

—-

End

—-

(Ref

#19.)

Machine

Interface

Instructions

671

Hex

0168

Panel

status

request

The

panel

status

request

option

returns

the

current

status

of

the

operations

panel.

The

format

of

the

template

for

panel

status

request

is

as

follows

(including

the

usual

8-byte

prefix):

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Current

IPL

type

Char(1)

9

9

Panel

status

Char(2)

9

9

Uninterrupted

power

supply

installed

Bit

0

0

=

UPS

not

installed

1

=

UPS

installed,

ready

for

use

9

9

Utility

power

failed,

running

on

UPS

Bit

1

0

=

Running

on

utility

power

1

=

Running

on

UPS

9

9

Uninterrupted

power

supply

(UPS)

bypass

active

Bit

2

0

=

UPS

bypass

not

active

1

=

UPS

bypass

active

9

9

Uninterrupted

power

supply

(UPS)

battery

low

Bit

3

0

=

UPS

battery

not

low

1

=

UPS

battery

low

672

iSeries:

Machine

Interface

Instructions

APIs

Hex

016C

Extended

machine

initialization

status

record

The

XMISR

(extended

machine

initialization

status

record)

is

used

to

report

the

status

of

the

machine.

The

materialize

format

of

the

XMISR

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Save

storage

status

Char(4)

8

8

Reserved

(binary

0)

Bit

0

8

8

Completion

status

Bit

1

0

=

Save

storage

did

not

complete

1

=

Save

storage

completed

8

8

System

restored

status

Bit

2

0

=

Save

storage

did

not

restore

the

system

1

=

Save

storage

restored

the

system

8

8

Save

storage

attempted

Bit

3

0

=

Save

storage

not

attempted

1

=

Save

storage

was

attempted

8

8

Unreadable

sectors

Bit

4

0

=

Unreadable

sectors

were

not

found

1

=

Unreadable

sectors

were

found

during

save

operation

Machine

Interface

Instructions

673

Hex

0170

Alternate

initial

process

definition

template

The

alternate

initial

process

definition

template

is

used

by

the

machine

when

performing

an

automatic

install.

No

check

is

made

and

no

exception

is

signaled

if

the

values

in

the

template

are

invalid;

however,

the

next

automatic

install

will

not

be

successful.

(Ref

#22.)

674

iSeries:

Machine

Interface

Instructions

APIs

Hex

0178

Hardware

storage

protection

enforcement

state

Note:

Hardware

storage

protection

is

meaningful

only

on

version

2

hardware

or

later.

Hardware

storage

protection

is

not

supported

at

all

on

version

1

hardware.

The

hardware

storage

protection

(HSP)

mechanism

is

always

in

effect.

However,

HSP

is

enforced

for

individual

storage

areas

in

two

different

ways.

For

some

storage

areas,

HSP

is

always

enforced.

For

others,

HSP

is

enforced

only

when

this

machine

attribute

is

active.

Attempted

use

of

any

storage

area

in

a

manner

inconsistent

with

its

storage

protection

attributes

will

result

in

object

domain

or

hardware

storage

protection

violation

(hex

4401)

exception

when

HSP

is

being

enforced

for

that

storage.

System

objects

for

which

HSP

is

always

enforced

are:

v

programs

(object

type

hex

02)

v

modules

(object

type

hex

03)

v

XOM

objects

(object

type

hex

20)

v

any

objects

with

type

values

greater

than

hex

20.

HSP

is

also

always

enforced

for

secondary

associated

spaces.

In

addition,

some

individual

objects

of

type

space

or

index,

and

the

primary

associated

spaces

of

all

MI

objects,

can

optionally

be

protected

with

HSP

enforcement

at

all

times.

The

format

of

the

template

for

the

hardware

storage

protection

enforcement

state

option

is

as

follows

(including

the

usual

8-byte

prefix):

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Hardware

storage

protection

enforcement

state

Bin(2)

Hex

0000

=

Indicates

hardware

storage

protection

is

enforced

only

for

storage

that

is

always

protected

Hex

8000

=

Indicates

hardware

storage

protection

is

enforced

for

all

storage

10

A

—-

End

—-

(Ref

#23.)

Machine

Interface

Instructions

675

Hex

0180

Time

separator

The

time

separator

is

used

when

the

time

is

presented

to

the

customer.

The

valid

values

are

a

colon(:),

period(.),

comma(,)

and

a

blank(

).

The

format

of

the

template

for

the

time

separator

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Time

separator

Char(1)

9

9

—-

End

—-

(Ref

#24.)

Hex

0184

Software

error

logging

The

software

error

logging

machine

attribute

is

used

to

allow

the

MI

user

to

determine

whether

or

not

software

error

logging

is

active

for

the

machine

The

format

of

the

template

for

software

error

logging

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Software

error

logging

Bin(2)

Hex

8000

=

Software

error

logging

is

active

Hex

0000

=

Software

error

logging

is

not

active

10

A

—-

End

—-

(Ref

#25.)

676

iSeries:

Machine

Interface

Instructions

APIs

Hex

0188

Machine

task

or

secondary

thread

termination

event

control

option

The

machine

task

or

secondary

thread

termination

event

option

controls

whether

the

machine

will

signal

events

when

machine

tasks

or

secondary

threads

terminate.

The

default,

which

is

established

every

IPL,

is

to

signal

neither

machine

task

nor

secondary

thread

termination

events.

There

are

different

events

associated

with

the

termination

of

machine

tasks

and

secondary

threads.

The

machine

task

or

secondary

thread

termination

event

option

is

a

bit

mask,

with

individual

bits

corresponding

to

machine

tasks

or

secondary

threads,

and

their

associated

events.

If

a

bit

is

binary

1,

the

corresponding

event

will

be

signalled;

if

binary

0,

it

will

not.

The

events

are

signalled

to

the

process

containing

the

thread

which

most

recently

executed

Modify

Machine

Attributes

(MODMATR),

specifying

the

machine

task

or

secondary

thread

termination

event

control

option

attribute

selection.

If

a

process

terminates

while

it

is

the

process

to

which

the

machine

task

or

secondary

thread

termination

events

are

to

be

signalled,

the

signalling

of

these

events

is

stopped.

The

format

of

the

template

for

the

machine

task

or

secondary

thread

termination

event

option

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Machine

task

or

secondary

thread

termination

event

option

Char(2)

8

8

Signal

machine

task

termination

events

Bit

0

8

8

Signal

secondary

thread

termination

events

Bit

1

8

8

Reserved

(binary

0)

Bits

2-15

10

A

—-

End

—-

(Ref

#26.)

Machine

Interface

Instructions

677

Hex

01A8

Service

attributes

The

service

attributes

is

a

template

that

contains

system

serviceability

information.

The

materialize

format

of

the

service

attributes

(including

the

8-byte

prefix)

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Service

attribute

flags

Char(1)

8

8

Automatic

problem

analysis

Bit

0

0

=

Automatic

problem

analysis

is

not

enabled

1

=

Automatic

problem

analysis

is

enabled

8

8

Automatic

problem

notification

Bit

1

0

=

Automatic

problem

notification

is

not

enabled

1

=

Automatic

problem

notification

is

enabled

8

8

Service

attributes

status

Bit

2

0

=

Service

attribute

values

are

not

set

1

=

Service

attribute

values

are

set

8

8

Allow

remote

service

access

Bit

3

0

=

Remote

service

access

is

not

allowed

1

=

Remote

service

access

is

allowed

8

8

Allow

auto

service

processor

reporting

678

iSeries:

Machine

Interface

Instructions

APIs

Hex

01B0

Signal

controls

The

materialization

format

of

the

Signal

Controls

(including

the

8-byte

prefix)

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Reserved

Char(8)

16

10

Signal

blocking

mask

Char(8)

16

10

Reserved

(binary

0)

Bit

0

16

10

Blocked/unblocked

option

Bits

1-63

0

=

Signal

is

blocked.

Signal

action

for

the

signal

monitor

is

to

be

deferred.

1

=

Signal

is

unblocked.

Signal

action

for

the

signal

monitor

is

eligible

to

be

scheduled.

24

18

Number

of

signal

monitors

Bin(4)

28

1C

Reserved

(binary

0)

Char(4)

32

20

Signal

monitor

data

[*]

Char(16)

(repeated

for

each

signal

monitor)

32

20

Signal

number

Bin(4)

36

24

Signal

action

Bin(2)

-1

=

Signal

associated

with

this

signal

monitor

is

Machine

Interface

Instructions

679

Hex

01C8

Cryptography

attributes

The

format

of

the

template

for

cryptography

attributes

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Number

of

algorithm

entries

to

follow

UBin(2)

10

A

Algorithm

entry

[*]

Char(6)

(repeated

number

of

algorithm

entries

to

follow

times)

10

A

Algorithm

identifier

Char(2)

Hex

0001

=

MAC

-

Message

Authentication

Code

Hex

0002

=

MD5

Hex

0003

=

SHA-1

-

Secure

Hash

Algorithm

Hex

0004

=

DES

(encrypt

only)

-

Data

Encryption

Standard

Hex

0005

=

DES

(encrypt

and

decrypt)

Hex

0006

=

RC4

Hex

0007

=

RC5

Hex

0008

=

DESX

Hex

0009

=

Triple-DES

Hex

000A

=

DSA

-

Digital

Signature

Algorithm

Hex

000B

=

RSA

-

Rivest-Shamir-Adleman

Hex

000C

=

Diffie-Hellman

Hex

000D

=

CDMF

-

Commercial

Data

Masking

Facility

Hex

000E

=

RC2

Hex

000F

=

AES

-

Advanced

Encryption

Standard

680

iSeries:

Machine

Interface

Instructions

APIs

Hex

01D0

Communication

network

attributes

(can

be

materialized

and

modified)

The

communication

network

attribute

is

a

template

that

contains

information

concerning

communication

attributes.

The

format

of

the

template

for

the

communication

network

attributes

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Communication

attribute

Char(256)

8

8

Modem

country

identifier

UBin(4)

12

C

Reserved

(binary

0)

Char(252)

264

108

—-

End

—-

The

modem

country

identifier

specifies

the

country-specific

identifier

for

modems

which

are

internal

to

I/O

Adapters.

This

value

must

be

configured

correctly

to

ensure

proper

operation

and,

in

some

countries,

to

meet

legal

requirements.

There

can

only

be

one

modem

country

identifier

for

each

partition

of

a

physical

machine

The

supported

modem

country

identifiers

are

as

follows:

Country

Modem

Country

ID

(Hex

value)

Argentina

00004152

Aruba

00004157

Australia

00004155

Austria

00004154

Bahrain

00004248

Belgium

00004245

Brazil

00004252

Brunei

0000424E

Canada

00004341

Cayman

Islands

00004B59

Chile

0000434C

China

0000434E

Colombia

0000434F

Costa

Rica

00004352

Machine

Interface

Instructions

681

Hex

01DC

Installed

processor

count

This

option

makes

available

the

installed

processor

count

for

the

physical

machine.

The

materialization

format

of

installed

processor

count

information

(including

the

8-byte

prefix

for

number

of

bytes

provided

and

number

of

bytes

available)

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Number

of

installed

processors

UBin(2)

10

A

—-

End

—-

Number

of

installed

processors

is

the

number

of

processors

installed

on

the

physical

machine.

If

the

physical

machine

has

the

on-demand

processors

feature,

number

of

installed

processors

=

number

of

permanently

activated

processors

+

number

of

temporarily

activated

processors

+

number

of

processors

which

are

not

activated.

(Ref

#31.)

682

iSeries:

Machine

Interface

Instructions

APIs

Hex

01E0

Partitioning

information

This

option

makes

available

partitioning

information

for

the

physical

machine

and

the

current

partition.

The

materialization

format

of

partitioning

information

(including

the

8-byte

prefix

for

number

of

bytes

provided

and

number

of

bytes

available)

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Current

number

of

partitions

Char(1)

9

9

Current

partition

identifier

Char(1)

10

A

Primary

partition

identifier

Char(1)

11

B

Service

partition

identifier

Char(1)

12

C

Firmware

level

Char(1)

13

D

Reserved

(binary

0)

Char(3)

16

10

Logical

serial

number

Char(10)

26

1A

Reserved

(binary

0)

Char(5)

31

1F

Partition

attributes

Char(1)

31

1F

Partition

physical

processor

sharing

attribute

Bit

0

0

=

Partition

does

not

share

physical

processors

1

=

Partition

shares

physical

processors

31

1F

Partition

uncapped

attribute

Machine

Interface

Instructions

683

Hex

01EC

Additional

load

source

reserved

space

(Can

be

modified

and

materialized)

Use

this

selection

to

check

if

additional

load

source

disk

space

is

allowed

to

be

reserved

for

system

use

and

if

that

space

has

already

been

reserved.

If

the

indicators

show

that

additional

load

source

disk

space

is

allowed

for

system

use

and

that

LIC

has

not

reserved

the

space

yet,

after

IPL,

LIC

will

reserve

this

space

and

it

cannot

be

freed.

The

format

of

the

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Reserved

disk

space

indicators

Char(1)

8

8

Space

reserved

indicator

Bit

0

This

indicator

indicates

what

can

take

effect

on

the

next

IPL.

0

=

LIC

cannot

reserve

load

source

disk

space.

1

=

LIC

can

reserve

load

source

disk

space

on

the

next

IPL.

8

8

Load

source

space

reserved

Bit

1

0

=

LIC

has

not

reserved

load

source

disk

space.

1

=

LIC

has

reserved

load

source

disk

space.

8

8

Reserved

(binary

0)

Bits

2-7

9

9

—-

End

—-

The

space

reserved

indicator

field

indicates

whether

additional

load

source

disk

space

can

be

reserved

by

LIC

or

not

on

the

next

IPL.

Once

the

space

is

reserved

by

LIC,

that

is,

the

value

of

load

source

space

reserved

is

binary

1,

the

value

of

this

field

no

longer

has

any

meaning.

The

load

source

space

reserved

field

indicates

whether

additional

load

source

disk

space

has

been

reserved

by

LIC

or

not.

(Ref

#33.)

684

iSeries:

Machine

Interface

Instructions

APIs

Hex

01F4

On-demand

processor

information

(Can

only

be

materialized)

Use

this

selection

to

materialize

the

information

of

on-demand

processors

on

the

system.

If

the

system

does

not

have

the

on-demand

processor

feature

installed,

all

non-reserved

values

returned

will

be

blanks

(hex

40s)

except

the

enabled

and

active

indicators

will

be

hex

00s,

and

the

current

time

of

day

will

be

set.

Also,

some

features

may

support

limited

on-demand

functions,

such

as

Capacity

Upgrade

on

Demand

(CUoD)

but

not

On/Off

Capacity

on

Demand

(CoD)

for

processors.

In

such

a

case,

the

values

returned

for

the

unsupported

function

will

be

blanks

(hex

40s).

The

format

of

the

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

System

type

Char(4)

12

C

System

serial

number

Char(10)

22

16

Capacity

card

CCIN

Char(4)

26

1A

Capacity

card

serial

number

Char(10)

36

24

Capacity

card

unique

identifier

Char(16)

52

34

Capacity

Upgrade

on

Demand

activation

feature

Char(4)

56

38

Activated

Capacity

Upgrade

on

Demand

units

Char(4)

60

3C

Capacity

Upgrade

on

Demand

sequence

number

Char(4)

64

40

Capacity

Upgrade

on

Demand

entry

check

Char(2)

66

42

Capacity

Upgrade

on

Demand

maximum

processors

that

can

be

purchased

Char(4)

70

46

On/Off

Capacity

on

Demand

enabled

Machine

Interface

Instructions

685

Hex

01F6

On-demand

memory

information

(Can

only

be

materialized)

Use

this

selection

to

materialize

the

information

of

on-demand

memory

on

the

system.

If

the

system

does

not

have

the

on-demand

memory

feature

installed,

all

non-reserved

values

returned

will

be

blanks

(hex

40s)

except

the

enabled

and

active

indicators

will

be

hex

00s,

and

the

current

time

of

day

will

be

set.

Also,

some

features

may

support

limited

on-demand

functions,

such

as

Capacity

Upgrade

on

Demand

but

not

On/Off

Capacity

on

Demand

for

memory.

In

such

a

case,

the

values

returned

for

the

unsupported

function

will

be

blanks

(hex

40s).

The

format

of

the

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

System

type

Char(4)

12

C

System

serial

number

Char(10)

22

16

Capacity

card

CCIN

Char(4)

26

1A

Capacity

card

serial

number

Char(10)

36

24

Capacity

card

unique

identifier

Char(16)

52

34

Capacity

Upgrade

on

Demand

activation

feature

Char(4)

56

38

Activated

Capacity

Upgrade

on

Demand

units

Char(4)

60

3C

Capacity

Upgrade

on

Demand

sequence

number

Char(4)

64

40

Capacity

Upgrade

on

Demand

entry

check

Char(2)

66

42

Capacity

Upgrade

on

Demand

maximum

memory

that

can

be

purchased

Char(4)

70

46

On/Off

Capacity

on

Demand

enabled

686

iSeries:

Machine

Interface

Instructions

APIs

Hex

01F7

On-demand

memory

information

(Can

only

be

materialized)

(Internal

use

only)

This

option

can

only

be

used

in

a

program

running

in

system

state.

The

scalar

value

invalid

(hex

3203)

exception

will

be

signaled

if

the

program

that

issues

this

option

is

running

in

user

state.

Use

this

selection

to

materialize

the

information

of

on-demand

memory

on

the

system,

including

information

required

to

verify

resource

usage.

If

the

system

does

not

have

the

on-demand

memory

feature

installed,

all

non-reserved

values

returned

will

be

blanks

(hex

40s)

except

the

enabled

and

active

indicators

will

be

hex

00s,

and

the

current

time

of

day

will

be

set.

Also,

some

features

may

support

limited

on-demand

functions,

such

as

Capacity

Upgrade

on

Demand

but

not

On/Off

Capacity

on

Demand

for

memory.

In

such

a

case,

the

values

returned

for

the

unsupported

function

will

be

blanks

(hex

40s).

The

format

of

the

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

System

type

Char(4)

12

C

System

serial

number

Char(10)

22

16

Capacity

card

CCIN

Char(4)

26

1A

Capacity

card

serial

number

Char(10)

36

24

Capacity

card

unique

identifier

Char(16)

52

34

Capacity

Upgrade

on

Demand

activation

feature

Char(4)

56

38

Activated

Capacity

Upgrade

on

Demand

units

Char(4)

60

3C

Capacity

Upgrade

on

Demand

sequence

number

Char(4)

64

40

Capacity

Upgrade

on

Demand

entry

check

Char(2)

66

42

Machine

Interface

Instructions

687

Hex

01F8

IPL

identifier

(Can

only

be

materialized)

Use

this

selection

to

materialize

the

IPL

identifier.

This

value

changes

with

each

IPL.

The

format

of

the

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

IPL

identifier

UBin(4)

12

C

—-

End

—-

The

IPL

identifier

is

a

value

that

is

unique

for

each

system

IPL.

The

value

increases

for

each

system

IPL.

(Ref

#37.)

Hex

01FC

Electronic

licensing

identifier

(Can

be

modified

and

materialized)

The

format

of

the

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Electronic

licensing

identifier

Char(5)

13

D

—-

End

—-

The

electronic

licensing

identifier

field

is

the

value

of

version,

release

and

modification

level

of

the

OS/400

to

be

installed

during

the

next

upgrade

whose

license

is

accepted

by

the

customers.

The

format

of

the

electronic

licensing

identifier

is

vrmnn

where

v

is

the

version,

r,

the

release,

m,

the

modication

level,

and

nn

are

operating

system

assigned

values.

(Ref

#38.)

688

iSeries:

Machine

Interface

Instructions

APIs

Hex

0200

Wait

state

performance

information

(Can

only

be

materialized)

Use

this

selection

to

materialize

the

wait

state

performance

information.

The

format

of

the

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Reserved

(binary

0)

Char(8)

16

10

Offset

to

descriptor

table

entries

UBin(4)

20

14

Offset

to

mapping

table

entries

UBin(4)

24

18

Number

of

descriptor

table

entries

UBin(2)

26

1A

Number

of

mapping

table

entries

UBin(2)

28

1C

Reserved

(binary

0)

Char(20)

48

30

Descriptor

table

entry

[*]

Char(64)

(repeated

number

of

descriptor

table

entries

times)

48

30

Collection

bucket

number

UBin(2)

50

32

Collection

bucket

descriptor

Char(50)

100

64

Reserved

(binary

0)

Char(12)

*

*

Mapping

table

entry

[*]

Char(16)

(repeated

number

of

mapping

table

entries

times)

Machine

Interface

Instructions

689

Hex

0204

Hardware

management

console

information

The

format

of

the

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Number

of

entries

returned

UBin(4)

12

C

Reserved

(binary

0)

Char(4)

16

10

Hardware

Management

Console

(HMC)

information

[*]

Char(1036)

(repeated

for

number

of

entries

returned)

16

10

HMC

information

length

UBin(2)

18

12

HMC

information

Char(1034)

*

*

—-

End

—-

The

number

of

entries

returned

field

returns

the

number

of

Hardware

Management

Console

(HMC)

information

entries

returned.

On

a

non-HMC

managed

system,

the

value

returned

will

be

binary

0.

The

HMC

information

field

returns

a

string

containing

the

following

data:

v

HMC

name

v

HMC

host

name

v

IP

address

v

HMC

state

The

data

returned

is

in

7-bit

ASCII

and

its

format

is

as

follows:

keyword1=its_value;keyword2=its_value;etc.

where

a

keyword

can

be

HscName,

HscHostName,

HscIPAddr,

or

HmcStat.

Each

keyword

is

followed

by

an

equal

sign

(=),

its

value,

and

ends

with

a

semi-colon

(;).

For

example,

an

HMC

information

string

can

look

like

this:

HscName=679231U*23WW193;

HscHostName=hosta.company.xyz.com;

HscIPAddr=3.103.123.118;HmcStat=1;

Keywords

and

their

values

in

the

HMC

information

string

can

be

in

any

order.

There

is

no

carriage

return

<CR>

(hex

0D)

or

line

feed

<LF>

(hex

0A),

and

the

string

is

not

NULL

terminated.

The

values

of

HMC

state

can

be

v

1

=

the

HMC

is

operating

successfully.

v

2

=

the

HMC

has

indicated

it

is

temporarily

disconnecting

690

iSeries:

Machine

Interface

Instructions

APIs

Hex

0208

Keep

current

disk

configuration

during

install

(can

be

modified

and

materialized)

This

option

is

used

to

materialize

the

indicator

that

indicates

whether

or

not

all

non

configured

disk

units

should

be

added

to

the

system

ASP

during

an

automatic

install

operation.

The

format

of

the

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Keep

current

disk

configuration

indicator

Char(1)

Hex

00

=

Add

all

non

configured

disk

units

to

the

system

ASP.

Hex

01

=

Keep

current

disk

configuration.

9

9

Reserved

(binary

0)

Char(7)

16

10

—-

End

—-

Limitations

(Subject

to

Change):

Data-pointer-defined

scalars

are

not

allowed

as

a

primary

operand

for

this

instruction.

An

invalid

operand

type

(hex

2A06)

exception

is

signaled

if

this

occurs.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

Machine

Interface

Instructions

691

0603

Range

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C0A

Service

Processor

Unable

to

Process

Request

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

692

iSeries:

Machine

Interface

Instructions

APIs

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Machine

Data

(MATMDATA)

Op

Code

(Hex)

Operand

1

Operand

2

0522

Receiver

Materialization

option

Operand

1:

Character

variable

scalar.

Operand

2:

Character(2)

constant,

or

unsigned

binary(2)

constant

or

immediate.

Bound

program

access

Built-in

number

for

MATMDATA

is

160.

MATMDATA

(

receiver

:

address

materialization_option

:

literal(2)

OR

literal(4)

)

The

materialization_option

may

be

declared

as

a

literal

of

any

scalar

data

type.

--

OR

--

Built-in

number

for

MATTOD

is

94.

MATTOD

(

time_of_day

:

address

)

The

time-of-day

clock

is

materialized.

This

function

is

identical

to

MATMDATA

when

a

materialization_option

value

of

Hex

0000

is

specified.

Description:

The

machine

data

requested

by

materialization

option

is

returned

at

the

location

specified

by

receiver.

For

the

purposes

of

this

instruction,

machine

data

refers

to

any

data

that

is

encapsulated

by

the

machine.

The

data

can

be

either

thread-specific

or

apply

system-wide.

Operand

2

is

a

2-byte

value.

The

value

of

operand

2

determines

which

machine

data

are

materialized.

Operand

2

is

restricted

to

a

constant

character

or

unsigned

binary

scalar

or

an

immediate

value.

A

summary

of

the

allowable

values

for

Operand

2

follows.

Table

1.

Materialization

option

Option

value

Description

Page

Hex

0000

Materialize

time-of-day

clock

as

local

time

″Hex

0000

=

Materialize

time-of-day

clock

as

local

time″

(page

)

Hex

0001

Materialize

system

parameter

integrity

validation

flag

″Hex

0001

=

Materialize

system

parameter

integrity

validation

flag″

(page

)

Hex

0002

Materialize

thread

execution

mode

flag

″Hex

0002

=

Materialize

thread

execution

mode

flag″

(page

)

Machine

Interface

Instructions

693

Option

value

Description

Page

Hex

0003

Materialize

maximum

size

of

a

space

object

or

associated

space

when

space

alignment

is

chosen

by

the

machine

″Hex

0003

=

Materialize

maximum

size

of

a

space

object

or

associated

space

when

space

alignment

is

chosen

by

the

machine″

(page

)

Hex

0004

Materialize

time-of-day

clock

as

Coordinated

Universal

Time

(UTC)

″Hex

0004

=

Materialize

time-of-day

clock

as

Coordinated

Universal

Time

(UTC)″

(page

)

Hex

0005

though

FFFF

Reserved

Operand

1

specifies

a

receiver

into

which

the

materialized

data

is

placed.

It

must

specify

a

character

scalar

with

a

minimum

length

which

is

dependent

upon

the

materialization

option

specified

for

operand

2.

The

receiver

may

be

substringed.

The

start

position

of

the

substring

may

be

a

variable.

However,

the

length

of

the

substring

must

be

an

immediate

or

constant.

The

length

specified

for

operand

1

must

be

at

least

the

required

minimum.

Only

the

bytes

up

to

the

required

minimum

length

are

used.

Any

excess

bytes

are

ignored.

The

data

placed

into

the

receiver

differs

depending

upon

the

materialization

option

specified.

The

following

descriptions

detail

the

formats

of

the

optional

materializations.

Hex

0000

=

Materialize

time-of-day

clock

as

local

time:

(minimum

receiver

length

is

8)

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Time

of

day

Char(8)

8

8

—-

End

—-

Time

of

day

is

the

time

value

of

the

time-of-day

clock

which

is

returned

as

the

local

time

for

the

system.

See

“Standard

Time

Format”

on

page

1272

for

a

detailed

description

of

the

format

for

a

time

value.

Unpredictable

results

occur

if

the

time-of-day

clock

is

materialized

before

it

is

set.

The

time-of-day

clock

can

be

materialized

as

the

Coordinated

Universal

Time

(UTC)

for

the

system

using

″Hex

0004

=

Materialize

time-of-day

clock

as

Coordinated

Universal

Time

(UTC)″

(page

).

See

“Time-of-Day

(TOD)

Clock”

on

page

1273

for

detailed

descriptions

of

the

time-of-day

clock,

local

time,

and

UTC.

Performance

note:

The

time-of-day

clock

may

be

materialized,

with

the

time

of

day

returned

as

the

local

time

for

the

system,

with

this

instruction

and

also

with

the

Materialize

Machine

Attributes

(MATMATR)

instruction.

Better

performance

may

be

realized

with

the

use

of

this

instruction

rather

than

with

the

MATMATR

instruction.

Hex

0001

=

Materialize

system

parameter

integrity

validation

flag:

(minimum

receiver

length

is

1)

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

System

parameter

integrity

validation

flag

Char(1)

1

1

—-

End

—-

694

iSeries:

Machine

Interface

Instructions

APIs

This

option

returns

the

value

of

the

machine

attribute

which

specifies

whether

additional

validation

of

parameters

passed

to

programs

which

run

when

the

thread

is

in

system

state

is

to

be

performed,

such

as

for

U.

S.

government’s

Department

of

Defense

security

ratings.

A

value

of

hex

01

indicates

this

additional

checking

is

being

performed.

A

value

of

hex

00

is

returned

otherwise.

Hex

0002

=

Materialize

thread

execution

mode

flag:

(minimum

receiver

length

is

1)

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Thread

execution

mode

flag

Char(1)

1

1

—-

End

—-

This

option

returns

the

value

of

the

thread

execution

mode

for

the

thread

in

which

the

instruction

is

run.

A

returned

value

of

hex

01

indicates

that

thread

is

currently

executing

in

kernel

mode.

A

value

of

hex

00

is

returned

otherwise.

Hex

0003

=

Materialize

maximum

size

of

a

space

object

or

associated

space

when

space

alignment

is

chosen

by

the

machine:

(minimum

receiver

length

is

4)

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Maximum

size

of

machine-aligned

space

object

or

associated

space

UBin(4)

4

4

—-

End

—-

This

option

returns

the

maximum

size

in

bytes

of

a

space

object

or

associated

space

created

with

the

space

alignment

chosen

by

the

machine.

Some

types

of

objects

may

not

support

an

associated

space

of

the

maximum

size.

This

size

may

vary

with

each

machine

implementation.

Hex

0004

=

Materialize

time-of-day

clock

as

Coordinated

Universal

Time

(UTC):

(minimum

receiver

length

is

8)

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Time

of

day

Char(8)

8

8

—-

End

—-

Time

of

day

is

the

time

value

of

the

time-of-day

clock

which

is

returned

as

the

Coordinated

Universal

Time

(UTC)

for

the

system.

See

“Standard

Time

Format”

on

page

1272

for

a

detailed

description

of

the

format

for

a

time

value.

Unpredictable

results

occur

if

the

time-of-day

clock

is

materialized

before

it

is

set.

The

time-of-day

clock

can

be

materialized

as

the

local

time

for

the

system

using

″Hex

0000

=

Materialize

time-of-day

clock

as

local

time″

(page

694).

See

“Time-of-Day

(TOD)

Clock”

on

page

1273

for

detailed

descriptions

of

the

time-of-day

clock,

local

time,

and

UTC.

Machine

Interface

Instructions

695

Performance

note:

The

time-of-day

clock

may

be

materialized,

with

the

time

of

day

returned

as

the

UTC

for

the

system,

with

this

instruction

and

also

with

the

Materialize

Time

Of

Day

Attributes

(MATTODAT)

instruction.

Better

performance

may

be

realized

with

the

use

of

this

instruction

rather

than

with

the

MATTODAT

instruction.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

220B

Object

Not

Available

696

iSeries:

Machine

Interface

Instructions

APIs

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Machine

Information

(MATMIF)

Bound

program

access

Built-in

number

for

MATMIF

is

670.

MATMIF

(

receiver

:

address

materialization_option

:

unsigned

binary(2)

)

:

signed

binary(4)

/*

result

*/

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

The

data

returned

by

this

instruction

is

subject

to

change

each

and

every

release.

Fields

may

be

added,

deleted,

reordered,

and/or

have

their

unit

of

measure

changed.

There

will

be

no

attempt

made

to

maintain

any

compatibility

from

release

to

release.

Description:

Information

specified

by

the

materialization

option

operand

is

materialized

into

the

template

addressed

by

the

receiver

operand.

Upon

successful

completion,

result

is

set

to

binary

0.

In

the

case

where

the

requested

data

cannot

be

returned,

the

EUNKNOWN

error

number

is

returned

in

the

result.

The

receiver

specifies

a

space

that

is

to

receive

the

materialized

information.

The

space

pointer

specified

must

address

a

16-byte

aligned

area.

If

not,

the

EFAULT

error

number

is

returned

in

the

result.

The

materialization

option

specifies

which

information

is

to

be

materialized.

If

an

invalid

value

is

specified,

the

EINVAL

error

number

is

returned

in

the

result.

Machine

Interface

Instructions

697

A

summary

of

the

allowable

hex

values

for

materialization

option

follows.

Table

1.

Materialize

Machine

Information

options

Materialization

Option

Page

Hex

0001

-

Option

0001

information

reference

#1

(page

698)

Hex

0002

-

Option

0002

information

reference

#2

(page

700)

The

receiver

template

has

the

following

format

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

UBin(4)

4

4

Number

of

bytes

available

UBin(4)

8

8

Information

Char(*)

*

*

—-

End

—-

The

first

4

bytes

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

ENOSPC

error

number

to

be

returned

in

the

result.

The

second

4

bytes

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

error

numbers

(other

than

the

ENOSPC

described

previously)

are

returned

if

the

receiver

contains

insufficient

area

for

the

materialization.

The

following

information

requires

receivers

of

varying

lengths.

The

information

that

will

be

materialized

and

their

materialization

option

values

follow.

If

the

system

does

not

support

a

function,

hex

zeros

will

be

returned

in

that

field.

v

v

Hex

0001

=

Option

0001

information

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Maximum

memory

UBin(8)

16

10

Minimum

memory

UBin(8)

24

18

Dispatch

wheel

rotation

period

UBin(8)

32

20

Partition

ID

UBin(4)

36

24

Indicators

Char(4)

36

24

Reserved

(binary

0)

Bits

0-29

36

24

Bound

hardware

threads

indicator

Bit

30

0

=

Hardware

threads

are

not

bound

1

=

Hardware

threads

are

bound

36

24

Dedicated

processors

indicator

Bit

31

0

=

Partition

shares

processors

1

=

Partition

has

dedicated

processors

40

28

Maximum

processors

in

the

platform

UBin(4)

44

2C

Minimum

virtual

processors

UBin(4)

48

30

Maximum

virtual

processors

UBin(4)

698

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

52

34

Minimum

processor

capacity

UBin(4)

56

38

Maximum

processor

capacity

UBin(4)

60

3C

Processor

capacity

delta

UBin(4)

64

40

Minimum

interactive

capacity

percentage

UBin(4)

68

44

Maximum

interactive

capacity

percentage

UBin(4)

72

48

Hardware

threads

per

processor

UBin(2)

74

4A

Partition

name

Char(256)

330

14A

Reserved

(binary

0)

Char(6)

336

150

Memory

delta

UBin(8)

344

158

Reserved

(binary

0)

Char(8)

352

160

—-

End

—-

Maximum

memory

is

the

maximum

amount

of

memory

(in

units

of

megabytes)

that

can

be

assigned

to

this

partition.

Minimum

memory

is

the

minimum

amount

of

memory

(in

units

of

megabytes)

that

is

needed

in

this

partition.

Dispatch

wheel

rotation

period

is

the

number

of

nanoseconds

in

the

hypervisor’s

scheduling

window.

Each

virtual

processor

will

be

given

the

opportunity

to

execute

on

a

physical

processor

sometime

during

this

period.

The

amount

of

time

each

virtual

processor

is

able

to

use

on

a

physical

processor

corresponds

to

processor

capacity.

Partition

ID

is

the

identifier

of

this

partition.

It

is

unique

within

a

physical

machine.

Bound

hardware

threads

indicator

indicates

whether

or

not

hardware

threads

are

bound.

Hardware

threads

are

not

bound

indicates

that

the

system

can

not

assume

that

a

set

of

hardware

threads

will

always

be

dispatched

together

on

a

physical

processor.

Hardware

threads

are

bound

indicates

that

a

set

of

hardware

threads

will

always

be

dispatched

together

on

a

physical

processor.

This

allows

an

operating

system

to

make

scheduling

decisions

based

on

cache

affinity

and

work

load.

Dedicated

processors

indicator

indicates

whether

or

not

the

partition

uses

only

dedicated

physical

processors.

Partition

has

dedicated

processors

indicates

that

this

partition

uses

only

dedicated

physical

processors.

This

means

that

each

virtual

processor

in

the

partition

has

a

corresponding

entire

physical

processor.

Partition

shares

processors

indicates

that

this

partition

uses

physical

processors

from

a

shared

pool

of

physical

processors.

The

number

of

virtual

processors

represents

the

maximum

number

of

concurrent

units

of

execution

that

can

be

active

in

the

partition

at

any

point

in

time.

Each

virtual

processor

has

the

processing

capacity

of

some

fraction

of

a

physical

processor.

One

or

more

partitions

may

be

executing

on

the

physical

processors

in

the

shared

processor

pool

at

any

given

point

in

time.

Maximum

processors

in

the

platform

is

the

maximum

number

of

physical

processors

that

can

be

active

in

this

platform

without

physically

installing

additional

processors.

This

field

includes

currently

active

processors

and

any

standby

processors

that

are

present

in

the

platform.

Minimum

virtual

processors

is

the

minimum

number

of

virtual

processors

that

are

needed

in

this

partition.

Maximum

virtual

processors

is

the

maximum

number

of

virtual

processors

that

can

be

assigned

to

this

partition.

Minimum

processor

capacity

is

the

minimum

amount

of

processor

capacity

(in

units

of

1/100

of

a

physical

processor)

that

is

needed

in

this

partition.

Maximum

processor

capacity

is

the

maximum

amount

of

processor

capacity

(in

units

of

1/100

of

a

physical

processor)

that

can

be

assigned

to

this

partition.

Processor

capacity

delta

is

the

delta

(in

units

of

1/100

of

a

physical

processor)

that

can

be

added

to

or

removed

from

this

partition’s

processor

capacity.

Minimum

interactive

capacity

percentage

is

the

minimum

value

that

can

be

set

for

this

partition’s

interactive

capacity

percentage.

Machine

Interface

Instructions

699

Maximum

interactive

capacity

percentage

is

the

maximum

value

that

can

be

set

for

this

partition’s

interactive

capacity

percentage.

Hardware

threads

per

processor

is

the

number

of

hardware

threads

per

processor

when

hardware

multi-threading

is

enabled.

Partition

name

is

the

name

that

has

been

assigned

to

this

partition.

This

field

is

a

null-terminated

ASCII

character

string.

Memory

delta

is

the

delta

(in

units

of

megabytes)

that

can

be

added

to

or

removed

from

this

partition’s

memory.

v

Hex

0002

=

Option

0002

information

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Memory

UBin(8)

16

10

Dispatch

time

since

IPL

UBin(8)

24

18

Interactive

time

since

IPL

UBin(8)

32

20

Excess

interactive

time

since

IPL

UBin(8)

40

28

Shared

processor

pool

idle

time

since

IPL

UBin(8)

48

30

Indicators

Char(4)

48

30

Reserved

(binary

0)

Bits

0-28

48

30

Capped

partition

indicator

Bit

29

0

=

Uncapped

partition

1

=

Capped

partition

48

30

Hardware

multi-threading

indicator

Bit

30

0

=

Hardware

multi-threading

is

not

enabled

1

=

Hardware

multi-threading

is

enabled

48

30

Shared

processor

pool

idle

time

since

IPL

indicator

Bit

31

0

=

Shared

processor

pool

idle

time

since

IPL

was

not

materialized

1

=

Shared

processor

pool

idle

time

since

IPL

was

materialized

52

34

Processors

in

the

platform

UBin(4)

56

38

Virtual

processors

UBin(4)

60

3C

Physical

processors

in

the

shared

processor

pool

UBin(4)

64

40

Unallocated

processor

capacity

in

the

shared

processor

pool

UBin(4)

68

44

Processor

capacity

UBin(4)

72

48

Variable

processor

capacity

weight

UBin(4)

76

4C

Unallocated

variable

processor

capacity

weight

UBin(4)

80

50

Minimum

required

processor

capacity

UBin(4)

84

54

Interactive

capacity

percentage

UBin(4)

88

58

Partition

group

ID

UBin(2)

90

5A

Shared

processor

pool

ID

UBin(2)

92

5C

Interactive

threshold

UBin(2)

94

5E

Reserved

(binary

0)

Char(2)

96

60

—-

End

—-

Memory

is

the

amount

of

memory

(in

units

of

megabytes)

currently

allocated

to

this

partition.

Dispatch

time

since

IPL

is

the

number

of

nanoseconds

of

processor

time

used

since

IPL.

700

iSeries:

Machine

Interface

Instructions

APIs

Interactive

time

since

IPL

is

the

number

of

nanoseconds

of

processor

time

used

by

interactive

processes

since

IPL.

An

interactive

process

is

any

process

doing

5250

display

device

I/O.

For

additional

information

on

interactive

processes,

see

manual

SC41-0607

iSeries

Performance

Capabilities

Reference

manual

which

is

available

in

the

iSeries

Information

Center.

Excess

interactive

time

since

IPL

is

the

number

of

nanoseconds

of

processor

time

used

by

interactive

processes

since

IPL,

that

exceeded

interactive

capacity.

Shared

processor

pool

idle

time

since

IPL

is

the

number

of

nanoseconds

of

processor

time

that

the

shared

processor

pool

has

been

idle

since

IPL,

when

shared

processor

pool

idle

time

since

IPL

was

materialized.

Capped

partition

indicator

indicates

whether

or

not

the

partition

is

allowed

to

use

more

than

its

processor

capacity.

An

uncapped

partition

is

allowed

to

use

more

than

its

processor

capacity

if

processor

capacity

is

available

in

the

shared

processor

pool.

A

capped

partition

is

not

allowed

to

use

more

than

its

processor

capacity

even

if

the

partition

has

work

to

do

and

there

is

processor

capacity

available

in

the

shared

processor

pool.

Hardware

multi-threading

indicator

indicates

whether

or

not

hardware

multi-threading

is

enabled.

Hardware

multi-threading

is

enabled

indicates

that

hardware

multi-threading

is

active.

Hardware

multi-threading

is

not

enabled

indicates

that

hardware

multi-threading

is

inactive.

Hardware

multi-threading

refers

to

the

ability

of

a

processor

to

be

multi-threaded.

When

a

processor

is

multi-threaded,

multiple

tasks

of

execution

can

be

loaded

into

the

same

processor.

Each

task

of

execution

is

referred

to

as

a

hardware

thread.

When

hardware

multi-threading

is

enabled,

hardware

threads

per

processor

indicates

the

number

of

hardware

threads

each

processor

has.

Shared

processor

pool

idle

time

since

IPL

indicator

indicates

whether

or

not

the

shared

processor

pool

idle

time

since

IPL

was

successfully

materialized.

Shared

processor

pool

idle

time

since

IPL

was

materialized

indicates

that

the

shared

processor

pool

idle

time

since

IPL

was

successfully

materialized

and

contains

valid

information.

Shared

processor

pool

idle

time

since

IPL

was

not

materialized

indicates

that

the

shared

processor

pool

idle

time

since

IPL

was

not

materialized

(the

partition

is

not

authorized

to

retrieve

this

information)

and

should

not

be

used.

Processors

in

the

platform

is

the

number

of

physical

processors

in

this

platform

that

are

available

for

customer

use.

This

does

not

include

temporary

processors

on

demand

that

have

not

been

turned

on.

Virtual

processors

is

the

number

of

virtual

processors

in

this

partition.

Physical

processors

in

the

shared

processor

pool

is

the

number

of

physical

processors

that

are

allocated

to

the

shared

processor

pool

in

which

this

partition

is

executing.

Unallocated

processor

capacity

in

the

shared

processor

pool

is

the

amount

of

processor

capacity

(in

units

of

1/100

of

a

physical

processor)

in

this

partition’s

shared

processor

pool,

that

is

available

to

be

allocated

to

processor

capacity.

Processor

capacity

is

the

amount

of

processor

capacity

(in

units

of

1/100

of

a

physical

processor)

currently

available

to

the

partition.

For

a

partition

using

dedicated

processors

this

value

represents

the

number

of

virtual

processors

currently

active

in

the

partition.

For

a

partition

using

shared

processors

this

value

represents

this

partition’s

share

of

processors

from

its

shared

processor

pool.

Variable

processor

capacity

weight

is

the

weighting

factor

that

is

used

to

assign

additional

unused

processor

capacity

(from

the

shared

processor

pool)

to

processor

capacity.

This

factor

will

be

in

the

range

of

0

-

255.

A

value

of

0

effectively

caps

this

partition

at

its

processor

capacity.

Unallocated

variable

processor

capacity

weight

is

the

amount

of

capacity

weight

that

is

available

for

allocation

to

the

variable

processor

capacity

weight.

Minimum

required

processor

capacity

is

the

amount

of

processor

capacity

(in

units

of

1/100

of

a

physical

processor)

that

the

operating

system

requires

in

this

partition.

Machine

Interface

Instructions

701

Interactive

capacity

percentage

is

this

partition’s

portion

(in

hundredths

of

a

percent)

of

the

platform’s

interactive

capacity.

For

instance

if

the

platform

was

allowed

to

do

2000

units

of

interactive

work

per

second,

and

this

field

was

5000

(50%),

then

this

partition

would

be

allowed

to

perform

1000

units

of

interactive

work

per

second.

Partition

group

ID

identifies

the

LPAR

group

that

this

partition

is

a

member

of.

A

LPAR

group

(aka

partition

group)

is

a

set

of

partitions

on

a

platform

that

a

Work

Load

Manager

(WLM)

will

manage

to

achieve

its

goals.

WLM

manages

the

partitions

by

moving

resources

from

one

partition

in

the

group

to

another

partition

in

the

group.

Shared

processor

pool

ID

identifies

the

shared

processor

pool

this

partition

is

a

member

of.

This

field

should

only

be

used

when

partition

shares

processors.

A

shared

processor

pool

is

a

set

of

physical

processors

on

the

platform

that

is

used

to

run

a

set

of

shared

processor

partitions

that

exist

on

this

platform.

Interactive

threshold

is

the

maximum

interactive

processor

utilization

(in

hundredths

of

a

percent)

which

can

be

sustained

in

this

partition,

without

causing

a

disproportionate

increase

in

system

overhead.

For

example,

a

value

of

2379

means

that

the

threshold

is

23.79%.

On

a

machine

with

no

limit

on

interactive

utilization,

the

value

returned

will

be

10000

(100%).

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Error

conditions

The

result

will

be

set

to

one

of

the

following:

EFAULT

3408

-

The

address

used

for

an

argument

was

not

correct.

EINVAL

3021

-

The

value

specified

for

the

argument

is

not

correct.

ENOSPC

3404

-

No

space

available.

EUNKNOWN

3474

-

Unknown

system

state.

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

702

iSeries:

Machine

Interface

Instructions

APIs

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Machine

Interface

Instructions

703

Materialize

Mutex

(MATMTX)

Bound

program

access

Built-in

number

for

MATMTX

is

163.

MATMTX

(

operand1

:

address

operand2

:

address

operand3

:

address

of

unsigned

binary(4)

value

OR

null

pointer

value

)

Description:

The

current

state

of

the

mutex

or

replica

of

a

mutex

whose

address

is

passed

in

operand

2

is

materialized

into

the

receiver

space

identified

by

operand

1.

A

replica

of

a

mutex

can

be

returned

by

the

MATPRMTX

instruction.

The

space

pointed

to

by

operand

3

is

a

4-byte

unsigned

binary

field

used

to

indicate

the

type

of

information

that

should

be

returned

by

this

instruction.

The

mutex

must

be

aligned

on

a

16-byte

boundary.

The

materialization

options

value

referenced

by

operand

3

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Reserved

(binary

0)

Bits

0-29

0

0

Mutex

attributes

option

Bit

30

0

=

Do

not

return

additional

mutex

attributes

1

=

Return

additional

mutex

attributes

0

0

Reserved

(binary

0)

Bit

31

4

4

—-

End

—-

The

mutex

attributes

option

field

is

used

to

select

whether

or

not

additional

mutex

attributes

are

to

be

returned.

If

mutex

attributes

option

is

set

to

do

not

return

additional

mutex

attributes,

then

a

standard

materialization

template

is

used.

If

mutex

attributes

option

is

set

to

return

additional

mutex

attributes,

then

a

materialization

template

with

extended

mutex

descriptors

is

used.

If

operand

3

contains

a

null

pointer

value,

the

default

materialization

options

are

used.

All

values

other

than

those

specifically

defined

for

materialization

options

are

reserved

and

will

cause

a

scalar

value

invalid

(hex

3203)

exception

to

be

generated.

The

materialization

template

identified

by

operand

1

must

be

16-byte

aligned.

If

the

materialization

template

is

not

properly

aligned,

a

boundary

alignment

(hex

0602)

exception

is

signaled.

The

format

of

the

information

returned

in

the

materialization

template

is

different,

depending

on

the

materialization

options

selected.

The

materialization

template

has

the

following

standard

format

when

mutex

attributes

option

is

set

to

do

not

return

additional

mutex

attributes:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Reserved

(binary

0)

Char(4)

12

C

Number

of

waiters

Bin(4)

704

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Mutex

name

Char(16)

32

20

Mutex

owner

Char(30)

62

3E

Reserved

(binary

0)

Char(18)

80

50

Wait

list

descriptors

(repeated

for

each

thread

waiting

for

mutex)

[*]

Char(48)

80

50

Process

identifier

Char(30)

110

6E

Reserved

(binary

0)

Char(18)

*

*

—-

End

—-

The

first

4

bytes

of

the

materialization

identifies

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

materialization

identifies

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver

that

can

be

used

to

completely

fill

wait

list

descriptors.

Partial

descriptors

are

not

returned.

If

the

number

of

bytes

provided

would

cause

the

storage

boundary

of

the

space

provided

for

the

receiver

to

be

exceeded,

and

if

the

number

of

bytes

available

would

actually

exceed

this

boundary,

then

a

space

addressing

violation

(hex

0601)

exception

is

signaled.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

exceptions

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization,

other

than

the

materialization

length

invalid

(hex

3803)

exception

described

previously.

The

number

of

waiters

is

the

number

of

threads

that

are

currently

waiting

for

the

mutex

to

become

unlocked.

Mutex

name

contains

the

name

of

the

mutex.

The

name

is

left-justified

and

padded

to

the

right

with

blanks.

If

the

mutex

was

created

using

a

null-terminated

name

string,

the

name

materialized

with

this

instruction

is

null-terminated

instead

of

padded

with

blanks.

If

the

mutex

was

created

without

a

name,

this

field

will

contain

the

character

string

″UNNAMED_″

followed

by

the

first

8

characters

of

the

program

which

created

the

mutex.

The

mutex

owner

contains

the

name

of

the

process

containing

the

thread

that

holds

the

mutex

lock.

If

this

field

is

all

blanks,

the

mutex

is

not

locked.

The

name

returned

here

is

the

30-character

process

control

space

name.

The

wait

list

descriptors

identify

the

threads

waiting

for

the

mutex

to

become

unlocked.

Process

identifier

contains

the

name

of

the

process

containing

the

waiting

thread.

The

name

returned

here

is

the

30-character

process

control

space

name.

The

materialization

template

has

the

following

extended

format

when

mutex

attributes

option

is

set

to

return

additional

mutex

attributes:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Reserved

(binary

0)

Char(4)

12

C

Number

of

waiters

Bin(4)

16

10

Mutex

name

Char(16)

32

20

Mutex

owner

Char(30)

Machine

Interface

Instructions

705

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

62

3E

Reserved

(binary

0)

Char(2)

64

40

Mutex

owner

thread

ID

Char(8)

72

48

Mutex

owner

unique

thread

value

Char(8)

80

50

Wait

list

descriptors

(repeated

for

each

thread

waiting

for

mutex)

[*]

Char(48)

80

50

Process

identifier

Char(30)

110

6E

Reserved

(binary

0)

Char(2)

112

70

Waiter

thread

ID

Char(8)

120

78

Waiter

unique

thread

value

Char(8)

*

*

—-

End

—-

The

contents

of

the

template

fields

are

as

defined

for

the

previous

template(s),

unless

specifically

defined

or

redefined

as

follows:

The

mutex

owner

contains

the

name

of

the

process

containing

the

thread

that

holds

the

mutex

lock.

If

this

field

is

all

blanks,

the

mutex

is

not

locked.

The

name

returned

here

is

the

30-character

process

control

space

name.

The

mutex

owner

thread

ID

contains

a

process

specific

value

that

identifies

the

thread

within

the

process

that

holds

the

mutex

lock.

If

this

field

is

binary

0,

the

mutex

is

not

locked.

The

mutex

owner

unique

thread

value

contains

a

system-wide

unique

value

that

identifies

the

specific

thread

that

holds

the

mutex

lock.

If

this

field

is

binary

0,

the

mutex

is

not

locked.

This

field

cannot

be

used

as

input

on

any

other

MI

instruction,

but

may

be

useful

for

debug

purposes.

The

wait

list

descriptors

identify

the

threads

waiting

for

the

mutex

to

become

unlocked.

Process

identifier

contains

the

name

of

the

process

containing

the

waiting

thread.

The

name

returned

here

is

the

30-character

process

control

space

name.

The

waiter

thread

ID

contains

a

process

specific

value

that

identifies

the

thread

within

the

process

that

is

waiting

for

the

mutex.

The

waiter

unique

thread

value

contains

a

system-wide

unique

value

that

identifies

the

specific

thread

that

is

waiting

for

the

mutex.

This

field

cannot

be

used

as

input

on

any

other

MI

instruction,

but

may

be

useful

for

debug

purposes.

An

invalid

mutex

(hex

3804)

exception

is

generated

if

an

attempt

is

made

to

materialize

a

mutex

that

does

not

exist.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

706

iSeries:

Machine

Interface

Instructions

APIs

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1002

Machine

Context

Damage

State

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

Machine

Interface

Instructions

707

3804

Invalid

Mutex

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Object

Locks

(MATOBJLK)

Op

Code

(Hex)

Operand

1

Operand

2

033A

Receiver

System

object

or

space

location

Operand

1:

Space

pointer.

Operand

2:

System

pointer

or

space

pointer

data

object.

Bound

program

access

Built-in

number

for

MATOBJLK

is

50.

MATOBJLK

(

receiver

:

address

system_object_or_space_location

:

address

of

system

pointer

OR

address

of

space

pointer(16)

)

Description:

If

operand

2

is

a

system

pointer,

the

current

lock

status

of

the

object

identified

by

the

system

pointer

is

materialized

into

the

template

specified

by

operand

1.

If

operand

2

is

a

space

pointer,

the

current

lock

status

of

the

specified

space

location

is

materialized

into

the

template

specified

by

operand

1.

The

materialization

template

identified

by

operand

1

must

be

aligned

on

a

16-byte

boundary.

The

format

of

the

materialization

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Current

cumulative

lock

status

Char(3)

8

8

Lock

states

currently

allocated

Char(1)

(1

=

yes)

8

8

LSRD

Bit

0

8

8

LSRO

Bit

1

8

8

LSUP

Bit

2

8

8

LEAR

Bit

3

8

8

LENR

Bit

4

8

8

Locks

implicitly

set

Bit

5

8

8

Reserved

(binary

0)

Bits

6-7

9

9

Lock

states

for

which

threads

are

in

synchronous

wait

Char(1)

(1

=

yes)

9

9

LSRD

Bit

0

9

9

LSRO

Bit

1

9

9

LSUP

Bit

2

9

9

LEAR

Bit

3

708

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

9

9

LENR

Bit

4

9

9

Implicit

lock

request

Bit

5

9

9

Reserved

(binary

0)

Bits

6-7

10

A

Lock

states

for

which

threads

are

in

asynchronous

wait

Char(1)

(1

=

yes)

10

A

LSRD

Bit

0

10

A

LSRO

Bit

1

10

A

LSUP

Bit

2

10

A

LEAR

Bit

3

10

A

LENR

Bit

4

10

A

Reserved

(binary

0)

Bits

5-7

11

B

Reserved

(binary

0)

Char(1)

12

C

Number

of

lock

state

descriptions

Bin(2)

14

E

Reserved

(binary

0)

Char(2)

16

10

Lock

state

descriptions

[*]

Char(32)

(repeated

number

of

lock

state

descriptions

times)

16

10

Lock

holder

or

waiter

System

pointer

32

20

Lock

state

Char(1)

32

20

LSRD

Bit

0

32

20

LSRO

Bit

1

32

20

LSUP

Bit

2

32

20

LEAR

Bit

3

32

20

LENR

Bit

4

32

20

Reserved

(binary

0)

Bits

5-7

33

21

Status

of

lock

request

Char(1)

33

21

Lock

scope

object

type

Bit

0

0

=

Process

control

space

1

=

Transaction

control

structure

33

21

Lock

scope

Bit

1

0

=

Lock

is

scoped

to

the

lock

scope

object

type

1

=

Lock

is

scoped

to

the

thread

33

21

Reserved

Bit

2

33

21

Waiting

because

this

lock

is

not

available

Bit

3

33

21

Thread

in

asynchronous

wait

for

lock

Bit

4

33

21

Thread

in

synchronous

wait

for

lock

Bit

5

33

21

Implicit

lock

(machine

applied)

Bit

6

33

21

Lock

held

by

a

process,

thread

or

transaction

control

structure

Bit

7

34

22

Lock

information

Char(1)

34

22

Reserved

(binary

0)

Bits

0-5

34

22

Lock

is

held

by

a

process,

thread,

or

transaction

control

structure

other

than

the

current

process

or

thread,

or

lock

is

waited

on

by

some

other

thread

Bit

6

Machine

Interface

Instructions

709

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

34

22

Lock

is

held

by

the

machine

Bit

7

35

23

Reserved

(binary

0)

Char(1)

36

24

Unopened

thread

handle

UBin(4)

40

28

Thread

ID

Char(8)

*

*

—-

End

—-

The

first

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

total

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

total

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

exceptions

(other

than

the

materialization

length

invalid

(hex

3803)

exception

described

previously)

are

signaled

if

the

receiver

contains

insufficient

area

for

the

materialization.

Locks

may

be

implicitly

applied

by

the

machine

(implicit

lock

is

binary

1).

If

the

implicit

lock

is

held

for

a

process

or

thread,

a

pointer

to

the

associated

process

control

space

is

returned

in

the

lock

holder

or

waiter

field.

If

the

implicit

lock

is

held

for

a

transaction

control

structure,

a

pointer

to

the

associated

transaction

control

structure

is

returned

in

the

lock

holder

or

waiter

field.

Locks

held

by

the

machine,

but

not

related

to

a

specific

process,

thread,

or

transaction

control

structure,

cause

the

lock

holder

or

waiterunopened

thread

handle,

and

thread

ID

fields

to

each

be

assigned

a

value

of

binary

0.

When

a

lock

is

held

by

a

process

or

a

thread,

the

system

security

level

is

40

or

greater,

and

the

invoker

of

this

instruction

is

a

user

state

program,

then

the

process

control

space

system

pointer

associated

with

the

lock

will

be

returned

in

the

lock

holder

or

waiter

field

if

the

lock

is

held

by

the

current

thread

or

its

containing

process.

This

field

will

be

set

to

binary

0

if

the

lock

is

held

by

some

other

process

or

thread,

or

if

the

lock

is

waited

on

by

some

other

thread.

When

system

security

level

30

or

less

is

in

effect

or

when

the

invoking

program

is

in

system

state,

then

the

lock

requestor

field

will

always

be

returned

with

the

appropriate

process

control

space

system

pointer

value

(which

may

be

binary

0

if

the

machine

holds

the

lock).

When

the

invoker

of

this

instruction

is

a

user

state

program,

then

the

unopened

thread

handle

and

thread

ID

fields

will

be

returned

if

the

lock

is

held

or

waited

on

by

the

current

thread.

These

fields

will

be

set

to

binary

0

if

the

lock

is

held

by

some

other

process,

thread,

or

transaction

control

structure,

or

if

the

lock

is

waited

on

by

some

other

thread.

When

the

invoking

program

is

in

system

state,

then

the

unopened

thread

handle

and

thread

ID

fields

will

always

be

returned

with

the

appropriate

values

(which

may

be

binary

0

if

the

machine

holds

the

lock

or

if

a

transaction

control

structure

holds

the

lock).

Locks

may

be

held

by

a

transaction

control

structure.

If

lock

scope

object

type

has

a

value

of

transaction

control

structure,

then

the

lock

holder

or

waiter

field

will

contain

a

system

pointer

to

the

transaction

control

structure

that

holds

the

lock

and

the

unopened

thread

handle

and

thread

ID

fields

will

be

assigned

a

value

of

binary

0.

When

a

thread

is

waiting

for

a

transaction

control

structure

scope

lock,

the

lock

holder

or

waiter,

unopened

thread

handle,

and

thread

ID

will

identify

the

thread

that

is

waiting

for

the

lock.

The

lock

information

will

be

set

appropriately

regardless

of

security

level

and

program

state.

Only

a

single

lock

state

is

returned

for

each

lock

state

description.

A

space

pointer

machine

object

cannot

be

specified

for

operand

2.

710

iSeries:

Machine

Interface

Instructions

APIs

A

lock

state

description

for

a

lock

held

by

a

process

or

a

transaction

control

structure

will

have

a

value

of

binary

0

for

the

unopened

thread

handle

and

for

the

thread

id.

A

lock

state

description

for

a

lock

held

by

a

thread

will

have

the

lock

holder

or

waiter

contain

a

system

pointer

to

the

process

control

space

containing

the

thread,

and

a

non-zero

value

for

the

unopened

thread

handle

and

for

the

thread

ID

to

identify

the

specific

thread

within

the

process

that

is

holding

the

lock.

A

lock

state

description

for

a

lock

being

waited

on

will

have

the

lock

holder

or

waiter

contain

a

system

pointer

to

the

process

control

space

containing

the

waiting

thread,

and

a

non-zero

value

for

the

unopened

thread

handle

and

for

the

thread

ID

to

identify

the

specific

thread

that

is

waiting

for

the

lock.

The

maximum

number

of

locks

that

can

be

materialized

with

this

instruction

is

32,767.

No

exception

will

be

signaled

if

more

than

32,767

exist

and

only

the

first

32,767

locks

found

will

be

materialized.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

Machine

Interface

Instructions

711

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

712

iSeries:

Machine

Interface

Instructions

APIs

Materialize

or

Verify

Licensed

Internal

Code

Options

(MVLICOPT)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

0223

Licensed

Internal

Code

options

Control

options

Result

template

Operand

1:

Space

pointer.

Operand

2:

Space

pointer.

Operand

3:

Space

pointer.

Bound

program

access

Built-in

number

for

MVLICOPT

is

613.

MVLICOPT

(

Licensed

Internal

Code_options

:

address

control_options

:

address

result_template

:

address

)

Description:

The

category

of

Licensed

Internal

Code

options

selected

by

the

control

options

are

either

materialized

or

verified,

depending

on

the

values

in

the

control

options.

If

the

control

options

specify

that

Licensed

Internal

Code

options

are

to

be

materialized,

then

all

valid

Licensed

Internal

Code

option

keywords

of

the

specified

category

are

materialized

into

the

Licensed

Internal

Code

options

operand.

If

the

control

options

specify

that

options

are

to

be

verified,

then

the

values

in

the

supplied

Licensed

Internal

Code

options

operand

are

verified,

based

on

the

specified

category.

The

result

of

the

verification

is

returned

in

the

result

template

operand.

The

types

of

errors

that

verification

can

detect

include

unrecognized

option

keywords

and

other

invalid

tokens.

A

complete

list

of

errors

that

can

be

detected

is

described

in

Table

3

(page

716)

(excluding

result

subcode

zero,

which

means

no

errors

were

found).

The

valid

Licensed

Internal

Code

options

for

a

given

category

are

specified

with

the

description

of

that

category’s

instruction

or

function,

and

are

not

further

described

here.

The

Licensed

Internal

Code

options

operand

specifies

the

address

of

an

area

that

receives

Licensed

Internal

Code

options

when

materialized

or

supplies

them

when

verified.

For

materialize,

the

maximum

size

of

the

area

is

specified

by

the

Licensed

Internal

Code

options

length

field

of

the

control

options,

while

for

verify

the

Licensed

Internal

Code

options

length

field

specifies

the

length

of

the

string

to

be

verified.

The

values

materialized

into

or

verified

from

the

Licensed

Internal

Code

options

operand

area

are

presumed

to

use

the

Unicode

character

set.

(See

The

Unicode

Standard:

Worldwide

Character

Encoding,

Version

2.0,

ISBN

pending.)

Options

are

separated

by

commas,

and

some

options

may

accept

values.

During

verification,

the

case

of

option

keywords

is

ignored

(though

the

case

of

option

values

may

be

significant).

Multiple

occurrences

of

the

same

option

are

allowed,

but

mutually

exclusive

option

keywords

aren’t

allowed

in

the

same

string.

The

special

characters

used

in

the

Licensed

Internal

Code

options

operand

are

described

in

the

following

table:

Table

1.

Licensed

Internal

Code

options

special

characters

ASCII

character(s)

Hex

value

Use

comma

(,)

002C

Separate

options

single

quote

(’)

0027

Contain

text

strings

equals

sign

(=)

003D

Assign

values

to

options

Machine

Interface

Instructions

713

ASCII

character(s)

Hex

value

Use

character

9

0039

Indicates

numeric

option

value

(materialize)

character

A

0041

Indicates

alphabetic

option

value

(materialize)

characters

0x

00410078

Indicates

the

following

characters

should

be

treated

as

a

hexadecimal

numeric

value

(verify,

create)

backslash

(\)

005C

Escape

character.

Indicates

that

the

following

character

in

a

character

value

is

not

to

be

interpreted

as

a

special

character

(verify,

create).

With

the

exception

of

the

backslash

and

quote

characters,

special

characters

within

a

quoted

string

do

not

need

to

be

escaped.

space

0020

Ignored

between

tokens

(verify,

create)

asterisk

(*)

002A

Ignored

between

tokens

(verify,

create).

A

keyword

preceded

by

an

asterisk

means

that

the

option

was

not

applied

when

processed

because

the

keyword

was

not

recognized

on

the

system

where

it

was

last

processed

by

the

associated

instruction

or

operation.

(See

Licensed

Internal

Code

options

category

for

additional

information.)

plus

sign

(+)

002B

Ignored

between

tokens

(verify,

create).

A

keyword

preceded

by

a

plus

sign

means

that

the

option

was

ignored

when

processed

because

there

is

at

least

one

other

occurrence

of

the

same

keyword

in

the

string.

When

multiple

occurrences

exist,

the

last

one

is

the

one

that

is

applied.2

(page

717)

The

use

of

special

characters

is

illustrated

with

the

following

example.

Suppose

a

category

consists

of

three

Licensed

Internal

Code

options,

with

keywords

″Keyword1″,

″Keyword2″,

and

″Keyword3″.

Further,

suppose

that

″Keyword1″

accepts

no

value,

while

″Keyword2″

accepts

a

character

string

value,

and

″Keyword3″

accepts

a

numeric

value.

Then

the

materialized

string

for

this

category

would

be

″Keyword1,Keyword2=A,Keyword3=9″.

A

valid

input

string

for

the

same

category

might

be

″Keyword2

=’The

quick

brown

fox’

,

KEYWORD1,

keyword3=

0x1234″.

The

control

options

specify

which

category

of

Licensed

Internal

Code

options

is

to

be

selected

and

whether

they

are

to

be

materialized

or

verified.

The

format

of

the

control

options

template

is:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Licensed

Internal

Code

options

length

UBin(4)

4

4

Operation

code

UBin(4)

1

=

Materialize

Licensed

Internal

Code

options

2

=

Verify

Licensed

Internal

Code

options

8

8

Licensed

Internal

Code

options

category

UBin(4)

12

C

Licensed

Internal

Code

options

sub-category

UBin(4)

16

10

Reserved

(binary

0)

Char(48)

64

40

—-

End

—-

714

iSeries:

Machine

Interface

Instructions

APIs

The

Licensed

Internal

Code

options

length

field

specifies

the

size

(in

two-byte

characters)

of

the

Licensed

Internal

Code

options

operand

for

materialize

and

the

length

of

the

options

string

(in

two-byte

characters)

for

verify.

The

length

value

cannot

be

greater

than

65,535

or

a

template

value

invalid

(hex

3801)

exception

is

signalled.

The

operation

code

field

specifies

whether

a

materialize

or

verify

operation

is

to

be

performed.

A

value

of

1

indicates

that

the

valid

options

for

the

specified

category

should

be

materialized.

A

value

of

2

indicates

that

the

supplied

options

string

should

be

verified,

assuming

the

specified

category.

If

the

value

of

operation

code

is

invalid

then

a

template

value

invalid

(hex

3801)

exception

is

signalled.

The

Licensed

Internal

Code

options

category

field

identifies

the

instruction

or

operation

for

which

options

are

being

materialized

or

verified.

The

valid

values

are

shown

in

the

table

below.

If

the

value

of

Licensed

Internal

Code

options

category

is

invalid

then

a

template

value

invalid

(hex

3801)

exception

is

signalled.

The

Licensed

Internal

Code

options

subcategory

field

identifies

the

function

or

subset

of

the

above-specified

instruction

or

operation

for

which

options

are

being

materialized

or

verified.

The

valid

values

are

shown

in

the

table

below.

If

the

value

of

Licensed

Internal

Code

options

subcategory

is

invalid

then

a

template

value

invalid

(hex

3801)

exception

is

signalled.

Table

2.

Licensed

Internal

Code

options

categories

and

sub-categories

Instruction

or

Operation

Category

Sub-categories

Module

Creation

3

0

For

the

list

of

Licensed

Internal

Code

options

defined

for

category

3,

see

the

ILE

Concepts

book

(SC41-5606).

The

format

of

the

result

template

operand

template

depends

on

the

operation

code.

For

materialize,

the

format

of

the

template

is:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Characters

materialized

UBin(4)

4

4

Reserved

(binary

0)

Char(28)

32

20

—-

End

—-

The

characters

materialized

field

returns

the

number

of

two-byte

characters

in

the

option

string

materialized

by

this

instruction.

For

verify,

the

format

of

the

template

is:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Result

code

UBin(4)

0

=

Operation

successful

1

=

Error

detected

4

4

Result

subcode

UBin(4)

8

8

Error

offset

UBin(4)

12

C

Reserved

(binary

0)

Char(20)

Machine

Interface

Instructions

715

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

32

20

—-

End

—-

The

result

code

field

returns

an

indication

of

the

success

of

the

verify

operation.

A

value

of

0

indicates

that

the

verification

was

successful

and

no

errors

were

found.

A

value

of

1

indicates

that

errors

were

found

during

the

verification.

The

result

subcode

field

returns

a

code

identifying

the

cause

of

the

verify

failure

in

the

event

that

result

code

has

a

value

of

1.

The

result

subcode

values

and

their

meanings

are

listed

in

the

following

table:

Table

3.

Licensed

Internal

Code

options

result

subcodes

Result

subcode

value

Meaning

0

Verification

was

successful.

1

LICOPT

string

is

ill-formed.

This

means

that

there

is

a

syntax

error

in

the

string.

It’s

due

to

an

invalid

character

or

other

token

occuring

in

the

string

where

it

doesn’t

belong.

2

Keyword

is

invalid.

3

Value

has

incorrect

type.

The

value

being

assigned

to

an

option

has

the

wrong

type.

4

Value

is

out

of

range.

The

value

being

assigned

to

an

option

is

not

in

the

valid

range

of

values

allowed

for

the

option.

5

Keyword

is

the

opposite

of

a

prior

keyword.

This

happens

when

two

mutually

exclusive

Licensed

Internal

Code

keywords

are

specified

in

the

same

string,

which

is

invalid.

Mutually

exclusive

keywords

specify

opposite

options.

An

example

of

a

pair

of

mutually

exclusive

keywords

is

BindStatic

and

NoBindStatic.

The

error

offset

field

returns

the

offset,

in

two-byte

characters,

to

the

point

where

the

first

error

was

detected

in

the

options

string.

Error

offset

is

set

to

0

if

result

code

indicates

that

verification

was

successful.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

716

iSeries:

Machine

Interface

Instructions

APIs

08

Argument/Parameter

0801

Parameter

Reference

Violation

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

32

Scalar

Specification

3203

Scalar

Value

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Footnotes:

1

Mutually

exclusive

keywords

specify

opposite

options.

An

example

of

a

pair

of

mutually

exclusive

keywords

is

BindStatic

and

NoBindStatic.

2

This

is

true

in

general,

but

there

are

exceptions.

Some

keywords

can

be

specified

multiple

times

in

order

to

provide

multiple

pieces

of

information.

For

these,

none

of

the

keywords

will

be

preceded

by

a

plus

sign,

since

they

will

all

have

been

applied.

Machine

Interface

Instructions

717

Materialize

Pointer

(MATPTR)

Op

Code

(Hex)

Operand

1

Operand

2

0512

Receiver

Pointer

Operand

1:

Space

pointer.

Operand

2:

System

pointer,

space

pointer

data

object,

data

pointer,

instruction

pointer,

invocation

pointer,

procedure

pointer,

label

pointer,

suspend

pointer,

synchronization

pointer,

or

object

pointer.

Bound

program

access

Built-in

number

for

MATPTR

is

89.

MATPTR

(

receiver

:

address

pointer

:

address

of

pointer(16)

)

Note

When

materializing

a

procedure

pointer,

it

is

recommended

that

you

use

the

8-byte

activation

and

activation

group

marks

at

the

end

of

the

procedure

pointer

description

template.

4-byte

marks

can

wrap

and

produce

unexpected

results.

Description:

The

materialized

form

of

the

pointer

object

referenced

by

operand

2

is

placed

in

operand

1.

If

the

operand

2

pointer

is

a

system

pointer

or

data

pointer

and

unresolved,

the

pointer

is

resolved

before

the

materialization

occurs.

This

instruction

will

tolerate

a

damaged

object

referenced

by

operand

2

when

operand

2

is

a

resolved

pointer.

The

instruction

will

not

tolerate

a

damaged

context(s)

or

damaged

programs

when

resolving

pointers.

Also,

as

a

result

of

damage

or

abnormal

machine

termination,

this

instruction

can

indicate

that

an

object

is

addressed

by

a

context,

when

in

fact

the

context

will

not

show

this

as

an

addressed

object.

A

space

pointer

machine

object

cannot

be

specified

for

operand

2.

The

receiver

is

a

space

pointer

to

a

materialization

template.

This

template

must

be

aligned

on

a

16-byte

boundary

to

materialize

these

types

of

pointers:

invocation,

procedure,

label,

and

suspend.

Otherwise,

the

boundary

alignment

(hex

0602)

exception

is

signaled.

The

format

of

the

materialization

pointed

to

by

operand

1

is:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Pointer

type

Char(1)

718

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

Hex

01

=

System

pointer

Hex

02

=

Space

pointer

Hex

03

=

Data

pointer

Hex

04

=

Instruction

pointer

Hex

05

=

Invocation

pointer

Hex

06

=

Procedure

pointer

Hex

07

=

Label

pointer

Hex

08

=

Suspend

pointer

Hex

09

=

Synchronization

pointer

Hex

0A

=

Object

pointer

Hex

FF

=

Unsupported

pointer

9

9

Pointer

description

Char(*)

*

*

—-

End

—-

Pointer

description

depends

on

the

pointer

type.

If

unsupported

pointer

is

indicated,

then

no

other

data

is

returned

for

pointer

description.

Otherwise

one

of

the

following

pointer

type

formats

is

used.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

9

9

System

pointer

description

Char(68)

The

system

pointer

description

identifies

the

object

addressed

by

the

pointer

and

the

context

which

the

object

specifies

as

its

addressing

context.

9

9

Context

identification

Char(32)

9

9

Context

type

Char(1)

10

A

Context

subtype

Char(1)

11

B

Context

name

Char(30

41

29

Object

identification

Char(32)

41

29

Object

type

Char(1)

42

2A

Object

subtype

Char(1)

43

2B

Object

name

Char(30

73

49

Pointer

authorization

Char(2)

73

49

Object

control

Bit

0

73

49

Object

management

Bit

1

73

49

Authorization

pointer

Bit

2

73

49

Space

authority

Bit

3

73

49

Retrieve

Bit

4

73

49

Insert

Bit

5

73

49

Delete

Bit

6

Machine

Interface

Instructions

719

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

73

49

Update

Bit

7

73

49

Reserved

(binary

0)

Bits

8-10

73

49

Execute

Bit

11

73

49

Reserved

(binary

0)

Bits

12-15

75

4B

Pointer

target

information

Char(2)

75

4B

Pointer

target

accessible

from

user

state

Bit

0

75

4B

Reserved

(binary

0)

Bits

1-15

77

4D

—-

End

—-

The

first

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

exceptions

(other

than

the

materialization

length

exception)

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization.

Note:

If

the

object

addressed

by

the

system

pointer

specifies

that

it

is

not

addressed

by

a

context

or

if

the

context

is

destroyed,

the

context

identification

field

is

hex

00.

If

the

object

is

addressed

by

the

machine

context,

a

context

type

of

hex

81

is

returned.

No

verification

is

made

that

the

specified

context

actually

addresses

the

object.

The

following

lists

the

object

type

codes

for

system

object

references:

Value

(Hex)

Object

Type

01

Access

group

02

Program

03

Module

04

Context

06

Byte

string

space

07

Journal

space

08

User

profile

09

Journal

port

0A

Queue

0B

Data

space

0C

Data

space

index

0D

Cursor

0E

Index

0F

Commit

block

10

Logical

unit

description

11

Network

description

12

Controller

description

13

Dump

space

14

Class

of

service

description

15

Mode

description

16

Network

interface

description

17

Connection

list

720

iSeries:

Machine

Interface

Instructions

APIs

18

Queue

space

19

Space

1A

Process

control

space

1B

Authority

list

1C

Dictionary

1D

Auxiliary

server

1E

Byte

stream

file

20

XOM

object

21

Composite

object

group

23

Transaction

control

structure

Note:

Only

the

authority

currently

stored

in

the

system

pointer

is

materialized.

If

the

pointer

target

accessible

from

user

state

field

has

a

value

of

binary

1,

then

the

system

pointer

addresses

an

object

that

is

in

user

domain.

If

the

pointer

target

accessible

from

user

state

field

has

a

value

of

binary

0,

then

the

system

pointer

addresses

an

object

that

is

not

in

user

domain.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

9

9

Data

pointer

description

Char(75)

The

data

pointer

description

describes

the

current

scalar

and

array

attributes

and

identifies

the

space

addressability

contained

in

the

data

pointer.

9

9

Scalar

and

array

attributes

9

9

Scalar

type

Hex

00

=

Signed

binary

Hex

01

=

Floating-point

Hex

02

=

Zoned

decimal

Hex

03

=

Packed

decimal

Hex

04

=

Character

Hex

06

=

Onlyns

Hex

07

=

Onlys

Hex

08

=

Either

Hex

09

=

Open

Hex

0A

=

Unsigned

binary

10

A

Scalar

length

If

binary,

charac

10

A

Length

If

zoned

decima

10

A

Fractional

digits

10

A

Total

digits

Machine

Interface

Instructions

721

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

12

C

Reserved

(binary

0)

16

10

Data

pointer

space

addressability

16

10

Context

identification

16

10

Context

type

17

11

Context

subtype

18

12

Context

name

48

30

Object

identification

48

30

Object

type

49

31

Object

subtype

50

32

Object

name

80

50

Offset

into

space

84

54

—-

End

—-

Note:

If

the

object

containing

the

space

addressed

by

the

data

pointer

is

not

addressed

by

a

context,

the

context

identification

field

is

hex

00.

If

the

object

is

addressed

by

the

machine

context,

a

context

type

of

hex

81

is

returned.

Support

for

usage

of

a

data

pointer

describing

an

Onlyns,

Onlys,

Either,

or

Open

scalar

value

is

limited.

For

more

information,

refer

to

the

Copy

Extended

Characters

Left

Adjusted

With

Pad

(CPYECLAP)

and

Set

Data

Pointer

Attributes

(SETDPAT)

instructions.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

9

9

Space

pointer

description

Char(79)

The

space

pointer

description

describes

space

addressability

contained

in

the

space

pointer.

9

9

Context

identification

Char(32)

9

9

Context

type

Char(1)

10

A

Context

subtype

Char(1)

11

B

Context

name

Char(30)

41

29

Object

identification

Char(32)

41

29

Object

type

Char(1)

42

2A

Object

subtype

Char(1)

43

2B

Object

name

Char(30)

73

49

Offset

into

space

Bin(4)

77

4D

Pointer

target

information

Char(2)

77

4D

Pointer

target

accessible

from

user

state

Bit

0

77

4D

Pointer

target

is

teraspace

Bit

1

77

4D

Reserved

(binary

0)

Bits

2-15

79

4F

Reserved

(binary

0)

Char(1)

80

50

Extended

offset

into

space

Char(8)

88

58

—-

End

—-

The

object

identification

information

supplied,

for

a

space

pointer

which

points

to

an

implicit

process

space

or

to

teraspace,

is

for

the

process

control

space

object

with

which

those

spaces

are

associated.

722

iSeries:

Machine

Interface

Instructions

APIs

Note:

If

the

object

associated

with

the

space

addressed

by

the

space

pointer

is

not

addressed

by

a

context,

the

context

identification

field

is

hex

00.

If

the

object

is

addressed

by

the

machine

context,

a

context

type

of

hex

81

is

returned.

The

offset

into

space

field

is

set

to

a

value

of

zero

when

the

space

pointer

points

to

teraspace.

If

the

pointer

target

accessible

from

user

state

field

has

a

value

of

binary

1,

then

the

space

pointer

addresses

a

space

that

is

in

user

domain

and

is

either

writeable

when

the

thread

is

in

user

state

or

read

only

for

any

thread

execution

state.

The

pointer

target

accessible

from

user

state

field

has

a

value

of

binary

0

otherwise.

If

the

pointer

target

is

teraspace

field

has

a

value

of

binary

1,

then

the

space

pointer

addresses

teraspace.

This

field

has

a

value

of

binary

0

if

the

space

pointer

addresses

any

other

space.

The

extended

offset

into

space

field

is

set

whether

or

not

the

space

pointer

points

to

teraspace.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

9

9

Instruction

pointer

description

Char(68)

The

instruction

pointer

description

describes

instruction

addressability

contained

in

the

instruction

pointer.

9

9

Context

identification

Char(32)

9

9

Context

type

Char(1)

10

A

Context

subtype

Char(1)

11

B

Context

name

Char(30

41

29

Program

identification

Char(32)

41

29

Program

type

Char(1)

42

2A

Program

subtype

Char(1)

43

2B

Program

name

Char(30

73

49

Instruction

number

Bin(4)

77

4D

—-

End

—-

If

the

program

containing

the

instruction

currently

being

addressed

by

the

instruction

pointer

is

not

addressed

by

a

context,

the

context

identification

field

is

hex

00.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

9

9

Invocation

pointer

description

Char(23)

The

invocation

pointer

description

describes

invocation

addressability

contained

in

the

invocation

pointer.

9

9

Pointer

status

Char(1)

9

9

Invocation

no

longer

exists

B

9

9

Pointer

is

from

another

thread

B

9

9

Reserved

(binary

0)

B

10

A

Reserved

(binary

0)

Char(6)

16

10

Containing

process

System

pointer

32

20

—-

End

—-

Invocation

no

longer

exists.

If

this

field

has

a

value

of

binary

1,

then

the

invocation

referenced

by

the

pointer

no

longer

exists.

Machine

Interface

Instructions

723

Pointer

is

from

another

thread.

If

this

field

has

a

value

of

binary

1,

then

the

invocation

referenced

by

the

pointer

exists

but

belongs

to

a

thread

other

than

the

current

one.

Containing

process.

A

system

pointer

to

the

process

control

space

object

which

contains

the

thread

to

which

the

invocation

belongs.

A

null

pointer

value

is

returned

if

the

invocation

no

longer

exists.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

9

9

Procedure

pointer

description

Char(71)

The

procedure

pointer

description

describes

the

activation

and

procedure

addressability

contained

in

the

procedure

pointer.

9

9

Pointer

status

Char(1)

9

9

Process

object

no

longer

exists

9

9

Pointer

is

from

another

process

9

9

Referenced

program

cannot

be

accessed

9

9

Containing

process

owns

a

shared

activation

group

9

9

Reserved

(binary

0)

10

A

Reserved

(binary

0)

Char(6)

16

10

Module

number

UBin(4)

20

14

Procedure

number

UBin(4)

24

18

Activation

mark

UBin(4)

28

1C

Activation

group

mark

UBin(4)

32

20

Containing

program

System

p

48

30

Containing

process

System

p

64

40

Activation

mark

UBin(8)

For

Non-Bound

programs,

the

following

datatype

should

be

used:

64

40

Activation

mark

(Non-Bound

program)

72

48

Activation

group

mark

UBin(8)

For

Non-Bound

programs,

the

following

datatype

should

be

used:

72

48

Activation

group

mark

(Non-Bound

program)

80

50

—-

End

—-

Process

object

no

longer

exists.

If

this

field

has

a

value

of

binary

1,

then

the

process

object

referenced

by

the

pointer

(the

activation)

no

longer

exists.

All

of

the

remaining

information

is

returned

as

binary

0s.

Pointer

is

from

another

process.

If

this

field

has

a

value

of

binary

1,

then

the

process

object

referenced

by

the

pointer

belongs

to

a

process

other

than

the

current

one.

Referenced

program

cannot

be

accessed.

If

this

field

has

a

value

of

binary

1,

then

the

program

referenced

by

the

pointer

could

not

be

accessed

to

extract

the

program-related

information.

This

may

be

because

the

program

is

damaged,

suspended,

compressed,

or

destroyed.

The

containing

program

pointer,

module

number,

and

procedure

number

are

returned

as

binary

0s.

Containing

process

owns

a

shared

activation

group.

If

this

field

has

a

value

of

binary

1,

then

the

process

object

referenced

by

the

pointer

belongs

to

a

process

that

owns

a

shared

activation

group.

Module

number.

Index

in

the

module

list

of

the

bound

program

for

the

module

whose

activation

the

pointer

addresses.

Procedure

number.

Index

in

the

procedure

list

of

the

module

for

the

procedure

addressed

by

the

pointer.

724

iSeries:

Machine

Interface

Instructions

APIs

Activation

mark.

The

activation

mark

of

the

activation

that

contains

the

activated

procedure.

Zero

if

the

program

activation

no

longer

exists.

The

value

returned

in

the

4-byte

activation

mark

may

have

wrapped.

Activation

group

mark.

An

activation

group

mark

of

the

activation

group

that

contains

the

activated

procedure.

Zero

if

the

program

activation

no

longer

exists.

The

value

returned

in

the

4-byte

activation

group

mark

may

have

wrapped.

Containing

program.

A

system

pointer

to

the

program

object

that

contains

the

procedure.

Null

if

the

program

activation

no

longer

exists.

Containing

process.

A

system

pointer

to

the

process

control

space

object

which

contains

the

procedure’s

activation

group.

A

null

pointer

value

is

returned

if

the

process

control

space

object

no

longer

exists,

or

if

it

is

no

longer

possible

to

determine

the

containing

process

for

a

destroyed

activation

group.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

9

9

Label

pointer

description

Char(*)

The

label

pointer

description

describes

instruction

addressability

contained

in

the

label

pointer.

9

9

Pointer

status

9

9

Reserved

(binary

0)

9

9

Referenced

program

is

damaged,

suspended,

compresse

9

9

Reserved

(binary

0)

10

A

Reserved

(binary

0)

16

10

Module

number

20

14

Procedure

number

24

18

Number

of

statement

IDs

28

1C

Internal

identifier

32

20

Containing

program

48

30

Statement

ID

*

*

—-

End

—-

Referenced

program

is

damaged,

suspended,

compressed,

or

destroyed.

If

this

field

has

a

value

of

binary

1,

then

the

program

referenced

by

the

pointer

could

not

be

accessed

to

extract

the

remaining

information.

The

remainder

of

the

template

is

binary

0s

with

the

exception

of

the

containing

program

pointer,

which

will

be

binary

0s

if

the

program

has

been

destroyed

or

so

seriously

damaged

that

its

identity

cannot

be

determined.

Module

number.

Index

in

the

module

list

of

the

bound

program

for

the

module

containing

the

label.

Procedure

number.

Index

in

the

procedure

list

of

the

module

for

the

procedure

containing

the

label.

Number

of

statement

IDs.

Number

of

entries

in

the

statement

ID

list.

(Multiple

statement

IDs

may

be

associated

with

a

single

location

in

the

created

program

due

to

optimizations

that

combine

similar

code

sequences.)

Internal

identifier.

A

machine-dependent

value

which

identifies

the

label

relative

to

the

internal

structure

of

the

program.

For

use

by

service

personnel.

Containing

program.

A

system

pointer

to

the

program

object

that

contains

the

label.

Statement

ID.

Each

statement

ID

is

a

compiler-supplied

unsigned

Bin(4)

number

which

allows

the

compiler

to

identify

the

source

statement

associated

with

a

particular

sequence

of

instructions.

Machine

Interface

Instructions

725

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

9

9

Suspend

pointer

description

Char(*)

The

suspend

pointer

description

describes

instruction

addressability

contained

in

the

suspend

pointer.

9

9

Pointer

status

9

9

Reserved

(binary

0)

9

9

Reserved

(binary

0)

9

9

Referenced

program

is

damaged,

suspended,

compressed

o

9

9

Reserved

(binary

0)

10

A

Reserved

(binary

0)

16

10

Module

number

20

14

Procedure

number

24

18

Number

of

statement

IDs

28

1C

Internal

identifier

32

20

Containing

program

48

30

Statement

ID

*

*

—-

End

—-

Referenced

program

is

damaged,

suspended,

compressed,

or

destroyed.

If

this

field

has

a

value

of

binary

1,

then

the

program

referenced

by

the

pointer

could

not

be

accessed

to

extract

the

remaining

information.

The

remainder

of

the

template

is

binary

0s

with

the

exception

of

the

containing

program

pointer,

which

will

be

binary

0s

if

the

program

has

been

destroyed

or

so

seriously

damaged

that

its

identity

cannot

be

determined.

Module

number.

Index

in

the

module

list

of

the

bound

program

for

the

module

containing

the

suspend

point.

Procedure

number.

Index

in

the

procedure

list

of

the

module

for

the

procedure

containing

the

suspend

point.

Number

of

statement

IDs.

Number

of

entries

in

the

statement

ID

list.

(Multiple

statement

IDs

may

be

associated

with

a

single

location

in

the

created

program

due

to

optimizations

that

combine

similar

code

sequences.)

Internal

identifier.

A

machine-dependent

value

which

locates

the

suspend

point

relative

to

the

internal

structure

of

the

program.

For

use

by

service

personnel.

Containing

program.

A

system

pointer

to

the

program

object

that

contains

the

suspend

point.

Statement

ID.

Each

statement

ID

is

a

compiler-supplied

unsigned

Bin(4)

number

which

allows

the

compiler

to

identify

the

source

statement

associated

with

a

particular

sequence

of

MI

instructions.

Note:

For

suspend

pointers

which

address

non-bound

programs,

module

number

and

procedure

number

are

returned

as

binary

0s,

and

the

statement

ID

list

is

returned

with

one

value

which

is

the

MI

instruction

number

of

the

suspend

point.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

9

9

Synchronization

pointer

description

Char(4)

The

synchronization

pointer

description

describes

the

object

addressability

contained

in

the

synchronization

pointer.

726

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

9

9

Pointer

status

Char(1)

9

9

Synchronization

object

no

longer

exists

Bit

0

9

9

Reserved

(binary

0)

Bits

1-7

10

A

Synchronization

object

type

Char(2)

Hex

0000

=

Synchronization

object

no

longer

exists

Hex

0001

=

Mutex

Hex

0002

=

Semaphore

12

C

Reserved

(binary

0)

Char(1)

13

D

—-

End

—-

Synchronization

object

no

longer

exists.

If

this

field

has

a

value

of

binary

1,

then

the

synchronization

object

referenced

by

the

pointer

no

longer

exists.

All

of

the

remaining

information

is

returned

as

binary

0s.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

9

9

Object

pointer

description

Char(16)

The

object

pointer

description

describes

the

object

identification

contained

in

the

object

pointer.

9

9

Object

ID

Char(12)

21

15

Reserved

(binary

0)

Char(4)

25

19

—-

End

—-

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0604

External

Data

Object

Not

Found

08

Argument/Parameter

Machine

Interface

Instructions

727

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

728

iSeries:

Machine

Interface

Instructions

APIs

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Pointer

Information

(MATPTRIF)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

0517

Receiver

Pointer

Selection

mask

Operand

1:

Space

pointer.

Operand

2:

Suspend

pointer,

system

pointer

or

space

pointer

data

object.

Operand

3:

Character(4)

scalar.

Bound

program

access

Built-in

number

for

MATPTRIF

is

420.

MATPTRIF

(

receiver

:

address

pointer

:

address

of

pointer(16)

selection_mask

:

address

)

Description:

The

attributes

selected

with

operand

3

of

the

pointer

object

identified

by

operand

2

are

materialized

into

the

receiver

identified

by

operand

1.

Operand

1:

The

receiver

is

a

space

pointer

to

a

materialization

template.

This

template

must

be

aligned

on

a

16-byte

boundary,

otherwise

the

boundary

alignment

(hex

0602)

exception

is

signaled.

If

any

of

the

reserved

fields

in

the

template

are

not

zero,

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

Some

of

the

fields

in

the

materialization

template

are

input

to

the

instruction

and

remain

unchanged

by

the

instruction.

Input

fields

are

indicated

in

the

description

of

the

template

that

follows,

and

are

used

to

control

the

amount

of

information

to

be

materialized.

The

remaining

fields

in

the

materialization

template

are

output

from

the

instruction.

If

this

instruction

ends

abnormally,

the

contents

of

the

materialization

template

are

undefined.

The

materialization

template

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

template

Char(*)

0

0

Template

size

specification

Char(8)

0

0

Number

of

bytes

provided

(input)

Bin(4)

4

4

Number

of

bytes

available

Bin(4)

8

8

Reserved

Char(7)

15

F

Pointer

type

Char(1)

Machine

Interface

Instructions

729

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

Hex

01

=

System

pointer

Hex

02

=

Space

pointer

Hex

08

=

Suspend

pointer

16

10

Pointer

description

Char(*)

*

*

—-

End

—-

Template

size

specification

This

field

contains

size

information

about

the

materialization.

The

number

of

bytes

in

the

materialization

is

the

lesser

of

the

number

of

bytes

provided

and

the

number

of

bytes

available.

Number

of

bytes

provided

This

input

field

is

the

number

of

bytes

in

the

materialization

template

provided

for

the

materialization.

It

must

have

a

value

of

eight

or

more,

otherwise

the

materialization

length

invalid

(hex

3803)

exception

is

signaled.

Number

of

bytes

available

This

output

field

is

the

number

of

bytes

in

the

available

materialization.

If

the

materialization

template

is

larger

than

the

available

materialization,

the

excess

bytes

in

the

template

are

unchanged.

If

the

template

is

smaller

than

the

available

materialization,

no

exceptions

are

signaled

and

as

many

bytes

as

can

be

contained

in

the

template

are

materialized.

Pointer

type

This

output

field

indicates

the

type

of

the

pointer

identified

by

the

operand

2

pointer.

Pointer

description

This

field

contains

both

input

and

output

subfields.

Each

output

field

contains

a

materialized

attribute

of

the

operand

2

pointer

only

if

selected

with

the

operand

3

selection

mask.

Otherwise,

the

output

field

remains

unchanged.

The

format

of

the

pointer

description

is

determined

by

the

pointer

type

of

the

operand

2

pointer.

The

pointer

description

for

a

suspend

pointer

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Suspend

pointer

description

Char(192)

16

10

Reserved

Char(1)

17

11

Program

type

Char(1)

Hex

00

=

Non-bound

program

Hex

01

=

Bound

program

Hex

02

=

Bound

service

program

Hex

04

=

Java(TM)

program

18

12

Program

CCSID

Char(2)

20

14

Program

name

Char(30)

50

32

Program

context

name

Char(30)

730

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

80

50

Reserved

Char(4)

84

54

Module

name

Char(30)

114

72

Module

qualifier

name

Char(30)

144

90

Reserved

Char(4)

148

94

Procedure

dictionary

ID

Bin(4)

152

98

Length

of

procedure

name

requested

(input)

Bin(4)

156

9C

Length

of

procedure

name

available

Bin(4)

160

A0

Pointer

to

procedure

name

(input)

Space

pointer

176

B0

Reserved

Char(8)

184

B8

Number

of

statement

IDs

requested

(input)

Bin(4)

188

BC

Number

of

statement

IDs

available

Bin(4)

192

C0

Pointer

to

statement

IDs

(input)

Space

pointer

208

D0

—-

End

—-

Program

type

This

output

field

indicates

the

Program

Model

of

a

program

object,

which

is

determined

by

how

the

program

was

created.

This

field

is

necessary

since

the

object

type

and

object

subtype

do

not

provide

enough

information

to

identify

the

Program

Model

of

a

program

object.

Knowing

the

program

type

is

useful

in

selecting

appropriate

program

specific

instructions.

For

this

instruction,

it

is

useful

in

determining

whether

several

fields

in

this

materialization

template

are

valid,

as

indicated

in

the

description

of

each

field.

Program

CCSID

This

output

field

is

the

coded

character

set

identifier

of

the

bound

program

having

program

name.

This

field

is

not

valid

if

program

type

=

hex

00.

Program

name

This

output

field

is

the

name

of

the

program

object

whose

invocation

contains

the

suspend

point.

Program

context

name

This

output

field

is

the

name

of

the

context

in

which

the

program

having

program

name

resides.

This

field

contains

hex

zeros

if

the

program

does

not

reside

in

a

context.

Module

name

This

output

field

is

the

name

of

the

module

which

contained

the

definition

of

the

procedure

identified

by

procedure

dictionary

ID

at

the

time

the

program

having

program

name

was

created.

This

field

is

not

valid

if

program

type

=

hex

00.

Module

qualifier

name

This

output

field

is

the

module

qualifier,

used

to

differentiate

between

modules

having

the

same

module

name.

It

was

provided

when

the

program

having

program

name

was

created.

This

field

is

not

valid

if

program

type

=

hex

00.

Procedure

dictionary

ID

This

output

field

is

the

dictionary

ID

of

the

procedure

containing

the

suspend

point

in

the

invocation

of

the

program

object

named

program

name.

This

field

is

not

valid

if

program

type

=

hex

00.

Length

of

procedure

name

requested

This

input

field

is

the

number

of

characters

in

procedure

name

provided

for

the

materialization.

If

the

length

requested

is

zero,

then

the

pointer

to

procedure

name

need

not

be

supplied

and

will

remain

unchanged.

This

field

is

ignored

if

program

type

=

hex

00.

Machine

Interface

Instructions

731

Length

of

procedure

name

available

This

output

field

is

the

number

of

characters

in

the

available

procedure

name.

This

field

is

not

valid

if

program

type

=

hex

00.

Pointer

to

procedure

name

This

input

field

is

a

pointer

to

the

space

provided

for

the

materialized

name

of

the

procedure

identified

by

procedure

dictionary

ID.

This

field

need

not

be

supplied

and

remains

unchanged

if

the

length

of

procedure

name

requested

is

zero.

This

field

is

not

valid

if

program

type

=

hex

00.

The

procedure

name

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Procedure

name

Char(*)

*

*

—-

End

—-

Procedure

name

This

output

field

is

the

materialized

name

of

the

procedure

where

the

number

of

characters

in

the

materialized

name

is

the

lesser

of

the

length

of

procedure

name

requested

and

the

length

of

procedure

name

available.

If

this

field

is

larger

than

the

available

procedure

name,

the

excess

characters

in

the

field

are

unchanged.

If

this

field

is

smaller

than

the

available

procedure

name,

no

exceptions

are

signaled

and

as

many

characters

as

can

be

contained

in

the

field

are

materialized.

This

field

remains

unchanged

if

length

of

procedure

name

requested

is

zero.

This

field

is

not

valid

if

program

type

=

hex

00.

Number

of

statement

IDs

requested

This

input

field

is

the

number

of

elements

in

the

array

statement

IDs

provided

for

the

materialization.

If

the

number

requested

is

zero,

then

the

pointer

to

statement

IDs

need

not

be

supplied

and

will

remain

unchanged.

Number

of

statement

IDs

available

This

output

field

is

the

number

of

elements

in

the

array

of

available

statement

IDs.

Pointer

to

statement

IDs

This

input

field

is

a

pointer

to

the

space

provided

for

the

materialized

statement

IDs

associated

with

this

suspend

point.

(Multiple

statement

IDs

may

be

associated

with

a

single

location

in

the

created

program

due

to

optimizations

that

combine

similar

code

sequences).

This

field

need

not

be

supplied

and

remains

unchanged

if

the

number

of

statement

IDs

requested

is

zero.

The

statement

IDs

have

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Statement

IDs

[*]

Bin(4)

*

*

—-

End

—-

Statement

IDs

This

output

field

is

an

array

of

materialized

statement

IDs

associated

with

this

suspend

point,

where

the

number

of

elements

in

the

array

is

the

lesser

of

the

number

of

statement

IDs

requested

and

the

number

of

statement

IDs

available.

Each

statement

ID

was

previously

supplied

by

the

compiler

and

identifies

a

source

statement

associated

with

the

suspend

point.

If

this

field

is

larger

than

the

array

of

available

statement

IDs,

the

excess

array

elements

in

the

field

are

unchanged.

If

this

field

is

smaller

than

the

array

of

available

statement

IDs,

no

exceptions

are

732

iSeries:

Machine

Interface

Instructions

APIs

signaled

and

as

many

IDs

as

can

be

contained

in

the

array

are

materialized.

This

field

remains

unchanged

if

number

of

statement

IDs

requested

is

zero.

The

pointer

description

for

a

system

pointer

or

space

pointer

and

a

selection

mask

with

an

information

option

of

0

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

ASP

number

description

Char(2)

16

10

ASP

number

UBin(2)

18

12

—-

End

—-

ASP

number

This

output

field

contains

the

ASP

number

assigned

by

the

machine

to

the

ASP

that

contains

the

storage

that

is

the

target

of

the

pointer.

If

the

pointer

is

a

pointer

to

teraspace

storage,

the

ASP

number

returned

is

1

(ie,

the

system

ASP).

This

instruction

is

allowed

in

all

ASP

LUD

states

but,

if

the

state

is

not

varyon

or

active,

an

object

not

available

(hex

220B)

exception

may

be

signalled.

If

the

ASP

does

not

have

a

LUD,

or

if

it

does

and

the

LUD

state

is

varyon

or

active,

an

object

not

available

(hex

220B)

exception

is

not

signalled.

Operand

2:

The

pointer

is

the

pointer

object

to

be

materialized.

Operand

3:

The

selection

mask

is

used

to

select

which

attributes

of

the

operand

2

pointer

are

to

be

materialized.

The

format

of

the

selection

mask

is

determined

by

the

pointer

type

of

the

operand

2

pointer.

For

suspend

pointers,

the

selection

mask

is

a

bit

mask

that

is

used

to

select

which

attributes

of

the

pointer

are

to

be

materialized.

If

the

bit

has

a

value

of

binary

1,

then

the

attribute

is

materialized

into

the

associated

pointer

description

output

field

in

the

operand

1

materialization

template.

If

the

bit

has

a

value

of

binary

0,

the

output

field

remains

unchanged.

If

any

of

the

reserved

bits

in

the

mask

are

not

zero,

a

scalar

value

invalid

(hex

3203)

exception

is

signalled.

The

selection

mask

for

a

suspend

pointer

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Suspend

pointer

selection

mask

Char(4)

0

0

Reserved

Bit

0

0

0

Program

type

Bit

1

0

=

Do

not

materialize

1

=

Materialize

program

type

field

0

0

Program

CCSID

Bit

2

0

=

Do

not

materialize

1

=

Materialize

program

CCSID

field

0

0

Program

name

Bit

3

0

=

Do

not

materialize

1

=

Materialize

program

name

field

Machine

Interface

Instructions

733

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Program

context

name

Bit

4

0

=

Do

not

materialize

1

=

Materialize

program

context

name

field

0

0

Reserved

Bit

5

0

0

Module

name

Bit

6

0

=

Do

not

materialize

1

=

Materialize

module

name

field

0

0

Module

qualifier

name

Bit

7

0

=

Do

not

materialize

1

=

Materialize

module

qualifier

name

field

0

0

Reserved

Bit

8

0

0

Procedure

dictionary

ID

Bit

9

0

=

Do

not

materialize

1

=

Materialize

procedure

dictionary

ID

field

0

0

Procedure

name

Bit

10

0

=

Do

not

materialize

1

=

Materialize

length

of

procedure

name

available

field

and

the

procedure

name

addressed

by

the

pointer

to

procedure

name

field

0

0

Reserved

Bit

11

0

0

Statement

IDs

Bit

12

0

=

Do

not

materialize

1

=

Materialize

number

of

statement

IDs

available

field

and

the

statement

IDs

addressed

by

the

pointer

to

statement

IDs

field

0

0

Reserved

Bits

13-31

4

4

—-

End

—-

The

selection

mask

for

a

system

pointer

or

space

pointer

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Selection

mask

Char(4)

0

0

Information

option

UBin(2)

0

=

Materialize

ASP

number

2

2

Reserved

Char(2)

4

4

—-

End

—-

734

iSeries:

Machine

Interface

Instructions

APIs

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Retrieve

–

–

Program

object
v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Program

object

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

Machine

Interface

Instructions

735

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Pointer

Locations

(MATPTRL)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

0513

Receiver

Source

Length

Operand

1:

Space

pointer.

Operand

2:

Space

pointer.

736

iSeries:

Machine

Interface

Instructions

APIs

Operand

3:

Binary

scalar.

Bound

program

access

Built-in

number

for

MATPTRL

is

90.

MATPTRL

(

receiver

:

address

source

:

address

length

:

address

of

signed

binary(4)

)

Description:

This

instruction

finds

the

16-byte

pointers

in

a

subset

of

a

space

and

produces

a

bit

mapping

of

their

relative

locations.

The

area

addressed

by

the

operand

2

space

pointer

is

scanned

for

a

length

equal

to

that

specified

in

operand

3.

A

bit

in

operand

1

is

set

for

each

16

bytes

of

operand

2.

The

bit

is

set

to

binary

1

if

a

pointer

exists

in

the

operand

2

space,

or

the

bit

is

set

to

binary

0

if

no

pointer

exists

in

the

operand

2

space.

Operand

1

is

a

space

pointer

addressing

the

receiver

area.

One

bit

of

the

receiver

is

used

for

each

16

bytes

specified

by

operand

3.

If

operand

3

is

not

a

16-byte

multiple,

then

the

bit

position

in

operand

1

that

corresponds

to

the

last

(odd)

bytes

of

operand

2

is

set

to

0.

Bits

are

set

from

left

to

right

(bit

0,

bit

1,...)

in

operand

1

as

16-byte

areas

are

interrogated

from

left

to

right

in

operand

2.

The

number

of

bits

set

in

the

receiver

is

always

a

multiple

of

8.

Those

rightmost

bits

positions

that

do

not

have

a

corresponding

area

in

operand

2

are

set

to

0.

The

format

of

the

operand

1

receiver

is:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Template

size

specification

Char(8)

0

0

Number

of

bytes

provided

Bin(4)

4

4

Number

of

bytes

available

Bin(4)

8

8

Pointer

locations

Char(*)

*

*

—-

End

—-

Operand

2

must

address

a

16-byte

aligned

area;

otherwise,

a

boundary

alignment

(hex

0602)

exception

is

signaled.

If

the

value

specified

by

operand

3

is

not

positive,

the

scalar

value

invalid

(hex

3203)

exception

is

signaled.

The

first

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

exceptions

(other

than

the

materialization

length

invalid

(hex

3803)

exception)

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

materialization.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Machine

Interface

Instructions

737

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

738

iSeries:

Machine

Interface

Instructions

APIs

32

Scalar

Specification

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Process

Activation

Groups

(MATPRAGP)

Op

Code

(Hex)

Operand

1

MATPRAGP2

0339

Receiver

MATPRAGP

0331

Receiver

Operand

1:

Space

pointer.

Bound

program

access

Built-in

number

for

MATPRAGP2

is

662.

MATPRAGP2

(

receiver

:

address

)

Built-in

number

for

MATPRAGP

is

123.

MATPRAGP

(

receiver

:

address

)

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Note

It

is

recommended

that

you

use

the

MATPRAGP2

instruction

which

supports

8-byte

activation

group

marks.

4-byte

marks

can

wrap

and

produce

unexpected

results.

Description:

This

instruction

provides

a

list

of

the

activation

groups

which

exist

in

the

current

process.

Operand

1

locates

a

template

which

receives

information.

The

materialization

template

identified

by

operand

1

must

be

16-byte

aligned

in

the

space.

This

materialization

template

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

Machine

Interface

Instructions

739

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Activation

group

count

Bin(4)

12

C

Activation

group

list

Char(*)

*

*

—-

End

—-

The

activation

group

list

format

is

different

for

MATPRAGP

and

MATPRAGP2.

Format

for

MATPRAGP2

activation

group

list:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

12

C

Reserved

Char(4)

16

10

Activation

group

list

[*]

Char(8)

(repeated

activation

group

count

times)

16

10

Activation

group

marks

UBin(8)

For

Non-Bound

programs,

the

following

datatype

should

be

used:

16

10

Activation

group

marks

(Non-Bound

program)

Char

*

*

—-

End

—-

Format

for

MATPRAGP

activation

group

list:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

12

C

Activation

group

list

[*]

Char(4)

(repeated

activation

group

count

times)

12

C

Activation

group

marks

UBin(4)

*

*

—-

End

—-

The

Materialize

Activation

Group

Attributes

instruction

can

be

used

to

examine

the

attributes

of

an

individual

activation

group.

The

first

4

bytes

of

the

materialization

template

specify

the

number

of

bytes

provided

for

use

by

the

instruction.

In

all

cases

if

the

number

of

bytes

provided

is

less

than

8

then

a

materialization

length

invalid

(hex

3803)

exception

will

be

signaled.

The

second

4

bytes

of

the

instruction

indicate

the

actual

number

of

bytes

available

to

be

returned.

In

no

case

does

the

instruction

return

more

bytes

of

information

than

those

available.

Activation

group

count

This

is

the

number

of

activation

groups

within

the

process.

It

is

also

the

extent

of

the

activation

group

list

which

follows.

Activation

group

list

This

is

the

list

of

activation

groups

which

exist

within

the

current

process.

Activation

group

marks

This

is

an

array

of

activation

group

mark

values.

Each

entry

denotes

an

activation

group

currently

existent

within

the

process.

The

value

returned

in

the

4-byte

activation

group

mark

may

have

wrapped.

740

iSeries:

Machine

Interface

Instructions

APIs

Warning:

Temporary

Level

3

Header

Authorization

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C04

Object

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Machine

Interface

Instructions

741

Materialize

Process

Attributes

(MATPRATR)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

0333

Receiver

Process

control

space

Materialization

options

Operand

1:

Space

pointer.

Operand

2:

System

pointer

or

null.

Operand

3:

Character(1)

scalar.

Bound

program

access

Built-in

number

for

MATPRATR

is

65.

MATPRATR

(

receiver

:

address

process_control_space

:

address

of

system

pointer

OR

null

operand

materialization_options

:

address

)

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Description:

The

instruction

causes

either

one

specific

attribute

or

all

the

attributes

of

the

designated

process

to

be

materialized.

Operand

1

specifies

a

space

that

is

to

receive

the

materialized

attribute

values.

The

space

pointer

specified

in

operand

1

must

address

a

16-byte

aligned

area.

Operand

2

identifies

the

process

control

space

associated

with

the

process

whose

attributes

are

to

be

materialized.

If

operand

2

is

NULL,

the

attributes

being

materialized

will

be

those

associated

with

the

thread

that

issued

the

instruction.

Otherwise,

the

attributes

being

materialized

will

be

those

associated

with

the

initial

thread

of

the

identified

process.

If

process

attributes

are

being

materialized

by

a

thread

in

another

process,

the

thread

must

be

contained

in

the

process

that

initiated

the

subject

process

or

the

thread

must

have

process

control

special

authorization

defined

in

its

user

profile

or

in

a

currently

adopted

user

profile.

Operand

3

specifies

which

process

attribute

is

to

be

materialized.

A

summary

of

the

allowable

hex

values

for

operand

3

follows.

Table

1.

Materialize

Process

Attributes

Scope

Option

on

Materialize

Process

Attributes

Page

Attribute

Scope

Valid

Process

Control

Space

pointer

Null

Operand

00

-

Entire

PDT

reference

#1

(page

745)

Process

and

initial

thread

Process

and

issuing

thread

01

-

Process

type

reference

#1

(page

745)

Process

Process

02

-

Instruction

wait

access

state

control

reference

#1

(page

745)

Process

Process

03

-

Time

slice

end

access

state

control

reference

#1

(page

745)

Process

Process

04

-

Time

slice

event

option

reference

#1

(page

745)

Process

Process

742

iSeries:

Machine

Interface

Instructions

APIs

Option

on

Materialize

Process

Attributes

Page

Attribute

Scope

Valid

Process

Control

Space

pointer

Null

Operand

06

-

Initiation

phase

program

option

reference

#1

(page

745)

Process

Process

07

-

Problem

phase

program

option

reference

#1

(page

745)

Process

Process

08

-

Termination

phase

program

option

reference

#1

(page

745)

Process

Process

09

-

Process

default

exception

handler

option

reference

#1

(page

745)

Process

Process

0A

-

Name

resolution

list

option

reference

#1

(page

745)

Initial

thread

Issuing

thread

0B

-

Process

access

group

option

reference

#1

(page

745)

Process

Process

0C

-

Signal

event

control

mask

reference

#2

(page

749)

Process

Process

0D

-

Number

of

event

monitors

reference

#3

(page

749)

Process

Process

0E

-

Process

Priority

reference

#4

(page

749)

Process

Process

0F

-

Main

storage

pool

ID

reference

#5

(page

749)

Initial

thread

Issuing

thread

10

-

Maximum

temporary

auxiliary

storage

allowed

reference

#6

(page

749)

Process

Process

11

-

Time

slice

interval

reference

#7

(page

749)

Process

Process

12

-

Default

time-out

interval

reference

#8

(page

750)

Process

Process

13

-

Maximum

processor

time

allowed

reference

#9

(page

750)

Process

Process

14

-

Multi-programming

level

class

ID

reference

#10

(page

750)

Initial

thread

Issuing

thread

15

-

Modification

control

indicators

reference

#11

(page

750)

Process

Process

16

-

User

profile

pointer

reference

#12

(page

751)

Initial

thread

Issuing

thread

17

-

Process

Communications

Object

(PCO)

pointer

reference

#13

(page

751)

Process

Process

18

-

Name

resolution

list

pointer

reference

#14

(page

751)

Process

Process

19

-

Initiation

phase

program

pointer

reference

#15

(page

752)

Process

Process

1A

-

Termination

phase

program

pointer

reference

#16

(page

752)

Process

Process

1B

-

Problem

phase

program

pointer

reference

#17

(page

752)

Process

Process

1C

-

Process

default

exception

handler

program

pointer

reference

#18

(page

752)

Process

Process

1F

-

Process

access

group

pointer

reference

#19

(page

752)

Process

Process

20

-

Process

status

indicators

reference

#20

(page

752)

Process

and

initial

thread

Process

and

issuing

thread

21

-

Process

resource

usage

attributes

reference

#21

(page

756)

Process

Process

Machine

Interface

Instructions

743

Option

on

Materialize

Process

Attributes

Page

Attribute

Scope

Valid

Process

Control

Space

pointer

Null

Operand

22

-

Obsolete

reference

#22

(page

757)

Not

applicable

Not

applicable

23

-

Thread

performance

attributes

reference

#23

(page

757)

Initial

thread

Issuing

thread

24

-

Execution

status

attributes

reference

#24

(page

758)

Process

and

initial

thread

Process

and

issuing

thread

25

-

Process

control

space

pointer

reference

#25

(page

760)

Process

Process

26

-

Group

profile

list

reference

#26

(page

760)

Initial

thread

Issuing

thread

27

-

Group

profile

list

option

reference

#27

(page

761)

Initial

thread

Issuing

thread

28

-

Process

category

reference

#28

(page

761)

Process

Process

29

-

Queue

space

object

pointer

reference

#29

(page

761)

Process

Process

2A

-

Secondary

process

communications

object

(PPCO)

pointer

reference

#30

(page

761)

Process

Process

2B

-

Signal

enablement

option

reference

#31

(page

761)

Process

Process

2C

-

Process

signal

controls

reference

#32

(page

761)

Process

and

initial

thread

Process

and

issuing

thread

2D

-

Lock

statistics

reference

#33

(page

763)

Initial

thread

Issuing

thread

The

value

of

attribute

scope

is

as

follows:

Attribute

Scope

Meaning

Process

The

attribute

is

maintained

as

the

process

level

resource.

The

value

materialized

has

the

same

value

for

all

threads

within

the

process.

Initial

thread

The

attribute

is

maintained

as

a

thread

level

resource.

The

value

materialized

is

only

applicable

to

the

initial

thread

within

the

process.

Issuing

thread

The

attribute

is

maintained

as

a

thread

level

resource.

The

value

materialized

is

only

applicable

to

the

thread

within

the

process

that

is

being

materialized.

Process

and

initial

thread

The

attribute

being

materialized

is

derived

from

values

maintained

at

the

process

level

and

the

initial

thread

within

the

process.

Process

and

issuing

thread

The

attribute

being

materialized

is

derived

from

values

maintained

at

the

process

level

and

the

issuing

thread

within

the

process.

The

materialization

template

has

the

following

general

format

when

a

scalar

attribute

is

materialized:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Process

scalar

attributes

Char(*)

*

*

—-

End

—-

744

iSeries:

Machine

Interface

Instructions

APIs

The

materialization

template

has

the

following

general

format

when

a

pointer

attribute

is

materialized:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Reserved

(binary

0)

Char(8)

16

10

Process

pointer

attribute

System

pointer

or

Space

pointer

32

20

—-

End

—-

The

following

attributes

require

materialization

sizes

of

varying

lengths.

The

attributes

to

be

materialized

and

their

operand

3

materialization

option

values

follow:

v

v

Process

control

attributes

This

template

is

returned

for

the

following

operand

3

values:

–

Hex

01

-

Process

type

–

Hex

02

-

Instruction

wait

access

state

control

–

Hex

03

-

Time

slice

end

access

state

control

–

Hex

04

-

Time

slice

event

option

–

Hex

06

-

Initiation

phase

program

option

–

Hex

07

-

Problem

phase

program

option

–

Hex

08

-

Termination

phase

program

option

–

Hex

09

-

Process

default

exception

handler

option

–

Hex

0A

-

Name

resolution

list

option

–

Hex

0B

-

Process

access

group

option

–

Hex

27

-

Group

profile

list

option

–

Hex

2B

-

Signal

enablement

option

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Process

control

attributes

Char(4)

8

8

Process

type

Bit

0

1

=

Independent

process

8

8

Instruction

wait

access

state

control

Bit

1

0

=

Access

state

modification

is

not

allowed

1

=

Access

state

modification

is

allowed

if

specified

8

8

Time

slice

end

access

state

control

Bit

2

0

=

Access

state

modification

is

not

allowed

1

=

Access

state

modification

is

allowed

if

specified

8

8

Time

slice

end

event

option

Bit

3

0

=

Time

slice

expired

without

entering

instruction

wait

event

is

not

signaled

1

=

Time

slice

expired

without

entering

instruction

wait

event

is

signaled

Machine

Interface

Instructions

745

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Reserved

(binary

0)

Bit

4

8

8

Initiation

phase

program

option

Bit

5

0

=

No

initiation

phase

program

specified

(do

not

enter

initiation

phase)

1

=

Initiation

phase

program

specified

(enter

initiation

phase)

8

8

Problem

phase

program

option

Bit

6

0

=

No

problem

phase

program

specified

(do

not

enter

problem

phase)

1

=

Problem

phase

program

specified

(enter

problem

phase)

8

8

Termination

phase

program

option

Bit

7

0

=

No

termination

phase

program

specified

(do

not

enter

termination

phase)

1

=

Termination

phase

program

specified

(enter

termination

phase)

8

8

Process

default

exception

handler

option

Bit

8

0

=

No

process

default

exception

handler

1

=

Process

default

exception

handler

specified

8

8

Name

resolution

list

option

Bit

9

0

=

No

name

resolution

list

specified

1

=

Name

resolution

list

specified

8

8

Process

access

group

option

Bit

10

0

=

No

process

access

group

specified

1

=

Process

access

group

specified

8

8

Group

profile

list

option

Bit

11

0

=

No

group

profile

list

specified

1

=

Group

profile

list

specified

8

8

Process

category

specified

Bit

12

0

=

No

process

category

specified

when

the

process

was

initiated

1

=

A

process

category

was

specified

when

the

process

was

initiated

8

8

Recycling

control

for

process

storage

addresses

used

by

user

state

programs

Bit

13

746

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Process

storage

addresses

used

by

user

state

programs

are

not

recycled

within

the

process

1

=

Process

storage

addresses

used

by

user

state

programs

are

recycled

within

the

process

8

8

Initial

thread

automatic

storage

access

group

membership

control

Bit

14

0

=

The

machine

is

free

to

create

automatic

storage

areas

for

the

initial

thread

within

the

process

access

group

Note:

This

does

not

guarantee

that

the

automatic

areas

will

in

fact

be

access

group

members.

This

is

an

advisory

flag

informing

the

machine

that

the

MI

user

would

prefer

these

areas

to

be

access

group

members.

1

=

Initial

thread

automatic

storage

areas

will

not

be

created

within

the

process

access

group

8

8

Implicitly

created

activation

group’s

static

storage

access

group

membership

control

Bit

15

0

=

The

machine

is

free

to

create

static

storage

areas

of

implicitly

created

activation

groups

within

the

process

access

group

Note:

This

does

not

guarantee

that

the

static

areas

will

in

fact

be

access

group

members.

This

is

an

advisory

flag

informing

the

machine

that

the

MI

user

would

prefer

these

areas

to

be

access

group

members.

1

=

Implicitly

created

activation

group’s

static

storage

areas

will

not

be

created

within

the

process

access

group

8

8

Implicitly

created

activation

group’s

default

heap

storage

access

group

membership

control

Bit

16

Machine

Interface

Instructions

747

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

The

machine

is

free

to

create

default

heap

storage

areas

of

implicitly

created

activation

groups

within

the

process

access

group

Note:

This

does

not

guarantee

that

the

activation

group

default

heap

areas

will

in

fact

be

access

group

members.

This

is

an

advisory

flag

informing

the

machine

that

the

MI

user

would

prefer

these

areas

to

be

access

group

members.

1

=

Implicitly

created

activation

group’s

default

heap

storage

areas

will

not

be

created

within

the

process

access

group

8

8

Template

extension

present

Bit

17

0

=

The

process

was

initiated

using

a

PDT

which

did

not

contain

a

template

extension

area

1

=

The

process

was

initiated

using

a

PDT

which

did

contain

a

template

extension

area

8

8

Signal

enablement

option

Bit

18

0

=

The

process

is

not

enabled

for

signals

1

=

The

process

is

enabled

for

signals

8

8

Threads

enablement

option

Bit

19

0

=

The

process

can

not

have

secondary

threads

that

have

a

thread

type

of

user

thread

1

=

The

process

is

enabled

for

secondary

threads

8

8

Secondary

threads

control

option

Bit

20

0

=

Do

not

allow

initiation

of

secondary

threads

in

the

process

1

=

Allow

initiation

of

secondary

threads

in

the

process

8

8

Termination

phase

program

event

mask

option

Bit

21

0

=

Do

not

change

the

event

mask

state

of

the

initial

thread

when

the

termination

phase

program

is

invoked

in

the

initial

thread.

1

=

Mask

the

initial

thread

for

events

when

the

termination

phase

program

is

invoked

in

the

initial

thread.

8

8

Reserved

(binary

0)

Bits

22-31

12

C

—-

End

—-

748

iSeries:

Machine

Interface

Instructions

APIs

The

resource

management

attributes

and

data

types

are

as

follows:

v

v

Hex

0C

=

Signal

event

control

mask

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Signal

event

control

mask

Char(2)

10

A

—-

End

—-

v

Hex

0D

=

Number

of

event

monitors

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Number

of

event

monitors

Bin(2)

10

A

—-

End

—-

v

Hex

0E

=

Process

priority

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Process

priority

Char(1)

9

9

—-

End

—-

v

Hex

0F

=

Main

storage

pool

ID

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Main

storage

pool

ID

Char(1)

9

9

—-

End

—-

The

main

storage

pool

ID

materialized

is

the

value

that

is

currently

in

effect

for

the

thread.

Its

value

is

either

the

main

storage

pool

ID

for

the

process

or

the

time-slice-end

main

storage

pool

ID

for

the

process.

The

materialization

option

hex

00

materializes

the

current

values

for

both

main

storage

pool

IDs.

v

Hex

10

=

Maximum

temporary

auxiliary

storage

allowed

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Maximum

temporary

auxiliary

storage

allowed

in

bytes

Bin(4)

12

C

Maximum

temporary

auxiliary

storage

allowed

in

megabytes

UBin(4)

16

10

—-

End

—-

A

process

which

is

allowed

to

have

more

than

2,147,483,647

bytes

of

temporary

auxiliary

storage

will

have

2,147,483,647

returned

for

maximum

temporary

auxiliary

storage

allowed

in

bytes.

A

process

which

can

have

an

unlimited

amount

of

temporary

auxiliary

storage,

will

have

2,147,483,647

returned

for

the

maximum

temporary

auxiliary

storage

allowed

in

bytes

and

0

returned

for

the

maximum

temporary

auxiliary

storage

allowed

in

megabytes.

v

Hex

11

=

Time

slice

interval

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Time

slice

interval

Char(8)

16

10

—-

End

—-

Machine

Interface

Instructions

749

v

Hex

12

=

Default

time-out

interval

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Default

time-out

interval

Char(8)

16

10

—-

End

—-

v

Hex

13

=

Maximum

processor

time

allowed

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Maximum

processor

time

allowed

Char(8)

16

10

—-

End

—-

v

Hex

14

=

Multi-programming

level

class

ID

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Multi-programming

level

class

ID

Char(1)

9

9

—-

End

—-

The

multi-programming

level

class

ID

materialized

is

the

value

that

is

currently

in

effect

for

the

thread.

Its

value

is

either

the

multi-programming

level

class

ID

for

the

process

or

the

time-slice-end

multi-programming

level

class

ID

for

the

process.

The

materialization

option

hex

00

materializes

the

current

values

for

both

multi-programming

level

class

IDs.

v

Hex

15

=

Modification

control

indicators

The

modification

control

indicators

are

materialized

when

the

operand

3

value

is

hex

15.

Each

indicator

specifies

the

modification

options

allowed

for

a

process

either

by

a

thread

within

the

process,

by

a

thread

in

the

initiating

process

or

by

a

thread

in

a

process

whose

governing

user

profile(s)

has

process

control

special

authorization.

The

possible

values

of

each

modification

control

indicator

are

as

follows:

00

=

Modification

of

the

attribute

is

not

allowed.

01

=

Modification

is

allowed

only

in

the

initiation

and

termination

phases,

and

only

by

threads

within

the

executing

process.

Threads

within

processes

other

than

the

process

being

modified

cannot

modify

this

attribute.

11

=

Modification

is

allowed

in

all

phases

and

by

threads

within

all

processes.

The

bit

assignments

of

the

modification

control

indicators

are

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Modification

control

indicators

Char(8)

8

8

Instruction

wait

access

state

control

Bits

0-1

8

8

Time

slice

end

access

state

control

Bits

2-3

8

8

Time

slice

event

option

Bits

4-5

8

8

Reserved

(binary

0)

Bits

6-7

8

8

Problem

phase

program

option

Bits

8-9

8

8

Termination

phase

program

option

Bits

10-11

8

8

Process

default

exception

handler

option

Bits

12-13

8

8

Name

resolution

list

option

Bits

14-15

8

8

Signal

event

control

mask

Bits

16-17

8

8

Process

priority

Bits

18-19

750

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Main

storage

pool

ID

Bits

20-21

8

8

Maximum

temporary

auxiliary

storage

allowed

Bits

22-23

8

8

Time

slice

interval

Bits

24-25

8

8

Default

time-out

interval

Bits

26-27

8

8

Maximum

processor

time

allowed

Bits

28-29

8

8

Multi-programming

level

class

ID

Bits

30-31

8

8

User

profile

pointer

Bits

32-33

8

8

Reserved

(binary

0)

Bits

34-35

8

8

Name

resolution

list

pointer

Bits

36-37

8

8

Termination

phase

program

pointer

Bits

38-39

8

8

Problem

phase

program

pointer

Bits

40-41

8

8

Process

default

exception

handler

Bits

42-43

8

8

Group

profile

list

Bits

44-45

8

8

Obsolete

Bits

46-47

8

8

Process

category

Bits

48-49

8

8

Recycling

control

for

process

storage

addresses

used

by

user

state

programs

Bits

50-51

8

8

Signal

enablement

option

Bits

52-53

8

8

Process

signals

controls

Bits

54-55

8

8

Secondary

threads

option

Bits

56-57

8

8

Reserved

(binary

0)

Bits

58-63

16

10

—-

End

—-

The

process

pointer

attributes

which

may

be

materialized

are

the

following:

v

v

Hex

16

=

User

profile

pointer

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

User

profile

pointer

System

pointer

32

20

—-

End

—-

The

system

pointer

with

addressability

to

the

effective

user

profile

is

placed

into

the

space

addressed

by

operand

1.

If

the

materialization

option

hex

00

is

specified

in

operand

3,

a

reserved

Char(7)

field

is

included

at

this

point,

prior

to

the

materialized

user

profile

pointer.

v

(Ref

#13.)

Hex

17

=

Process

communication

object

(PCO)

pointer

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Process

communication

object

pointer

Space

pointer

32

20

—-

End

—-

The

PCO

space

pointer

is

placed

in

the

space

addressed

by

operand

1.

v

(Ref

#14.)

Hex

18

=

Name

resolution

list

(NRL)

pointer

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Name

resolution

list

pointer

Space

pointer

32

20

—-

End

—-

Machine

Interface

Instructions

751

The

space

pointer

to

the

NRL

is

placed

in

the

space

addressed

by

operand

1.

v

Hex

19

=

Initiation

phase

program

pointer

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Initiation

phase

program

pointer

System

pointer

32

20

—-

End

—-

The

system

pointer

to

the

program

is

placed

in

the

space

addressed

by

operand

1.

v

Hex

1A

=

Termination

phase

program

pointer

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Termination

phase

program

pointer

System

pointer

32

20

—-

End

—-

The

system

pointer

to

the

program

is

placed

in

the

space

addressed

by

operand

1.

v

Hex

1B

=

Problem

phase

program

pointer

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Problem

phase

program

pointer

System

pointer

32

20

—-

End

—-

The

system

pointer

to

the

program

is

placed

in

the

space

addressed

by

operand

1.

v

Hex

1C

=

Process

default

exception

handler

(PDEH)

program

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Process

default

exception

handler

program

System

pointer

32

20

—-

End

—-

The

system

pointer

to

the

PDEH

is

placed

in

the

space

addressed

by

operand

1.

v

Hex

1F

=

Process

access

group

(PAG)

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Process

access

group

System

pointer

32

20

—-

End

—-

The

system

pointer

with

addressability

to

the

PAG

is

placed

in

the

space

addressed

by

operand

1.

The

following

attributes

require

materialization

sizes

of

varying

lengths.

The

attributes

to

be

materialized

and

their

operand

3

materialization

option

values

follow.

v

v

Hex

20

=

Process

status

indicators

Process

status

indicators

are

materialized

when

the

value

of

operand

3

is

hex

20.

The

format

and

associated

values

of

this

attribute

are

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Thread

state

Char(2)

8

8

External

existence

state

Bits

0-2

752

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

000

=

Suspended

due

to

Suspend

Process

or

Suspend

Thread

010

=

Suspended

due

to

Suspend

Process

or

Suspend

Thread,

in

instruction

wait

100

=

Active,

in

ineligible

wait

101

=

Active,

in

current

MPL

110

=

Active,

in

instruction

wait

111

=

Active,

in

instruction

wait,

in

current

MPL

8

8

Invocation

exit

active

Bit

3

8

8

Stopped

by

a

signal

Bit

4

8

8

Suspended

by

Suspend

Thread

Bit

5

8

8

Reserved

(binary

0)

Bits

6-7

8

8

Internal

processing

phase

Bits

8-10

001

=

Initiation

phase

010

=

Problem

phase

100

=

Termination

phase

8

8

Reserved

(binary

0)

Bits

11-15

10

A

Pending

thread

interrupts

Char(2)

10

A

Time

slice

end

Bit

0

10

A

Transfer

lock

Bit

1

10

A

Asynchronous

lock

retry

Bit

2

10

A

Suspend

process

Bit

3

10

A

Resume

process

Bit

4

10

A

Modify

resource

management

attribute

Bit

5

10

A

Modify

process

or

thread

attribute

Bit

6

10

A

Terminate

machine

processing

Bit

7

10

A

Terminate

process

or

thread

Bit

8

10

A

Wait

time-out

Bit

9

10

A

Event

schedule

Bit

10

10

A

Thread

operations

between

threads

Bit

11

10

A

Cancel

long

running

instruction

Bit

12

10

A

Reserved

(binary

0)

Bit

13

10

A

Deliver

queue

space

message

Bit

14

10

A

Signal

schedule

Bit

15

12

C

Process

initial

internal

termination

status

Char(3)

12

C

Initial

internal

termination

reason

Bits

0-7

Machine

Interface

Instructions

753

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

Hex

80

=

Return

from

first

invocation

in

problem

phase

Hex

40

=

Return

from

first

invocation

in

initiation

phase

and

no

problem

phase

program

specified.

Hex

21

=

Terminate

Thread

instruction

issued

against

the

initial

thread

by

a

thread

in

the

process.

Hex

20

=

Terminate

Process

instruction

issued

by

a

thread

within

the

process.

Hex

18

=

An

unhandled

signal

with

a

default

signal

handling

action

of

terminate

the

process

or

terminate

the

request

was

delivered

to

the

process.

Hex

10

=

Exception

was

not

handled

by

the

initial

thread

in

the

process.

Hex

00

=

Process

terminated

externally.

12

C

Initial

internal

termination

code

Bits

8-23

The

code

is

assigned

in

one

of

the

following

ways:

1.

If

the

termination

is

caused

by

a

Return

External

instruction

from

the

first

invocation

in

the

initial

thread,

then

this

code

is

binary

0’s.

2.

If

the

termination

is

caused

by

an

unhandled

signal,

then

this

code

is

the

signal

number

of

the

unhandled

signal.

3.

The

code

is

assigned

by

the

original

exception

code

that

caused

process

termination

to

start.

Note:

The

process

initial

internal

termination

status

represents

the

final

internal

termination

status

prior

to

entering

the

termination

phase.

It

is

updated

by

the

most

recent

internal

termination

action.

It

is

possible

for

both

the

process

initial

internal

termination

status

and

the

process

initial

external

termination

status

fields

to

contain

valid

non-zero

values.

15

F

Process

initial

external

termination

status

Char(3)

15

F

Initial

external

termination

reason:

Bits

0-7

754

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

Hex

80

=

Terminate

Process

instruction

issued

explicitly

to

the

process

by

a

thread

in

another

process.

Hex

40

=

Terminate

Thread

instruction

issued

explicitly

to

the

initial

thread

of

the

process

by

a

thread

in

another

process.

Hex

00

=

Process

terminated

internally.

15

F

Initial

external

termination

code:

Bits

8-23

Note:

The

process

external

internal

termination

status

represents

the

final

external

termination

status

prior

to

entering

the

termination

phase.

It

is

updated

by

the

most

recent

external

termination

action.

It

is

possible

for

both

the

process

initial

internal

termination

status

and

the

process

initial

external

termination

status

fields

to

contain

valid

non-zero

values.

18

12

Process

final

termination

status

Char(3)

18

12

Final

termination

reason:

Bits

0-7

Hex

80

=

Return

instruction

from

first

invocation.

Hex

41

=

Terminate

Thread

instruction

issued

against

the

initial

thread

in

the

process

by

a

thread

within

this

process.

Hex

40

=

Terminate

Process

instruction

issued

by

a

thread

within

the

process.

Hex

21

=

Terminate

Thread

instruction

issued

against

the

initial

thread

in

the

process

by

a

thread

in

another

process.

Hex

20

=

Terminate

Process

instruction

issued

for

the

process

by

a

thread

in

another

process.

Hex

18

=

An

unhandled

signal

with

a

default

signal

handling

action

of

terminate

the

process

or

terminate

the

request

was

delivered

to

the

process.

Hex

10

=

Exception

was

not

handled

by

the

initial

thread

in

the

process.

Machine

Interface

Instructions

755

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

18

12

Final

termination

code

Bits

8-23

Assigned

in

one

of

the

following

ways:

1.

If

the

termination

is

caused

by

a

Return

External

instruction

from

the

first

invocation

in

the

initial

thread,

then

this

code

is

binary

0’s.

2.

If

the

termination

is

caused

by

an

unhandled

signal,

then

this

code

is

the

signal

number

of

the

unhandled

signal.

3.

The

code

is

assigned

by

the

original

exception

code

that

caused

process

termination

to

start.

The

process

final

termination

status

is

presented

as

event-related

data

in

the

terminate

process

event.

Usually

the

event

is

the

only

source

of

the

process

final

termination

status

since

the

process

will

cease

to

exist

before

its

attributes

can

be

materialized.

Note:

The

process

final

termination

status

describes

how

the

final

phase

of

the

process

terminated.

It

is

updated

by

the

most

recent

termination

action

for

the

final

process

phase.

21

15

—-

End

—-

v

Hex

21

=

Process

resource

usage

attributes

Process

resource

usage

attributes

are

materialized

when

the

value

of

operand

3

is

hex

21.

The

format

and

associated

values

of

this

attribute

are

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Temporary

auxiliary

storage

used

in

bytes

Bin(4)

12

C

Total

processor

time

used

Char(8)

20

14

Number

of

process

scoped

locks

currently

held

by

the

process

Bin(2)

(including

implicit

locks)

22

16

Reserved

(binary

0)

Char(2)

24

18

Temporary

auxiliary

storage

used

in

megabytes

UBin(4)

28

1C

Reserved

(binary

0)

UBin(4)

32

20

Database

processor

time

used

Char(8)

40

28

Page

faults

Char(8)

48

30

Synchronous

database

reads

Char(8)

56

38

Asynchronous

database

reads

Char(8)

64

40

Synchronous

database

writes

Char(8)

72

48

Asynchronous

database

writes

Char(8)

80

50

Synchronous

non-database

reads

Char(8)

88

58

Asynchronous

non-database

reads

Char(8)

96

60

Synchronous

non-database

writes

Char(8)

104

68

Asynchronous

non-database

writes

Char(8)

112

70

—-

End

—-

A

process

which

has

used

more

than

2,147,483,647

bytes

of

temporary

auxiliary

storage

will

have

2,147,483,647

returned

for

temporary

auxiliary

storage

used

in

bytes.

Temporary

auxiliary

storage

used

in

756

iSeries:

Machine

Interface

Instructions

APIs

megabytes

will

be

the

amount

of

temporary

auxiliary

storage

rounded

down

to

the

nearest

megabyte

(i.e.

if

a

process

was

using

900

KB,

0

would

be

returned).

The

database

processor

time

used

is

the

total

amount

of

processor

time

used

performing

database

processing.

If

the

system

does

not

support

this

metric,

a

value

of

hex

0000000000000000

is

returned.

If

the

system

does

support

this

and

needs

to

return

a

value

of

0,

a

value

of

hex

0000000000001000

is

returned.

For

all

other

cases,

the

significance

of

bits

within

this

field

is

the

same

as

that

defined

for

the

time-of-day

clock.

See

“Standard

Time

Format”

on

page

1272

for

additional

information.

The

page

faults

field

is

the

number

of

page

faults

incurred.

The

synchronous

database

reads

field

is

the

number

of

synchronous

reads

into

main

storage

done

while

performing

database

processing.

The

asynchronous

database

reads

field

is

the

number

of

asynchronous

reads

into

main

storage

done

while

performing

database

processing.

The

synchronous

database

writes

field

is

the

number

of

synchronous

writes

from

main

storage

done

while

performing

database

processing.

The

asynchronous

database

writes

field

is

the

number

of

asynchronous

writes

from

main

storage

done

while

performing

database

processing.

The

synchronous

non-database

reads

field

is

the

number

of

synchronous

reads

into

main

storage

done

while

performing

non-database

processing.

The

asynchronous

non-database

reads

field

is

the

number

of

asynchronous

reads

into

main

storage

done

while

performing

non-database

processing.

The

synchronous

non-database

writes

field

is

the

number

of

synchronous

writes

from

main

storage

done

while

performing

non-database

processing.

The

asynchronous

non-database

writes

field

is

the

number

of

asynchronous

writes

from

main

storage

done

while

performing

non-database

processing.

v

Hex

22

=

Obsolete

A

materialization

option

value

of

hex

22

causes

this

information

to

be

returned:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

—-

End

—-

This

obsolete

information

is

not

supplied

with

materialization

option

hex

00.

v

Hex

23

=

Thread

performance

attributes

Thread

performance

attributes

are

materialized

when

the

value

of

operand

3

is

hex

23.

The

format

and

associated

values

of

this

attribute

are

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Number

of

synchronous

page

reads

into

main

storage

associated

with

data

base

Bin(4)

12

C

Number

of

synchronous

page

reads

into

main

storage

not

associated

with

data

base

Bin(4)

16

10

Total

number

of

synchronous

page

writes

from

main

storage

Bin(4)

This

includes

writes

associated

with

and

not

associated

with

data

base.

20

14

Number

of

transitions

into

ineligible

wait

state

UBin(2)

22

16

Number

of

transitions

into

an

instruction

wait

state

UBin(2)

24

18

Number

of

transitions

into

ineligible

wait

state

from

an

instruction

wait

UBin(2)

Machine

Interface

Instructions

757

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

26

1A

Timestamp

of

materialization

(local

time)

Char(8)

34

22

Number

of

asynchronous

reads

into

main

storage

associated

with

data

base

Bin(4)

38

26

Number

of

asynchronous

reads

into

main

storage

not

associated

with

data

base

Bin(4)

42

2A

Number

of

synchronous

writes

from

main

storage

associated

with

data

base

Bin(4)

46

2E

Number

of

synchronous

writes

from

main

storage

not

associated

with

data

base

Bin(4)

50

32

Number

of

asynchronous

writes

from

main

storage

associated

with

data

base

Bin(4)

54

36

Number

of

asynchronous

writes

from

main

storage

not

associated

with

data

base

Bin(4)

58

3A

Total

number

of

writes

from

main

storage

of

permanent

objects

Bin(4)

62

3E

Reserved

(binary

0)

Bin(4)

66

42

Number

of

page

faults

on

process

access

group

objects

Bin(4)

70

46

Number

of

internal

effective

address

overflow

exceptions

Bin(4)

74

4A

Number

of

internal

binary

overflow

exceptions

Bin(4)

78

4E

Number

of

internal

decimal

overflow

exceptions

Bin(4)

82

52

Number

of

internal

floating

point

overflow

exceptions

Bin(4)

86

56

Number

of

times

a

page

fault

occurred

on

an

address

that

was

currently

part

of

an

auxiliary

storage

I/O

operation

Bin(4)

90

5A

Number

of

times

the

process

explicitly

waited

for

outstanding

asynchronous

I/O

operations

to

complete

Bin(4)

94

5E

Number

of

page

faults

for

machine

index

objects

Bin(4)

98

62

Thread

processor

time

used

Char(8)

106

6A

—-

End

—-

Each

of

the

UBin(2)

counters

has

a

limit

of

65,535.

If

this

limit

is

exceeded,

the

count

is

set

to

0,

and

no

exception

is

signaled.

The

thread

performance

attributes

are

not

supplied

with

materialization

option

hex

00.

v

Hex

24

=

Execution

status

attributes

Execution

status

attributes

are

materialized

when

the

value

of

operand

3

is

hex

24.

The

format

and

associated

values

of

this

attribute

are

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Priority

Char(2)

8

8

Process

priority

Char(1)

9

9

Thread

priority

adjustment

Char(1)

10

A

Pending

thread

interrupts

Char(2)

10

A

Time

slice

end

Bit

0

10

A

Transfer

lock

Bit

1

10

A

Asynchronous

lock

retry

Bit

2

10

A

Suspend

process

Bit

3

10

A

Resume

process

Bit

4

10

A

Modify

resource

management

attribute

Bit

5

10

A

Modify

process

or

thread

attribute

Bit

6

10

A

Terminate

machine

processing

Bit

7

10

A

Terminate

process

or

thread

Bit

8

758

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

10

A

Wait

time-out

Bit

9

10

A

Event

schedule

Bit

10

10

A

Thread

operations

between

threads

Bit

11

10

A

Cancel

long

running

instruction

Bit

12

10

A

Reserved

(binary

0)

Bit

13

10

A

Deliver

queue

space

message

Bit

14

10

A

Signal

schedule

Bit

15

12

C

Thread

execution

status

Char(2)

12

C

Suspended

by

Suspend

Process

Bit

0

12

C

Instruction

wait

Bit

1

12

C

In

MPL

Bit

2

12

C

Ineligible

wait

Bit

3

12

C

In

kernel

mode

Bit

4

12

C

Stopped

by

a

signal

Bit

5

12

C

Suspended

by

Suspend

Thread

Bit

6

12

C

Reserved

(binary

0)

Bits

7-15

14

E

Thread

wait

status

Char(2)

14

E

Wait

on

event

Bit

0

14

E

Dequeue

Bit

1

14

E

Lock

Bit

2

14

E

Wait

on

time

Bit

3

14

E

Wait

to

start

a

commit

cycle

Bit

4

14

E

Wait

on

mutex

(includes

both

mutex

types)

Bit

5

14

E

Wait

on

select

function

Bit

6

14

E

Wait

on

signal

Bit

7

14

E

Wait

on

unowned

resource

Bit

8

14

E

Wait

on

thread

Bit

9

14

E

Wait

on

transaction

control

structure

Bit

10

14

E

Wait

on

condition

Bit

11

14

E

Wait

on

semaphore

Bit

12

14

E

Wait

on

Java(TM)

Bit

13

14

E

Reserved

(binary

0)

Bits

14-15

16

10

Process

class

identification

Char(2)

16

10

Main

storage

pool

ID

Char(1)

17

11

Multi-programming

level

class

ID

Char(1)

18

12

Process

processor

time

used

Char(8)

26

1A

Thread

performance

attributes

Char(82)

26

1A

Number

of

synchronous

reads

into

main

storage

associated

with

data

base

Bin(4)

30

1E

Number

of

synchronous

reads

into

main

storage

not

associated

with

data

base

Bin(4)

34

22

Total

number

of

synchronous

page

writes

from

main

storage

Bin(4)

This

includes

writes

associated

with

and

not

associated

with

data

base.

38

26

Transitions

to

ineligible

wait

UBin(2)

40

28

Transitions

to

instruction

wait

UBin(2)

42

2A

Transitions

to

ineligible

from

instruction

wait

UBin(2)

44

2C

Number

of

asynchronous

reads

into

main

storage

associated

with

data

base

Bin(4)

Machine

Interface

Instructions

759

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

48

30

Number

of

asynchronous

reads

into

main

storage

not

associated

with

data

base

Bin(4)

52

34

Number

of

synchronous

writes

from

main

storage

associated

with

data

base

Bin(4)

56

38

Number

of

synchronous

writes

from

main

storage

not

associated

with

data

base

Bin(4)

60

3C

Number

of

asynchronous

writes

from

main

storage

associated

with

data

base

Bin(4)

64

40

Number

of

asynchronous

writes

from

main

storage

not

associated

with

data

base

Bin(4)

68

44

Total

number

of

writes

from

main

storage

of

permanent

objects

Bin(4)

72

48

Reserved

(binary

0)

Bin(4)

76

4C

Number

of

page

faults

on

process

access

group

objects

Bin(4)

80

50

Number

of

internal

effective

address

overflow

exceptions

Bin(4)

84

54

Number

of

internal

binary

overflow

exceptions

Bin(4)

88

58

Number

of

internal

decimal

overflow

exceptions

Bin(4)

92

5C

Number

of

internal

floating

point

overflow

exceptions

Bin(4)

96

60

Number

of

times

a

page

fault

occurred

on

an

address

that

was

currently

part

of

an

auxiliary

storage

I/O

operation

Bin(4)

100

64

Number

of

times

the

process

explicitly

waited

for

outstanding

asynchronous

I/O

operations

to

complete

Bin(4)

104

68

Number

of

page

faults

for

machine

index

objects

Bin(4)

108

6C

Active

threads

UBin(4)

112

70

—-

End

—-

The

wait

on

unowned

resource

thread

wait

status

field

indicates

that

the

materialized

thread

is

waiting

on

one

of

several

general

purpose

resources

used

internally

by

the

system.

The

active

threads

field

contains

a

count

of

the

current

number

of

active

threads

in

the

process

at

the

time

of

the

materialization.

An

active

thread

may

be

either

actively

running,

suspended

or

waiting

on

a

resource.

v

Hex

25

=

Process

control

space

pointer

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Process

control

space

pointer

System

pointer

32

20

—-

End

—-

A

system

pointer

to

the

process

control

space

is

materialized

when

the

value

of

operand

3

is

hex

25.

If

a

process

control

space

pointer

is

supplied

in

operand

2,

it

is

ignored.

A

pointer

to

the

process

that

is

executing

the

MATPRATR

instruction

is

always

materialized.

v

Hex

26

=

Group

profile

list

A

materialization

option

value

of

hex

26

causes

the

group

profile

list

to

be

materialized

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Pointer

to

the

group

profile

list

(original,

provided

by

MI

user)

Space

pointer

760

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

32

20

Number

of

user

profiles

in

the

encapsulated

group

profile

list

Bin(2)

34

22

Reserved

(binary

0)

Char(14)

48

30

List

of

user

profiles

in

the

encapsulated

group

profile

list

(one

system

pointer

to

each

user

profile

in

the

list)

[*]

System

pointers

*

*

—-

End

—-

The

pointer

to

the

group

profile

list

is

the

space

pointer

provided

by

the

MI

user.

No

verification

of

this

pointer

or

the

contents

of

the

group

profile

list

pointed

to

by

this

space

pointer

is

done.

The

group

profile

list

is

not

supplied

with

materialization

option

hex

00.

v

Hex

27

=

Group

profile

list

option

A

materialization

option’s

value

of

hex

27

causes

the

process

control

attributes

to

be

materialized.

The

format

of

the

process

control

attributes

materialization

is

defined

in

prior

text

for

this

instruction.

v

Hex

28

=

Process

category

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Process

category

Char(2)

10

A

—-

End

—-

v

Hex

29

=

Queue

space

object

pointer

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Queue

space

object

pointer

System

pointer

32

20

—-

End

—-

The

system

pointer

with

addressability

to

the

queue

space

is

placed

in

the

space

addressed

by

operand

1.

v

Hex

2A

=

Secondary

process

communications

object

(PPCO)

pointer

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

PPCO

pointer

Space

pointer

32

20

—-

End

—-

The

PPCO

space

pointer

is

placed

in

the

space

addressed

by

operand

1.

If

this

option

is

specified

by

a

user

state

program,

an

object

domain

or

hardware

storage

protection

violation

(hex

4401)

exception

will

be

signaled.

v

Hex

2B

=

Signal

enablement

option

A

materialization

option’s

value

of

hex

2B

causes

the

process

control

attributes

to

be

materialized.

The

format

of

the

process

control

attributes

materialization

is

defined

in

prior

text

for

this

instruction.

v

Hex

2C

=

Process

signal

controls

Process

signal

controls

are

materialized

when

the

value

of

operand

3

is

hex

2C.

The

format

and

associated

values

of

this

attribute

are

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Pending

signals

mask

Char(8)

8

8

Reserved

(binary

0)

Bit

0

8

8

Pending

signal

status

Bits

1-63

Machine

Interface

Instructions

761

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

No

signal

is

present

1

=

A

signal

has

been

received,

the

signal

action

is

blocked

16

10

Signal

blocking

mask

Char(8)

16

10

Reserved

(binary

0)

Bit

0

16

10

Blocked/unblocked

option

Bits

1-63

0

=

Signal

is

unblocked.

Signal

action

for

the

signal

monitor

is

eligible

to

be

scheduled.

1

=

Signal

is

blocked.

Signal

action

for

the

signal

monitor

is

to

be

deferred.

24

18

Number

of

signal

monitors

Bin(4)

28

1C

Reserved

(binary

0)

Char(4)

32

20

Signal

monitor

data

[*]

Char(16)

(repeated

for

each

signal

monitor)

32

20

Signal

number

Bin(4)

36

24

Signal

action

Bin(2)

-1

=

Signal

associated

with

this

signal

monitor

is

not

supported

0

=

Handle

using

signal

default

action

1

=

Ignore

the

signal

(discard)

2

=

Handle

the

signal

by

executing

signal

catching

function

38

26

Signal

default

action

Bin(2)

0

=

Terminate

the

process

1

=

Terminate

the

request

2

=

Ignore

the

signal

(discard)

3

=

Stop

the

process

4

=

Continue

the

process

if

stopped

5

=

Signal

exception

40

28

Maximum

number

of

signals

to

be

retained

Bin(2)

42

2A

Current

number

of

pending

signals

Bin(2)

44

2C

Signal

priority

(1-255;

1

=

highest

priority)

Bin(2)

46

2E

Reserved

(binary

0)

Char(2)

*

*

—-

End

—-

The

pending

signals

mask

is

used

to

determine

if

signals

have

been

received

for

signal

monitors

whose

signal

handling

actions

have

been

blocked

from

delivery.

The

pending

signal

status

specified

for

the

nth

bit

position

in

pending

signals

mask

is

applied

to

the

nth

signal

monitor

defined

for

the

process.

If

pending

signal

status

is

binary

1,

a

signal

for

the

corresponding

signal

monitor

has

been

received

by

the

process

and

the

signal

action

for

the

monitor

is

blocked

from

delivery

in

all

threads

within

the

process.

If

pending

signal

status

is

binary

0,

there

are

no

pending

signals

at

the

process

level

for

the

corresponding

signal

monitor.

The

signal

blocking

mask

field

is

used

to

determine

if

the

signal

action

for

the

associated

signal

monitor

is

eligible

to

be

scheduled.

The

blocked/unblocked

option

specified

for

the

nth

bit

position

in

the

signal

blocking

mask

is

applied

to

the

nth

signal

monitor

in

the

signal

monitors

attributes.

When

the

signal

is

unblocked,

the

signal

action

for

the

signal

monitor

associated

with

the

signal

is

eligible

to

be

762

iSeries:

Machine

Interface

Instructions

APIs

scheduled.

When

the

signal

is

blocked,

the

signal

will

be

retained,

up

to

the

limit

set

by

the

maximum

number

of

signals

to

be

retained

value

in

the

signal

monitor

associated

with

the

signal.

The

signal

blocking

mask

is

a

thread

resource,

the

value

materialized

is

obtained

from

the

thread

being

materialized.

The

number

of

signal

monitors

indicates

the

actual

number

of

signal

monitor

data

entries

returned

in

the

materialization

template.

Partial

signal

monitor

data

entries

are

not

returned.

The

machine

supports

a

maximum

of

63

signal

monitors.

The

number

of

signal

monitors

is

a

process

resource,

the

value

materialized

is

obtained

from

the

process

being

materialized.

The

signal

monitor

data

defines

the

attributes

for

each

signal

supported.

The

order

in

which

the

signal

monitors

are

defined

will

determine

the

signal

monitor

used

by

the

machine

for

the

generation

and

delivery

of

a

signal.

The

signal

monitor

data

is

a

process

resource,

the

values

materialized

are

obtained

from

the

process

being

materialized.

The

signal

number

is

defined

by

the

MI

user

and

has

no

significance

to

the

machine.

The

signal

action

defines

the

action

to

be

taken

by

the

machine

upon

receipt

of

the

signal

by

the

process.

If

the

value

of

signal

action

is

signal

associated

with

this

signal

monitor

is

not

supported,

the

signal

default

action

and

maximum

number

of

signals

to

be

retained

fields

for

this

signal

monitor

are

ignored

by

the

machine

and

will

be

set

to

binary

0.

The

signal

default

action

field

defines

the

action

to

be

taken

by

the

machine

when

the

signal

action

is

set

to

handle

using

signal

default

action.

The

terminate

the

process

action

will

place

the

process

in

termination

phase,

allowing

invocation

exits

to

be

invoked.

If

the

process

is

already

in

termination

phase,

the

terminate

the

process

action

is

ignored.

The

terminate

the

request

action

will

result

in

the

cancellation

of

all

invocations

up

to

the

nearest

invocation

that

has

an

invocation

status

of

request

processor.

If

an

invocation

with

an

invocation

status

of

request

processor

is

not

present,

the

terminate

the

process

action

is

taken.

The

stop

the

process

action

will

result

in

the

execution

of

the

process

being

temporarily

suspended

until

a

signal

is

generated

for

the

process

that

has

continue

the

process

if

stopped

as

its

signal

default

action.

When

a

process

is

in

the

stopped

state,

the

normal

process

control

functions

remain

in

effect

(the

process

may

be

suspended,

resumed

or

terminated).

The

signal

exception

action

will

result

in

the

asynchronous

signal

received

(hex

4C03)

exception

being

signaled

by

the

machine,

with

the

signal

monitor

number

and

signal-specific

data

being

included

in

the

exception-related

data.

The

maximum

number

of

signals

to

be

retained

field

indicates

the

number

of

signals

that

the

machine

retains

when

the

signal

action

associated

with

the

signal

monitor

can

not

be

taken

(held

pending).

The

maximum

number

of

signals

to

be

retained

limits

the

number

of

signals

held

pending

for

the

signal

monitor

for

the

process

and

for

each

thread.

The

current

number

of

pending

signals

is

the

number

of

signals

held

pending

at

the

process

level

for

this

signal

monitor

whose

signal

handling

action

has

not

been

scheduled.

The

signal

priority

specifies

the

relative

importance

of

this

signal

compared

with

other

signals

being

monitored

within

a

process.

The

signal

priority

establishes

the

order

in

which

signal

handling

actions

are

scheduled

if

multiple

signal

monitors

have

been

signaled.

Signal

handling

actions

will

be

taken

in

the

order

the

signal

monitors

were

signaled

when

multiple

signal

monitors

have

the

same

priority.

v

Hex

2D

=

Lock

statistics

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Number

of

data

base

lock

waits

Bin(4)

12

C

Number

of

non-data

base

lock

waits

Bin(4)

16

10

Number

of

internal

machine

lock

waits

Bin(4)

20

14

Time

spent

on

data

base

lock

waits

Char(8)

28

1C

Time

spent

on

non-data

base

lock

waits

Char(8)

36

24

Time

spent

on

internal

machine

lock

waits

Char(8)

44

2C

—-

End

—-

Machine

Interface

Instructions

763

The

three

lock

counters,

number

of

data

base

lock

waits,

number

of

non-data

base

lock

waits,

and

number

of

internal

machine

lock

waits,

are

the

number

of

times

that

the

thread

has

had

to

wait

to

obtain

a

lock

of

the

specified

type.

The

three

time

fields,

time

spent

on

data

base

lock

waits,

time

spent

on

non-data

base

lock

waits,

and

time

spent

on

internal

machine

lock

waits,

are

the

cumulative

amount

of

time

that

the

thread

had

to

wait

for

the

locks

of

the

specified

type.

The

time

is

of

the

same

format

as

the

time

of

day

clock.

See

“Standard

Time

Format”

on

page

1272

for

additional

information

on

the

format

of

the

time

of

day

clock.

v

Hex

2E

=

Threads

enablement

option

A

materialization

option’s

value

of

hex

2E

causes

the

process

control

attributes

to

be

materialized.

The

format

of

the

process

control

attributes

materialization

is

defined

in

prior

text

for

this

instruction.

v

Hex

2F

=

Secondary

threads

control

option

A

materialization

option’s

value

of

hex

2F

causes

the

process

control

attributes

to

be

materialized.

The

format

of

the

process

control

attributes

materialization

is

defined

in

prior

text

for

this

instruction.

v

Hex

30

=

Initial

thread

information

The

thread

identifier

and

thread

handle

for

the

initial

thread

of

the

identified

process

are

materialized

when

the

value

of

operand

3

is

hex

30.

The

format

and

associated

values

of

this

attribute

are

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Active

threads

UBin(4)

12

C

Reserved

(binary

0)

Char(4)

16

10

Thread

identifier

Char(8)

24

18

Thread

handle

UBin(4)

28

1C

Thread

attributes

Char(1)

28

1C

Thread

type

Bit

0

0

=

User

thread

28

1C

Reserved

(binary

0)

Bits

1-7

29

1D

Reserved

(binary

0)

Char(3)

32

20

Resources

affinity

identifier

UBin(4)

36

24

Reserved

(binary

0)

Char(12)

48

30

—-

End

—-

The

active

threads

field

contains

a

count

of

the

current

number

of

active

threads

in

the

process

at

the

time

of

the

materialization.

An

active

thread

may

be

either

actively

running,

suspended

or

waiting

on

a

resource.

Subsequent

materializations

may

result

in

a

different

active

threads

value.

The

thread

identifier

is

an

identifier

for

the

initial

thread

which

is

unique

within

the

process

being

materialized.

While

no

two

threads

initiated

within

the

same

process

will

have

the

same

identifier,

it

is

possible

that

threads

in

different

processes

may

have

the

same

value

for

the

identifier.

The

thread

handle

is

an

identifier

for

the

initial

thread

which

is

unique

within

the

process

being

materialized.

The

thread

handle

returned

is

an

unopened

handle

and

may

be

used

on

other

thread

management

instructions

to

uniquely

identify

a

thread

within

the

process

being

materialized.

Thread

handles

are

not

unique

system

wide.

Thus,

threads

from

different

processes

may

have

the

same

value

for

their

thread

handle.

The

thread

type

field

determines

how

the

thread

was

initiated.

The

initial

thread

of

a

process

is

always

a

user

thread.

The

resources

affinity

identifier

is

the

initial

thread’s

value

for

resources

affinity

identifier.

764

iSeries:

Machine

Interface

Instructions

APIs

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Process

control

special

authorization

–

–

For

materializing

a

process

other

than

the

one

containing

the

thread

issuing

this

instruction
v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

0A04

Special

Authorization

Required

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

Machine

Interface

Instructions

765

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

28

Process/Thread

State

2802

Process

Control

Space

Not

Associated

with

a

Process

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

766

iSeries:

Machine

Interface

Instructions

APIs

Materialize

Process

Locks

(MATPRLK)

Op

Code

(Hex)

Operand

1

Operand

2

0312

Receiver

Process

control

space

Operand

1:

Space

pointer.

Operand

2:

System

pointer

or

null.

Bound

program

access

Built-in

number

for

MATPRLK

is

51.

MATPRLK

(

receiver

:

address

process_control_space

:

address

of

system

pointer

OR

null

operand

)

Description:

The

lock

status

of

the

process

identified

by

operand

2

is

materialized

into

the

receiver

specified

by

operand

1.

If

operand

2

is

null,

the

lock

status

is

materialized

for

the

process

containing

the

thread

issuing

the

instruction.

The

lock

status

is

materialized

for

each

lock

allocated

to

the

process

and

for

each

lock

allocated

to

each

thread

contained

in

the

process.

The

materialization

identifies

each

object,

object

location,

or

space

location

for

which

the

process

or

applicable

thread

has

a

lock

allocated

or

for

which

the

applicable

thread

is

in

a

synchronous

or

asynchronous

wait.

The

format

of

the

materialization

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

4

4

Number

of

bytes

available

for

materialization

8

8

Number

of

lock

entries

Bin(2)

10

A

Expanded

number

of

lock

entries

Bin(4)

14

E

Reserved

(binary

0)

Char(2)

16

10

Lock

status

[*]

Char(32)

(repeated

for

the

number

of

lock

entries)

16

10

Object,

object

location,

space

location

or

binary

0

(if

no

pointer

exists)

32

20

Lock

state

32

20

LSRD

32

20

LSRO

32

20

LSUP

32

20

LEAR

32

20

LENR

32

20

Reserved

(binary

0)

33

21

Status

of

lock

state

for

process

33

21

Lock

scope

object

type

0

=

Process

control

space

1

=

Transaction

control

structure

33

21

Lock

scope

0

=

Lock

is

scoped

to

the

lock

scope

object

type

1

=

Lock

is

scoped

to

a

thread

in

the

process

33

21

Object,

object

location,

or

space

location

no

longer

exists

33

21

Waiting

because

this

lock

is

not

available

Machine

Interface

Instructions

767

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

33

21

Thread

is

in

asynchronous

wait

for

lock

33

21

Thread

is

in

synchronous

wait

for

lock

33

21

Implicit

lock

(machine-applied)

33

21

Lock

held

by

a

process,

thread,

or

transaction

control

structure

34

22

Lock

information

Cha

34

22

Reserved

34

22

Lock

is

held

by

a

process,

thread

or

transaction

control

structure

other

than

the

current

process

or

thread

34

22

Lock

is

held

by

the

machine

35

23

Reserved

(binary

0)

Cha

36

24

Unopened

thread

handle

UB

40

28

Thread

ID

Cha

*

*

—-

End

—-

The

first

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

exceptions

(other

than

the

materialization

length

invalid

(hex

3803)

exception

described

previously)

are

signaled

if

the

receiver

contains

insufficient

area

for

the

materialization.

The

number

of

lock

entries

field

identifies

the

number

of

lock

entries

that

are

materialized.

When

a

process

and

its

threads

hold

more

than

32,767

locks,

this

field

is

set

with

its

maximum

value

of

32,767.

This

field

has

been

retained

in

the

template

for

compatibility

with

programs

using

the

template

prior

to

the

changes

made

to

support

materialization

of

more

than

32,767

lock

entries.

The

expanded

number

of

lock

entries

field

identifies

the

number

of

lock

entries

that

are

materialized.

This

field

is

always

set

in

addition

to

the

number

of

lock

entries

field

described

previously;

however,

it

does

not

have

a

maximum

limit

of

32,767,

so

it

can

be

used

to

specify

that

more

than

32,767

locks

have

been

materialized.

When

a

process

and

its

threads

hold

more

than

32,767

locks,

the

number

of

lock

entries

field

will

equal

32,767,

which

would

be

incorrect.

The

expanded

number

of

lock

entries

field,

however,

will

identify

the

correct

number

of

lock

entries

materialized.

In

all

cases,

this

field

should

be

used

instead

of

the

number

of

lock

entries

field

to

get

the

correct

count

of

lock

entries

materialized.

The

lock

scope

field

identifies

the

scope

of

the

lock

being

requested.

If

the

lock

is

allocated,

the

lock

holder

information

field

is

binary

0.

If

the

lock

is

pending,

the

lock

information

field

contains

information

about

the

current

holder

of

the

lock.

For

allocated

locks

that

are

process

scope,

the

unopened

thread

handle

and

thread

ID

fields

will

be

set

to

binary

0.

For

allocated

locks

that

are

thread

scope,

these

fields

will

identify

the

specific

thread

in

the

specified

process

that

holds

the

lock.

For

locks

being

waited

on,

these

fields

will

identify

the

specific

thread

in

the

specified

process

that

is

waiting

for

the

lock,

regardless

of

the

lock

scope

value.

For

space

location

locks

which

have

been

acquired

using

the

LOCKTSL

instruction

with

the

type

of

teraspace

storage

location

lock

field

set

to

binary

1,

a

null

pointer

value

is

returned.

A

null

pointer

value

is

also

returned

for

any

lock

on

a

teraspace

storage

location

which

is

not

held

by

a

thread

in

the

current

process.

768

iSeries:

Machine

Interface

Instructions

APIs

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Context

referenced

by

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

Machine

Interface

Instructions

769

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

28

Process/Thread

State

2802

Process

Control

Space

Not

Associated

with

a

Process

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Process

Message

(MATPRMSG)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

Operand

4

039C

Materialization

template

Message

template

Source

template

Selection

template

Operand

1:

Space

pointer.

Operand

2:

Space

pointer.

Operand

3:

Space

pointer

or

null.

770

iSeries:

Machine

Interface

Instructions

APIs

Operand

4:

Space

pointer.

Bound

program

access

Built-in

number

for

MATPRMSG

is

127.

MATPRMSG

(

receiver_template

:

address

message_template

:

address

source_template

:

address

OR

null

operand

selection_template

:

address

)

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Note

It

is

recommended

that

you

use

selection

types

8

and

9

for

8-byte

invocation

and

activation

group

marks,

respectively,

rather

than

selection

types

3

and

4.

It

is

also

recommended

that

you

use

the

8-byte

invocation

and

activation

group

marks

at

the

end

of

the

materialization

template.

4-byte

marks

can

wrap

and

produce

unexpected

results.

Description:

A

message

is

materialized

from

a

queue

space

according

to

the

options

specified.

The

message

is

located

on

a

queue

space

queue

specified

by

operand

3.

The

message

is

selected

by

the

operand

4

criteria.

Operands

1

and

2

contain

the

materialized

information

from

the

process

message.

The

template

identified

by

operand

1

must

be

16-byte

aligned.

Following

is

the

format

of

the

materialization

template:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Template

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Process

queue

space

queue

offset

Bin(4)

12

C

Reserved

(binary

0)

Char(4)

16

10

Time

sent

(local

time)

Char(8)

24

18

Time

modified

(local

time)

Char(8)

32

20

Interrupted

invocation

Invocation

pointer

48

30

Target

invocation

Invocation

pointer

or

System

pointer

64

40

Original

target

invocation

Invocation

pointer

80

50

Source

program

location

Suspend

pointer

96

60

Target

program

location

Suspend

pointer

112

70

Originating

program

location

Suspend

pointer

128

80

Invocation

mark

UBin(4)

132

84

Activation

group

mark

UBin(4)

136

88

Thread

ID

Char(8)

144

90

Invocation

mark

UBin(8)

For

Non-Bound

programs,

the

following

datatype

should

be

used:

144

90

Invocation

mark

(Non-Bound

program)

Char(8)

152

98

Activation

group

mark

UBin(8)

For

Non-Bound

programs,

the

following

datatype

should

be

used:

152

98

Activation

group

mark

(Non-Bound

program)

Char(8)

160

A0

—-

End

—-

Machine

Interface

Instructions

771

The

first

4

bytes

of

the

materialization

template

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

number

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

If

the

value

is

zero

for

this

field,

then

the

operand

1

template

is

not

returned.

A

number

less

than

128

(but

not

0)

causes

the

materialization

length

invalid

(hex

3803)

exception.

Process

queue

space

queue

offset

This

value

indicates

which

queue

in

the

queue

space

a

message

resides

on.

A

value

of

-1

will

be

returned

if

the

message

is

on

the

external

queue,

and

zero

if

the

message

is

on

the

message

log.

If

the

message

resides

on

an

invocation

queue

this

field

will

be

zero.

Time

sent

(local

time)

The

value

of

the

system

time-of-day

clock

when

the

message

was

originally

sent

(Signal

Exception

(SIGEXCP)

or

message

originated

as

a

result

of

an

exception).

See

“Standard

Time

Format”

on

page

1272

for

additional

information

on

the

time-of-day

clock.

Time

modified

(local

time)

This

value

is

initially

equal

to

the

time

sent

value.

See

“Standard

Time

Format”

on

page

1272

for

additional

information

on

the

time-of-day

clock.

Interrupted

invocation

An

invocation

pointer

that

addresses

the

invocation

which

currently

has

this

message

as

its

interrupt

cause.

This

pointer

will

have

a

null

pointer

value

if

the

message

is

not

an

exception

message.

Target

invocation

An

invocation

pointer

or

system

pointer

that

identifies

which

queue

contains

the

message.

If

the

message

resides

on

an

invocation

queue,

this

field

contains

an

invocation

pointer

that

addresses

the

invocation

whose

invocation

message

queue

currently

contains

the

message.

If

the

message

does

not

reside

on

an

invocation

queue,

then

a

system

pointer

to

the

Queue

Space

is

returned.

The

process

queue

space

queue

offset

field

indicates

on

which

queue

the

message

resides,

the

message

log

or

the

external

queue.

Original

target

invocation

An

invocation

pointer

that

addresses

the

invocation

which

originally

was

sent

the

message.

This

pointer

will

have

a

null

pointer

value

if

the

original

target

invocation

no

longer

exists.

Source

program

location

A

suspend

pointer

which

identifies

the

program,

module,

procedure,

and

statement

where

the

source

invocation

was

suspended

(due

to

a

CALL

or

some

form

of

interrupt).

Target

program

location

A

suspend

pointer

which

identifies

the

program,

module,

procedure,

and

statement

where

the

target

invocation

was

suspended

(due

to

a

CALL

or

some

form

of

interrupt).

If

the

message

is

no

longer

in

an

invocation

message

queue,

then

this

pointer

reflects

the

invocation

of

the

last

(most

recent)

invocation

message

queue

in

which

the

message

resided.

This

pointer

will

have

a

null

pointer

value

if

the

message

has

never

resided

in

an

invocation

message

queue.

Originating

program

location

A

suspend

pointer

which

identifies

the

program,

module,

procedure,

and

statement

of

the

instruction

that

sent

the

message.

For

messages

sent

by

the

machine,

this

pointer

area

contains

a

machine-dependent

representation

of

the

source

machine

component.

Invocation

mark

If

the

message

has

ever

resided

on

an

invocation,

this

field

will

be

non-zero.

It

contains

the

mark

of

the

invocation

where

the

message

was

last

queued.

The

value

returned

in

the

4-byte

invocation

mark

may

have

wrapped.

Activation

group

mark

If

the

message

has

ever

resided

on

an

invocation,

this

field

will

be

non-zero.

It

contains

the

mark

of

the

activation

group

which

contains

the

invocation

where

the

message

was

last

queued.

The

value

returned

in

the

4-byte

activation

group

mark

may

have

wrapped.

772

iSeries:

Machine

Interface

Instructions

APIs

Thread

ID

This

is

the

thread

ID

of

the

thread

that

added

the

message

to

the

process

queue

space.

Messages

will

contain

a

thread

ID

that

is

determined

by

the

queue

space

to

which

the

message

is

being

sent.

When

sending

to

the

current

process

queue

space,

the

thread

ID

of

the

current

thread

will

be

used.

When

sending

to

a

different

process

queue

space,

the

thread

ID

of

the

initial

thread

for

the

owning

process

will

be

used.

If

the

queue

space

is

not

associated

with

a

process,

the

thread

ID

will

be

0.

Note:

When

sending

a

reply,

the

message

will

contain

the

thread

ID

from

the

associated

inquiry

message.

The

template

identified

by

operand

2

is

used

to

contain

the

materialized

message.

It

must

be

16-byte

aligned

with

the

following

format.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Template

size

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Message

type

Char(1)

Hex

00

=

Informational

message

0

Hex

01

=

Informational

message

1

Hex

04

=

Exception

message

Hex

06

=

Return/Transfer

Control

message

Hex

07

=

Return

message

Hex

10

=

Control

Entry

message

Hex

11

=

Escape/return

handler

All

other

values

are

reserved.

9

9

Reserved

(binary

0)

Char(1)

10

A

Message

severity

Bin(2)

12

C

Reply/Inquiry

message

reference

key

Char(4)

16

10

Message

status

mask

Char(8)

16

10

Log

message

Bit

0

0

=

The

message

is

not

queued

to

the

Process

Message

Log.

1

=

The

message

is

queued

to

the

Process

Message

Log.

Machine

Interface

Instructions

773

16

10

Inquiry

Bit

1

0

=

Message

will

not

accept

a

reply.

1

=

Message

will

accept

a

reply.

16

10

Reply

Bit

2

0

=

Message

does

not

represent

a

reply

message.

1

=

Message

represents

a

reply

message.

16

10

Answered

Bit

3

0

=

For

messages

with

a

status

of

inquiry,

this

indicates

that

a

reply

message

has

not

been

received.

1

=

For

messages

with

a

status

of

inquiry,

this

indicates

that

a

reply

message

has

been

received.

16

10

Message

being

processed

Bit

4

0

=

This

value

of

the

flag

has

no

particular

meaning.

1

=

For

a

message

type

of

exception,

this

indicates

that

the

interrupt

is

currently

being

handled.

16

10

Retain

Bit

5

0

=

Message

will

be

dequeued

and

its

contents

discarded

when

the

following

message

status

bits

are

zero:

log,

message

being

processed,

and

action

pending.

1

=

Keeps

the

message

from

being

dequeued

after

all

other

message

status

bits

are

zero.

16

10

Action

pending

Bit

6

0

=

Indicates

no

actions

are

pending

based

on

this

message.

1

=

Indicates

that

the

message

is

either

an

interrupt

cause

or

is

a

return,

return/transfer

control

message.

16

10

Invoke

Process

Default

Exception

Handler

(PDEH)

Bit

7

0

=

Do

not

invoke

PDEH.

1

=

Invoke

PDEH,

only

valid

if

message

type

is

exception.

16

10

Error

Bit

8

0

=

No

error

has

occurred

in

the

sending

of

this

message.

1

=

An

error

has

occurred

in

the

sending

of

this

message.

774

iSeries:

Machine

Interface

Instructions

APIs

16

10

PDEH

previously

invoked

Bit

9

0

=

PDEH

has

not

previously

been

invoked

for

this

message.

1

=

PDEH

has

previously

been

invoked

for

this

message.

16

10

Reserved

(binary

0)

Bits

10-31

16

10

User

defined

status

Bits

32-63

24

18

Interrupt

class

mask

Char(8)

Note:

All

fields

in

the

interrupt

class

mask

that

are

marked

as

’Reserved’

have

a

value

of

binary

zero.

24

18

Binary

overflow

or

divide

by

zero

Bit

0

24

18

Decimal

overflow

or

divide

by

zero

Bit

1

24

18

Decimal

data

error

Bit

2

24

18

Floating-point

overflow

or

divide

by

zero

Bit

3

24

18

Floating-point

underflow

or

inexact

result

Bit

4

24

18

Floating-point

invalid

operand

or

conversion

error

Bit

5

24

18

Other

data

error

(edit

mask,

etc)

Bit

6

24

18

Specification

(operand

alignment)

error

Bit

7

24

18

Pointer

not

set/pointer

type

invalid

Bit

8

24

18

Object

not

found

Bit

9

24

18

Object

destroyed

Bit

10

24

Machine

Interface

Instructions

775

18

Address

computation

underflow/overflow

Bit

11

24

18

Space

not

allocated

as

specified

offset

Bit

12

24

18

Domain/State

protection

violation

Bit

13

24

18

Authorization

violation

Bit

14

24

18

Java

thrown

class

Bit

15

24

18

Reserved

Bits

16-28

24

18

Other

MI

generated

exception

(not

function

check)

Bit

29

24

18

MI

generated

function

check/machine

check

Bit

30

24

18

Message

generated

by

Signal

Exception

instruction

Bit

31

24

18

Reserved

Bits

32-39

24

18

User

defined

Bits

40-63

32

20

Initial

handler

priority

Char(1)

33

21

Current

handler

priority

Char(1)

34

22

Exception

ID

UBin(2)

36

24

PDEH

reason

code

Char(1)

37

25

Signal

class

Char(1)

38

26

Compare

data

length

Bin(2)

40

28

776

iSeries:

Machine

Interface

Instructions

APIs

Message

ID

Char(7)

47

2F

Reserved

(binary

0)

Char(1)

48

30

Max

message

data

length

Bin(4)

Input

to

the

instruction

52

34

Message

data

length

Bin(4)

56

38

Max

length

of

message

extension

data

Bin(4)

Input

to

the

instruction

60

3C

Message

extension

data

length

Bin(4)

64

40

Message

data

pointer

Space

pointer

Input

to

the

instruction

80

50

Message

data

extension

pointer

Space

pointer

Input

to

the

instruction

96

60

Message

format

information

Char(32)

If

the

message

is

not

a

return

or

return/transfer

control

message.

96

60

Compare

data

Char(32)

If

the

message

is

a

return

or

return/transfer

control

message.

96

60

Return

handler

identifier

System

pointer

or

Procedure

pointer

112

70

Reserved

Char(16)

128

80

Reserved

(binary

0)

Char(48)

176

B0

—-

End

—-

The

first

4

bytes

of

the

message

template

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

number

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

number

less

than

160

causes

the

materialization

length

invalid

(hex

3803)

exception.

Machine

Interface

Instructions

777

Message

type

This

value

determines

the

type

of

the

message.

The

type

of

message

determines

which

message

status

values

have

meaning.

The

following

message

status

attributes

are

valid

for

all

informational

message

types:.

v

Log

Message

v

Reply

v

Inquiry

The

following

message

status

attributes

are

valid

for

a

message

type

of

exception:.

v

Log

Message

v

Retain

v

Action

pending

v

Invoke

PDEH

v

Inquiry

v

Reply

The

following

message

status

attributes

are

valid

for

a

message

type

of

return

or

return/transfer

control.

v

Action

pending

The

following

describes

each

message

type

in

detail.

v

v

Informational

0

-

There

are

no

special

requirements

as

to

what

message

status

contains

or

what

the

Target

Invocation

pointer

actually

identifies.

v

Informational

1

-

There

are

no

special

requirements

as

to

what

message

status

contains

or

what

the

Target

Invocation

pointer

actually

identifies.

v

Exception

-

This

type

of

message

has

an

interrupt

cause

for

the

interrupted

invocation.

v

Return/transfer

control

-

This

message

type

indicates

that

a

return

handler

is

invoked

when

the

target

invocation

is

exited

for

any

reason

including

XCTL.

Additionally,

messages

of

this

type

interpret

the

message

format

information

field

to

identify

a

program

or

procedure

to

be

invoked

as

the

return

handler.

v

Return

-

This

message

type

indicates

that

a

return

handler

will

be

invoked

if

the

target

invocation

is

exited

for

any

reason

other

than

Transfer

Control

(XCTL).

In

the

case

of

XCTL,

the

message

is

preserved

and

associated

with

the

transferred

to

invocation.

Additionally,

messages

of

this

type

interpret

the

message

format

information

field

to

identify

a

program

or

procedure

to

be

invoked

as

the

return

handler.

v

Control

Entry

-

This

message

type

is

associated

with

an

invocation.

The

control

entry

is

used

to

keep

data

required

for

exception

processing.

v

Escape/Return

Handler

-

This

message

type

is

associated

with

an

invocation.

The

escape/return

handler

is

used

to

keep

data

required

for

processing

when

control

is

returned

to

an

invocation.

Message

severity

A

value

indicating

the

severity

of

the

message.

Reply/Inquiry

message

reference

key

If

the

message

materialized

is

an

inquiry

message

that

has

been

answered,

this

is

the

message

reference

key

of

its

reply

message.

If

the

message

materialized

is

a

reply

message,

this

is

the

message

reference

key

of

its

inquiry

message.

This

value

only

has

meaning

for

exception

and

informational

messages.

778

iSeries:

Machine

Interface

Instructions

APIs

Message

status

mask

A

bit-significant

value

indicating

the

original

status

of

the

message.

v

v

Log

message

status.

If

this

bit

is

1,

the

message

is

queued

to

the

Process

Message

Log

until

it

is

explicitly

removed.

v

Inquiry

status.

If

this

bit

is

1,

this

message

will

accept

a

reply

message.

v

Reply

status.

If

this

value

is

1,

this

message

is

a

reply

to

an

inquiry

message.

The

reply

message

reference

key

is

used

to

identify

the

message

for

which

the

message

was

replied.

v

Answered

status.

If

this

value

is

1,

the

message

is

a

inquiry

message

for

which

a

reply

has

been

sent.

The

reply

message

reference

key

is

used

to

identify

the

reply

message.

v

Retain

status.

If

this

bit

is

1,

the

message

is

kept

even

if

the

invocation

message

queue

after

the

following

message

status

bits

are

zero:

log,

message

being

processed,

and

action

pending.

v

Action

pending

status.

If

this

bit

is

1,

this

message

represents

an

exception

which

is

the

current

interrupt

cause

for

the

specified

Source

Invocation

or

else

it

is

a

return

or

return/transfer

control

message

which

has

not

yet

been

processed.

v

Invoke

Process

Default

Exception

Handler.

This

status

only

has

meaning

for

exception

messages.

Interrupt

class

mask

A

bit-significant

value

indicating

the

cause

of

the

interrupt.

The

MI

user

is

allowed

to

use

the

machine-defined

classes

since

machine-generated

errors

may

be

re-sent

by

the

MI

user.

This

value

only

has

meaning

for

exception

messages.

The

Java

thrown

class

interrupt

class

indicates

that

the

message

corresponds

to

a

thrown

class

in

the

Java

language.

Initial

handler

priority

An

unsigned

eight-bit

binary

number

which

selects

the

initial

interrupt

handler

priority.

This

value

is

within

the

range

of

64

-

255.

This

value

only

has

meaning

for

exception

messages.

Exception

ID

A

two-byte

field

that

identifies

the

exception

being

defined

by

this

message.

This

value

only

has

meaning

for

exception

messages.

PDEH

reason

code

A

value

defined

by

the

user

which

indicates

the

type

of

processing

to

be

attempted

by

the

Process

Default

Exception

Handler.

This

value

only

has

meaning

for

exception

messages.

Signal

class

A

value

defined

by

the

user

which

is

used

to

select

exception

monitors.

This

value

only

has

meaning

for

exception

messages.

Compare

data

length

A

value

indicating

the

number

of

bytes

provided

as

compare

data.

This

value

only

has

meaning

for

exception

messages.

Message

ID

Specifies

the

message

identifier

of

a

message

description

whose

predefined

message

is

being

sent.

Max

message

data

length

Input

to

the

instruction

that

specifies

the

number

of

bytes

supplied

for

the

message

data.

The

maximum

value

allowed

is

65,504.

Message

data

length

A

value

indicating

the

number

of

bytes

of

message

data

for

this

process

message.

Max

extension

data

length

Input

to

the

instruction

that

specifies

the

number

of

bytes

supplied

for

the

message

data

extension.

The

maximum

value

allowed

is

65,504.

Machine

Interface

Instructions

779

Message

extension

data

length

A

value

indicating

the

number

of

bytes

of

message

data

extension

for

this

process

message.

Message

data

pointer

A

pointer

to

the

area

to

receive

the

message

data.

This

field

is

ignored

if

the

max

message

data

length

field

is

zero.

Message

data

extension

pointer

A

pointer

to

the

area

to

receive

the

message

data

extension.

This

field

is

ignored

if

the

max

extension

data

length

field

is

zero.

Message

format

information

A

32

byte

field

that

contains

either

compare

data

or

two

16

byte

fields

which

contain

information

related

to

a

return

type

message.

v

v

If

message

type

is

not

a

return

or

return/transfer

control

message,

this

field

is

defined

as

compare

data

used

to

determine

which

exception

handler

is

given

control.

Up

to

32

bytes

may

be

specified.

v

If

message

type

is

a

return

or

return/transfer

control

message,

then

the

first

16

bytes

of

this

field

are

defined

as

a

system

pointer

to

an

program

object,

or

else

a

procedure

pointer

to

a

bound

program

procedure.

The

last

16

bytes

of

the

field

are

reserved

for

future

use.

This

value

is

ignored

if

the

message

does

not

represent

an

exception,

return

or

return/transfer

control

message.

The

template

identified

by

operand

3

specifies

the

source

invocation

of

the

message.

This

operand

can

be

null

(which

indicates

the

requesting

invocation

is

to

be

used

for

the

Source

Invocation)

or

specify

either

an

Invocation

pointer

to

an

invocation,

a

null

pointer

value

(which

indicates

the

current

invocation),

or

a

pointer

to

a

process

queue

space.

It

must

be

16-byte

aligned

with

the

following

format.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Source

invocation

offset

Bin(4)

4

4

Originating

invocation

offset

Bin(4)

8

8

Invocation

range

Bin(4)

12

C

Reserved

(binary

0)

Char(4)

16

10

Source

invocation/process

queue

space

pointer

System

pointer

or

Invocation

pointer

32

20

Reserved

(binary

0)

Char(16)

48

30

—-

End

—-

Source

invocation

offset

A

signed

numerical

value

indicating

an

invocation

relative

to

the

invocation

located

by

the

source

invocation

pointer.

A

value

of

zero

denotes

the

invocation

addressed

by

the

source

invocation

pointer,

with

increasingly

positive

numbers

denoting

increasingly

later

invocations

in

the

stack,

and

increasingly

negative

numbers

denoting

increasingly

earlier

invocations

in

the

stack.

If

a

process

queue

space

is

specified

as

the

message

source,

then

the

only

valid

values

for

this

field

are

0,

-1

and

-2.

A

value

of

-1

indicates

to

materialize

from

the

external

queue

of

the

process

queue

space.

A

zero

value

indicates

to

materialize

from

the

message

log

of

the

process

queue

space.

A

value

of

-2

indicates

to

attempt

to

locate

the

message

using

the

message

reference

index

supplied

in

operand

4

without

regard

to

the

queue

space

queue

that

the

message

resides

on.

Only

unanswered

inquiry

messages,

return

messages,

and

return/transfer

control

messages

can

be

materialized

in

this

fashion.

Other

values

result

in

a

scalar

value

invalid

(hex

3203)

exception

being

signaled.

If

the

invocation

identified

by

this

offset

does

not

exist

in

the

stack,

a

scalar

value

invalid

(hex

3203)

exception

will

be

signaled.

780

iSeries:

Machine

Interface

Instructions

APIs

Originating

invocation

offset

Specifies

a

displacement

from

the

invocation

executing

this

instruction

and

must

be

zero

(which

indicates

the

current

invocation)

or

negative

(which

indicates

an

older

invocation).

The

invocation

identified

is

used

as

the

source

for

all

authorization

checks

(environment

authority

to

an

invocation

or

authority

to

a

process

queue

space).

If

the

originating

invocation

offset

is

non-zero,

then

the

invocation

executing

this

instruction

must

be

authorized

to

the

originating

invocation

identified.

If

the

invocation

identified

by

this

offset

does

not

exist

in

the

stack

or

the

value

is

greater

than

zero,

a

scalar

value

invalid

(hex

3203)

exception

will

be

signaled.

Invocation

range

A

signed

numerical

value

indicating

the

number

of

invocations

in

the

range

in

addition

to

the

invocation

identified

by

the

source

invocation

pointer.

If

a

process

queue

space

pointer

is

provided,

this

value

must

be

zero.

The

sign

of

the

invocation

range

determines

the

direction

of

the

additional

invocations.

A

positive

number

specifies

a

range

encompassing

newer

invocations,

while

a

negative

number

specifies

a

range

encompassing

older

invocations.

It

is

not

an

error

if

this

value

specifies

a

range

greater

than

the

number

of

existing

invocations

in

the

specified

direction.

The

materialization

will

stop

after

the

last

invocation

is

encountered.

Source

invocation

pointer

An

invocation

pointer

to

an

invocation.

If

a

null

pointer

value,

then

the

current

invocation

is

indicated.

If

the

invocation

identified

does

not

exist

in

the

stack

or

is

invalid

for

this

operation,

an

invalid

invocation

address

(hex

1603)

exception

will

be

signaled.

Process

queue

space

pointer

A

system

pointer

to

a

process

queue

space

object.

The

template

identified

by

operand

4

must

be

16-byte

aligned.

Following

is

the

format

of

the

message

selection

template:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Starting

message

reference

index

Char(4)

4

4

Ending

message

reference

index

Char(4)

8

8

Number

of

selection

criteria

Bin(2)

10

A

Reserved

(binary

0)

Char(6)

16

10

Selected

message

reference

index

Char(4)

Output

by

the

instruction

20

14

Selected

message

count

Bin(4)

Output

by

the

instruction

24

18

Status

change

count

Bin(4)

Ignored

by

the

instruction

28

1C

Moved

message

count

Bin(4)

Ignored

by

the

instruction

32

20

Selection

criterion

[*]

Char(32)

32

20

Selection

type

Char(1)

Machine

Interface

Instructions

781

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

Hex

00

=

Select

based

on

message

status

Hex

01

=

Select

based

on

message

ID

Hex

02

=

Select

based

on

interrupt

class

Hex

03

=

Select

based

on

invocation

mark

Hex

04

=

Select

based

on

activation

group

mark

Hex

07

=

Select

based

on

thread

ID

Hex

08

=

Select

based

on

8-byte

invocation

mark

Hex

09

=

Select

based

on

8-byte

activation

group

mark

33

21

Reserved

(binary

0)

Char(1)

34

22

Selection

action

Char(2)

34

22

Reject

criterion

Bit

0

0

=

Select

message

if

criterion

is

satisfied

1

=

Reject

message

if

criterion

is

satisfied

34

22

Reject

message

Bit

1

0

=

Do

not

reject

message

if

criterion

is

not

satisfied

1

=

Reject

message

if

criterion

is

not

satisfied

34

22

Reject

satisfaction

Bit

2

0

=

Accept

satisfaction

of

criterion

1

=

Reject

satisfaction

of

criterion

34

22

Reserved

(binary

0)

Bits

3-15

36

24

Message

type

mask

Char(4)

40

28

Selection

criterion

information

Char(24)

If

the

selection

type

is

message

status

40

28

Message

status

mask

Char(8)

48

30

Message

status

complement

Char(8)

56

38

Reserved

(binary

0)

Char(8)

64

40

—-

End

of

message

status

—-

If

the

selection

type

is

message

ID

40

28

Message

ID

Char(7)

47

2F

Reserved

(binary

0)

Char(17)

64

40

—-

End

of

message

ID

—-

If

the

selection

type

is

interrupt

class

40

28

Interrupt

class

mask

Char(8)

782

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

48

30

Interrupt

class

complement

Char(8)

56

38

Reserved

(binary

0)

Char(8)

64

40

—-

End

of

interrupt

class

—-

If

the

selection

type

is

invocation

mark

40

28

Invocation

mark

UBin(4)

44

2C

Reserved

(binary

0)

Char(20)

64

40

—-

End

of

invocation

mark

—-

If

the

selection

type

is

activation

group

mark

40

28

Activation

group

mark

UBin(4)

44

2C

Reserved

(binary

0)

Char(20)

64

40

—-

End

of

activation

group

mark

—-

If

the

selection

type

is

thread

ID

40

28

Thread

ID

Char(8)

48

30

Reserved

(binary

0)

Char(16)

64

40

—-

End

of

thread

ID

—-

If

the

selection

type

is

8-byte

invocation

mark

40

28

Invocation

mark

UBin(8)

For

Non-Bound

programs,

the

following

datatype

should

be

used:

40

28

Invocation

mark

(Non-
Bound

program)

Char(8)

48

30

Reserved

(binary

0)

Char(16)

64

40

—-

End

of

8-byte

invocation

mark

—-

If

the

selection

type

is

8-byte

activation

group

mark

40

28

Activation

group

mark

UBin(8)

For

Non-Bound

programs,

the

following

datatype

should

be

used:

40

28

Activation

group

mark

(Non-
Bound

program)

Char(8)

48

30

Reserved

(binary

0)

Char(16)

64

40

—-

End

of

8-byte

activation

group

mark

—-

*

*

—-

End

—-

Machine

Interface

Instructions

783

Starting

and

ending

message

reference

index

Messages

in

the

specified

range

of

index

values

are

examined

either

until

one

of

the

selection

criteria

has

been

satisfied

or

all

queues

specified

have

been

searched.

The

direction

of

search

is

determined

by

the

relative

values

of

starting

message

reference

index

and

ending

message

reference

index.

If

the

former

value

is

smaller,

then

the

search

direction

is

in

numerically

(and

chronologically)

increasing

order,

while

if

the

latter

value

is

smaller

the

search

direction

is

in

the

opposite

direction.

Messages

are

examined

starting

with

the

message

identified

by

starting

message

reference

index,

or

if

no

such

message

exists

in

the

queue,

starting

with

the

closest

existing

message

in

the

direction

of

the

search.

For

the

current

process,

queue

space

messages

will

only

be

selected

for

the

current

thread.

To

select

messages

for

another

thread,

a

thread

selection

criteria

must

be

used.

For

a

different

process

queue

space,

all

messages

for

all

threads

will

be

selected.

If

operand

3

specifies

a

system

pointer

to

a

queue

space

and

a

source

invocation

offset

of

-2,

then

the

starting

and

ending

message

reference

indices

must

be

equal,

otherwise

a

scalar

value

invalid

(hex

3203)

exception

will

be

issued.

Number

of

selection

criteria

A

numerical

value

that

specifies

how

many

selection

criteria

fields

are

supplied.

If

number

of

selection

criteria

has

a

value

of

zero,

then

the

first

message

in

the

index

range

will

be

materialized.

Selected

message

reference

index

This

value

returns

the

message

reference

index

of

the

message

materialized.

Zero

is

returned

if

no

message

satisfies

the

criteria.

Selected

message

count

This

value

indicates

the

number

of

messages

selected:

zero

for

no

messages

found,

one

if

a

message

was

found.

Selection

criterion

This

field

contains

the

data

used

to

select

messages

from

a

queue

space.

There

is

a

variable

number

of

criteria

present

in

the

template

(the

number

present

is

in

the

number

of

selection

criteria

field).

Each

selection

criterion

may

select

a

message,

reject

it,

or

take

no

action.

Successive

selection

criteria

are

applied

to

each

message

until

it

is

selected

or

rejected,

or

until

selection

criteria

have

been

exhausted

(in

which

case

selection

is

the

default).

Selection

type

This

field

indicates

the

format

of

the

selection

criterion

and

what

field

in

the

message

is

compared.

784

iSeries:

Machine

Interface

Instructions

APIs

Selection

action

A

bit-significant

value

indicating

what

actions

to

perform

during

the

selection

criteria

processing.

v

v

Reject

criterion

-

If

this

bit

is

1,

a

message

is

rejected

if

the

selection

criterion

is

satisfied.

If

this

bit

is

0,

a

message

is

selected

when

the

selection

criterion

is

satisfied.

v

Reject

message

-

If

this

bit

is

1,

a

message

is

rejected

if

the

selection

criteria

is

not

satisfied.

If

this

bit

is

0,

no

action

is

taken

when

the

selection

criteria

is

not

satisfied.

Processing

continues

with

the

next

selection

criterion.

v

Reject

satisfaction

-

If

this

bit

is

0,

the

satisfaction

of

the

criterion

is

accepted.

If

this

bit

is

1,

a

satisfied

criterion

will

become

not

satisfied

and

a

not

satisfied

criterion

will

become

satisfied.

The

following

figure

illustrates

how

messages

are

selected

based

on

the

selection

action

criterion.

Message

type

mask

A

bit-significant

value

indicating

types

of

messages

that

should

be

examined

during

selection

criteria

processing.

The

first

31

bits

correspond

to

message

types

hex

00

through

hex

1E

respectively.

The

32nd

bit

(bit

31)

corresponds

to

all

message

types

greater

than

hex

1E.

Message

status

mask

and

message

status

complement

These

are

bit-significant

values

indicating

the

message

status

attributes

that

will

allow

a

message

to

be

selected.

These

values

are

used

to

test

a

message

as

follows:

The

message

status

complement

is

bit-wise

exclusive-ORed

with

the

message

status

value

of

a

message.

The

result

of

this

is

then

bit-wise

ANDed

with

the

message

status

mask.

If

the

result

is

all

0

bits,

the

message

does

not

satisfy

this

selection

criterion.

If

the

result

is

not

all

0

bits,

the

message

satisfies

the

selection

criterion.

Message

ID

A

character

value

that

is

compared

to

the

message

ID

of

a

message.

If

the

values

are

equal

the

selection

is

satisfied.

Machine

Interface

Instructions

785

Interrupt

class

mask

and

interrupt

class

complement

These

are

bit-significant

values

indicating

the

interrupt

class

attributes

that

will

allow

a

message

to

be

selected.

These

values

are

used

to

test

a

message

as

follows:

The

interrupt

class

complement

is

bit-wise

exclusive-ORed

with

the

interrupt

class

value

of

a

message.

The

result

of

this

is

then

bit-wise

ANDed

with

the

interrupt

class

mask.

If

the

result

is

all

0

bits,

the

message

does

not

satisfy

this

selection

criterion.

If

the

result

is

not

all

0

bits,

the

message

satisfies

the

selection

criterion.

Invocation

mark

A

binary

number

that

is

compared

to

the

invocation

mark

of

a

message.

If

the

values

are

equal

the

selection

is

satisfied.

The

value

returned

in

the

4-byte

invocation

mark

may

have

wrapped.

Activation

group

mark

A

binary

number

that

is

compared

to

the

activation

group

mark

of

a

message.

If

the

values

are

equal

the

selection

is

satisfied.

The

value

returned

in

the

4-byte

activation

group

mark

may

have

wrapped.

Thread

ID

A

binary

number

that

is

compared

to

the

thread

ID

of

a

message.

If

the

values

are

equal,

the

selection

is

satisfied.

Note:

0

is

not

a

valid

thread

ID

and

can

be

used

to

select

all

messages.

Warning:

Temporary

Level

3

Header

Authorization

Required

The

following

algorithm

is

used

to

determine

authorization.

1.

The

invocation

which

invoked

the

MATPRMSG

instruction

must

have

authority

to

the

invocation

identified

as

the

Source

Invocation.

2.

The

Originating

Invocation

must

have

authority

to

the

invocation

identified

as

the

Source

Invocation

or

to

the

invocation

directly

called

by

the

Source

invocation.

If

any

of

the

authority

checks

fail

then

an

activation

group

access

violation

(hex

2C12)

exception

will

be

signaled.

v

v

Operational

–

–

Operand

3
v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Operand

3

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

786

iSeries:

Machine

Interface

Instructions

APIs

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

16

Exception

Management

1603

Invalid

Invocation

Address

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C04

Object

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

Machine

Interface

Instructions

787

2403

Pointer

Addressing

Invalid

Object

Type

2C

Program

Execution

2C12

Activation

Group

Access

Violation

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

46

Queue

Space

4601

Queue

Space

Not

Associated

with

the

Process

Materialize

Process

Mutex

(MATPRMTX)

Bound

program

access

Built-in

number

for

MATPRMTX

is

164.

MATPRMTX

(

operand1

:

address

operand2

:

address

of

system

pointer

OR

address

of

space

pointer(16)

OR

null

pointer

value

operand3

:

address

of

unsigned

binary(4)

value

OR

null

pointer

value

)

Note:

The

term

″mutex″

in

this

instruction

refers

to

a

″pointer-based

mutex″.

Description:

The

mutex

lock

and/or

wait

status

of

the

thread

or

threads

specified

by

operand

2

is

materialized

into

the

receiver

space

specified

by

operand

1.

Operand

2

is

the

address

of

a

process

control

space

system

pointer,

the

address

of

a

space

pointer

or

a

null

pointer

value.

If

operand

2

is

the

address

of

a

process

control

space

system

pointer,

mutex

status

is

returned

for

the

initial

thread

of

the

process,

or

optionally,

mutex

status

is

returned

for

multiple

threads

in

the

process.

If

operand

2

is

the

address

of

a

788

iSeries:

Machine

Interface

Instructions

APIs

space

pointer

to

a

thread

handle,

mutex

status

is

returned

for

the

thread

specified

by

the

thread

handle,

or

optionally,

mutex

status

is

returned

for

multiple

threads

in

the

same

process

as

the

specified

thread.

If

operand

2

is

a

null

pointer

value,

mutex

status

is

returned

for

the

issuing

thread,

or

optionally,

mutex

status

is

returned

for

multiple

threads

in

the

same

process

as

the

issuing

thread.

If

operand

2

references

a

process

that

is

not

a

valid

process,

a

process

control

space

not

associated

with

a

process

(hex

2802)

exception

is

signaled.

If

operand

2

references

a

thread

handle

that

is

not

valid,

a

thread

handle

not

associated

with

an

active

thread

(hex

2804)

exception

is

signaled.

For

the

specified

thread

or

threads,

the

materialization

identifies

each

mutex

for

which

the

thread

holds

a

mutex

lock

and/or

for

which

the

thread

is

waiting,

if

any.

The

use

of

the

MATPRMTX

instruction

to

obtain

information

for

threads

in

another

process

requires

that

the

issuing

thread

be

contained

in

the

process

that

initiated

the

specified

thread’s

process,

or

requires

that

the

issuing

thread

have

process

control

special

authorization

defined

in

its

user

profile

or

in

a

currently

adopted

user

profile.

If

the

issuing

thread

does

not

have

the

necessary

authorization,

a

special

authorization

required

(hex

0A04)

exception

is

signaled.

The

space

pointed

to

by

operand

3

is

a

4-byte

unsigned

binary

field

used

to

indicate

the

type

of

information

that

should

be

returned

by

this

instruction.

The

materialization

options

value

referenced

by

operand

3

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Mutex

reference

option

Bit

0

0

=

Return

addresses

of

mutexes

1

=

Return

replicas

of

mutexes

0

0

Materialize

threads

option

Bit

1

0

=

Materialize

only

specified

thread

1

=

Materialize

multiple

threads

in

specified

thread’s

process

0

0

Mutex

attributes

option

Bit

2

0

=

Do

not

return

additional

mutex

attributes

1

=

Return

additional

mutex

attributes

0

0

Reserved

(binary

0)

Bit

3

0

0

Thread

status

option

Bit

4

0

=

Materialize

holding

and

waiting

threads

1

=

Materialize

only

waiting

threads

0

0

Reserved

(binary

0)

Bits

5-31

4

4

—-

End

—-

If

mutex

reference

option

is

set

to

return

addresses

of

mutexes,

then

the

materialization

template

will

contain

the

addresses

of

the

mutexes

which

are

being

described.

If

mutex

reference

option

is

set

to

return

replicas

of

mutexes,

then

the

materialization

template

will

contain

replicas

of

the

mutexes

which

are

being

described.

A

replica

is

a

mechanism

used

to

obtain

mutex

information

for

mutexes

that

reside

outside

the

addressability

of

the

issuing

thread.

The

address

of

a

mutex

or

the

address

of

a

replica

can

be

passed

to

the

MATMTX

instruction

for

further

materialization.

However,

a

replica

can

only

be

used

to

materialize

a

mutex,

it

cannot

be

used

to

perform

any

operation

on

the

mutex

that

could

change

its

state.

If

the

mutex

reference

option

is

set

to

return

addresses

of

mutexes,

only

those

mutexes

that

the

issuing

thread

has

addressability

to

can

be

materialized.

If

the

mutex

reference

option

is

set

to

return

replicas

of

mutexes,

all

mutexes

for

the

specified

thread(s)

can

be

materialized.

Addressable

mutexes

are

mutexes

that

exist

outside

of

a

teraspace,

or

exist

in

the

teraspace

of

the

issuing

thread.

Mutexes

that

exist

in

teraspace

other

than

the

teraspace

of

the

issuing

thread

are

not

eligible

to

be

materialized

if

the

mutex

reference

option

is

set

to

return

addresses

of

mutexes,

but

are

eligible

to

be

materialized

if

the

mutex

reference

option

is

set

to

return

replicas

of

mutexes.

Copies

of

mutexes

are

not

materialized,

regardless

of

addressability.

See

the

CRTMTX

instruction

for

additional

information

regarding

mutex

copies.

Machine

Interface

Instructions

789

The

materialize

threads

option

field

is

used

to

select

if

mutex

status

is

to

be

returned

for

only

the

specified

thread,

or

for

each

thread

in

the

same

process

as

the

specified

process

or

thread.

If

materialize

threads

option

is

set

to

materialize

only

specified

thread,

then

mutex

status

can

be

returned

for

only

the

specified

thread.

If

materialize

threads

option

is

set

to

materialize

multiple

threads

in

specified

thread’s

process,

then

mutex

status

can

be

returned

for

each

thread

in

the

same

process

as

the

specified

process

or

thread.

For

a

specified

thread,

or

each

of

multiple

threads,

mutex

status

can

only

be

returned

if

the

thread

meets

the

criteria

specified

by

the

thread

status

option.

The

mutex

attributes

option

field

is

used

to

select

whether

or

not

additional

mutex

attributes

are

to

be

returned.

If

mutex

attributes

option

is

set

to

do

not

return

additional

mutex

attributes,

then

a

standard

materialization

template

is

used.

If

mutex

attributes

option

is

set

to

return

additional

mutex

attributes,

then

a

materialization

template

with

extended

mutex

descriptors

is

used.

The

thread

status

option

field

is

used

to

selectively

determine

if

a

thread

can

be

materialized

based

on

its

mutex

status.

If

thread

status

option

is

set

to

materialize

holding

and

waiting

threads,

then

status

can

be

returned

for

the

specified

thread

or

threads

if

the

thread

is

holding

a

mutex

lock

and/or

is

waiting

on

a

mutex.

If

thread

status

option

is

set

to

materialize

only

waiting

threads,

then

status

can

be

returned

for

the

specified

thread

or

threads

only

if

the

thread

is

waiting

on

a

mutex.

If

operand

3

is

a

null

pointer

value,

the

default

materialization

options

(binary

0)

are

used.

All

values

other

than

those

specifically

defined

for

materialization

options

are

reserved

and

will

cause

a

scalar

value

invalid

(hex

3203)

exception

to

be

generated.

The

materialization

template

identified

by

operand

1

must

be

16-byte

aligned.

If

the

materialization

template

is

not

properly

aligned,

a

boundary

alignment

(hex

0602)

exception

is

signaled.

The

format

of

the

information

returned

in

the

materialization

template

is

different,

depending

on

the

materialization

options

selected.

The

materialization

template

has

the

following

standard

format

when

materialize

threads

option

is

set

to

materialize

only

specified

thread

and

mutex

attributes

option

is

set

to

do

not

return

additional

mutex

attributes:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Number

of

mutex

lock

entries

Bin(4)

12

C

Reserved

(binary

0)

Char(4)

16

10

Mutex

descriptors

(repeated

for

each

mutex

currently

held

locked

or

waited

for

by

the

thread)

[*]

Char(32)

16

10

Mutex

Space

pointer

or

op

32

20

Mutex

state

being

described

Char(1)

Hex

00

=

The

mutex

is

held

by

the

thread

Hex

01

=

The

thread

is

waiting

to

acquire

the

mutex

33

21

Reserved

(binary

0)

Char(15)

*

*

—-

End

—-

The

first

4

bytes

of

the

materialization

template

identifies

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

790

iSeries:

Machine

Interface

Instructions

APIs

The

second

4

bytes

of

the

materialization

template

identifies

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver

that

can

be

used

to

completely

fill

mutex

descriptors.

Partial

descriptors

are

not

returned.

If

the

number

of

bytes

provided

would

cause

the

storage

boundary

of

the

space

provided

for

the

receiver

to

be

exceeded,

and

if

the

number

of

bytes

available

would

actually

exceed

this

boundary,

then

a

space

addressing

violation

(hex

0601)

exception

is

signaled.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

exceptions

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization,

other

than

the

materialization

length

invalid

(hex

3803)

exception

described

previously.

The

number

of

mutex

lock

entries

is

the

number

of

mutexes

the

materialized

thread

currently

holds

locked

and/or

is

waiting

for.

The

mutex

descriptors

identify

the

mutexes

the

materialized

thread

either

holds

(acquired

the

lock

on)

or

is

waiting

for.

Depending

on

the

setting

of

mutex

reference

option,

the

mutex

field

contains

either

the

address

of

the

mutex

being

described

or

a

replica

of

the

mutex

being

described.

The

mutex

state

being

described

field

identifies

how

this

mutex

relates

to

the

thread

being

materialized.

The

materialization

template

has

the

following

extended

format

when

materialize

threads

option

is

set

to

materialize

only

specified

thread

and

mutex

attributes

option

is

set

to

return

additional

mutex

attributes:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Number

of

mutex

lock

entries

Bin(4)

12

C

Reserved

(binary

0)

Char(4)

16

10

Mutex

descriptors

(repeated

for

each

mutex

currently

held

locked

or

waited

for

by

the

thread)

[*]

Char(112)

16

10

Mutex

Space

pointer

o

32

20

Mutex

state

being

described

Char(1)

Hex

00

=

The

mutex

is

held

by

the

thread

Hex

01

=

The

thread

is

waiting

to

acquire

the

mutex

33

21

Reserved

(binary

0)

Char(15)

48

30

Mutex

name

Char(16)

64

40

Mutex

holder

process

ID

Char(30)

94

5E

Reserved

(binary

0)

Char(2)

96

60

Mutex

holder

thread

ID

Char(8)

104

68

Mutex

holder

unique

thread

value

Char(8)

112

70

Number

of

waiters

Bin(4)

116

74

Reserved

(binary

0)

Char(12)

*

*

—-

End

—-

The

contents

of

the

template

fields

are

as

defined

for

the

previous

template(s),

unless

specifically

defined

or

redefined

as

follows:

The

mutex

name

field

contains

the

name

of

the

mutex.

The

name

is

left-justified

and

padded

to

the

right

with

blanks.

If

the

mutex

was

created

using

a

null-terminated

name

string,

the

name

materialized

with

this

instruction

is

null-terminated

instead

of

padded

with

blanks.

If

the

mutex

was

created

without

a

name,

this

field

will

contain

the

character

string

″UNNAMED_″

followed

by

the

first

8

characters

of

the

Machine

Interface

Instructions

791

program

which

created

the

mutex.

The

mutex

holder

process

ID

is

the

name

of

the

process

containing

the

thread

that

holds

the

mutex

lock.

The

name

returned

here

is

the

30-character

Process

Control

Space

(PCS)

name.

The

mutex

holder

thread

ID

contains

a

process

specific

value

that

identifies

the

thread

within

the

process

that

holds

the

mutex

lock.

The

mutex

holder

unique

thread

value

contains

a

system-wide

unique

value

that

identifies

the

specific

thread

that

holds

the

mutex

lock.

This

field

cannot

be

used

as

input

on

any

other

MI

instruction,

but

may

be

useful

for

debug

purposes.

The

number

of

waiters

is

the

number

of

threads

that

are

currently

waiting

for

the

mutex

to

be

unlocked.

The

materialization

template

has

the

following

standard

format

when

materialize

threads

option

is

set

to

materialize

multiple

threads

in

specified

thread’s

process

and

mutex

attributes

option

is

set

to

do

not

return

additional

mutex

attributes:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Number

of

threads

in

process

UBin(4)

12

C

Number

of

thread

mutex

descriptors

UBin(4)

16

10

Thread

mutex

descriptors

(repeated

for

each

mutex

currently

held

locked

or

waited

for

by

each

identified

thread)

[*]

Char(48)

16

10

Identified

thread

ID

Char(8

24

18

Number

of

descriptors

for

identified

thread

UBin(4

28

1C

Descriptor

entry

number

for

identified

thread

UBin(4

32

20

Mutex

descriptor

Char(3

32

20

Mutex

48

30

Mutex

state

being

described

Hex

00

=

The

mutex

is

held

by

the

thread

Hex

01

=

The

thread

is

waiting

to

acquire

the

mutex

49

31

Reserved

(binary

0)

*

*

—-

End

—-

The

contents

of

the

template

fields

are

as

defined

for

the

previous

template(s),

unless

specifically

defined

or

redefined

as

follows:

The

number

of

threads

in

process

is

the

total

number

of

active

threads

in

the

process

found

at

the

time

of

materialization.

The

actual

number

of

threads

materialized

may

be

less

than

this

number

since

only

threads

that

are

associated

with

at

least

one

mutex

will

have

their

mutex

information

described.

A

thread

has

a

mutex

association

if

it

has

at

least

one

mutex

locked

and/or

is

waiting

on

a

mutex.

The

actual

number

of

threads

materialized

may

also

be

less

than

this

number

if

the

number

of

bytes

provided

is

insufficient

to

contain

all

of

the

mutex

information

for

each

thread

in

the

process

having

a

mutex

association.

The

number

of

thread

mutex

descriptors

is

the

combined

total

number

of

thread

mutex

descriptors

that

were

actually

returned

for

all

the

threads

in

the

process.

The

number

of

descriptors

returned

for

each

thread

varies

depending

on

the

number

of

mutexes

an

individual

thread

is

associated

with,

that

is,

the

number

of

mutexes

the

thread

has

locked

and/or

is

waiting

for.

If

the

number

of

bytes

provided

is

insufficient

to

contain

all

of

the

mutex

information

for

all

of

the

threads

in

the

process,

then

as

many

mutex

descriptors

are

returned

for

as

many

threads

as

possible.

Partial

descriptors

are

not

returned.

792

iSeries:

Machine

Interface

Instructions

APIs

The

thread

mutex

descriptors

identify

the

threads

that

are

associated

with

one

or

more

mutexes,

and

describe

each

mutex

associated

with

each

thread.

One

thread

mutex

descriptor

is

returned

for

each

mutex

associated

with

a

given

thread,

so

the

same

thread

can

have

multiple

descriptors.

The

selection

of

descriptors

to

be

returned

for

a

specified

thread

or

threads

is

determined

by

the

mutex

association

criteria

specified

by

the

thread

status

option.

The

identified

thread

ID

field

contains

a

process

specific

value

that

identifies

the

thread

that

is

associated

with

a

particular

descriptor.

The

number

of

descriptors

for

identified

thread

field

contains

the

number

of

possible

descriptors

that

can

be

returned

for

the

identified

thread.

The

descriptor

entry

number

for

identified

thread

field

uniquely

identifies

each

descriptor

returned

for

the

identified

thread.

For

each

descriptor

associated

with

the

same

thread,

the

identified

thread

ID

and

number

of

descriptors

for

identified

thread

fields

will

contain

the

same

values,

but

the

descriptor

entry

number

will

be

sequentially

different.

The

combination

of

these

three

fields

effectively

organizes

the

mutex

information

returned

for

each

thread

into

a

″descriptor

M

of

N″

format

where

″M″

is

the

descriptor

entry

number

for

identified

thread

and

″N″

is

the

number

of

descriptors

for

identified

thread.

The

materialization

template

has

the

following

extended

format

when

materialize

threads

option

is

set

to

materialize

multiple

threads

in

specified

thread’s

process

and

mutex

attributes

option

is

set

to

return

additional

mutex

attributes:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin

4

4

Number

of

bytes

available

for

materialization

Bin

8

8

Number

of

threads

in

process

UBin(4)

12

C

Number

of

thread

mutex

descriptors

UBin(4)

16

10

Thread

mutex

descriptors

(repeated

for

each

mutex

currently

held

locked

or

waited

for

by

each

identified

thread)

[*]

Char(128)

16

10

Identified

thread

ID

Cha

24

18

Number

of

descriptors

for

identified

thread

UBi

28

1C

Descriptor

entry

number

for

identified

thread

UBi

32

20

Mutex

descriptor

Cha

32

20

Mutex

48

30

Mutex

state

being

described

Hex

00

=

The

mutex

is

held

by

the

thread

Hex

01

=

The

thread

is

waiting

to

acquire

the

mutex

49

31

Reserved

(binary

0)

64

40

Mutex

name

80

50

Mutex

holder

process

ID

110

6E

Reserved

(binary

0)

112

70

Mutex

holder

thread

ID

120

78

Mutex

holder

unique

thread

value

128

80

Number

of

waiters

132

84

Reserved

(binary

0)

*

*

—-

End

—-

The

contents

of

the

template

fields

are

as

defined

for

the

previous

template(s).

Machine

Interface

Instructions

793

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Process

control

special

authorization

–

–

For

materializing

a

thread

in

a

process

other

than

the

process

containing

the

thread

issuing

this

instruction.

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A04

Special

Authorization

Required

10

Damage

Encountered

1002

Machine

Context

Damage

State

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

794

iSeries:

Machine

Interface

Instructions

APIs

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2404

Pointer

Not

Resolved

28

Process/Thread

State

2802

Process

Control

Space

Not

Associated

with

a

Process

2804

Thread

Handle

Not

Associated

with

an

Active

Thread

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Process

Record

Locks

(MATPRECL)

Op

Code

(Hex)

Operand

1

Operand

2

031E

Receiver

Process

selection

template

Operand

1:

Space

pointer.

Machine

Interface

Instructions

795

Operand

2:

Space

pointer.

Bound

program

access

Built-in

number

for

MATPRECL

is

52.

MATPRECL

(

receiver

:

address

process_selection_template

:

address

)

Description:

Data

space

record

locks

for

a

process

identified

in

the

process

selection

template

specified

by

operand

2

are

materialized

into

the

receiver

identified

by

operand

1.

The

materialization

identifies

each

data

space

record

lock

which

is

either

held

by

the

process

or

is

waited

for

by

a

thread

within

the

process.

If

the

process

control

space

(PCS)

pointer

is

null

or

all

zeros,

the

lock

activity

for

the

process

containing

the

current

thread

is

materialized.

The

process

selection

template

identified

by

operand

2

must

be

16-byte

aligned.

The

format

of

the

process

selection

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Process

selection

Char(16)

0

0

Process

descriptions

System

pointer

16

10

Lock

selection

Char(1)

16

10

Materialize

held

locks

Bit

0

0

=

Do

not

materialize

1

=

Materialize

16

10

Materialize

locks

waited

for

Bit

1

0

=

Do

not

materialize

1

=

Materialize

16

10

Reserved

Bits

2-7

17

11

Template

options

Char(1)

17

11

Format

for

number

of

locks

Bit

0

1

=

Use

Bin(4)

for

number

of

locks

0

=

Use

Bin(2)

for

number

of

locks

17

11

Reserved

Bits

1-7

18

12

Reserved

Char(6)

24

18

—-

End

—-

The

process

descriptions

must

be

a

system

pointer

to

a

process

control

space

(PCS)

or

a

null

pointer

value.

Both

of

the

fields

specified

under

lock

selection

are

bits

which

determine

the

locks

to

be

materialized.

If

the

materialize

held

locks

is

materialize,

any

data

base

record

lock

held

by

the

process

is

materialized.

If

the

materialize

locks

waited

for

is

materialize,

any

data

base

record

lock

a

thread

of

the

process

is

waiting

for

is

materialized.

The

format

for

number

of

locks

bit

determines

the

format

of

the

number

of

lock

held

descriptions

and

number

of

locks

waited

for

descriptions

fields

in

the

materialization

template.

If

the

bit

is

set

on

then

Bin(4)

counts

are

used,

else

Bin(2)

counts

are

used.

The

materialization

template

identified

by

operand

1

must

be

16-byte

aligned.

The

format

of

the

materialization

is

as

follows:

796

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4

4

4

Number

of

bytes

available

for

materialization

Bin(4

8

8

Materialization

data

(2

possible

formats)

Char(8)

If

format

for

number

of

locks

bit=1

8

8

Number

of

lock

held

descriptions

Bin(4

12

C

Number

of

lock

waited

for

desscriptions

Bin(4

16

10

—-

End

of

bit=1

—-

If

format

for

number

of

locks

bit=0

8

8

Number

of

lock

held

descriptions

Bin(2

10

A

Number

of

lock

waited

for

descriptions

Bin(2

12

C

Reserved

Char

16

10

—-

End

of

bit=0

—-

16

10

Locks

held

descriptions

[*]

Char(32)

(repeated

number

of

lock

held

descriptions

times)

16

10

Data

space

Syste

32

20

Relative

record

number

UBin

36

24

Lock

state

Char

Hex

30

=

DLWK

(Database

lock

weak)

lock

state

Hex

C0

=

DLRD

(Database

lock

read)

lock

state

Hex

F8

=

DLUP

(Database

lock

update)

lock

state

All

other

values

are

reserved.

37

25

Lock

holder

information

Char

37

25

Lock

scope

object

type

0

=

Process

control

space

1

=

Transaction

control

structure

37

25

Lock

scope

0

=

Lock

is

scoped

to

the

lock

scope

object

type

1

=

Lock

is

scoped

to

the

thread

37

25

Reserved

(binary

0)

38

26

Reserved

Char

40

28

Thread

ID

Char

*

*

Lock

waited

for

descriptions

[*]

Char(32)

(repeated

number

of

lock

waited

for

descriptions

times)

*

*

Data

space

Syste

*

*

Relative

record

number

UBin

*

*

Lock

state

requested

Char

Machine

Interface

Instructions

797

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

Hex

30

=

DLWK

(Database

lock

weak)

lock

state

Hex

C0

=

DLRD

(Database

lock

read)

lock

state

Hex

F8

=

DLUP

(Database

lock

update)

lock

state

All

other

values

are

reserved.

*

*

Lock

waiter

information

Char(1)

*

*

Lock

scope

object

type

0

=

Process

control

space

1

=

Transaction

control

structure

*

*

Lock

scope

0

=

Lock

is

scoped

to

the

lock

scope

object

type

1

=

Lock

is

scoped

to

the

thread

*

*

Reserved

(binary

0)

*

*

Reserved

Char(2)

*

*

Thread

ID

Char(8)

*

*

—-

End

—-

The

first

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

the

excess

bytes

are

unchanged.

No

exceptions

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization,

other

than

the

materialization

length

invalid

(hex

3803)

exception

described

previously.

The

number

of

lock

held

descriptions

contains

the

number

of

locks

held

by

the

process.

One

system

pointer

to

the

data

space,

relative

record

number

in

the

data

space,

and

lock

state

is

materialized

in

the

area

identified

as

lock

held

descriptions

for

each

lock.

When

lock

scope

has

a

value

of

lock

is

scoped

to

the

thread,

the

thread

ID

field

identifies

the

thread

that

holds

the

lock.

Otherwise

it

is

set

to

binary

0.

These

fields

contain

data

only

if

materialize

held

locks

is

materialize.

A

database

weak

record

lock

is

only

acquired

thread-scoped

and

it

only

conflicts

with

update

record

locks

which

are

thread-scoped

to

a

different

thread.

The

weak

record

lock

does

not

conflict

in

any

other

situation.

The

number

of

lock

waited

for

descriptions

contains

the

number

of

locks

that

the

process

is

waiting

for.

One

system

pointer

to

the

data

space,

relative

record

number

in

the

data

space,

and

lock

state

requested

is

materialized

in

the

area

identified

as

lock

waited

for

descriptions

for

each

lock

waited

for.

The

thread

ID

field

identifies

the

thread

that

is

waiting

for

the

lock,

regardless

of

the

lock

scope

value.

These

fields

contain

data

only

if

materialize

locks

waited

for

is

materialize.

798

iSeries:

Machine

Interface

Instructions

APIs

If

Bin(2)

fields

are

requested

for

the

number

of

lock

held

descriptions

and

number

of

lock

waited

for

descriptions,

then

the

maximum

number

that

can

be

returned

in

each

count

is

32,767.

If

the

actual

number

is

greater

than

32,767

for

a

count

then

that

count

will

be

set

to

32,767,

only

the

first

32,767

locks

will

be

materialized,

and

no

exception

will

be

signaled.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

Machine

Interface

Instructions

799

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Program

(MATPG)

Op

Code

(Hex)

Operand

1

Operand

2

0232

Attribute

receiver

Program

800

iSeries:

Machine

Interface

Instructions

APIs

Operand

1:

Space

pointer.

Operand

2:

System

pointer.

Bound

program

access

Built-in

number

for

MATPG

is

31.

MATPG

(

attribute_receiver

:

address

program

:

address

of

system

pointer

)

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Description:

The

non-bound

program

identified

by

operand

2

is

materialized

into

the

template

identified

by

operand

1.

Operand

2

is

a

system

pointer

that

identifies

the

program

to

be

materialized.

The

program

identified

by

operand

2

must

be

a

non-bound

program.

Otherwise,

a

program

not

eligible

for

operation

(hex

220A)

exception

will

be

signalled.

The

values

in

the

materialization

relate

to

the

current

attributes

of

the

materialized

program.

This

instruction

does

not

process

teraspace

addresses

used

for

its

operands,

nor

used

in

any

space

pointer

contained

in

a

template.

Any

teraspace

address

use

will

cause

an

unsupported

space

use

(hex

0607)

exception

to

be

signaled,

whether

the

issuing

program

is

teraspace

capable

or

not.

The

template

identified

by

operand

1

must

be

16-byte

aligned.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Template

size

specification

Char(8)

0

0

Number

of

bytes

provided

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

+

(used

only

when

the

program

is

materialized)

8

8

Program

identification

Char(32)

8

8

Type

Char(1)

+

9

9

Subtype

Char(1)

10

A

Name

Char(30)

40

28

Program

creation

options

Char(4)

40

28

Existence

attributes

Bit

0

0

=

Temporary

1

=

Permanent

40

28

Space

attribute

Bit

1

0

=

Fixed-length

1

=

Variable-length

40

28

Initial

context

Bit

2

0

=

Do

not

insert

addressability

into

context

1

=

Insert

addressability

into

context

40

28

Access

group

creation

Bit

3

Machine

Interface

Instructions

801

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Do

not

create

as

a

member

of

an

access

group

1

=

Create

as

a

member

of

an

access

group

40

28

Reserved

(binary

0)

Bits

4-12

40

28

Initialize

space

Bit

13

0

=

Initialize

1

=

Do

not

initialize

40

28

Automatically

extend

space

Bit

14

0

=

No

1

=

Yes

40

28

Associated

space

hardware

storage

protection

level

Bits

15-16

00

=

Reference

and

modify

allowed

for

user

state

programs

01

=

Only

reference

allowed

for

user

state

programs

11

=

No

reference

or

modify

allowed

for

user

state

programs

40

28

Reserved

(binary

0)

Bits

17-31

44

2C

Reserved

(binary

0)

Char(4)

48

30

Size

of

space

Bin(4)

52

34

Initial

value

of

space

Char(1)

53

35

Performance

class

Char(4)

53

35

Obsolete

Bit

0

+

This

field

is

no

longer

used

and

will

be

ignored.

53

35

Reserved

(binary

0)

Bits

1-4

53

35

Main

storage

pool

selection

Bit

5

0

=

Process

default

main

storage

pool

is

used

for

object.

1

=

Machine

default

main

storage

pool

is

used

for

object.

53

35

Transient

storage

pool

selection

Bit

6

0

=

Default

main

storage

pool

(process

default

or

machine

default

as

specified

for

main

storage

pool

selection)

is

used

for

object.

1

=

Transient

storage

pool

is

used

for

object.

802

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

53

35

Block

transfer

on

implicit

access

state

modification

Bit

7

0

=

Transfer

the

minimum

storage

transfer

size

for

this

object.

1

=

Transfer

the

machine

default

storage

transfer

size

for

this

object.

53

35

Reserved

(binary

0)

Bits

8-31

57

39

Reserved

(binary

0)

Char(7)

64

40

Context

System

pointer

80

50

Access

group

System

pointer

96

60

Program

attributes

Char(2)

96

60

Adopted

user

profile

Bit

0

0

=

No

adoption

of

user

profile.

1

=

Adopt

program

owner’s

user

profile

on

invocation.

96

60

Array

constraint

Bit

1

0

=

Arrays

are

constrained.

1

=

Arrays

are

unconstrained.

The

predictability

of

the

results

of

references

outside

the

bounds

of

arrays

are

determined

by

the

type

of

unconstrained

arrays

field.

96

60

String

constraint

Bit

2

0

=

Strings

are

constrained.

1

=

Strings

are

not

constrained.

96

60

Obsolete

Bit

3

+

96

60

Adopted

user

profile

propagation

Bit

4

0

=

Adopted

user

profile

authorities

are

not

propagated

to

external

invocations.

1

=

Adopted

user

profile

authorities

are

propagated

to

all

subinvocations.

96

60

Static

storage

Bit

5

0

=

Initialize

storage

to

binary

0.

1

=

Do

not

initialize

storage

to

binary

0.

96

60

Automatic

storage

Bit

6

0

=

Initialize

storage

to

binary

0.

1

=

Do

not

initialize

storage

to

binary

0.

96

60

Associated

journal

entry

Bit

7

Machine

Interface

Instructions

803

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Program

name

is

recorded

in

journal

entries

1

=

Program

name

is

not

recorded

in

journal

entries

96

60

Update

PASA

stack

Bit

8

+

This

field

is

now

obsolete.

It

will

be

ignored.

96

60

Suppress

decimal

data

exception

Bit

9

0

=

Exception

is

not

to

be

suppressed

1

=

Exception

is

to

be

suppressed

96

60

Template

extension

existence

Bit

10

0

=

Template

extension

does

not

exist

1

=

Template

extension

exists

96

60

Suppress

previously

adopted

user

profiles

Bit

11

0

=

Do

not

suppress

previously

adopted

user

profiles

1

=

Suppress

previously

adopted

user

profiles

96

60

Template

version

Bits

12-15

0000

=

Version

0

0001

=

Version

1

0010

through

1111

reserved

98

62

Code

generation

options

Char(1)

98

62

Performance

optimization

Bit

0

0

=

No

optimization

1

=

Perform

optimization

98

62

Space

pointer

machine

objects

Bit

1

0

=

Disallow

space

pointer

machine

objects

in

ODV

component

1

=

Allow

space

pointer

machine

objects

in

ODV

component

98

62

Coincident

operand

overlap

Bit

2

0

=

Do

not

assume

coincident

operand

overlap

1

=

Assume

coincident

operand

overlap

98

62

Reserved

(binary

0)

Bits

3-4

98

62

Teraspace

capable

Bit

5

0

=

Do

not

generate

teraspace

capable

program

1

=

Generate

teraspace

capable

program

98

62

Executable

part

compression

Bit

6

804

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Do

not

compress

executable

part

1

=

Compress

executable

part

98

62

Observation

part

compression

Bit

7

0

=

Do

not

compress

observation

part

1

=

Compress

observation

part

99

63

Observation

attributes

Char(1)

For

bits

0

through

5:

1

=

The

corresponding

template

component

is

materializable

0

=

The

corresponding

template

component

is

not

materializable

99

63

Instruction

stream

Bit

0

99

63

ODT

Directory

Vector

(ODV)

Bit

1

99

63

ODT

Entry

String

(OES)

Bit

2

99

63

Breakpoint

Offset

Mapping

(BOM)

table

Bit

3

99

63

Symbol

table

Bit

4

99

63

Object

Mapping

Table

(OMT)

Bit

5

For

bits

6

and

7:

1

=

The

corresponding

performance

measurement

is

prevented

0

=

The

corresponding

performance

measurement

is

allowed

99

63

Prevent

performance

measurements

on

entry/exit

Bit

6

99

63

Prevent

performance

measurements

on

CALLX

Bit

7

100

64

Size

of

static

storage

UBin(4)

104

68

Size

of

automatic

storage

UBin(4)

108

6C

Number

of

instructions

(1)

UBin(2)

For

version

number

=

hex

0000,

this

field

indicates

the

number

of

instructions.

For

version

number

=

hex

0001,

this

field

is

reserved

(binary

0).

110

6E

Number

of

ODV

entries

(1)

Bin(2)

For

version

number

=

hex

0000,

this

field

indicates

the

number

of

ODV

entries.

For

version

number

=

hex

0001,

this

field

is

reserved

(binary

0).

112

70

Offset

(in

bytes)

from

beginning

of

template

to

the

instruction

stream

component

Bin(4)

116

74

Offset

(in

bytes)

from

beginning

of

template

to

the

ODV

component

Bin(4)

120

78

Offset

(in

bytes)

from

beginning

of

template

to

the

OES

component

Bin(4)

124

7C

Length

of

breakpoint

offset

mapping

table

entry

Bin(4)

128

80

Length

of

breakpoint

offset

mapping

table

component

Bin(4)

132

84

Offset

(in

bytes)

from

beginning

of

template

to

the

BOM

table

Bin(4)

136

88

Length

of

symbol

table

entry

Bin(4)

140

8C

Length

of

symbol

table

component

Bin(4)

Machine

Interface

Instructions

805

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

144

90

Offset

(in

bytes)

from

beginning

of

template

to

the

Symbol

table

Bin(4)

148

94

Offset

(in

bytes)

from

beginning

of

template

to

the

object

mapping

table

(OMT)

component

Bin(4)

+

152

98

Number

of

instructions

(2)

Bin(4)

For

version

number

=

hex

0001,

this

field

indicates

the

number

of

instructions.

For

version

number

=

hex

0000,

this

field

is

reserved

(binary

0).

156

9C

Number

of

ODV

entries

(2)

Bin(4)

For

version

number

=

hex

0001,

this

field

indicates

the

number

of

ODV

entries.

For

version

number

=

hex

0000,

this

field

is

reserved

(binary

0).

160

A0

Template

extension

Char(64)

This

extension

exists

only

when

the

template

extension

existence

bit

is

1.

160

A0

Extended

program

attributes

Char(4)

160

A0

Type

of

unconstrained

arrays

Bit

0

0

=

Not

fully

unconstrained.

If

arrays

are

unconstrained,

unpredictable

results

may

occur

when

accessing

array

elements

outside

the

declared

bounds

of

the

array.

1

=

Fully

unconstrained.

Predictable

results

will

occur

when

accessing

array

elements

outside

the

declared

bounds

of

the

array.

See

the

paragraph

below

describing

array

constrainment

for

details.

160

A0

Suppress

binary

size

exception

Bit

1

0

=

Exception

is

not

to

be

suppressed

1

=

Exception

is

to

be

suppressed

160

A0

Create

program

for

previous

mandatory

release

Bit

2

0

=

Create

the

program

to

run

on

the

current

release

1

=

Create

the

program

to

run

on

the

previous

mandatory

release

160

A0

Collect

object

usage

data

for

program

Bit

3

0

=

Collect

the

object

usage

data

1

=

Do

not

collect

the

object

usage

data

160

A0

Scope

of

resources

Bit

4

806

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Resources

are

scoped

to

an

invocation

of

this

program.

1

=

Resources

are

scoped

to

a

program

previous

to

this

one

in

the

invocation

stack.

160

A0

Reserved

(binary

0)

Bits

5-

164

A4

Language

version,

release,

and

modification

level

Char(2)

164

A4

Reserved

Bits

0-

164

A4

Version

Bits

4-

164

A4

Release

Bits

8-

164

A4

Mod

level

Bits

12

166

A6

Breakpoint

offset

mapping

table

data

Char(1)

166

A6

BOM

table

flags

Char(1

166

A6

Use

new

BOM

table

format

Bit

0

166

A6

User

data5A

Bits

1-

167

A7

User

data5B

Char(7)

174

AE

Version,

release,

and

modification

level

this

program

is

being

created

for

Char(2)

174

AE

Reserved

Bits

0-

174

AE

Version

Bits

4-

174

AE

Release

Bits

8-

174

AE

Mod

level

Bits

12

176

B0

Data

required

for

machine

retranslation

Char(1)

176

B0

All

data

required

for

machine

retranslation

is

present

Bit

0

+

0

=

No

1

=

Yes

176

B0

Reserved

(binary

0)

Bits

1-

177

B1

Reserved

(binary

0)

Char(47)

224

E0

Program

data

Char(*)

224

E0

Instruction

stream

component

Char(*)

*

*

ODV

component

Char(*)

*

*

OES

component

Char(*)

*

*

BOM

table

Char(*)

*

*

Symbol

table

Char(*)

*

*

Object

mapping

table

Char(*)

+

*

*

—-

End

—-

The

first

4

bytes

of

the

materialization

template

identify

the

total

number

of

bytes

provided

in

the

template.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

materialization

template

are

modified

by

the

instruction

to

contain

a

value

identifying

the

template

size

required

to

provide

for

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

by

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

Machine

Interface

Instructions

807

requested,

then

the

excess

bytes

are

unchanged.

No

exceptions

(other

than

the

materialization

length

invalid

(hex

3803)

exception)

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization.

The

existence

attribute

indicates

whether

the

program

is

temporary

or

permanent.

If

the

program

has

an

associated

space,

then

the

space

attribute

is

set

to

indicate

either

fixed-

or

variable-length;

the

initial

value

for

the

space

is

returned

in

the

initial

value

of

space

field,

and

the

size

of

space

field

is

set

to

the

current

size

value

of

the

space.

If

the

program

has

no

associated

space,

the

size

of

space

field

is

set

to

a

zero

value,

and

the

space

attribute

and

initial

value

of

space

field

values

are

meaningless.

If

the

program

is

addressed

by

a

context,

then

the

context

addressability

attribute

is

set

to

indicate

this,

and

a

system

pointer

to

the

addressing

context

is

returned

in

the

context

field.

If

the

program

is

not

addressed

by

a

context,

then

the

context

addressability

attribute

is

set

to

indicate

this,

and

binary

0’s

are

returned

in

the

context

field.

If

the

program

is

a

member

of

an

access

group,

then

the

access

group

attribute

is

set

to

indicate

this,

and

a

system

pointer

to

the

access

group

is

returned

in

the

access

group

field.

If

the

program

is

not

a

member

of

an

access

group,

then

the

access

group

attribute

is

set

to

indicate

this,

and

binary

0’s

are

returned

in

the

access

group

field.

The

automatically

extend

space

field

controls

whether

the

space

is

to

be

extended

automatically

by

the

machine

or

a

space

addressing

violation

(hex

0601)

exception

is

to

be

signaled

when

a

reference

is

made

to

an

area

beyond

the

allocated

portion

of

the

space.

A

value

of

binary

1

indicates

the

space

will

automatically

be

extended

by

an

amount

determined

through

internal

machine

algorithms.

A

value

of

binary

0

indicates

the

exception

will

result.

Note

that

an

attempt

to

reference

an

area

beyond

the

maximum

size

that

a

space

can

be

allocated,

will

always

result

in

the

signaling

of

the

space

addressing

violation

(hex

0601)

exception

independently

of

the

setting

of

this

attribute.

A

value

of

binary

1

is

only

valid

when

the

space

attribute

has

been

specified

as

variable

length.

Usage

of

the

automatically

extend

space

function

is

limited.

Predictable

results

will

occur

only

when

you

ensure

that

the

automatic

extension

of

a

space

will

not

happen

in

conjunction

with

modification

of

the

space

size

by

another

thread.

That

is,

you

must

ensure

that

when

a

thread

is

using

the

space

in

a

manner

that

could

cause

it

to

be

automatically

extended,

it

is

the

sole

thread

which

can

cause

the

space

size

to

be

modified.

Note

that

in

addition

to

implicit

modification

through

automatic

extension,

the

space

size

can

be

explicitly

modified

through

use

of

the

Modify

Space

Attributes

(MODS)

instruction.

The

associated

space

hardware

storage

protection

level

can

be

used

to

restrict

access

to

the

contents

of

the

space

by

user

state

programs.

It

is

possible

to

limit

the

access

of

the

space

by

user

state

programs

into

1

of

three

levels:

v

v

Reference

only

(non-modifying

storage

references

are

allowed,

modifying

storing

storage

references

yield

an

object

domain

or

hardware

storage

protection

violation

(hex

4401)

exception).

v

No

storage

references

(all

storage

references,

modifying

or

non-modifying

yield

an

object

domain

or

hardware

storage

protection

violation

(hex

4401)

exception).

v

Full

access

(both

modifying

and

non-modifying

storage

references

are

allowed).

The

actual

presentation

of

the

object

domain

or

hardware

storage

protection

violation

(hex

4401)

exception

is

also

dependent

on

the

level

of

the

physical

hardware

(namely,

the

CPU).

The

performance

class

field

provides

information

that

allows

the

machine

to

more

effectively

manage

the

program

by

considering

overall

performance

objectives

of

operations

involving

the

program.

808

iSeries:

Machine

Interface

Instructions

APIs

The

primary

associated

space,

if

one

is

created,

is

always

aligned

on

at

least

a

512

byte

boundary

if

the

target

version,

release,

and

modification

level

is

V4R4

or

greater.

If

the

target

version,

release,

and

modification

level

is

not

V4R4

or

greater,

the

primary

associated

space,

if

one

is

created,

is

always

aligned

on

at

least

a

16-byte

boundary.

If

the

adopted

user

profile

attribute

is

yes,

any

reference

to

a

system

object

from

an

invocation

of

this

program

uses

the

user

profile

of

the

owner

of

this

program

and

other

sources

of

authority

to

determine

the

authorization

to

system

objects,

privileged

instructions,

ownership

rights,

and

all

authorizations.

If

the

adopted

user

profile

propagation

attribute

is

yes,

then

the

authorities

available

from

the

adopted

user

profile

are

available

to

any

further

invocations

while

this

program

is

invoked.

If

the

adopted

user

profile

propagation

attribute

is

no,

then

the

authorities

available

to

the

program’s

owning

user

profile

are

not

available

to

further

subinvocations

and

are

available

only

to

this

invocation.

These

attributes

do

not

affect

the

propagation

of

authority

from

higher

existing

invocations.

The

array

constraint

field

determines

how

array

bounds

should

be

checked

at

execution

time.

If

arrays

are

constrained,

execution

time

checks

are

made

to

verify

that

the

array

index

is

within

the

bounds

of

the

array.

If

arrays

are

unconstrained

and

the

type

of

unconstrained

array

is

not

fully

unconstrained,

the

array

references

are

assumed

to

be

within

the

bounds

of

the

array.

If

an

array

element

reference

is

made

outside

the

bounds

of

the

array,

unpredictable

results

may

occur.

If

the

type

of

unconstrained

array

is

fully

unconstrained,

array

references

outside

the

bounds

of

the

array

will

be

made

as

if

the

elements

existed.

Array

references

of

this

type

will

signal

the

space

addressing

violation

(hex

0601)

exception

if

the

element

that

is

referenced

is

outside

the

allocated

storage

of

the

space

containing

the

array.

It

is

possible

to

change

the

type

of

constrainment

used

when

referencing

array

elements

by

using

the

Override

Program

Attributes

(OVRPGATR)

instruction.

The

string

constrainment

field

determines

how

string

limits

should

be

checked

at

execution

time.

If

string

constrainment

is

strings

are

not

constrained,

the

references

are

assumed

to

be

within

the

defined

bounds

of

the

string.

No

execution

time

checks

are

performed

to

ensure

this

is

the

case.

However,

if

the

reference

is

outside

the

defined

bounds,

unpredictable

results

may

occur.

There

may

be

significant

savings

in

performance

if

strings

are

not

constrained

is

specified.

It

is

possible

to

change

the

type

of

constrainment

used

when

substringing

by

using

the

Override

Program

Attributes

(OVRPGATR)

instruction.

Whenever

a

new

invocation

or

activation

is

allocated,

the

automatic

or

static

storage

areas

are

initialized

to

bytes

of

binary

0’s,

respectively.

The

static

storage

and

automatic

storage

program

attributes

control

this

default

initialization.

There

is

a

significant

performance

advantage

when

these

areas

are

not

initialized

by

default.

However,

initial

values

specified

for

individual

data

objects

are

still

set.

The

automatic

storage

and

static

storage

will

be

allocated

in

single

level

store.

The

associated

journal

entry

field

controls

which

program

is

associated

with

a

journal

entry.

As

a

journal

entry

is

made,

a

newest-to-oldest

interrogation

of

the

invocation

stack

is

performed.

The

first

program

encountered

that

has

the

associated

journal

entry

field

set

to

program

name

is

recorded

in

journal

entries

is

associated

with

the

journal

entry

by

a

record

of

the

program

name

in

the

journal

entry.

If

a

program

is

encountered

for

which

the

associated

journal

entry

field

is

set

to

program

name

is

not

recorded

in

journal

entry,

the

program

is

ignored

unless

the

program

is

on

the

top

of

the

invocation

stack.

If

the

program

is

on

the

top

of

the

invocation

stack,

it

is

associated

with

the

journal

entry

by

a

record

of

the

program

name

in

the

journal

entry.

The

suppress

decimal

data

exception

field

controls

whether

or

not

errors

detected

in

decimal

data

are

to

result

in

the

signaling

of

the

decimal

data

exception.

When

the

decimal

data

exception

is

not

to

be

suppressed,

decimal

values

input

to

numeric

operations

are

verified

to

contain

valid

decimal

digit

and

sign

codes

with

the

decimal

data

(hex

0C02)

exception

being

signaled

as

the

result

of

detection

of

an

invalid

code.

When

the

decimal

data

exception

is

to

be

suppressed,

decimal

values

input

to

numeric

operations

are

still

verified

to

contain

valid

decimal

digit

and

sign

codes.

However,

detection

of

an

invalid

code

results

in

the

instruction

interpreting

an

invalid

digit

as

a

zero

and

an

invalid

sign

as

positive

rather

than

in

signaling

of

the

exception.

Machine

Interface

Instructions

809

The

control

over

suppressing

of

the

decimal

data

exception

applies

to

only

a

subset

of

the

numeric

operations

which

may

be

performed

by

the

machine.

In

general,

when

suppression

of

the

decimal

data

exception

is

specified,

the

Computation

and

Branching

instructions

which

support

numeric

source

operands

will

suppress

decimal

data

errors

for

ZONED

source

values.

Additionally,

a

few

instructions

also

suppress

decimal

data

errors

for

packed

source

values.

In

all

cases,

the

suppression

is

only

supported

when

all

operands

are

non-Data

Pointer

defined

(early

bound)

source

values.

Specifically,

the

following

defines

the

exact

list

of

instructions

which

support

suppression

of

decimal

data

errors

for

certain

operand

types:

Packed

Source

Operands

supported

Zoned

Source

Operands

supported

Instruction

Mnemonic

Note

yes

ADDN

yes

CMPNV

yes

yes

CVTCN

Only

supported

when

operand

3,

the

numeric

view

to

be

used

for

operand

2,

is

specified

as

a

constant

and

no

DP

defined

operands

are

specified.

yes

CVTDFFP

yes

yes

CVTNC

Only

supported

when

operand

3,

the

numeric

view

to

be

used

for

operand

1,

is

specified

as

a

constant

and

no

DP

defined

operands

are

specified.

yes

yes

CPYNV

Only

supported

when

no

DP

defined

operands

are

specified.

yes

DIV

yes

DIVREM

yes

EDIT

Only

supported

when

no

DP

defined

operands

are

specified.

yes

EXTRMAG

yes

MULT

yes

NEG

yes

REM

yes

SCALE

yes

SUBN

When

suppression

of

the

decimal

data

exception

is

specified,

the

decimal

data

(hex

0C02)

exception

may

still

be

signaled

by

the

machine.

That

is,

other

instructions

and

instruction

combinations

not

listed

above

are

exposed

to

signaling

the

decimal

data

(hex

0C02)

exception

when

invalid

decimal

data

is

encountered

and

they

can’t

be

counted

on

to

fix

up

invalid

decimal

data.

Of

particular

note

here

is

that

specification

of

a

Data

Pointer

as

an

input

operand

on

any

of

the

instructions

in

the

above

list

negates

the

suppression

support

for

the

whole

instruction.

Thus

even

non-Data

Pointer

defined

operands

are

then

exposed

to

detection

of

the

decimal

data

(hex

0C02)

exception.

The

template

extension

existence

field

indicates

whether

or

not

there

is

an

extension

to

the

program

template.

The

suppress

previously

adopted

user

profiles

field

is

used

to

stop

the

backward

search

for

adopted

or

propagated

authorities.

In

other

words,

all

programs

previous

to

this

program’s

invocation

with

adopted

or

propagated

authorities

are

not

considered

as

sources

of

authority.

The

code

generation

options

provide

information

that

allows

the

machine

to

create

a

program

based

on

the

intended

use

of

the

program.

If

the

performance

optimization

field

is

binary

1,

additional

processing

is

performed

which

provides

for

creating

a

program

that

requires

less

processor

resource

for

execution.

This

optimizes

addressability

used

within

the

program.

If

this

attribute

is

set

to

binary

0,

normal

optimization

processing

is

performed.

810

iSeries:

Machine

Interface

Instructions

APIs

The

space

pointer

machine

objects

field

controls

whether

space

pointer

machine

objects

are

allowed

in

the

ODV.

If

the

allow

space

pointer

machine

objects

in

ODV

component

attribute

is

set

to

binary

1,

additional

processing

is

performed

which

allows

for

space

pointer

machine

objects

within

the

program.

If

this

attribute

is

set

to

binary

0,

space

pointer

machine

objects

are

not

allowed

in

the

ODV

component.

The

coincident

operand

overlap

field

controls

whether

or

not

additional

processing

is

performed

during

the

encapsulation

of

certain

computation

and

branching

instructions

which

affects

the

processor

resource

required

to

execute

these

instructions.

The

effect

of

the

option

controls

whether

or

not

the

encapsulation

process

for

these

instructions

should

assume

that

coincident

operand

overlap

may

occur

between

the

source

and

receiver

operands

during

execution

of

the

instruction.

This

assumption

applies

to

cases

of

nonidentical

coincident

operand

overlap

where

the

Create

Program

(CRTPG)

instruction

cannot

determine

if

coincident

operand

overlap

may

occur

during

execution

of

the

instruction.

These

instructions

may

produce

invalid

results

if

nonidentical

coincident

overlap

occurs

during

execution,

but

the

instruction

was

encapsulated

with

the

assumption

that

it

would

not

occur.

Specifying

the

do

not

assume

coincident

operand

overlap

attribute

indicates

that

nonidentical

coincident

overlap

will

not

occur

during

execution

and

therefore

the

receiver

on

an

instruction

may

be

used

as

a

work

area

during

operations

performed

to

produce

the

final

result.

Using

the

receiver

as

a

work

area

does

not

require

the

processor

resource

that

would

be

required

to

move

the

final

result

from

an

internal

work

area

to

the

receiver.

Specifying

the

assume

coincident

operand

overlap

attribute

indicates

that

nonidentical

coincident

operand

overlap

may

occur

during

execution

and

therefore

the

receiver

on

an

instruction

should

not

be

used

as

a

work

area

during

operations

that

produce

the

final

result.

This

can

require

more

processor

resource

for

instruction

execution

but

it

insures

valid

results

if

overlap

occurs.

The

following

is

a

list

of

instructions

that

can

be

affected

by

the

coincident

operand

overlap

option

during

the

encapsulation

process:

v

Add

Logical

Character

v

Add

Numeric

v

And

v

Compute

Math

Function

Using

One

Input

Value

v

Concatenate

v

Convert

Character

To

Numeric

v

Convert

Decimal

Form

To

Floating-Point

v

Convert

External

Form

To

Numeric

Value

v

Convert

Floating-Point

To

Decimal

Form

v

Convert

Numeric

To

Character

v

Copy

Bytes

Left

Adjusted

With

Pad

v

Copy

Bytes

Right

Adjusted

With

Pad

v

Divide

v

Divide

With

Remainder

v

Exclusive

OR

v

Multiply

v

Or

v

Remainder

v

Scale

v

Subtract

Logical

Character

v

Subtract

Numeric

v

Trim

Length

Machine

Interface

Instructions

811

The

teraspace

capable

option

indicates

whether

or

not

the

program

produced

should

be

enabled

to

use

teraspace

addresses.

The

executable

part

compression

field

and

observation

part

compression

field

indicate

whether

the

executable,

observation,

or

both

parts

of

the

program

are

to

be

compressed.

For

materialization,

these

fields

indicate

whether

parts

of

the

program

object

are

currently

compressed.

The

observation

attributes

field

specifies

options

that

control

the

observability

and

debugability

of

the

program.

The

first

six

bits

control

the

availability

of

information

through

the

Materialize

Program

(MATPG)

instruction.

If

a

bit

is

a

binary

1

then

the

corresponding

data

from

the

program

template

is

available

for

materialization.

If

the

program

is

created

without

the

ability

to

materialize

observability

data

then

less

storage

may

be

needed

to

contain

the

program

object.

The

remaining

two

bits

control

whether

certain

performance

measurements

will

be

possible

when

the

program

is

executing.

Prevent

performance

measurements

on

entry/exit

controls

whether

performance

measurements

can

be

made

which

encompass

the

duration

of

the

execution

of

this

program.

Prevent

performance

measurements

on

CALLX

controls

whether

performance

measurements

can

be

made

which

encompass

the

duration

of

a

CALLX

from

this

program

to

another

program.

If

either

bit

is

a

binary

1

then

the

corresponding

measurement

is

prevented.

If

the

ability

to

make

performance

measurements

is

prevented

then

the

program

may

execute

more

quickly.

The

size

of

static

storage

field

defines

the

total

amount

of

static

storage

required

for

this

program’s

static

data.

A

value

of

0

indicates

that

the

amount

of

static

storage

required

is

calculated

based

upon

the

amount

of

static

data

specified

for

the

program.

A

value

greater

than

0

specifies

the

amount

of

static

storage

required.

The

size

of

automatic

storage

field

defines

the

total

amount

of

automatic

storage

required

for

this

program’s

automatic

data.

A

value

of

0

indicates

that

the

amount

of

automatic

storage

required

is

calculated

based

upon

the

amount

of

automatic

data

specified

for

the

program.

A

value

greater

than

0

specifies

the

amount

of

automatic

storage

required.

The

number

of

instructions

fields

(1

and

2)

and

number

of

ODV

entries

fields

(1

and

2)

is

specified

in

different

locations

in

the

template

depending

on

the

version

of

the

program

template.

Template

version

0

limits

the

number

of

instructions

to

a

maximum

of

65,532

and

the

number

of

ODV

entries

to

a

maximum

of

8,191.

Programs

that

exceed

one

of

these

maximums

cannot

be

created

with

template

version

0.

Template

version

1

limits

the

number

of

instructions

to

a

maximum

of

65,532

and

the

number

of

ODV

entries

to

a

maximum

of

65,526.

Programs

that

exceed

one

of

these

maximums

cannot

be

created

with

template

version

1.

All

other

values

for

the

template

version

are

reserved.

The

extended

program

attributes

allow

for

additional

attributes

of

the

program

to

be

specified.

To

suppress

binary

size

exceptions

indicates

the

size

(hex

0C0A)

exception

will

be

suppressed

when

an

overflow

or

underflow

occurs

on

a

computation

and

control

instruction

with

a

receiver

that

is

a

binary

variable

scalar.

The

receiver

will

contain

the

left-truncated

result.

Create

program

for

previous

mandatory

release

indicates

whether

or

not

the

program

is

created

to

run

on

the

previous

mandatory

release

The

collect

object

usage

data

for

programs

field

is

used

to

tell

CALLX

and

XCTL

instructions

whether

or

not

to

collect

object

usage

data

for

the

program

being

called

or

transferred

to.

The

scope

of

resources

field

identifies

the

scope

of

program

resources.

The

machine

will

set

this

field

for

the

affected

invocations,

but

the

definition

of

those

resources

and

the

use

of

this

field

is

determined

by

the

MI

user.

If

the

scope

of

resources

field

is

binary

0,

then

the

resources

will

be

scoped

to

the

invocation

of

812

iSeries:

Machine

Interface

Instructions

APIs

this

program.

If

this

scope

of

resources

field

is

binary

1,

then

the

resources

will

be

scoped

to

the

previous

invocation

of

this

program.

If

the

scope

of

resources

is

also

binary

1

for

that

invocation,

the

resources

will

be

scoped

to

the

next

previous

invocation,

and

so

on.

The

language

version,

release,

and

modification

level

is

used

to

limit

which

version,

release,

and

modification

level

that

this

program

is

allowed

to

be

moved

back

to.

This

attribute

allows

the

compilers

to

specify

the

earliest

release

in

which

the

necessary

runtime

environment

exists

for

the

program

to

execute.

The

program

will

not

be

allowed

to

be

restored

to

a

system

running

at

an

earlier

release

than

the

one

identified.

A

zero

value

for

this

attribute

means

that

no

restriction

is

specified.

The

use

new

BOM

table

format

flag

is

used

to

indicate

which

format

of

the

BOM

table

is

used.

Binary

0

indicates

old

format,

binary

1

indicates

new

format.

These

formats

are

documented

below

in

the

BOM

table

component.

The

instruction

stream

component

consists

of

a

4-byte

binary

value

that

defines

the

total

length

of

the

instruction

stream

component

and

a

variable-length

array

of

2-byte

entries

that

defines

the

instruction

stream.

The

2-byte

entries

define

instruction

operation

codes,

instruction

operation

code

extenders,

or

instruction

operands.

See

Operation

Code

Field

for

the

format

of

the

instructions.

The

instruction

stream

component

is

optional

(that

is,

instructions

need

not

be

defined),

and

its

absence

is

indicated

by

a

value

of

0

in

the

offset

to

instruction

stream

component

entry.

If

the

instruction

stream

is

not

present,

an

End

instruction

is

assumed

and,

should

the

program

be

executed,

an

immediate

Return

External

instruction

results.

The

object

definition

vector

(ODV)

component

consists

of

a

4-byte

binary

value

that

defines

the

total

length

of

the

ODV

and

a

variable-length

vector

of

4-byte

entries.

Each

entry

describes

a

program

object

either

by

a

complete

description

or

through

an

offset

into

the

OES

(object

entry

string)

to

a

location

that

contains

a

description.

If

no

program

objects

are

defined,

the

ODV

can

be

omitted,

and

its

absence

is

noted

with

a

value

of

0

in

the

offset

to

ODV

component

entry.

The

ODV

is

required

if

the

OES

is

present.

The

ODV

entry

string

(OES)

consists

of

a

4-byte

binary

value

that

defines

the

total

length

of

the

OES

and

a

series

of

variable-length

entries

that

are

used

to

complete

an

object

description.

Entries

in

the

ODV

contain

offsets

into

the

OES.

The

OES

is

optional,

and

its

absence

is

indicated

with

a

value

of

0

in

the

offset

to

OES

component

entry.

The

format

of

the

ODT

(object

definition

table)

(ODV

and

OES)

is

defined

in

Program

Object

Specification.

The

BOM

table

component

can

be

used

by

compilers

to

relate

high-level

language

statement

numbers

to

instruction

numbers.

The

BOM

table

has

the

2

formats

depending

on

the

BOM

table

flags.

If

the

flag

indicates

to

use

new

BOM

table

format,

then

the

first

bit

of

the

MI

instruction

number

is

not

a

flag,

so

numbers

up

to

64k-1

can

be

used.

The

BOM

table

has

the

following

OLD

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

MI

instruction

number

UBin(2)

0

0

Format

Bit

0

Machine

Interface

Instructions

813

MININ.htm#HDROPCODE
MINPO.htm
MINPO.htm

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

High

level

statement

number

is

in

character

format

1

=

High

level

statement

number

is

in

numeric

format

0

0

MI

instruction

number

Bits

1-15

2

2

High

level

statement

number

Char(*)

or

Bin(2)

If

this

is

in

character

format,

then

the

length

of

it

is

contained

in

the

header

in

the

length

of

breakpoint

offset

mapping

table

entry.

*

*

—-

End

—-

The

BOM

table

has

the

following

NEW

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

MI

instruction

number

UBin(2)

2

2

Flag

Byte

Char(1)

2

2

Format

Bit

0

0

=

High

level

statement

number

is

in

character

format

1

=

High

level

statement

number

is

in

numeric

format

2

2

Reserved

Bits

1-7

3

3

High

level

statement

number

Char(*)

or

Bin(2)

If

this

is

in

character

format,

then

the

length

of

it

is

contained

in

the

header

in

the

length

of

breakpoint

offset

mapping

table

entry.

*

*

—-

End

—-

The

symbol

table

component

can

be

used

by

compilers

to

relate

high-level

language

names

to

ODT

numbers.

The

symbol

table

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Hashing

table

structure

Char(*)

0

0

Number

of

hash

buckets

Bin(4)

4

4

Hash

bucket

[*]

Bin(4)

Each

hash

bucket

contains

an

offset

to

the

first

symbol

table

base

segment

entry

of

the

chain.

This

offset

is

from

the

beginning

of

the

symbol

table.

The

end

of

the

chain

has

a

-1

value.

Maximum

of

1000

hash

buckets.

*

*

Symbol

table

base

segment

Char(*)

*

*

Offset

to

next

entry

from

beginning

of

the

table

UBin(4)

The

end

of

the

chain

has

a

-1

value.

*

*

ODT

or

MI

number

Bin(2)

814

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

*

*

Indicators

Char(1)

*

*

Instruction

or

ODT

number

Bit

0

0

=

MI

instruction

number

1

=

ODT

number

*

*

Symbol

origin

Bit

1

0

=

Compiler

generated

1

=

Source

program

*

*

Array

specification

Bit

2

0

=

Row

major

1

=

Column

major

*

*

Format

segment

present

Bit

3

0

=

No

1

=

Yes

*

*

Array

segment

present

Bit

4

0

=

No

1

=

Yes

*

*

Extension

segment

present

Bit

5

0

=

No

1

=

Yes

*

*

Reserved

(binary

0)

Bits

6-7

*

*

Length

of

symbol

Char(1)

*

*

Symbol

Char(*)

*

*

—-

End

—-

Other

segments

are

only

present

if

the

bit

in

the

symbol

table

base

segment

is

on.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Symbol

table

format

segment

Char(20)

0

0

Format

program

name

Char(10)

10

A

Format

code

Char(4)

14

E

Locator

variable

ODT#

Bin(2)

16

10

Descriptor

variable

ODT#

Bin(2)

18

12

Reserved

(binary

0)

Char(2)

20

14

—-

End

—-

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Symbol

table

array

segment

Char(*)

0

0

Number

of

array

dimensions

Bin(2)

2

2

Indexes

-

1

per

array

dimension

[*]

Char(8)

Machine

Interface

Instructions

815

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

2

2

Lower

index

Bin(4)

6

6

Upper

index

Bin(4)

*

*

—-

End

—-

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Symbol

table

extended

segment

Char(26)

0

0

Extended

segment

length

Bin(2)

2

2

Structure

level

Char(2

4

4

Data

representation

Char(1

Hex

00

=

See

ODT

Hex

01

=

Binary

Hex

02

=

Zoned

Hex

03

=

Bit

string

5

5

Number

of

total

digits

Bin(2)

7

7

Number

of

fractional

digits

Bin(2)

9

9

Sign

of

number

Char(1

Hex

00

=

Leading

embedded

Hex

01

=

Leading

separated

Hex

02

=

Trailing

separate

10

A

Offset

to

base

segment

entry

of

parent

Bin(4)

The

end

of

the

chain

has

a

-1

value.

14

E

Offset

to

base

segment

entry

of

synonym

Bin(4)

The

end

of

the

chain

has

a

-1

value.

18

12

Indicators

Char(1

18

12

Object

is

a

HLL

pointer

18

12

Array

segment

is

in

multi-dimensioned

array

format

18

12

Reserved

(binary

0)

19

13

Reserved

(binary

0)

Char(7

26

1A

—-

End

—-

Hashing

is

done

by

exclusively

Or’ing

the

first

4

characters

of

the

symbol

name

with

the

second

4

characters

of

the

symbol

name.

The

result

is

then

divided

by

the

number

of

hash

buckets.

If

the

result

is

negative

or

0,

the

number

of

hash

buckets

is

added

to

the

result.

The

result

is

then

used

as

an

index

to

the

hash

bucket.

Format

segment

is

used

by

certain

compilers

to

specify

a

format

program

name

to

be

used

when

formatting

this

variable.

The

offset

to

the

OMT

component

field

specifies

the

location

of

the

OMT

component

in

the

materialized

program

template.

The

OMT

consists

of

a

variable-length

vector

of

6-byte

entries.

The

number

of

entries

is

identical

to

the

number

of

ODV

entries

because

there

is

one

OMT

entry

for

each

ODV

entry.

The

OMT

entries

correspond

one

for

one

with

the

ODV

entries;

each

OMT

entry

gives

a

location

mapping

for

the

object

defined

by

its

associated

ODV

entry.

816

iSeries:

Machine

Interface

Instructions

APIs

The

following

describes

the

formats

for

an

OMT

entry:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

OMT

entry

Char(6)

0

0

Addressability

type

Char(1)

Hex

00=

Base

addressability

is

from

the

start

of

the

static

storage

Hex

01=

Base

addressability

is

from

the

start

of

the

automatic

storage

area

Hex

02=

Base

addressability

is

from

the

start

of

the

storage

area

addressed

by

a

space

pointer

Hex

03=

Base

addressability

is

from

the

start

of

the

storage

area

of

a

parameter

Hex

04=

Base

addressability

is

from

the

start

of

the

storage

area

addressed

by

the

space

pointer

found

in

the

process

communication

object

attribute

of

the

process

associated

with

the

thread

executing

the

program

Hex

FF=

Base

addressability

not

provided.

The

object

is

contained

in

machine

storage

areas

to

which

addressability

cannot

be

given,

or

a

parameter

has

addressability

to

an

object

that

is

in

the

storage

of

another

program

1

1

Offset

from

base

Char(3)

Machine

Interface

Instructions

817

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

For

types

hex

00,

hex

01,

hex

02,

hex

03,

and

hex

04,

this

is

a

3-byte

logical

binary

value

representing

the

offset

to

the

object

from

the

base

addressability.

For

type

hex

FF,

the

value

is

binary

0.

4

4

Base

addressability

Char(2)

For

types

hex

02

and

hex

03,

this

is

a

2-byte

binary

field

containing

the

number

of

the

OMT

entry

for

the

space

pointer

or

a

parameter

that

provides

base

addressability

for

this

object.

For

types

hex

00,

hex

01,

hex

04

and

hex

FF,

the

value

is

binary

0.

6

6

—-

End

—-

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Retrieve

–

–

Operand

2
v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Operand

2

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0607

Unsupported

Space

Use

818

iSeries:

Machine

Interface

Instructions

APIs

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220A

Program

Not

Eligible

for

Operation

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

Machine

Interface

Instructions

819

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Footnotes:

1

The

previous

mandatory

release

is

release

N-1,

mod

level

zero

when

release

N

is

the

current

release..

(For

version

4,

release

5.0,

the

previous

mandatory

release

is

version

4,

release

4.0.).

Materialize

Program

Name

(MATPGMNM)

Bound

program

access

Built-in

number

for

MATPGMNM

is

473.

MATPGMNM

(

receiver_template

:

address

)

Description:

This

instruction

will

return

the

program

and

context

names

in

operand

1

of

the

bound

program,

bound

service

program,

or

Java

program

associated

with

the

currently

executing

procedure.

Operand

1

must

be

aligned

on

a

16-byte

boundary;

otherwise

a

boundary

alignment

(hex

0602)

exception

is

signaled.

The

format

of

the

receiver

template

is:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

by

the

user

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Format

Bin(4)

0

=

Program

in

context

format

12

C

Reserved

Char(4)

16

10

Formatted

data

Char(*)

*

*

—-

End

—-

820

iSeries:

Machine

Interface

Instructions

APIs

The

formatted

data

field

is

structured

based

on

the

value

specified

in

the

format

field.

For

format

=

0,

the

formatted

data

field

has

the

following

structure.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Bound

program

context

object

type

Char(1)

17

11

Bound

program

context

object

subtype

Char(1)

18

12

Context

name

Char(30)

48

30

Bound

program

object

type

Char(1)

49

31

Bound

program

object

subtype

Char(1)

50

32

Program

name

Char(30)

80

50

—-

End

—-

The

first

4

bytes

that

are

materialized

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

16

causes

a

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

that

are

materialized

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

exceptions

(other

than

the

materialization

length

and

boundary

alignment

exceptions

described

previously)

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization.

For

format

0,

if

any

field

cannot

be

completely

materialized,

blanks

will

be

returned

in

the

partial

field.

If

the

program

is

logically

destroyed

before

this

instruction

is

executed,

the

context

name

will

be

returned

as

all

blank

characters,

and

the

context

object

type

and

context

object

subtype

fields

will

be

returned

as

zeroes.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

Machine

Interface

Instructions

821

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Queue

Attributes

(MATQAT)

Op

Code

(Hex)

Operand

1

Operand

2

0336

Receiver

Queue

Operand

1:

Space

pointer.

822

iSeries:

Machine

Interface

Instructions

APIs

Operand

2:

System

pointer.

Bound

program

access

Built-in

number

for

MATQAT

is

44.

MATQAT

(

receiver

:

address

queue

:

address

of

system

pointer

)

Description:

The

attributes

of

the

queue

specified

by

operand

2

are

materialized

into

the

receiver

specified

by

operand

1.

The

receiver

must

be

aligned

on

a

16-byte

multiple.

The

format

of

the

materialized

queue

attributes

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Object

identification

Char(32)

8

8

Object

type

Char(1)

9

9

Object

subtype

Char(1)

10

A

Object

name

Char(30)

40

28

Object

creation

options

Char(4)

40

28

Existence

attributes

Bit

0

0

=

Temporary

1

=

Permanent

40

28

Space

attribute

Bit

1

0

=

Fixed-length

1

=

Variable-length

40

28

Initial

context

Bit

2

0

=

Addressability

not

in

context

1

=

Addressability

in

context

40

28

Access

group

Bit

3

0

=

Not

a

member

of

access

group

1

=

Member

of

access

group

40

28

Reserved

(binary

0)

Bits

4-12

40

28

Initialize

space

Bit

13

40

28

Reserved

(binary

0)

Bits

14-31

44

2C

Reserved

(binary

0)

Char(4)

48

30

Size

of

space

Bin(4)

52

34

Initial

value

of

space

Char(1)

53

35

Performance

class

Char(4)

53

35

Space

alignment

Bit

0

Machine

Interface

Instructions

823

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

The

space

associated

with

the

object

is

allocated

to

allow

proper

alignment

of

pointers

at

16-byte

alignments

within

the

space.

1

=

The

space

associated

with

the

object

is

allocated

to

allow

proper

alignment

of

pointers

at

16-byte

alignments

within

the

space

as

well

as

to

allow

proper

alignment

of

input/output

buffers

at

512-byte

alignments

within

the

space.
Ignore

the

value

of

this

field

when

the

machine

chooses

space

alignment

field

has

a

value

of

binary

1.

53

35

Reserved

(binary

0)

Bits

1-2

53

35

Machine

chooses

space

alignment

Bit

3

0

=

The

space

alignment

indicated

by

the

space

alignment

field

is

in

effect.

1

=

The

machine

chose

the

space

alignment

most

beneficial

to

performance,

which

may

have

reduced

maximum

space

capacity.

The

alignment

chosen

is

a

multiple

of

512.

Ignore

the

value

of

the

space

alignment

field.

53

35

Reserved

(binary

0)

Bit

4

53

35

Main

storage

pool

selection

Bit

5

0

=

Process

default

main

storage

pool

is

used

for

object.

1

=

Machine

default

main

storage

pool

is

used

for

object.

53

35

Reserved

(binary

0)

Bit

6

53

35

Block

transfer

on

implicit

access

state

modification

Bit

7

0

=

Transfer

the

minimum

storage

transfer

size

for

this

object.

1

=

Transfer

the

machine

default

storage

transfer

size

for

this

object.

53

35

Reserved

(binary

0)

Bits

8-31

57

39

Reserved

(binary

0)

Char(7)

64

40

Context

System

pointer

80

50

Access

group

System

pointer

96

60

Queue

attributes

Char(1)

96

60

Message

content

Bit

0

0

=

Contains

scalar

data

only

1

=

Contains

pointers

and

scalar

data

96

60

Queue

type

Bits

1-2

00

=

Keyed

01

=

Last

in,

first

out

(LIFO)

10

=

First

in,

first

out

(FIFO)

96

60

Queue

overflow

action

Bit

3

824

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Signal

exception

1

=

Extend

queue

96

60

Choose

maximum

number

of

extends

Bit

4

0

=

Machine

chooses

maximum

number

of

extends

1

=

User

specifies

maximum

number

of

extends

96

60

Reclaim

storage

Bit

5

0

=

Do

not

reclaim

queue

storage

1

=

Reclaim

storage

when

messages

enqueued

is

zero

96

60

Reserved

(binary

0)

Bits

6-7

97

61

Current

maximum

number

of

messages

Bin(4)

101

65

Current

number

of

messages

enqueued

Bin(4)

105

69

Extension

value

Bin(4)

109

6D

Key

length

Bin(2)

111

6F

Maximum

size

of

message

to

be

enqueued

Bin(4)

115

73

Reserved

(binary

0)

Char(1)

116

74

Maximum

number

of

extends

Bin(4)

120

78

Current

number

of

extends

Bin(4)

124

7C

Initial

number

of

messages

Bin(4)

128

80

—-

End

—-

The

first

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception.

The

second

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

exceptions

(other

than

the

materialization

length

invalid

(hex

3803)

exception

described

previously)

are

signaled

when

the

receiver

contains

insufficient

area

for

the

materialization.

The

following

fields

in

the

template

are

returned.

No

queue

attributes

are

modified

by

the

MATQAT

instruction.

The

object

identification

specifies

the

symbolic

name

that

identifies

the

queue

within

the

machine.

An

object

type

of

hex

0A

is

implicitly

supplied

by

the

machine.

The

object

identification

is

used

to

identify

the

object

on

materialize

instructions

as

well

as

to

locate

the

object

in

a

context

that

addresses

the

object.

If

the

created

object

is

permanent,

it

is

owned

by

the

user

profile

governing

thread

execution

when

the

queue

was

created.

The

owning

user

profile

is

implicitly

assigned

all

private

authority

states

for

the

object.

The

storage

occupied

by

the

created

object

is

charged

to

this

owning

user

profile.

If

the

created

object

is

temporary,

no

owning

user

profile

exists,

and

all

authority

states

are

assigned

as

public.

Storage

occupied

by

the

created

object

is

charged

to

the

creating

process.

The

existence

attribute

specifies

whether

the

queue

is

to

be

created

as

temporary

or

permanent.

A

temporary

queue,

if

not

explicitly

destroyed

by

the

user,

is

implicitly

destroyed

by

the

machine

when

machine

processing

is

terminated.

Machine

Interface

Instructions

825

If

a

space

is

associated

with

the

queue,

the

space

may

be

fixed

or

variable

in

size,

as

specified

by

the

space

attribute.

The

current

allocation

is

as

specified

in

the

size

of

space

field.

The

machine

allocates

a

space

of

at

least

the

size

specified

at

queue

creation;

the

actual

size

allocated

depends

on

an

algorithm

defined

by

a

specific

implementation.

If

the

initial

context

attribute

field

indicates

that

addressability

is

inserted

in

a

context,

the

context

field

contains

a

system

pointer

that

identifies

the

context

where

addressability

to

the

queue

is

placed.

If

the

access

group

creation

attribute

field

indicates

member

of

access

group,

the

access

group

field

contains

a

system

pointer

that

identifies

the

access

group

in

which

the

object

was

created.

Only

temporary

queues

may

be

created

in

an

access

group.

The

initialize

space

creation

option

controls

whether

or

not

the

space

is

to

be

initialized.

When

initialize

is

specified,

each

byte

of

the

space

is

initialized

to

the

value

specified

by

the

initial

value

of

space

field.

Additionally,

when

the

space

is

extended

in

size,

this

byte

value

is

also

used

to

initialize

the

new

allocation.

When

do

not

initialize

is

specified,

the

initial

value

of

space

field

is

ignored

and

the

initial

value

of

the

bytes

of

the

space

are

unpredictable.

When

do

not

initialize

is

specified

for

a

space,

internal

machine

algorithms

do

ensure

that

any

storage

resources

last

used

for

allocations

to

another

object

which

are

reused

to

satisfy

allocations

for

the

space

are

reset

to

a

machine

default

value

to

avoid

possible

access

of

data

which

may

have

been

stored

in

the

other

object.

To

the

contrary,

reuse

of

storage

areas

previously

used

by

the

space

object

are

not

reset,

thereby

exposing

subsequent

reallocations

of

those

storage

areas

within

the

space

to

access

of

the

data

which

was

previously

stored

within

them.

The

message

content

attribute

specifies

whether

the

messages

to

be

enqueued

will

contain

pointers

and

scalar

data,

or

scalar

data

only.

If

the

messages

are

to

contain

pointers,

the

message

text

operand

on

Enqueue

and

Dequeue

instructions

must

be

aligned

on

16-byte

boundaries.

The

queue

type

attribute

establishes

the

basic

sequence

in

which

messages

are

dequeued

from

the

queue.

The

current

number

of

messages

enqueued

field

contains

the

number

of

messages

currently

enqueued

on

the

queue.

The

queue

overflow

action

field

establishes

the

machine

action

when

the

number

of

messages

resident

on

the

queue

(enqueued

and

not

yet

dequeued)

exceeds

the

current

maximum

capacity

of

the

queue.

This

value

is

initially

established

by

the

value

specified

in

the

maximum

number

of

messages

field.

The

queue

full

(hex

2602)

exception

is

signalled

when

the

number

of

resident

messages

exceeds

this

field

unless

the

extend

queue

option

is

specified.

When

the

extend

queue

option

is

specified

for

the

queue

overflow

action

field,

the

value

of

the

current

maximum

number

of

messages

field

is

increased

by

the

amount

specified

by

the

extension

value

field

each

time

the

number

of

enqueued

messages

exceeds

the

value

of

the

current

maximum

number

of

messages

field.

When

the

extend

queue

option

is

specified

for

the

queue

overflow

action

field,

the

extension

value

field

contains

a

value

greater

than

0.

If

the

signal

exception

option

is

specified,

the

extension

value

field

is

ignored

and

the

current

maximum

number

of

messages

field

contains

a

value

greater

than

zero.

The

choose

maximum

number

of

extends

field

allows

the

user

to

overide

the

value

for

the

maximum

number

of

extends

to

the

queue

which

would

otherwise

be

chosen

by

the

machine.

If

this

field

specifies

machine

chooses

maximum

number

of

extends,

then

the

number

of

extends

will

be

chosen

such

that

the

maximum

number

of

messages

for

the

queue

will

never

be

greater

than

what

can

be

completely

materialized

into

16MB

or

require

overall

object

size

greater

than

32MB.

The

overall

object

size

depends

upon

the

amount

of

storage

needed

for

queue

definition

plus

entries

enqueued

to

queue

and

excludes

the

size

of

the

associated

space,

if

any.

If

this

field

specifies

user

specifies

maximum

number

of

extends,

the

queue

will

be

extended

by

the

number

of

messages

specified

by

the

extension

value

field

until

the

number

of

extends

reaches

the

value

returned

by

the

maximum

number

of

extends

field

is

reached.

The

current

number

of

extends

field

specifies

the

number

of

times

the

queue

has

currently

been

extended.

826

iSeries:

Machine

Interface

Instructions

APIs

The

reclaim

storage

field

specifies

whether

storage

reclaim

will

be

attempted

when

the

number

of

currently

enqueued

messages

on

the

queue

reaches

zero.

If

this

field

specifies

reclaim

storage

when

messages

enqueued

is

zero

then

the

size

of

the

queue

will

be

reduced

to

the

number

of

messages

specified

by

the

initial

number

of

messages

field

when

the

queue

was

created.

The

current

number

of

extends

field

is

reset

to

zero

after

the

queue

is

reclaimed.

If

this

field

specifies

do

not

reclaim

queue

storage

then

no

action

is

taken.

The

key

length

field

establishes

the

size

of

the

queue’s

key.

The

key

can

contain

pointers,

but

the

pointers

are

considered

to

be

scalar

data

when

they

are

placed

on

the

queue

by

an

Enqueue

instruction.

If

the

queue

type

field

specifies

LIFO

or

FIFO,

the

key

length

can

be

equal

to

or

greater

than

0;

however,

the

queue

is

not

treated

as

a

keyed

queue.

The

size

of

all

messages

to

be

enqueued

is

established

by

the

maximum

size

of

messages

to

be

enqueued

field.

The

Enqueue

instruction

may

specify

a

size

(in

the

message

prefix)

that

is

greater

than

this

value,

but

the

message

is

truncated

to

this

length.

The

maximum

size

of

messages

to

be

enqueued

field

has

a

value

of

0

or

greater,

up

to

a

maximum

value

of

64

K

bytes.

The

maximum

size

of

a

queue,

excluding

its

associated

space,

cannot

exceed

2

gigabytes.

This

value

includes

machine

overhead

associated

with

the

queue.

Limitations

(Subject

to

Change):

The

following

are

limits

that

apply

to

the

functions

performed

by

this

instruction.

These

limits

may

change

on

different

implementations

of

the

machine.

The

size

of

the

object

specific

portion

of

this

object

is

limited

to

a

maximum

of

2

gigabytes.

This

size

is

dependent

upon

the

amount

of

storage

needed

for

the

queue

definition

plus

entries

enqueued

to

queue

and

excludes

the

size

of

the

associated

space,

if

any.

The

size

of

the

associated

space

for

this

object

is

limited

to

a

maximum

of

16MB-32

bytes

if

the

machine

does

not

choose

the

space

alignment

and

0

is

specified

for

the

space

alignment

field.

The

size

of

the

associated

space

for

this

object

is

limited

to

a

maximum

of

16MB-512

bytes

if

the

machine

does

not

choose

the

space

alignment

and

1

is

specified

for

the

space

alignment

field.

The

maximum

size

of

an

associated

space

for

this

object

if

the

machine

choose

the

space

alignment

is

returned

by

option

Hex

0003

of

MATMDATA.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Operational

–

–

Operand

2
v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Operand

2

–

Contexts

referenced

for

address

resolution

Machine

Interface

Instructions

827

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

828

iSeries:

Machine

Interface

Instructions

APIs

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Queue

Messages

(MATQMSG)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

033B

Receiver

Queue

Message

selection

template

Operand

1:

Space

pointer.

Operand

2:

System

pointer.

Operand

3:

Character(16)

scalar.

Bound

program

access

Built-in

number

for

MATQMSG

is

45.

MATQMSG

(

receiver

:

address

queue

:

address

of

system

pointer

message_selection_template

:

address

)

Description:

Materialize

selected

messages

on

a

queue.

One

or

more

messages

on

the

queue

specified

by

operand

2

are

selected

according

to

information

provided

in

operand

3

and

materialized

into

operand

1.

The

number

of

messages

materialized

and

the

amount

of

key

and

message

text

data

materialized

for

each

message

is

governed

by

the

message

selection

template.

Note

that

the

list

of

messages

on

a

queue

is

a

dynamic

attribute

and

may

be

changing

on

a

continual

basis.

The

materialization

of

messages

provided

by

this

instruction

is

just

a

picture

of

the

status

of

the

queue

at

the

point

of

interrogation

by

this

instruction.

As

such,

the

actual

status

of

the

queue

may

differ

from

that

described

in

the

materialization

when

subsequent

instructions

use

the

information

in

the

template

as

a

basis

for

operations

against

the

queue.

Operand

1

specifies

a

space

that

is

to

receive

the

materialized

attribute

values.

Operand

2

is

a

system

pointer

identifying

the

queue

from

which

the

messages

are

to

be

materialized.

Operand

3

is

a

character

(16)

scalar

specifying

which

messages

are

to

be

materialized.

Machine

Interface

Instructions

829

The

operand

1

space

pointer

must

address

a

16-byte

boundary.

The

materialization

template

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Materialization

data

Char(4)

8

8

Count

of

messages

materialized

Bin(4)

12

C

Queue

data

Char(12)

12

C

Count

of

messages

on

the

queue

Bin(4)

16

10

Maximum

message

size

Bin(4)

20

14

Key

size

Bin(4)

24

18

Reserved

Char(8)

32

20

Message

data

[*]

Char(*)

(repeated

for

each

message)

32

20

Message

attributes

Char(16)

32

20

Message

enqueue

time

Char(8)

40

28

Message

length

Bin(4)

44

2C

Reserved

Char(4)

48

30

Message

key

Char(*)

*

*

Message

text

Char(*)

*

*

—-

End

—-

The

first

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

exceptions

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization,

other

than

the

materialization

length

invalid

(hex

3803)

exception

described

previously.

The

maximum

message

size

and

key

size

are

values

specified

when

the

queue

was

created.

If

the

queue

is

not

a

keyed

queue,

the

value

materialized

for

the

key

size

is

zero.

The

length

of

the

message

key

and

message

text

fields

is

determined

by

values

supplied

in

operand

3,

message

selection

data.

If

the

length

supplied

in

operand

3

exceeds

the

actual

data

length,

the

remaining

space

will

be

padded

with

binary

zeros.

The

message

selection

template

identified

by

operand

3

must

be

at

least

16

bytes

and

must

be

on

a

16-byte

boundary.

The

format

of

the

message

selection

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Message

selection

Char(2)

0

0

Type

Bits

0-3

830

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0001

=

All

messages

0010

=

First

0100

=

Last

1000

=

Keyed

All

other

values

are

reserved

0

0

Key

relationship

(if

needed)

Bits

4-7

0010

=

Greater

than

0100

=

Less

than

0110

=

Not

equal

1000

=

Equal

1010

=

Greater

than

or

equal

1100

=

Less

than

or

equal

All

other

values

are

reserved

0

0

Reserved

Bits

8-15

2

2

Lengths

Char(8)

2

2

Number

of

key

bytes

to

materialize

Bin(4)

6

6

Number

of

message

text

bytes

to

materialize

Bin(4)

10

A

Reserved

Char(6)

16

10

Key

(if

needed)

Char(*)

*

*

—-

End

—-

The

message

selection

type

must

not

specify

keyed

if

the

queue

was

not

created

as

a

keyed

queue.

Both

of

the

fields

specified

under

lengths

must

be

zero

or

an

integer

multiple

of

16.

The

maximum

value

allowed

for

the

key

length

is

256.

The

maximum

value

allowed

for

the

message

text

is

65,536.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Retrieve

–

–

Operand

2
v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialization

–

–

Operand

2

–

Contexts

referenced

for

address

resolution

Machine

Interface

Instructions

831

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

832

iSeries:

Machine

Interface

Instructions

APIs

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Resource

Management

Data

(MATRMD)

Op

Code

(Hex)

Operand

1

Operand

2

0352

Receiver

Control

data

Operand

1:

Space

pointer.

Operand

2:

Character(8)

scalar.

Bound

program

access

Built-in

number

for

MATRMD

is

69.

MATRMD

(

receiver

:

address

control_data

:

address

)

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Description:

The

data

items

requested

by

operand

2

are

materialized

into

the

receiving

object

specified

by

operand

1.

Operand

2

is

an

8-byte

character

scalar.

The

first

byte

identifies

the

generic

type

of

information

being

materialized,

and

the

remaining

7

bytes

further

qualify

the

information

desired.

Unless

otherwise

stated,

the

data

items

requested

for

operand

2

are

for

the

current

partition.

Machine

Interface

Instructions

833

Operand

1

contains

the

materialization

and

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Time

of

day

Char(8)

16

10

Resource

management

data

Char(*)

*

*

—-

End

—-

The

remainder

of

the

materialization

depends

on

operand

2

and

on

the

machine

implementation.

The

following

values

are

allowed

for

operand

2:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Selection

option

Char(1)

834

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

Hex

01

=

Materialize

original

processor

utilization

data

(option

hex

26

is

preferred)

(See

″Original

Processor

Utilization

(Hex

01)″

(page

836))

Hex

03

=

Materialize

storage

management

counters

(See

″Storage

Management

Counters

(Hex

03)″

(page

838))

Hex

04

=

Materialize

storage

transient

pool

information

(See

″Storage

Transient

Pool

Information

(Hex

04)″

(page

839))

Hex

08

=

Materialize

machine

address

threshold

data

(See

″Machine

Address

Threshold

Data

(Hex

08)″

(page

839))

Hex

09

=

Materialize

main

storage

pool

information

(See

″Main

Storage

Pool

Information

(Hex

09)″

(page

840))

Hex

0A

=

Materialize

multiprogramming

level

(MPL)

control

information

with

2-byte

counts

(option

hex

16

is

preferred)

(See

″MPL

Control

Data

with

2-byte

counts

(Hex

0A)″

(page

841))

Hex

0C

=

Materialize

machine

reserved

storage

pool

information

(See

″Machine

Reserved

Storage

Pool

Information

(Hex

0C)″

(page

843))

Hex

11

=

(Ignored)

(See

″User

storage

area

1

-

OBSOLETE

(Hex

11)″

(page

843))

Hex

12

=

Materialize

auxiliary

storage

information

for

on-line

ASPs.

(See

″Auxiliary

Storage

Information

(Hex

12)″

(page

843))

Hex

13

=

Materialize

original

multiprocessor

utilizations

(option

hex

28

is

preferred)

(See

″Original

Multiprocessor

utilizations

(Hex

13)″

(page

859))

Hex

14

=

Materialize

storage

pool

tuning

(See

″Storage

pool

tuning

(Hex

14)″

(page

861))

Hex

15

=

Materialize

delay

cost

scheduling

information

(See

″Delay

cost

scheduling

information

(Hex

15)″

(page

865))

Hex

16

=

Materialize

MPL

control

information

(4-byte

counts)

(See

″MPL

Control

Data

(Hex

16)″

(page

865))

Hex

17

=

Materialize

allocation

and

de-allocation

counts

per

task

and

thread

(See

″Allocation

and

De-allocation

counts

per

task

and

thread

(Hex

17)″

(page

867))

Hex

18

=

Materialize

processor

multi-tasking

mode

(See

″Processor

Multi-tasking

mode

(hex

18)″

(

869))

Machine

Interface

Instructions

835

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

Hex

20

=

Materialize

auxiliary

storage

information

including

varied-off

independent

ASPs

(See

″Auxiliary

Storage

information

including

offline

Independent

ASPs

(Hex

20)″

(page

883))

Hex

22

=

Materialize

auxiliary

storage

pool

information

including

varied-off

independent

ASPs

(See

″Auxiliary

Storage

Pool

Information

including

offline

Independent

ASPs

(Hex

22)″

(page

899))

Hex

23

=

Materialize

ASP

group

information

(See

″Auxiliary

Storage

Pool

Group

Information

(Hex

23)″

(page

901))

Hex

24

=

Materialize

dynamic

thread

resources

affinity

adjustment

(page

″Dynamic

Thread

Resources

Affinity

Adjustment

(Hex

24)″

(page

903))

Hex

25

=

Materialize

ASP

space

information

(See

″Auxiliary

Storage

Pool

Space

Information

(Hex

25)″

(page

904))

Hex

26

=

Materialize

processor

utilization

data

(See

″Processor

Utilization

Data

(Hex

26)″

(page

905))

Hex

27

=

Materialize

shared

processor

pool

information

(See

″Shared

Processor

Pool

Information

(Hex

27)″

(page

907))

Hex

28

=

Materialize

multiprocessor

utilizations

(See

″Multiprocessor

utilizations

(Hex

28)″

(page

908))

Hex

29

=

Materialize

machine

resource

portions

(page

″Materialize

machine

resource

portions

(Hex

29)″

(page

909))

Hex

2A

=

Materialize

interrupt

polling

control

(page

″Materialize

interrupt

polling

control

(Hex

2A)″

(page

909))

1

1

Reserved

(binary

0)

Char(7)

8

8

—-

End

—-

The

following

defines

the

formats

and

values

associated

with

each

of

the

above

materializations

of

resource

management

data.

Original

Processor

Utilization

(Hex

01):

836

iSeries:

Machine

Interface

Instructions

APIs

Note:

Option

hex

26

is

the

preferred

method

of

materializing

processor

utilization

data.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Processor

time

since

IPL

(initial

program

load)

Char(8)

24

18

Secondary

workload

processor

time

since

IPL

Char(8)

32

20

Database

processor

time

since

IPL

Char(8)

40

28

Database

threshold

UBin(2)

42

2A

Database

limit

UBin(2)

44

2C

Reserved

(binary

0)

UBin(4)

48

30

Interactive

processor

time

since

IPL

Char(8)

56

38

Interactive

threshold

UBin(2)

58

3A

Interactive

limit

UBin(2)

60

3C

Reserved

(binary

0)

UBin(4)

64

40

—-

End

—-

Processor

time

since

IPL

is

the

total

amount

of

processor

time

used,

both

by

threads

and

internal

machine

functions,

since

IPL.

The

significance

of

bits

within

the

field

is

the

same

as

that

defined

for

the

time-of-day

clock.

On

a

machine

with

more

than

one

active

virtual

processor,

the

value

returned

will

be

the

average

of

the

processor

time

used

since

IPL

by

all

virtual

processors.

Note:

For

the

definition

of

virtual

processor,

see

MATMATR

option

hex

01E0.

Secondary

workload

processor

time

since

IPL

is

the

total

processor

time,

used

for

workloads

that

can

not

fully

exploit

dedicated

server

resources,

since

IPL.

If

a

system

is

not

a

dedicated

server,

a

value

of

hex

0000000000000000

is

returned.

The

significance

of

bits

within

this

field

is

the

same

as

that

defined

for

the

time-of-day

clock.

On

a

machine

with

more

than

one

active

virtual

processor,

the

value

returned

will

be

the

average

of

the

processor

time

used

since

IPL

by

all

virtual

processors.

Database

processor

time

since

IPL

is

the

total

processor

time,

used

performing

database

processing,

since

IPL.

If

the

system

does

not

support

this

metric,

a

value

of

hex

0000000000000000

is

returned.

If

the

system

does

support

this

and

needs

to

return

a

value

of

0,

a

value

of

hex

0000000000001000

is

returned.

For

all

other

cases,

the

significance

of

bits

within

this

field

is

the

same

as

that

defined

for

the

time-of-day

clock.

On

a

machine

with

more

than

one

active

virtual

processor,

the

value

returned

will

be

the

average

of

the

processor

time

used

since

IPL

by

all

virtual

processors.

Database

threshold

is

the

highest

level

of

database

processor

utilization

which

can

be

sustained

without

causing

a

disproportionate

increase

in

system

overhead.

The

value

returned

is

the

fraction

of

processor

capacity,

expressed

in

tenths

of

a

percent.

For

example,

a

value

of

237

means

that

the

threshold

is

23.7%.

On

a

machine

with

no

limit

on

database

utilization,

the

value

returned

will

be

1000

(100%).

Database

limit

is

the

maximum

sustainable

level

of

database

processor

utilization.

The

value

returned

is

the

fraction

of

processor

capacity,

expressed

in

tenths

of

a

percent.

For

example,

a

value

of

275

means

that

the

limit

is

27.5%.

On

a

machine

with

no

limit

on

database

utilization,

the

value

returned

will

be

1000

(100%).

Interactive

processor

time

since

IPL

is

the

total

processor

time,

used

by

interactive

processes,

since

IPL.

If

the

system

does

not

support

this

metric,

a

value

of

hex

0000000000000000

is

returned.

If

the

system

does

support

this

and

needs

to

return

a

value

of

0,

a

value

of

hex

0000000000001000

is

returned.

For

all

other

cases,

the

significance

of

bits

within

this

field

is

the

same

as

that

defined

for

the

time-of-day

clock.

On

a

machine

with

more

than

one

active

virtual

processor,

the

value

returned

will

be

the

average

of

the

processor

time

used

since

IPL

by

all

virtual

processors.

An

interactive

process

is

any

process

doing

5250

display

device

I/O.

For

additional

information

on

interactive

processes,

see

manual

SC41-0607

iSeries(TM)

Performance

Capabilities

Reference

manual

which

is

available

in

the

iSeries

Information

Center.

Machine

Interface

Instructions

837

Interactive

threshold

is

the

highest

level

of

interactive

processor

utilization

which

can

be

sustained

without

causing

a

disproportionate

increase

in

system

overhead.

The

value

returned

is

the

fraction

of

processor

capacity,

expressed

in

tenths

of

a

percent.

For

example,

a

value

of

237

means

that

the

threshold

is

23.7%.

On

a

machine

with

no

limit

on

interactive

utilization,

the

value

returned

will

be

1000

(100%).

Interactive

limit

is

the

maximum

sustainable

level

of

interactive

processor

utilization.

The

machine

determines

the

interactive

limit

based

on

the

interactive

feature.

The

value

returned

is

the

fraction

of

processor

capacity,

expressed

in

tenths

of

a

percent.

For

example,

a

value

of

275

means

that

the

limit

is

27.5%.

On

a

machine

with

no

limit

on

interactive

utilization,

the

value

returned

will

be

1000

(100%).

In

a

partition

sharing

physical

processors,

processor

time

since

IPL,

secondary

workload

processor

time

since

IPL,

database

processor

time

since

IPL,

and

interactive

processor

time

since

IPL

are

scaled

appropriately

so

that

the

CPU

utilization

calculations

can

be

done

as

if

the

partition

was

using

dedicated

processors.

Storage

Management

Counters

(Hex

03):

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Access

pending

Bin(2)

18

12

Storage

pool

delays

Bin(2)

20

14

Directory

look-up

operations

Bin(4)

24

18

Directory

page

faults

Bin(4)

28

1C

Access

group

member

page

faults

Bin(4)

32

20

Microcode

page

faults

Bin(4)

36

24

Microtask

read

operations

Bin(4)

40

28

Microtask

write

operations

Bin(4)

44

2C

Reserved

Bin(4)

48

30

—-

End

—-

Access

pending

is

a

count

of

the

number

of

times

that

a

paging

request

must

wait

for

the

completion

of

a

different

request

for

the

same

page.

Storage

pool

delays

is

a

count

of

the

number

of

times

that

threads

have

been

momentarily

delayed

by

the

unavailability

of

a

main

storage

frame

in

the

proper

pool.

Directory

look-up

operations

is

a

count

of

the

number

of

times

that

auxiliary

storage

directories

were

interrogated,

exclusive

of

storage

allocation

or

de-allocation.

Directory

page

faults

is

a

count

of

the

number

of

times

that

a

page

of

the

auxiliary

storage

directory

was

transferred

to

main

storage,

to

perform

either

a

look-up

or

an

allocation

operation.

Access

group

member

page

faults

is

a

count

of

the

number

of

times

that

a

page

of

an

object

contained

in

an

access

group

was

transferred

to

main

storage.

Microcode

page

faults

is

a

count

of

the

number

of

times

a

page

of

LIC

was

transferred

to

main

storage.

Microtask

read

operations

is

a

count

of

the

number

of

transfers

of

one

or

more

pages

of

data

from

auxiliary

main

storage

on

behalf

of

a

task

rather

than

a

thread.

Microtask

write

operations

is

a

count

of

the

number

of

transfers

of

one

or

more

pages

of

data

from

main

storage

to

auxiliary

storage

on

behalf

of

a

task,

rather

than

a

thread.

838

iSeries:

Machine

Interface

Instructions

APIs

Storage

Transient

Pool

Information

(Hex

04):

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Storage

pool

to

be

used

for

the

transient

pool

Bin(2)

18

12

—-

End

—-

The

pool

number

materialized

is

the

number

of

the

main

storage

pool,

which

is

being

used

as

the

transient

storage

pool.

A

value

of

0

indicates

that

the

transient

pool

attribute

is

being

ignored.

Machine

Address

Threshold

Data

(Hex

08):

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Total

permanent

addresses

possible

Char(8)

24

18

Total

temporary

addresses

possible

Char(8)

32

20

Permanent

addresses

remaining

Char(8)

40

28

Temporary

addresses

remaining

Char(8)

48

30

Permanent

addresses

remaining

threshold

Char(8)

56

38

Temporary

addresses

remaining

threshold

Char(8)

64

40

Total

permanent

4GB

addresses

possible

Char(8)

72

48

Total

permanent

256MB

addresses

possible

Char(8)

80

50

Total

temporary

4GB

addresses

possible

Char(8)

88

58

Total

temporary

256MB

addresses

possible

Char(8)

96

60

Permanent

4GB

addresses

remaining

Char(8)

104

68

Permanent

256MB

addresses

remaining

Char(8)

112

70

Temporary

4GB

addresses

remaining

Char(8)

120

78

Temporary

256MB

addresses

remaining

Char(8)

128

80

Permanent

4GB

addresses

remaining

threshold

Char(8)

136

88

Permanent

256MB

addresses

remaining

threshold

Char(8)

144

90

Temporary

4GB

addresses

remaining

threshold

Char(8)

152

98

Temporary

256MB

addresses

remaining

threshold

Char(8)

160

A0

—-

End

—-

Total

permanent

addresses

possible

is

the

maximum

number

of

permanent

addresses

for

the

machine.

Total

temporary

addresses

possible

is

the

maximum

number

of

temporary

addresses

for

the

machine.

Permanent

addresses

remaining

is

the

number

of

permanent

addresses

that

can

still

be

created.

Temporary

addresses

remaining

is

the

number

of

temporary

addresses

that

can

still

be

created.

Permanent

addresses

remaining

threshold

is

a

number

that,

when

it

exceeds

the

number

of

permanent

addresses

remaining,

causes

an

event

to

be

signaled.

Temporary

addresses

remaining

threshold

is

a

number

that,

when

it

exceeds

the

number

of

temporary

addresses

remaining,

causes

an

event

to

be

signaled.

Total

permanent

4GB

addresses

possible

is

the

maximum

number

of

permanent

4GB

addresses

for

the

machine.

Total

permanent

256MB

addresses

possible

is

the

maximum

number

of

permanent

256MB

addresses

for

the

machine.

Machine

Interface

Instructions

839

Total

temporary

4GB

addresses

possible

is

the

maximum

number

of

temporary

4GB

addresses

for

the

machine.

Total

temporary

256MB

addresses

possible

is

the

maximum

number

of

temporary

256MB

addresses

for

the

machine.

Permanent

4GB

addresses

remaining

is

the

number

of

permanent

4GB

addresses

that

can

still

be

created.

Permanent

256MB

addresses

remaining

is

the

number

of

permanent

256MB

addresses

that

can

still

be

created.

Temporary

4GB

addresses

remaining

is

the

number

of

temporary

4GB

addresses

that

can

still

be

created.

Temporary

256MB

addresses

remaining

is

the

number

of

temporary

256MB

addresses

that

can

still

be

created.

Permanent

4GB

addresses

remaining

threshold

is

a

number

that,

when

it

exceeds

the

number

of

permanent

4GB

addresses

remaining,

causes

an

event

to

be

signaled

if

the

suppress

4GB

permanent

address

usage

event

flag

is

set

to

no.

Permanent

256MB

addresses

remaining

threshold

is

a

number

that,

when

it

exceeds

the

number

of

permanent

256MB

addresses

remaining,

causes

an

event

to

be

signaled

if

the

suppress

256

MG

permanent

address

usage

event

flag

is

set

to

no.

Temporary

4GB

addresses

remaining

threshold

is

a

number

that,

when

it

exceeds

the

number

of

temporary

4GB

addresses

remaining,

causes

an

event

to

be

signaled

if

the

suppress

4GB

temporary

address

usage

event

flag

is

set

to

no.

Temporary

256MB

addresses

remaining

threshold

is

a

number

that,

when

it

exceeds

the

number

of

temporary

256MB

addresses

remaining,

causes

an

event

to

be

signaled

if

the

suppress

256MB

temporary

address

usage

event

flag

is

set

to

no.

Main

Storage

Pool

Information

(Hex

09):

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Machine

minimum

transfer

size

Bin(2)

18

12

Maximum

number

of

pools

Bin(2)

20

14

Current

number

of

pools

Bin(2)

22

16

Main

storage

size

Bin(4)

26

1A

Reserved

(binary

0)

Char(2)

28

1C

Pool

1

minimum

size

Bin(4)

32

20

Individual

main

storage

pool

information

[*]

Char(32)

(repeated

once

for

each

pool,

up

to

the

current

number

of

pools)

32

20

Pool

size

Bin(4)

36

24

Pool

maintenance

Bin(4)

40

28

Thread

interruptions

(data

base)

Bin(4)

44

2C

Thread

interruptions

(nondata

base)

Bin(4)

48

30

Data

transferred

to

pool

(data

base)

Bin(4)

52

34

Data

transferred

to

pool

(nondata

base)

Bin(4)

56

38

Amount

of

pool

not

assigned

to

virtual

addresses

Bin(4)

60

3C

Reserved

(binary

0)

Char(4)

*

*

—-

End

—-

840

iSeries:

Machine

Interface

Instructions

APIs

Machine

minimum

transfer

size

is

the

smallest

number

of

bytes

that

may

be

transferred

as

a

block

to

or

from

main

storage.

Maximum

number

of

pools

is

the

maximum

number

of

storage

pools

into

which

main

storage

may

be

partitioned.

These

pools

will

be

assigned

the

logical

identification

beginning

with

1

and

continuing

to

the

maximum

number

of

pools.

Current

number

of

pools

is

a

user-specified

value

for

the

number

of

storage

pools

the

user

wishes

to

utilize.

These

are

assumed

to

be

numbered

from

1

to

the

number

specified.

This

number

is

fixed

by

the

machine

to

be

equal

to

the

maximum

number

of

pools.

Main

storage

size

is

the

amount

of

main

storage,

in

units

equal

to

the

machine

minimum

transfer

size,

which

may

be

apportioned

among

main

storage

pools.

Pool

1

minimum

size

is

the

amount

of

main

storage,

in

units

equal

to

the

machine

minimum

transfer

size,

which

must

remain

in

pool

1.

This

amount

is

machine

and

configuration

dependent.

Individual

main

storage

pool

information

is

data

in

an

array

that

is

associated

with

a

main

storage

pool

by

virtue

of

its

ordinal

position

within

the

array.

In

the

descriptions

below,

data

base

refers

to

all

other

data,

including

internal

machine

fields.

Pool

size,

pool

maintenance,

amount

of

pool

not

assigned

to

virtual

addresses

and

data

transferred

information

is

expressed

in

units

equal

to

the

machine

minimum

transfer

size

described

above.

Pool

size

is

the

amount

of

main

storage

assigned

to

the

pool.

Pool

maintenance

is

the

amount

of

data

written

from

a

pool

to

secondary

storage

by

the

machine

to

satisfy

demand

for

resources

from

the

pool.

It

does

not

represent

total

transfers

from

the

pool

to

secondary

storage,

but

rather

is

an

indication

of

machine

overhead

required

to

provide

primary

storage

within

a

pool

to

requesting

threads.

Thread

interruptions

(data

base

and

nondata

base)

is

the

total

number

of

interruptions

to

threads

(not

necessarily

assigned

to

this

pool)

which

were

required

to

transfer

data

into

the

pool

to

permit

instruction

execution.

Note

that

on

overflow,

the

machine

resets

the

thread

interruptions

(data

base

or

non

data

base)

value

from

2,147,483,647

back

to

0

without

any

indication

of

error.

Data

transferred

to

pool

(data

base

and

nondata

base)

is

the

amount

of

data

transferred

from

auxiliary

storage

to

the

pool

to

permit

instruction

execution

and

as

a

consequence

of

set

access

state,

implicit

access

group

movement,

and

internal

machine

actions.

Note

that

on

overflow,

the

machine

resets

the

data

transferred

to

pool

(data

base

or

non

data

base)

value

from

2,147,483,647

back

to

0

without

any

indication

of

error.

The

amount

of

pool

not

assigned

to

virtual

addresses

represents

the

storage

available

to

be

used

for

new

transfers

into

the

main

storage

pool

without

displacing

any

virtual

data

already

in

the

pool.

The

value

returned

will

not

include

any

storage

that

has

been

reserved

for

load/dump

sessions

active

in

the

pool.

MPL

Control

Data

with

2-byte

counts

(Hex

0A):

Note:

Option

hex

16

is

the

preferred

method

of

materializing

MPL

control

information.

If

option

0A

is

used

and

the

actual

value

of

any

returned

template

field,

other

than

transition

counts,

exceeds

32,767

then

a

value

of

32,767

is

returned

(the

values

will

not

wrap).

The

transition

counts

are

an

exception

and,

as

documented,

do

wrap

after

reaching

their

maximum

value.

Machine

Interface

Instructions

841

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Machine-wide

MPL

control

Char(16)

16

10

Machine

maximum

number

of

MPL

classes

Bin(2)

18

12

Machine

current

number

of

MPL

classes

Bin(2)

20

14

MPL

(max)

Bin(2)

22

16

Ineligible

event

threshold

Bin(2)

24

18

MPL

(current)

Bin(2)

26

1A

Number

of

threads

in

ineligible

state

Bin(2)

28

1C

Reserved

Char(4)

32

20

MPL

class

information

[*]

Char(16)

(repeated

for

each

MPL

class,

from

1

to

the

current

number

of

MPL

classes)

32

20

MPL

(max)

Bin(2)

34

22

Ineligible

event

threshold

Bin(2)

36

24

Current

MPL

Bin(2)

38

26

Number

of

threads

in

ineligible

state

Bin(2)

40

28

Number

of

threads

assigned

to

class

Bin(2)

42

2A

Number

of

active

to

ineligible

transitions

Bin(2)

44

2C

Number

of

active

to

MI

wait

transitions

Bin(2)

46

2E

Number

of

MI

wait

to

ineligible

transitions

Bin(2)

*

*

—-

End

—-

Machine-Wide

MPL

Control:

Maximum

number

of

MPL

classes

is

the

largest

number

of

MPL

classes

allowed

in

the

machine.

These

are

assumed

to

be

numbered

from

1

to

the

maximum.

Current

number

of

MPL

classes

is

a

user-specified

value

for

the

number

of

MPL

classes

in

use.

They

are

assumed

to

be

numbered

from

1

to

the

current

number.

MPL

(max)

is

the

maximum

number

of

processes

which

may

concurrently

be

in

the

active

state

in

the

machine.

Ineligible

event

threshold

is

a

number

which,

if

exceeded

by

the

machine

number

of

ineligible

processes

defined

below,

will

cause

an

event

to

be

signaled.

MPL

(current)

is

the

current

number

of

threads

in

the

active

state.

Number

of

threads

in

ineligible

state

is

the

number

of

threads

not

currently

active

because

of

enforcement

of

both

the

machine

and

class

MPL

rules.

MPL

Class

Information

MPL

class

information

is

data

in

an

array

that

is

associated

with

an

MPL

class

by

virtue

of

its

ordinal

position

within

the

array.

842

iSeries:

Machine

Interface

Instructions

APIs

MPL

(max)

is

the

number

of

threads

assigned

to

the

class

which

may

be

concurrently

active.

Ineligible

event

threshold,

MPL

(current),

and

number

of

threads

in

ineligible

state

are

as

defined

above

but

apply

only

to

threads

assigned

to

the

class.

Number

of

threads

assigned

to

class

is

the

total

number

of

threads,

in

any

state,

assigned

to

the

class.

The

total

number

of

transitions

among

the

active,

wait,

and

ineligible

states

by

threads

assigned

to

a

class

are:

1.

Number

of

active

to

ineligible

transitions

2.

Number

of

active

to

MI

wait

transitions

3.

Number

of

MI

wait

to

ineligible

transitions

Note

that

transitions

from

wait

state

to

active

state

can

be

derived

as

(2

-

3)

and

transitions

from

ineligible

state

to

active

state

as

(1

+

3).

On

overflow,

the

machine

wraps

these

Bin(2)

numbers

from

32,767

to

0

without

any

indication

of

error.

Machine

Reserved

Storage

Pool

Information

(Hex

0C):

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Current

number

of

pools

Bin(2)

18

12

Reserved

Char(6)

24

18

Individual

main

storage

pool

information

[*]

Char(16)

(repeated

once

for

each

pool,

up

to

the

current

number

of

pools)

24

18

Pool

size

Bin(4)

28

1C

Machine

portion

of

the

pool

Bin(4)

32

20

Reserved

Char(8)

*

*

—-

End

—-

Pool

size

is

the

amount

of

main

storage

assigned

to

the

pool

(including

the

machine

reserved

portion).

Machine

portion

of

the

pool

specifies

the

amount

of

storage

from

the

pool

that

is

dedicated

to

machine

functions.

Both

of

the

values

above

are

in

units

equal

to

the

machine

minimum

transfer

size.

User

storage

area

1

-

OBSOLETE

(Hex

11):

This

option

is

no

longer

used.

The

number

of

bytes

available

for

materialization

will

always

indicate

that

no

user

data

is

available.

Auxiliary

Storage

Information

(Hex

12):

The

auxiliary

storage

information

describes

the

ASPs

(auxiliary

storage

pools)

which

are

configured

within

the

machine

and

the

units

of

auxiliary

storage

currently

allocated

to

an

ASP

or

known

to

the

machine

but

not

allocated

to

an

ASP.

This

option

does

not

return

information

for

independent

ASPs

which

are

varied

Machine

Interface

Instructions

843

off.

You

can

use

option

″Auxiliary

Storage

information

including

offline

Independent

ASPs

(Hex

20)″

(page

883)

to

return

information

about

independent

ASPs

which

are

varied

off.

Also

note

that

through

appropriate

setting

of

the

number

of

bytes

provided

field

for

operand

1,

the

amount

of

information

to

be

materialized

for

this

option

can

be

reduced

thus

avoiding

the

processing

for

unneeded

information.

As

an

example,

by

setting

this

field

to

only

provide

enough

bytes

for

the

common

16

byte

header,

plus

the

option

hex

12

control

information,

plus

the

system

ASP

entry

of

the

ASP

information,

you

can

get

just

the

information

up

through

the

system

ASP

entry

returned

and

avoid

the

overhead

for

the

user

ASPs

and

unit

information.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Control

information

Char(64)

(occurs

just

once)

16

10

Number

of

ASPs

Bin(2)

18

12

Number

of

allocated

auxiliary

storage

units

Bin(2)

Note:

Number

of

configured,

non-mirrored

units

+

number

of

mirrored

pairs

20

14

Number

of

unallocated

auxiliary

storage

units

Bin(2)

22

16

Reserved

(binary

0)

Char(2)

24

18

Maximum

auxiliary

storage

allocated

to

temporaries

Char(8)

32

20

Reserved

(binary

0)

Char(12)

44

2C

Unit

information

offset

Bin(4)

48

30

Number

of

pairs

of

mirrored

units

Bin(2)

50

32

Mirroring

main

storage

Bin(4)

54

36

Number

of

multipath

units

UBin(2)

56

38

Current

auxiliary

storage

allocated

to

temporaries

Char(8)

64

40

Number

of

bytes

in

a

page

Bin(4)

68

44

Number

of

independent

ASPs

UBin(2)

70

46

Number

of

disk

units

in

all

varied

on

independent

ASPs

UBin(2)

72

48

Number

of

basic

ASPs

UBin(2)

74

4A

Number

of

disk

units

in

all

basic

ASPs

UBin(2)

76

4C

Number

of

disk

units

in

the

system

ASP

UBin(2)

78

4E

Number

of

additional

entries

for

multipath

units

UBin(2)

80

50

ASP

information

[*]

Char(160)

(Repeated

once

for

each

ASP.

Located

immediately

after

the

control

information

above.

ASP

1,

always

configured,

is

first.

Configured

user

ASPs

follow

in

ascending

numerical

order.)

80

50

ASP

number

Char(2)

82

52

ASP

control

flags

Char(1)

82

52

Suppress

threshold

exceeded

event

Bit

0

82

52

ASP

overflow

Bit

1

82

52

Reserved

Bits

2-3

82

52

ASP

mirrored

Bit

4

82

52

User

ASP

MI

state

Bit

5

844

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

82

52

ASP

overflow

storage

available

Bit

6

82

52

Suppress

available

storage

lower

limit

reached

event

Bit

7

83

53

ASP

overflow

recovery

result

Char(1)

83

53

Successful

Bit

0

83

53

Failed

due

to

insufficient

free

space

Bit

1

83

53

Cancelled

Bit

2

83

53

Reserved

(binary

0)

Bits

3-7

84

54

Number

of

allocated

auxiliary

storage

units

in

ASP

UBin(2)

Note:

Number

of

configured,

non-mirrored

units

+

number

of

mirrored

pairs

86

56

Remote

mirror

performance

mode

Char(1)

Hex

01

=

Synchronous

mode

Hex

02

=

Asynchronous

mode

87

57

Remote

mirror

copy

data

state

Char(1)

Hex

00

=

Remote

IASP

mirroring

is

not

configured

Hex

01

=

Remote

copy

is

in

sync

with

the

production

copy

Hex

02

=

Remote

copy

contains

useable

data

Hex

03

=

Remote

copy

data

cannot

be

used

88

58

ASP

media

capacity

Char(8)

96

60

Reserved

Char(8)

104

68

ASP

space

available

Char(8)

112

70

ASP

event

threshold

Char(8)

120

78

ASP

event

threshold

percentage

Bin(2)

122

7A

Additional

ASP

control

flags

Char(2)

122

7A

Terminate

immediately

when

out

of

storage

Bit

0

122

7A

ASP

contains

compressed

and

non-compressed

units

Bit

1

122

7A

Recover

overflowed

basic

ASP

during

normal

mode

IPL

Bit

2

122

7A

Independent

ASP

Bit

3

122

7A

ASP

is

online

Bit

4

122

7A

Independent

ASP

address

threshold

exceeded

Bit

5

122

7A

Independent

ASP

is

remote

mirrored

Bit

6

122

7A

Reserved

(binary

0)

Bits

7-15

124

7C

ASP

compression

recovery

policy

Char(1)

Machine

Interface

Instructions

845

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

124

7C

Error

recovery

policy

Bits

0-1

00

=

Retry

while

space

available

01

=

Overflow

immediately

10

=

Retry

forever

124

7C

Reserved

(binary

0)

Bits

2-7

125

7D

Independent

ASP

type

Char(1)

125

7D

Primary

ASP

Bit

0

125

7D

Secondary

ASP

Bit

1

125

7D

UDFS

ASP

Bit

2

125

7D

Reserved

(binary

0)

Bits

3-7

126

7E

Remote

mirror

role

Char(1)

Hex

00

=

Remote

IASP

mirroring

is

not

configured

Hex

01

=

System

does

not

own

a

physical

independent

ASP

copy

Hex

02

=

Remote

mirror

role

is

unknown

Hex

C4

=

System

owns

a

detached

mirror

copy

Hex

D4

=

System

owns

the

mirror

copy

Hex

D7

=

System

owns

the

production

copy

127

7F

Remote

mirror

copy

state

Char(1)

Hex

00

=

Remote

IASP

mirroring

is

not

configured

Hex

01

=

System

attempts

to

perform

independent

ASP

remote

mirroring

when

independent

ASP

is

online.

Hex

02

=

Remote

independent

ASP

role

is

resuming.

Hex

03

=

System

is

resuming

and

independent

ASP

is

online

and

performing

synchronization

Hex

04

=

Remote

independent

ASP

is

detached

and

remote

mirroring

is

not

being

performed.

128

80

ASP

system

storage

Char(8)

136

88

ASP

overflow

storage

Char(8)

144

90

Space

allocated

to

the

error

log

Bin(4)

148

94

Space

allocated

to

the

machine

log

Bin(4)

152

98

Space

allocated

to

the

machine

trace

Bin(4)

846

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

156

9C

Space

allocated

for

main

store

dump

Bin(4)

160

A0

Space

allocated

to

the

microcode

Bin(4)

164

A4

Remote

mirror

synchronization

priority

Char(1)

Hex

00

=

Remote

IASP

mirroring

is

not

configured

Hex

10

=

Synchronization

is

given

high

priority

Hex

20

=

Synchronization

is

given

medium

priority

Hex

30

=

Synchronization

is

given

low

priority

165

A5

Remote

mirror

encryption

mode

Char(1)

Hex

00

=

Remote

IASP

mirroring

is

not

configured

Hex

01

=

Data

being

sent

to

remote

mirror

site

is

not

encrypted

Hex

012=

Data

being

sent

to

remote

mirror

site

is

encrypted

166

A6

Remote

mirror

error

recovery

Char(1)

Hex

00

=

Remote

IASP

mirroring

is

not

configured

Hex

02

=

Remote

mirroring

is

suspended

when

an

independent

ASP

error

is

detected.

Hex

03

=

Remote

mirroring

is

ended

when

an

independent

ASP

error

is

detected.

167

A7

Remote

mirror

minutes

until

timeout

Char(1)

168

A8

Available

storage

lower

limit

Char(8)

176

B0

Protected

space

capacity

Char(8)

184

B8

Unprotected

space

capacity

Char(8)

192

C0

Protected

space

available

Char(8)

200

C8

Unprotected

space

available

Char(8)

208

D0

Reserved

(binary

0)

Char(8)

216

D8

Number

of

addresses

remaining

in

independent

ASP

Char(8)

224

E0

Reserved

(binary

0)

Char(16)

*

*

Unit

information

[*]

Char(208)

Machine

Interface

Instructions

847

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

(Consists

of

one

entry

each

for

the

configured,

non-mirrored

units

and

one

unit

of

the

mirrored

pairs,

the

non-configured

units,

and

the

other

unit

of

the

mirrored

pairs,

and

an

entry

for

each

multipath

connection.

An

allocated

storage

unit

(ASU)

is

either

an

allocated,

non-mirrored

unit

or

a

mirrored

pair.

Note

that

the

mirrored

pair

counts

only

as

one

ASU.

When

used

without

qualification,

the

term

unit

refers

to

an

ASU.

Unit

information

start

may

be

located

by

the

Unit

Information

Offset

in

the

control

information.)

*

*

Device

type

Char(8)

*

*

Disk

type

Char(4)

*

*

Disk

model

Char(4)

*

*

Device

identification

Char(8)

*

*

Unit

number

Char(2)

*

*

Reserved

Char(6)

*

*

Reserved

Char(4)

*

*

Unit

ASP

number

Char(2)

*

*

Logical

mirrored

pair

status

Char(1)

*

*

Unit

mirrored

Bit

0

*

*

Mirrored

unit

protected

Bit

1

*

*

Mirrored

pair

reported

Bit

2

*

*

Reserved

Bits

3-7

*

*

Mirrored

unit

status

Char(1)

*

*

Unit

media

capacity

Char(8)

*

*

Unit

storage

capacity

Char(8)

*

*

Unit

space

available

Char(8)

*

*

Unit

space

reserved

for

system

Char(8)

*

*

Reserved

Char(6)

*

*

Unit

control

flags

Char(2)

*

*

Reserved

(binary

0)

Bit

0

*

*

Unit

is

device

parity

protected

Bit

1

*

*

Subsystem

is

active

Bit

2

*

*

Unit

in

subsystem

has

failed

Bit

3

*

*

Other

unit

in

subsystem

has

failed

Bit

4

*

*

Subsystem

runs

in

degraded

mode

Bit

5

*

*

Hardware

failure

Bit

6

*

*

Device

parity

protection

is

being

rebuilt

Bit

7

*

*

Unit

is

not

ready

Bit

8

*

*

Unit

is

write

protected

Bit

9

*

*

Unit

is

busy

Bit

10

*

*

Unit

is

not

operational

Bit

11

*

*

Status

is

not

recognizable

Bit

12

*

*

Status

is

not

available

Bit

13

*

*

Unit

is

read/write

protected

Bit

14

*

*

Unit

is

compressed

Bit

15

Bits

2

to

14

are

mutually

exclusive.

848

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

*

*

Additional

unit

control

flags

Char(2)

*

*

Do

not

allocate

additional

storage

on

this

disk

unit

Bit

0

*

*

Unit

is

in

availability

parity

set

Bit

1

*

*

Unit

is

multipath

unit

Bit

2

*

*

Reserved

(binary

0)

Bits

3-15

*

*

Reserved

(binary

0)

Char(14)

*

*

Reserved

(binary

0)

Char(42)

*

*

Unit

Identification

Char(22)

*

*

Serial

Number

Char(10

*

*

Resource

name

Char(10

*

*

Reserved

(binary

0)

Char(2)

*

*

Unit

usage

information

Char(64)

*

*

Blocks

transferred

to

main

storage

Bin(4)

*

*

Blocks

transferred

from

main

storage

Bin(4)

*

*

Requests

for

data

transfer

to

main

storage

Bin(4)

*

*

Requests

for

data

transfer

from

main

storage

Bin(4)

*

*

Permanent

blocks

transferred

from

main

storage

Bin(4)

*

*

Requests

for

permanent

data

transfer

from

main

storage

Bin(4)

*

*

Reserved

(binary

0)

Char(8)

*

*

Sample

count

Bin(4)

*

*

Not

busy

count

Bin(4)

*

*

Reserved

(binary

0)

Char(24

*

*

—-

End

—-

Number

of

ASPs

is

the

number

of

ASPs

configured

within

the

machine.

One,

the

minimum

value,

indicates

just

the

system

ASP

exists

and

that

there

are

no

user

ASPs

configured.

Up

to

254

user

ASPs

can

be

configured.

The

system

ASP

always

exists.

The

number

of

ASPs

includes

the

system

ASP,

user

ASPs

which

are

basic

ASPs

(that

is,

user

ASPs

which

cannot

be

varied

on

or

off),

and

independent

ASPs

which

are

currently

varied

on

to

this

system.

Number

of

allocated

auxiliary

storage

units

is

the

total

number

of

configured

units

logically

addressable

by

the

system

as

units.

This

is

the

number

of

configured,

non-mirrored

units

plus

the

number

of

mirrored

pairs

allocated

to

the

ASPs.

This

number

includes

only

the

first

path

of

a

multipath

connection

unit.

The

count

of

the

remaining

paths

connected

to

multipath

units

is

materialized

in

number

of

additional

entries

for

multipath

units.

The

total

number

of

disk

actuator

arms

on

the

system

is

the

sum

of

the

allocated

auxiliary

storage

units

plus

the

number

of

unallocated

auxiliary

storage

units

plus

the

number

of

pairs

of

mirrored

units.

Information

on

these

units

is

materialized

as

part

of

the

unit

information.

Any

two

units

of

the

same

size

may

be

associated

to

form

a

mirrored

pair.

Association

of

two

units

as

a

mirrored

pair

reduces

the

amount

of

logically

available

storage

by

the

number

of

bytes

contained

on

one

of

the

mirrored

units

in

the

mirrored

pair.

The

disk

units

reside

in

the

system

ASP,

a

basic

ASP,

or

an

independent

ASP.

This

number

specifies

the

number

of

unit

information

entries

that

can

be

materialized.

Number

of

unallocated

auxiliary

storage

units

is

the

number

of

auxiliary

storage

units

that

are

currently

not

allocated

to

an

ASP.

Information

on

these

units

is

materialized

as

part

of

the

unit

information.

Machine

Interface

Instructions

849

Maximum

auxiliary

storage

allocated

to

temporaries

is

the

maximum

number

of

bytes

of

temporary

storage

allocated

at

any

one

time

since

the

last

IPL

of

the

machine.

This

includes

the

temporary

storage

allocated

on

the

load

source

unit.

Unit

information

offset

is

the

offset,

in

bytes,

from

the

start

of

the

operand

1

materialization

template

to

the

start

of

the

unit

information.

This

value

can

be

added

to

a

space

pointer

addressing

the

start

of

operand

1

to

address

the

start

of

the

unit

information.

Number

of

pairs

of

mirrored

units

represents

the

number

of

mirrored

pairs

in

the

system.

Each

mirrored

pair

consists

of

two

mirrored

units;

however,

only

one

of

the

two

mirrored

units

is

guaranteed

to

be

operational.

Mirroring

main

storage

is

the

number

of

bytes

of

main

storage

in

the

machine

storage

pool

used

by

mirroring.

This

increases

when

mirror

synchronization

is

active.

This

amount

of

storage

is

directly

related

to

the

number

of

mirrored

pairs.

Number

of

multipath

units

is

the

number

of

disk

units

that

have

multiple

connections

to

a

disk

unit.

This

means

that

there

are

multiple

resource

names

that

all

represent

the

same

disk

unit,

yet

each

represents

a

unique

path

to

the

disk

unit.

All

active

connections

will

be

used

for

communicating

with

the

disk

unit.

Current

auxiliary

storage

allocated

to

temporaries

is

the

number

of

bytes

of

temporary

storage

allocated

on

the

system.

This

includes

the

temporary

storage

allocated

on

the

load

source

unit.

Number

of

bytes

in

a

page

is

the

number

of

bytes

in

a

single

page.

This

can

be

used

to

convert

fields

that

are

given

in

pages

into

the

correct

number

of

bytes.

Number

of

independent

ASPs

is

the

number

of

independent

ASPs

varied

on

to

this

system.

An

independent

ASP

is

an

ASP

that

can

be

varied

on

or

off.

Number

of

disk

units

in

all

varied

on

independent

ASPs

is

the

number

of

configured

units

logically

addressable

by

all

independent

ASPs

which

are

currently

varied

on

to

this

system.

Information

on

these

units

is

materialized

as

part

of

the

unit

information.

Number

of

basic

ASPs

is

the

number

of

basic

ASPs

configured

on

this

system.

A

basic

ASP

is

a

user

ASP

that

cannot

be

varied

on

or

off.

Number

of

disk

units

in

all

basic

ASPs

is

the

total

number

of

configured

units

logically

addressable

by

all

basic

ASPs.

Information

on

these

units

is

materialized

as

part

of

the

unit

information.

Number

of

disk

units

in

the

system

ASP

is

the

total

number

of

configured

units

logically

addressable

in

the

system

ASP.

Information

on

these

units

is

materialized

as

part

of

the

unit

information.

Number

of

additional

entries

for

multipath

units

is

the

number

of

additional

unit

entries

that

can

be

materialized

for

the

multipath

connection

devices.

The

first

path

of

each

unit

is

not

included

in

this

total.

ASP

information

is

repeated

once

for

each

configured

ASP

within

the

machine

that

is

online.

The

number

of

ASPs

configured

is

specified

by

the

number

of

ASPs

field.

ASP

1,

the

system

ASP,

is

materialized

first.

Because

the

system

ASP

always

exists,

its

materialization

is

always

available.

The

user

ASPs

which

are

configured

are

materialized

after

the

system

ASP

in

ascending

numerical

order.

There

may

be

gaps

in

the

numerical

order.

That

is,

if

just

user

ASPs

3

and

5

are

configured,

only

information

for

them

is

materialized

producing

information

on

just

ASP

1,

ASP

3

and

ASP

5

in

that

order.

ASP

number

uniquely

identifies

the

auxiliary

storage

pool.

The

ASP

number

may

have

a

value

from

1

through

255.

A

value

of

1

indicates

the

system

ASP.

A

value

of

2

through

255

indicates

a

user

ASP.

Note

that

independent

ASPs

have

a

value

of

33

through

255.

850

iSeries:

Machine

Interface

Instructions

APIs

Suppress

threshold

exceeded

event

flag

indicates

whether

or

not

the

machine

is

suppressing

signaling

of

the

related

event

when

the

event

threshold

in

effect

for

this

ASP

has

been

exceeded.

A

value

of

binary

1

indicates

that

the

signaling

is

being

suppressed;

binary

0

indicates

that

the

signaling

is

not

being

suppressed.

The

default

after

each

IPL

of

the

machine

is

that

the

signaling

is

not

suppressed;

i.e.

default

is

binary

0.

For

the

system

ASP,

this

flag

is

implicitly

set

to

binary

1

by

the

machine

when

the

machine

auxiliary

storage

threshold

is

exceeded.

For

a

basic

ASP,

this

flag

is

implicitly

set

to

binary

1

by

the

machine

when

the

user

auxiliary

storage

threshold

is

exceeded.

The

ASP

overflow

flag

indicates

whether

or

not

object

allocations

directed

into

a

basic

ASP

have

overflowed

into

the

system

ASP.

A

value

of

binary

1

indicates

overflow;

binary

0

indicates

no

overflow.

This

flag

does

not

apply

to

the

system

ASP

and

a

value

of

binary

0

is

always

returned

for

it.

This

flag

does

not

apply

to

independent

ASPs

and

a

value

of

binary

0

is

always

returned

for

independent

ASPs.

ASP

mirrored

flag

specifies

whether

or

not

the

ASP

is

configured

to

be

mirror

protected.

A

value

of

binary

1

indicates

that

ASP

mirror

protection

is

configured.

Refer

to

the

mirrored

unit

protected

flag

to

determine

if

mirror

protection

is

active

for

each

mirrored

pair.

A

value

of

binary

0

indicates

that

none

of

the

units

associated

with

the

ASP

are

mirrored.

User

ASP

MI

state

indicates

the

state

of

the

user

ASP.

A

value

of

binary

1

indicates

that

the

user

ASP

is

in

the

’new’

state.

This

means

that

a

context

may

be

allocated

in

this

user

ASP.

A

value

of

binary

0

indicates

that

the

user

ASP

is

in

the

’old’

state.

This

means

that

there

are

no

contexts

allocated

in

this

user

ASP.

This

flag

has

no

meaning

for

the

system

ASP

and

a

value

of

binary

0

will

always

be

returned.

A

value

of

binary

1

will

always

be

returned

for

independent

ASPs.

ASP

overflow

storage

available

flag

indicates

whether

or

not

the

amount

of

auxiliary

storage

that

has

overflowed

from

the

basic

ASP

into

the

system

ASP

is

available.

A

value

of

binary

1

indicates

that

the

amount

is

maintained

by

the

machine

and

available

in

the

ASP

overflow

storage

field.

A

value

of

binary

0

indicates

that

the

amount

is

not

available.

This

flag

does

not

apply

to

independent

ASPs

and

a

value

of

binary

0

is

always

returned

for

independent

ASPs.

Suppress

available

storage

lower

limit

reached

event

flag

indicates

whether

the

machine

will

signal

the

related

event

when

the

available

storage

lower

limit

has

been

reached.

This

field

currently

has

meaning

only

in

the

system

ASP

(ASP

1).

This

value

will

always

be

returned

as

binary

0

for

a

user

ASP.

A

value

of

binary

1

indicates

that

signaling

of

the

event

is

being

suppressed;

binary

0

indicates

that

signaling

of

the

event

is

not

suppressed.

The

default

after

each

IPL

of

the

machine

is

binary

0,

i.e.,

signaling

of

this

event

is

not

suppressed.

This

flag

is

set

to

binary

1

by

the

machine

when

the

available

storage

lower

limit

reached

(hex

000C,02,08)

event

is

signaled.

This

is

done

to

avoid

repetitive

signaling

of

the

event

when

the

available

storage

lower

limit

reached

condition

occurs.

ASP

overflow

recovery

result

flags

indicate

the

result

of

the

ASP

overflow

recovery

operation

which

is

performed

during

an

IPL

upon

request

by

the

user.

When

this

operation

is

requested,

the

machine

attempts

to

recover

a

basic

ASP

from

an

overflow

condition

by

moving

overflowed

auxiliary

storage

from

the

system

ASP

back

to

the

basic

ASP

during

the

Storage

Management

recovery

step

of

an

IPL.

The

successful

flag

is

set

to

a

value

of

binary

1

when

all

the

overflowed

storage

was

successfully

moved.

The

failed

due

to

insufficient

free

space

flag

is

set

to

a

value

of

binary

1

when

there

is

not

sufficient

free

space

in

the

basic

ASP

to

move

all

the

overflowed

storage.

The

cancelled

flag

is

set

to

a

value

of

binary

1

when

the

operation

was

cancelled

prior

to

completion

(e.g.,

system

power

loss,

user

initiated

IPL).

This

flag

does

not

apply

to

independent

ASPs

and

a

value

of

binary

0

is

always

returned

for

independent

ASPs.

Number

of

allocated

auxiliary

storage

units

in

ASP

is

the

number

of

configured

units

logically

addressable

by

the

system

as

units

for

this

ASP.

This

is

the

number

of

configured,

non-mirrored

units

plus

the

number

of

mirrored

pairs

allocated

in

the

ASPs.

The

total

number

of

units

(actuator

arms)

on

the

system

is

the

sum

of

the

allocated

auxiliary

storage

units

plus

the

number

of

unallocated

auxiliary

storage

units

plus

the

number

of

pairs

of

mirrored

units.

For

example,

each

9335

enclosure

represents

two

units.

Information

on

these

units

is

materialized

as

part

of

the

unit

information.

Any

two

units

of

the

Machine

Interface

Instructions

851

same

size

may

be

associated

to

form

a

mirrored

pair.

Association

of

two

units

as

a

mirrored

pair

reduces

the

amount

of

logically

available

storage

by

the

number

of

bytes

contained

on

one

of

the

mirrored

units

in

the

mirrored

pair.

Remote

mirror

performance

mode

specifies

the

mode

in

which

remote

mirroring

operates.

A

value

of

hex

01

indicates

synchronous

mode.

In

synchronous

mode,

the

client

waits

for

the

operation

to

complete

on

both

the

source

and

on

the

target.

A

value

of

hex

02

indicates

aynchronous

mode.

In

asynchronous

mode,

the

client

waits

for

the

operation

to

complete

on

the

source

and

for

the

operation

to

be

received

on

the

target.

Remote

mirror

copy

data

state

specifies

the

condition

of

the

data

on

the

target.

A

value

of

hex

00

indicates

that

remote

independent

ASP

mirroring

is

not

configured.

A

value

of

hex

01

indicates

that

the

remote

copy

is

absolutely

in

sync

with

the

production

copy.

A

value

of

hex

02

indicates

that

the

remote

copy

contains

usable

data.

A

detached

mirror

copy

always

has

usable

data

state.

A

value

of

hex

03

indicates

that

there

is

incoherent

data

state

in

the

mirror

copy

and

the

data

cannot

be

used.

ASP

media

capacity

specifies

the

total

space,

in

number

of

bytes

of

auxiliary

storage,

on

the

storage

media

allocated

to

the

ASP.

This

is

just

the

sum

of

the

unit

media

capacity

fields

for

(1)

the

units

allocated

to

the

ASP

or

(2)

the

mirrored

pairs

in

the

ASP.

ASP

space

available

is

the

number

of

bytes

of

auxiliary

storage

that

is

not

currently

assigned

to

objects

or

internal

machine

functions,

and

therefore,

is

available

for

allocation

in

the

ASP.

Note

that

a

mirrored

pair

counts

for

only

one

unit.

ASP

event

threshold

specifies

the

minimum

value

for

the

number

of

bytes

of

auxiliary

storage

available

in

the

ASP

prior

to

the

exceeded

condition

occurs

when

the

ASP

space

available

value

becomes

equal

to

or

less

than

the

ASP

event

threshold

value.

Refer

to

the

definition

of

the

suppress

threshold

exceeded

event

flag

for

more

information.

The

ASP

event

threshold

value

is

calculated

from

the

ASP

event

threshold

percentage

value

by

multiplying

the

ASP

media

capacity

value

by

the

ASP

event

threshold

percentage

and

subtracting

the

product

from

that

same

capacity

value.

ASP

event

threshold

percentage

specifies

the

auxiliary

storage

space

utilization

threshold

as

a

percentage

of

the

ASP

media

capacity.

This

value

is

used,

as

described

above,

to

calculate

the

ASP

event

threshold

value.

This

value

can

be

modified

through

use

of

Dedicated

Service

Tool

DASD

configuration

options.

Terminate

immediately

when

out

of

storage

indicates

whether

the

system

will

be

terminated

immediately

when

a

request

for

space

occurs

in

the

system

ASP

that

cannot

be

satisfied

because

the

system

is

out

of

storage.

A

value

of

binary

1

indicates

that

when

a

request

for

space

in

the

system

ASP

cannot

be

satisfied,

then

the

system

will

be

terminated

immediately.

This

field

currently

has

meaning

only

in

the

system

ASP

(ASP

1).

This

value

will

always

be

returned

as

binary

0

for

a

user

ASP.

Note:

For

a

physical

machine

with

firmware

level

hex

00,

when

a

request

for

space

in

the

system

ASP

cannot

be

satisfied

in

the

primary

partition

and

the

value

for

terminate

immediately

when

out

of

storage

is

binary

1

in

the

primary

partition,

all

partitions

in

the

physical

machine

will

terminate.

When

a

request

for

space

in

the

system

ASP

cannot

be

satisfied

in

a

secondary

partition

and

the

value

for

terminate

immediately

when

out

of

storage

is

binary

1

in

that

partition,

only

the

partition

in

which

the

condition

occurred

will

terminate.

MATMATR

option

hex

01E0

can

be

used

to

materialize

the

firmware

level.

For

a

physical

machine

with

firmware

level

hex

10,

only

the

partition

in

which

the

condition

occurred

will

terminate.

852

iSeries:

Machine

Interface

Instructions

APIs

A

value

of

binary

0

indicates

that

when

a

request

for

space

in

the

system

ASP

cannot

be

satisfied,

then

the

system

will

not

be

terminated

immediately,

but

will

be

allowed

to

continue

to

run

however

it

can.

ASP

contains

compressed

and

non-compressed

units

flag

specifies

whether

or

not

the

ASP

has

compressed

and

non-compressed

configured

units.

A

value

of

binary

1

indicates

that

both

compressed

and

non-compressed

units

exist

in

this

ASP.

A

value

of

binary

0

indicates

that

a

mix

of

compressed

and

non-compressed

units

does

not

exist

in

this

ASP.

Recover

overflowed

basic

ASP

during

normal

mode

IPL

flag

specifies

whether

or

not

the

machine

will

attempt

to

recover

the

overflowed

ASP

data

during

normal

mode

IPLs.

Overflowed

data

is

data

from

the

basic

ASP

which

exists

in

the

system

ASP

because

there

was

insufficient

auxiliary

storage

in

the

basic

ASP.

A

value

of

binary

1

indicates

that

the

machine

will

attempt

to

automatically

recover

any

overflowed

data

for

that

basic

ASP

during

normal

mode

IPLs.

A

value

of

binary

0

indicates

that

the

machine

will

not

attempt

to

recover

the

overflowed

data.

A

value

of

binary

0

is

always

returned

for

the

system

ASP

(ASP

1).

A

value

of

binary

0

is

always

returned

for

an

independent

ASP

(since

an

independent

ASP

can

never

overflow

its

data

into

the

system

ASP).

Independent

ASP

flag

specifies

whether

or

not

the

ASP

is

an

independent

ASP;

that

is,

it

can

be

varied

on

and

off.

A

value

of

binary

1

indicates

the

ASP

is

an

independent

ASP.

A

value

of

binary

0

indicates

that

this

ASP

is

a

basic

ASP

or

the

system

ASP

and

cannot

be

varied

on

or

off.

ASP

is

online

flag

always

returns

the

value

of

binary

1.

Independent

ASP

address

threshold

exceeded

flag

is

only

valid

for

an

Independent

ASP

and

specifies

whether

or

not

the

independent

ASP

address

threshold,

selected

by

the

machine,

has

been

exceeded.

A

value

of

binary

1

indicates

the

threshold

has

been

exceeded

and

the

Independent

ASP

is

running

low

on

addresses.

A

value

of

binary

0

indicates

that

the

address

threshold

has

not

been

exceeded.

Independent

ASP

is

remote

mirrored

indicates

that

the

independent

ASP

is

remote

mirrored.

Remote

independent

ASP

mirroring

provides

high

availability

by

supporting

multiple

physical

independent

ASP

copies

at

different

sites

that

contain

the

same

user

data

with

the

same

virtual

addresses.

A

value

of

binary

0

indicates

that

the

independent

ASP

is

not

remote

mirrored.

A

value

of

binary

1

indicates

that

the

independent

ASP

is

remote

mirrored.

ASP

compression

recovery

policy

indicates

how

Storage

Management

handles

a

failure

condition

due

to

a

compressed

disk

unit

being

temporarily

full

as

auxiliary

storage

space

is

reserved

on

the

unit.

A

value

of

binary

00

indicates

that

if

the

I/O

processor

can

make

storage

space

available

by

rearranging

and

further

compressing

data

on

the

unit,

Storage

Management

waits

for

space

to

be

made

available.

When

the

I/O

processor

makes

sufficient

space

on

the

compressed

unit

to

contain

the

Storage

Management

request,

the

request

completes

successfully

and

the

system

resumes

normal

processing.

If

space

can

not

be

made

available

on

the

unit,

auxiliary

storage

overflows

from

the

basic

ASP

to

the

system

ASP.

A

value

of

binary

01

indicates

that

auxiliary

storage

overflows

from

the

user

ASP

to

the

system

ASP.

Storage

Management

does

not

wait

for

the

I/O

processor

to

make

storage

space

available

on

the

unit.

A

value

of

binary

10

indicates

that

Storage

Management

waits

indefinitely

for

storage

space

to

be

made

available

on

the

unit,

even

if

the

I/O

processor

can

not

make

space

available

on

the

unit.

No

auxiliary

storage

overflows

from

the

user

ASP

to

the

system

ASP.

A

value

of

binary

00

is

always

returned

for

the

system

ASP

(ASP

1).

A

value

of

binary

10

is

always

returned

for

independent

ASPs

(that

is,

for

ASPs

which

can

be

varied

on

or

off).

An

independent

ASP

can

never

have

a

value

of

binary

01

(overflow

immediately)

because

independent

ASPs

are

not

allowed

to

overflow

into

the

system

ASP.

Machine

Interface

Instructions

853

Primary

ASP

flag

indicates

that

the

independent

ASP

is

a

primary

ASP

in

an

ASP

group.

A

primary

ASP

defines

a

collection

of

directories

and

contexts

and

may

have

secondary

ASPs

associated

with

it.

This

flag

only

has

meaning

for

an

independent

ASP.

A

value

of

binary

1

indicates

the

independent

ASP

is

a

primary

ASP.

A

value

of

binary

0

indicates

the

independent

ASP

is

not

a

primary

ASP.

Secondary

ASP

flag

indicates

that

the

independent

ASP

is

a

secondary

ASP

in

an

ASP

group.

A

secondary

ASP

is

associated

with

a

primary

ASP.

There

can

be

many

secondary

ASPs

associated

with

the

same

primary

ASP.

The

secondary

ASP

defines

a

collection

of

directories

and

contexts.

This

flag

only

has

meaning

for

an

independent

ASP.

A

value

of

binary

1

indicates

the

independent

ASP

is

a

secondary

ASP.

A

value

of

binary

0

indicates

the

independent

ASP

is

not

a

secondary

ASP.

UDFS

ASP

flag

indicates

that

the

independent

ASP

is

a

UDFS

(User-defined

File

System)

ASP.

This

type

of

independent

ASP

cannot

be

a

member

of

an

ASP

group.

This

flag

only

has

meaning

for

an

independent

ASP.

A

value

of

binary

1

indicates

the

independent

ASP

is

a

UDFS

ASP.

A

value

of

binary

0

indicates

the

independent

ASP

is

not

a

UDFS

ASP.

Remote

mirror

role

identifies

the

current

role

of

the

physical

independent

ASP

copy.

A

value

of

hex

00

indicates

that

remote

independent

ASP

mirroring

is

not

configured.

A

value

of

hex

01

indicates

that

the

system

does

not

own

a

physical

independent

ASP

copy.

A

value

of

hex

02

indicates

that

the

remote

mirror

role

is

unknown.

A

value

of

hex

D7

indicates

that

the

system

owns

the

production

copy.

A

value

of

hex

D4

indicates

that

the

system

owns

the

mirror

copy.

A

value

of

hex

C4

indicates

that

the

system

owns

a

detached

mirror

copy.

Remote

mirror

copy

state

identifies

the

mirror

state

of

the

mirror

copy.

A

value

of

hex

00

indicates

that

remote

independent

ASP

mirroring

is

not

configured.

A

value

of

hex

01

indicates

that

the

system

attempts

to

perform

independent

ASP

remote

mirroring

when

it

is

online.

A

value

of

hex

02

indicates

that

the

remote

independent

ASP

role

is

resuming,

but

the

independent

ASP

is

offline

so

it

is

not

performing

synchronization.

A

value

of

hex

03

indicates

that

the

system

is

resuming

and

the

independent

ASP

is

online,

so

it

is

performing

synchronization.

A

value

of

hex

04

indicates

that

the

remote

independent

ASP

role

is

detached

and

remote

mirroring

is

not

being

performed.

ASP

system

storage

specifies

the

amount

of

system

storage

currently

allocated

in

the

ASP

in

bytes.

ASP

overflow

storage

indicates

the

number

of

bytes

of

auxiliary

storage

that

have

overflowed

from

a

basic

ASP

into

the

system

ASP.

This

value

is

valid

only

if

the

ASP

overflow

storage

available

field

is

set

to

a

value

of

binary

1.

Space

allocated

to

the

error

log

is

the

number

of

pages

of

auxiliary

storage

that

are

allocated

to

the

error

log.

This

field

only

applies

to

the

system

ASP.

Space

allocated

to

the

machine

log

is

the

number

of

pages

of

auxiliary

storage

that

are

allocated

to

the

machine

log.

This

field

only

applies

to

the

system

ASP.

Space

allocated

to

the

machine

trace

is

the

number

of

pages

of

auxiliary

storage

that

are

allocated

to

the

machine

trace.

This

field

only

applies

to

the

system

ASP.

Space

allocated

for

main

store

dump

is

the

number

of

pages

of

auxiliary

storage

that

are

allocated

to

the

main

store

dump

space.

The

contents

of

main

store

are

written

to

this

location

for

some

system

terminations.

This

field

only

applies

to

the

system

ASP.

Space

allocated

to

the

microcode

is

the

number

of

pages

of

auxiliary

storage

that

are

allocated

for

microcode

and

space

used

by

the

microcode.

The

space

allocated

to

the

error

log,

machine

log,

machine

trace,

and

main

store

dump

space

is

not

included

in

this

field.

Remote

mirror

synchronization

priority

indicates

the

priority

assigned

to

synchronization

between

the

physical

copy

and

the

mirrored

copy

related

to

work

on

the

system.

A

value

of

hex

00

indicates

that

854

iSeries:

Machine

Interface

Instructions

APIs

remote

independent

ASP

mirroring

is

not

configured

on

this

independent

ASP.

A

value

of

hex

10

indicates

that

the

synchronization

is

given

high

priority,

and

is

completed

quickly

at

the

expense

of

significant

degradation

to

work

on

the

system.

A

value

of

hex

20

indicates

that

the

synchronization

is

given

medium

priority,

and

is

completed

at

a

moderate

rate

with

some

degradation

to

work

on

the

system.

A

value

of

hex

30

indicates

that

the

synchronization

is

given

low

priority,

and

is

completed

at

a

slow

rate

with

minimum

degradation

to

work

on

the

system.

Remote

mirror

encryption

mode

indicates

the

encryption

mode

for

the

remote

mirrored

independent

ASP.

A

value

of

hex

00

indicates

that

remote

independent

ASP

mirroring

is

not

configured

on

this

independent

ASP.

A

value

of

hex

01

indicates

that

the

user

has

chosen

not

to

encrypt

the

data

being

sent

to

the

remote

mirror

site.

A

value

of

hex

02

indicates

that

the

user

has

chosen

to

encrypt

the

data

being

sent

to

the

remote

mirror

site.

Remote

mirror

error

recovery

policy

indicates

the

error

recovery

policy

selected

by

the

user.

A

value

of

hex

00

indicates

that

remote

independent

ASP

mirroring

is

not

configured

on

this

system.

A

value

of

hex

02

indicates

that

remote

mirroring

is

suspended

when

an

IASP

error

is

detected.

After

suspend,

if

the

target

node

becomes

accessible,

the

system

automatically

resumes

remote

independent

ASP

mirroring.

A

value

of

hex

03

indicates

that

remote

mirroring

is

ended

when

an

IASP

error

is

detected.

Remote

mirror

minutes

until

timeout

is

the

number

of

minutes

the

system

waits

for

a

write

acknowledgement

from

the

remote

system

before

the

error

recovery

policy

selected

by

the

user

is

implemented.

Available

storage

lower

limit

is

the

number

of

bytes

of

available

auxiliary

storage

in

the

system

ASP

prior

to

the

available

storage

lower

limit

reached

condition

occurring.

When

the

amount

of

auxiliary

storage

available

in

the

system

ASP

becomes

less

than

this

amount,

the

available

storage

lower

limit

reached

(hex

000C,02,08)

event

is

signaled

if

it

is

not

suppressed.

Redundant

signaling

of

this

event

is

suppressed

as

indicated

by

the

setting

of

the

suppress

available

storage

lower

limit

reached

event

flag.

Protected

space

capacity

specifies

the

total

number

of

bytes

of

auxiliary

storage

that

is

protected

by

mirroring

or

device

parity

in

the

ASP.

Note

that

a

varied-off

independent

ASP

could

have

0

in

this

field

because

the

system

could

not

determine

what

disk

units

exist

in

a

varied-off

independent

ASP

.

Unprotected

space

capacity

specifies

the

total

number

of

bytes

of

auxiliary

storage

that

is

not

protected

by

mirroring

or

device

parity

in

the

ASP.

Note

that

a

varied-off

independent

ASP

could

have

0

in

this

field

because

the

system

could

not

determine

what

disk

units

exist

in

a

varied-off

independent

ASP

.

Protected

space

available

specifies

the

number

of

bytes

of

protected

auxiliary

storage

that

is

not

currently

assigned

to

objects

or

internal

machine

functions,

and

therefore,

is

available

for

allocation

in

the

ASP.

Note

that

a

varied-off

independent

ASP

could

have

0

in

this

field

because

the

system

could

not

determine

what

disk

units

exist

in

a

varied-off

independent

ASP

.

Unprotected

space

available

specifies

the

number

of

bytes

of

unprotected

auxiliary

storage

that

is

not

currently

assigned

to

objects

or

internal

machine

functions,

and

therefore,

is

available

for

allocation

in

the

ASP.

Note

that

a

varied-off

independent

ASP

could

have

0

in

this

field

because

the

system

could

not

determine

what

disk

units

exist

in

a

varied-off

independent

ASP

.

Number

of

addresses

remaining

in

independent

ASP

contains

the

number

of

virtual

addresses

remaining

for

use

by

the

independent

ASP.

This

field

only

has

meaning

for

an

independent

ASP.

The

information

in

this

field

is

only

valid

if

the

independent

ASP

address

threshold

exceeded

flag

is

set

to

binary

1.

Unit

information

is

materialized

in

the

following

order:

Machine

Interface

Instructions

855

Group

1:

Configured

units

consisting

of

non-mirrored

units

and

the

first

subunit

of

a

pair

of

mirrored

units.

Group

2:

Non-configured

units.

Group

3:

Configured

units

consisting

of

the

mates

of

mirrored

units

listed

in

group

1

(above).

The

unit

information

is

located

by

the

unit

information

offset

field

which

specifies

the

offset

from

the

beginning

of

the

operand

1

template

to

the

start

of

the

unit

information.

The

number

of

entries

for

each

of

the

three

groups

listed

above

is

defined

as

follows:

Group

1:

Number

of

non-mirrored,

configured

units

+

number

of

mirrored

pairs

Group

2:

Number

of

non-configured

storage

units

(also

called

unallocated

units).

Group

3:

Number

of

mirrored

pairs

For

unallocated

units

the

following

fields

contain

meaningful

information:

device

type,

device

identification,

unit

identification,

unit

control

flags,

unit

relationship,

and

unit

media

capacity.

The

remaining

fields

have

no

meaning

for

unallocated

units

because

the

units

are

not

currently

in

use

by

the

system.

Mirrored

unit

entries

contain

either

current

or

last

known

information.

The

last

known

data

consists

of

the

mirrored

unit

status,

disk

type,

disk

model,

unit

ASP

number,

disk

serial

number,

and

unit

address.

Last

known

information

is

provided

when

the

mirrored

pair

reported

field

is

a

binary

0.

Disk

type

identifies

the

type

of

disk

enclosure

containing

this

auxiliary

storage

unit.

This

is

the

four

byte

character

field

from

the

vital

product

data

for

the

disk

device

which

identifies

the

type

of

drive.

For

example,

the

value

is

character

string

’6607’

for

a

6607

device.

Disk

model

identifies

the

model

of

the

type

of

disk

enclosure

containing

this

auxiliary

storage

unit.

This

is

the

four

byte

character

field

from

the

vital

product

data

for

the

disk

device

which

identifies

the

model

of

the

drive.

Unit

number

uniquely

identifies

each

non-mirrored

unit

or

mirrored

pair

among

the

configured

units.

Both

mirrored

units

of

a

mirrored

pair

have

the

same

unit

number.

The

value

of

the

unit

number

is

assigned

by

the

system

when

the

unit

is

allocated

to

an

ASP.

For

unallocated

units,

the

unit

number

is

set

to

binary

0.

Unit

ASP

number

specifies

the

ASP

to

which

this

unit

is

currently

allocated.

A

value

of

0

indicates

that

this

unit

is

currently

unallocated.

A

value

of

1

specifies

the

system

ASP.

A

value

from

2

through

255

specifies

a

user

ASP

and

correlates

to

the

ASP

number

field

in

the

ASP

information

entries.

Values

33

to

255

specify

a

independent

ASP.

Values

2

to

32

specify

a

basic

ASP.

Unit

mirrored

flag

indicates

that

this

unit

number

represents

a

mirrored

pair.

This

bit

is

materialized

with

both

mirrored

units

of

a

mirrored

pair.

Mirrored

unit

protected

flag

indicates

the

mirror

status

of

a

mirrored

pair.

A

value

of

1

indicates

that

both

mirrored

units

of

a

mirrored

pair

are

active.

A

0

indicates

that

one

mirrored

unit

of

a

mirrored

pair

is

not

active.

Active

means

that

both

units

are

on

line

and

fully

synchronized

(i.e.

the

data

is

identical

on

both

mirrored

units).

856

iSeries:

Machine

Interface

Instructions

APIs

Mirrored

pair

reported

flag

indicates

that

a

mirrored

unit

reported

as

present.

The

mirrored

unit

reported

present

during

or

following

IMPL.

Current

attachment

of

a

mirrored

unit

to

the

system

cannot

be

inferred

from

this

bit.

A

0

indicates

that

the

mirrored

unit

being

materialized

is

missing.

The

last

known

information

pertaining

to

the

missing

mirrored

unit

is

materialized.

A

1

indicates

that

the

mirrored

unit

being

materialized

has

reported.

The

information

for

this

reported

unit

is

current

to

the

last

time

it

reported

status

to

the

system.

Mirrored

unit

status

indicates

mirrored

unit

status.

A

value

of

1

indicates

that

this

mirrored

unit

of

a

mirrored

pair

is

active

(i.e.

on-line

with

current

data).

A

value

of

2

indicates

that

this

mirrored

unit

is

being

synchronized.

A

value

of

3

indicates

that

this

mirrored

unit

is

suspended.

Mirrored

unit

status

is

stored

as

binary

data

and

is

valid

only

when

the

unit

mirrored

flag

is

on.

Unit

media

capacity

is

the

space,

in

number

of

bytes

of

auxiliary

storage,

on

the

non-mirrored

unit

or

mirrored

pair,

that

is,

the

capacity

of

the

unit

prior

to

any

formatting

or

allocation

of

space

by

the

system

it

is

attached

to.

For

a

mirrored

pair,

this

space

is

the

number

of

bytes

of

auxiliary

storage

on

either

one

of

the

mirrored

units.

The

space

is

identical

on

both

of

the

mirrored

units.

Caution,

do

not

attempt

to

add

the

capacities

of

the

two

units

of

a

mirrored

pair

together.

Unit

media

capacity

is

also

known

as

″logical

capacity″.

For

compressed

drives,

the

logical

capacity

is

dynamic,

and

changes,

depending

on

how

well

the

data

is

compressed.

A

typical

compressed

logical

capacity

might

be

twice

the

drive’s

physical

capacity.

Unit

storage

capacity

has

the

same

value

as

the

unit

media

capacity

for

configured

disk

units.

This

value

is

0

for

non-configured

units.

Unit

space

available

is

the

number

of

bytes

of

secondary

storage

space

that

is

not

currently

assigned

to

objects

or

internal

machine

functions,

and

therefore,

is

available

for

allocation

on

the

unit

(or

the

mirrored

pair).

For

a

mirrored

pair,

this

space

is

the

number

of

bytes

of

auxiliary

storage

available

on

either

one

of

the

mirrored

units.

The

space

is

identical

on

both

of

the

mirrored

units.

Caution,

do

not

attempt

to

add

the

capacities

of

the

two

units

of

a

mirrored

pair

together.

This

value

is

0

for

non-configured

units.

Unit

space

reserved

for

system

is

the

total

number

of

bytes

of

auxiliary

storage

on

the

unit

reserved

for

use

by

the

machine.

This

storage

is

not

available

for

storing

objects,

redundancy

data,

and

other

internal

machine

data.

This

value

is

0

for

non-configured

units.

Unit

is

device

parity

protected

-

a

value

of

1

indicates

that

this

unit

is

device

parity

protected.

Subsystem

is

active

indicates

whether

the

array

subsystem

is

active.

If

the

unit

in

subsystem

has

failed

field

is

binary

1,

the

unit

in

an

array

subsystem

being

addressed

has

failed.

Data

protection

for

this

subsystem

is

no

longer

in

effect.

If

the

other

unit

in

subsystem

has

failed

field

is

binary

1,

the

unit

being

addressed

is

operational,

but

another

unit

in

the

array

subsystem

has

failed.

Data

protection

for

this

subsystem

is

no

longer

in

effect.

If

the

subsystem

runs

in

degraded

mode

field

is

binary

1,

the

array

subsystem

is

operational

and

data

protection

for

this

subsystem

is

in

effect,

but

a

failure

that

may

affect

performance

has

occurred.

It

must

be

fixed.

Machine

Interface

Instructions

857

If

the

hardware

failure

field

is

binary

1,

the

array

subsystem

is

operational

and

data

protection

for

this

subsystem

is

in

effect,

but

hardware

failure

has

occurred.

It

must

be

fixed.

If

the

device

parity

protection

is

being

rebuilt

field

is

1,

the

device

parity

protection

for

this

device

is

being

rebuilt

following

a

repair

action.

If

the

unit

is

not

ready

field

is

binary

1,

the

unit

being

addressed

is

not

ready

for

I/O

operation.

If

the

unit

is

write

protected

field

is

binary

1,

the

write

operation

is

not

allowed

on

the

unit

being

addressed.

If

the

unit

is

busy

field

is

binary

1,

the

unit

being

addressed

is

busy.

If

the

unit

is

not

operational

field

is

binary

1,

the

unit

being

addressed

is

not

operational.

The

status

of

the

device

is

not

known.

If

the

unit

is

not

recognizable

field

is

binary

1,

the

unit

being

addressed

has

an

unexpected

status.

I.e.

the

unit

is

operational,

but

its

status

returned

to

Storage

Management

from

the

IOP

is

not

one

of

those

previously

described.

If

the

status

is

not

available

field

is

binary

1,

the

machine

is

not

able

to

communicate

with

I/O

processor.

The

status

of

the

device

is

not

known.

If

the

unit

is

read/write

protected

is

binary

1,

a

DASD

array

may

be

in

the

read/write

protected

state

when

there

is

a

problem,

such

as

a

cache

problem,

configuration

problem,

or

some

other

array

problems

that

could

create

a

data

integrity

exposure.

If

the

unit

is

compressed

field

is

binary

1,

the

logical

capacity

of

the

unit

may

be

greater

than

its

physical

capacity

in

bytes,

depending

on

how

well

the

data

can

be

compressed.

If

the

do

not

allocate

additional

storage

on

this

disk

unit

field

is

binary

1,

then

new

allocations

will

be

directed

away

from

this

unit.

If

the

unit

is

in

availability

parity

set

field

is

binary

1,

the

unit

being

addressed

is

in

a

parity

set

optimized

for

availability.

If

the

unit

is

multipath

unit

field

is

binary

1,

the

unit

being

addressed

has

multipath

connections

to

the

disk

unit.

Serial

number

specifies

the

serial

number

of

the

device

containing

this

auxiliary

storage

unit.

This

is

the

ten

character

serial

number

field

from

the

vital

product

data

for

the

disk

device.

Resource

name

is

the

unique

ten-character

name

assigned

by

the

system

Unit

usage

information

specifies

statistics

relating

to

usage

of

the

unit.

For

unallocated

units,

these

fields

are

meaningless.

Blocks

transferred

to/from

main

storage

fields

specify

the

number

of

512-byte

blocks

transferred

for

the

unit

since

the

last

IMPL.

These

values

wrap

around

to

zero

and

continue

counting

in

the

case

of

an

overflow

of

the

field

with

no

indication

of

the

overflow

having

occurred.

Requests

for

data

transfer

to/from

main

storage

fields

specify

the

number

of

data

transfer

(I/O)

requests

processed

for

the

unit

since

the

last

IMPL.

These

values

wrap

around

to

zero

and

continue

counting

in

the

case

of

an

overflow

of

the

field

with

no

indication

of

the

overflow

having

occurred.

These

values

are

not

directly

related

to

the

number

of

blocks

transferred

for

the

unit

because

the

number

of

blocks

to

be

transferred

for

a

given

transfer

request

can

vary

greatly.

858

iSeries:

Machine

Interface

Instructions

APIs

Permanent

blocks

transferred

from

main

storage

specifies

the

number

of

512-byte

blocks

of

permanent

data

transferred

from

main

storage

to

auxiliary

storage

for

the

unit

since

the

last

IMPL.

In

the

case

of

an

overflow

of

the

field,

this

value

wraps

around

back

to

zero

and

continues

counting,

with

no

indication

of

the

overflow

condition

having

occurred.

Requests

for

permanent

data

transfer

from

main

storage

specifies

the

number

of

transfer

(I/O)

requests

for

transfers

of

permanent

data

from

main

storage

to

auxiliary

storage

that

have

been

processed

for

the

unit

since

the

last

IMPL.

In

the

case

of

an

overflow

of

the

field,

this

value

wraps

around

back

to

zero

and

continues

counting,

with

no

indication

of

the

overflow

condition

having

occurred.

This

value

is

not

directly

related

to

the

permanent

blocks

transferred

from

main

storage

value

for

the

unit

ASP

because

the

number

of

blocks

to

be

transferred

for

any

particular

transfer

request

can

vary

greatly.

Sample

count

specifies

the

number

of

times

the

disk

queue

was

checked

to

determine

whether

or

not

the

queue

is

empty.

Not

busy

count

specifies

the

number

of

times

the

disk

queue

was

empty

during

the

same

time

period

that

the

sample

count

was

taken.

Note

that

on

overflow,

the

machine

resets

the

following

BIN(4)

fields

from

2,147,483,647

back

to

0

without

any

indication

of

error:

blocks

transferred

to

main

storage,

blocks

transferred

from

main

storage,

requests

for

data

transfer

to

main

storage,

requests

for

data

transfer

from

main

storage,

permanent

blocks

transferred

from

main

storage,

requests

for

permanent

data

transfer

from

main

storage,

sample

count,

and

not

busy

count.

Original

Multiprocessor

utilizations

(Hex

13):

Note:

Option

hex

28

is

the

preferred

method

of

materializing

multiprocessor

utilizations.

The

MATRMD

instruction

option

hex

28

returns

the

same

information

(and

more,

in

a

different

format)

as

that

provided

by

this

option.

This

option

returns

information

on

a

maximum

of

32

processors

even

if

there

are

more

processors

installed.

If

information

on

more

than

32

processors

is

required,

then

the

hex

28

option

must

be

used.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Maximum

number

of

active

processors

in

the

partition

Bin(2)

18

12

Number

of

active

processors

in

the

partition

Bin(2)

20

14

Bit

map

of

processors

currently

active

on

the

machine

Char(4)

20

14

Processor

1

is

active

Bit

0

20

14

Processor

2

is

active

Bit

1

20

14

Processor

3

is

active

Bit

2

20

14

Processor

4

is

active

Bit

3

20

14

Processor

5

is

active

Bit

4

20

14

Processor

6

is

active

Bit

5

20

14

Processor

7

is

active

Bit

6

20

14

Processor

8

is

active

Bit

7

20

14

Processor

9

is

active

Bit

8

20

14

Processor

10

is

active

Bit

9

20

14

Processor

11

is

active

Bit

10

20

14

Processor

12

is

active

Bit

11

20

14

Processor

13

is

active

Bit

12

20

14

Processor

14

is

active

Bit

13

20

14

Processor

15

is

active

Bit

14

20

14

Processor

16

is

active

Bit

15

20

14

Processor

17

is

active

Bit

16

20

14

Processor

18

is

active

Bit

17

Machine

Interface

Instructions

859

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

20

14

Processor

19

is

active

Bit

18

20

14

Processor

20

is

active

Bit

19

20

14

Processor

21

is

active

Bit

20

20

14

Processor

22

is

active

Bit

21

20

14

Processor

23

is

active

Bit

22

20

14

Processor

24

is

active

Bit

23

20

14

Processor

25

is

active

Bit

24

20

14

Processor

26

is

active

Bit

25

20

14

Processor

27

is

active

Bit

26

20

14

Processor

28

is

active

Bit

27

20

14

Processor

29

is

active

Bit

28

20

14

Processor

30

is

active

Bit

29

20

14

Processor

31

is

active

Bit

30

20

14

Processor

32

is

active

Bit

31

24

18

Array

of

Char(8)

processor

time

used

since

IPL

values.

Repeated

once

for

each

active

processor.

Char(256)

24

18

Processor

1

time

busy

since

IPL

Char(8)

32

20

Processor

2

time

busy

since

IPL

Char(8)

40

28

Processor

3

time

busy

since

IPL

Char(8)

48

30

Processor

4

time

busy

since

IPL

Char(8)

56

38

Processor

5

time

busy

since

IPL

Char(8)

64

40

Processor

6

time

busy

since

IPL

Char(8)

72

48

Processor

7

time

busy

since

IPL

Char(8)

80

50

Processor

8

time

busy

since

IPL

Char(8)

88

58

Processor

9

time

busy

since

IPL

Char(8)

96

60

Processor

10

time

busy

since

IPL

Char(8)

104

68

Processor

11

time

busy

since

IPL

Char(8)

112

70

Processor

12

time

busy

since

IPL

Char(8)

120

78

Processor

13

time

busy

since

IPL

Char(8)

128

80

Processor

14

time

busy

since

IPL

Char(8)

136

88

Processor

15

time

busy

since

IPL

Char(8)

144

90

Processor

16

time

busy

since

IPL

Char(8)

152

98

Processor

17

time

busy

since

IPL

Char(8)

160

A0

Processor

18

time

busy

since

IPL

Char(8)

168

A8

Processor

19

time

busy

since

IPL

Char(8)

176

B0

Processor

20

time

busy

since

IPL

Char(8)

184

B8

Processor

21

time

busy

since

IPL

Char(8)

192

C0

Processor

22

time

busy

since

IPL

Char(8)

200

C8

Processor

23

time

busy

since

IPL

Char(8)

208

D0

Processor

24

time

busy

since

IPL

Char(8)

216

D8

Processor

25

time

busy

since

IPL

Char(8)

860

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

224

E0

Processor

26

time

busy

since

IPL

Char(8)

232

E8

Processor

27

time

busy

since

IPL

Char(8)

240

F0

Processor

28

time

busy

since

IPL

Char(8)

248

F8

Processor

29

time

busy

since

IPL

Char(8)

256

100

Processor

30

time

busy

since

IPL

Char(8)

264

108

Processor

31

time

busy

since

IPL

Char(8)

272

110

Processor

32

time

busy

since

IPL

Char(8)

280

118

—-

End

—-

This

option

always

returns

a

number

of

bytes

available

for

materialization

equal

to

the

length

of

the

entire

structure

detailed

above

(it

does

not

vary

with

the

number

of

configured

or

active

processors).

Maximum

number

of

active

processors

in

the

partition

is

the

maximum

number

of

virtual

processors

that

can

be

active

on

the

current

IPL

of

the

partition.

Number

of

active

processors

in

the

partition

is

the

number

of

virtual

processors

currently

active

in

the

partition.

It

will

always

be

less

than

or

equal

to

the

maximum

number

of

active

processors

in

the

partition.

A

value

of

binary

1

for

the

processor

is

active

field

indicates

the

processor

is

active.

A

value

of

binary

0

indicates

the

processor

is

currently

varied

off

or

is

not

installed

on

the

system.

The

significance

of

bits

within

the

processor

time

busy

since

IPL

fields

are

the

same

as

that

defined

for

the

time-of-day

clock.

For

a

partition

sharing

physical

processors,

processor

time

busy

since

IPL

is

scaled

appropriately

so

that

CPU

utilization

calculations

can

be

done

as

if

the

partition

was

using

dedicated

processors.

Virtual

processors

that

are

not

currently

active

(but

were

active

at

some

previous

time

in

the

IPL)

will

not

have

their

processor

time

busy

since

IPL

reported.

Storage

pool

tuning

(Hex

14):

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Control

information

Char(16)

(occurs

just

once)

16

10

Current

number

of

pools

Bin(2)

18

12

Reserved

(binary

0)

Char(14)

32

20

Pool

information

[*]

Char(104)

(repeated

once

for

each

pool)

32

20

Type

of

pool

tuning

Char(1)

Hex

00

=

No

tuning

is

being

done

for

the

pool

Hex

10

=

Static

tuning

Hex

20

=

Dynamic

tuning

of

transfers

to

main

storage

Hex

30

=

Dynamic

tuning

of

transfers

to

main

storage

and

to

auxiliary

storage

33

21

Changed

page

handling

Char(1)

Machine

Interface

Instructions

861

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

Hex

00

=

System

page

replacement

algorithm

handles

changed

pages

Hex

10

=

Periodically

transfer

changed

pages

to

auxiliary

storage

34

22

Reserved

(binary

0)

Char(14)

48

30

Nondatabase

objects

Char(8)

48

30

Blocking

factor

Char(2)

Hex

0008

=

Transfer

data

between

main

storage

and

auxiliary

in

blocks

of

4K.

Hex

0010

=

Transfer

data

between

main

storage

and

auxiliary

in

blocks

of

8K.

Hex

0020

=

Transfer

data

between

main

storage

and

auxiliary

in

blocks

of

16K.

Hex

0040

=

Transfer

data

between

main

storage

and

auxiliary

in

blocks

of

32K.

50

32

Reserved

(binary

0)

Char(6)

56

38

Reserved

(binary

0)

Char(16)

72

48

Handling

of

database

objects

by

class

[4]

Char(8)

(repeat

for

each

of

the

four

classes)

72

48

Blocking

factor

Char(2)

862

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

Hex

0008

=

Transfer

data

between

main

storage

and

auxiliary

in

blocks

of

4K.

Hex

0010

=

Transfer

data

between

main

storage

and

auxiliary

in

blocks

of

8K.

Hex

0020

=

Transfer

data

between

main

storage

and

auxiliary

in

blocks

of

16K.

Hex

0040

=

Transfer

data

between

main

storage

and

auxiliary

in

blocks

of

32K.

Hex

0080

=

Transfer

data

between

main

storage

and

auxiliary

in

blocks

of

64K.

Hex

0100

=

Transfer

data

between

main

storage

and

auxiliary

in

blocks

of

128K.

74

4A

Allow

exchange

operations

Char(1)

Hex

C5

=

Allow

exchange

operations

Hex

D5

=

Disable

exchange

operations

Hex

D9

=

Indicate

that

objects

are

good

candidates

for

replacement

75

4B

Handling

of

requests

to

transfer

object

to

auxiliary

storage

Char(1)

Hex

D5

=

Use

the

system

page

replacement

algorithm

Hex

D7

=

Purge

the

objects

from

main

storage

Hex

D9

=

Indicate

the

objects

are

good

candidates

for

replacement

Hex

E6

=

Write

the

objects

to

auxiliary

storage

76

4C

Reserved

(binary

0)

Char(4)

104

68

Reserved

(binary

0)

Char(32)

*

*

—-

End

—-

Current

number

of

pools

is

a

user-specified

value

for

the

number

of

storage

pools

the

user

wishes

to

utilize.

These

are

assumed

to

be

numbered

from

1

to

the

number

specified.

This

number

is

fixed

by

the

machine

to

be

equal

to

the

maximum

number

of

pools.

Machine

Interface

Instructions

863

Type

of

pool

tuning

determines

what

the

system

is

doing

to

tune

the

performance

of

a

storage

pool.

When

no

tuning

is

being

done

for

a

pool

(hex

00),

the

system

tries

to

minimize

the

amount

of

main

storage

that

is

used

by

each

of

the

jobs

in

the

system

independent

of

the

amount

of

main

storage

that

exists

in

a

pool.

The

values

returned

for

nondatabase

objects

and

database

objects

by

class

will

be

all

zeros

to

represent

that

the

default

values

are

being

used.

If

static

tuning

is

being

done

(hex

10),

the

system

will

use

the

values

specified

for

pool

information

to

determine

the

amount

of

data

to

transfer

to

main

storage

and

auxiliary

storage.

When

dynamic

tuning

of

transfers

to

main

storage

is

being

done

(hex

20),

the

system

bases

the

amount

of

data

to

transfer

to

main

storage

based

on

the

demand

for

storage

in

the

storage

pool,

the

size

of

the

pool,

the

number

of

active

users

in

the

pool

and

other

performance

attributes.

The

values

returned

for

database

objects

by

class

and

nondatabase

objects

is

the

current

value

being

used

by

the

system

to

handle

the

objects.

When

dynamic

tuning

of

transfers

to

main

storage

and

auxiliary

storage

is

being

done

(hex

30),

the

system

bases

the

amount

of

data

to

transfer

to

main

storage

and

to

auxiliary

storage

based

on

the

demand

for

storage

in

the

storage

pool,

the

size

of

the

pool,

the

number

of

active

users

in

the

pool

and

other

performance

attributes.

The

values

returned

for

database

objects

by

class

and

nondatabase

objects

is

the

current

value

being

used

by

the

system

to

handle

the

objects.

When

tuning

is

requested

(hex

10,

20

or

30),

the

system

periodically

categorizes

database

objects

into

four

different

performance

classes.

The

classes

are:

Class

1

Object

access

appears

to

be

very

random

-

a

disk

access

is

required

for

nearly

each

record

that

is

accessed

Class

2

Some

locality

of

reference

detected,

several

records

are

being

accessed

per

disk

access

Class

3

High

locality

of

reference

detected,

object

is

being

processed

in

a

sequential

manner,

references

are

highly

clustered,

large

portions

of

the

object

are

resident

in

memory.

Class

4

See

following

explanation.

The

class

of

a

database

object

is

adjusted

if

the

object’s

size

is

small

in

comparison

to

the

available

storage

in

the

storage

pool.

This

class

adjustment

involves

adding

1

to

the

class

number,

so

a

class

3

database

object

(as

defined

above)

would

be

treated

as

a

class

4

if

it

is

small

in

comparison

to

the

available

storage

in

the

storage

pool.

Reference

information

for

determining

an

object’s

class

is

collected

periodically

and

by

storage

pool

so

an

object’s

class

will

vary

over

time

and

by

storage

pool.

Changed

page

handling

affects

when

the

system

will

write

changed

pages

to

auxiliary

storage.

When

the

system

page

replacement

algorithm

(hex

00)

is

specified

as

the

changed

page

handling

mechanism,

the

system

will

transfer

changed

pages

to

auxiliary

storage

when:

v

v

Explicitly

requested

to

transfer

the

page

(for

example,

Set

Access

State

(SETACST)

instruction)

v

There

is

a

demand

for

pages

in

the

pool

When

the

periodically

transfer

changed

pages

option

(hex

10)

is

specified

as

the

changed

page

handling

mechanism,

the

system

will

transfer

changed

pages

to

auxiliary

storage

when:

864

iSeries:

Machine

Interface

Instructions

APIs

v

v

Explicitly

requested

to

transfer

the

page

(for

example,

Set

Access

State

(SETACST)

instruction)

v

There

is

a

demand

for

pages

in

the

pool

v

Periodically

look

for

changed

pages

in

a

pool

and

transfer

the

changed

pages

to

auxiliary

storage

Blocking

factor

determines

how

much

data

should

be

brought

into

main

storage

when

the

object

is

needed

in

main

storage.

Allow

exchange

operations

controls

which

method

the

system

should

use

to

find

main

storage

to

hold

data.

With

the

exchange

method

(hex

C5),

the

system

uses

the

page

frames

associated

with

a

specific

object

to

satisfy

the

request.

If

exchange

operations

are

disabled

(hex

D5),

the

system

will

use

the

normal

page

replacement

algorithm

to

find

page

frames

for

the

request.

If

objects

should

be

treated

as

good

candidates

for

replacement

(hex

D9),

the

system

makes

the

page

frames

associated

with

the

object

being

exchanged

a

good

replacement

candidate

but

uses

the

normal

page

replacement

algorithm

to

find

page

frames

for

the

request.

Handling

of

requests

to

transfer

object

to

auxiliary

storage

determines

when

the

data

is

transferred

to

auxiliary

storage

and

when

the

page

frames

containing

the

object

are

available

to

contain

other

data.

If

purging

is

active

(hex

D7)

and

a

request

is

made

to

purge

the

object

to

auxiliary

storage,

the

system

will

immediately

schedule

the

request

to

transfer

the

data

and

when

the

transfer

is

completed,

the

page

frames

containing

the

data

just

written

will

be

made

available

to

hold

other

objects.

If

writing

is

active

(hex

E6)

and

a

request

is

made

to

purge

the

object

to

auxiliary

storage,

the

system

will

immediately

schedule

the

request

to

transfer

the

data

and

the

page

frames

are

not

made

good

candidates

to

be

reused.

If

objects

are

good

candidates

for

replacement

(hex

D9),

the

objects

are

likely

to

be

removed

from

main

storage

by

transferring

the

objects

to

auxiliary

storage

when

the

system

needs

to

transfer

other

objects

into

main

storage.

If

the

system

page

replacement

algorithm

is

used

(hex

D5),

the

system

decides

when

the

object

should

be

transferred

from

main

storage

to

auxiliary

storage.

Delay

cost

scheduling

information

(Hex

15):

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Scheduling

type

Bin(2)

Hex

0000

=

Indicates

that

delay

cost

scheduling

is

disabled.

Processes

are

dispatched

on

the

basis

of

their

assigned

priority.

Hex

0001

=

Indicates

that

delay

cost

scheduling

is

enabled.

The

machine

default

priority

mapping

and

cost

curve

definitions

are

being

used.

18

12

—-

End

—-

MPL

Control

Data

(Hex

16):

Machine

Interface

Instructions

865

Note:

Option

hex

16

is

the

preferred

method

of

materializing

MPL

control

information.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Machine-wide

MPL

control

Char(20)

16

10

Machine

maximum

number

of

MPL

classes

Bin(2)

18

12

Machine

current

number

of

MPL

classes

Bin(2)

20

14

MPL

(max)

UBin(4)

24

18

Ineligible

event

threshold

UBin(4)

28

1C

MPL

(current)

UBin(4)

32

20

Number

of

threads

in

ineligible

state

UBin(4)

36

24

MPL

class

information

[*]

Char(32)

(repeated

for

each

MPL

class,

from

1

to

the

current

number

of

MPL

classes)

36

24

MPL

(max)

UBin(4)

40

28

Ineligible

event

threshold

UBin(4)

44

2C

Current

MPL

UBin(4)

48

30

Number

of

threads

in

ineligible

state

UBin(4)

52

34

Number

of

threads

assigned

to

class

UBin(4)

56

38

Number

of

active

to

ineligible

transitions

UBin(4)

60

3C

Number

of

active

to

MI

wait

transitions

UBin(4)

64

40

Number

of

MI

wait

to

ineligible

transitions

UBin(4)

*

*

—-

End

—-

Machine-Wide

MPL

Control:

Maximum

number

of

MPL

classes

is

the

largest

number

of

MPL

classes

allowed

in

the

machine.

These

are

assumed

to

be

numbered

from

1

to

the

maximum.

Machine

current

number

of

MPL

classes

is

a

user-specified

value

for

the

number

of

MPL

classes

in

use.

They

are

assumed

to

be

numbered

from

1

to

the

current

number.

MPL

(max)

is

the

maximum

number

of

threads

which

may

concurrently

be

in

the

active

state

in

the

machine.

Ineligible

event

threshold

is

a

number

which,

if

exceeded

by

the

number

of

threads

in

ineligible

state

defined

below,

will

cause

an

event

to

be

signaled.

When

the

event

is

signaled,

this

value

is

set

by

the

machine

to

an

implementation

defined

value

which

will

be

materialized

as

hex

FFFFFFFF.

This

is

done

to

indicate

that

the

threshold

has

been

exceeded

and

that

the

event

will

not

be

re-signaled

unless

the

threshold

is

reset.

MPL

(current)

is

the

current

number

of

threads

in

the

active

state.

Number

of

threads

in

the

ineligible

state

is

the

number

of

threads

not

currently

active

because

of

enforcement

of

both

the

machine

and

class

MPL

rules.

MPL

Class

Information

866

iSeries:

Machine

Interface

Instructions

APIs

MPL

class

information

is

data

in

an

array

that

is

associated

with

an

MPL

class

by

virtue

of

its

ordinal

position

within

the

array.

MPL

(max)

is

the

number

of

threads

assigned

to

the

class

which

may

be

concurrently

active.

Ineligible

event

threshold,

MPL

(current),

and

number

of

threads

in

ineligible

state

are

as

defined

above

but

apply

only

to

threads

assigned

to

the

class.

Number

of

threads

assigned

to

class

is

the

total

number

of

threads,

in

any

state,

assigned

to

the

class.

The

total

number

of

transitions

among

the

active,

wait,

and

ineligible

states

by

threads

assigned

to

a

class

are:

1.

Number

of

active

to

ineligible

transitions

2.

Number

of

active

to

MI

wait

transitions

3.

Number

of

MI

wait

to

ineligible

transitions

Note

that

transitions

from

wait

state

to

active

state

can

be

derived

as

(2

-

3)

and

transitions

from

ineligible

state

to

active

state

as

(1

+

3).

On

overflow,

the

machine

wraps

these

UBin(4)

numbers

from

hex

FFFFFFFF

to

0

without

any

indication

of

error.

Allocation

and

De-allocation

counts

per

task

and

thread

(Hex

17):

The

materialized

data

should

not

be

used

for

accounting

purposes

as

the

intended

use

of

this

data

is

for

diagnostic

purposes,

such

as,

to

help

determine

which

task

or

thread

is

currently

consuming

large

amounts

of

space

on

the

system.

The

user

of

this

MI

instruction

should

be

aware

that

process

initiation

and

termination

will

be

slowed

by

over

use.

Note

that

through

appropriate

setting

of

the

number

of

bytes

provided

for

materialization

field

for

operand

1,

the

amount

of

information

to

be

materialized

for

this

option

can

be

reduced

thus

avoiding

the

processing

for

unneeded

information.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Control

information

Char(16)

16

10

Requested

function

UBin(2)

User

specified

values:

1

=

Sorted

by

storage

allocation

2

=

Sorted

by

storage

de-allocation

3

=

Sorted

by

delta

storage

(allocated

minus

de-allocated)

18

12

Total

number

of

tasks

and

threads

UBin(4)

22

16

Total

number

of

entries

UBin(4)

26

1A

Reserved

(binary

0)

Char(6)

32

20

Task

and

thread

information

[*]

Char(80)

(Repeated

once

for

each

task

or

thread.

Located

immediately

after

the

control

information

above.)

32

20

Task

and

thread

control

information

Char(2)

32

20

Task

and

thread

indicator

Bits

0-1

Machine

Interface

Instructions

867

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

00

=

Secondary

thread

01

=

Initial

thread

10

=

Task

11

=

Reserved

32

20

Reserved

(binary

0)

Bits

2-15

34

22

Reserved

(binary

0)

Char(2)

36

24

Task

name

Char(32)

68

44

Task

identifier

Char(4)

72

48

Thread

identifier

Char(8)

80

50

Allocated

storage

UBin(4)

84

54

De-allocated

storage

UBin(4)

88

58

Delta

storage

UBin(4)

92

5C

Reserved

(binary

0)

Char(20)

*

*

—-

End

—-

Requested

function

is

the

option

on

how

the

data

should

be

returned

back

to

the

requester.

This

field

is

input

from

the

requester.

The

sorting

is

performed

on

all

the

data

before

determining

which

elements

will

be

returned.

Total

number

of

tasks

and

threads

is

the

total

number

of

tasks

and

threads

on

the

system

at

the

time

of

the

sampling.

This

includes

all

machine

tasks,

initial

threads

and

secondary

threads.

Total

number

of

entries

is

the

number

of

task

and

thread

information

elements

that

are

being

returned.

Task

and

thread

information

Task

and

thread

indicator

specifies

whether

the

element

is

for

a

task,

initial

thread

or

a

secondary

thread.

Task

name

is

the

name

of

the

task.

All

threads

within

a

process

will

have

the

same

process

control

space

(PCS)

name.

Task

identifier

contains

a

value

assigned

by

the

machine,

which

uniquely

identifies

the

task

within

the

machine

for

as

long

as

the

task

exists.

Thread

identifier

contains

a

value

assigned

by

the

machine,

which

uniquely

identifies

this

thread

within

its

process.

The

value

will

not

be

re-assigned

to

another

thread

within

the

process.

For

a

task

this

field

will

be

zero.

Allocated

storage

is

the

amount

of

auxiliary

storage

in

pages

that

has

been

allocated

by

this

task

or

thread.

The

value

of

this

field

only

increases

over

time.

868

iSeries:

Machine

Interface

Instructions

APIs

De-allocated

storage

is

the

amount

of

auxiliary

storage

in

pages

that

has

been

de-allocated

by

this

task

or

thread.

The

value

of

this

field

only

increases

over

time.

Delta

storage

is

the

amount

of

auxiliary

storage

in

pages

that

is

the

difference

between

the

amount

allocated

and

de-allocated

by

this

task

or

thread.

If

the

de-allocated

storage

is

larger

than

the

allocated

storage,

then

the

field

will

be

set

to

zero.

Processor

Multi-tasking

mode

(hex

18):

This

option

is

used

to

materialize

the

pending

and

current

values

for

the

processor

multi-tasking

mode.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Current

mode

UBin(2)

0

=

Processor

multi-tasking

capability

is

currently

disabled.

1

=

Processor

multi-tasking

capability

is

currently

enabled.

2

=

Processor

multi-tasking

capability

is

currently

system

controlled.

18

12

Pending

mode

UBin(2)

0

=

Processor

multi-tasking

capability

is

to

be

disabled

on

the

next

IPL

if

supported

by

the

system

hardware.

1

=

Processor

multi-tasking

capability

is

to

be

enabled

on

the

next

IPL

if

supported

by

the

system

hardware.

2

=

Processor

multi-tasking

capability

is

to

be

system

controlled

on

the

next

IPL

if

supported

by

the

system

hardware.

20

14

—-

End

—-

The

current

mode

field

returns

the

current

value

for

the

processor

multi-tasking

mode.

Machine

Interface

Instructions

869

The

pending

mode

field

returns

the

pending

value

for

the

processor

multi-tasking

mode.

On

the

next

IPL,

if

the

pending

mode

is

set

to

a

supported

value

for

the

hardware,

the

current

mode

will

be

changed

to

the

pending

mode.

However,

if

the

pending

mode

is

set

to

an

unsupported

value

for

the

hardware,

the

value

specified

for

pending

mode

will

be

ignored

and

the

pending

mode

will

be

reset

to

the

current

mode

on

the

next

IPL.

At

IPL,

the

pending

mode

is

set

to

the

current

mode

after

changes

to

the

current

mode,

if

any,

have

been

applied.

For

a

physical

machine

with

firmware

level

hex

00:

v

v

All

partitions

take

the

value

for

current

mode

and

pending

mode

from

the

primary

partition.

MATMATR

option

hex

01E0

can

be

used

to

materialize

the

firmware

level.

A

physical

machine

IPL

is

required

for

the

pending

mode

to

become

the

current

mode.

The

default

value

is

1

(processor

multitasking

enabled)

if

supported

by

the

system

hardware.

Otherwise,

the

default

value

is

0

(processor

multitasking

disabled).

Both

the

current

mode

and

pending

mode

are

set

to

the

default

value

on

the

initial

IPL.

For

a

physical

machine

with

firmware

level

hex

10:

v

v

Current

mode

and

pending

mode

are

materialized

for

the

current

partition.

A

partition

IPL

is

required

for

the

pending

mode

to

become

the

current

mode.

The

default

value

is

2

(processor

multitasking

is

system

controlled).

Both

the

current

mode

and

pending

mode

are

set

to

the

default

value

on

the

initial

IPL.

Dynamic

priority

adjustment

mode

(hex

19):

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Current

mode

UBin(2)

0

=

Indicates

that

dynamic

priority

adjustment

is

currently

disabled.

Tasks

will

be

dispatched

on

the

basis

of

their

assigned

priority.

1

=

Indicates

that

dynamic

priority

adjustment

is

currently

enabled.

This

algorithm

is

effective

on

systems

that

have

throughput

rated

for

both

interactive

and

non-interactive

workloads.

18

12

Pending

mode

UBin(2)

870

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Indicates

that

dynamic

priority

adjustment

is

to

be

disabled.

Tasks

will

be

dispatched

on

the

basis

of

their

assigned

priority.

1

=

Indicates

that

dynamic

priority

adjustment

is

to

be

enabled.

This

algorithm

is

effective

on

systems

that

have

throughput

rated

for

both

interactive

and

non-interactive

workloads.

20

14

—-

End

—-

Changes

to

the

dynamic

priority

adjustment

mode

take

effect

on

the

subsequent

IPL.

The

default

value

for

the

current

mode

field

is

″enabled″

even

though

the

capability

is

not

available

on

all

hardware

models.

Dynamic

priority

adjustment

mode

will

not

be

effective

if

delay

cost

scheduling

(see

option

hex

15)

has

been

disabled.

The

underlying

function,

Server

Dynamic

Tuning,

allows

the

interactive

workload

on

the

system

to

be

depressed

to

allow

the

non-interactive

workload

more

throughput.

As

interactive

tasks

utilize

more

than

a

predetermined

amount

of

CPU

cycles,

their

priorities

will

be

lowered

to

allow

non-interactive

tasks

to

obtain

CPU

cycles.

As

interactive

tasks

utilize

less

than

a

predetermined

amount

of

CPU

cycles,

their

priorities

will

be

raised

toward

their

assigned

priority.

Disk

collection

/

balancing

status

(hex

1A):

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

ASP

number

UBin(2)

18

12

Type

of

disk

balance

UBin(2)

0

=

No

disk

balancing

1

=

Capacity

disk

balancing

2

=

Usage

disk

balancing

3

=

Archiving

disk

balancing

4

=

Clear

the

collection

data

5

=

Move

data

balancing

20

14

Reserved

(binary

zero)

Char(16)

36

24

ASP

disk

collection

status

Char(2)

Machine

Interface

Instructions

871

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

Hex

0000

=

No

collection

in

process

Hex

0001

=

Collection

in

process

Hex

0002

=

Canceling

the

collection

Hex

0003

=

Holding

the

collection

data

for

balancing

only

Hex

0004

=

Clearing

the

collection

data

Hex

0005

=

Holding

the

collection

data

for

collection

or

balancing

38

26

ASP

disk

balancing

status

Char(2)

Hex

0000

=

No

balancing

in

process

Hex

0001

=

Balancing

in

process

Hex

0002

=

Balancing

has

been

cancelled

Hex

0003

=

Balancing

has

been

suspended

Hex

0004

=

Balancing

has

completed

40

28

Date/time

the

collection

last

started

Char(17)

40

28

Year

collection

last

started

Char(4)

44

2C

Month

collection

last

started

Char(2)

46

2E

Day

collection

last

started

Char(2)

48

30

Hour

collection

last

started

Char(2)

50

32

Minute

collection

last

started

Char(2)

52

34

Reserved

(binary

zero)

Char(5)

57

39

ASP

flags

Char(1)

57

39

ASP

contains

compressed

and

non-compressed

units

Bit

0

57

39

ASP

is

varied

on

Bit

1

57

39

Remote

mirrored

independent

ASP

is

partially

varied

on

Bit

2

57

39

Reserved

(binary

0)

Bits

3-7

58

3A

Number

of

allocated

auxiliary

storage

units

in

ASP

Bin(2)

Note:

Number

of

configured,

non-mirrored

units

+

number

of

mirrored

pairs

60

3C

Cumulative

minutes

the

collection

has

run

UBin(4)

64

40

Date/time

the

collection

last

ended

Char(17)

64

40

Year

collection

last

ended

Char(4)

68

44

Month

collection

last

ended

Char(2)

70

46

Day

collection

last

ended

Char(2)

72

48

Hour

collection

last

ended

Char(2)

74

4A

Minute

collection

last

ended

Char(2)

872

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

76

4C

Reserved

(binary

zero)

Char(5)

81

51

Date/time

the

balancing

last

started

Char(17)

81

51

Year

balancing

last

started

Char(4)

85

55

Month

balancing

last

started

Char(2)

87

57

Day

balancing

last

started

Char(2)

89

59

Hour

balancing

last

started

Char(2)

91

5B

Minute

balancing

last

started

Char(2)

93

5D

Reserved

(binary

zero)

Char(5)

98

62

Reserved

(binary

zero)

Char(2)

100

64

Cumulative

minutes

the

balancing

has

run

UBin(4)

104

68

Date/time

the

balancing

last

ended

Char(17)

104

68

Year

balancing

last

ended

Char(4)

108

6C

Month

balancing

last

ended

Char(2)

110

6E

Day

balancing

last

ended

Char(2)

112

70

Hour

balancing

last

ended

Char(2)

114

72

Minute

balancing

last

ended

Char(2)

116

74

Reserved

(binary

zero)

Char(5)

121

79

Reserved

(binary

zero)

Char(7)

128

80

Amount

to

be

moved

Char(8)

136

88

Amount

moved

Char(8)

144

90

—-

End

—-

ASP

number

is

an

input

value

that

uniquely

identifies

the

auxiliary

storage

pool

from

which

the

current

collection

and

balancing

status

is

desired.

The

ASP

number

may

have

a

value

from

1

through

255.

A

value

of

1

indicates

the

system

ASP.

A

value

of

2

through

255

indicates

a

user

ASP.

Type

of

disk

balance

identifies

the

type

of

balance

activity

that

is

currently

running

or

was

done

last

for

this

ASP.

ASP

disk

collection

status

identifies

the

requested

ASP’s

current

collection

status.

v

v

No

collection

in

process

(hex

0000)

indicates

that

no

collection

is

active

for

this

ASP.

Also

no

collection

data

is

available

for

balancing.

v

Collection

in

process

(hex

0001)

indicates

a

collection

is

currently

in

process.

The

collection

data

consists

of

how

frequently

data

is

referenced

from

a

disk

arm

in

the

ASP

and

how

busy

the

disk

is

during

the

collection

period.

v

Canceling

the

collection

(hex

0002)

indicates

the

collection

has

been

cancelled.

The

collection

can

be

resumed

or

can

be

used

for

balancing

purposes.

v

Holding

the

collection

data

for

balancing

only

(hex

0003)

indicates

that

the

collection

data

is

being

held

for

further

movement

or

clearing.

v

Clearing

the

collection

data

(hex

0004)

indicates

the

collection

is

currently

being

cleared.

v

Holding

the

collection

data

for

collection

or

balancing

(hex

0005)

indicates

the

collection

is

currently

being

held

for

additional

collection,

balancing

or

clearing

purposes.

Machine

Interface

Instructions

873

ASP

disk

balancing

status

identifies

the

requested

ASP’s

current

balancing

status.

v

v

No

balancing

in

process

(hex

0000)

indicates

that

no

balancing

is

active

for

this

ASP.

v

Balancing

in

process

(hex

0001)

indicates

a

balancing

is

currently

in

process.

A

disk

collection

must

have

been

run

prior

to

this

activity.

v

Balancing

has

been

cancelled

(hex

0002)

indicates

the

balancing

is

being

cancelled.

The

balancing

can

be

resumed

or

the

collection

data

can

be

cleared.

v

Balancing

has

been

suspended

(hex

0003)

indicates

the

balancing

was

previously

stopped.

The

balancing

can

be

resumed

or

the

collection

data

can

be

cleared.

v

Balancing

has

completed

(hex

0004)

indicates

the

balancing

has

completed

normally.

Date

and

time

the

collection

last

started.

This

is

an

EBCDIC

date

and

time

representation

indicating

when

the

last

collection

period

was

started.

If

no

collection

has

been

started,

then

the

field

will

be

binary

zeroes.

v

v

Year

collection

last

started

v

Month

collection

last

started

v

Day

collection

last

started

v

Hour

collection

last

started

v

Minute

collection

last

started

ASP

contains

compressed

and

non-compressed

units

flag

specifies

whether

or

not

the

ASP

has

compressed

and

non-compressed

configured

units.

A

value

of

binary

1

indicates

that

both

compressed

and

non-compressed

units

exist

in

this

ASP.

A

value

of

binary

0

indicates

that

a

mix

of

compressed

and

non-compressed

units

does

not

exist

in

this

ASP.

ASP

is

online

flag

specifies

if

the

ASP

is

available

to

the

system.

If

this

ASP

is

an

independent

ASP,

a

value

of

binary

1

indicates

the

independent

ASP

is

varied

on.

If

this

ASP

is

an

independent

ASP,

a

value

of

binary

0

indicates

the

independent

ASP

is

varied

off.

A

value

of

binary

1

is

returned

if

the

ASP

is

a

basic

ASP

or

a

system

ASP.

Remote

mirrored

independent

ASP

is

partially

varied

on

flag

specifies

that

the

remote

mirrored

copy

of

an

independent

ASP

is

partially

varied

on.

If

this

ASP

is

an

independent

ASP,

a

value

of

binary

1

indicates

that

it

is

the

mirror

copy

in

a

remotely

mirrored

independent

ASP

and

that

the

independent

ASP

is

partially

varied

on.

If

this

ASP

is

an

independent

ASP,

a

value

of

binary

0

indicates

the

independent

ASP

is

varied

off.

A

value

of

binary

0

is

returned

if

the

ASP

is

a

basic

ASP

or

a

system

ASP.

Number

of

allocated

auxiliary

storage

units

in

ASP

is

the

number

of

configured

units

logically

addressable

by

the

system

as

units

for

this

ASP.

This

is

the

number

of

configured,

non-mirrored

units

plus

the

number

of

mirrored

pairs

allocated

in

the

ASPs.

The

total

number

of

units

(actuator

arms)

on

the

system

is

the

sum

of

the

allocated

auxiliary

storage

units

plus

the

number

of

unallocated

auxiliary

storage

units

plus

the

number

of

pairs

of

mirrored

units.

For

example,

each

9335

enclosure

represents

two

units.

Information

on

these

units

is

materialized

as

part

of

the

unit

information.

Any

two

units

of

the

same

size

may

be

associated

to

form

a

mirrored

pair.

Association

of

two

units

as

a

mirrored

pair

reduces

the

amount

of

logically

available

storage

by

the

number

of

bytes

contained

on

one

of

the

mirrored

units

in

the

mirrored

pair.

874

iSeries:

Machine

Interface

Instructions

APIs

Cumulative

minutes

the

collection

has

run.

Since

the

collection

can

be

stopped

and

restarted

several

times

this

gives

the

user

an

indication

of

how

long

the

collection

has

been

run.

When

the

collection

is

cleared

this

field

is

reset

to

binary

zeroes.

Date

and

time

the

collection

last

ended.

This

is

an

EBCDIC

date

and

time

representation

indicating

when

the

last

collection

period

was

ended.

If

no

collection

has

ended,

then

the

field

will

be

binary

zeroes.

v

v

Year

collection

last

ended

v

Month

collection

last

ended

v

Day

collection

last

ended

v

Hour

collection

last

ended

v

Minute

collection

last

ended

Date

and

time

the

balancing

last

started.

This

is

an

EBCDIC

date

and

time

representation

indicating

when

the

last

balancing

period

was

started.

If

no

balancing

has

been

started,

then

the

field

will

be

binary

zeroes.

v

v

Year

balancing

last

started

v

Month

balancing

last

started

v

Day

balancing

last

started

v

Hour

balancing

last

started

v

Minute

balancing

last

started

Cumulative

minutes

the

balancing

has

run.

Since

the

balancing

can

be

stopped

and

restarted

several

times

this

gives

the

user

an

indication

of

how

long

the

balancing

has

been

run.

When

the

collection

is

cleared

this

field

is

reset

to

binary

zeroes.

Date

and

time

the

balancing

last

ended.

This

is

an

EBCDIC

date

and

time

representation

indicating

when

the

last

balancing

period

was

ended.

If

no

balancing

has

been

ended,

then

the

field

will

be

binary

zeroes.

v

v

Year

balancing

last

ended

v

Month

balancing

last

ended

v

Day

balancing

last

ended

v

Hour

balancing

last

ended

v

Minute

balancing

last

ended

Amount

to

be

moved.

This

is

the

target

amount

in

megabytes

that

the

balancing

function

will

attempt

to

re-balance.

Amount

moved.

This

is

the

amount

in

megabytes

that

the

balancing

function

has

moved

to

re-balance.

Machine

Interface

Instructions

875

Materialize

mapping

of

partition

processors

(Hex

1B):

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Number

of

processors

for

which

information

is

being

materialized

UBin(2)

18

12

Reserved

(binary

0)

Char(6)

24

18

Physical

processor

token

[*]

UBin(2)

*

*

—-

End

—-

Number

of

processors

for

which

information

is

being

materialized

is

the

number

of

the

virtual

processors

that

are

currently

active

in

the

partition.

Number

of

processors

for

which

information

is

being

materialized

is

less

than

or

equal

to

the

number

of

processors

configured

on

the

machine

returned

by

MATRMD

option

hex

13.

Physical

processor

token

provides

an

index

that

can

be

used

to

correlate

the

virtual

processor

to

its

vital

product

data

returned

by

MATMATR

option

hex

012C

for

a

system

with

a

maximum

of

16

processors.

Physical

processor

token

is

the

index

of

the

physical

machine

processor

(starting

from

1)

that

a

partition

virtual

processor

is

currently

mapped

to.

For

a

partition

sharing

physical

processors,

this

mapping

only

provides

a

snapshot.

At

a

given

instance,

a

partition

processor

may

be

mapped

to

any

of

the

physical

processors

in

the

shared

pool

in

which

the

partition

is

running.

DASD

Management

Status

(Hex

1C):

This

option

returns

status

information

from

the

DASD

manager.

The

format

of

the

template

for

the

status

information

from

the

DASD

manager

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Reserved

(binary

0)

Char(8)

24

18

Handle

Char(8)

32

20

Status

UBin(2)

0

=

DASD

Management

not

in

use.

1

=

DASD

Management

in

use

by

an

MI

user.

No

action

in

progress.

2

=

DASD

Management

in

use

by

an

MI

user.

Action

in

progress.

3

=

DASD

Management

in

use

by

DST/service

tools

34

22

Action

identifier

UBin(2)

876

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0001

=

Change

ASP

event

threshold

percentage

0002

=

Add

disk

units

0003

=

Suspend

mirrored

protection

0004

=

Resume

mirrored

protection

0005

=

Include

disk

units

in

an

existing

parity

set

0006

=

Rebuild

data

on

a

unit

after

a

parity

fault

0007

=

Replace

unit

with

a

non-configured

unit

0008

=

Start

device

parity

protection

0009

=

Enable

remote

load

source

mirroring

0010

=

Disable

remote

load

source

mirroring

0011

=

Power

off

unit

0012

=

Power

on

unit

0013

=

Format

disk

0014

=

Blank

disk

0015

=

Surface

scan

of

disk

5000

=

DST/service

tools

actions

5001

=

No

actions

performed

5002

=

Specified

handle

not

performing

action

36

24

Percentage

complete

UBin(2)

38

26

Number

of

return

codes

UBin(2)

40

28

Return

code

array

[*]

Char(*)

*

*

—-

End

—-

The

handle

is

an

optional

input

field.

If

provided,

the

handle

will

return

the

status

for

the

open

connection

to

DASD

management.

If

there

is

not

an

open

connection

to

DASD

management

or

the

handle

does

not

match

the

handle

of

the

open

connection,

action

identifier

will

be

set

to

5002

and

no

additional

information

will

be

returned.

If

handle

is

set

to

hex

zeros,

all

available

information

about

DASD

management

will

be

returned,

including

status,

action

identifier,

percentage

complete,

number

of

return

codes,

and

return

code

array.

The

handle

has

a

timeout

associated

with

it.

If

the

handle

is

not

used

to

perform

an

action

or

is

not

used

to

check

the

status

using

this

MATRMD

option

within

5

minutes

after

an

action

completes,

the

connection

to

DASD

Management

is

automatically

closed

and

the

handle

is

invalidated

and

cannot

be

used

for

any

more

DASD

management

actions.

This

timeout

counter

only

starts

when

an

action

is

completed.

For

example,

if

a

long

running

action

such

as

add

disk

units

takes

an

hour

to

complete,

the

timer

will

be

started

after

the

add

disk

units

action

completes.

The

connection

will

close

5

minutes

after

the

add

disk

units

has

completed

if

the

handle

has

not

been

used

to

request

another

action

or

check

the

status

within

that

5

minutes.

Once

the

handle

is

used

to

check

the

status

or

request

a

new

action,

the

timer

is

reset.

The

status

field

is

an

output

field

which

specifies

the

status

of

DASD

Management.

The

action

identifier

field

is

an

output

field

which

specifies

the

most

recently

attempted

action

if

no

action

is

in

progress

or

the

action

in

progress.

If

the

action

specified

is

5001

(no

actions

performed),

or

5002

(DST/service

tools

action),

the

status

field

is

the

only

other

valid

output

field.

Machine

Interface

Instructions

877

The

percentage

complete

field

is

an

output

field

which

identifies

the

percentage

complete

of

an

action

being

performed

for

an

MI

user.

This

field

is

not

defined

if

DASD

Management

is

currently

being

used

by

DST/service

tools

or

if

no

action

is

currently

being

performed.

The

range

of

percentages

that

may

be

returned

is

0

through

100.

The

number

of

return

codes

is

an

output

field

that

identifies

the

number

of

return

codes

in

the

return

code

array.

If

the

number

of

return

codes

is

zero

and

the

percentage

complete

is

100,

the

action

completed

successfully.

The

return

code

array

is

an

output

field

that

refers

to

an

array

of

return

codes

and

data

associated

with

the

action

identifier.

If

there

is

not

enough

space

allocated

for

all

return

codes

in

the

array,

no

return

code

information

will

be

filled

in.

The

format

of

an

entry

in

the

return

code

array

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Return

code

UBin(2)

Hex

0000

=

Action

successful

Hex

0004

=

Action

failed

Hex

00FF

=

General

DASD

management

error

Hex

0302

=

Cannot

restore

mirrored

data

Hex

0402

=

Disk

unit

has

errors

Hex

0600

=

Create

new

ASP

failed

Hex

0706

=

Cannot

rebuild

parity

information

Hex

0708

=

Device

parity

set

not

operational

Hex

0902

=

Action

was

cancelled

2

2

Return

code

details

Char(30)

32

20

—-

End

—-

The

return

code

field

is

an

output

field

which

identifies

one

of

the

return

codes

of

the

most

recently

completed

DASD

management

action.

The

return

code

details

field

is

an

output

field

which

identifies

error

data

associated

with

the

return

code.

If

the

failure

involves

a

disk

unit,

the

resource

name

of

that

disk

unit

will

be

placed

in

the

first

ten

characters

of

this

field.

The

remaining

20

characters

of

this

field

are

reserved

for

future

use.

If

the

failure

does

not

involve

a

disk

unit,

this

field

will

be

set

to

binary

zeros

and

should

be

ignored.

DASD

Management

Disk

Information

(hex

1D):

This

option

provides

information

about

a

list

of

disks.

878

iSeries:

Machine

Interface

Instructions

APIs

The

format

of

the

template

for

disk

information

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Reserved

(binary

0)

Char(8)

24

18

Number

of

elements

in

disk

information

array

UBin(4)

28

1C

Length

of

element

in

disk

information

array

UBin(4)

32

20

Disk

information

array

[*]

Char(*)

*

*

—-

End

—-

Note:

This

template

must

be

16

byte

aligned.

The

number

of

elements

in

disk

information

array

field

is

an

input/output

field

which

specifies

the

number

of

elements

in

the

disk

information

array.

The

length

of

element

in

disk

information

array

field

is

an

input

field

which

specifies

the

length,

in

bytes,

of

an

entry

in

the

disk

information

array

field.

The

disk

information

array

is

an

array

of

disk

resource

names

and

information

about

those

disks.

The

format

of

the

disk

information

array

is

as

follows:

Note:

The

length

of

the

disk

information

array

is

number

of

elements

in

disk

information

array

*

length

of

element

in

disk

information

array.

If

the

actual

length

of

disk

information

array

is

smaller

than

this

value,

the

number

of

elements

in

disk

information

array

field

will

be

updated

to

the

number

of

elements

provided.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Disk

resource

name

Char(10)

10

A

Flags

Char(1)

10

A

Disk

unit

may

be

included

in

new

parity

set

Bit

0

0

=

Not

allowed

in

new

parity

set

1

=

Allowed

in

new

parity

set

10

A

Disk

unit

may

be

included

in

existing

parity

set

Bit

1

0

=

Not

allowed

in

existing

parity

set

1

=

Allowed

in

existing

parity

set

10

A

Disk

unit

not

found

Bit

2

0

=

Disk

unit

found

1

=

Disk

unit

not

found

10

A

Reserved

(binary

0)

Bits

3-7

11

B

Parity

set

number

Char(1)

12

C

Capacity

available

after

parity

started

UBin(4)

16

10

Frame

associated

with

disk

unit

Char(10)

26

1A

Frame

ID

associated

with

disk

unit

Char(4)

30

1E

Reserved

Char(2)

32

20

—-

End

—-

The

disk

resource

name

field

is

an

input

field

which

specifies

the

name

of

the

disk

unit

to

return

information

about.

The

disk

unit

resource

name

of

the

first

element

in

the

array

may

have

the

special

value

of

’*UNCONFIG’

which

indicates

all

unconfigured

disk

units

in

the

system

will

be

found

and

the

associated

parity

information

for

those

disks

will

be

returned.

The

number

of

elements

in

disk

information

array

field

will

be

updated

to

the

number

of

elements

provided.

Machine

Interface

Instructions

879

The

disk

unit

may

be

included

in

a

new

parity

set

field

is

an

output

field

which

specifies

if

the

disk

resource

name

can

be

included

as

one

of

the

disks

in

that

set

when

creating

a

new

parity

set.

The

disk

unit

may

be

included

in

existing

parity

set

field

is

an

output

field

which

specifies

if

disk

resource

name

is

eligible

to

be

on

a

list

of

disks

that

is

to

be

added

to

that

parity

set.

The

disk

unit

not

found

field

is

set

to

a

1

if

a

disk

unit

corresponding

to

the

disk

resource

name

was

not

found

on

the

system.

The

parity

set

number

field

is

an

output

field

that

specifies

the

parity

set

a

disk

unit

will

belong

to

after

it

has

been

included

in

a

parity

set.

The

value

of

this

field

should

be

ignored

if

the

disk

unit

is

not

allowed

in

a

new

or

existing

parity

set.

The

capacity

available

after

parity

started

field

is

an

output

field

that

specifies

the

capacity

of

the

disk

unit

in

millions

of

bytes

after

this

disk

unit

becomes

part

of

a

parity

set.

The

value

of

this

field

should

be

ignored

if

the

disk

unit

is

not

allowed

in

a

new

or

existing

parity

set.

The

frame

associated

with

disk

unit

field

is

an

output

field

that

identifies

the

frame

resource

to

which

the

disk

unit

is

attached.

This

field

may

be

used

to

determine

the

physical

location

of

the

disk

unit.

The

frame

ID

associated

with

disk

unit

field

is

an

output

field

that

identifies

the

frame

id

to

which

the

disk

unit

is

attached.

This

field

may

be

used

to

determine

the

physical

location

of

the

disk

unit.

Interactive

Utilization

Data

(Hex

1E):

This

option

provides

information

about

interactive

utilization.

For

additional

information,

see

manual

SC41-0607

iSeries

Performance

Capabilities

Reference

manual

which

is

available

in

the

iSeries

Information

Center.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Interactive

threshold

UBin(2)

18

12

Interactive

limit

UBin(2)

20

14

Reserved

Char(4)

24

18

Interactive

processor

usage

since

IPL

Char(8)

32

20

Interactive

processor

usage

above

threshold

since

IPL

Char(8)

40

28

Reserved

Char(16)

56

38

—-

End

—-

Interactive

threshold

is

the

highest

level

of

interactive

processor

utilization

which

can

be

sustained

without

causing

a

disproportionate

increase

in

system

overhead.

The

value

returned

is

the

fraction

of

processor

capacity,

expressed

in

tenths

of

a

percent.

For

example,

a

value

of

237

means

that

the

threshold

is

23.7%.

On

a

machine

with

no

limit

on

interactive

utilization,

the

value

returned

will

be

1000

(100%).

Interactive

limit

is

the

maximum

sustainable

level

of

interactive

processor

utilization.

The

machine

determines

the

interactive

limit

based

on

the

interactive

feature.

The

value

returned

is

the

fraction

of

processor

capacity,

expressed

in

tenths

of

a

percent.

For

example,

a

value

of

275

means

that

the

limit

is

27.5%.

On

a

machine

with

no

limit

on

interactive

utilization,

the

value

returned

will

be

1000

(100%).

Interactive

processor

usage

since

IPL

is

the

total

processor

time,

used

by

interactive

processes

since

IPL.

If

the

system

does

not

support

this

metric,

a

value

of

hex

0000000000000000

is

returned.

If

the

system

880

iSeries:

Machine

Interface

Instructions

APIs

does

support

this

and

needs

to

return

a

value

of

0,

a

value

of

hex

0000000000001000

is

returned.

For

all

other

cases,

the

significance

of

bits

within

this

field

is

the

same

as

that

defined

for

the

time-of-day

clock.

On

a

machine

with

more

than

one

virtual

processor,

the

value

returned

will

be

the

sum

of

the

interactive

processor

usage

since

IPL

for

all

virtual

processors.

Interactive

processor

usage

above

threshold

since

IPL

is

the

total

processor

time,

used

by

interactive

processes,

since

IPL,

during

which

the

interactive

utilization

exceeded

the

interactive

threshold.

On

a

machine

with

more

than

one

virtual

processor,

the

value

returned

will

be

the

sum

of

the

interactive

processor

usage

above

threshold

since

IPL

for

all

virtual

processors.

The

significance

of

bits

within

this

field

is

the

same

as

that

defined

for

the

time-of-day

clock.

For

a

partition

using

shared

processors,

interactive

processor

usage

since

IPL

and

interactive

processor

usage

above

threshold

since

IPL

are

scaled

by

the

configured

capacity

of

the

partition.

This

allows

CPU

utilization

calculations

to

be

done

as

if

the

partition

was

using

whole

physical

processors.

Auxiliary

Storage

Pool

Information

(Short

format)

(Hex

1F):

The

auxiliary

storage

pool

information

describes

the

ASPs

(auxiliary

storage

pools)

which

are

configured

within

the

machine.

This

option

does

not

return

information

for

independent

ASPs

which

are

varied

off.

You

can

use

option

″Auxiliary

Storage

Pool

Information

including

offline

Independent

ASPs

(Hex

22)″

(page

899)

to

return

information

about

independent

ASPs

which

are

varied

off.

Also

note

that

through

appropriate

setting

of

the

number

of

bytes

provided

field

for

operand

1,

the

amount

of

information

to

be

materialized

for

this

option

can

be

reduced

thus

avoiding

the

processing

for

unneeded

information.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Control

information

Char(16)

(occurs

just

once)

16

10

Number

of

ASPs

UBin(2)

18

12

Reserved

(binary

0)

Char(14)

32

20

ASP

information

[*]

Char(32)

(Repeated

once

for

each

ASP.

Located

immediately

after

the

control

information

above.

ASP

1,

always

configured,

is

first.

Configured

ASPs

follow

in

ascending

numerical

order.)

32

20

ASP

number

Char(2)

34

22

Number

of

allocated

auxiliary

storage

units

in

ASP

UBin(2)

Note:

Number

of

configured,

non-mirrored

disk

units

+

number

of

mirrored

pairs

of

disk

units

36

24

ASP

resource

name

Char(10)

46

2E

ASP

control

flags

Char(2)

46

2E

ASP

overflow

Bi

46

2E

Independent

ASP

Bi

46

2E

ASP

protected

Bi

46

2E

User

ASP

MI

state

Bi

46

2E

Independent

ASP

address

threshold

exceeded

Bi

46

2E

Reserved

(binary

0)

Bi

48

30

Number

of

addresses

remaining

in

independent

ASP

Char(8)

Machine

Interface

Instructions

881

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

56

38

ASP

number

of

the

primary

ASP

Char(2)

58

3A

Independent

ASP

type

Char(1)

58

3A

Primary

ASP

Bit

0

58

3A

Secondary

ASP

Bit

1

58

3A

UDFS

ASP

Bit

2

58

3A

Reserved

(binary

0)

Bits

3

59

3B

Reserved

(binary

0)

Char(5)

*

*

—-

End

—-

Number

of

ASPs

is

the

number

of

ASPs

configured

within

the

machine.

One,

the

minimum

value,

indicates

just

the

system

ASP

exists

and

that

there

are

no

user

ASPs

configured.

Up

to

255

user

ASPs

can

be

configured.

The

system

ASP

always

exists.

This

number

of

ASPs

include

the

system

ASP,

basic

ASPs

(that

is,

user

ASPs

which

cannot

be

varied

on),

and

independent

ASPs

which

are

currently

varied

on

to

this

system.

ASP

information

is

repeated

once

for

each

ASP

configured

within

the

machine.

The

number

of

ASPs

configured

is

specified

by

the

number

of

ASPs

field.

ASP

1,

the

system

ASP,

is

materialized

first.

Because

the

system

ASP

always

exists,

its

materialization

is

always

available.

The

information

about

the

user

ASPs

is

materialized

after

the

system

ASP

in

ascending

numerical

order.

There

may

be

gaps

in

the

numerical

order.

For

example,

if

user

ASPs

3

and

75

are

configured,

the

materialize

will

produce

information

on

ASP

1,

ASP

3,

and

ASP

75

in

that

order.

ASP

number

uniquely

identifies

the

auxiliary

storage

pool.

The

ASP

number

may

have

a

value

from

1

through

255.

A

value

of

1

indicates

the

system

ASP.

A

value

of

2

through

255

indicates

a

user

ASP.

Note

that

independent

ASPs

have

a

value

of

33

through

255.

Number

of

allocated

auxiliary

storage

units

in

ASP

is

the

number

of

configured

units

logically

addressable

by

the

system

as

units

for

this

ASP.

This

is

the

number

of

configured,

non-mirrored

units

plus

the

number

of

mirrored

pairs

allocated

in

the

ASPs.

Any

two

units

of

the

same

capacity

may

be

associated

to

form

a

mirrored

pair.

Association

of

two

units

as

a

mirrored

pair

reduces

the

amount

of

logically

available

storage

by

the

number

of

bytes

contained

on

one

of

the

mirrored

units

in

the

mirrored

pair.

ASP

resource

name

specifies

the

name

which

the

user

has

assigned

to

this

auxiliary

storage

pool.

Blanks

(hex

value

40)

are

returned

for

ASPs

which

do

not

have

names.

Only

independent

ASPs

have

names.

The

ASP

name

is

the

resource

name

in

the

LUD.

ASP

overflow

flag

indicates

whether

or

not

object

allocations

directed

into

the

basic

ASP

have

overflowed

into

the

system

ASP.

A

value

of

binary

1

indicates

overflow;

binary

0

indicates

no

overflow.

This

flag

does

not

apply

to

the

system

ASP

and

a

value

of

binary

0

is

always

returned

for

it.

This

flag

does

not

apply

to

independent

ASPs

and

a

value

of

binary

0

is

always

returned

for

independent

ASPs.

Independent

ASP

specifies

whether

or

not

the

ASP

is

an

independent

ASP;

that

is,

a

user

ASP

than

can

be

varied

on

or

off.

A

value

of

binary

1

indicates

the

ASP

is

an

independent

ASP.

A

value

of

binary

0

indicates

that

this

ASP

is

a

basic

ASP

(a

user

ASP

that

cannot

be

varied

on

or

off).

ASP

protected

specifies

whether

or

not

the

ASP

is

configured

to

be

protected

from

a

single

disk

failure.

A

value

of

binary

1

indicates

that

the

ASP

is

protected.

All

of

the

disk

units

in

this

ASP

must

be

either

device

parity

protected

or

mirror

protected.

A

value

of

binary

0

indicates

that

the

disk

units

in

the

ASP

are

not

mirror

protected,

and

there

is

no

requirement

that

the

disk

units

in

the

ASP

be

device

parity

protected.

882

iSeries:

Machine

Interface

Instructions

APIs

User

ASP

MI

state

indicates

the

state

of

the

user

ASP.

A

value

of

binary

1

indicates

that

the

user

ASP

is

in

the

’new’

state.

This

means

that

a

context

may

be

allocated

in

this

user

ASP.

A

value

of

binary

0

indicates

that

the

user

ASP

is

in

the

’old’

state.

This

means

that

there

are

no

contexts

allocated

in

this

user

ASP.

This

flag

has

no

meaning

for

the

system

ASP

and

a

value

of

binary

0

will

always

be

returned

for

the

system

ASP.

A

value

of

binary

1

is

always

returned

for

independent

ASPs.

Independent

ASP

address

threshold

exceeded

flag

is

only

valid

for

an

Independent

ASP

and

specifies

whether

or

not

the

independent

ASP

address

threshold,

selected

by

the

machine,

has

been

exceeded.

A

value

of

binary

1

indicates

the

threshold

has

been

exceeded

and

the

Independent

ASP

is

running

low

on

addresses.

A

value

of

binary

0

indicates

that

the

address

threshold

has

not

been

exceeded.

Number

of

addresses

remaining

in

independent

ASP

contains

the

number

of

virtual

addresses

remaining

for

use

by

the

independent

ASP.

This

field

only

has

meaning

for

an

independent

ASP.

The

information

in

this

field

is

only

valid

if

the

independent

ASP

address

threshold

exceeded

flag

is

set

to

binary

1.

ASP

number

of

the

primary

ASP

contains

the

ASP

number

of

the

primary

ASP.

This

value

only

has

meaning

for

an

independent

ASP.

If

the

ASP

is

a

secondary

ASP,

this

field

contains

the

ASP

number

of

the

primary

ASP.

If

the

ASP

is

a

primary

ASP,

this

value

is

the

same

as

the

ASP

number.

If

the

ASP

is

a

UDFS

ASP

or

is

not

an

independent

ASP,

a

value

of

hex

0000

is

returned.

Primary

ASP

flag

indicates

that

the

independent

ASP

is

a

primary

ASP

in

an

ASP

group.

A

primary

ASP

defines

a

collection

of

directories

and

contexts

and

may

have

secondary

ASPs

associated

with

it.

This

flag

only

has

meaning

for

an

independent

ASP.

A

value

of

binary

1

indicates

the

independent

ASP

is

a

primary

ASP.

A

value

of

binary

0

indicates

the

independent

ASP

is

not

a

primary

ASP.

Secondary

ASP

flag

indicates

that

the

independent

ASP

is

a

secondary

ASP

in

an

ASP

group.

A

secondary

ASP

is

associated

with

a

primary

ASP.

There

can

be

many

secondary

ASPs

associated

with

the

same

primary

ASP.

The

secondary

ASP

defines

a

collection

of

directories

and

contexts.

This

flag

only

has

meaning

for

an

independent

ASP.

A

value

of

binary

1

indicates

the

independent

ASP

is

a

secondary

ASP.

A

value

of

binary

0

indicates

the

independent

ASP

is

not

a

secondary

ASP.

UDFS

ASP

flag

indicates

that

the

independent

ASP

is

a

UDFS

(User-defined

File

System)

ASP.

This

type

of

independent

ASP

cannot

be

a

member

of

an

ASP

group.

This

flag

only

has

meaning

for

an

independent

ASP.

A

value

of

binary

1

indicates

the

independent

ASP

is

a

UDFS

ASP.

A

value

of

binary

0

indicates

the

independent

ASP

is

not

a

UDFS

ASP.

Auxiliary

Storage

information

including

offline

Independent

ASPs

(Hex

20):

The

auxiliary

storage

information

describes

the

ASPs

(auxiliary

storage

pools)

which

are

configured

within

the

machine

and

the

units

of

auxiliary

storage

currently

allocated

to

an

ASP

or

known

to

the

machine

but

not

allocated

to

an

ASP.

This

option

returns

information

for

all

ASPs

including

independent

ASPs

that

are

varied

off.

Option

″Auxiliary

Storage

Information

(Hex

12)″

(page

843)

returns

the

same

information

but

does

not

return

information

for

independent

ASPs

that

are

varied

off.

Also

note

that

through

appropriate

setting

of

the

number

of

bytes

provided

field

for

operand

1,

the

amount

of

information

to

be

materialized

for

this

option

can

be

reduced

thus

avoiding

the

processing

for

unneeded

information.

As

an

example,

by

setting

this

field

to

only

provide

enough

bytes

for

the

common

16

byte

header,

plus

the

option

hex

20

control

information,

plus

the

system

ASP

entry

of

the

ASP

information,

you

can

get

just

the

information

up

through

the

system

ASP

entry

returned

and

avoid

the

overhead

for

the

user

ASPs

and

unit

information.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Control

information

Char(64)

(occurs

just

once)

Machine

Interface

Instructions

883

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Number

of

ASPs

Bin(2)

Note:

1

(the

system

ASP)

+

number

of

basic

ASPs

+

number

of

varied-on

independent

ASPs

+

number

of

varied

off

independent

ASPs

18

12

Number

of

allocated

auxiliary

storage

units

Bin(2)

Note:

Number

of

configured,

non-mirrored

units

+

number

of

mirrored

pairs

20

14

Number

of

unallocated

auxiliary

storage

units

Bin(2)

22

16

Reserved

(binary

0)

Char(2)

24

18

Maximum

auxiliary

storage

allocated

to

temporaries

Char(8)

32

20

Reserved

(binary

0)

Char(12)

44

2C

Unit

information

offset

Bin(4)

48

30

Number

of

pairs

of

mirrored

units

Bin(2)

50

32

Mirroring

main

storage

Bin(4)

54

36

Number

of

multipath

units

UBin(2)

56

38

Current

auxiliary

storage

allocated

to

temporaries

Char(8)

64

40

Number

of

bytes

in

a

page

Bin(4)

68

44

Number

of

independent

ASPs

UBin(2)

70

46

Number

of

disk

units

in

all

independent

ASPs

UBin(2)

72

48

Number

of

basic

ASPs

UBin(2)

74

4A

Number

of

disk

units

in

all

basic

ASPs

UBin(2)

76

4C

Number

of

disk

units

in

the

system

ASP

UBin(2)

78

4E

Number

of

additional

entries

for

multipath

units

UBin(2)

80

50

ASP

information

[*]

Char(160)

(Repeated

once

for

each

ASP.

Located

immediately

after

the

control

information

above.

ASP

1,

always

configured,

is

first.

Configured

user

ASPs

follow

in

ascending

numerical

order.)

80

50

ASP

number

Char(2)

82

52

ASP

control

flags

Char(1)

82

52

Suppress

threshold

exceeded

event

Bit

0

82

52

ASP

overflow

Bit

1

82

52

Reserved

Bits

2-3

82

52

ASP

mirrored

Bit

4

82

52

User

ASP

MI

state

Bit

5

82

52

ASP

overflow

storage

available

Bit

6

82

52

Suppress

available

storage

lower

limit

reached

event

Bit

7

83

53

ASP

overflow

recovery

result

Char(1)

884

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

83

53

Successful

Bit

0

83

53

Failed

due

to

insufficient

free

space

Bit

1

83

53

Cancelled

Bit

2

83

53

Reserved

(binary

0)

Bits

3-7

84

54

Number

of

allocated

auxiliary

storage

units

in

ASP

UBin(2)

Note:

Number

of

configured,

non-mirrored

units

+

number

of

mirrored

pairs.

It

is

possible

that

this

number

is

0

(zero)

for

an

offline

Independent

ASP

86

56

Remote

mirror

performance

mode

Char(1)

Hex

01

=

Synchronous

mode

Hex

02

=

Asynchronous

mode

87

57

Remote

mirror

copy

data

state

Char(1)

Hex

00

=

Remote

IASP

mirroring

is

not

configured

Hex

01

=

Remote

copy

is

in

sync

with

the

production

copy

Hex

02

=

Remote

copy

contains

useable

data

Hex

03

=

Remote

copy

data

cannot

be

used

88

58

ASP

media

capacity

Char(8)

96

60

Reserved

Char(8)

104

68

ASP

space

available

Char(8)

112

70

ASP

event

threshold

Char(8)

120

78

ASP

event

threshold

percentage

Bin(2)

122

7A

Additional

ASP

control

flags

Char(2)

122

7A

Terminate

immediately

when

out

of

storage

Bit

0

122

7A

ASP

contains

compressed

and

non-compressed

units

Bit

1

122

7A

Recover

overflowed

basic

ASP

during

normal

mode

IPL

Bit

2

122

7A

Independent

ASP

Bit

3

122

7A

ASP

is

online

Bit

4

122

7A

Independent

ASP

address

threshold

exceeded

Bit

5

122

7A

Independent

ASP

is

remote

mirrored

Bit

6

122

7A

Reserved

(binary

0)

Bits

7-15

124

7C

ASP

compression

recovery

policy

Char(1)

124

7C

Error

recovery

policy

Bits

0-1

Machine

Interface

Instructions

885

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

00

=

Retry

while

space

available

01

=

Overflow

immediately

10

=

Retry

forever

124

7C

Reserved

(binary

0)

Bits

2-7

125

7D

Independent

ASP

type

Char(1)

125

7D

Primary

ASP

Bit

0

125

7D

Secondary

ASP

Bit

1

125

7D

UDFS

ASP

Bit

2

125

7D

Reserved

(binary

0)

Bits

3-7

126

7E

Remote

mirror

role

Char(1)

Hex

00

=

Remote

IASP

mirroring

is

not

configured

Hex

01

=

System

does

not

own

a

physical

independent

ASP

copy

Hex

02

=

Remote

mirror

role

is

unknown

Hex

C4

=

System

owns

a

detached

mirror

copy

Hex

D4

=

System

owns

the

mirror

copy

Hex

D7

=

System

owns

the

production

copy

127

7F

Remote

mirror

copy

state

Char(1)

Hex

00

=

Remote

IASP

mirroring

is

not

configured

Hex

01

=

System

attempts

to

perform

independent

ASP

remote

mirroring

when

independent

ASP

is

online.

Hex

02

=

Remote

independent

ASP

role

is

resuming.

Hex

03

=

System

is

resuming

and

independent

ASP

is

online

and

performing

synchronization

Hex

04

=

Remote

independent

ASP

is

detached

and

remote

mirroring

is

not

being

performed.

128

80

ASP

system

storage

Char(8)

136

88

ASP

overflow

storage

Char(8)

144

90

Space

allocated

to

the

error

log

Bin(4)

148

94

Space

allocated

to

the

machine

log

Bin(4)

152

98

Space

allocated

to

the

machine

trace

Bin(4)

156

9C

Space

allocated

for

main

store

dump

Bin(4)

160

A0

Space

allocated

to

the

microcode

Bin(4)

164

A4

Remote

mirror

synchronization

priority

Char(1)

886

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

Hex

00

=

Remote

IASP

mirroring

is

not

configured

Hex

10

=

Synchronization

is

given

high

priority

Hex

20

=

Synchronization

is

given

medium

priority

Hex

30

=

Synchronization

is

given

low

priority

165

A5

Remote

mirror

encryption

mode

Char(1)

Hex

00

=

Remote

IASP

mirroring

is

not

configured

Hex

01

=

Data

being

sent

to

remote

mirror

site

is

not

encrypted

Hex

012=

Data

being

sent

to

remote

mirror

site

is

encrypted

166

A6

Remote

mirror

error

recovery

Char(1)

Hex

00

=

Remote

IASP

mirroring

is

not

configured

Hex

02

=

Remote

mirroring

is

suspended

when

an

independent

ASP

error

is

detected.

Hex

03

=

Remote

mirroring

is

ended

when

an

independent

ASP

error

is

detected.

167

A7

Remote

mirror

minutes

until

timeout

Char(1)

168

A8

Available

storage

lower

limit

Char(8)

176

B0

Protected

space

capacity

Char(8)

184

B8

Unprotected

space

capacity

Char(8)

192

C0

Protected

space

available

Char(8)

200

C8

Unprotected

space

available

Char(8)

208

D0

Reserved

(binary

0)

Char(8)

216

D8

Number

of

addresses

remaining

in

independent

ASP

Char(8)

224

E0

Reserved

Char(16)

*

*

Unit

information

[*]

Char(208)

(Consists

of

one

entry

each

for

the

configured,

non-mirrored

units

and

one

unit

of

the

mirrored

pairs,

the

non-configured

units,

and

the

other

unit

of

the

mirrored

pairs,

and

an

entry

for

each

multipath

connection.

An

allocated

storage

unit

(ASU)

is

either

an

allocated,

non-mirrored

unit

or

a

mirrored

pair.

Note

that

the

mirrored

pair

counts

only

as

one

ASU.

When

used

without

qualification,

the

term

unit

refers

to

an

ASU.

Unit

information

start

may

be

located

by

the

Unit

Information

Offset

in

the

control

information.)

Machine

Interface

Instructions

887

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

*

*

Device

type

Char(8)

*

*

Disk

type

Char(4)

*

*

Disk

model

Char(4)

*

*

Device

identification

Char(8)

*

*

Unit

number

Char(2)

*

*

Reserved

Char(6)

*

*

Reserved

Char(4)

*

*

Unit

ASP

number

Char(2)

*

*

Logical

mirrored

pair

status

Char(1)

*

*

Unit

mirrored

Bit

0

*

*

Mirrored

unit

protected

Bit

1

*

*

Mirrored

pair

reported

Bit

2

*

*

Reserved

Bits

3-7

*

*

Mirrored

unit

status

Char(1)

*

*

Unit

media

capacity

Char(8)

*

*

Unit

storage

capacity

Char(8)

*

*

Unit

space

available

Char(8)

*

*

Unit

space

reserved

for

system

Char(8)

*

*

Reserved

Char(6)

*

*

Unit

control

flags

Char(2)

*

*

Reserved

(binary

0)

Bit

0

*

*

Unit

is

device

parity

protected

Bit

1

*

*

Subsystem

is

active

Bit

2

*

*

Unit

in

subsystem

has

failed

Bit

3

*

*

Other

unit

in

subsystem

has

failed

Bit

4

*

*

Subsystem

runs

in

degraded

mode

Bit

5

*

*

Hardware

failure

Bit

6

*

*

Device

parity

protection

is

being

rebuilt

Bit

7

*

*

Unit

is

not

ready

Bit

8

*

*

Unit

is

write

protected

Bit

9

*

*

Unit

is

busy

Bit

10

*

*

Unit

is

not

operational

Bit

11

*

*

Status

is

not

recognizable

Bit

12

*

*

Status

is

not

available

Bit

13

*

*

Unit

is

read/write

protected

Bit

14

*

*

Unit

is

compressed

Bit

15

Bits

2

to

14

are

mutually

exclusive.

*

*

Additional

unit

control

flags

Char(2)

*

*

Do

not

allocate

additional

storage

on

this

disk

unit

Bit

0

*

*

Unit

is

in

availability

parity

set

Bit

1

*

*

Unit

is

multipath

unit

Bit

2

*

*

Reserved

(binary

0)

Bits

3-15

*

*

Reserved

(binary

0)

Char(14)

*

*

Reserved

(binary

0)

Char(42)

*

*

Unit

Identification

Char(22)

*

*

Serial

number

Char(10)

888

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

*

*

Resource

name

Char(10)

*

*

Reserved

(binary

0)

Char(2)

*

*

Unit

usage

information

Char(64)

*

*

Blocks

transferred

to

main

storage

Bin(4)

*

*

Blocks

transferred

from

main

storage

Bin(4)

*

*

Requests

for

data

transfer

to

main

storage

Bin(4)

*

*

Requests

for

data

transfer

from

main

storage

Bin(4)

*

*

Permanent

blocks

transferred

from

main

storage

Bin(4)

*

*

Requests

for

permanent

data

transfer

from

main

storage

Bin(4)

*

*

Reserved

(binary

0)

Char(8)

*

*

Sample

count

Bin(4)

*

*

Not

busy

count

Bin(4)

*

*

Reserved

(binary

0)

Char(24)

*

*

—-

End

—-

Number

of

ASPs

is

the

number

of

ASPs

configured

within

the

machine.

One,

the

minimum

value,

indicates

just

the

system

ASP

exists

and

that

there

are

no

user

ASPs

configured.

Up

to

254

user

ASPs

can

be

configured.

The

system

ASP

always

exists.

The

number

of

ASPs

includes

the

system

ASP,

basic

ASPs

(that

is,

user

ASPs

which

cannot

be

varied

on

or

off),

and

independent

ASPs.

The

independent

ASPs

can

be

varied

on

or

off

on

this

system,

and

varied-off

(offline)

independent

ASPs

are

counted.

Number

of

allocated

auxiliary

storage

units

is

the

total

number

of

configured

units

logically

addressable

by

the

system

as

units.

This

is

the

number

of

configured,

non-mirrored

units

plus

the

number

of

mirrored

pairs

allocated

to

the

ASPs.

This

number

includes

only

the

first

path

of

a

multipath

connection

unit.

The

count

of

the

remaining

paths

connected

to

multipath

units

is

materialized

in

number

of

additional

entries

for

multipath

units.

The

total

number

of

disk

actuator

arms

on

the

system

is

the

sum

of

the

allocated

auxiliary

storage

units

plus

the

number

of

unallocated

auxiliary

storage

units

plus

the

number

of

pairs

of

mirrored

units.

Information

on

these

units

is

materialized

as

part

of

the

unit

information.

Any

two

units

of

the

same

size

may

be

associated

to

form

a

mirrored

pair.

Association

of

two

units

as

a

mirrored

pair

reduces

the

amount

of

logically

available

storage

by

the

number

of

bytes

contained

on

one

of

the

mirrored

units

in

the

mirrored

pair.

The

disk

units

reside

in

the

system

ASP,

a

basic

ASP,

or

an

independent

ASP.

This

number

specifies

the

number

of

entries

which

are

materialized

in

the

unit

information

section.

Number

of

unallocated

auxiliary

storage

units

is

the

number

of

auxiliary

storage

units

that

are

currently

not

allocated

to

an

ASP.

Information

on

these

units

is

materialized

as

part

of

the

unit

information.

Maximum

auxiliary

storage

allocated

to

temporaries

is

the

maximum

number

of

bytes

of

temporary

storage

allocated

at

any

one

time

since

the

last

IPL

of

the

machine.

This

includes

the

temporary

storage

allocated

on

the

load

source

unit.

Unit

information

offset

is

the

offset,

in

bytes,

from

the

start

of

the

operand

1

materialization

template

to

the

start

of

the

unit

information.

This

value

can

be

added

to

a

space

pointer

addressing

the

start

of

operand

1

to

address

the

start

of

the

unit

information.

Number

of

pairs

of

mirrored

units

represents

the

number

of

mirrored

pairs

in

the

system.

Each

mirrored

pair

consists

of

two

mirrored

units;

however,

only

one

of

the

two

mirrored

units

is

guaranteed

to

be

operational.

Machine

Interface

Instructions

889

Mirroring

main

storage

is

the

number

of

bytes

of

main

storage

in

the

machine

storage

pool

used

by

mirroring.

This

increases

when

mirror

synchronization

is

active.

This

amount

of

storage

is

directly

related

to

the

number

of

mirrored

pairs.

Number

of

multipath

units

is

the

number

of

disk

units

that

have

multiple

connections

to

a

disk

unit.

This

means

that

there

are

multiple

resource

names

that

all

represent

the

same

disk

unit,

yet

each

represents

a

unique

path

to

the

disk

unit.

All

active

connections

will

be

used

for

communicating

with

the

disk

unit.

Current

auxiliary

storage

allocated

to

temporaries

is

the

number

of

bytes

of

temporary

storage

allocated

on

the

system.

This

includes

the

temporary

storage

allocated

on

the

load

source

unit.

Number

of

bytes

in

a

page

is

the

number

of

bytes

in

a

single

page.

This

can

be

used

to

convert

fields

that

are

given

in

pages

into

the

correct

number

of

bytes.

Number

of

independent

ASPs

is

the

number

of

independent

ASPs

known

by

this

system.

An

independent

ASP

is

an

ASP

that

can

be

varied

on

or

off.

This

count

includes

independent

ASPs

which

are

varied

on

and

varied

off.

Number

of

disk

units

in

all

independent

ASPs

is

the

number

of

configured

units

logically

addressable

by

all

independent

ASPs.

Information

on

these

units

is

materialized

as

part

of

the

unit

information.

Number

of

basic

ASPs

is

the

number

of

basic

ASPs

configured

on

this

system.

A

basic

ASP

is

a

user

ASP

that

cannot

be

varied

on

or

off.

Number

of

disk

units

in

all

basic

ASPs

is

the

total

number

of

configured

units

logically

addressable

by

all

basic

ASPs.

Information

on

these

units

is

materialized

as

part

of

the

unit

information.

Number

of

disk

units

in

the

system

ASP

is

the

total

number

of

configured

units

logically

addressable

in

the

system

ASP.

Information

on

these

units

is

materialized

as

part

of

the

unit

information.

Number

of

additional

entries

for

multipath

units

is

the

number

of

additional

unit

entries

that

can

be

materialized

for

the

multipath

connection

devices.

The

first

path

of

each

unit

is

not

included

in

this

total.

ASP

information

is

repeated

once

for

each

ASP

configured

within

the

machine.

The

number

of

ASPs

configured

is

specified

by

the

number

of

ASPs

field.

ASP

1,

the

system

ASP,

is

materialized

first.

Because

the

system

ASP

always

exists,

its

materialization

is

always

available.

The

user

ASPs

which

are

configured

are

materialized

after

the

system

ASP

in

ascending

numerical

order.

There

may

be

gaps

in

the

numerical

order.

That

is,

if

just

user

ASPs

3

and

5

are

configured,

only

information

for

them

is

materialized

producing

information

on

just

ASP

1,

ASP

3

and

ASP

5

in

that

order.

ASP

number

uniquely

identifies

the

auxiliary

storage

pool.

The

ASP

number

may

have

a

value

from

1

through

255.

A

value

of

1

indicates

the

system

ASP.

A

value

of

2

through

255

indicates

a

user

ASP.

Note

that

independent

ASPs

have

a

value

of

33

through

255.

Note

that

basic

ASPs

have

a

value

of

2

through

32.

Suppress

threshold

exceeded

event

flag

indicates

whether

or

not

the

machine

is

suppressing

signaling

of

the

related

event

when

the

event

threshold

in

effect

for

this

ASP

has

been

exceeded.

A

value

of

binary

1

indicates

that

the

signaling

is

being

suppressed;

binary

0

indicates

that

the

signaling

is

not

being

suppressed.

The

default

after

each

IPL

of

the

machine

is

that

the

signaling

is

not

suppressed;

i.e.

default

is

binary

0.

For

the

system

ASP,

this

flag

is

implicitly

set

to

binary

1

by

the

machine

when

the

machine

auxiliary

storage

threshold

exceeded

(hex

000C,02,01)

event

is

signaled.

For

a

basic

ASP,

this

flag

is

implicitly

set

to

binary

1

by

the

machine

when

the

user

auxiliary

storage

threshold

exceeded

(hex

000C,02,02)

event

is

signaled.

If

the

ASP

is

an

independent

ASP

and

the

ASP

is

online

flag

indicates

that

the

independent

ASP

is

not

online,

a

value

of

binary

0

is

returned

for

the

suppress

threshold

exceeded

event

flag.

890

iSeries:

Machine

Interface

Instructions

APIs

The

ASP

overflow

flag

indicates

whether

or

not

object

allocations

directed

into

a

basic

ASP

have

overflowed

into

the

system

ASP.

A

value

of

binary

1

indicates

overflow;

binary

0

indicates

no

overflow.

This

flag

does

not

apply

to

the

system

ASP

and

a

value

of

binary

0

is

always

returned

for

it.

A

value

of

binary

0

is

always

returned

for

independent

ASPs.

ASP

mirrored

flag

specifies

whether

or

not

the

ASP

is

configured

to

be

mirror

protected.

A

value

of

binary

1

indicates

that

ASP

mirror

protection

is

configured.

Refer

to

the

mirrored

unit

protected

flag

to

determine

if

mirror

protection

is

active

for

each

mirrored

pair.

A

value

of

binary

0

indicates

that

none

of

the

units

associated

with

the

ASP

are

mirrored.

User

ASP

MI

state

indicates

the

state

of

the

user

ASP.

A

value

of

binary

1

indicates

that

the

user

ASP

is

in

the

’new’

state.

This

means

that

a

context

may

be

allocated

in

this

user

ASP.

A

value

of

binary

0

indicates

that

the

user

ASP

is

in

the

’old’

state.

This

means

that

there

are

no

contexts

allocated

in

this

user

ASP.

This

flag

has

no

meaning

for

the

system

ASP

and

a

value

of

binary

0

will

always

be

returned.

A

value

of

binary

1

will

always

be

returned

for

independent

ASPs.

ASP

overflow

storage

available

flag

indicates

whether

or

not

the

amount

of

auxiliary

storage

that

has

overflowed

from

the

basic

ASP

into

the

system

ASP

is

available.

A

value

of

binary

1

indicates

that

the

amount

is

maintained

by

the

machine

and

available

in

the

ASP

overflow

storage

field.

A

value

of

binary

0

indicates

that

the

amount

is

not

available.

A

value

of

binary

0

is

always

returned

for

independent

ASPs.

Suppress

available

storage

lower

limit

reached

event

flag

indicates

whether

the

machine

will

signal

the

related

event

when

the

available

storage

lower

limit

has

been

reached.

This

field

currently

has

meaning

only

in

the

system

ASP

(ASP

1).

This

value

will

always

be

returned

as

binary

0

for

a

user

ASP.

A

value

of

binary

1

indicates

that

signaling

of

the

event

is

being

suppressed;

binary

0

indicates

that

signaling

of

the

event

is

not

suppressed.

The

default

after

each

IPL

of

the

machine

is

binary

0,

i.e.,

signaling

of

this

event

is

not

suppressed.

This

flag

is

set

to

binary

1

by

the

machine

when

the

available

storage

lower

limit

reached

(hex

000C,02,08)

event

is

signaled.

This

is

done

to

avoid

repetitive

signaling

of

the

event

when

the

available

storage

lower

limit

reached

condition

occurs.

ASP

overflow

recovery

result

flags

indicate

the

result

of

the

ASP

overflow

recovery

operation

which

is

performed

during

an

IPL

upon

request

by

the

user.

When

this

operation

is

requested,

the

machine

attempts

to

recover

a

basic

ASP

from

an

overflow

condition

by

moving

overflowed

auxiliary

storage

from

the

system

ASP

back

to

the

basic

ASP

during

the

Storage

Management

recovery

step

of

an

IPL.

The

successful

flag

is

set

to

a

value

of

binary

1

when

all

the

overflowed

storage

was

successfully

moved.

The

failed

due

to

insufficient

free

space

flag

is

set

to

a

value

of

binary

1

when

there

is

not

sufficient

free

space

in

the

basic

ASP

to

move

all

the

overflowed

storage.

The

cancelled

flag

is

set

to

a

value

of

binary

1

when

the

operation

was

cancelled

prior

to

completion

(e.g.,

system

power

loss,

user

initiated

IPL).

A

value

of

binary

0

is

always

returned

for

independent

ASPs.

Number

of

allocated

auxiliary

storage

units

in

ASP

is

the

number

of

configured

units

logically

addressable

by

the

system

as

units

for

this

ASP.

This

is

the

number

of

configured,

non-mirrored

units

plus

the

number

of

mirrored

pairs

allocated

in

the

ASPs.

The

total

number

of

units

(actuator

arms)

on

the

system

is

the

sum

of

the

allocated

auxiliary

storage

units

plus

the

number

of

unallocated

auxiliary

storage

units

plus

the

number

of

pairs

of

mirrored

units.

For

example,

each

9335

enclosure

represents

two

units.

Information

on

these

units

is

materialized

as

part

of

the

unit

information.

Any

two

units

of

the

same

size

may

be

associated

to

form

a

mirrored

pair.

Association

of

two

units

as

a

mirrored

pair

reduces

the

amount

of

logically

available

storage

by

the

number

of

bytes

contained

on

one

of

the

mirrored

units

in

the

mirrored

pair.

This

field

is

the

number

of

entries

which

are

materialized

in

the

unit

information

section

for

this

ASP.

If

an

independent

ASP

is

varied-off,

it

is

possible

that

the

system

cannot

retrieve

information

about

the

disk

units

in

the

independent

ASP

.

Thus,

a

varied-off

independent

ASP

could

have

0

in

this

field.

Remote

mirror

performance

mode

specifies

the

mode

in

which

remote

mirroring

operates.

A

value

of

hex

01

indicates

synchronous

mode.

In

synchronous

mode,

the

client

waits

for

the

operation

to

complete

Machine

Interface

Instructions

891

on

both

the

source

and

on

the

target.

A

value

of

hex

02

indicates

aynchronous

mode.

In

asynchronous

mode,

the

client

waits

for

the

operation

to

complete

on

the

source

and

for

the

operation

to

be

received

on

the

target.

Remote

mirror

copy

data

state

specifies

the

condition

of

the

data

on

the

target.

A

value

of

hex

00

indicates

that

remote

independent

ASP

mirroring

is

not

configured.

A

value

of

hex

01

indicates

that

the

remote

copy

is

absolutely

in

sync

with

the

production

copy.

A

value

of

hex

02

indicates

that

the

remote

copy

contains

usable

data.

A

detached

mirror

copy

always

has

usable

data

state.

A

value

of

hex

03

indicates

that

there

is

incoherent

data

state

in

the

mirror

copy

and

the

data

cannot

be

used.

ASP

space

available

is

the

number

of

bytes

of

auxiliary

storage

that

is

not

currently

assigned

to

objects

or

internal

machine

functions,

and

therefore,

is

available

for

allocation

in

the

ASP.

Note

that

a

mirrored

pair

counts

for

only

one

unit.

Note

that

a

varied-off

independent

ASP

could

have

0

in

this

field

because

the

system

cannot

determine

what

disk

units

exist

in

a

varied-off

independent

ASP

.

ASP

event

threshold

specifies

the

minimum

value

for

the

number

of

bytes

of

auxiliary

storage

available

in

the

ASP

prior

to

the

exceeded

condition

occurs

when

the

ASP

space

available

value

becomes

equal

to

or

less

than

the

ASP

event

threshold

value.

Refer

to

the

definition

of

the

suppress

threshold

exceeded

event

flag

for

more

information.

The

ASP

event

threshold

value

is

calculated

from

the

ASP

event

threshold

percentage

value

by

multiplying

the

ASP

media

capacity

value

by

the

ASP

event

threshold

percentage

and

subtracting

the

product

from

that

same

capacity

value.

ASP

event

threshold

percentage

specifies

the

auxiliary

storage

space

utilization

threshold

as

a

percentage

of

the

ASP

media

capacity.

This

value

is

used,

as

described

above,

to

calculate

the

ASP

event

threshold

value.

This

value

can

be

modified

through

use

of

Dedicated

Service

Tool

DASD

configuration

options.

Terminate

immediately

when

out

of

storage

indicates

whether

the

system

will

be

terminated

immediately

when

a

request

for

space

occurs

in

the

system

ASP

that

cannot

be

satisfied

because

the

system

is

out

of

storage.

A

value

of

binary

1

indicates

that

when

a

request

for

space

in

the

system

ASP

cannot

be

satisfied,

then

the

system

will

be

terminated

immediately.

This

field

currently

has

meaning

only

in

the

system

ASP

(ASP

1).

This

value

will

always

be

returned

as

binary

0

for

a

user

ASP.

Note:

For

a

physical

machine

with

firmware

level

hex

00,

when

a

request

for

space

in

the

system

ASP

cannot

be

satisfied

in

the

primary

partition

and

the

value

for

terminate

immediately

when

out

of

storage

is

binary

1

in

the

primary

partition,

all

partitions

in

the

physical

machine

will

terminate.

When

a

request

for

space

in

the

system

ASP

cannot

be

satisfied

in

a

secondary

partition

and

the

value

for

terminate

immediately

when

out

of

storage

is

binary

1

in

that

partition,

only

the

partition

in

which

the

condition

occurred

will

terminate.

MATMATR

option

hex

01E0

can

be

used

to

materialize

the

firmware

level.

For

a

physical

machine

with

firmware

level

hex

10,

only

the

partition

in

which

the

condition

occurred

will

terminate.

A

value

of

binary

0

indicates

that

when

a

request

for

space

in

the

system

ASP

cannot

be

satisfied,

then

the

system

will

not

be

terminated

immediately,

but

will

be

allowed

to

continue

to

run

however

it

can.

ASP

contains

compressed

and

non-compressed

units

flag

specifies

whether

or

not

the

ASP

has

compressed

and

non-compressed

configured

units.

A

value

of

binary

1

indicates

that

both

compressed

and

non-compressed

units

exist

in

this

ASP.

A

value

of

binary

0

indicates

that

a

mix

of

compressed

and

non-compressed

units

does

not

exist

in

this

ASP.

A

value

of

binary

0

is

returned

if

the

independent

ASP

is

varied-off

and

the

characteristics

of

the

disk

units

in

the

ASP

cannot

be

determined.

892

iSeries:

Machine

Interface

Instructions

APIs

Recover

overflowed

basic

ASP

during

normal

mode

IPL

flag

specifies

whether

or

not

the

machine

will

attempt

to

recover

the

overflowed

ASP

data

during

normal

mode

IPLs.

Overflowed

data

is

data

from

the

basic

ASP

which

exists

in

the

system

ASP

because

there

was

insufficient

auxiliary

storage

in

the

basic

ASP.

A

value

of

binary

1

indicates

that

the

machine

will

attempt

to

automatically

recover

any

overflowed

data

for

that

basic

ASP

during

normal

mode

IPLs.

A

value

of

binary

0

indicates

that

the

machine

will

not

attempt

to

recover

the

overflowed

data.

A

value

of

0

is

always

returned

for

the

system

ASP

(ASP

1).

A

value

of

0

is

always

returned

for

an

independent

ASP

(since

an

independent

ASP

can

never

overflow

its

data

into

the

system

ASP).

Independent

ASP

specifies

whether

or

not

the

ASP

is

an

independent

ASP;

that

is,

it

can

be

varied

on

and

off.

A

value

of

binary

1

indicates

the

ASP

is

an

independent

ASP.

A

value

of

binary

0

indicates

that

this

ASP

is

a

basic

ASP

or

the

system

ASP

and

cannot

be

varied

on

or

off.

ASP

is

online

flag

specifies

if

the

ASP

is

available

to

the

system.

If

this

ASP

is

an

independent

ASP,

a

value

of

binary

1

indicates

the

independent

ASP

is

varied

on.

If

this

ASP

is

an

independent

ASP,

a

value

of

binary

0

indicates

the

independent

ASP

is

varied

off.

A

value

of

binary

1

is

returned

if

the

ASP

is

a

basic

ASP.

A

value

of

binary

1

is

returned

if

the

ASP

is

the

system

ASP.

Independent

ASP

address

threshold

exceeded

flag

is

only

valid

for

an

Independent

ASP

and

specifies

whether

or

not

the

independent

ASP

address

threshold,

selected

by

the

machine,

has

been

exceeded.

A

value

of

binary

1

indicates

the

threshold

has

been

exceeded

and

the

Independent

ASP

is

running

low

on

addresses.

A

value

of

binary

0

indicates

that

the

address

threshold

has

not

been

exceeded.

Independent

ASP

is

remote

mirrored

indicates

that

the

independent

ASP

is

remote

mirrored.

Remote

independent

ASP

mirroring

provides

high

availability

by

supporting

multiple

physical

independent

ASP

copies

at

different

sites

that

contain

the

same

user

data

with

the

same

virtual

addresses.

A

value

binary

0

indicates

that

the

independent

ASP

is

not

remote

mirrored.

A

value

of

binary

1

indicates

that

the

independent

ASP

is

remote

mirrored.

ASP

compression

recovery

policy

indicates

how

Storage

Management

handles

a

failure

condition

due

to

a

compressed

disk

unit

being

temporarily

full

as

auxiliary

storage

space

is

reserved

on

the

unit.

A

value

of

binary

00

indicates

that

if

the

I/O

processor

can

make

storage

space

available

by

rearranging

and

further

compressing

data

on

the

unit,

Storage

Management

waits

for

space

to

be

made

available.

When

the

I/O

processor

makes

sufficient

space

on

the

compressed

unit

to

contain

the

Storage

Management

request,

the

request

completes

successfully

and

the

system

resumes

normal

processing.

If

space

can

not

be

made

available

on

the

unit,

auxiliary

storage

overflows

from

the

basic

ASP

to

the

system

ASP.

A

value

of

binary

01

indicates

that

auxiliary

storage

overflows

from

the

user

ASP

to

the

system

ASP.

Storage

Management

does

not

wait

for

the

I/O

processor

to

make

storage

space

available

on

the

unit.

A

value

of

binary

10

indicates

that

Storage

Management

waits

indefinitely

for

storage

space

to

be

made

available

on

the

unit,

even

if

the

I/O

processor

can

not

make

space

available

on

the

unit.

No

auxiliary

storage

overflows

from

the

user

ASP

to

the

system

ASP.

A

value

of

binary

00

is

always

returned

for

the

system

ASP

(ASP

1).

A

value

of

binary

10

is

always

returned

for

independent

ASPs

(that

is,

for

ASPs

which

can

be

varied

on

or

off).

An

independent

ASP

can

never

have

a

value

of

binary

01

(overflow

immediately)

because

independent

ASPs

are

not

allowed

to

overflow

into

the

system

ASP.

Primary

ASP

flag

indicates

that

the

independent

ASP

is

a

primary

ASP

in

an

ASP

group.

A

primary

ASP

defines

a

collection

of

directories

and

contexts

and

may

have

secondary

ASPs

associated

with

it.

This

flag

only

has

meaning

for

an

independent

ASP.

A

value

of

binary

1

indicates

the

independent

ASP

is

a

primary

ASP.

A

value

of

binary

0

indicates

the

independent

ASP

is

not

a

primary

ASP.

Machine

Interface

Instructions

893

Secondary

ASP

flag

indicates

that

the

independent

ASP

is

a

secondary

ASP

in

an

ASP

group.

A

secondary

ASP

is

associated

with

a

primary

ASP.

There

can

be

many

secondary

ASPs

associated

with

the

same

primary

ASP.

The

secondary

ASP

defines

a

collection

of

directories

and

contexts.

This

flag

only

has

meaning

for

an

independent

ASP.

A

value

of

binary

1

indicates

the

independent

ASP

is

a

secondary

ASP.

A

value

of

binary

0

indicates

the

independent

ASP

is

not

a

secondary

ASP.

UDFS

ASP

flag

indicates

that

the

independent

ASP

is

a

UDFS

(User-defined

File

System)

ASP.

This

type

of

independent

ASP

cannot

be

a

member

of

an

ASP

group.

This

flag

only

has

meaning

for

an

independent

ASP.

A

value

of

binary

1

indicates

the

independent

ASP

is

a

UDFS

ASP.

A

value

of

binary

0

indicates

the

independent

ASP

is

not

a

UDFS

ASP.

Remote

mirror

role

identifies

the

current

role

of

the

physical

independent

ASP

copy.

A

value

of

hex

00

indicates

that

remote

independent

ASP

mirroring

is

not

configured.

A

value

of

hex

01

indicates

that

the

system

does

not

own

a

physical

independent

ASP

copy.

A

value

of

hex

02

indicates

that

the

remote

mirror

role

is

unknown.

A

value

of

hex

D7

indicates

that

the

system

owns

the

production

copy.

A

value

of

hex

D4

indicates

that

the

system

owns

the

mirror

copy.

A

value

of

hex

C4

indicates

that

the

system

owns

a

detached

mirror

copy.

Remote

mirror

copy

state

identifies

the

mirror

state

of

the

mirror

copy.

A

value

of

hex

00

indicates

that

remote

independent

ASP

mirroring

is

not

configured.

A

value

of

hex

01

indicates

that

the

system

attempts

to

perform

independent

ASP

remote

mirroring

when

it

is

online.

A

value

of

hex

02

indicates

that

the

remote

independent

ASP

role

is

resuming,

but

the

independent

ASP

is

offline

so

it

is

not

performing

synchronization.

A

value

of

hex

03

indicates

that

the

system

is

resuming

and

the

independent

ASP

is

online,

so

it

is

performing

synchronization.

A

value

of

hex

04

indicates

that

the

remote

independent

ASP

role

is

detached

and

remote

mirroring

is

not

being

performed.

ASP

system

storage

specifies

the

amount

of

system

storage

currently

allocated

in

the

ASP

in

bytes.

ASP

overflow

storage

indicates

the

number

of

bytes

of

auxiliary

storage

that

have

overflowed

from

a

basic

ASP

into

the

system

ASP.

This

value

is

valid

only

if

the

ASP

overflow

storage

available

field

is

set

to

a

value

of

binary

1.

Space

allocated

to

the

error

log

is

the

number

of

pages

of

auxiliary

storage

that

are

allocated

to

the

error

log.

This

field

only

applies

to

the

system

ASP.

Space

allocated

to

the

machine

log

is

the

number

of

pages

of

auxiliary

storage

that

are

allocated

to

the

machine

log.

This

field

only

applies

to

the

system

ASP.

Space

allocated

to

the

machine

trace

is

the

number

of

pages

of

auxiliary

storage

that

are

allocated

to

the

machine

trace.

This

field

only

applies

to

the

system

ASP.

Space

allocated

for

main

store

dump

is

the

number

of

pages

of

auxiliary

storage

that

are

allocated

to

the

main

store

dump

space.

The

contents

of

main

store

are

written

to

this

location

for

some

system

terminations.

This

field

only

applies

to

the

system

ASP.

Space

allocated

to

the

microcode

is

the

number

of

pages

of

auxiliary

storage

that

are

allocated

for

microcode

and

space

used

by

the

microcode.

The

space

allocated

to

the

error

log,

machine

log,

machine

trace,

and

main

store

dump

space

is

not

included

in

this

field.

This

field

only

applies

to

the

system

ASP,

basic

ASP,

and

online

independent

ASPs.

A

value

of

0

is

returned

for

offline

independent

ASPs.

Remote

mirror

synchronization

priority

indicates

the

priority

assigned

to

synchronization

between

the

physical

copy

and

the

mirrored

copy

related

to

the

work

on

the

system.

A

value

of

hex

00

indicates

that

Remote

independent

ASP

mirroring

is

not

configured

on

this

independent

ASP.

A

value

of

hex

10

indicates

that

the

synchronization

is

given

high

priority,

and

is

completed

quickly

at

the

expense

of

significant

degradation

to

work

on

the

system.

A

value

of

hex

20

indicates

that

the

synchronization

is

given

medium

priority,

and

is

completed

at

a

moderate

rate

with

some

degradation

to

work

on

the

894

iSeries:

Machine

Interface

Instructions

APIs

system.

A

value

of

hex

30

indicates

that

the

synchronization

is

given

low

priority,

and

is

completed

at

a

slow

rate

with

minimum

degradation

to

work

on

the

system.

Remote

mirror

encryption

mode

indicates

the

encryption

mode

for

the

remote

mirrored

independent

ASP.

A

value

of

hex

00

indicates

that

Remote

independent

ASP

mirroring

is

not

configured

on

this

independent

ASP.

A

value

of

hex

01

indicates

that

the

user

has

chosen

not

to

encrypt

the

data

being

sent

to

the

remote

mirror

site.

A

value

of

hex

02

indicates

that

the

user

has

chosen

to

encrypt

the

data

being

sent

to

the

remote

mirror

site.

Remote

mirror

error

recovery

policy

indicates

the

error

recovery

policy

selected

by

the

user.

A

value

of

hex

00

indicates

that

remote

independent

ASP

mirroring

is

not

configured

on

this

system.

A

value

of

hex

02

indicates

that

remote

mirroring

is

suspended

when

an

IASP

error

is

detected.

After

suspend,

if

the

target

node

becomes

accessible,

the

system

automatically

resumes

remote

independent

ASP

mirroring.

A

value

of

hex

03

indicates

that

remote

mirroring

is

ended

when

an

IASP

error

is

detected.

Remote

mirror

minutes

until

timeout

is

the

number

of

minutes

the

system

waits

for

a

write

acknowledgement

from

the

remote

system

before

the

error

recovery

policy

selected

by

the

user

is

implemented.

Available

storage

lower

limit

is

the

number

of

bytes

of

available

auxiliary

storage

in

the

system

ASP

prior

to

the

available

storage

lower

limit

reached

condition

occurring.

When

the

amount

of

auxiliary

storage

available

in

the

system

ASP

becomes

less

than

this

amount,

the

available

storage

lower

limit

reached

(hex

000C,02,08)

event

is

signaled

if

it

is

not

suppressed.

Redundant

signaling

of

this

event

is

suppressed

as

indicated

by

the

setting

of

the

suppress

available

storage

lower

limit

reached

event

flag.

Protected

space

capacity

specifies

the

total

number

of

bytes

of

auxiliary

storage

that

is

protected

by

mirroring

or

device

parity

in

the

ASP.

Note

that

a

varied-off

independent

ASP

could

have

0

in

this

field

because

the

system

could

not

determine

what

disk

units

exist

in

a

varied-off

independent

ASP

.

Unprotected

space

capacity

specifies

the

total

number

of

bytes

of

auxiliary

storage

that

is

not

protected

by

mirroring

or

device

parity

in

the

ASP.

Note

that

a

varied-off

independent

ASP

could

have

0

in

this

field

because

the

system

could

not

determine

what

disk

units

exist

in

a

varied-off

independent

ASP

.

Protected

space

available

specifies

the

number

of

bytes

of

protected

auxiliary

storage

that

is

not

currently

assigned

to

objects

or

internal

machine

functions,

and

therefore,

is

available

for

allocation

in

the

ASP.

Note

that

a

varied-off

independent

ASP

could

have

0

in

this

field

because

the

system

could

not

determine

what

disk

units

exist

in

a

varied-off

independent

ASP

.

Unprotected

space

available

specifies

the

number

of

bytes

of

unprotected

auxiliary

storage

that

is

not

currently

assigned

to

objects

or

internal

machine

functions,

and

therefore,

is

available

for

allocation

in

the

ASP.

Note

that

a

varied-off

independent

ASP

could

have

0

in

this

field

because

the

system

could

not

determine

what

disk

units

exist

in

a

varied-off

independent

ASP

.

Number

of

addresses

remaining

in

independent

ASP

contains

the

number

of

virtual

addresses

remaining

for

use

by

the

independent

ASP.

This

field

only

has

meaning

for

an

independent

ASP.

The

information

in

this

field

is

only

valid

if

the

independent

ASP

address

threshold

exceeded

flag

is

set

to

binary

1.

Unit

information

is

materialized

in

the

following

order:

Group

1:

Configured

units

consisting

of

non-mirrored

units

and

the

first

subunit

of

a

pair

of

mirrored

units.

Group

2:

Non-configured

units.

Machine

Interface

Instructions

895

Group

3:

Configured

units

consisting

of

the

mates

of

mirrored

units

listed

in

group

1

(above).

The

unit

information

is

located

by

the

unit

information

offset

field

which

specifies

the

offset

from

the

beginning

of

the

operand

1

template

to

the

start

of

the

unit

information.

The

number

of

entries

for

each

of

the

three

groups

listed

above

is

defined

as

follows:

Group

1:

Number

of

non-mirrored,

configured

units

+

number

of

mirrored

pairs

Group

2:

Number

of

non-configured

storage

units

(also

called

unallocated

units).

Group

3:

Number

of

mirrored

pairs

For

unallocated

units

the

following

fields

contain

meaningful

information:

device

type,

device

identification,

unit

identification,

unit

control

flags,

unit

relationship,

and

unit

media

capacity.

The

remaining

fields

have

no

meaning

for

unallocated

units

because

the

units

are

not

currently

in

use

by

the

system.

Mirrored

unit

entries

contain

either

current

or

last

known

information.

The

last

known

data

consists

of

the

mirrored

unit

status,

disk

type,

disk

model,

unit

ASP

number,

disk

serial

number,

and

unit

address.

Last

known

information

is

provided

when

the

mirrored

pair

reported

field

is

a

binary

0.

Disk

type

identifies

the

type

of

disk

enclosure

containing

this

auxiliary

storage

unit.

This

is

the

four

byte

character

field

from

the

vital

product

data

for

the

disk

device

which

identifies

the

type

of

drive.

For

example,

the

value

is

character

string

’6607’

for

a

6607

device.

Disk

model

identifies

the

model

of

the

type

of

disk

enclosure

containing

this

auxiliary

storage

unit.

This

is

the

four

byte

character

field

from

the

vital

product

data

for

the

disk

device

which

identifies

the

model

of

the

drive.

Unit

number

uniquely

identifies

each

non-mirrored

unit

or

mirrored

pair

among

the

configured

units.

Both

mirrored

units

of

a

mirrored

pair

have

the

same

unit

number.

The

value

of

the

unit

number

is

assigned

by

the

system

when

the

unit

is

allocated

to

an

ASP.

For

unallocated

units,

the

unit

number

is

set

to

binary

0.

Unit

ASP

number

specifies

the

ASP

to

which

this

unit

is

currently

allocated.

A

value

of

0

indicates

that

this

unit

is

currently

unallocated.

A

value

of

1

specifies

the

system

ASP.

A

value

from

2

through

255

specifies

a

user

ASP

and

correlates

to

the

ASP

number

field

in

the

ASP

information

entries.

Values

33

to

255

specify

a

independent

ASP.

Values

2

to

32

specify

a

basic

ASP.

Unit

mirrored

flag

indicates

that

this

unit

number

represents

a

mirrored

pair.

This

bit

is

materialized

with

both

mirrored

units

of

a

mirrored

pair.

Mirrored

unit

protected

flag

indicates

the

mirror

status

of

a

mirrored

pair.

A

value

of

1

indicates

that

both

mirrored

units

of

a

mirrored

pair

are

active.

A

0

indicates

that

one

mirrored

unit

of

a

mirrored

pair

is

not

active.

Active

means

that

both

units

are

on

line

and

fully

synchronized

(i.e.

the

data

is

identical

on

both

mirrored

units).

Mirrored

pair

reported

flag

indicates

that

a

mirrored

unit

reported

as

present.

The

mirrored

unit

reported

present

during

or

following

IMPL.

Current

attachment

of

a

mirrored

unit

to

the

system

cannot

be

inferred

from

this

bit.

A

0

indicates

that

the

mirrored

unit

being

materialized

is

missing.

The

last

known

information

pertaining

to

the

missing

mirrored

unit

is

materialized.

A

1

indicates

that

the

mirrored

unit

being

materialized

has

reported.

The

information

for

this

reported

unit

is

current

to

the

last

time

it

reported

status

to

the

system.

896

iSeries:

Machine

Interface

Instructions

APIs

Mirrored

unit

status

indicates

mirrored

unit

status.

A

value

of

1

indicates

that

this

mirrored

unit

of

a

mirrored

pair

is

active

(i.e.

on-line

with

current

data).

A

value

of

2

indicates

that

this

mirrored

unit

is

being

synchronized.

A

value

of

3

indicates

that

this

mirrored

unit

is

suspended.

Mirrored

unit

status

is

stored

as

binary

data

and

is

valid

only

when

the

unit

mirrored

flag

is

on.

Unit

media

capacity

is

the

space,

in

number

of

bytes

of

auxiliary

storage,

on

the

non-mirrored

unit

or

mirrored

pair,

that

is,

the

capacity

of

the

unit

prior

to

any

formatting

or

allocation

of

space

by

the

system

it

is

attached

to.

For

a

mirrored

pair,

this

space

is

the

number

of

bytes

of

auxiliary

storage

on

either

one

of

the

mirrored

units.

The

space

is

identical

on

both

of

the

mirrored

units.

Caution,

do

not

attempt

to

add

the

capacities

of

the

two

units

of

a

mirrored

pair

together.

Unit

media

capacity

is

also

known

as

″logical

capacity″.

For

compressed

drives,

the

logical

capacity

is

dynamic,

and

changes,

depending

on

how

well

the

data

is

compressed.

A

typical

compressed

logical

capacity

might

be

twice

the

drive’s

physical

capacity.

Unit

storage

capacity

has

the

same

value

as

the

unit

media

capacity

for

configured

disk

units.

This

value

is

0

for

non-configured

units.

Unit

space

available

is

the

number

of

bytes

of

secondary

storage

space

that

is

not

currently

assigned

to

objects

or

internal

machine

functions,

and

therefore,

is

available

for

allocation

on

the

unit

(or

the

mirrored

pair).

For

a

mirrored

pair,

this

space

is

the

number

of

bytes

of

auxiliary

storage

available

on

either

one

of

the

mirrored

units.

The

space

is

identical

on

both

of

the

mirrored

units.

Caution,

do

not

attempt

to

add

the

capacities

of

the

two

units

of

a

mirrored

pair

together.

This

value

is

0

for

non-configured

units.

Unit

space

reserved

for

system

is

the

total

number

of

bytes

of

auxiliary

storage

on

the

unit

reserved

for

use

by

the

machine.

This

storage

is

not

available

for

storing

objects,

redundancy

data,

and

other

internal

machine

data.

This

value

is

0

for

non-configured

units.

Unit

is

device

parity

protected

-

a

value

of

1

indicates

that

this

unit

is

device

parity

protected.

Subsystem

is

active

indicates

whether

the

array

subsystem

is

active.

If

the

unit

in

subsystem

has

failed

field

is

binary

1,

the

unit

in

an

array

subsystem

being

addressed

has

failed.

Data

protection

for

this

subsystem

is

no

longer

in

effect.

If

the

other

unit

in

subsystem

has

failed

field

is

binary

1,

the

unit

being

addressed

is

operational,

but

another

unit

in

the

array

subsystem

has

failed.

Data

protection

for

this

subsystem

is

no

longer

in

effect.

If

the

subsystem

runs

in

degraded

mode

field

is

binary

1,

the

array

subsystem

is

operational

and

data

protection

for

this

subsystem

is

in

effect,

but

a

failure

that

may

affect

performance

has

occurred.

It

must

be

fixed.

If

the

hardware

failure

field

is

binary

1,

the

array

subsystem

is

operational

and

data

protection

for

this

subsystem

is

in

effect,

but

hardware

failure

has

occurred.

It

must

be

fixed.

If

the

device

parity

protection

is

being

rebuilt

field

is

1,

the

device

parity

protection

for

this

device

is

being

rebuilt

following

a

repair

action.

Machine

Interface

Instructions

897

If

the

unit

is

not

ready

field

is

1,

the

unit

being

addressed

is

not

ready

for

I/O

operation.

If

the

unit

is

write

protected

field

is

binary

1,

the

write

operation

is

not

allowed

on

the

unit

being

addressed.

If

the

unit

is

busy

field

is

binary

1,

the

unit

being

addressed

is

busy.

If

the

unit

is

not

operational

field

is

binary

1,

the

unit

being

addressed

is

not

operational.

The

status

of

the

device

is

not

known.

If

the

unit

is

not

recognizable

field

is

binary

1,

the

unit

being

addressed

has

an

unexpected

status.

I.e.

the

unit

is

operational,

but

its

status

returned

to

Storage

Management

from

the

IOP

is

not

one

of

those

previously

described.

If

the

status

is

not

available

field

is

binary

1,

the

machine

is

not

able

to

communicate

with

I/O

processor.

The

status

of

the

device

is

not

known.

If

the

unit

is

Read/Write

protected

is

binary

1,

a

DASD

array

may

be

in

the

read/write

protected

state

when

there

is

a

problem,

such

as

a

cache

problem,

configuration

problem,

or

some

other

array

problems

that

could

create

a

data

integrity

exposure.

If

the

unit

is

compressed

field

is

binary

1,

the

logical

capacity

of

the

unit

may

be

greater

than

its

physical

capacity

in

bytes,

depending

on

how

well

the

data

can

be

compressed.

If

the

do

not

allocate

additional

storage

on

this

disk

unit

field

is

binary

1,

then

new

allocations

will

be

directed

away

from

this

unit.

If

the

unit

is

in

availability

parity

set

field

is

binary

1,

the

unit

being

addressed

is

in

a

parity

set

optimized

for

availability.

If

the

unit

is

multipath

unit

field

is

binary

1,

the

unit

being

addressed

has

multipath

connections

to

the

disk

unit.

Serial

number

specifies

the

serial

number

of

the

device

containing

this

auxiliary

storage

unit.

This

is

the

ten

character

serial

number

field

from

the

vital

product

data

for

the

disk

device.

Resource

name

is

the

unique

ten-character

name

assigned

by

the

system

Unit

usage

information

specifies

statistics

relating

to

usage

of

the

unit.

For

unallocated

units,

these

fields

are

meaningless.

Blocks

transferred

to/from

main

storage

fields

specify

the

number

of

512-byte

blocks

transferred

for

the

unit

since

the

last

IMPL.

These

values

wrap

around

to

zero

and

continue

counting

in

the

case

of

an

overflow

of

the

field

with

no

indication

of

the

overflow

having

occurred.

Requests

for

data

transfer

to/from

main

storage

fields

specify

the

number

of

data

transfer

(I/O)

requests

processed

for

the

unit

since

the

last

IMPL.

These

values

wrap

around

to

zero

and

continue

counting

in

the

case

of

an

overflow

of

the

field

with

no

indication

of

the

overflow

having

occurred.

These

values

are

not

directly

related

to

the

number

of

blocks

transferred

for

the

unit

because

the

number

of

blocks

to

be

transferred

for

a

given

transfer

request

can

vary

greatly.

Permanent

blocks

transferred

from

main

storage

specifies

the

number

of

512-byte

blocks

of

permanent

data

transferred

from

main

storage

to

auxiliary

storage

for

the

unit

since

the

last

IMPL.

In

the

case

of

an

overflow

of

the

field,

this

value

wraps

around

back

to

zero

and

continues

counting,

with

no

indication

of

the

overflow

condition

having

occurred.

898

iSeries:

Machine

Interface

Instructions

APIs

Requests

for

permanent

data

transfer

from

main

storage

specifies

the

number

of

transfer

(I/O)

requests

for

transfers

of

permanent

data

from

main

storage

to

auxiliary

storage

that

have

been

processed

for

the

unit

since

the

last

IMPL.

In

the

case

of

an

overflow

of

the

field,

this

value

wraps

around

back

to

zero

and

continues

counting,

with

no

indication

of

the

overflow

condition

having

occurred.

This

value

is

not

directly

related

to

the

permanent

blocks

transferred

from

main

storage

value

for

the

unit

ASP

because

the

number

of

blocks

to

be

transferred

for

any

particular

transfer

request

can

vary

greatly.

Sample

count

specifies

the

number

of

times

the

disk

queue

was

checked

to

determine

whether

or

not

the

queue

is

empty.

Not

busy

count

specifies

the

number

of

times

the

disk

queue

was

empty

during

the

same

time

period

that

the

sample

count

was

taken.

Note

that

on

overflow,

the

machine

resets

the

following

BIN(4)

fields

from

2,147,483,647

back

to

0

without

any

indication

of

error:

blocks

transferred

to

main

storage,

blocks

transferred

from

main

storage,

requests

for

data

transfer

to

main

storage,

requests

for

data

transfer

from

main

storage,

permanent

blocks

transferred

from

main

storage,

requests

for

permanent

data

transfer

from

main

storage,

sample

count,

and

not

busy

count.

Auxiliary

Storage

Pool

Information

including

offline

Independent

ASPs

(Hex

22):

The

auxiliary

storage

pool

information

describes

the

ASPs

(auxiliary

storage

pools)

which

are

configured

within

the

machine.

This

option

returns

information

for

all

ASPs

including

independent

ASPs

that

are

varied

off.

Option

″Auxiliary

Storage

Pool

Information

(Short

format)

(Hex

1F)″

(page

881)

returns

the

same

information

but

does

not

return

information

for

independent

ASPs

that

are

varied

off.

Also

note

that

through

appropriate

setting

of

the

number

of

bytes

provided

field

for

operand

1,

the

amount

of

information

to

be

materialized

for

this

option

can

be

reduced

thus

avoiding

the

processing

for

unneeded

information.

For

example,

by

setting

this

field

to

the

value

48,

you

can

get

just

the

information

for

the

system

ASP

returned.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Control

information

Char(16)

(occurs

just

once)

16

10

Number

of

ASPs

UBin(2)

18

12

Reserved

(binary

0)

Char(14)

32

20

ASP

information

[*]

Char(32)

(Repeated

once

for

each

ASP.

Located

immediately

after

the

control

information

above.

ASP

1,

always

configured,

is

first.

Configured

ASPs

follow

in

ascending

numerical

order.)

32

20

ASP

number

Char(2)

34

22

Number

of

allocated

auxiliary

storage

units

in

ASP

UBin(2)

Note:

Number

of

configured,

non-mirrored

disk

units

+

number

of

mirrored

pairs

of

disk

units

36

24

ASP

resource

name

Char(10)

46

2E

ASP

control

flags

Char(2)

46

2E

ASP

overflow

Bit

0

46

2E

Independent

ASP

Bit

1

46

2E

ASP

protected

Bit

2

46

2E

User

ASP

MI

state

Bit

3

Machine

Interface

Instructions

899

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

46

2E

Independent

ASP

address

threshold

exceeded

Bit

4

46

2E

Reserved

(binary

0)

Bits

5-15

48

30

Number

of

addresses

remaining

in

independent

ASP

Char(8)

56

38

ASP

number

of

the

primary

ASP

Char(2)

58

3A

Independent

ASP

type

Char(1)

58

3A

Primary

ASP

Bit

0

58

3A

Secondary

ASP

Bit

1

58

3A

UDFS

ASP

Bit

2

58

3A

Reserved

(binary

0)

Bits

3-7

59

3B

Reserved

(binary

0)

Char(5)

*

*

—-

End

—-

Number

of

ASPs

is

the

number

of

ASPs

configured

within

the

machine.

One,

the

minimum

value,

indicates

just

the

system

ASP

exists

and

that

there

are

no

user

ASPs

configured.

Up

to

255

user

ASPs

can

be

configured.

The

system

ASP

always

exists.

This

number

of

ASPs

include

the

system

ASP,

basic

ASPs

and

independent

ASPs.

ASP

information

is

repeated

once

for

each

ASP

configured

within

the

machine.

The

number

of

ASPs

configured

is

specified

by

the

number

of

ASPs

field.

ASP

1,

the

system

ASP,

is

materialized

first.

Because

the

system

ASP

always

exists,

its

materialization

is

always

available.

The

information

about

the

user

ASPs

is

materialized

after

the

system

ASP

in

ascending

numerical

order.

There

may

be

gaps

in

the

numerical

order.

For

example,

if

user

ASPs

3

and

75

are

configured,

the

materialize

will

produce

information

on

ASP

1,

ASP

3,

and

ASP

75

in

that

order.

ASP

number

uniquely

identifies

the

auxiliary

storage

pool.

The

ASP

number

may

have

a

value

from

1

through

255.

A

value

of

1

indicates

the

system

ASP.

A

value

of

2

through

255

indicates

a

user

ASP.

Note

that

independent

ASPs

have

a

value

of

33

through

255.

Number

of

allocated

auxiliary

storage

units

in

ASP

is

the

number

of

configured

units

logically

addressable

by

the

system

as

units

for

this

ASP.

This

is

the

number

of

configured,

non-mirrored

units

plus

the

number

of

mirrored

pairs

allocated

in

the

ASPs.

Any

two

units

of

the

same

capacity

may

be

associated

to

form

a

mirrored

pair.

Association

of

two

units

as

a

mirrored

pair

reduces

the

amount

of

logically

available

storage

by

the

number

of

bytes

contained

on

one

of

the

mirrored

units

in

the

mirrored

pair.

ASP

resource

name

specifies

the

name

which

the

user

has

assigned

to

this

auxiliary

storage

pool.

Blanks

(hex

value

40)

are

returned

for

ASPs

which

do

not

have

names.

Only

independent

ASPs

have

names.

The

ASP

name

is

the

resource

name

in

the

LUD.

ASP

overflow

flag

indicates

whether

or

not

object

allocations

directed

into

the

basic

ASP

have

overflowed

into

the

system

ASP.

A

value

of

binary

1

indicates

overflow;

binary

0

indicates

no

overflow.

This

flag

does

not

apply

to

the

system

ASP

and

a

value

of

binary

0

is

always

returned

for

it.

This

flag

does

not

apply

to

independent

ASPs

and

a

value

of

binary

0

is

always

returned

for

independent

ASPs.

Independent

ASP

specifies

whether

or

not

the

ASP

is

an

independent

ASP;

that

is,

a

user

ASP

than

can

be

varied

on

or

off.

A

value

of

binary

1

indicates

the

ASP

is

an

independent

ASP.

A

value

of

binary

0

indicates

that

this

ASP

is

a

basic

ASP

(a

user

ASP

that

cannot

be

varied

on

or

off).

900

iSeries:

Machine

Interface

Instructions

APIs

ASP

protected

specifies

whether

or

not

the

ASP

is

configured

to

be

protected

from

a

single

disk

failure.

A

value

of

binary

1

indicates

that

the

ASP

is

protected.

All

of

the

disk

units

in

this

ASP

must

be

either

device

parity

protected

or

mirror

protected.

A

value

of

binary

0

indicates

that

the

disk

units

in

the

ASP

are

not

mirror

protected,

and

there

is

no

requirement

that

the

disk

units

in

the

ASP

be

device

parity

protected.

User

ASP

MI

state

indicates

the

state

of

the

user

ASP.

A

value

of

binary

1

indicates

that

the

user

ASP

is

in

the

’new’

state.

This

means

that

a

context

may

be

allocated

in

this

user

ASP.

A

value

of

binary

0

indicates

that

the

user

ASP

is

in

the

’old’

state.

This

means

that

there

are

no

contexts

allocated

in

this

user

ASP.

This

flag

has

no

meaning

for

the

system

ASP

and

a

value

of

binary

0

will

always

be

returned

for

the

system

ASP.

A

value

of

binary

1

is

always

returned

for

independent

ASPs.

Independent

ASP

address

threshold

exceeded

flag

is

only

valid

for

an

Independent

ASP

and

specifies

whether

or

not

the

independent

ASP

address

threshold,

selected

by

the

machine,

has

been

exceeded.

A

value

of

binary

1

indicates

the

threshold

has

been

exceeded

and

the

Independent

ASP

is

running

low

on

addresses.

A

value

of

binary

0

indicates

that

the

address

threshold

has

not

been

exceeded.

Number

of

addresses

remaining

in

independent

ASP

contains

the

number

of

virtual

addresses

remaining

for

use

by

the

independent

ASP.

This

field

only

has

meaning

for

an

independent

ASP.

The

information

in

this

field

is

only

valid

if

the

independent

ASP

address

threshold

exceeded

flag

is

set

to

binary

1.

ASP

number

of

the

primary

ASP

contains

the

ASP

number

of

the

primary

ASP.

This

value

only

has

meaning

for

an

independent

ASP.

If

the

ASP

is

a

secondary

ASP,

this

field

contains

the

ASP

number

of

the

primary

ASP.

If

the

ASP

is

a

primary

ASP,

this

value

is

the

same

as

the

ASP

number.

If

the

ASP

is

a

UDFS

ASP

or

is

not

an

independent

ASP,

a

value

of

hex

0000

is

returned.

Primary

ASP

flag

indicates

that

the

independent

ASP

is

a

primary

ASP

in

an

ASP

group.

A

primary

ASP

defines

a

collection

of

directories

and

contexts

and

may

have

secondary

ASPs

associated

with

it.

This

flag

only

has

meaning

for

an

independent

ASP.

A

value

of

binary

1

indicates

the

independent

ASP

is

a

primary

ASP.

A

value

of

binary

0

indicates

the

independent

ASP

is

not

a

primary

ASP.

Secondary

ASP

flag

indicates

that

the

independent

ASP

is

a

secondary

ASP

in

an

ASP

group.

A

secondary

ASP

is

associated

with

a

primary

ASP.

There

can

be

many

secondary

ASPs

associated

with

the

same

primary

ASP.

The

secondary

ASP

defines

a

collection

of

directories

and

contexts.

This

flag

only

has

meaning

for

an

independent

ASP.

A

value

of

binary

1

indicates

the

independent

ASP

is

a

secondary

ASP.

A

value

of

binary

0

indicates

the

independent

ASP

is

not

a

secondary

ASP.

UDFS

ASP

flag

indicates

that

the

independent

ASP

is

a

UDFS

(User-defined

File

System)

ASP.

This

type

of

independent

ASP

cannot

be

a

member

of

an

ASP

group.

This

flag

only

has

meaning

for

an

independent

ASP.

A

value

of

binary

1

indicates

the

independent

ASP

is

a

UDFS

ASP.

A

value

of

binary

0

indicates

the

independent

ASP

is

not

a

UDFS

ASP.

Auxiliary

Storage

Pool

Group

Information

(Hex

23):

The

Auxiliary

Storage

Pool

Group

information

returns

information

about

independent

ASPs

on

the

system.

If

the

independent

ASP

can

be

in

an

Auxiliary

Storage

Pool

Group,

this

option

also

returns

primary

and

secondary

ASP

information

for

the

ASP

group

which

is

configured

within

the

machine.

Note

that

through

appropriate

setting

of

the

number

of

bytes

provided

field

for

operand

1,

the

amount

of

information

to

be

materialized

for

this

option

can

be

reduced.

For

example,

by

setting

this

field

to

provide

enough

bytes

for

the

common

16

byte

header

plus

all

the

fields

from

ASP

name

through

number

of

secondary

ASPs,

you

can

get

just

that

information

and

avoid

the

overhead

of

gathering

the

information

from

all

of

the

222

secondary

ASPs

which

could

possibly

exist.

You

must

specify

at

least

50

bytes

in

the

the

number

of

bytes

provided

field

for

operand

1.

Machine

Interface

Instructions

901

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

ASP

name

Char(10)

26

1A

Status

UBin(2)

0000

=

Success

0001

=

The

independent

ASP

information

for

the

input

ASP

name

could

not

be

located

0002

=

The

input

independent

ASP

is

not

owned

by

this

system

0003

=

The

primary

and

secondary

ASP

group

information

is

not

consistent.

28

1C

Independent

ASP

type

flags

Char(1)

28

1C

Input

ASP

is

a

primary

ASP

Bit

0

28

1C

Input

ASP

is

a

secondary

ASP

Bit

1

28

1C

Input

ASP

is

a

UDFS

ASP

Bit

2

28

1C

Reserved

(binary

0)

Bits

3-7

29

1D

Reserved

Char(3)

32

20

ASP

number

of

primary

ASP

Char(2)

34

22

ASP

name

of

primary

ASP

Char(10)

44

2C

Reserved

Char(4)

48

30

Number

of

secondary

ASPs

UBin(2)

50

32

Reserved

Char(14)

64

40

Secondary

ASP

information

[*]

Char(32)

(Repeated

once

for

each

secondary

ASP.)

64

40

ASP

number

of

secondary

ASP

Char(2)

66

42

ASP

name

of

secondary

ASP

Char(10)

76

4C

Reserved

Char(20)

*

*

—-

End

—-

ASP

name

is

an

input

value

that

uniquely

identifies

the

auxiliary

storage

pool

from

which

the

ASP

group

information

is

desired.

The

ASP

name

is

the

resource

name

in

the

LUD.

Status

v

v

Hex

0000

indicates

the

information

was

successfully

retrieved.

Examine

the

independent

ASP

type

flags

to

determine

what

fields

in

the

template

contain

information.

v

Hex

0001

indicates

that

the

input

ASP

name

could

not

be

matched

with

a

valid

independent

ASP.

No

other

information

is

returned.

v

Hex

0002

indicates

that

the

input

independent

ASP

is

not

owned

by

the

system.

The

system

cannot

locate

the

independent

ASP.

The

independent

ASP

may

be

switched

to

another

node

in

the

cluster,

or

the

tower

which

contains

the

disk

units

of

the

independent

ASP

may

be

powered

off.

No

other

information

is

returned.

v

Hex

0003

indicates

that

the

input

independent

ASP

is

part

of

a

group,

but

the

primary

and

secondary

ASP

information

is

not

consistent.

This

condition

could

be

caused

when

a

failure

occurs

during

the

deletion

of

a

secondary

ASP,

or

when

a

failure

occurs

during

the

creation

of

a

secondary

ASP.

No

other

information

is

returned.

Input

ASP

is

a

primary

ASP

flag

indicates

whether

or

not

the

independent

ASP

is

a

primary

ASP

in

an

ASP

group.

A

primary

ASP

defines

a

collection

of

directories

and

contexts

and

may

have

secondary

ASPs

associated

with

it.

A

value

of

binary

1

indicates

the

independent

ASP

is

a

primary

ASP.

A

value

of

binary

902

iSeries:

Machine

Interface

Instructions

APIs

0

indicates

the

independent

ASP

is

not

a

primary

ASP.

If

the

input

ASP

is

a

primary

ASP,

the

following

fields

are

also

returned:

ASP

number

of

primary

ASP,ASP

name

of

primary

ASP,number

of

secondary

ASPs,

and

secondary

ASP

information.

Input

ASP

is

a

secondary

ASP

flag

indicates

whether

or

not

the

independent

ASP

is

a

secondary

ASP

in

an

ASP

group.

A

secondary

ASP

is

associated

with

a

primary

ASP.

There

can

be

many

secondary

ASPs

associated

with

the

same

primary

ASP.

The

secondary

ASP

defines

a

collection

of

directories

and

contexts.

A

value

of

binary

1

indicates

the

independent

ASP

is

a

secondary

ASP.

A

value

of

binary

0

indicates

the

independent

ASP

is

not

a

secondary

ASP.

If

the

input

ASP

is

a

secondary

ASP,

the

following

fields

are

also

returned:

ASP

number

of

primary

ASP,ASP

name

of

primary

ASP,number

of

secondary

ASPs,

and

secondary

ASP

information.

Input

ASP

is

a

UDFS

ASP

flag

indicates

whether

or

not

the

independent

ASP

is

a

UDFS

(User-defined

File

System)

ASP.

This

type

of

independent

ASP

cannot

be

a

member

of

an

ASP

group.

A

value

of

binary

1

indicates

the

independent

ASP

is

a

UDFS

ASP.

A

value

of

binary

0

indicates

the

independent

ASP

is

not

a

UDFS

ASP.

If

the

input

ASP

is

a

UDFS

ASP,

no

other

data

is

returned.

ASP

name

of

primary

ASP

specifies

the

name

which

the

user

has

assigned

to

the

primary

auxiliary

storage

pool.

The

ASP

name

is

the

resource

name

in

the

LUD.

ASP

number

of

primary

ASP

contains

the

ASP

number

of

the

primary

ASP.

This

field

has

a

value

from

33

through

255.

Number

of

secondary

ASPs

is

the

number

of

secondary

ASPs

associated

with

the

primary

ASP.

There

are

this

many

secondary

ASP

information

entries

(below).

Secondary

ASP

information

is

repeated

once

for

each

secondary

ASP

associated

with

the

primary

ASP.

The

number

of

entries

is

specified

by

the

number

of

secondary

ASPs

field.

The

secondary

ASP

Information

entries

are

not

sorted

in

any

particular

order.

ASP

number

of

secondary

ASP

uniquely

identifies

the

auxiliary

storage

pool.

The

ASP

number

has

a

value

from

33

through

255.

ASP

name

of

secondary

ASP

specifies

the

name

which

the

user

has

assigned

to

the

secondary

auxiliary

storage

pool.

The

ASP

name

is

the

resource

name

in

the

LUD.

Dynamic

Thread

Resources

Affinity

Adjustment

(Hex

24):

All

threads

in

the

machine

have

affinity

with

a

machine-determined

portion

of

its

resources,

including

processors

and

main

memory.

The

portion

is

determined

when

the

thread

is

initiated.

Dynamic

thread

resources

affinity

adjustment

controls

whether

the

machine

may

make

adjustments

to

these

portions

at

a

later

time.

Hex

00

is

the

default

value.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Dynamic

thread

resources

affinity

adjustment

Char(1)

Hex

00

=

Enable.

The

machine

may

make

adjustments

to

the

portion

of

its

resources

with

which

individual

threads

have

affinity.

Hex

01

=

Disable.The

machine

will

not

make

adjustments

to

the

portion

of

its

resources

with

which

any

thread

has

affinity.

17

11

Reserved

(binary

0)

Char(3)

Machine

Interface

Instructions

903

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

20

14

—-

End

—-

Auxiliary

Storage

Pool

Space

Information

(Hex

25):

The

auxiliary

storage

space

information

describes

the

ASPs

(auxiliary

storage

pools)

which

are

configured

within

the

machine.

This

option

does

not

return

information

for

independent

ASPs

which

are

varied

off.

This

materialize

provides

an

alternative

to

Hex

12

for

those

users

who

want

only

the

capacity

and

available

space

returned.

Modification

of

most

of

the

auxiliary

storage

configuration

is

performed

using

functions

available

in

the

Dedicated

Service

Tool

(DST).

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Control

information

Char(64)

(occurs

just

once)

16

10

Number

of

ASPs

UBin(2)

18

12

Reserved

(binary

0)

Char(62)

80

50

ASP

information

[*]

Char(64)

(Repeated

once

for

each

ASP.

Located

immediately

after

the

control

information

above.

ASP

1,

always

configured,

is

first.

Configured

user

ASPs

follow

in

ascending

numerical

order.)

80

50

ASP

number

Char(2)

82

52

Reserved

(binary

0)

Char(6)

88

58

ASP

space

capacity

(Bound

program)

UBin(8)

88

58

ASP

space

capacity

(Non-Bound

program)

Char(8)

96

60

ASP

space

available

(Bound

program)

UBin(8)

96

60

ASP

space

available

(Non-Bound

program)

Char(8)

104

68

Reserved

(binary

0)

Char(40)

*

*

—-

End

—-

Number

of

ASPs

is

the

number

of

ASPs

configured

within

the

machine.

One,

the

minimum

value,

indicates

just

the

system

ASP

exists

and

that

there

are

no

user

ASPs

configured.

Up

to

254

user

ASPs

can

be

configured.

The

system

ASP

always

exists.

The

number

of

ASPs

includes

the

system

ASP,

user

ASPs

which

are

basic

ASPs

(that

is,

user

ASPs

which

cannot

be

varied

on

or

off),

and

independent

ASPs

which

are

currently

varied

on

to

this

system.

ASP

information

is

repeated

once

for

each

configured

ASP

within

the

machine

that

is

online.

The

number

of

ASPs

configured

is

specified

by

the

number

of

ASPs

field.

ASP

1,

the

system

ASP,

is

materialized

first.

Because

the

system

ASP

always

exists,

its

materialization

is

always

available.

The

user

ASPs

which

are

configured

are

materialized

after

the

system

ASP

in

ascending

numerical

order.

There

may

be

gaps

in

the

numerical

order.

That

is,

if

just

user

ASPs

3

and

5

are

configured,

only

information

for

them

is

materialized

producing

information

on

just

ASP

1,

ASP

3

and

ASP

5

in

that

order.

ASP

number

uniquely

identifies

the

auxiliary

storage

pool.

The

ASP

number

may

have

a

value

from

1

through

255.

A

value

of

1

indicates

the

system

ASP.

A

value

of

2

through

255

indicates

a

user

ASP.

Note

that

independent

ASPs

have

a

value

of

33

through

255.

904

iSeries:

Machine

Interface

Instructions

APIs

ASP

space

capacity

specifies

the

total

space,

in

number

of

bytes

of

auxiliary

storage,

on

the

storage

media

allocated

to

the

ASP.

This

is

just

the

sum

of

the

unit

media

capacity

fields

for

(1)

the

units

allocated

to

the

ASP

or

(2)

the

mirrored

pairs

in

the

ASP.

Note

that

a

mirrored

pair

counts

for

only

one

unit.

ASP

space

available

is

the

number

of

bytes

of

auxiliary

storage

that

is

not

currently

assigned

to

objects

or

internal

machine

functions,

and

therefore,

is

available

for

allocation

in

the

ASP.

Note

that

a

mirrored

pair

counts

for

only

one

unit.

Processor

Utilization

Data

(Hex

26):

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Processor

utilized

time

since

IPL

(Bound

program)

UBin(8)

16

10

Processor

utilized

time

since

IPL

(Non-Bound

program)

Char(8)

24

18

Processor

configured

available

processing

time

since

IPL

(Bound

program)

UBin(8)

24

18

Processor

configured

available

processing

time

since

IPL

(Non-Bound

program)

Char(8)

32

20

Processor

uncapped

available

time

since

IPL

(Bound

program)

UBin(8)

32

20

Processor

uncapped

available

time

since

IPL

(Non-Bound

program)

Char(8)

40

28

Secondary

workload

utilized

time

since

IPL

(Bound

program)

UBin(8)

40

28

Secondary

workload

utilized

time

since

IPL

(Non-Bound

program)

Char(8)

48

30

Database

utilized

time

since

IPL

(Bound

program)

UBin(8)

48

30

Database

utilized

time

since

IPL

(Non-Bound

program)

Char(8)

56

38

Database

threshold

UBin(2)

58

3A

Database

limit

UBin(2)

60

3C

Reserved

(binary

0)

Char(4)

64

40

Interactive

utilized

time

since

IPL

(Bound

program)

UBin(8)

64

40

Interactive

utilized

time

since

IPL

(Non-Bound

program)

Char(8)

72

48

Interactive

available

time

since

IPL

(Bound

program)

UBin(8)

72

48

Interactive

available

time

since

IPL

(Non-Bound

program)

Char(8)

80

50

Interactive

threshold

UBin(2)

82

52

Interactive

limit

UBin(2)

84

54

Current

processing

capacity

UBin(4)

88

58

Current

number

of

processors

UBin(2)

90

5A

Reserved

(binary

0)

Char(6)

96

60

—-

End

—-

Processor

utilized

time

since

IPL

is

the

sum

of

all

time,

in

milliseconds,

utilized

by

all

processors

since

IPL.

Processor

configured

available

processing

time

since

IPL

is

the

total

amount

of

configured

processor

time,

in

milliseconds,

available

since

IPL.

In

a

dedicated

partition,

the

configured

available

processing

time

is

the

elapsed

time

times

the

number

of

processors,

tracked

over

time

as

the

configuration

changes.

In

a

shared

partition,

the

configured

available

processing

time

is

the

elapsed

time

times

the

number

of

shared

processor

units,

tracked

over

time

as

the

configuration

changes.

Machine

Interface

Instructions

905

Processor

uncapped

available

time

since

IPL

is

the

total

amount

of

processing

time,

in

milliseconds,

available

since

IPL,

tracked

over

time

as

the

configuration

changes.

The

total

available

time

includes

configured

available

time

and

an

additional

amount

of

shared

processor

pool

available

time

that

is

available

to

the

partition

because

it

is

uncapped.

The

uncapped

available

time

represents

the

upper

limit

on

the

partition’s

potential

utilized

time

based

on

the

configuration

of

the

partition

and

the

shared

pool.

In

dedicated

and

capped

shared

processor

partitions,

the

processor

uncapped

available

time

since

IPL

equals

the

processor

configured

available

processing

time

since

IPL.

In

an

uncapped

shared

processor

partition,

the

uncapped

available

time

is

the

elapsed

time

multiplied

by

the

minimum

of

the

number

of

processors

in

the

partition

and

the

number

of

processors

in

the

shared

pool,

tracked

over

time

as

the

configuration

changes.

Secondary

workload

utilized

time

since

IPL

is

the

total

processor

time,

in

milliseconds,

used

for

workloads

that

can

not

fully

exploit

dedicated

server

resources,

since

IPL.

If

a

system

is

not

a

dedicated

server,

a

value

of

hex

0000000000000000

is

returned.

Database

utilized

time

since

IPL

is

the

total

processor

time,

in

milliseconds,

used

performing

database

processing,

since

IPL.

If

the

system

does

not

support

this

metric,

a

value

of

hex

0000000000000000

is

returned.

If

the

system

does

support

this

and

needs

to

return

a

value

of

0,

a

value

of

hex

0000000000000001

is

returned.

Database

threshold

is

the

highest

level

of

database

processor

utilization

which

can

be

sustained

without

causing

a

disproportionate

increase

in

system

overhead.

The

value

returned

is

the

fraction

of

processor

capacity,

expressed

in

tenths

of

a

percent.

For

example,

a

value

of

237

means

that

the

threshold

is

23.7%.

On

a

machine

with

no

limit

on

database

utilization,

the

value

returned

will

be

1000

(100%).

Database

limit

is

the

maximum

sustainable

level

of

database

processor

utilization.

The

value

returned

is

the

fraction

of

processor

capacity,

expressed

in

tenths

of

a

percent.

For

example,

a

value

of

275

means

that

the

limit

is

27.5%.

On

a

machine

with

no

limit

on

database

utilization,

the

value

returned

will

be

1000

(100%).

Interactive

utilized

time

since

IPL

is

the

total

processor

time,

in

milliseconds,

used

by

interactive

processes,

since

IPL.

If

the

system

does

not

support

this

metric,

a

value

of

hex

0000000000000000

is

returned.

If

the

system

does

support

this

and

needs

to

return

a

value

of

0,

a

value

of

hex

0000000000000001

is

returned.

Interactive

available

time

since

IPL

is

the

total

processor

time

available,

in

milliseconds,

to

interactive

processes,

since

IPL.

If

the

system

does

not

support

this

metric,

a

value

of

hex

0000000000000000

is

returned.

If

the

system

does

support

this

and

needs

to

return

a

value

of

0,

a

value

of

hex

0000000000000001

is

returned.

Interactive

threshold

is

the

highest

level

of

interactive

processor

utilization

which

can

be

sustained

without

causing

a

disproportionate

increase

in

system

overhead.

The

value

returned

is

the

fraction

of

processor

capacity,

expressed

in

hundredths

of

a

percent.

For

example,

a

value

of

2379

means

that

the

threshold

is

23.79%.

On

a

machine

with

no

limit

on

interactive

utilization,

the

value

returned

will

be

10000

(100%).

Interactive

limit

is

the

maximum

sustainable

level

of

interactive

processor

utilization.

The

machine

determines

the

interactive

limit

based

on

the

interactive

feature.

The

value

returned

is

the

fraction

of

processor

capacity,

expressed

in

hundredths

of

a

percent.

For

example,

a

value

of

4572

means

that

the

limit

is

45.72%.

On

a

machine

with

no

limit

on

interactive

utilization,

the

value

returned

will

be

10000

(100%).

Current

processing

capacity

specifies

the

current

processing

capacity

of

the

partition.

The

value

returned

for

this

attribute

is

accurate

to

a

hundredth

of

a

physical

processor.

For

example,

a

value

of

233

means

that

the

partition’s

current

processing

capacity

is

equivalent

to

2.33

physical

processors.

See

MATMATR

option

hex

01E0

for

a

complete

description.

906

iSeries:

Machine

Interface

Instructions

APIs

Current

number

of

processors

is

the

number

of

virtual

processors

that

are

currently

enabled

to

run

for

this

partition.

Note:

The

number

of

virtual

processors

allocated

to

the

current

partition

that

are

active

for

the

current

IPL

can

also

be

materialized

using

option

hex

13

on

MATRMD

and

option

hex

01E0

on

MATMATR.

Shared

Processor

Pool

Information

(Hex

27):

This

option

returns

information

on

the

shared

processor

pool.

Shared

processor

pool

information

is

not

available

for

all

hardware

models.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Shared

processor

pool

available

time

since

IPL

(Bound

program)

UBin(8)

16

10

Shared

processor

pool

available

time

since

IPL

(Non-Bound

program)

Char(8)

24

18

Shared

processor

pool

utilized

time

since

IPL

(Bound

program)

UBin(8)

24

18

Shared

processor

pool

utilized

time

since

IPL

(Non-Bound

program)

Char(8)

32

20

Number

of

processors

in

shared

processor

pool

UBin(2)

34

22

Reserved

(binary

0)

Char(2)

36

24

Materialization

status

Char(1)

Hex

00

=

Data

returned

successfully

Hex

01

=

Data

not

returned,

data

not

available

for

hardware

model

Hex

02

=

Data

not

returned,

partition

is

not

in

a

shared

pool

Hex

03

=

Data

not

returned,

partition

is

not

allowed

to

get

shared

pool

information

37

25

Reserved

(binary

0)

Char(3)

40

28

—-

End

—-

Shared

processor

pool

available

time

since

IPL

is

the

total

amount

of

processor

time,

in

milliseconds,

available

in

the

shared

processor

pool

since

IPL.

Shared

processor

pool

utilized

time

since

IPL

is

the

total

amount

of

processor

time,

in

milliseconds,

utilized

in

the

shared

processor

pool

since

IPL.

Number

of

processors

in

shared

processor

pool

is

the

number

of

processors

that

are

allocated

to

the

shared

pool

in

which

the

partition

is

executing.

The

number

of

processors

in

the

shared

pool

is

always

less

than

or

equal

to

the

number

of

processors

in

the

machine.

Materialization

status

indicates

whether

or

not

the

shared

processor

pool

information

was

returned.

Machine

Interface

Instructions

907

Multiprocessor

utilizations

(Hex

28):

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Maximum

number

of

active

processors

in

the

partition

UBin(2)

18

12

Number

of

active

processors

in

the

partition

UBin(2)

20

14

Number

of

table

entries

UBin(2)

22

16

Reserved

(binary

0)

Char(26)

48

30

Table

entry

[*]

Char(48)

(repeated

number

of

table

entries

times)

48

30

Processor

utilized

time

since

IPL

(Bound

program)

48

30

Processor

utilized

time

since

IPL

(Non-Bound

program)

56

38

Processor

configured

available

time

since

IPL

(Bound

program)

56

38

Processor

configured

available

time

since

IPL

(Non-Bound

p

64

40

Processor

uncapped

available

time

since

IPL

(Bound

program)

64

40

Processor

uncapped

available

time

since

IPL

(Non-Bound

p

72

48

Processor

id

74

4A

Processor

status

flags

74

4A

Processor

installed

0

=

Processor

is

not

installed

1

=

Processor

is

installed

74

4A

Processor

active

0

=

Processor

is

inactive

1

=

Processor

is

active

74

4A

Reserved

(binary

0)

75

4B

Reserved

(binary

0)

*

*

—-

End

—-

Maximum

number

of

active

processors

in

the

partition

is

the

maximum

number

of

virtual

processors

that

can

be

active

on

the

current

IPL

of

the

partition.

Number

of

active

processors

in

the

partition

is

the

number

of

virtual

processors

currently

active

in

the

partition.

It

will

always

be

less

than

or

equal

to

the

maximum

number

of

active

processors

in

the

partition.

Number

of

table

entries

is

the

count

of

the

number

of

table

entries

returned.

No

partial

table

entries

will

be

returned.

Table

entry

contains

the

amount

of

time,

in

milliseconds,

the

individual

processor

has

been

available

for

and

utilized

for

work.

It

also

contains

processor

status

flags

indicating

the

current

status

of

the

processor.

Processor

utilized

time

since

IPL

is

the

sum

of

all

time,

in

milliseconds,

utilized

by

this

processor

since

IPL.

Processor

configured

available

processing

time

since

IPL

is

the

total

amount

of

configured

processor

time,

in

milliseconds,

available

to

this

processor

since

IPL.

In

a

dedicated

partition,

the

configured

available

processing

time

is

the

elapsed

time.

In

a

shared

partition,

configured

available

processing

time

is

the

elapsed

time

times

the

ratio

of

shared

processor

units

to

processors,

tracked

over

time

as

the

configuration

changes.

908

iSeries:

Machine

Interface

Instructions

APIs

Processor

uncapped

available

time

since

IPL

is

the

total

amount

of

processing

time,

in

milliseconds,

available

since

IPL,

tracked

over

time

as

the

configuration

changes.

The

total

available

time

includes

configured

available

time

and

an

additional

amount

of

shared

processor

pool

available

time

that

is

available

to

the

partition

because

it

is

uncapped.

The

uncapped

available

time

represents

the

upper

limit

on

the

partition’s

potential

utilized

time

based

on

the

configuration

of

the

partition

and

the

shared

pool.

In

dedicated

and

capped

shared

processor

partitions,

the

processor

uncapped

available

time

since

IPL

equals

the

processor

configured

available

processing

time

since

IPL.

In

an

uncapped

shared

processor

partition,

the

uncapped

available

time

is

the

elapsed

time

multiplied

by

the

minimum

of

the

number

of

processors

in

the

partition

and

the

number

of

processors

in

the

shared

pool,

tracked

over

time

as

the

configuration

changes.

Processor

id

identifies

the

virtual

processor.

Processor

status

flags

indicates

the

current

status

of

the

virtual

processor.

The

processor

installed

field

indicates

whether

or

not

the

processor

is

installed

on

the

system.

A

value

of

binary

0

indicates

that

the

virtual

processor

is

unavailable

for

the

duration

of

the

IPL.

A

value

of

binary

1

indicates

the

processor

is

installed

and

may

be

varied

on/off

for

the

duration

of

the

IPL.

The

processor

active

field

indicates

whether

or

not

the

processor

is

active

on

the

system.

A

value

of

binary

0

indicates

the

processor

is

currently

varied

off

or

is

not

installed

on

the

system.

A

value

of

binary

1

indicates

the

processor

is

currently

varied

on.

Materialize

machine

resource

portions

(Hex

29):

Materialize

machine

resource

portions

describes

the

machine-determined

portions

of

the

internal

machine

processing

resources.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Reserved

(binary

0)

Char(12)

28

1C

Number

of

entries

UBin(4)

32

20

Entry

[*]

Char(32)

(repeated

number

of

entries

times)

32

20

Machine

resource

portion

identifier

UBin(4)

36

24

Weight

UBin(2)

38

26

Reserved

(binary

0)

Char(26)

*

*

—-

End

—-

Number

of

entries

is

the

count

of

the

number

of

entries

returned.

No

partial

entries

will

be

returned.

The

machine

always

has

at

least

one

portion

which

may

be

materialized.

Machine

resource

portion

identifier

identifies

a

machine-determined

portion

of

the

internal

machine

processing

resources.

Weight

is

an

indication

of

the

relative

importance

of

one

portion

of

the

internal

machine

processing

resources

over

another.

The

relative

importance

of

two

portions

of

the

internal

machine

processing

resources

is

determined

by

the

proportions

of

their

weights.

For

example

if

the

weight

of

one

portion

is

twice

that

of

another

portion,

then

the

first

portion

is

twice

as

important

as

the

second.

Materialize

interrupt

polling

control

(Hex

2A):

Machine

Interface

Instructions

909

Note:

IOPless

device

drivers

do

not

use

interrupt

polling.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

16

10

Interrupt

polling

control

Char(8)

16

10

Pending

interrupt

polling

control

Char(1)

Hex

00

=

The

system

is

interrupted

when

an

I/O

operation

completes.

Any

work

being

done

on

the

processor

handling

the

interrupt

is

suspended

until

the

interrupt

service

routine

completes.

Hex

01

=

The

system

periodically

reads

the

hardware

interrupt

registers

to

determine

if

any

I/O

has

completed.

This

allows

work

that

is

currently

being

done

by

the

system

to

proceed

without

being

interrupted.

It

may

allow

the

system

to

complete

work

more

efficiently,

but

may

also

increase

response

time.

17

11

Current

interrupt

polling

control

Char(1)

Hex

00

=

The

system

is

interrupted

when

an

I/O

operation

completes.

Any

work

being

done

on

the

processor

handling

the

interrupt

is

suspended

until

the

interrupt

service

routine

completes.

Hex

01

=

The

system

periodically

reads

the

hardware

interrupt

registers

to

determine

if

any

I/O

has

completed.

This

allows

work

that

is

currently

being

done

by

the

system

to

proceed

without

being

interrupted.

It

may

allow

the

system

to

complete

work

more

efficiently,

but

may

also

increase

response

time.

Hex

02

=

The

system

is

interrupted

when

an

I/O

operation

completes.

Any

work

being

done

on

the

processor

handling

the

interrupt

is

suspended

until

the

interrupt

service

routine

completes.

A

pending

request

to

poll

interrupts

was

not

fulfilled

on

the

current

IPL

because

the

partition

uses

shared

processors.

In

this

case,

the

value

of

the

pending

interupt

polling

control

is

hex

01.

18

12

Reserved

(binary

0)

Char(6)

24

18

—-

End

—-

Pending

interrupt

polling

control

reflects

the

value

of

interrupt

polling

control

requested.

If

the

value

of

pending

interrupt

polling

control

is

not

the

same

as

the

value

of

current

interrupt

polling

control,

the

pending

interrupt

polling

control

value

will

take

effect

on

the

next

IPL.

Current

interrupt

polling

control

reflects

the

value

of

interrupt

polling

control

that

is

currently

in

effect.

910

iSeries:

Machine

Interface

Instructions

APIs

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

Machine

Interface

Instructions

911

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Selected

Locks

(MATSELLK)

Op

Code

(Hex)

Operand

1

Operand

2

033E

Receiver

Object,

object

location

or

space

location

Operand

1:

Space

pointer.

Operand

2:

System

pointer,

object

pointer

or

space

pointer

data

object.

Bound

program

access

Built-in

number

for

MATSELLK

is

53.

MATSELLK

(

receiver

:

address

object_or_object_location_space_location

:

address

of

system

pointer

OR

address

of

object

pointer

OR

address

of

space

pointer(16)

)

Description:

The

locks

for

the

object,

object

location,

or

space

location

referenced

by

operand

2

are

materialized.

The

locks

materialized

are

the

thread

scoped

locks

held

by

the

current

thread

and

the

process

scoped

locks

held

by

the

process

containing

the

current

thread.

The

format

of

the

materialization

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

912

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Cumulative

lock

status

for

all

locks

on

operand

2

Char(1)

8

8

Lock

state

Char(1)

8

8

LSRD

Bit

0

8

8

LSRO

Bit

1

8

8

LSUP

Bit

2

8

8

LEAR

Bit

3

8

8

LENR

Bit

4

8

8

Reserved

(binary

0)

Bits

5-7

9

9

Reserved

Char(3)

12

C

Number

of

lock

entries

Bin(2)

14

E

Return

Format

Char(1)

14

E

Reserved

(Binary

0)

Bits

0-3

14

E

Use

expanded

results

Bit

4

14

E

Do

not

return

locks

held

by

a

transaction

Bit

5

14

E

Do

not

return

locks

held

by

a

process

Bit

6

14

E

Do

not

return

locks

held

or

waited

on

by

a

thread

Bit

7

15

F

Reserved

Char(1)

16

10

Lock

status

[*]

Char(32)

(repeated

number

of

lock

entries

times)

(If

the

use

expanded

results

flag

is

binary

1

in

the

return

format

field

then

the

size

of

each

lock

status

entry

is

32

bytes,

otherwise

the

lock

status

entry

is

2

bytes.

16

10

Lock

state

Char(1)

Hex

80

=

LSRD

lock

request

Hex

40

=

LSRO

lock

request

Hex

20

=

LSUP

lock

request

Hex

10

=

LEAR

lock

request

Hex

08

=

LENR

lock

request

All

other

values

are

reserved

17

11

Status

of

lock

Char(1)

17

11

Lock

held

by

a

transaction

control

structure

Bit

0

17

11

Lock

scope

Bit

1

0

=

Lock

is

held

by

the

process

containing

the

current

thread

1

=

Lock

is

held

by

the

current

thread

17

11

Reserved

(binary

0)

Bits

2-5

17

11

Implicit

lock

Bit

6

0

=

Not

implicit

lock

1

=

Is

implicit

lock

17

11

Reserved

(binary

1)

Bit

7

Machine

Interface

Instructions

913

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

(The

following

fields

are

only

returned

if

the

return

format

field

specifies

use

expanded

results.)

18

12

Reserved

(binary

0)

Char(14)

32

20

Suspend

pointer

Suspend

Pointer

*

*

—-

End

—-

The

first

4

bytes

of

the

materialization

identifies

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

materialization

identifies

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

exceptions

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization,

other

than

the

materialization

length

invalid

(hex

3803)

exception

described

previously.

A

space

pointer

machine

object

cannot

be

specified

for

operand

2.

The

maximum

number

of

locks

that

can

be

materialized

with

this

instruction

is

32,767.

No

exception

will

be

signaled

if

more

than

32,767

exist

and

only

the

first

32,767

locks

found

will

be

materialized.

If

a

space

pointer

to

a

teraspace

storage

location

is

specified

for

operand

2,

and

if

the

teraspace

storage

location

is

mapped

to

single

level

storage,

then

the

locks

on

that

single

level

storage

will

be

materialized,

otherwise

locks

on

the

teraspace

storage

location

will

be

materialized.

Warning:

Temporary

Level

3

Header

Authorization

v

v

Execute

–

–

Context

referenced

by

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

914

iSeries:

Machine

Interface

Instructions

APIs

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

28

Process/Thread

State

2802

Process

Control

Space

Not

Associated

with

a

Process

Machine

Interface

Instructions

915

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Space

Attributes

(MATS)

Op

Code

(Hex)

Operand

1

Operand

2

0036

Receiver

Space

object

Operand

1:

Space

pointer.

Operand

2:

System

pointer.

Bound

program

access

Built-in

number

for

MATS

is

27.

MATS

(

receiver

:

address

space_object

:

address

of

system

pointer

)

Description:

The

current

attributes

of

the

space

object

specified

by

operand

2

are

materialized

into

the

receiver

specified

by

operand

1.

The

template

identified

by

operand

1

must

be

16-byte

aligned

in

the

space.

The

format

of

the

materialization

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Object

identification

Char(32)

8

8

Object

type

Char(1)

9

9

Object

subtype

Char(1)

10

A

Object

name

Char(30)

916

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

40

28

Object

creation

options

Char(4)

40

28

Existence

attribute

Bit

0

0

=

Temporary

1

=

Permanent

40

28

Space

attribute

Bit

1

0

=

Fixed-length

1

=

Variable-length

40

28

Context

Bit

2

0

=

Addressability

not

in

context

1

=

Addressability

in

context

40

28

Access

group

Bit

3

0

=

Not

member

of

access

group

1

=

Member

of

access

group

40

28

Reserved

(binary

0)

Bits

4-12

40

28

Initialize

space

Bit

13

0

=

Initialize

1

=

Do

not

initialize

40

28

Automatically

extend

space

Bit

14

0

=

No

1

=

Yes

40

28

Hardware

storage

protection

level

Bits

15-16

00

=

Reference

and

modify

allowed

for

user

state

programs

01

=

Only

reference

allowed

for

user

state

programs

10

=

Invalid

(undefined)

11

=

No

reference

or

modify

allowed

for

user

state

programs

40

28

Reserved

(binary

0)

Bits

17-20

40

28

Always

enforce

hardware

storage

protection

of

this

space

Bit

21

0

=

Enforce

hardware

storage

protection

of

this

space

only

when

hardware

storage

protection

is

enforced

for

all

storage.

1

=

Enforce

hardware

storage

protection

of

this

space

at

all

times.

Machine

Interface

Instructions

917

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

40

28

Reserved

(binary

0)

Bits

22-31

44

2C

Reserved

(binary

0)

Char(2)

46

2E

ASP

number

Char(2)

48

30

Size

of

space

Bin(4)

52

34

Initial

value

of

space

Char(1)

53

35

Performance

class

Char(4)

53

35

Space

alignment

Bit

0

0

=

The

space

associated

with

the

object

is

allocated

to

allow

proper

alignment

of

pointers

at

16-byte

alignments

within

the

space.

1

=

The

space

associated

with

the

object

is

allocated

to

allow

proper

alignment

of

pointers

at

16-byte

alignments

within

the

space

as

well

as

to

allow

proper

alignment

of

input/output

buffers

at

512-byte

alignments

within

the

space.
Ignore

the

value

of

this

field

when

the

machine

chooses

space

alignment

field

has

a

value

of

1.

53

35

Reserved

(binary

0)

Bit

1

53

35

Spread

the

space

object

Bit

2

0

=

The

space

object

may

be

on

one

storage

device.

1

=

The

space

object

may

be

spread

across

multiple

storage

devices.

53

35

Machine

chooses

space

alignment

Bit

3

0

=

The

space

alignment

indicated

by

the

space

alignment

field

is

in

effect.

1

=

The

machine

chose

the

space

alignment

most

beneficial

to

performance,

which

may

have

reduced

maximum

space

capacity.

The

alignment

chosen

is

a

multiple

of

512.

Check

the

maximum

size

of

space

field

value.

Ignore

the

value

of

the

space

alignment

field.

53

35

Reserved

(binary

0)

Bit

4

53

35

Main

storage

pool

selection

Bit

5

0

=

Process

default

main

storage

pool

is

used

for

object.

1

=

Machine

default

main

storage

pool

is

used

for

object.

53

35

Transient

storage

pool

selection

Bit

6

918

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Default

main

storage

pool

(process

default

or

machine

default

as

specified

for

main

storage

pool

selection)

is

used

for

object.

1

=

Transient

storage

pool

is

used

for

object.

53

35

Obsolete

Bit

7

This

field

is

no

longer

used

and

will

be

ignored.

53

35

Unit

number

Bits

8-15

+

53

35

Reserved

(binary

0)

Bits

16-23

56

38

Expanded

transfer

size

advisory

Char(1)

57

39

Reserved

(binary

0)

Char(7)

64

40

Context

System

pointer

80

50

Access

group

System

pointer

96

60

Reserved

(binary

0)

Char(16)

112

70

Maximum

size

of

space

Bin(4)

116

74

—-

End

—-

The

first

4

bytes

that

are

materialized

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

a

materialization

length

invalid

(hex

3803)

exception.

The

second

4

bytes

that

are

materialized

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

exceptions

(other

than

the

materialization

length

exception

described

previously)

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization.

See

the

Create

Space

(CRTS)

instruction

for

descriptions

of

most

of

these

fields.

The

maximum

size

of

space

field

returns

the

maximum

number

of

bytes

which

may

be

contained

in

the

space.

For

fixed-length

spaces,

the

current

size

is

the

maximum

size.

This

value

is

the

actual

maximum

size,

not

the

size

specified

for

largest

size

needed

for

space

on

CRTS.

This

instruction

cannot

be

used

to

materialize

the

public

authority

specified

creation

option,

the

initial

owner

specified

creation

option,

the

process

temporary

space

accounting

creation

option,

or

the

template

extension

which

can

be

specified

on

space

creation.

The

Materialize

Authority

(MATAU)

instruction

can

be

used

to

materialize

the

current

public

authority

for

the

space.

The

Materialize

System

Object

(MATSOBJ)

instruction

can

be

used

to

materialize

the

current

owner

of

the

space.

Machine

Interface

Instructions

919

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Operational

or

space

authority

–

–

Operand

2
v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Operand

2

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

920

iSeries:

Machine

Interface

Instructions

APIs

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

System

Object

(MATSOBJ)

Op

Code

(Hex)

Operand

1

Operand

2

053E

Receiver

Object

Operand

1:

Space

pointer.

Machine

Interface

Instructions

921

Operand

2:

System

pointer.

Bound

program

access

Built-in

number

for

MATSOBJ

is

91.

MATSOBJ

(

receiver

:

address

object

:

address

of

system

pointer

)

Description:

This

instruction

materializes

the

identity

and

size

of

a

system

object

addressed

by

the

system

pointer

identified

by

operand

2.

It

can

be

used

whenever

addressability

to

a

system

object

is

contained

in

a

system

pointer.

The

format

of

the

materialization

is:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

by

the

user

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Object

state

attributes

Char(2)

8

8

Suspended

state

Bit

0

0

=

Not

suspended

1

=

Suspended

8

8

Damage

state

Bit

1

0

=

Not

damaged

1

=

Damaged

8

8

Partial

damage

state

Bit

2

0

=

No

partial

damage

1

=

Partial

damage

8

8

Existence

of

addressing

context

Bit

3

0

=

Not

addressed

by

a

temporary

context

1

=

Addressed

by

a

temporary

context

8

8

Dump

for

previous

release

permitted

Bit

4

0

=

Dump

for

previous

release

not

permitted

1

=

Dump

for

previous

release

permitted

8

8

Object

compressed

Bit

5

0

=

Object

not

compressed

1

=

Object

compressed

(partially

or

completely)

8

8

ASP

overflow

Bit

6

0

=

No

part

of

the

object

has

overflowed

its

ASP

1

=

Some

part

of

the

object

has

overflowed

its

ASP

8

8

Object

requires

format

change

for

this

machine

implementation

Bit

7

922

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

No

conversion

is

required

1

=

Object

must

be

converted

before

it

can

be

used

on

this

machine

implementation

8

8

Reserved

(binary

0)

Bits

8-15

10

A

Context

identification

Char(32)

10

A

Context

type

Char(1)

11

B

Control

subtype

Char(1)

12

C

Context

name

Char(30)

42

2A

Object

identification

Char(32)

42

2A

Object

type

Char(1)

43

2B

Object

subtype

Char(1)

44

2C

Object

name

Char(30)

74

4A

Timestamp

of

creation

Char(8)

82

52

Size

of

associated

space

Bin(4)

86

56

Object

size

Bin(4)

90

5A

Owning

user

profile

identification

Char(32)

90

5A

User

profile

type

Char(1)

91

5B

User

profile

subtype

Char(1)

92

5C

User

profile

name

Char(30)

122

7A

Timestamp

of

last

modification

Char(8)

130

82

Recovery

options

Char(4)

130

82

Machine

internal

use

Char(2)

132

84

ASP

number

Char(2)

134

86

Performance

class

Char(4)

138

8A

Initial

value

of

space

Char(1)

139

8B

Object

audit

attribute

Char(1)

Hex

00

=

No

audit

for

this

object

Hex

02

=

Audit

change

for

this

object

Hex

03

=

Audit

read

and

change

for

this

object

Hex

04

=

Audit

read

and

change

for

this

object

if

the

user

profile

is

being

audited

140

8C

Sign

state

Char(1)

Hex

00

=

Object

not

digitally

signed

Hex

01

=

Object

digitally

signed

141

8D

Signed

by

a

system-trusted

source

Char(1)

Hex

00

=

Object

not

digitally

signed

by

a

system-trusted

source

Hex

01

=

Object

digitally

signed

by

a

system-trusted

source

142

8E

Object

authority

list

(AL)

status

Bin(2)

Machine

Interface

Instructions

923

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Object

not

in

an

authority

list

1

=

Object

in

an

authority

list

144

90

Authority

list

identification

Char(48)

144

90

Authority

list

(AL)

status

Bin(2)

0

=

Valid

authority

list

1

=

Damaged

authority

list

2

=

Destroyed

authority

list

(no

name

below)

146

92

Reserved

Char(14)

160

A0

Authority

list

type

Char(1)

161

A1

Authority

list

subtype

Char(1)

162

A2

Authority

list

name

Char(30)

192

C0

Dump

for

previous

release

reason

code

Char(8)

200

C8

Maximum

possible

associated

space

size

Bin(4)

204

CC

Timestamp

of

last

use

of

object

Char(8)

212

D4

Count

of

number

of

days

object

was

used

UBin(2)

214

D6

Program

or

module

attributes

Char(2)

214

D6

State

provided

Bit

0

0

=

No

program/module

state

value

1

=

Program/module

state

value

present

214

D6

Program

executable

portion

compression

status

Bit

1

0

=

Program’s

executable

portion

is

not

compressed

1

=

Program’s

executable

portion

is

compressed

214

D6

Program

extended

observability

storage

area

existence

Bit

2

0

=

Program’s

extended

observability

storage

area

does

not

exist

or

can

no

longer

be

materialized

1

=

Program’s

extended

observability

storage

area

does

exist

and

can

be

materialized

214

D6

Program

extended

observability

storage

area

compression

status

Bit

3

If

the

compression

status

of

the

extended

observability

storage

area

of

the

program

is

uncompressed,

it

is

not

a

guarantee

that

the

extended

observability

storage

area

exists.

The

extended

observability

storage

area

existence

should

be

checked

first

to

ensure

that

it

currently

exists

in

the

program.

0

=

Program’s

extended

observability

storage

area

is

not

compressed

1

=

Program’s

extended

observability

storage

area

is

compressed

214

D6

Reserved

(binary

0)

Bits

4-7

215

D7

Type

of

program

Char(1)

924

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

Hex

00

=

Non-bound

program

Hex

01

=

Bound

program

Hex

02

=

Bound

service

program

Hex

04

=

Java

program

216

D8

Domain

of

object

Char(2)

218

DA

State

for

program

or

module

Char(2)

220

DC

MI-supplied

information

Char(8)

228

E4

Earliest

compatible

release

Char(2)

228

E4

Reserved

Bits

0-3

228

E4

Version

Bits

4-7

228

E4

Release

Bits

8-11

228

E4

Modification

level

Bits

12-15

230

E6

Object

size

in

basic

storage

units

UBin(4)

234

EA

Primary

group

identification

Char(32)

234

EA

Profile

type

Char(1)

235

EB

Profile

subtype

Char(1)

236

EC

Profile

name

Char(30)

266

10A

Hardware

storage

protection

Char(1)

266

10A

Hardware

storage

protection

of

object’s

encapsulated

part

Bits

0-1

266

10A

Hardware

storage

protection

of

associated

space

Bits

2-3

266

10A

Creation

hardware

storage

protection

Bits

4-5

266

10A

Hardware

storage

protection

always

enforced

for

object

Bit

6

0

=

Hardware

storage

protection

of

this

object’s

encapsulated

part

is

enforced

only

when

hardware

storage

protection

is

enforced

for

all

storage.

1

=

Hardware

storage

protection

of

this

object’s

encapsulated

part

is

enforced

at

all

times.

266

10A

Hardware

storage

protection

always

enforced

for

associated

space

Bit

7

0

=

Hardware

storage

protection

is

enforced

for

this

object’s

primary

associated

space

only

when

hardware

storage

protection

is

enforced

for

all

storage.

1

=

Hardware

storage

protection

is

enforced

for

this

object’s

primary

associated

space

at

all

times.

267

10B

Reserved

Char(1)

268

10C

File

identifier

UBin(4)

272

110

Generation

identifier

UBin(4)

276

114

Reserved

Char(12)

Machine

Interface

Instructions

925

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

288

120

Parent

of

attached

object

System

pointer

304

130

Number

of

signers

UBin(4)

308

134

Reserved

Char(36)

344

158

—-

End

—-

Additional

Description:

This

instruction

will

tolerate

a

damaged

object

referenced

by

operand

2

when

operand

2

is

a

resolved

pointer.

The

instruction

will

not

tolerate

a

damaged

context(s)

or

damaged

programs

when

resolving

pointers.

Also,

as

a

result

of

damage

or

abnormal

machine

termination,

this

instruction

can

indicate

that

an

object

is

addressed

by

a

context,

when

in

fact

the

context

will

not

show

this

as

an

addressed

object.

The

existence

of

addressing

context

field

indicates

whether

the

previously

(or

currently)

addressing

context

was

(is)

temporary.

This

field

is

0

if

the

object

was

(is)

not

addressed

by

a

temporary

context.

The

dump

for

previous

release

permitted

field

will

indicate

if

the

object

is

eligible

for

a

dump

for

previous

request.

1

When

this

field

indicates

that

the

object

is

not

eligible,

the

dump

for

previous

release

reason

code

can

be

used

to

determine

why

the

object

is

not

eligible.

The

object

compressed

field

indicates

whether

the

encapsulated

part

of

the

object

is

either

partially

or

completely

compressed.

The

encapsulated

part(s)

of

some

object

types

can

be

compressed

by

object-specific

create

or

modify

instructions.

For

program

objects

other

than

Java

program

objects,

additional

compression

information

is

provided

by

the

program

executable

portion

compression

status

and

the

program

extended

observability

storage

area

compression

status

fields.

This

program

compression

information

is

also

available

from

the

Materialize

Program

(MATPG)

or

the

Materialize

Bound

Program

(MATBPGM)

instructions.

However,

the

use

of

those

instructions

may

cause

the

program

object

to

be

temporarily

decompressed

to

obtain

this

compression

information.

By

using

the

program

compression

information

provided

in

this

instruction

instead

of

using

Materialize

Program

(MATPG)

or

the

Materialize

Bound

Program

(MATBPGM)

instructions,

this

temporary

decompression

of

the

program

object

can

be

avoided.

For

Java

program

objects,

additional

compression

information

is

not

available.

For

objects

other

than

programs,

use

the

object-specific

materialization

instruction

to

determine

exactly

which

part(s)

of

the

object

are

compressed.

The

ASP

overflow

field

indicates

whether

any

part

of

the

object

is

stored

in

an

ASP

other

than

the

ASP

specified

at

the

time

the

object

was

created.

If

any

object

created

in

one

ASP

has

parts

that

are

in

a

different

ASP

(due

to

lack

of

sufficient

available

storage

in

the

original

ASP),

then

none

of

the

objects

in

the

first

ASP

are

protected

in

the

event

of

a

failure

of

any

other

ASP

in

the

system.

By

deleting

objects

that

have

overflowed,

however,

it

may

be

possible

to

eliminate

the

ASP

overflow

condition

and

restore

the

protection

that

ASPs

provide.

Use

the

object-specific

materialization

instruction

for

this

type

of

object

to

determine

what

ASP

was

specified

at

the

time

the

object

was

created.

The

object

requires

format

change

for

this

machine

implementation

field

is

set

for

program

or

module

objects.

It

indicates

whether

the

program

or

module

is

in

the

correct

format

for

the

current

machine

implementation

or

if

they

need

to

be

converted

(retranslated)

before

use.

For

all

other

object

types,

the

field

will

have

a

value

of

0.

926

iSeries:

Machine

Interface

Instructions

APIs

If

the

object

addressed

by

the

system

pointer

specifies

that

it

is

not

addressed

by

a

context

or

if

the

context

is

destroyed,

the

context

type

field

is

hex

00.

If

the

object

is

addressed

by

the

machine

context,

a

context

type

field

of

hex

81

is

returned.

No

verification

is

made

that

the

specified

context

actually

addresses

the

object.

Valid

object

type

fields

and

their

meanings

are:

Value

(Hex)

Object

Type

01

Access

group

02

Program

03

Module

04

Context

06

Byte

string

space

07

Journal

space

08

User

profile

09

Journal

port

0A

Queue

0B

Data

space

0C

Data

space

index

0D

Cursor

0E

Index

0F

Commit

block

10

Logical

unit

description

11

Network

description

12

Controller

description

13

Dump

space

14

Class

of

service

description

15

Mode

description

16

Network

interface

description

17

Connection

list

18

Queue

space

19

Space

1A

Process

control

space

1B

Authority

list

1C

Dictionary

1D

Auxiliary

server

1E

Byte

stream

file

20

XOM

object

21

Composite

object

group

23

Transaction

control

structure

The

timestamp

field

is

materialized

as

an

8-byte

unsigned

binary

number.

See

“Standard

Time

Format”

on

page

1272

for

additional

information

on

the

format

of

timestamps.

The

timestamp

of

creation

field

is

implicitly

set

when

an

object

is

created.

If

the

object

has

an

associated

space,

the

maximum

possible

associated

space

size

field

will

be

returned

with

a

value

which

represents

the

maximum

size

to

which

the

associated

space

can

be

extended.

This

value

depends

on

the

internal

packaging

of

the

object

and

its

associated

space

as

well

as

(possibly)

the

maximum

space

size

field

as

optionally

specified

during

the

create

of

the

object.

The

object

size

field

will

contain

the

size

of

the

object

in

bytes

up

to

a

value

of

2G-1

(2,147,483,647).

If

the

object’s

size

is

greater

than

this,

a

value

of

zero

will

be

returned

in

the

object

size

field.

In

this

case,

the

object

size

in

basic

storage

units

field

should

be

used

to

get

the

object’s

actual

size.

This

field

will

always

contain

the

object’s

true

size

in

number

of

basic

storage

units.

Machine

Interface

Instructions

927

If

the

object

is

a

temporary

object

and

is,

therefore,

owned

by

no

user

profile,

the

user

profile

type

field

is

assigned

a

value

of

hex

00.

The

timestamp

of

last

modification

field

is

implicitly

set,

except

for

the

objects

restricted

below,

by

any

instruction

or

IMPL

function

that

modifies

or

attempts

to

modify

an

object

attribute

value

or

an

object

state.

The

timestamp

of

last

modification

field

is

only

ensured

as

part

of

the

normal

ensuring

of

objects.

Implicit

setting

of

the

timestamp

of

last

modification

field

is

restricted

for

the

following

objects

and

will

only

occur

for

generic,

nonobject

specific,

operations

on

them.

v

v

Logical

unit

description

v

Controller

description

v

Network

description

v

Access

group

v

Queue

No

modification

timestamp

will

be

provided

for

the

following

objects

and

a

value

of

zero

will

be

returned

in

the

materialization

template

for

the

modification

timestamp.

v

v

Process

control

space

ASP

number

uniquely

identifies

the

auxiliary

storage

pool.

The

ASP

number

may

have

a

value

from

0

through

255.

A

value

of

0

indicates

the

system

ASP.

A

value

of

2

through

255

indicates

a

user

ASP.

A

value

of

2

through

32

indicates

a

basic

ASP.

A

value

of

33

through

255

indicates

an

independent

ASP.

Sign

state

indicates

whether

or

not

the

object

is

digitally

signed.

Signed

by

a

system-trusted

source

indicates

whether

or

not

the

object

is

digitally

signed

by

a

system-trusted

source.

If

signed

by

a

system-trusted

source

is

hex

01,

sign

state

will

also

be

hex

01.

The

object

authority

list

status

field

indicates

whether

or

not

the

object

is

contained

in

an

authority

list.

If

it

is,

the

authority

list

identification

information

provides

the

name

of

the

authority

list,

except

when

the

authority

list

is

indicated

as

destroyed,

in

which

case,

the

name

information

is

meaningless.

The

dump

for

previous

release

reason

code

can

be

used

to

determine

why

the

object

is

not

eligible

according

to

the

dump

for

previous

release

permitted

field.

Currently

reason

codes

are

architected

for

programs

and

for

modules.

The

reason

codes

are

mapped

as

follows

for

program

objects.

Note

that

more

than

one

reason

may

be

returned.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Program

dump

for

previous

release

reason

codes

Char(8)

0

0

Language

version,

release,

and

modification

level

reason

Bit

0

0

=

Language

version,

release,

and

modification

level

is

not

a

reason

1

=

Language

version,

release,

and

modification

level

is

one

reason

0

0

Level

of

machine

interface

used

reason

Bit

1

928

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

The

level

of

machine

interface

used

is

not

a

reason

1

=

The

level

of

machine

interface

used

not

available

in

the

previous

release

0

0

Program

observability

reason

Bit

2

0

=

Lack

of

program

observability

is

not

a

reason

1

=

Program

is

not

observable

and

must

be

to

be

moved

to

previous

release

0

0

Program

compressed

reason

Bit

3

0

=

Program

compression

is

not

a

reason

1

=

The

program,

of

type

non-bound

program,

is

compressed

and

the

previous

release

does

not

support

compression

of

the

non-bound

program

type

of

program

Note:

This

reason

code

does

not

apply

to

bound

programs,

bound

service

programs,

or

Java

programs.

0

0

Bound

program

or

bound

service

program

reason

Bit

4

0

=

The

program

type

is

not

a

reason

1

=

Bound

programs

and

bound

service

programs

are

not

supported

on

the

previous

release

0

0

Bound

program

or

bound

service

program

retranslation

reason

Bit

5

0

=

Retranslation

is

not

a

reason

1

=

Retranslation

of

bound

programs

and

bound

service

programs

are

not

supported

on

the

previous

release

0

0

Java

program

reason

Bit

6

0

=

The

program

type

is

not

a

reason

1

=

Java

programs

are

not

supported

on

the

previous

release

0

0

Target

version,

release,

and

modification

level

reason

Bit

7

0

=

Target

version,

release,

and

modification

level

is

not

a

reason

1

=

Target

version,

release,

and

modification

level

is

a

reason

Note:

This

reason

code

applies

only

to

programs

whose

target

version,

release,

and

modification

level

is

hex

0510

or

later.

0

0

Reserved

Bits

8-63

8

8

—-

End

—-

Machine

Interface

Instructions

929

The

reason

codes

are

mapped

as

follows

for

module

objects.

Note

that

more

than

one

reason

may

be

returned.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Module

dump

for

previous

release

reason

codes

Char(8)

0

0

Language

version,

release,

and

modification

level

reason

Bit

0

0

=

Language

version,

release,

and

modification

level

is

not

a

reason

1

=

Language

version,

release,

and

modification

level

is

one

reason

0

0

Level

of

machine

interface

used

reason

Bit

1

0

=

The

level

of

machine

interface

used

is

not

a

reason

1

=

The

level

of

machine

interface

used

not

available

in

the

previous

release

0

0

Module

observability

reason

Bit

2

0

=

Lack

of

module

observability

is

not

a

reason

1

=

Module

is

not

observable

and

must

be

moved

to

previous

release

0

0

Module

reason

Bit

3

0

=

The

object

type

of

module

is

not

a

reason

1

=

Modules

are

not

supported

on

the

previous

release

0

0

Module

retranslation

reason

Bit

4

0

=

Retranslation

is

not

a

reason

1

=

Retranslation

of

modules

is

not

supported

on

the

previous

release

0

0

Target

version,

release,

and

modification

level

reason

Bit

5

0

=

Target

version,

release,

and

modification

level

is

not

a

reason

1

=

Target

version,

release,

and

modification

level

is

a

reason

Note:

This

reason

code

applies

only

to

modules

whose

target

version,

release,

and

modification

level

is

hex

0510

or

later.

0

0

Reserved

Bits

6-63

8

8

—-

End

—-

The

timestamp

of

last

use

of

object

field

and

the

count

of

number

of

days

object

was

used

field

are

set

by

the

Call

External

(CALLX)

or

Transfer

Control

(XCTL)

instructions

on

the

objects

first

use

on

that

day.

The

timestamp

value

is

only

good

for

the

date.

The

time

value

obtained

from

this

timestamp

is

not

accurate.

The

type

of

program

field

indicates

the

program

model

of

a

program

object,

which

is

determined

by

how

the

program

was

created.

It

is

only

present

when

operand

2

points

to

a

program

object.

This

field

is

930

iSeries:

Machine

Interface

Instructions

APIs

necessary

since

the

object

type

and

object

subtype

do

not

provide

enough

information

to

identify

the

program

model

of

a

program

object.

Knowing

the

program

type

is

useful

in

selecting

appropriate

program

specific

instructions.

The

domain

of

object

field

contains

the

value

of

the

state

under

which

a

program

or

procedure

must

be

running

to

access

this

object.

The

state

for

program

or

module

field

contains

the

state

under

which

the

program

runs.

It

is

only

present

when

the

state

provided

flag

is

on.

The

MI-supplied

information

is

simply

an

8

byte

character

field

which

can

be

set

into

an

object

and

materialized

with

the

Materialize

System

Object

(MATSOBJ)

instruction.

The

machine

has

no

knowledge

or

dependencies

on

the

content

of

this

field.

The

earliest

compatible

release

field

contains

the

earliest

release

in

which

the

object

can

be

used.

The

primary

group

identification

field

contains

the

type,

subtype,

and

name

of

the

primary

group

profile

for

the

object.

If

the

primary

group

for

the

object

is

not

set,

the

type

field

will

be

set

to

a

value

of

hex

00.

The

hardware

storage

protection

field

contains

the

hardware

storage

protection

of

the

object’s

encapsulated

part,

of

it’s

associated

space

and

the

protection

level

requested

when

the

object

was

created.

Each

2-bit

subfield

contains

a

value

whose

meaning

is

defined

as

follows:

00

=

Reference

and

modify

allowed

for

user

state

programs

01

=

Only

reference

allowed

for

user

state

programs

10

=

Only

reference

allowed

for

all

programs

11

=

No

reference

nor

modify

allowed

for

user

state

programs

The

last

two

subfields

indicate

when

hardware

storage

protection

is

enforced.

The

file

identifier,

in

combination

with

the

generation

ID,

uniquely

identifies

the

object

within

a

file

system.

The

file

ID

may

be

reused

when

the

object

is

deleted.

The

generation

identifier

uniquely

identifies

the

generation

of

the

usage

of

a

file

identifier.

The

generation

ID

for

a

given

file

ID

is

not

reused,

If

the

object

has

not

been

assigned

a

file

ID

and

generation

ID,

binary

0s

will

be

returned.

If

the

object

specified

by

operand

2

is

attached

to

a

byte

stream

file

or

a

Composite

Object

Group

(parent

object),

the

parent

of

attached

object

field

returns

a

system

pointer

to

the

byte

stream

file

or

Composite

Object

Group.

Otherwise,

a

null

pointer

value

is

returned.

Note:

Referencing

this

pointer

requires

that

the

receiver

(operand

1)

be

16-byte

aligned.

The

machine

enforces

only

4-byte

alignment

of

the

receiver.

Number

of

signers

indicates

the

number

of

digital

certificates

currently

having

signed

the

object.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Contexts

referenced

for

address

resolution

Machine

Interface

Instructions

931

Lock

Enforcement

v

v

Materialize

–

–

Operand

2

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

932

iSeries:

Machine

Interface

Instructions

APIs

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Footnotes:

1

’Previous

release’

refers

to

the

previous

mandatory

release.

This

is

release

N-1,

mod

level

zero

when

release

N

is

the

current

release.

(For

version

2,

release

1.1,

the

previous

mandatory

release

is

version

1,

release

3.0.).

Materialize

Machine

Data

(MATMDATA)

Op

Code

(Hex)

Operand

1

Operand

2

0522

Receiver

Materialization

option

Operand

1:

Character

variable

scalar.

Machine

Interface

Instructions

933

Operand

2:

Character(2)

constant,

or

unsigned

binary(2)

constant

or

immediate.

Bound

program

access

Built-in

number

for

MATMDATA

is

160.

MATMDATA

(

receiver

:

address

materialization_option

:

literal(2)

OR

literal(4)

)

The

materialization_option

may

be

declared

as

a

literal

of

any

scalar

data

type.

--

OR

--

Built-in

number

for

MATTOD

is

94.

MATTOD

(

time_of_day

:

address

)

The

time-of-day

clock

is

materialized.

This

function

is

identical

to

MATMDATA

when

a

materialization_option

value

of

Hex

0000

is

specified.

Description:

The

machine

data

requested

by

materialization

option

is

returned

at

the

location

specified

by

receiver.

For

the

purposes

of

this

instruction,

machine

data

refers

to

any

data

that

is

encapsulated

by

the

machine.

The

data

can

be

either

thread-specific

or

apply

system-wide.

Operand

2

is

a

2-byte

value.

The

value

of

operand

2

determines

which

machine

data

are

materialized.

Operand

2

is

restricted

to

a

constant

character

or

unsigned

binary

scalar

or

an

immediate

value.

A

summary

of

the

allowable

values

for

Operand

2

follows.

Table

1.

Materialization

option

Option

value

Description

Page

Hex

0000

Materialize

time-of-day

clock

as

local

time

″Hex

0000

=

Materialize

time-of-day

clock

as

local

time″

(page

)

Hex

0001

Materialize

system

parameter

integrity

validation

flag

″Hex

0001

=

Materialize

system

parameter

integrity

validation

flag″

(page

)

Hex

0002

Materialize

thread

execution

mode

flag

″Hex

0002

=

Materialize

thread

execution

mode

flag″

(page

)

Hex

0003

Materialize

maximum

size

of

a

space

object

or

associated

space

when

space

alignment

is

chosen

by

the

machine

″Hex

0003

=

Materialize

maximum

size

of

a

space

object

or

associated

space

when

space

alignment

is

chosen

by

the

machine″

(page

)

Hex

0004

Materialize

time-of-day

clock

as

Coordinated

Universal

Time

(UTC)

″Hex

0004

=

Materialize

time-of-day

clock

as

Coordinated

Universal

Time

(UTC)″

(page

)

Hex

0005

though

FFFF

Reserved

Operand

1

specifies

a

receiver

into

which

the

materialized

data

is

placed.

It

must

specify

a

character

scalar

with

a

minimum

length

which

is

dependent

upon

the

materialization

option

specified

for

operand

2.

The

receiver

may

be

substringed.

The

start

position

of

the

substring

may

be

a

variable.

However,

the

length

of

the

substring

must

be

an

immediate

or

constant.

The

length

specified

for

operand

1

must

be

at

least

the

required

minimum.

Only

the

bytes

up

to

the

required

minimum

length

are

used.

Any

excess

bytes

are

ignored.

934

iSeries:

Machine

Interface

Instructions

APIs

The

data

placed

into

the

receiver

differs

depending

upon

the

materialization

option

specified.

The

following

descriptions

detail

the

formats

of

the

optional

materializations.

Hex

0000

=

Materialize

time-of-day

clock

as

local

time:

(minimum

receiver

length

is

8)

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Time

of

day

Char(8)

8

8

—-

End

—-

Time

of

day

is

the

time

value

of

the

time-of-day

clock

which

is

returned

as

the

local

time

for

the

system.

See

“Standard

Time

Format”

on

page

1272

for

a

detailed

description

of

the

format

for

a

time

value.

Unpredictable

results

occur

if

the

time-of-day

clock

is

materialized

before

it

is

set.

The

time-of-day

clock

can

be

materialized

as

the

Coordinated

Universal

Time

(UTC)

for

the

system

using

″Hex

0004

=

Materialize

time-of-day

clock

as

Coordinated

Universal

Time

(UTC)″

(page

).

See

“Time-of-Day

(TOD)

Clock”

on

page

1273

for

detailed

descriptions

of

the

time-of-day

clock,

local

time,

and

UTC.

Performance

note:

The

time-of-day

clock

may

be

materialized,

with

the

time

of

day

returned

as

the

local

time

for

the

system,

with

this

instruction

and

also

with

the

Materialize

Machine

Attributes

(MATMATR)

instruction.

Better

performance

may

be

realized

with

the

use

of

this

instruction

rather

than

with

the

MATMATR

instruction.

Hex

0001

=

Materialize

system

parameter

integrity

validation

flag:

(minimum

receiver

length

is

1)

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

System

parameter

integrity

validation

flag

Char(1)

1

1

—-

End

—-

This

option

returns

the

value

of

the

machine

attribute

which

specifies

whether

additional

validation

of

parameters

passed

to

programs

which

run

when

the

thread

is

in

system

state

is

to

be

performed,

such

as

for

U.

S.

government’s

Department

of

Defense

security

ratings.

A

value

of

hex

01

indicates

this

additional

checking

is

being

performed.

A

value

of

hex

00

is

returned

otherwise.

Hex

0002

=

Materialize

thread

execution

mode

flag:

(minimum

receiver

length

is

1)

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Thread

execution

mode

flag

Char(1)

1

1

—-

End

—-

This

option

returns

the

value

of

the

thread

execution

mode

for

the

thread

in

which

the

instruction

is

run.

A

returned

value

of

hex

01

indicates

that

thread

is

currently

executing

in

kernel

mode.

A

value

of

hex

00

is

returned

otherwise.

Machine

Interface

Instructions

935

Hex

0003

=

Materialize

maximum

size

of

a

space

object

or

associated

space

when

space

alignment

is

chosen

by

the

machine:

(minimum

receiver

length

is

4)

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Maximum

size

of

machine-aligned

space

object

or

associated

space

UBin(4)

4

4

—-

End

—-

This

option

returns

the

maximum

size

in

bytes

of

a

space

object

or

associated

space

created

with

the

space

alignment

chosen

by

the

machine.

Some

types

of

objects

may

not

support

an

associated

space

of

the

maximum

size.

This

size

may

vary

with

each

machine

implementation.

Hex

0004

=

Materialize

time-of-day

clock

as

Coordinated

Universal

Time

(UTC):

(minimum

receiver

length

is

8)

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Time

of

day

Char(8)

8

8

—-

End

—-

Time

of

day

is

the

time

value

of

the

time-of-day

clock

which

is

returned

as

the

Coordinated

Universal

Time

(UTC)

for

the

system.

See

“Standard

Time

Format”

on

page

1272

for

a

detailed

description

of

the

format

for

a

time

value.

Unpredictable

results

occur

if

the

time-of-day

clock

is

materialized

before

it

is

set.

The

time-of-day

clock

can

be

materialized

as

the

local

time

for

the

system

using

″Hex

0000

=

Materialize

time-of-day

clock

as

local

time″

(page

694).

See

“Time-of-Day

(TOD)

Clock”

on

page

1273

for

detailed

descriptions

of

the

time-of-day

clock,

local

time,

and

UTC.

Performance

note:

The

time-of-day

clock

may

be

materialized,

with

the

time

of

day

returned

as

the

UTC

for

the

system,

with

this

instruction

and

also

with

the

Materialize

Time

Of

Day

Attributes

(MATTODAT)

instruction.

Better

performance

may

be

realized

with

the

use

of

this

instruction

rather

than

with

the

MATTODAT

instruction.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

936

iSeries:

Machine

Interface

Instructions

APIs

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

Machine

Interface

Instructions

937

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

Time

of

Day

Clock

Attributes

(MATTODAT)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

0553

Materialization

template

Attribute

selection

Result

Operand

1:

Space

pointer.

Operand

2:

Unsigned

binary(4)

scalar.

Operand

3:

Signed

binary(4)

variable

scalar.

Bound

program

access

Built-in

number

for

MATTODAT

is

666.

MATTODAT

(

materialization_template

:

address

attribute_selection

:

unsigned

binary(4)

)

:

signed

binary(4)

/*

result

*/

Description:

The

time-of-day

clock

attribute

specified

by

attribute

selection

for

the

current

system

is

materialized

as

specified

in

the

materialization

template.

Upon

successful

completion,

result

is

set

to

binary

0.

The

materialization

template

must

be

16-byte

aligned.

If

not,

the

EFAULT

error

is

returned

in

result.

The

materialization

template

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Template

size

Char(8)

0

0

Number

of

bytes

provided

by

the

user

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Attribute

specifications

as

defined

by

the

attribute

selection

operand

Char(*)

*

*

—-

End

—-

The

first

4

bytes

of

the

materialization

template

identify

the

total

number

of

bytes

provided

by

the

user

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

ENOSPC

error

to

be

returned

in

result.

The

second

4

bytes

of

the

materialization

template

identify

the

total

number

of

bytes

available

for

materialization.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested

for

materialization,

then

the

excess

bytes

are

unchanged.

No

errors

(other

than

the

ENOSPC

error

described

previously)

are

returned

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization.

938

iSeries:

Machine

Interface

Instructions

APIs

A

summary

of

the

allowable

values

for

attribute

selection

follows.

If

an

invalid

attribute

selection

value

is

specified,

the

EINVAL

error

number

is

returned

in

result.

Table

1.

MATTODAT

selection

values

Selection

value

Description

Page

1

Time-of-day

clock

as

Coordinated

Universal

Time

(UTC)

″1

=

Time-of-day

clock

as

Coordinated

Universal

Time

(UTC)″

(page

939)

2

Time-of-day

clock

adjustment

″2

=

Time-of-day

clock

adjustment″

(page

939)

1

=

Time-of-day

clock

as

Coordinated

Universal

Time

(UTC):

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Reserved

(binary

0)

Char(8)

16

10

Time

of

day

Char(8)

24

18

Time

zone

offset

Bin(4)

28

1C

Reserved

(binary

0)

Char(4)

32

20

—-

End

—-

Time

of

day

is

the

time

value

of

the

time-of-day

clock

which

is

returned

as

the

Coordinated

Universal

Time

(UTC)

for

the

system.

See

“Standard

Time

Format”

on

page

1272

for

a

detailed

description

of

the

format

for

a

time

value.

Time

zone

offset

indicates

the

local

time

zone,

including

any

adjustment

for

Daylight

Savings

Time,

as

measured

in

minutes

of

time

westward

from

Greenwich,

England.

Unpredictable

results

occur

if

the

time-of-day

clock

is

materialized

before

it

is

set.

See

“Time-of-Day

(TOD)

Clock”

on

page

1273

for

detailed

descriptions

of

the

time-of-day

clock,

UTC,

time

zone

offset,

and

local

time.

2

=

Time-of-day

clock

adjustment:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Adjustment

options

Char(2)

8

8

Adjustment

status

Bit

0

0

=

Time-of-day

clock

adjustment

not

active

1

=

Time-of-day

clock

adjustment

active

8

8

Adjustment

direction

Bit

1

0

=

Increase

time

of

day

1

=

Decrease

time

of

day

8

8

Reserved

(binary

0)

Bits

2-15

10

A

Reserved

(binary

0)

Char(6)

16

10

Time

interval

Char(8)

24

18

Adjustment

duration

Char(8)

32

20

—-

End

—-

Machine

Interface

Instructions

939

Time-of-day

clock

adjustment

is

not

supported

on

all

hardware

levels.

If

time-of-day

clock

adjustment

is

not

supported,

then

the

ENOTSUP

error

is

returned

in

result.

Adjustment

status

indicates

whether

or

not

a

time-of-day

clock

adjustment

is

active

for

the

system.

When

the

adjustment

status

is

binary

0,

then

a

time-of-day

clock

adjustment

is

not

active

and

the

adjustment

direction,

time

interval,

and

adjustment

duration

fields

will

be

set

to

binary

0.

When

the

adjustment

status

is

binary

1,

then

a

time-of-day

clock

adjustment

is

active

and

the

adjustment

direction,

time

interval,

and

adjustment

duration

fields

will

indicate

the

status

of

the

active

adjustment.

Adjustment

direction

indicates

the

direction

of

the

time-of-day

clock

adjustment

for

the

system.

When

the

adjustment

direction

is

binary

0,

the

rate

at

which

the

time-of-day

clock

runs

is

increased

until

the

adjustment

is

completed.

When

the

adjustment

direction

is

binary

1,

the

rate

at

which

the

time-of-day

clock

runs

is

decreased

until

the

adjustment

is

completed.

Time

interval

is

a

time

value

which

specifies

the

remaining

amount

of

time

by

which

the

time-of-day

clock

will

be

increased

or

decreased.

See

“Standard

Time

Format”

on

page

1272

for

a

detailed

description

of

the

format

for

a

time

value.

Adjustment

duration

is

a

time

value

which

provides

an

estimate

of

the

amount

of

time

required

in

order

to

complete

the

time-of-day

clock

adjustment.

See

“Standard

Time

Format”

on

page

1272

for

a

detailed

description

of

the

format

for

a

time

value.

An

active

time-of-day

clock

adjustment

results

in

small

adjustments

to

the

time

of

day

such

that

upon

completion

of

the

adjustment

the

time

of

day

has

increased

or

decreased

by

the

amount

specified

in

the

time

interval

field.

If

the

adjustment

is

to

increase

the

time

of

day,

the

adjustment

is

made

by

increasing

the

rate

at

which

the

time-of-day

clock

is

incremented.

To

decrease

the

time

of

day,

the

time-of-day

clock

is

incremented

more

slowly

than

normal.

When

the

adjustment

has

been

completed,

the

rate

at

which

the

time-of-day

clock

is

incremented

returns

to

normal.

The

time

of

day

continues

to

be

a

monotonically

increasing

value

while

an

adjustment

is

active.

A

time-of-day

clock

adjustment

will

remain

active

until

completed

unless

one

of

the

following

occur:

v

v

A

new

time-of-day

clock

adjustment

is

started

for

the

system

v

The

time-of-day

clock

for

the

system

is

modified

v

The

system

is

powered

off.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Error

conditions

The

result

will

be

set

to

one

of

the

following:

EFAULT

3408

-

The

address

used

for

an

argument

was

not

correct.

The

template

was

not

aligned

on

the

required

boundary

or

the

storage

was

inaccessible.

940

iSeries:

Machine

Interface

Instructions

APIs

EINVAL

3021

-

The

value

specified

for

the

argument

is

not

correct.

ENOSPC

3404

-

No

space

available.

ENOTSUP

3440

-

Operation

not

supported.

Time-of-day

clock

adjustment

is

not

supported

for

all

hardware

levels.

Exceptions

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

Materialize

User

Profile

(MATUP)

Op

Code

(Hex)

Operand

1

Operand

2

013E

Receiver

User

profile

Operand

1:

Space

pointer.

Operand

2:

System

pointer

or

space

pointer

data

object.

Bound

program

access

Built-in

number

for

MATUP

is

62.

MATUP

(

receiver

:

address

user_profile

:

address

of

system

pointer

OR

address

of

space

pointer(16)

)

Description:

The

attributes

of

the

user

profile

specified

by

operand

2

are

materialized

into

the

receiver

specified

by

operand

1.

(Operand

2

may

refer

to

a

materialization

template

that

contains

a

system

pointer

to

the

user

profile.)

The

receiver

identified

by

operand

1

must

be

16-byte

aligned

in

the

space.

The

following

is

the

format

of

the

materialized

information:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Object

identification

Char(32)

8

8

Object

type

Char(1)

9

9

Object

subtype

Char(1)

10

A

Object

name

Char(30)

40

28

Object

creation

options

Char(4)

40

28

Existence

attribute

Bit

0

Machine

Interface

Instructions

941

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

1

=

Permanent

40

28

Space

attribute

Bit

1

0

=

Fixed-length

1

=

Variable-length

40

28

Reserved

(binary

1)

Bit

2

40

28

Reserved

(binary

0)

Bits

3-12

40

28

Initialize

space

Bit

13

40

28

Reserved

(binary

0)

Bits

14-31

44

2C

Reserved

(binary

0)

Char(4)

48

30

Size

of

space

Bin(4)

52

34

Initial

value

of

space

Char(1)

53

35

Performance

class

Char(4)

57

39

Reserved

(binary

0)

Char(7)

64

40

Reserved

(binary

0)

Char(16)

80

50

Reserved

(binary

0)

Char(16)

96

60

Privileged

instructions

Char(4)

(1

=

authorized)

96

60

Create

Logical

Unit

Description

Bit

0

96

60

Create

Network

Description

Bit

1

96

60

Create

Controller

Description

Bit

2

96

60

Create

User

Profile

Bit

3

96

60

Modify

User

Profile

Bit

4

96

60

Diagnose

Bit

5

96

60

Terminate

Machine

Processing

Bit

6

96

60

Initiate

Process

Bit

7

96

60

Modify

Resource

Management

Controls

Bit

8

96

60

Create

Mode

Description

Bit

9

96

60

Create

Class

of

Service

Description

Bit

10

96

60

Reserved

(binary

0)

Bits

11-31

100

64

Special

authorizations

Char(4)

(1

=

authorized)

100

64

All

object

authority

Bit

0

100

64

Load

(unrestricted)

Bit

1

100

64

Dump

(unrestricted)

Bit

2

100

64

Suspend

object

(unrestricted)

Bit

3

100

64

Load

(restricted)

Bit

4

100

64

Dump

(restricted)

Bit

5

100

64

Suspend

object

(restricted)

Bit

6

100

64

Process

control

Bit

7

100

64

Reserved

(binary

0)

Bit

8

100

64

Service

authority

Bit

9

100

64

Auditor

authority

Bit

10

100

64

Spool

control

Bit

11

100

64

I/O

system

configuration

Bit

12

100

64

Reserved

(binary

0)

Bits

13-23

942

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

100

64

Modify

machine

attributes

Bits

24-31

100

64

Group

2

Bit

24

100

64

Group

3

Bit

25

100

64

Group

4

Bit

26

100

64

Group

5

Bit

27

100

64

Group

6

Bit

28

100

64

Group

7

Bit

29

100

64

Group

8

Bit

30

100

64

Group

9

Bit

31

Note:

Group

1

requires

no

authorization.

104

68

System

storage

authorization

Bin(4)

The

maximum

amount

of

auxiliary

storage

(in

units

of

1,024

bytes)

that

can

be

allocated

for

the

storage

of

objects

owned

by

this

user

profile

in

the

system

ASP

and

basic

ASPs

108

6C

System

storage

utilization

Bin(4)

112

70

User

profile

status

Char(2)

112

70

Verify

storage

utilization

Bit

0

0

=

Storage

utilization

has

been

verified

and

is

correct

1

=

Storage

utilization

has

not

been

verified

and

may

not

be

correct

112

70

Reserved

(binary

0)

Bits

1-15

114

72

Identification

flags

Char(1)

114

72

Reserved

(binary

0)

Bits

0-1

114

72

User

identification

specified

Bit

2

114

72

Group

identification

specified

Bit

3

114

72

Reserved

(binary

0)

Bits

4-7

115

73

Object

audit

level

Char(1)

115

73

Reserved

(binary

0)

Bits

0-5

115

73

Audit

object

changes

for

this

user

Bit

6

115

73

Audit

object

reads

for

this

user

Bit

7

116

74

User

audit

level

1

Char(4)

116

74

Operating

system

defined

Bits

0-1

116

74

Security

function

auditing

Bit

2

0

=

Security

function

auditing

is

not

active

1

=

Security

function

auditing

is

active

116

74

Operating

system

defined

Bits

3-6

116

74

Signal

action

auditing

Bit

7

0

=

Signal

action

auditing

is

not

active

1

=

Signal

action

auditing

is

active

Machine

Interface

Instructions

943

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

116

74

Operating

system

defined

Bits

8-31

120

78

User

audit

level

2

Char(4)

120

78

Program

adoption

auditing

Bit

0

0

=

Program

adoption

auditing

is

not

active

1

=

Program

adoption

auditing

is

active

120

78

Reserved

(binary

0)

Bits

1-31

124

7C

User

identification

UBin(4)

128

80

Group

identification

UBin(4)

132

84

Number

of

independent

ASP

entries

UBin(2)

134

86

Reserved

(binary

0)

Char(10)

144

90

Counts

of

profile

entries

Char(64)

144

90

Ownership

entries

Char(8)

144

90

Number

of

used

entries

UBin(4)

148

94

Number

of

possible

available

entries

UBin(4)

152

98

Authorization

entries

Char(8)

152

98

Number

of

used

entries

UBin(4)

156

9C

Number

of

possible

available

entries

UBin(4)

160

A0

Authorized

user

entries

Char(8)

160

A0

Number

of

used

entries

UBin(4)

164

A4

Number

of

possible

available

entries

UBin(4)

168

A8

Primary

group

entries

Char(8)

168

A8

Number

of

used

entries

UBin(4)

172

AC

Number

of

possible

available

entries

UBin(4)

176

B0

Reserved

(binary

0)

Char(32)

208

D0

Reserved

(binary

0)

Char(8)

216

D8

Total

storage

utilization

Char(8)

224

E0

Individual

independent

ASP

information

[*]

Char(16)

(repeated

once

for

each

independent

ASP,

up

to

the

number

of

independent

ASPs

supported

(223))

224

E0

Independent

ASP

storage

authorization

Bin(4)

228

E4

Independent

ASP

storage

utilization

Bin(4)

232

E8

Reserved

(binary

0)

Char(2)

234

EA

Specification

flags

Char(1)

234

EA

Independent

ASP

storage

authorization

setting

Bit

0

0

=

The

value

of

independent

ASP

storage

authorization

is

a

default

value.

1

=

The

value

of

independent

ASP

storage

authorization

was

set

to

a

specific

value

by

MODUP

or

CRTUP.

234

EA

Reserved

(binary

0)

Bits

1-7

235

EB

Status

flags

Char(1)

235

EB

User

profile

extension

existence

flag

Bit

0

944

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

This

independent

ASP

does

not

have

a

user

profile

extension

for

this

user

profile.

1

=

This

independent

ASP

has

a

user

profile

extension

for

this

user

profile

235

EB

User

profile

extension

damaged

Bit

1

0

=

The

user

profile

extension

is

not

damaged

1

=

The

user

profile

extension

is

damaged

235

EB

Reserved

(binary

0)

Bits

2-7

236

EC

Reserved

(binary

0)

Char(4)

*

*

—-

End

—-

The

first

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

exceptions

(other

than

the

materialization

length

invalid

(hex

3803)

exception)

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization

and

the

receiver

may

contain

a

partial

individual

independent

ASP

information

entry.

System

storage

utilization

is

the

current

amount

of

auxiliary

storage

(in

units

of

1,024

bytes)

allocated

for

the

storage

of

objects

owned

by

this

user

profile

in

the

system

ASP

and

basic

ASPs.

The

verify

storage

utilization

field

returns

either

binary

0

or

1.

If

binary

0

is

returned,

the

value

returned

in

the

total

storage

utilization

field

has

been

verified

and

it

is

correct.

That

is,

all

values

returned

in

the

system

storage

utilization

and

independent

ASP

storage

utilization

for

varied-on

independent

ASPs

have

been

verified

and

they

are

correct.

If

binary

1

is

returned,

the

value

returned

in

the

total

storage

utilization

field

has

not

been

verified

and

may

not

be

correct.

That

is,

at

least

one

of

the

values

returned

in

system

storage

utilization

and

independent

ASP

storage

utilization

for

varied

on

independent

ASPs

have

not

been

verified

and

may

not

be

correct.

The

MATAUOBJ

instruction

can

be

used

to

correct

all

the

values

of

storage

utilization.

After

MATAUOBJ

is

issued

to

correct

the

storage

utilization

values,

the

MATUP

instruction

must

be

issued

again

to

retrieve

the

corrected

values.

Note:

The

storage

utilization

of

independent

ASPs

that

are

not

varied

on

is

not

verified.

The

security

function

auditing

field

specifies

whether

an

audit

record

is

created

for

identified

security-related

functions.

(See

specific

instructions

for

which

security-related

functions

an

audit

record

is

to

be

created.)

The

signal

action

auditing

field

specifies

whether

an

audit

record

is

created

when

a

signal,

that

is

not

ignored,

is

delivered

to

a

thread.

The

program

adoption

auditing

field

specifies

whether

an

audit

record

is

created

when

authority

is

obtained

through

program

adoption.

Machine

Interface

Instructions

945

The

number

of

independent

ASP

entries

field

is

the

total

number

of

individual

independent

ASP

information

entries.

223

is

returned

even

if

number

of

bytes

provided

is

not

large

enough

to

contain

all

of

the

individual

independent

ASP

information

entries.

Ownership

entries

refer

to

the

entries

created

in

the

user

profile

due

to

owned

objects.

Authorization

entries

refer

to

the

entries

created

in

the

user

profile

due

to

objects

to

which

this

profile

has

been

authorized.

Authorized

user

entries

refer

to

the

entries

created

in

the

user

profile

due

to

owned

objects

which

have

been

authorized

to

other

user

profiles.

Primary

group

entries

refer

to

the

entries

created

in

the

user

profile

due

to

objects

for

which

this

profile

is

the

primary

group.

Number

of

used

entries

is

the

number

of

entries

currently

in

the

user

profile

for

the

specified

type

of

entry.

Number

of

possible

available

entries

is

the

number

of

entries

which

can

possibly

be

added

to

the

user

profile.

The

total

storage

utilization

(in

units

of

1,024

bytes)

field

contains

the

sum

of

the

system

storage

utilization

(storage

used

on

the

system

and

basic

ASPs)

and

all

the

independent

ASP

storage

utilization

of

independent

ASPs

that

are

currently

varied

on.

The

individual

independent

ASP

information

is

an

array

of

information

for

the

individual

independent

ASPs.

This

array

starts

from

the

independent

ASP

33

and

increases

sequentially

to

255.

As

many

entries

as

will

fit

in

number

of

bytes

provided

will

be

returned

up

to

a

maximum

of

number

of

independent

ASP

entries.

It

is

possible

for

a

partial

entry

to

be

returned.

The

independent

ASP

storage

authorization

field

contains

the

maximum

amount

of

independent

auxiliary

storage

(in

units

of

1,024

bytes)

that

can

be

owned

by

this

user

profile.

A

value

will

always

be

returned

in

this

field,

even

for

an

independent

ASP

that

is

varied

off.

The

independent

ASP

storage

utilization

field

contains

the

current

amount

of

independent

auxiliary

storage

(in

units

of

1,024

bytes)

allocated

for

the

permanent

objects

owned

by

this

user

profile

if

the

independent

ASP

is

varied

on.

If

the

independent

ASP

is

not

varied

on,

0

is

returned.

The

user

profile

extension

existence

flag

field

indicates

whether

or

not

the

independent

ASP

has

a

user

profile

extension

for

this

user

profile.

A

user

profile

extension

is

stored

on

the

independent

ASP

and

contains

information

about

the

user

profile.

If

operand

2

is

a

system

pointer,

it

identifies

the

input

user

profile

object.

If

operand

2

is

a

space

pointer,

it

provides

addressability

to

the

materialization

template.

The

materialization

template

must

be

aligned

on

a

16-byte

boundary.

The

format

of

the

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

template

Char(64)

0

0

Template

version

Char(1)

1

1

Reserved

(binary

0)

Char(1)

2

2

Materialization

options

Char(2)

2

2

Materialize

for

given

release

Bit

0

946

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Materialize

data

applicable

to

the

current

release

1

=

Materialize

data

applicable

to

the

specified

release

2

2

Reserved

(binary

0)

Bits

1-15

4

4

Reserved

(binary

0)

Char(10)

14

E

Target

release

to

materialize

Char(2)

14

E

Reserved

(binary

0)

Bits

0-3

14

E

Version

Bits

4-7

14

E

Release

Bits

8-11

14

E

Modification

level

Bits

12-15

16

10

User

profile

System

pointer

32

20

Reserved

(binary

0)

Char(32)

64

40

—-

End

—-

The

template

version

identifies

the

version

of

the

materialization

template.

It

must

be

set

to

hex

00.

The

materialization

options

are

options

that

control

how

the

user

profile

data

is

presented

in

the

receiver.

If

the

materialize

for

given

release

bit

is

set

to

binary

1,

then

the

operand

1

receiver

will

be

filled

in

with

values

applicable

to

the

release

specified

by

the

target

release

to

materialize

field.

Fields

that

are

not

defined

in

the

target

release

will

be

returned

as

hex

zeroes.

The

target

release

to

materialize

field

is

the

target

release

specified

when

the

materialize

for

given

release

bit

is

set

to

binary

1.

The

earliest

release

that

can

be

specified

is

Version

5,

Release

1,

Modification

level

0.

The

latest

release

that

can

be

specified

is

the

current

release.

If

an

invalid

release

is

specified,

a

template

value

invalid

(hex

3801)

exception

is

signaled.

The

user

profile

system

pointer

is

the

user

profile

to

be

materialized.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Operational

–

–

User

profile

identified

by

operand

2

Machine

Interface

Instructions

947

Lock

Enforcement

v

v

Materialize

–

–

User

profile

identified

by

operand

2

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1002

Machine

Context

Damage

State

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

948

iSeries:

Machine

Interface

Instructions

APIs

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Materialize

User

Profile

Pointers

from

ID

(MATUPID)

Op

Code

(Hex)

Operand

1

Operand

2

013A

Return

template

Input

template

Operand

1:

Space

pointer.

Operand

2:

Space

pointer.

Bound

program

access

Built-in

number

for

MATUPID

is

382.

MATUPID

(

return_template

:

address

input_template

:

address

)

Description:

This

instruction

converts

the

uids

and/or

gids

specified

by

the

input

template

in

operand

2

to

system

pointers

for

the

corresponding

user

profiles

returned

in

operand

1.

The

materialization

options

determine

the

format

of

the

profile

information

returned

in

operand

1.

The

operand

2

template

must

be

on

a

4-byte

boundary.

The

format

of

the

input

template

is:

Machine

Interface

Instructions

949

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

format

option

Char(1)

Hex

01

=

Materialize

short

template

Hex

02

=

Materialize

long

template

1

1

Materialization

type

option

Char(1)

Hex

00

=

List

provided

Hex

41

=

Return

all

gids

starting

with

the

specified

gid

Hex

80

=

Return

all

uids

then

all

gids

Hex

81

=

Return

all

uids

then

gids

starting

with

the

specified

uid

2

2

Number

of

uids

provided

UBin(4)

6

6

Number

of

gids

provided

UBin(4)

10

A

Reserved

(binary

0)

Char(10)

20

14

—-

End

—-

The

materialization

format

option

field

identifies

the

format

of

the

materialization

to

be

returned

in

the

return

template

specified

by

operand

1.

The

materialization

type

option

field

identifies

the

type

of

materialization

operation

to

be

performed.

When

one

of

the

following

is

not

specified,

a

template

value

invalid

(hex

3801)

exception

is

signalled.

v

v

List

provided

-

a

list

of

uids

and/or

gids

is

provided

(number

of

entries

is

indicated

by

number

of

uids

provided

and

number

of

gids

provided).

An

entry

for

each

uid

and

gid

in

the

list

will

be

materialized

into

operand

1.

v

Return

all

uids

then

gids

-

return

all

uids,

then

gids

starting

with

the

first

uid.

Only

as

many

uids

and

gids

will

be

returned

as

will

fit

in

the

space

provided

for

operand

1.

v

Return

all

uids

then

gids

starting

with

the

specified

uid

-

return

all

uids/gids

beginning

with

the

uid

specified.

An

entry

for

each

uid

and

gid

starting

with

the

uid

specified

will

be

materialized

into

operand

1.

If

the

specified

uid

is

not

found,

then

the

next

entry

found

in

the

table

will

be

returned

as

the

first

entry

in

the

materialization

template.

The

next

entry

found

will

either

be

the

next

uid

in

numerical

order,

or

the

first

gid.

v

Return

all

gids

starting

with

the

specified

gid

-

return

all

gids

beginning

with

the

gid

specified.

An

entry

for

each

gid

starting

with

the

gid

specified

will

be

materialized

into

operand

1.

If

the

specified

gid

is

not

found,

then

the

next

entry

found

in

the

table

will

be

returned

as

the

first

entry

in

the

materialization

template.

The

next

entry

found

will

be

the

next

gid

in

numerical

order.

To

get

a

list

of

all

gids

start

with

a

gid

of

1

(hex

00000001).

Note:

Starting

with

a

specified

uid/gid

does

not

guarantee

that

the

list

has

not

changed.

When

trying

to

get

all

uids/gids

and

a

continuation

is

required,

any

ID’s

added

between

calls

that

are

less

than

the

uid/gid

specified

as

the

resume

will

not

be

returned.

The

number

of

uids

provided

field

is

the

number

of

uids

in

the

list

of

uids

that

follows

the

reserved

area.

This

may

be

zero

(no

uids)

or

a

positive

number.

This

field

is

used

for

materialization

type

option

hex

00;

otherwise

ignored.

950

iSeries:

Machine

Interface

Instructions

APIs

The

number

of

gids

provided

field

is

the

number

of

gids

in

the

list

of

gids

that

follows

any

uids

provided

after

the

reserved

area.

This

may

be

zero

(no

gids)

or

a

positive

number.

This

field

is

used

for

materialization

type

option

hex

00;

otherwise

ignored.

This

information

will

be

followed

by

a

list

of

uids

specified.

If

materialization

type

option

hex

81

is

selected,

one

uid

will

be

in

the

list.

Each

uid

has

the

following

format.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Uid

UBin(4)

4

4

—-

End

—-

Following

the

uids

will

be

a

list

of

gids

specified.

If

materialization

type

option

hex

41

is

selected,

one

gid

will

be

in

the

list.

Each

gid

has

the

following

format.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Gid

UBin(4)

4

4

—-

End

—-

The

receiver

identified

by

operand

1

must

be

16-byte

aligned

in

the

space.

The

format

of

the

materialization

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Number

of

uids

returned

UBin(4)

12

C

Number

of

gids

returned

UBin(4)

16

10

Indicators

Char(1)

16

10

Pointer(s)

not

set

Bit

0

16

10

Reserved

Bits

1-7

17

11

Reserved

Char(15)

32

20

—-

End

—-

The

number

of

bytes

provided

for

materialization

identify

the

total

number

of

bytes

that

may

be

used

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

number

of

bytes

available

for

materialization

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

exceptions

(other

than

the

materialization

length

invalid

(hex

3803)

exception)

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization.

The

number

of

uids

returned

field

contains

the

total

number

of

uids

materialized.

The

number

of

gids

returned

field

contains

the

total

number

of

gids

materialized.

Machine

Interface

Instructions

951

Pointer(s)

not

set.

When

this

field

is

binary

1,

one

or

more

user

profile

instances

in

the

uid

and/or

gid

list

is

binary

0s

because

a

uid

or

gid

in

the

list

provided

is

not

in

use

or

the

user

profile

associated

with

the

uid/gid

is

destroyed.

This

information

will

be

followed

by

an

entry

for

each

uid

in

the

list

in

operand

2

followed

by

an

entry

for

each

gid

in

the

list

in

operand

2.

For

the

short

format,

each

entry

(for

uids

and

gids)

in

the

list

will

have

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

User

profile

System

pointer

16

10

—-

End

—-

For

the

long

format,

each

entry

(for

uids

and

gids)

in

the

list

will

have

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

User

profile

type

code

Char(1)

1

1

User

profile

subtype

code

Char(1)

2

2

User

profile

name

Char(30)

32

20

Uid/gid

UBin(4)

36

24

ID

type

Char(1)

Hex

01

=

uid

Hex

02

=

gid

37

25

Flags

Char(1)

37

25

User

profile

pointer

is

not

set

Bit

0

37

25

Reserved

Bits

1-7

38

26

Reserved

Char(10)

48

30

User

profile

System

pointer

64

40

—-

End

—-

User

profile

pointer

is

not

set.

When

this

field

is

binary

1,

the

uid

or

gid

specified

is

not

in

use

or

the

user

profile

is

destroyed.

User

profile

will

be

set

to

binary

0s.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

952

iSeries:

Machine

Interface

Instructions

APIs

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A0A

ID

Index

Not

Available

10

Damage

Encountered

1002

Machine

Context

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

Machine

Interface

Instructions

953

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Memory

Compare

(MEMCMP)

Bound

program

access

Built-in

number

for

MEMCMP

is

17.

MEMCMP

(

string1

:

address

of

aggregate(*)

string2

:

address

of

aggregate(*)

string_length

:

unsigned

binary(4)

value

which

specifies

the

length

of

string1

and

string2

)

:

signed

binary(4)

value

which

indicates

if

string1

is

lexically

less

than

(-1),

equal

to

(0)

or

greater

than

(1)

string2

Description:

A

compare

is

done

of

the

storage

specified

by

string1

and

string2.

If

the

first

byte

of

string1

is

less

than

the

first

byte

of

string2,

the

function

returns

-1;

if

the

byte

is

greater

the

function

returns

1.

If

the

bytes

are

equal

the

function

continues

with

the

next

byte.

This

process

is

repeated

until

the

number

of

bytes

specified

by

string

length

have

been

compared.

If

all

bytes

compare

equal,

the

function

returns

0.

If

the

string

length

value

is

zero,

the

function

also

returns

0.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

954

iSeries:

Machine

Interface

Instructions

APIs

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Memory

Copy

(MEMCPY)

Bound

program

access

Built-in

number

for

MEMCPY

is

15.

MEMCPY

(

target_string

:

address

of

aggregate(*)

source_string

:

address

of

aggregate(*)

copy_length

:

unsigned

binary(4)

value

which

specifies

the

number

of

bytes

to

copy

)

:

space

pointer(16)

to

the

target

string

Description:

A

copy

from

the

storage

specified

by

source

string

to

the

storage

specified

by

target

string

is

performed.

Copy

length

specifies

the

number

of

bytes

to

copy.

It

is

assumed

that

sufficient

storage

exists

at

the

target

string

location

to

receive

the

specified

number

of

bytes.

Pointers

can

be

copied

using

this

function.

However,

the

source

and

target

strings

must

be

like-aligned.

Undefined

results

can

occur

if

the

storage

locations

specified

by

target

string

and

source

string

overlap.

Copy

Bytes

with

Pointers

(CPYBWP)

should

be

used

when

possible

for

performance

reasons.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

Machine

Interface

Instructions

955

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Memory

Move

(MEMMOVE)

Bound

program

access

Built-in

number

for

MEMMOVE

is

16.

MEMMOVE

(

target_string

:

address

of

aggregate(*)

source_string

:

address

of

aggregate(*)

copy_length

:

unsigned

binary(4)

value

which

specifies

the

number

of

bytes

to

copy

)

:

space

pointer(16)

to

the

target

string

Description:

A

copy

from

the

storage

specified

by

source

string

to

the

storage

specified

by

target

string

is

performed.

Copy

length

specifies

the

number

of

bytes

to

copy.

It

is

assumed

that

sufficient

storage

exists

at

the

target

string

location

to

receive

the

specified

number

of

bytes.

Pointers

can

be

copied

using

this

function.

However,

the

source

and

target

strings

must

be

like-aligned.

Results

are

defined

if

the

storage

locations

specified

by

target

string

and

source

string

overlap.

The

result

is

equivalent

to

copying

the

source

string

first

to

a

temporary

location

and

then

from

the

temporary

location

to

the

target

string.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

956

iSeries:

Machine

Interface

Instructions

APIs

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Modify

Automatic

Storage

Allocation

(MODASA)

Op

Code

(Hex)

Operand

1

Operand

2

02F2

Storage

allocation

Modification

size

Operand

1:

Space

pointer

data

object

or

null.

Operand

2:

Signed

binary

scalar.

Bound

program

access

Built-in

number

for

MODASA

is

159.

MODASA

(

modification_size

:

signed

binary(4)

OR

unsigned

binary(4)

)

:

space

pointer(16)

to

a

storage

allocation

where

0

<

modification

size

<=

16,773,119.

--

OR

--

Built-in

number

for

MODASA2

is

397.

MX

translator

only

MODASA2

(

modification_size

:

signed

binary(4)

OR

unsigned

binary(4)

)

:

space

pointer(16)

to

a

storage

allocation

where

-16,773,119

<=

modification

size

<=

16,773,119

for

signed

binary

values

and

0

<=

modification

size

<=

16,773,119

for

unsigned

binary

values.

The

modification

size

operand

corresponds

to

operand

2

on

the

MODASA

operation;

the

return

value

corresponds

to

operand

1.

Description:

The

automatic

storage

frame

(ASF)

of

the

current

invocation

is

extended

or

truncated

by

the

modification

size

specified

by

operand

2.

A

positive

value

indicates

that

the

frame

is

to

be

extended;

a

negative

value

indicates

that

the

frame

is

to

be

truncated;

a

zero

value

does

not

change

the

ASF.

If

operand

1

is

not

null,

it

will

be

treated

as

follows:

v

v

ASF

extension:

receives

the

address

of

the

first

byte

of

the

extension.

The

ASF

extension

might

not

be

contiguous

with

the

remainder

of

the

ASF

allocation.

Machine

Interface

Instructions

957

v

ASF

truncation:

operand

1

should

be

null

for

truncation.

If

operand

1

is

not

null,

then

addressability

to

the

first

byte

of

the

deallocated

space

is

returned.

This

value

should

not

be

used

as

a

space

pointer

since

it

locates

space

that

has

been

deallocated.

v

If

a

value

of

zero

is

specified

for

operand

2:

the

value

returned

is

unpredictable.

When

the

ASF

is

extended,

the

extension

is

aligned

on

a

16-byte

boundary.

An

extension

is

not

initialized.

A

scalar

value

invalid

(hex

3203)

exception

is

signaled

if

the

truncation

amount

would

include

the

storage

for

all

automatic

data

objects

for

the

current

invocation,

including

the

initial

allocation.

A

space

pointer

machine

object

cannot

be

specified

for

operand

1.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

16

Exception

Management

1604

Retry/Resume

Invalid

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

958

iSeries:

Machine

Interface

Instructions

APIs

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C1D

Automatic

Storage

Overflow

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Modify

Automatic

Storage

Allocation

(MODASA)

Op

Code

(Hex)

Operand

1

Operand

2

02F2

Storage

allocation

Modification

size

Operand

1:

Space

pointer

data

object

or

null.

Machine

Interface

Instructions

959

Operand

2:

Signed

binary

scalar.

Bound

program

access

Built-in

number

for

MODASA

is

159.

MODASA

(

modification_size

:

signed

binary(4)

OR

unsigned

binary(4)

)

:

space

pointer(16)

to

a

storage

allocation

where

0

<

modification

size

<=

16,773,119.

--

OR

--

Built-in

number

for

MODASA2

is

397.

MX

translator

only

MODASA2

(

modification_size

:

signed

binary(4)

OR

unsigned

binary(4)

)

:

space

pointer(16)

to

a

storage

allocation

where

-16,773,119

<=

modification

size

<=

16,773,119

for

signed

binary

values

and

0

<=

modification

size

<=

16,773,119

for

unsigned

binary

values.

The

modification

size

operand

corresponds

to

operand

2

on

the

MODASA

operation;

the

return

value

corresponds

to

operand

1.

Description:

The

automatic

storage

frame

(ASF)

of

the

current

invocation

is

extended

or

truncated

by

the

modification

size

specified

by

operand

2.

A

positive

value

indicates

that

the

frame

is

to

be

extended;

a

negative

value

indicates

that

the

frame

is

to

be

truncated;

a

zero

value

does

not

change

the

ASF.

If

operand

1

is

not

null,

it

will

be

treated

as

follows:

v

v

ASF

extension:

receives

the

address

of

the

first

byte

of

the

extension.

The

ASF

extension

might

not

be

contiguous

with

the

remainder

of

the

ASF

allocation.

v

ASF

truncation:

operand

1

should

be

null

for

truncation.

If

operand

1

is

not

null,

then

addressability

to

the

first

byte

of

the

deallocated

space

is

returned.

This

value

should

not

be

used

as

a

space

pointer

since

it

locates

space

that

has

been

deallocated.

v

If

a

value

of

zero

is

specified

for

operand

2:

the

value

returned

is

unpredictable.

When

the

ASF

is

extended,

the

extension

is

aligned

on

a

16-byte

boundary.

An

extension

is

not

initialized.

A

scalar

value

invalid

(hex

3203)

exception

is

signaled

if

the

truncation

amount

would

include

the

storage

for

all

automatic

data

objects

for

the

current

invocation,

including

the

initial

allocation.

A

space

pointer

machine

object

cannot

be

specified

for

operand

1.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

960

iSeries:

Machine

Interface

Instructions

APIs

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

16

Exception

Management

1604

Retry/Resume

Invalid

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C1D

Automatic

Storage

Overflow

Machine

Interface

Instructions

961

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Modify

Exception

Description

(MODEXCPD)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

03EF

Exception

description

Modifying

attributes

Modification

option

Operand

1:

Exception

description.

Operand

2:

Space

pointer

or

character(2)

constant.

Operand

3:

Character(1)

scalar.

Description:

The

exception

description

attributes

specified

by

operand

3

are

modified

with

the

values

of

operand

2.

Operand

1

references

the

exception

description.

Operand

2

specifies

the

new

attribute

values.

Operand

2

may

be

either

a

character

constant

or

a

space

pointer

to

the

modification

template.

When

operand

3

is

a

constant,

operand

2

is

a

character

constant;

when

operand

3

is

not

a

constant,

operand

2

is

a

space

pointer.

The

value

of

operand

3

specifies

the

modification

option.

If

the

modification

option

is

hex

01

and

operand

2

specifies

a

space

pointer,

the

format

of

the

modifying

attributes

pointed

to

by

operand

2

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Template

size

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

(must

be

at

least

10)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

+

8

8

Control

flags

Char(2)

8

8

Exception

handling

action

Bits

0-2

962

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

000

=

Do

not

handle.

(Ignore

occurrence

of

exception

and

continue

processing.)

001

=

Do

not

handle.

(Disable

this

exception

description

and

continue

to

search

this

invocation

for

another

exception

description

to

handle

the

exception.)

010

=

Do

not

handle.

(Continue

to

search

for

an

exception

description

by

resignaling

the

exception

to

the

preceding

invocation.)

100

=

Defer

handling.

(Save

exception

data

for

later

exception

handling.)

101

=

Pass

control

to

the

specified

exception

handler.

8

8

No

data

Bit

3

0

=

Exception

data

is

returned

1

=

Exception

data

is

not

returned

8

8

Reserved

(binary

0)

Bits

4-15

10

A

—-

End

—-

If

the

exception

description

was

in

the

deferred

state

prior

to

the

modification,

the

deferred

signal,

if

present,

is

lost.

When

the

no

data

field

is

set

to

exception

data

is

not

returned,

no

data

is

returned

for

the

Retrieve

Exception

Data

(RETEXCPD)

or

Test

Exception

(TESTEXCP)

instructions,

and

the

number

of

bytes

available

for

materialization

field

is

set

to

0.

This

option

can

also

be

selected

in

the

object

definition

table

entry

of

the

exception

description.

If

the

modification

option

of

operand

3

is

a

constant

value

of

hex

01,

then

operand

2

may

specify

a

character

constant.

The

operand

2

constant

has

the

same

format

as

the

control

flags

entry

previously

described.

If

the

modification

option

is

hex

02,

then

operand

2

must

specify

a

space

pointer.

The

format

of

the

modification

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Template

size

Char(8)

0

0

Number

of

bytes

provided

Bin(4)

(must

be

at

least

10

plus

the

length

of

the

compare

value

in

the

exception

description)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

+

8

8

Compare

value

length

Bin(2)

+

(maximum

of

32

bytes)

10

A

Compare

value

Char(32)

42

2A

—-

End

—-

Note:

Fields

shown

here

with

a

plus

sign

(+)

are

ignored

by

the

instruction.

Machine

Interface

Instructions

963

The

number

of

bytes

in

the

compare

value

is

dictated

by

the

compare

value

length

specified

in

the

exception

description

as

originally

specified

in

the

object

definition

table.

An

external

exception

handling

program

can

be

modified

by

resolving

addressability

to

a

new

program

into

the

system

pointer

designated

for

the

exception

description.

The

presence

of

user

data

is

not

a

modifiable

attribute

of

exception

descriptions.

If

the

exception

description

has

user

data,

it

can

be

modified

by

changing

the

value

of

the

data

object

specified

in

the

exception

description.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

964

iSeries:

Machine

Interface

Instructions

APIs

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

3802

Template

Size

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Modify

Independent

Index

(MODINX)

Op

Code

(Hex)

Operand

1

Operand

2

0452

Independent

index

Modification

option

Operand

1:

System

pointer.

Operand

2:

Character(4)

scalar.

Bound

program

access

Built-in

number

for

MODINX

is

39.

MODINX

(

independent_index

:

address

of

system

pointer

modification_option

:

address

)

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Machine

Interface

Instructions

965

Description:

Modify

the

selected

attributes

of

the

independent

index

specified

by

operand

1

to

have

the

values

specified

in

operand

2.

The

modification

options

specified

in

operand

2

have

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Modification

selection

Char(1)

0

0

Reserved

(binary

0)

Bit

0

0

0

Immediate

update

Bit

1

0

=

Do

not

change

immediate

update

attribute

1

=

Change

immediate

update

attribute

0

0

Index

coherency

tracking

Bit

2

0

=

Do

not

change

index

coherency

tracking

attribute

1

=

Change

index

coherency

tracking

attribute

0

0

Reserved

(binary

0)

Bits

3-7

1

1

New

attribute

value

Char(1)

1

1

Reserved

(binary

0)

Bit

0

1

1

Immediate

update

Bit

1

0

=

No

immediate

update

1

=

Immediate

update

1

1

Index

coherency

tracking

Bit

2

0

=

Do

not

track

index

coherency

1

=

Track

index

coherency

1

1

Reserved

(binary

0)

Bits

3-7

2

2

Reserved

(binary

0)

Char(2)

4

4

—-

End

—-

If

the

modification

selection

immediate

update

is

binary

0,

then

the

immediate

update

attribute

is

not

changed.

If

the

modification

selection

immediate

update

bit

is

binary

1,

the

immediate

update

attribute

is

changed

to

the

new

attribute

value

immediate

update

value.

If

the

immediate

update

attribute

of

the

index

was

previously

set

to

no

immediate

update,

and

it

is

being

modified

to

immediate

update,

then

the

index

is

ensured

before

the

attribute

is

modified.

If

the

modification

selection

index

coherency

tracking

is

binary

0,

then

the

index

coherency

tracking

attribute

is

not

changed.

If

the

modification

selection

index

coherency

tracking

bit

is

binary

1,

the

index

coherency

tracking

attribute

is

changed

to

the

new

attribute

value

index

coherency

tracking

value.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Object

management

–

–

Operand

1
v

Execute

966

iSeries:

Machine

Interface

Instructions

APIs

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Modify

–

–

Operand

1
v

Materialization

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C0E

IASP

Resources

Exceeded

1C11

Independent

ASP

Varied

Off

20

Machine

Support

2002

Machine

Check

Machine

Interface

Instructions

967

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3202

Scalar

Attributes

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Modify

Invocation

Authority

Attributes

(MODINVAU)

Op

Code

(Hex)

Operand

1

0141

Modification

template

Operand

1:

Space

pointer.

Bound

program

access

Built-in

number

for

MODINVAU

is

477.

MODINVAU

(

modification_template

:

address

)

968

iSeries:

Machine

Interface

Instructions

APIs

Description:

This

instruction

modifies

the

authority

attributes

of

the

invocation

that

issues

the

instruction.

The

authority

attribute

to

be

modified

and

its

new

value

are

indicated

by

operand

1.

The

format

of

the

modification

template

is

described

below.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Option

Char(1)

Hex

00

=

Do

not

suppress

adopted

user

profile

authority

Hex

01

=

Suppress

adopted

user

profile

authority

1

1

—-

End

—-

The

do

not

suppress

adopted

user

profile

authority

option

allows

normal

propagation

of

program

adopted

user

profile

authority

to

subsequent

invocations

within

the

same

thread.

The

suppress

adopted

user

profile

authority

option

prevents

any

subsequent

invocation

from

benefitting

from

the

propagation

of

currently

adopted

user

profile

authority.

Thus

any

authority

adopted

and

propagated

by

earlier

invocations

or

the

current

invocation

cannot

be

used

as

a

source

of

authority

by

subsequent

invocations

within

the

same

thread.

Any

subsequent

invocation

to

the

invocation

that

used

the

suppress

adopted

user

profile

authority

option

of

the

MODINVAU

instruction

may

adopt

and

propagate

its

owning

user

profile

authority.

Once

the

invocation

that

issued

the

suppress

adopted

user

profile

authority

option

returns

to

its

caller,

then

adopted

user

profile

authority

propagated

by

previous

invocations

can

be

used

by

subsequent

invocations.

The

suppress

adopted

user

profile

authority

option

and

the

suppress

adopted

user

profile

authority

yes

option

of

the

CALLX

or

XCTL

instructions

provide

the

same

function

for

programs.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

Machine

Interface

Instructions

969

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

22

Object

Access

2202

Object

Destroyed

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

970

iSeries:

Machine

Interface

Instructions

APIs

Modify

Space

Attributes

(MODS)

Op

Code

(Hex)

Operand

1

Operand

2

0062

System

object

Size

or

space

modification

template

Operand

1:

System

pointer.

Operand

2:

Binary

scalar

or

character(28)

scalar.

Bound

program

access

Built-in

number

for

MODS1

is

28.

MODS1

(

system_object

:

address

of

system

pointer

size

:

address

of

signed

binary(4)

OR

address

of

unsigned

binary(4)

)

--

OR

--

Built-in

number

for

MODS2

is

29.

MODS2

(

system_object

:

address

of

system

pointer

space_modification_template

:

address

)

Description:

The

attributes

of

the

space

associated

with

the

system

object

specified

for

operand

1

are

modified

with

the

attribute

values

specified

in

operand

2.

At

any

security

level,

if

the

thread

execution

state

is

user

state

and

the

object

addressed

by

operand

1

has

secondary

associated

spaces,

an

attempt

to

truncate

or

delete

any

of

the

associated

spaces

of

the

addressed

object

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

If

the

thread

execution

state

is

user

state

and

the

machine

security

level

attribute

has

a

value

of

hex

40

or

greater

then

v

v

If

operand

1

addresses

a

program

object,

the

associated

spaces

of

the

program

object

can

not

be

modified

and

an

invalid

space

modification

(hex

3602)

exception

is

signaled.

v

If

the

hardware

storage

protection

of

the

object

addressed

by

operand

1

is

not

read/write

from

user

state,

the

associated

spaces

of

the

addressed

object

can

not

be

modified

and

a

space

extension/truncation

(hex

3601)

exception

is

signaled.

The

operand

2

space

modification

template

is

specified

with

one

of

two

formats.

The

abbreviated

format,

operand

2

specified

as

a

binary

scalar,

only

provides

for

modifying

the

size

of

space

attribute.

The

full

format,

operand

2

specified

as

a

character

scalar,

provides

for

modifying

the

full

set

of

space

attributes.

When

operand

2

is

a

binary

value,

it

specifies

the

size

in

bytes

to

which

the

space

size

is

to

be

modified.

The

current

allocation

of

the

space

is

extended

or

truncated

accordingly

to

match

as

closely

as

possible

the

specified

size.

The

modified

space

size

will

be

of

at

least

the

size

specified.

The

actual

size

allocated

is

dependent

upon

the

algorithm

used

within

the

specific

implementation

of

the

machine.

When

operand

2

is

a

character

scalar,

it

specifies

a

selection

of

space

attribute

values

to

be

used

to

modify

the

attributes

of

the

space.

Associated

spaces

can

be

modified,

created

or

destroyed

by

this

instruction.

Not

all

attributes

can

be

modified

for

existing

associated

spaces,

so

some

template

fields

apply

only

when

an

associated

space

is

being

created,

i.e.

when

a

primary

associated

space

of

fixed

length

size

zero

is

modified

or

when

a

secondary

associated

space

is

created.

More

detail

is

provided

below

within

descriptions

of

individual

fields.

Machine

Interface

Instructions

971

The

operand

2

character

scalar

must

be

at

least

28

bytes

long

and

have

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Modification

selection

Char(4)

0

0

Modify

space

length

attribute

Bit

0

0

=

No

1

=

Yes

0

0

Modify

size

of

space

Bit

1

0

=

No

1

=

Yes

0

0

Modify

initial

value

of

space

Bit

2

0

=

No

1

=

Yes

0

0

Modify

space

alignment

Bit

3

0

=

No

1

=

Yes
This

field

must

have

a

value

of

0

if

an

existing

space

is

being

modified.

Otherwise

an

invalid

space

modification

(hex

3602)

exception

is

signaled.

0

0

Modify

initialize

space

attribute

Bit

4

0

=

No

1

=

Yes

0

0

Reinitialize

space

Bit

5

0

=

No

1

=

Yes

0

0

Modify

automatically

extend

space

attribute

Bit

6

0

=

No

1

=

Yes

0

0

Create

secondary

associated

space

Bit

7

0

=

No

1

=

Yes

If

the

thread

execution

state

is

user

state,

this

field

must

be

0.

Otherwise

an

invalid

space

modification

(hex

3602)

exception

is

signaled.

This

restriction

applies

at

all

system

security

levels.

0

0

Reserved

(binary

0)

Bit

8

0

0

Modify

hardware

storage

protection

enforcement

Bit

9

972

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

No

1

=

Yes

If

the

thread

execution

state

is

user

state,

this

field

must

be

0.

Otherwise

an

invalid

space

modification

(hex

3602)

exception

is

signaled.

This

restriction

applies

at

all

system

security

levels.

If

the

object

is

not

an

independent

index,

process

control

space,

or

a

space,

this

field

must

be

0.

Otherwise

an

invalid

space

modification

(hex

3602)

exception

is

signaled.

0

0

Modify

expanded

transfer

size

advisory

Bit

10

0

=

No

1

=

Yes

0

0

Modify

spreading

the

space

object

Bit

11

0

=

No

1

=

Yes

0

0

Reserved

(binary

0)

Bits

12-31

4

4

Indicator

attributes

Char(4)

4

4

Reserved

(binary

0)

Bit

0

4

4

Space

length

Bit

1

0

=

Fixed

length

1

=

Variable

length

4

4

Initialize

space

Bit

2

0

=

Initialize

1

=

Do

not

initialize

4

4

Automatically

extend

space

Bit

3

0

=

No

1

=

Yes

4

4

Reserved

(binary

0)

Bits

4-14

4

4

Hardware

storage

protection

level

Bits

15-16

Machine

Interface

Instructions

973

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

00

=

Reference

and

modify

allowed

for

user

state

programs

01

=

Only

reference

allowed

for

user

state

programs

10

=

Invalid

(undefined)

11

=

No

reference

or

modify

allowed

for

user

state

programs

4

4

Reserved

(binary

0)

Bits

17-20

4

4

Always

enforce

hardware

storage

protection

of

this

space

Bit

21

0

=

Enforce

hardware

storage

protection

of

this

space

only

when

hardware

storage

protection

is

being

enforced

for

all

storage.

1

=

Enforce

hardware

storage

protection

of

this

space

at

all

times.

4

4

Reserved

(binary

0)

Bits

22-31

8

8

Maximum

size

of

secondary

associated

space

Bin(4)

This

field

is

ignored

when

create

secondary

associated

space

is

0.

12

C

Size

of

space

Bin(4)

or

UBin(4)

16

10

Initial

value

of

space

Char(1)

17

11

Performance

class

Char(4)

17

11

Space

alignment

Bit

0

0

=

The

space

associated

with

the

object

is

modified

to

allow

proper

alignment

of

pointers

at

16-byte

alignments

within

the

space.

1

=

The

space

associated

with

the

object

is

modified

to

allow

proper

alignment

of

input/output

buffers

at

512-byte

alignments

within

the

space.

Note

that

this

also

allows

proper

16-byte

alignment

of

pointers.
The

value

of

this

field

is

ignored

when

the

machine

chooses

space

alignment

field

has

a

value

of

1.

17

11

Reserved

Bit

1

There

is

no

modification

selection

option

for

the

field

in

CRTS

that

corresponds

to

this

bit.

So,

currently

this

bit

is

ignored.

17

11

Spread

the

space

object

Bit

2

974

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

All

extensions

to

the

space

object

should

be

on

one

storage

device,

if

possible.

1

=

All

extensions

to

the

space

object

should

be

spread

across

multiple

storage

devices,

if

possible.

17

11

Machine

chooses

space

alignment

Bit

3

0

=

The

space

alignment

indicated

by

the

space

alignment

field

is

performed.

1

=

The

machine

will

choose

the

space

alignment

most

beneficial

to

performance,

which

may

reduce

maximum

space

capacity.

When

the

modify

space

alignment

field

has

a

value

of

1

and

this

value

is

specified,

the

space

alignment

field

is

ignored,

but

the

alignment

chosen

will

be

a

multiple

of

512.

17

11

Reserved

Bits

4-23

There

are

no

modification

selection

options

for

the

fields

in

CRTS

that

correspond

to

these

bits.

So,

currently

these

bits

are

ignored.

20

14

Expanded

transfer

size

advisory

Char(1)

21

15

Reserved

(binary

0)

Char(1)

22

16

Secondary

associated

space

number

UBin(2)

If

the

thread

execution

state

is

user

state,

this

field

must

be

0.

Otherwise

an

invalid

space

modification

(hex

3602)

exception

is

signaled.

This

restriction

applies

at

all

system

security

levels.

24

18

Reserved

(binary

0)

Char(4)

28

1C

—-

End

—-

The

modification

selection

indicator

fields

select

the

modifications

to

be

performed

on

the

space.

The

modify

space

length

attribute

modification

selection

field

controls

whether

or

not

the

space

length

attribute

is

to

be

modified.

When

yes

is

specified,

the

value

of

the

space

length

indicator

is

used

to

modify

the

space

to

the

specified

fixed

or

variable

length

attribute.

When

no

is

specified,

the

space

length

indicator

attribute

value

is

ignored

and

the

space

length

attribute

is

not

modified.

The

modify

space

length

attribute

modification

selection

field

may

not

be

set

to

yes

for

a

packed

secondary

associated

space.

An

attempt

to

do

so

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

The

modify

size

of

space

modification

selection

field

controls

whether

or

not

the

allocation

size

of

the

space

is

to

be

modified.

When

yes

is

specified,

the

current

allocation

of

the

space

is

extended

or

truncated

accordingly

to

match

as

closely

as

possible

the

specified

size

in

the

size

of

space

field.

The

modified

size

will

be

at

least

the

size

specified.

The

actual

size

allocated

is

dependent

upon

the

algorithm

used

within

the

specific

implementation

of

the

machine.

When

no

is

specified,

the

current

allocation

of

the

space

is

not

modified

and

the

size

of

space

field

is

ignored.

Modification

of

the

size

of

space

attribute

for

a

space

of

fixed

length

can

only

be

performed

in

conjunction

with

modification

of

the

space

length

attribute.

In

this

case,

the

space

length

attribute

may

be

modified

to

Machine

Interface

Instructions

975

the

same

fixed

length

attribute

or

to

the

variable

length

attribute.

An

attempt

to

modify

the

size

of

space

attribute

for

a

space

of

fixed

length

without

modification

of

the

space

length

attribute

results

in

the

signaling

of

the

space

extension/truncation

(hex

3601)

exception.

Modification

of

the

size

of

space

attribute

for

a

space

of

variable

length

can

always

be

performed

separately

from

a

modification

of

the

space

length

attribute.

When

the

size

of

space

attribute

is

to

be

modified,

if

the

value

of

the

size

of

space

field

is

negative

or

specifies

a

size

larger

than

that

for

the

largest

space

that

can

be

associated

with

the

object,

the

space

extension/truncation

(hex

3601)

exception

is

signaled.

The

modify

size

of

space

modification

selection

field

may

not

be

set

to

yes

for

a

packed

secondary

associated

space.

An

attempt

to

do

so

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

The

modify

initial

value

of

space

modification

selection

field

controls

whether

or

not

the

initial

value

of

space

attribute

is

to

be

modified.

When

yes

is

specified,

the

value

of

the

initial

value

of

space

field

is

used

to

modify

the

corresponding

attribute

of

this

space.

This

byte

value

will

be

used

to

initialize

any

new

space

allocations

for

this

space

due

to

an

extension

to

the

size

of

space

attribute

on

the

current

execution

of

this

instruction

as

well

as

any

subsequent

modifications.

When

no

is

specified,

the

initial

value

of

space

field

is

ignored

and

the

initial

value

of

space

attribute

is

not

modified.

The

modify

initial

value

of

space

modification

selection

field

may

not

be

set

to

yes

for

a

packed

secondary

associated

space.

An

attempt

to

do

so

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

The

modify

space

alignment

modification

selection

field

controls

whether

or

not

the

space

alignment

and

machine

chooses

space

alignment

attributes

of

the

specified

system

object

are

to

be

modified.

When

yes

is

specified,

the

values

of

the

space

alignment

and

machine

chooses

space

alignment

fields

are

used

to

modify

the

space

alignment

of

the

specified

system

object.

When

no

is

specified,

the

space

alignment

attributes

of

the

specified

system

object

are

not

modified.

The

modify

space

alignment

modification

selection

field

may

not

be

set

to

yes

for

a

packed

secondary

associated

space.

An

attempt

to

do

so

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

The

modify

initialize

space

attribute

modification

selection

field

controls

whether

or

not

the

initialize

space

attribute

is

to

be

modified.

When

yes

is

specified,

the

value

of

the

initialize

space

indicator

attribute

is

used

to

modify

that

attribute

of

the

specified

space

to

the

specified

value.

When

no

is

specified,

the

initialize

space

indicator

attribute

value

is

ignored

and

the

initialize

space

attribute

is

not

modified.

Changing

the

value

of

the

initialize

space

attribute

only

affects

whether

or

not

future

extensions

of

the

space

will

be

initialized

or

not.

That

is,

it

is

the

state

of

this

attribute

at

the

time

of

allocation

of

the

storage

for

a

space

that

determines

whether

that

newly

allocated

storage

area

will

be

initialized

to

the

initial

value

specified

for

the

space.

Modifications

of

this

attribute

subsequent

to

the

allocation

of

storage

to

a

space

have

no

effect

on

the

value

of

that

previously

allocated

storage

area.

The

modify

initialize

space

attribute

modification

selection

field

may

not

be

set

to

yes

for

a

packed

secondary

associated

space.

An

attempt

to

do

so

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

The

reinitialize

space

modification

selection

field

controls

whether

the

storage

allocated

to

the

space

is

to

be

reinitialized

in

its

entirety.

When

no

is

specified,

the

space

is

not

reinitialized.

When

yes

is

specified,

the

space

is

reinitialized.

This

re-initialization

is

performed

after

all

other

attribute

modifications

which

may

also

have

been

specified

on

the

instruction

have

been

made.

Thus

changes

to

the

size

of

the

space,

the

initial

value

of

the

space,

etc.

will

be

put

into

effect

and

be

considered

the

current

attributes

of

the

space

for

purposes

of

the

re-initialization.

The

byte

value

used

for

the

re-initialization

is

the

current

initial

value

for

the

space.

976

iSeries:

Machine

Interface

Instructions

APIs

Note

that

specifying

yes

for

the

reinitialize

space

modification

selection

field

for

a

space

with

current

attributes

of

fixed

length

size

zero

results

in

no

operation,

because

such

a

space

has

no

allocated

storage

to

reinitialize.

Also,

note

that

re-initialization

of

a

space

will

have

the

side

effect

of

resetting

partial

damage

for

a

space

object

containing

the

space

if

the

space

object

had

previously

been

marked

as

having

partial

damage.

This

only

applies

to

space

objects;

i.e.

re-initialization

of

an

associated

space

does

not

have

the

side

effect

of

resetting

partial

damage

for

the

MI

object

containing

it.

The

reinitialize

space

modification

selection

field

may

not

be

set

to

yes

for

a

packed

secondary

associated

space.

An

attempt

to

do

so

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

The

modify

automatically

extend

space

attribute

modification

selection

field

controls

whether

or

not

the

automatically

extend

space

attribute

is

to

be

modified.

When

yes

is

specified,

the

value

of

the

automatically

extend

space

indicator

attribute

is

used

to

modify

that

attribute

of

the

specified

space

to

the

specified

value.

When

no

is

specified,

the

automatically

extend

space

indicator

attribute

value

is

ignored

and

the

automatically

extend

space

attribute

is

not

modified.

The

automatically

extend

space

attribute

can

only

be

specified

as

yes

when

the

space

length

attribute

for

the

space

is

already

variable

length,

or

when

the

space

length

attribute

is

being

modified

to

variable

length.

Invalid

specification

of

the

automatically

extend

space

attribute

results

in

the

signaling

of

the

invalid

space

modification

(hex

3602)

exception.

The

modify

automatically

extend

space

modification

selection

field

may

not

be

set

to

yes

for

a

packed

secondary

associated

space.

An

attempt

to

do

so

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

The

create

secondary

associated

space

field

indicates

if

a

secondary

associated

space

is

to

be

created

for

the

object.

When

this

field

is

set

to

yes,

most

of

the

operand

2

template

fields

are

used.

However,

all

other

modification

selection

fields

are

ignored,

as

are

the

spread

the

space,

and

always

enforce

hardware

storage

protection

of

this

space

fields.

All

secondary

associated

spaces

are

protected

with

hardware

storage

protection

at

all

times.

The

secondary

associated

space

to

be

created

is

indicated

by

the

secondary

associated

space

number

field.

If

the

specified

space

already

exists,

or

the

object

already

has

its

maximum

number

of

secondary

associated

spaces,

the

invalid

space

modification

(hex

3602)

exception

is

signalled.

The

modify

hardware

storage

protection

enforcement

selection

field

controls

whether

the

enforce

hardware

storage

protection

of

this

space

at

all

times

attribute

is

to

be

modified.

When

yes

is

specified,

the

value

of

the

enforce

hardware

storage

protection

of

this

space

at

all

times

field

is

used

to

control

when

hardware

storage

protection

will

be

enforced

for

the

primary

associated

space

of

a

process

control

space,

independent

index,

or

space

object

that

is

being

modified

by

this

operation.

When

this

attribute

is

selected

and

an

existing

space

is

being

modified,

the

existing

hardware

storage

protection

level

in

effect

for

the

space

will

be

unchanged,

but

will

either

be

enforced

at

all

times,

or

only

when

hardware

storage

protection

is

enforced

for

all

storage.

The

modify

expanded

transfer

size

advisory

selection

field

controls

whether

the

expanded

transfer

size

advisory

attribute

is

to

be

modified.

When

yes

is

specified,

the

value

of

expanded

transfer

size

advisory

specifies

the

desired

number

of

pages

to

be

transferred

between

main

store

and

auxiliary

storage

for

implicit

access

state

changes.

This

value

is

only

an

advisory;

the

machine

may

use

a

value

of

its

choice

for

performing

access

state

changes

under

some

circumstances.

For

example,

the

machine

may

limit

the

transfer

size

to

a

smaller

value

than

is

specified.

A

value

of

zero

is

an

explicit

indication

that

the

machine

should

use

the

machine

default

storage

transfer

size

for

this

object.

Modification

of

the

expanded

transfer

size

advisory

is

only

supported

for

space

objects.

Attempts

to

modify

associated

spaces

of

other

system

objects

will

cause

the

invalid

space

modification

(hex

3602)

exception

to

be

signalled.

The

modify

spreading

the

space

object

attribute

modification

selection

field

controls

whether

or

not

the

spread

the

space

object

attribute

is

to

be

modified.

When

yes

is

specified

and

spread

the

space

object

is

binary

Machine

Interface

Instructions

977

1,

extensions

to

the

space

object

will

be

spread

across

multiple

storage

devices,

if

possible.

When

yes

is

specified

and

spread

the

space

object

is

zero,

extensions

to

the

space

object

will

be

contained

on

one

storage

device,

if

possible.

When

no

is

specified,

the

spread

the

space

object

field

is

ignored

and

the

current

attribute

setting

for

the

space

object

is

unchanged.

The

actual

storage

devices

used

are

dependent

upon

the

algorithm

used

within

the

specific

implementation

of

the

machine.

Only

the

new

allocations

of

the

space

object

are

affected;

the

existing

portion

of

the

space

object

is

not

modified.

The

modify

spreading

the

space

object

modification

selection

field

may

not

be

set

to

yes

for

a

packed

secondary

associated

space.

An

attempt

to

do

so

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

This

field

is

ignored

for

a

system

object

that

is

not

a

space

object.

The

hardware

storage

protection

level

field

determines

the

type(s)

of

accesses

that

are

allowed

to

the

space.

This

field

is

only

used

when

creating

associated

spaces.

That

is,

it

is

only

used

when

extending

the

size

of

a

primary

associated

space

of

fixed

length

and

size

equal

to

zero,

or

creating

secondary

associated

space(s).

For

all

other

modifications

it

is

ignored.

Modification

to

or

from

the

state

of

a

space

being

fixed

length

of

size

zero

can

not

be

performed

for

the

following

objects:

Byte

stream

file

Cursor

Data

space

Directory

Program

(when

attempted

while

in

user

state

on

a

security

level

40

or

higher

system).

Space

Modification

to

or

from

the

state

of

a

space

being

fixed

length

of

size

zero

might

not

be

permitted

for

the

following

objects

if

they

were

created

with

an

internal

format

incompatible

with

this

change,

which

could

have

occurred

for

these

objects

if

they

were

created

before

V4R4:

Class

of

service

description

Controller

description

Logical

unit

description

Mode

description

Network

description

978

iSeries:

Machine

Interface

Instructions

APIs

If

such

a

modification

is

attempted

for

the

objects

listed

above,

under

the

circumstances

described

above,

the

invalid

space

modification

(hex

3602)

exception

is

signaled.

Specifying

the

largest

size

of

space

needed

value

allows

the

machine,

under

certain

circumstances,

to

select

usage

of

an

internal

storage

allocation

unit

which

best

utilizes

the

internal

addressing

resources

within

the

machine.

Note

that

the

internal

storage

allocation

unit

selected

can

alter

the

maximum

modification

size

of

the

associated

space

for

the

object.

However,

the

machine

will

always

use

an

internal

storage

allocation

unit

that

will

allow

for

extension

of

the

space

to

at

least

the

value

specified

in

the

largest

size

of

space

needed

field.

The

maximum

size

to

which

the

space

can

be

modified

is

dependent

upon

specific

implementations

of

the

machine

and

can

vary

with

different

machine

implementations.

The

secondary

associated

space

number

field

is

used

to

indicate

which

secondary

space

is

to

be

created

or

modified.

When

this

field

is

zero,

the

primary

associated

space

of

the

space

object

is

modified.

If

this

field

is

not

zero

and

no

secondary

associated

spaces

are

allowed

for

the

object,

the

scalar

value

invalid

(hex

3203)

exception

will

be

signalled.

A

fixed

length

space

of

size

zero

is

defined

by

the

machine

to

have

no

internal

storage

allocation.

Due

to

this,

a

modification

to

or

from

this

state

is,

in

essence,

the

same

as

a

destroy

or

create

for

the

space

associated

with

the

specified

system

object.

The

effect

of

modifying

to

this

state

is

similar

to

destroying

the

associated

space

in

that

address

references

to

the

space

through

previously

set

pointers

will

result

in

signaling

of

the

object

destroyed

(hex

2202)

exception.

When

a

primary

associated

space

is

destroyed

by

using

this

method,

any

secondary

associated

spaces

for

the

object

are

also

destroyed.

To

the

contrary,

modifying

the

space

attributes

from

this

state

is

similar

to

creating

an

associated

space

in

that

the

Set

Space

Pointer

from

Pointer

(SETSPPFP)

instruction

can

be

used

to

set

a

space

pointer

to

the

start

of

storage

within

the

associated

space

and

the

allocated

space

storage

can

be

used

to

contain

space

data.

The

extension

and

truncation

of

a

space

is

always

by

an

implementation-defined

multiple

of

256

bytes.

This

means

that

if,

for

example,

the

implementation

defined

multiple

is

2

(or

512

bytes),

any

modification

of

the

space

size

will

be

in

increments

of

512

bytes.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Object

management

–

–

Operand

1
v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution
v

Object

control

–

–

Operand

1

(when

operand

2

is

binary)
v

Modify

–

–

Operand

1

(when

operand

2

is

character)

Machine

Interface

Instructions

979

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C04

Object

Storage

Limit

Exceeded

1C0E

IASP

Resources

Exceeded

1C11

Independent

ASP

Varied

Off

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

980

iSeries:

Machine

Interface

Instructions

APIs

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

3602

Invalid

Space

Modification

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Modify

Space

Attributes

(MODS)

Op

Code

(Hex)

Operand

1

Operand

2

0062

System

object

Size

or

space

modification

template

Operand

1:

System

pointer.

Operand

2:

Binary

scalar

or

character(28)

scalar.

Bound

program

access

Built-in

number

for

MODS1

is

28.

MODS1

(

system_object

:

address

of

system

pointer

size

:

address

of

signed

binary(4)

OR

address

of

unsigned

binary(4)

)

--

OR

--

Built-in

number

for

MODS2

is

29.

MODS2

(

system_object

:

address

of

system

pointer

space_modification_template

:

address

)

Machine

Interface

Instructions

981

Description:

The

attributes

of

the

space

associated

with

the

system

object

specified

for

operand

1

are

modified

with

the

attribute

values

specified

in

operand

2.

At

any

security

level,

if

the

thread

execution

state

is

user

state

and

the

object

addressed

by

operand

1

has

secondary

associated

spaces,

an

attempt

to

truncate

or

delete

any

of

the

associated

spaces

of

the

addressed

object

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

If

the

thread

execution

state

is

user

state

and

the

machine

security

level

attribute

has

a

value

of

hex

40

or

greater

then

v

v

If

operand

1

addresses

a

program

object,

the

associated

spaces

of

the

program

object

can

not

be

modified

and

an

invalid

space

modification

(hex

3602)

exception

is

signaled.

v

If

the

hardware

storage

protection

of

the

object

addressed

by

operand

1

is

not

read/write

from

user

state,

the

associated

spaces

of

the

addressed

object

can

not

be

modified

and

a

space

extension/truncation

(hex

3601)

exception

is

signaled.

The

operand

2

space

modification

template

is

specified

with

one

of

two

formats.

The

abbreviated

format,

operand

2

specified

as

a

binary

scalar,

only

provides

for

modifying

the

size

of

space

attribute.

The

full

format,

operand

2

specified

as

a

character

scalar,

provides

for

modifying

the

full

set

of

space

attributes.

When

operand

2

is

a

binary

value,

it

specifies

the

size

in

bytes

to

which

the

space

size

is

to

be

modified.

The

current

allocation

of

the

space

is

extended

or

truncated

accordingly

to

match

as

closely

as

possible

the

specified

size.

The

modified

space

size

will

be

of

at

least

the

size

specified.

The

actual

size

allocated

is

dependent

upon

the

algorithm

used

within

the

specific

implementation

of

the

machine.

When

operand

2

is

a

character

scalar,

it

specifies

a

selection

of

space

attribute

values

to

be

used

to

modify

the

attributes

of

the

space.

Associated

spaces

can

be

modified,

created

or

destroyed

by

this

instruction.

Not

all

attributes

can

be

modified

for

existing

associated

spaces,

so

some

template

fields

apply

only

when

an

associated

space

is

being

created,

i.e.

when

a

primary

associated

space

of

fixed

length

size

zero

is

modified

or

when

a

secondary

associated

space

is

created.

More

detail

is

provided

below

within

descriptions

of

individual

fields.

The

operand

2

character

scalar

must

be

at

least

28

bytes

long

and

have

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Modification

selection

Char(4)

0

0

Modify

space

length

attribute

Bit

0

0

=

No

1

=

Yes

0

0

Modify

size

of

space

Bit

1

0

=

No

1

=

Yes

0

0

Modify

initial

value

of

space

Bit

2

0

=

No

1

=

Yes

0

0

Modify

space

alignment

Bit

3

982

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

No

1

=

Yes
This

field

must

have

a

value

of

0

if

an

existing

space

is

being

modified.

Otherwise

an

invalid

space

modification

(hex

3602)

exception

is

signaled.

0

0

Modify

initialize

space

attribute

Bit

4

0

=

No

1

=

Yes

0

0

Reinitialize

space

Bit

5

0

=

No

1

=

Yes

0

0

Modify

automatically

extend

space

attribute

Bit

6

0

=

No

1

=

Yes

0

0

Create

secondary

associated

space

Bit

7

0

=

No

1

=

Yes

If

the

thread

execution

state

is

user

state,

this

field

must

be

0.

Otherwise

an

invalid

space

modification

(hex

3602)

exception

is

signaled.

This

restriction

applies

at

all

system

security

levels.

0

0

Reserved

(binary

0)

Bit

8

0

0

Modify

hardware

storage

protection

enforcement

Bit

9

0

=

No

1

=

Yes

If

the

thread

execution

state

is

user

state,

this

field

must

be

0.

Otherwise

an

invalid

space

modification

(hex

3602)

exception

is

signaled.

This

restriction

applies

at

all

system

security

levels.

If

the

object

is

not

an

independent

index,

process

control

space,

or

a

space,

this

field

must

be

0.

Otherwise

an

invalid

space

modification

(hex

3602)

exception

is

signaled.

0

0

Modify

expanded

transfer

size

advisory

Bit

10

0

=

No

1

=

Yes

Machine

Interface

Instructions

983

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Modify

spreading

the

space

object

Bit

11

0

=

No

1

=

Yes

0

0

Reserved

(binary

0)

Bits

12-31

4

4

Indicator

attributes

Char(4)

4

4

Reserved

(binary

0)

Bit

0

4

4

Space

length

Bit

1

0

=

Fixed

length

1

=

Variable

length

4

4

Initialize

space

Bit

2

0

=

Initialize

1

=

Do

not

initialize

4

4

Automatically

extend

space

Bit

3

0

=

No

1

=

Yes

4

4

Reserved

(binary

0)

Bits

4-14

4

4

Hardware

storage

protection

level

Bits

15-16

00

=

Reference

and

modify

allowed

for

user

state

programs

01

=

Only

reference

allowed

for

user

state

programs

10

=

Invalid

(undefined)

11

=

No

reference

or

modify

allowed

for

user

state

programs

4

4

Reserved

(binary

0)

Bits

17-20

4

4

Always

enforce

hardware

storage

protection

of

this

space

Bit

21

0

=

Enforce

hardware

storage

protection

of

this

space

only

when

hardware

storage

protection

is

being

enforced

for

all

storage.

1

=

Enforce

hardware

storage

protection

of

this

space

at

all

times.

4

4

Reserved

(binary

0)

Bits

22-31

984

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

8

8

Maximum

size

of

secondary

associated

space

Bin(4)

This

field

is

ignored

when

create

secondary

associated

space

is

0.

12

C

Size

of

space

Bin(4)

or

UBin(4)

16

10

Initial

value

of

space

Char(1)

17

11

Performance

class

Char(4)

17

11

Space

alignment

Bit

0

0

=

The

space

associated

with

the

object

is

modified

to

allow

proper

alignment

of

pointers

at

16-byte

alignments

within

the

space.

1

=

The

space

associated

with

the

object

is

modified

to

allow

proper

alignment

of

input/output

buffers

at

512-byte

alignments

within

the

space.

Note

that

this

also

allows

proper

16-byte

alignment

of

pointers.
The

value

of

this

field

is

ignored

when

the

machine

chooses

space

alignment

field

has

a

value

of

1.

17

11

Reserved

Bit

1

There

is

no

modification

selection

option

for

the

field

in

CRTS

that

corresponds

to

this

bit.

So,

currently

this

bit

is

ignored.

17

11

Spread

the

space

object

Bit

2

0

=

All

extensions

to

the

space

object

should

be

on

one

storage

device,

if

possible.

1

=

All

extensions

to

the

space

object

should

be

spread

across

multiple

storage

devices,

if

possible.

17

11

Machine

chooses

space

alignment

Bit

3

0

=

The

space

alignment

indicated

by

the

space

alignment

field

is

performed.

1

=

The

machine

will

choose

the

space

alignment

most

beneficial

to

performance,

which

may

reduce

maximum

space

capacity.

When

the

modify

space

alignment

field

has

a

value

of

1

and

this

value

is

specified,

the

space

alignment

field

is

ignored,

but

the

alignment

chosen

will

be

a

multiple

of

512.

17

11

Reserved

Bits

4-23

There

are

no

modification

selection

options

for

the

fields

in

CRTS

that

correspond

to

these

bits.

So,

currently

these

bits

are

ignored.

20

14

Expanded

transfer

size

advisory

Char(1)

21

15

Reserved

(binary

0)

Char(1)

22

16

Secondary

associated

space

number

UBin(2)

Machine

Interface

Instructions

985

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

If

the

thread

execution

state

is

user

state,

this

field

must

be

0.

Otherwise

an

invalid

space

modification

(hex

3602)

exception

is

signaled.

This

restriction

applies

at

all

system

security

levels.

24

18

Reserved

(binary

0)

Char(4)

28

1C

—-

End

—-

The

modification

selection

indicator

fields

select

the

modifications

to

be

performed

on

the

space.

The

modify

space

length

attribute

modification

selection

field

controls

whether

or

not

the

space

length

attribute

is

to

be

modified.

When

yes

is

specified,

the

value

of

the

space

length

indicator

is

used

to

modify

the

space

to

the

specified

fixed

or

variable

length

attribute.

When

no

is

specified,

the

space

length

indicator

attribute

value

is

ignored

and

the

space

length

attribute

is

not

modified.

The

modify

space

length

attribute

modification

selection

field

may

not

be

set

to

yes

for

a

packed

secondary

associated

space.

An

attempt

to

do

so

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

The

modify

size

of

space

modification

selection

field

controls

whether

or

not

the

allocation

size

of

the

space

is

to

be

modified.

When

yes

is

specified,

the

current

allocation

of

the

space

is

extended

or

truncated

accordingly

to

match

as

closely

as

possible

the

specified

size

in

the

size

of

space

field.

The

modified

size

will

be

at

least

the

size

specified.

The

actual

size

allocated

is

dependent

upon

the

algorithm

used

within

the

specific

implementation

of

the

machine.

When

no

is

specified,

the

current

allocation

of

the

space

is

not

modified

and

the

size

of

space

field

is

ignored.

Modification

of

the

size

of

space

attribute

for

a

space

of

fixed

length

can

only

be

performed

in

conjunction

with

modification

of

the

space

length

attribute.

In

this

case,

the

space

length

attribute

may

be

modified

to

the

same

fixed

length

attribute

or

to

the

variable

length

attribute.

An

attempt

to

modify

the

size

of

space

attribute

for

a

space

of

fixed

length

without

modification

of

the

space

length

attribute

results

in

the

signaling

of

the

space

extension/truncation

(hex

3601)

exception.

Modification

of

the

size

of

space

attribute

for

a

space

of

variable

length

can

always

be

performed

separately

from

a

modification

of

the

space

length

attribute.

When

the

size

of

space

attribute

is

to

be

modified,

if

the

value

of

the

size

of

space

field

is

negative

or

specifies

a

size

larger

than

that

for

the

largest

space

that

can

be

associated

with

the

object,

the

space

extension/truncation

(hex

3601)

exception

is

signaled.

The

modify

size

of

space

modification

selection

field

may

not

be

set

to

yes

for

a

packed

secondary

associated

space.

An

attempt

to

do

so

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

The

modify

initial

value

of

space

modification

selection

field

controls

whether

or

not

the

initial

value

of

space

attribute

is

to

be

modified.

When

yes

is

specified,

the

value

of

the

initial

value

of

space

field

is

used

to

modify

the

corresponding

attribute

of

this

space.

This

byte

value

will

be

used

to

initialize

any

new

space

allocations

for

this

space

due

to

an

extension

to

the

size

of

space

attribute

on

the

current

execution

of

this

instruction

as

well

as

any

subsequent

modifications.

When

no

is

specified,

the

initial

value

of

space

field

is

ignored

and

the

initial

value

of

space

attribute

is

not

modified.

The

modify

initial

value

of

space

modification

selection

field

may

not

be

set

to

yes

for

a

packed

secondary

associated

space.

An

attempt

to

do

so

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

The

modify

space

alignment

modification

selection

field

controls

whether

or

not

the

space

alignment

and

machine

chooses

space

alignment

attributes

of

the

specified

system

object

are

to

be

modified.

When

yes

is

986

iSeries:

Machine

Interface

Instructions

APIs

specified,

the

values

of

the

space

alignment

and

machine

chooses

space

alignment

fields

are

used

to

modify

the

space

alignment

of

the

specified

system

object.

When

no

is

specified,

the

space

alignment

attributes

of

the

specified

system

object

are

not

modified.

The

modify

space

alignment

modification

selection

field

may

not

be

set

to

yes

for

a

packed

secondary

associated

space.

An

attempt

to

do

so

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

The

modify

initialize

space

attribute

modification

selection

field

controls

whether

or

not

the

initialize

space

attribute

is

to

be

modified.

When

yes

is

specified,

the

value

of

the

initialize

space

indicator

attribute

is

used

to

modify

that

attribute

of

the

specified

space

to

the

specified

value.

When

no

is

specified,

the

initialize

space

indicator

attribute

value

is

ignored

and

the

initialize

space

attribute

is

not

modified.

Changing

the

value

of

the

initialize

space

attribute

only

affects

whether

or

not

future

extensions

of

the

space

will

be

initialized

or

not.

That

is,

it

is

the

state

of

this

attribute

at

the

time

of

allocation

of

the

storage

for

a

space

that

determines

whether

that

newly

allocated

storage

area

will

be

initialized

to

the

initial

value

specified

for

the

space.

Modifications

of

this

attribute

subsequent

to

the

allocation

of

storage

to

a

space

have

no

effect

on

the

value

of

that

previously

allocated

storage

area.

The

modify

initialize

space

attribute

modification

selection

field

may

not

be

set

to

yes

for

a

packed

secondary

associated

space.

An

attempt

to

do

so

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

The

reinitialize

space

modification

selection

field

controls

whether

the

storage

allocated

to

the

space

is

to

be

reinitialized

in

its

entirety.

When

no

is

specified,

the

space

is

not

reinitialized.

When

yes

is

specified,

the

space

is

reinitialized.

This

re-initialization

is

performed

after

all

other

attribute

modifications

which

may

also

have

been

specified

on

the

instruction

have

been

made.

Thus

changes

to

the

size

of

the

space,

the

initial

value

of

the

space,

etc.

will

be

put

into

effect

and

be

considered

the

current

attributes

of

the

space

for

purposes

of

the

re-initialization.

The

byte

value

used

for

the

re-initialization

is

the

current

initial

value

for

the

space.

Note

that

specifying

yes

for

the

reinitialize

space

modification

selection

field

for

a

space

with

current

attributes

of

fixed

length

size

zero

results

in

no

operation,

because

such

a

space

has

no

allocated

storage

to

reinitialize.

Also,

note

that

re-initialization

of

a

space

will

have

the

side

effect

of

resetting

partial

damage

for

a

space

object

containing

the

space

if

the

space

object

had

previously

been

marked

as

having

partial

damage.

This

only

applies

to

space

objects;

i.e.

re-initialization

of

an

associated

space

does

not

have

the

side

effect

of

resetting

partial

damage

for

the

MI

object

containing

it.

The

reinitialize

space

modification

selection

field

may

not

be

set

to

yes

for

a

packed

secondary

associated

space.

An

attempt

to

do

so

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

The

modify

automatically

extend

space

attribute

modification

selection

field

controls

whether

or

not

the

automatically

extend

space

attribute

is

to

be

modified.

When

yes

is

specified,

the

value

of

the

automatically

extend

space

indicator

attribute

is

used

to

modify

that

attribute

of

the

specified

space

to

the

specified

value.

When

no

is

specified,

the

automatically

extend

space

indicator

attribute

value

is

ignored

and

the

automatically

extend

space

attribute

is

not

modified.

The

automatically

extend

space

attribute

can

only

be

specified

as

yes

when

the

space

length

attribute

for

the

space

is

already

variable

length,

or

when

the

space

length

attribute

is

being

modified

to

variable

length.

Invalid

specification

of

the

automatically

extend

space

attribute

results

in

the

signaling

of

the

invalid

space

modification

(hex

3602)

exception.

The

modify

automatically

extend

space

modification

selection

field

may

not

be

set

to

yes

for

a

packed

secondary

associated

space.

An

attempt

to

do

so

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

The

create

secondary

associated

space

field

indicates

if

a

secondary

associated

space

is

to

be

created

for

the

object.

When

this

field

is

set

to

yes,

most

of

the

operand

2

template

fields

are

used.

However,

all

other

Machine

Interface

Instructions

987

modification

selection

fields

are

ignored,

as

are

the

spread

the

space,

and

always

enforce

hardware

storage

protection

of

this

space

fields.

All

secondary

associated

spaces

are

protected

with

hardware

storage

protection

at

all

times.

The

secondary

associated

space

to

be

created

is

indicated

by

the

secondary

associated

space

number

field.

If

the

specified

space

already

exists,

or

the

object

already

has

its

maximum

number

of

secondary

associated

spaces,

the

invalid

space

modification

(hex

3602)

exception

is

signalled.

The

modify

hardware

storage

protection

enforcement

selection

field

controls

whether

the

enforce

hardware

storage

protection

of

this

space

at

all

times

attribute

is

to

be

modified.

When

yes

is

specified,

the

value

of

the

enforce

hardware

storage

protection

of

this

space

at

all

times

field

is

used

to

control

when

hardware

storage

protection

will

be

enforced

for

the

primary

associated

space

of

a

process

control

space,

independent

index,

or

space

object

that

is

being

modified

by

this

operation.

When

this

attribute

is

selected

and

an

existing

space

is

being

modified,

the

existing

hardware

storage

protection

level

in

effect

for

the

space

will

be

unchanged,

but

will

either

be

enforced

at

all

times,

or

only

when

hardware

storage

protection

is

enforced

for

all

storage.

The

modify

expanded

transfer

size

advisory

selection

field

controls

whether

the

expanded

transfer

size

advisory

attribute

is

to

be

modified.

When

yes

is

specified,

the

value

of

expanded

transfer

size

advisory

specifies

the

desired

number

of

pages

to

be

transferred

between

main

store

and

auxiliary

storage

for

implicit

access

state

changes.

This

value

is

only

an

advisory;

the

machine

may

use

a

value

of

its

choice

for

performing

access

state

changes

under

some

circumstances.

For

example,

the

machine

may

limit

the

transfer

size

to

a

smaller

value

than

is

specified.

A

value

of

zero

is

an

explicit

indication

that

the

machine

should

use

the

machine

default

storage

transfer

size

for

this

object.

Modification

of

the

expanded

transfer

size

advisory

is

only

supported

for

space

objects.

Attempts

to

modify

associated

spaces

of

other

system

objects

will

cause

the

invalid

space

modification

(hex

3602)

exception

to

be

signalled.

The

modify

spreading

the

space

object

attribute

modification

selection

field

controls

whether

or

not

the

spread

the

space

object

attribute

is

to

be

modified.

When

yes

is

specified

and

spread

the

space

object

is

binary

1,

extensions

to

the

space

object

will

be

spread

across

multiple

storage

devices,

if

possible.

When

yes

is

specified

and

spread

the

space

object

is

zero,

extensions

to

the

space

object

will

be

contained

on

one

storage

device,

if

possible.

When

no

is

specified,

the

spread

the

space

object

field

is

ignored

and

the

current

attribute

setting

for

the

space

object

is

unchanged.

The

actual

storage

devices

used

are

dependent

upon

the

algorithm

used

within

the

specific

implementation

of

the

machine.

Only

the

new

allocations

of

the

space

object

are

affected;

the

existing

portion

of

the

space

object

is

not

modified.

The

modify

spreading

the

space

object

modification

selection

field

may

not

be

set

to

yes

for

a

packed

secondary

associated

space.

An

attempt

to

do

so

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

This

field

is

ignored

for

a

system

object

that

is

not

a

space

object.

The

hardware

storage

protection

level

field

determines

the

type(s)

of

accesses

that

are

allowed

to

the

space.

This

field

is

only

used

when

creating

associated

spaces.

That

is,

it

is

only

used

when

extending

the

size

of

a

primary

associated

space

of

fixed

length

and

size

equal

to

zero,

or

creating

secondary

associated

space(s).

For

all

other

modifications

it

is

ignored.

Modification

to

or

from

the

state

of

a

space

being

fixed

length

of

size

zero

can

not

be

performed

for

the

following

objects:

Byte

stream

file

Cursor

988

iSeries:

Machine

Interface

Instructions

APIs

Data

space

Directory

Program

(when

attempted

while

in

user

state

on

a

security

level

40

or

higher

system).

Space

Modification

to

or

from

the

state

of

a

space

being

fixed

length

of

size

zero

might

not

be

permitted

for

the

following

objects

if

they

were

created

with

an

internal

format

incompatible

with

this

change,

which

could

have

occurred

for

these

objects

if

they

were

created

before

V4R4:

Class

of

service

description

Controller

description

Logical

unit

description

Mode

description

Network

description

If

such

a

modification

is

attempted

for

the

objects

listed

above,

under

the

circumstances

described

above,

the

invalid

space

modification

(hex

3602)

exception

is

signaled.

Specifying

the

largest

size

of

space

needed

value

allows

the

machine,

under

certain

circumstances,

to

select

usage

of

an

internal

storage

allocation

unit

which

best

utilizes

the

internal

addressing

resources

within

the

machine.

Note

that

the

internal

storage

allocation

unit

selected

can

alter

the

maximum

modification

size

of

the

associated

space

for

the

object.

However,

the

machine

will

always

use

an

internal

storage

allocation

unit

that

will

allow

for

extension

of

the

space

to

at

least

the

value

specified

in

the

largest

size

of

space

needed

field.

The

maximum

size

to

which

the

space

can

be

modified

is

dependent

upon

specific

implementations

of

the

machine

and

can

vary

with

different

machine

implementations.

The

secondary

associated

space

number

field

is

used

to

indicate

which

secondary

space

is

to

be

created

or

modified.

When

this

field

is

zero,

the

primary

associated

space

of

the

space

object

is

modified.

If

this

field

is

not

zero

and

no

secondary

associated

spaces

are

allowed

for

the

object,

the

scalar

value

invalid

(hex

3203)

exception

will

be

signalled.

A

fixed

length

space

of

size

zero

is

defined

by

the

machine

to

have

no

internal

storage

allocation.

Due

to

this,

a

modification

to

or

from

this

state

is,

in

essence,

the

same

as

a

destroy

or

create

for

the

space

associated

with

the

specified

system

object.

The

effect

of

modifying

to

this

state

is

similar

to

destroying

the

associated

space

in

that

address

references

to

the

space

through

previously

set

pointers

will

result

in

signaling

of

the

object

destroyed

(hex

2202)

exception.

When

a

primary

associated

space

is

destroyed

by

using

this

method,

any

secondary

associated

spaces

for

the

object

are

also

destroyed.

To

the

contrary,

modifying

the

space

attributes

from

this

state

is

similar

to

creating

an

associated

space

in

that

the

Set

Machine

Interface

Instructions

989

Space

Pointer

from

Pointer

(SETSPPFP)

instruction

can

be

used

to

set

a

space

pointer

to

the

start

of

storage

within

the

associated

space

and

the

allocated

space

storage

can

be

used

to

contain

space

data.

The

extension

and

truncation

of

a

space

is

always

by

an

implementation-defined

multiple

of

256

bytes.

This

means

that

if,

for

example,

the

implementation

defined

multiple

is

2

(or

512

bytes),

any

modification

of

the

space

size

will

be

in

increments

of

512

bytes.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Object

management

–

–

Operand

1
v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution
v

Object

control

–

–

Operand

1

(when

operand

2

is

binary)
v

Modify

–

–

Operand

1

(when

operand

2

is

character)

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

990

iSeries:

Machine

Interface

Instructions

APIs

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C04

Object

Storage

Limit

Exceeded

1C0E

IASP

Resources

Exceeded

1C11

Independent

ASP

Varied

Off

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

Machine

Interface

Instructions

991

3602

Invalid

Space

Modification

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Modify

Space

Attributes

(MODS)

Op

Code

(Hex)

Operand

1

Operand

2

0062

System

object

Size

or

space

modification

template

Operand

1:

System

pointer.

Operand

2:

Binary

scalar

or

character(28)

scalar.

Bound

program

access

Built-in

number

for

MODS1

is

28.

MODS1

(

system_object

:

address

of

system

pointer

size

:

address

of

signed

binary(4)

OR

address

of

unsigned

binary(4)

)

--

OR

--

Built-in

number

for

MODS2

is

29.

MODS2

(

system_object

:

address

of

system

pointer

space_modification_template

:

address

)

Description:

The

attributes

of

the

space

associated

with

the

system

object

specified

for

operand

1

are

modified

with

the

attribute

values

specified

in

operand

2.

At

any

security

level,

if

the

thread

execution

state

is

user

state

and

the

object

addressed

by

operand

1

has

secondary

associated

spaces,

an

attempt

to

truncate

or

delete

any

of

the

associated

spaces

of

the

addressed

object

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

If

the

thread

execution

state

is

user

state

and

the

machine

security

level

attribute

has

a

value

of

hex

40

or

greater

then

v

v

If

operand

1

addresses

a

program

object,

the

associated

spaces

of

the

program

object

can

not

be

modified

and

an

invalid

space

modification

(hex

3602)

exception

is

signaled.

v

If

the

hardware

storage

protection

of

the

object

addressed

by

operand

1

is

not

read/write

from

user

state,

the

associated

spaces

of

the

addressed

object

can

not

be

modified

and

a

space

extension/truncation

(hex

3601)

exception

is

signaled.

The

operand

2

space

modification

template

is

specified

with

one

of

two

formats.

The

abbreviated

format,

operand

2

specified

as

a

binary

scalar,

only

provides

for

modifying

the

size

of

space

attribute.

The

full

format,

operand

2

specified

as

a

character

scalar,

provides

for

modifying

the

full

set

of

space

attributes.

992

iSeries:

Machine

Interface

Instructions

APIs

When

operand

2

is

a

binary

value,

it

specifies

the

size

in

bytes

to

which

the

space

size

is

to

be

modified.

The

current

allocation

of

the

space

is

extended

or

truncated

accordingly

to

match

as

closely

as

possible

the

specified

size.

The

modified

space

size

will

be

of

at

least

the

size

specified.

The

actual

size

allocated

is

dependent

upon

the

algorithm

used

within

the

specific

implementation

of

the

machine.

When

operand

2

is

a

character

scalar,

it

specifies

a

selection

of

space

attribute

values

to

be

used

to

modify

the

attributes

of

the

space.

Associated

spaces

can

be

modified,

created

or

destroyed

by

this

instruction.

Not

all

attributes

can

be

modified

for

existing

associated

spaces,

so

some

template

fields

apply

only

when

an

associated

space

is

being

created,

i.e.

when

a

primary

associated

space

of

fixed

length

size

zero

is

modified

or

when

a

secondary

associated

space

is

created.

More

detail

is

provided

below

within

descriptions

of

individual

fields.

The

operand

2

character

scalar

must

be

at

least

28

bytes

long

and

have

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Modification

selection

Char(4)

0

0

Modify

space

length

attribute

Bit

0

0

=

No

1

=

Yes

0

0

Modify

size

of

space

Bit

1

0

=

No

1

=

Yes

0

0

Modify

initial

value

of

space

Bit

2

0

=

No

1

=

Yes

0

0

Modify

space

alignment

Bit

3

0

=

No

1

=

Yes
This

field

must

have

a

value

of

0

if

an

existing

space

is

being

modified.

Otherwise

an

invalid

space

modification

(hex

3602)

exception

is

signaled.

0

0

Modify

initialize

space

attribute

Bit

4

0

=

No

1

=

Yes

0

0

Reinitialize

space

Bit

5

0

=

No

1

=

Yes

0

0

Modify

automatically

extend

space

attribute

Bit

6

0

=

No

1

=

Yes

0

0

Create

secondary

associated

space

Bit

7

Machine

Interface

Instructions

993

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

No

1

=

Yes

If

the

thread

execution

state

is

user

state,

this

field

must

be

0.

Otherwise

an

invalid

space

modification

(hex

3602)

exception

is

signaled.

This

restriction

applies

at

all

system

security

levels.

0

0

Reserved

(binary

0)

Bit

8

0

0

Modify

hardware

storage

protection

enforcement

Bit

9

0

=

No

1

=

Yes

If

the

thread

execution

state

is

user

state,

this

field

must

be

0.

Otherwise

an

invalid

space

modification

(hex

3602)

exception

is

signaled.

This

restriction

applies

at

all

system

security

levels.

If

the

object

is

not

an

independent

index,

process

control

space,

or

a

space,

this

field

must

be

0.

Otherwise

an

invalid

space

modification

(hex

3602)

exception

is

signaled.

0

0

Modify

expanded

transfer

size

advisory

Bit

10

0

=

No

1

=

Yes

0

0

Modify

spreading

the

space

object

Bit

11

0

=

No

1

=

Yes

0

0

Reserved

(binary

0)

Bits

12-31

4

4

Indicator

attributes

Char(4)

4

4

Reserved

(binary

0)

Bit

0

4

4

Space

length

Bit

1

0

=

Fixed

length

1

=

Variable

length

4

4

Initialize

space

Bit

2

0

=

Initialize

1

=

Do

not

initialize

4

4

Automatically

extend

space

Bit

3

994

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

No

1

=

Yes

4

4

Reserved

(binary

0)

Bits

4-14

4

4

Hardware

storage

protection

level

Bits

15-16

00

=

Reference

and

modify

allowed

for

user

state

programs

01

=

Only

reference

allowed

for

user

state

programs

10

=

Invalid

(undefined)

11

=

No

reference

or

modify

allowed

for

user

state

programs

4

4

Reserved

(binary

0)

Bits

17-20

4

4

Always

enforce

hardware

storage

protection

of

this

space

Bit

21

0

=

Enforce

hardware

storage

protection

of

this

space

only

when

hardware

storage

protection

is

being

enforced

for

all

storage.

1

=

Enforce

hardware

storage

protection

of

this

space

at

all

times.

4

4

Reserved

(binary

0)

Bits

22-31

8

8

Maximum

size

of

secondary

associated

space

Bin(4)

This

field

is

ignored

when

create

secondary

associated

space

is

0.

12

C

Size

of

space

Bin(4)

or

UBin(4)

16

10

Initial

value

of

space

Char(1)

17

11

Performance

class

Char(4)

17

11

Space

alignment

Bit

0

0

=

The

space

associated

with

the

object

is

modified

to

allow

proper

alignment

of

pointers

at

16-byte

alignments

within

the

space.

1

=

The

space

associated

with

the

object

is

modified

to

allow

proper

alignment

of

input/output

buffers

at

512-byte

alignments

within

the

space.

Note

that

this

also

allows

proper

16-byte

alignment

of

pointers.
The

value

of

this

field

is

ignored

when

the

machine

chooses

space

alignment

field

has

a

value

of

1.

17

11

Reserved

Bit

1

Machine

Interface

Instructions

995

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

There

is

no

modification

selection

option

for

the

field

in

CRTS

that

corresponds

to

this

bit.

So,

currently

this

bit

is

ignored.

17

11

Spread

the

space

object

Bit

2

0

=

All

extensions

to

the

space

object

should

be

on

one

storage

device,

if

possible.

1

=

All

extensions

to

the

space

object

should

be

spread

across

multiple

storage

devices,

if

possible.

17

11

Machine

chooses

space

alignment

Bit

3

0

=

The

space

alignment

indicated

by

the

space

alignment

field

is

performed.

1

=

The

machine

will

choose

the

space

alignment

most

beneficial

to

performance,

which

may

reduce

maximum

space

capacity.

When

the

modify

space

alignment

field

has

a

value

of

1

and

this

value

is

specified,

the

space

alignment

field

is

ignored,

but

the

alignment

chosen

will

be

a

multiple

of

512.

17

11

Reserved

Bits

4-23

There

are

no

modification

selection

options

for

the

fields

in

CRTS

that

correspond

to

these

bits.

So,

currently

these

bits

are

ignored.

20

14

Expanded

transfer

size

advisory

Char(1)

21

15

Reserved

(binary

0)

Char(1)

22

16

Secondary

associated

space

number

UBin(2)

If

the

thread

execution

state

is

user

state,

this

field

must

be

0.

Otherwise

an

invalid

space

modification

(hex

3602)

exception

is

signaled.

This

restriction

applies

at

all

system

security

levels.

24

18

Reserved

(binary

0)

Char(4)

28

1C

—-

End

—-

The

modification

selection

indicator

fields

select

the

modifications

to

be

performed

on

the

space.

The

modify

space

length

attribute

modification

selection

field

controls

whether

or

not

the

space

length

attribute

is

to

be

modified.

When

yes

is

specified,

the

value

of

the

space

length

indicator

is

used

to

modify

the

space

to

the

specified

fixed

or

variable

length

attribute.

When

no

is

specified,

the

space

length

indicator

attribute

value

is

ignored

and

the

space

length

attribute

is

not

modified.

The

modify

space

length

attribute

modification

selection

field

may

not

be

set

to

yes

for

a

packed

secondary

associated

space.

An

attempt

to

do

so

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

The

modify

size

of

space

modification

selection

field

controls

whether

or

not

the

allocation

size

of

the

space

is

to

be

modified.

When

yes

is

specified,

the

current

allocation

of

the

space

is

extended

or

truncated

accordingly

to

match

as

closely

as

possible

the

specified

size

in

the

size

of

space

field.

The

modified

size

996

iSeries:

Machine

Interface

Instructions

APIs

will

be

at

least

the

size

specified.

The

actual

size

allocated

is

dependent

upon

the

algorithm

used

within

the

specific

implementation

of

the

machine.

When

no

is

specified,

the

current

allocation

of

the

space

is

not

modified

and

the

size

of

space

field

is

ignored.

Modification

of

the

size

of

space

attribute

for

a

space

of

fixed

length

can

only

be

performed

in

conjunction

with

modification

of

the

space

length

attribute.

In

this

case,

the

space

length

attribute

may

be

modified

to

the

same

fixed

length

attribute

or

to

the

variable

length

attribute.

An

attempt

to

modify

the

size

of

space

attribute

for

a

space

of

fixed

length

without

modification

of

the

space

length

attribute

results

in

the

signaling

of

the

space

extension/truncation

(hex

3601)

exception.

Modification

of

the

size

of

space

attribute

for

a

space

of

variable

length

can

always

be

performed

separately

from

a

modification

of

the

space

length

attribute.

When

the

size

of

space

attribute

is

to

be

modified,

if

the

value

of

the

size

of

space

field

is

negative

or

specifies

a

size

larger

than

that

for

the

largest

space

that

can

be

associated

with

the

object,

the

space

extension/truncation

(hex

3601)

exception

is

signaled.

The

modify

size

of

space

modification

selection

field

may

not

be

set

to

yes

for

a

packed

secondary

associated

space.

An

attempt

to

do

so

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

The

modify

initial

value

of

space

modification

selection

field

controls

whether

or

not

the

initial

value

of

space

attribute

is

to

be

modified.

When

yes

is

specified,

the

value

of

the

initial

value

of

space

field

is

used

to

modify

the

corresponding

attribute

of

this

space.

This

byte

value

will

be

used

to

initialize

any

new

space

allocations

for

this

space

due

to

an

extension

to

the

size

of

space

attribute

on

the

current

execution

of

this

instruction

as

well

as

any

subsequent

modifications.

When

no

is

specified,

the

initial

value

of

space

field

is

ignored

and

the

initial

value

of

space

attribute

is

not

modified.

The

modify

initial

value

of

space

modification

selection

field

may

not

be

set

to

yes

for

a

packed

secondary

associated

space.

An

attempt

to

do

so

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

The

modify

space

alignment

modification

selection

field

controls

whether

or

not

the

space

alignment

and

machine

chooses

space

alignment

attributes

of

the

specified

system

object

are

to

be

modified.

When

yes

is

specified,

the

values

of

the

space

alignment

and

machine

chooses

space

alignment

fields

are

used

to

modify

the

space

alignment

of

the

specified

system

object.

When

no

is

specified,

the

space

alignment

attributes

of

the

specified

system

object

are

not

modified.

The

modify

space

alignment

modification

selection

field

may

not

be

set

to

yes

for

a

packed

secondary

associated

space.

An

attempt

to

do

so

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

The

modify

initialize

space

attribute

modification

selection

field

controls

whether

or

not

the

initialize

space

attribute

is

to

be

modified.

When

yes

is

specified,

the

value

of

the

initialize

space

indicator

attribute

is

used

to

modify

that

attribute

of

the

specified

space

to

the

specified

value.

When

no

is

specified,

the

initialize

space

indicator

attribute

value

is

ignored

and

the

initialize

space

attribute

is

not

modified.

Changing

the

value

of

the

initialize

space

attribute

only

affects

whether

or

not

future

extensions

of

the

space

will

be

initialized

or

not.

That

is,

it

is

the

state

of

this

attribute

at

the

time

of

allocation

of

the

storage

for

a

space

that

determines

whether

that

newly

allocated

storage

area

will

be

initialized

to

the

initial

value

specified

for

the

space.

Modifications

of

this

attribute

subsequent

to

the

allocation

of

storage

to

a

space

have

no

effect

on

the

value

of

that

previously

allocated

storage

area.

The

modify

initialize

space

attribute

modification

selection

field

may

not

be

set

to

yes

for

a

packed

secondary

associated

space.

An

attempt

to

do

so

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

The

reinitialize

space

modification

selection

field

controls

whether

the

storage

allocated

to

the

space

is

to

be

reinitialized

in

its

entirety.

When

no

is

specified,

the

space

is

not

reinitialized.

When

yes

is

specified,

the

space

is

reinitialized.

This

re-initialization

is

performed

after

all

other

attribute

modifications

which

Machine

Interface

Instructions

997

may

also

have

been

specified

on

the

instruction

have

been

made.

Thus

changes

to

the

size

of

the

space,

the

initial

value

of

the

space,

etc.

will

be

put

into

effect

and

be

considered

the

current

attributes

of

the

space

for

purposes

of

the

re-initialization.

The

byte

value

used

for

the

re-initialization

is

the

current

initial

value

for

the

space.

Note

that

specifying

yes

for

the

reinitialize

space

modification

selection

field

for

a

space

with

current

attributes

of

fixed

length

size

zero

results

in

no

operation,

because

such

a

space

has

no

allocated

storage

to

reinitialize.

Also,

note

that

re-initialization

of

a

space

will

have

the

side

effect

of

resetting

partial

damage

for

a

space

object

containing

the

space

if

the

space

object

had

previously

been

marked

as

having

partial

damage.

This

only

applies

to

space

objects;

i.e.

re-initialization

of

an

associated

space

does

not

have

the

side

effect

of

resetting

partial

damage

for

the

MI

object

containing

it.

The

reinitialize

space

modification

selection

field

may

not

be

set

to

yes

for

a

packed

secondary

associated

space.

An

attempt

to

do

so

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

The

modify

automatically

extend

space

attribute

modification

selection

field

controls

whether

or

not

the

automatically

extend

space

attribute

is

to

be

modified.

When

yes

is

specified,

the

value

of

the

automatically

extend

space

indicator

attribute

is

used

to

modify

that

attribute

of

the

specified

space

to

the

specified

value.

When

no

is

specified,

the

automatically

extend

space

indicator

attribute

value

is

ignored

and

the

automatically

extend

space

attribute

is

not

modified.

The

automatically

extend

space

attribute

can

only

be

specified

as

yes

when

the

space

length

attribute

for

the

space

is

already

variable

length,

or

when

the

space

length

attribute

is

being

modified

to

variable

length.

Invalid

specification

of

the

automatically

extend

space

attribute

results

in

the

signaling

of

the

invalid

space

modification

(hex

3602)

exception.

The

modify

automatically

extend

space

modification

selection

field

may

not

be

set

to

yes

for

a

packed

secondary

associated

space.

An

attempt

to

do

so

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

The

create

secondary

associated

space

field

indicates

if

a

secondary

associated

space

is

to

be

created

for

the

object.

When

this

field

is

set

to

yes,

most

of

the

operand

2

template

fields

are

used.

However,

all

other

modification

selection

fields

are

ignored,

as

are

the

spread

the

space,

and

always

enforce

hardware

storage

protection

of

this

space

fields.

All

secondary

associated

spaces

are

protected

with

hardware

storage

protection

at

all

times.

The

secondary

associated

space

to

be

created

is

indicated

by

the

secondary

associated

space

number

field.

If

the

specified

space

already

exists,

or

the

object

already

has

its

maximum

number

of

secondary

associated

spaces,

the

invalid

space

modification

(hex

3602)

exception

is

signalled.

The

modify

hardware

storage

protection

enforcement

selection

field

controls

whether

the

enforce

hardware

storage

protection

of

this

space

at

all

times

attribute

is

to

be

modified.

When

yes

is

specified,

the

value

of

the

enforce

hardware

storage

protection

of

this

space

at

all

times

field

is

used

to

control

when

hardware

storage

protection

will

be

enforced

for

the

primary

associated

space

of

a

process

control

space,

independent

index,

or

space

object

that

is

being

modified

by

this

operation.

When

this

attribute

is

selected

and

an

existing

space

is

being

modified,

the

existing

hardware

storage

protection

level

in

effect

for

the

space

will

be

unchanged,

but

will

either

be

enforced

at

all

times,

or

only

when

hardware

storage

protection

is

enforced

for

all

storage.

The

modify

expanded

transfer

size

advisory

selection

field

controls

whether

the

expanded

transfer

size

advisory

attribute

is

to

be

modified.

When

yes

is

specified,

the

value

of

expanded

transfer

size

advisory

specifies

the

desired

number

of

pages

to

be

transferred

between

main

store

and

auxiliary

storage

for

implicit

access

state

changes.

This

value

is

only

an

advisory;

the

machine

may

use

a

value

of

its

choice

for

performing

access

state

changes

under

some

circumstances.

For

example,

the

machine

may

limit

the

transfer

size

to

a

smaller

value

than

is

specified.

A

value

of

zero

is

an

explicit

indication

that

the

machine

should

use

the

machine

default

storage

transfer

size

for

this

object.

998

iSeries:

Machine

Interface

Instructions

APIs

Modification

of

the

expanded

transfer

size

advisory

is

only

supported

for

space

objects.

Attempts

to

modify

associated

spaces

of

other

system

objects

will

cause

the

invalid

space

modification

(hex

3602)

exception

to

be

signalled.

The

modify

spreading

the

space

object

attribute

modification

selection

field

controls

whether

or

not

the

spread

the

space

object

attribute

is

to

be

modified.

When

yes

is

specified

and

spread

the

space

object

is

binary

1,

extensions

to

the

space

object

will

be

spread

across

multiple

storage

devices,

if

possible.

When

yes

is

specified

and

spread

the

space

object

is

zero,

extensions

to

the

space

object

will

be

contained

on

one

storage

device,

if

possible.

When

no

is

specified,

the

spread

the

space

object

field

is

ignored

and

the

current

attribute

setting

for

the

space

object

is

unchanged.

The

actual

storage

devices

used

are

dependent

upon

the

algorithm

used

within

the

specific

implementation

of

the

machine.

Only

the

new

allocations

of

the

space

object

are

affected;

the

existing

portion

of

the

space

object

is

not

modified.

The

modify

spreading

the

space

object

modification

selection

field

may

not

be

set

to

yes

for

a

packed

secondary

associated

space.

An

attempt

to

do

so

will

result

in

an

invalid

space

modification

(hex

3602)

exception.

This

field

is

ignored

for

a

system

object

that

is

not

a

space

object.

The

hardware

storage

protection

level

field

determines

the

type(s)

of

accesses

that

are

allowed

to

the

space.

This

field

is

only

used

when

creating

associated

spaces.

That

is,

it

is

only

used

when

extending

the

size

of

a

primary

associated

space

of

fixed

length

and

size

equal

to

zero,

or

creating

secondary

associated

space(s).

For

all

other

modifications

it

is

ignored.

Modification

to

or

from

the

state

of

a

space

being

fixed

length

of

size

zero

can

not

be

performed

for

the

following

objects:

Byte

stream

file

Cursor

Data

space

Directory

Program

(when

attempted

while

in

user

state

on

a

security

level

40

or

higher

system).

Space

Modification

to

or

from

the

state

of

a

space

being

fixed

length

of

size

zero

might

not

be

permitted

for

the

following

objects

if

they

were

created

with

an

internal

format

incompatible

with

this

change,

which

could

have

occurred

for

these

objects

if

they

were

created

before

V4R4:

Class

of

service

description

Controller

description

Logical

unit

description

Machine

Interface

Instructions

999

Mode

description

Network

description

If

such

a

modification

is

attempted

for

the

objects

listed

above,

under

the

circumstances

described

above,

the

invalid

space

modification

(hex

3602)

exception

is

signaled.

Specifying

the

largest

size

of

space

needed

value

allows

the

machine,

under

certain

circumstances,

to

select

usage

of

an

internal

storage

allocation

unit

which

best

utilizes

the

internal

addressing

resources

within

the

machine.

Note

that

the

internal

storage

allocation

unit

selected

can

alter

the

maximum

modification

size

of

the

associated

space

for

the

object.

However,

the

machine

will

always

use

an

internal

storage

allocation

unit

that

will

allow

for

extension

of

the

space

to

at

least

the

value

specified

in

the

largest

size

of

space

needed

field.

The

maximum

size

to

which

the

space

can

be

modified

is

dependent

upon

specific

implementations

of

the

machine

and

can

vary

with

different

machine

implementations.

The

secondary

associated

space

number

field

is

used

to

indicate

which

secondary

space

is

to

be

created

or

modified.

When

this

field

is

zero,

the

primary

associated

space

of

the

space

object

is

modified.

If

this

field

is

not

zero

and

no

secondary

associated

spaces

are

allowed

for

the

object,

the

scalar

value

invalid

(hex

3203)

exception

will

be

signalled.

A

fixed

length

space

of

size

zero

is

defined

by

the

machine

to

have

no

internal

storage

allocation.

Due

to

this,

a

modification

to

or

from

this

state

is,

in

essence,

the

same

as

a

destroy

or

create

for

the

space

associated

with

the

specified

system

object.

The

effect

of

modifying

to

this

state

is

similar

to

destroying

the

associated

space

in

that

address

references

to

the

space

through

previously

set

pointers

will

result

in

signaling

of

the

object

destroyed

(hex

2202)

exception.

When

a

primary

associated

space

is

destroyed

by

using

this

method,

any

secondary

associated

spaces

for

the

object

are

also

destroyed.

To

the

contrary,

modifying

the

space

attributes

from

this

state

is

similar

to

creating

an

associated

space

in

that

the

Set

Space

Pointer

from

Pointer

(SETSPPFP)

instruction

can

be

used

to

set

a

space

pointer

to

the

start

of

storage

within

the

associated

space

and

the

allocated

space

storage

can

be

used

to

contain

space

data.

The

extension

and

truncation

of

a

space

is

always

by

an

implementation-defined

multiple

of

256

bytes.

This

means

that

if,

for

example,

the

implementation

defined

multiple

is

2

(or

512

bytes),

any

modification

of

the

space

size

will

be

in

increments

of

512

bytes.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Object

management

–

–

Operand

1
v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution
v

Object

control

1000

iSeries:

Machine

Interface

Instructions

APIs

–

–

Operand

1

(when

operand

2

is

binary)
v

Modify

–

–

Operand

1

(when

operand

2

is

character)

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C04

Object

Storage

Limit

Exceeded

1C0E

IASP

Resources

Exceeded

1C11

Independent

ASP

Varied

Off

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

Machine

Interface

Instructions

1001

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

3602

Invalid

Space

Modification

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Multiply

(MULT)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-7]

MULT

104B

Product

Multiplicand

Multiplier

MULTR

124B

Product

Multiplicand

Multiplier

MULTI

184B

Indicator

options

Product

Multiplicand

Multiplier

Indicator

targets

MULTIR

1A4B

Indicator

options

Product

Multiplicand

Multiplier

Indicator

targets

MULTB

1C4B

Branch

options

Product

Multiplicand

Multiplier

Branch

targets

MULTBR

1E4B

Branch

options

Product

Multiplicand

Multiplier

Branch

targets

Operand

1:

Numeric

variable

scalar.

Operand

2:

Numeric

scalar.

1002

iSeries:

Machine

Interface

Instructions

APIs

Operand

3:

Numeric

scalar.

Operand

4-7:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Warning:

Temporary

Level

3

Header

Short

forms

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

[3-6]

MULTS

104B

Product/Multiplicand

Multiplier

MULTSR

134B

Product/Multiplicand

Multiplier

MULTIS

194B

Indicator

options

Product/Multiplicand

Multiplier

Indicator

targets

MULTISR

1B4B

Indicator

options

Product/Multiplicand

Multiplier

Indicator

targets

MULTBS

1D4B

Branch

options

Product/Multiplicand

Multiplier

Branch

targets

MULTBSR

1F4B

Branch

options

Product/Multiplicand

Multiplier

Branch

targets

Operand

1:

Numeric

variable

scalar.

Operand

2:

Numeric

scalar.

Operand

3-6:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

The

product

is

the

result

of

multiplying

the

multiplicand

and

the

multiplier.

Operands

can

have

floating-point,

packed

or

zoned

decimal,

signed

or

unsigned

binary

type.

Source

operands

are

the

multiplicand

and

multiplier.

The

receiver

operand

is

the

product.

If

operands

are

not

of

the

same

type,

source

operands

are

converted

according

to

the

following

rules:

1.

If

any

one

of

the

operands

has

floating

point

type,

source

operands

are

converted

to

floating

point

type.

2.

Otherwise,

if

any

one

of

the

operands

has

zoned

or

packed

decimal

type,

source

operands

are

converted

to

packed

decimal.

3.

Otherwise,

the

binary

operands

are

converted

as

follows.

a.

If

an

unsigned

binary(2)

source

operand

is

used

with

a

signed

binary

operand

of

any

length,

the

unsigned

binary(2)

is

viewed

as

a

signed

binary(4).

b.

If

both

source

operands

are

signed

binary

(including

cases

resulting

from

use

of

3a

(page

1003)),

then

a

signed

operation,

of

the

length

of

the

longer

operand,

is

done.

c.

If

both

source

operands

are

unsigned

binary(2),

then

an

unsigned

2-byte

operation

is

done.

d.

If

either

source

operand

is

unsigned

binary(4),

then

an

unsigned

4-byte

operation

is

done

with

overflow

detection

disabled

until

the

assignment

to

the

receiver.

Machine

Interface

Instructions

1003

Source

operands

are

multiplied

according

to

their

type.

Floating

point

operands

are

multiplied

using

floating

point

multiplication.

Packed

decimal

operands

are

multiplied

using

packed

decimal

multiplication.

Unsigned

binary

multiplication

is

used

with

unsigned

source

operands,

except

as

noted

above.

Signed

binary

operands

are

multiplied

using

two’s

complement

binary

multiplication.

Better

performance

can

be

obtained

if

all

operands

have

the

same

type.

Signed

and

unsigned

binary

multiplication

execute

faster

than

either

packed

decimal

or

floating

point

multiplication.

The

operands

must

be

numeric

with

any

implicit

conversions

occurring

according

to

the

rules

of

arithmetic

operations

as

outlined

in

the

Arithmetic

Operations.

Decimal

operands

used

in

floating-point

operations

cannot

contain

more

than

15

total

digit

positions.

If

the

multiplicand

operand

or

the

multiplier

operand

has

a

value

of

0,

the

result

of

the

multiplication

is

a

zero

product.

For

a

decimal

operation,

no

alignment

of

the

assumed

decimal

point

is

performed

for

the

multiplier

and

multiplicand

operands.

The

operation

occurs

using

the

specified

lengths

of

the

multiplicand

and

multiplier

operands

with

no

logical

zero

padding

on

the

left

necessary.

Floating-point

multiplication

uses

exponent

addition

and

significand

multiplication.

For

nonfloating-point

computations

and

for

significand

multiplication

for

floating-point

operations,

the

multiplication

operation

is

performed

according

to

the

rules

of

algebra.

Unsigned

binary

operands

are

treated

as

positive

numbers

for

the

algebra.

The

result

of

the

operation

is

copied

into

the

product

operand.

If

this

operand

is

not

the

same

type

as

that

used

in

performing

the

operation,

the

resultant

value

is

converted

to

its

type.

If

necessary,

the

resultant

value

is

adjusted

to

the

length

of

the

product

operand,

aligned

at

the

assumed

decimal

point

of

the

product

operand,

or

both

before

being

copied

to

it.

Length

adjustment

and

decimal

point

alignment

are

performed

according

to

the

rules

of

arithmetic

operations

outlined

in

the

Arithmetic

Operations.

For

the

optional

round

form

of

the

instruction,

specification

of

a

floating-point

receiver

operand

is

invalid.

For

fixed-point

operations

in

programs

that

request

to

be

notified

of

size

exceptions,

if

nonzero

digits

are

truncated

from

the

left

end

of

the

resultant

value,

a

size

(hex

0C0A)

exception

is

signaled.

For

floating-point

operations

involving

a

fixed-point

receiver

field

(if

nonzero

digits

would

be

truncated

from

the

left

end

of

the

resultant

value),

an

invalid

floating-point

conversion

(hex

0C0C)

exception

is

signaled.

For

a

floating-point

product

operand,

if

the

exponent

of

the

resultant

value

is

either

too

large

or

too

small

to

be

represented

in

the

product

field,

the

floating-point

overflow

(hex

0C06)

exception

or

the

floating-point

underflow

(hex

0C07)

exception

is

signaled.

If

operands

overlap

but

do

not

share

all

of

the

same

bytes,

results

of

operations

performed

on

these

operands

are

not

predictable.

If

overlapped

operands

share

all

of

the

same

bytes,

the

results

are

predictable

when

direct

addressing

is

used.

If

indirect

addressing

is

used

(that

is,

based

operands,

parameters,

strings

with

variable

lengths,

and

arrays

with

variable

subscripts),

the

results

are

not

always

predictable.

1004

iSeries:

Machine

Interface

Instructions

APIs

MCNPFAO.htm
MCNPFAO.htm

If

a

decimal

to

binary

conversion

causes

a

size

(hex

0C0A)

exception

to

be

signaled,

the

binary

value

contains

the

correct

truncated

result

only

if

the

decimal

value

contains

15

or

fewer

significant

nonfractional

digits.

Resultant

Conditions:

v

v

Positive-The

algebraic

value

of

the

numeric

scalar

product

is

positive.

v

Negative-The

algebraic

value

of

the

numeric

scalar

product

is

negative.

v

Zero-The

algebraic

value

of

the

numeric

scalar

product

is

zero.

v

Unordered-The

value

assigned

a

floating-point

product

operand

is

NaN.

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C02

Decimal

Data

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

0C0A

Size

0C0C

Invalid

Floating-Point

Conversion

0C0D

Floating-Point

Inexact

Result

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

Machine

Interface

Instructions

1005

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Negate

(NEG)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

[3-6]

NEG

1056

Receiver

Source

NEGI

1856

Indicator

options

Receiver

Source

Indicator

targets

NEGB

1C56

Branch

options

Receiver

Source

Branch

targets

Operand

1:

Numeric

variable

scalar.

1006

iSeries:

Machine

Interface

Instructions

APIs

Operand

2:

Numeric

scalar.

Operand

3-6:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Warning:

Temporary

Level

3

Header

Short

forms

Op

Code

(Hex)

Extender

Operand

1

Operand

[2-5]

NEGS

1156

Receiver/Source

NEGIS

1956

Indicator

options

Receiver/Source

Indicator

targets

NEGBS

1D56

Branch

options

Receiver/Source

Branch

targets

Operand

1:

Numeric

variable

scalar.

Operand

2-5:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

The

numeric

value

in

the

source

operand

is

changed

as

if

it

had

been

multiplied

by

a

negative

one

(-1).

The

result

is

placed

in

the

receiver

operand.

The

sign

changing

of

the

source

operand

value

(positive

to

negative

and

negative

to

positive)

is

performed

as

follows:

v

v

Binary

–

–

Extract

the

numeric

value

and

form

the

twos

complement

of

it.
v

Packed/Zoned

–

–

Extract

the

numeric

value

and

force

its

sign

to

positive

if

it

is

negative

or

to

negative

if

it

is

positive.
v

Floating-point

–

–

Extract

the

numeric

value

and

force

the

significand

sign

to

positive

if

it

is

negative

or

to

negative

if

it

is

positive.

The

result

of

the

operation

is

copied

into

the

receiver

operand.

If

this

operand

is

not

the

same

type

as

that

used

in

performing

the

operation,

the

resultant

value

is

converted

to

its

type.

If

necessary,

the

resultant

value

is

adjusted

to

the

length

of

the

receiver

operand,

aligned

at

the

assumed

decimal

point

of

the

receiver

operand,

or

both

before

being

copied

to

it.

Length

adjustment

and

decimal

point

alignment

are

performed

according

to

the

rules

of

arithmetic

operations

outlined

in

the

Arithmetic

Operations.

If

significant

digits

are

truncated

on

the

left

end

of

the

resultant

value,

a

size

(hex

0C0A)

exception

is

signaled.

An

attempt

to

negate

a

maximum

negative

signed

binary

value

to

a

signed

binary

scalar

of

the

same

size

also

results

in

a

size

(hex

0C0A)

exception.

If

a

packed

or

zoned

0

is

negated,

the

result

is

always

positive

0.

Machine

Interface

Instructions

1007

MCNPFAO.htm

When

the

source

floating-point

operand

represents

not-a-number,

the

sign

field

of

the

source

is

not

forced

to

positive

and

this

value

is

not

altered

in

the

receiver.

For

a

fixed-point

operation,

if

significant

digits

are

truncated

from

the

left

end

of

the

resultant

value,

a

size

(hex

0C0A)

exception

is

signaled.

An

attempt

to

negate

a

maximum

negative

binary

value

into

a

binary

scalar

of

the

same

size

also

results

in

a

size

(hex

0C0A)

exception.

For

floating-point

operations

that

involve

a

fixed-point

receiver,

if

nonzero

digits

would

be

truncated

from

the

left

end

of

the

resultant

value,

an

invalid

floating-point

conversion

(hex

0C0C)

exception

is

signaled.

For

a

floating-point

receiver

operand,

if

the

exponent

of

the

resultant

value

is

either

too

large

or

too

small

to

be

represented

in

the

receiver,

the

floating-point

overflow

(hex

0C06)

exception

and

the

floating-point

underflow

(hex

0C07)

exception

are

signaled.

If

a

decimal

to

binary

conversion

causes

a

size

(hex

0C0A)

exception

to

be

signaled

or

if

the

size

exception

was

suppressed,

the

binary

value

contains

the

correct

truncated

result

only

if

the

decimal

value

contains

15

or

fewer

significant

nonfractional

digits.

Resultant

Conditions:

v

v

Positive-The

algebraic

value

of

the

receiver

operand

is

positive.

v

Negative-The

algebraic

value

of

the

receiver

operand

is

negative.

v

Zero-The

algebraic

value

of

the

receiver

operand

is

zero.

v

Unordered-The

value

assigned

a

floating-point

receiver

operand

is

NaN.

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C02

Decimal

Data

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

1008

iSeries:

Machine

Interface

Instructions

APIs

0C09

Floating-Point

Invalid

Operand

0C0A

Size

0C0C

Invalid

Floating-Point

Conversion

0C0D

Floating-Point

Inexact

Result

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

Machine

Interface

Instructions

1009

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

No

Operation

(NOOP)

Op

Code

(Hex)

0000

Description:

No

function

is

performed.

The

instruction

consists

of

an

operation

code

and

no

operands.

The

instruction

may

not

be

branched

to

and

is

not

counted

as

an

instruction

in

the

instruction

stream.

The

instruction

may

be

used

for

inserting

gaps

in

the

instruction

stream.

These

gaps

allow

instructions

with

adjacent

instruction

addresses

to

be

physically

separated.

The

instruction

may

precede

or

follow

any

machine

instruction

except

the

End

instruction,

and

any

number

of

No

Operation

instructions

may

exist

in

succession.

No

Operation

and

Skip

(NOOPS)

Op

Code

(Hex)

Operand

1

0001

Skip

count

Operand

1:

Unsigned

immediate

value.

Description:

This

instruction

performs

no

function

other

than

to

indicate

a

specific

number

of

bytes

within

the

instruction

stream

that

are

to

be

skipped

during

encapsulation.

It

consists

of

an

operation

code

and

1

operand.

Operand

1

is

an

unsigned

immediate

value

that

contains

the

number

of

bytes

between

this

instruction

and

the

next

instruction

to

be

processed.

These

bytes

are

skipped

during

the

encapsulation

of

this

program.

A

value

of

zero

for

operand

1

indicates

that

no

bytes

are

to

be

skipped

between

this

instruction

and

the

next

instruction

to

be

processed.

If

the

operand

1

skip

count

indicates

that

the

next

instruction

to

process

is

beyond

the

end

of

the

instruction

stream,

an

invalid

operand

value

range

(hex

2A08)

exception

is

signaled.

This

instruction

may

be

used

to

insert

gaps

in

the

instruction

stream

in

such

a

manner

that

allows

instructions

with

adjacent

instruction

addresses

to

not

be

physically

adjacent.

This

instruction

may

not

be

branched

to,

and

is

not

counted

as

an

instruction

in

the

instruction

stream.

The

instruction

may

precede

or

follow

any

machine

instruction

except

the

End

instruction,

and

any

number

of

No

Operation

and

Skip

instructions

may

exist

in

succession.

Note:

When

this

instruction

is

used

in

an

existing

program

template,

the

following

items

within

the

template

may

be

adversely

affected:

v

v

The

actual

count

of

instructions

may

be

altered

to

be

different

than

the

count

of

instructions

that

is

specified

in

the

program

template

header.

v

Object

definitions

that

reference

instructions

may

now

be

out

of

range

or

may

not

reference

the

intended

instruction.

The

actual

number

of

bytes

skipped

includes

the

bytes

containing

the

instruction

plus

the

number

of

bytes

specified

by

the

skip

count

value.

The

number

of

bytes

skipped

per

template

version

is

as

follows:

1010

iSeries:

Machine

Interface

Instructions

APIs

v

v

Version

0

=

4

plus

the

skip

count

value.

v

Version

1

=

5

plus

the

skip

count

value.

Not

(NOT)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

[3-4]

NOT

108A

Receiver

Source

NOTI

188A

Indicator

options

Receiver

Source

Indicator

targets

NOTB

1C8A

Branch

options

Receiver

Source

Branch

targets

Operand

1:

Character

variable

scalar

or

numeric

variable

scalar.

Operand

2:

Character

variable

scalar

or

numeric

variable

scalar.

Operand

3-4:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Warning:

Temporary

Level

3

Header

Short

forms

Op

Code

(Hex)

Extender

Operand

1

Operand

[2-3]

NOTS

118A

Receiver/Source

NOTIS

198A

Indicator

options

Receiver/Source

Indicator

targets

NOTBS

1D8A

Branch

options

Receiver/Source

Branch

targets

Operand

1:

Character

variable

scalar

or

numeric

variable

scalar.

Operand

2-3:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

The

Boolean

not

operation

is

performed

on

the

string

value

in

the

source

operand.

The

resulting

string

is

placed

in

the

receiver

operand.

The

operands

may

be

character

or

numeric

scalars.

They

are

both

interpreted

as

bit

strings.

Substringing

is

supported

for

both

character

and

numeric

operands.

The

length

of

the

operation

is

equal

to

the

length

of

the

source

operand.

The

bit

values

of

the

result

are

determined

as

follows:

Source

Bit

Result

Bit

0

1

1

0

Machine

Interface

Instructions

1011

The

result

value

is

then

placed

(left-adjusted)

in

the

receiver

operand

with

truncating

or

padding

taking

place

on

the

right.

The

pad

value

used

in

this

instruction

is

a

hex

00

byte.

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

be

specified

for

operands

1

and

2.

The

effect

of

specifying

a

null

substring

reference

for

the

source

operand

is

that

the

result

is

all

zero

and

the

instruction’s

resultant

condition

is

zero.

When

a

null

substring

reference

is

specified

for

the

receiver,

a

result

is

not

set

and

the

instruction’s

resultant

condition

is

zero

regardless

of

the

value

of

the

source

operand.

When

the

receiver

operand

is

a

numeric

variable

scalar,

it

is

possible

that

the

result

produced

will

not

be

a

valid

value

for

the

numeric

type.

This

can

occur

due

to

padding

with

hex

00,

due

to

truncation,

or

due

to

the

resultant

bit

string

produced

by

the

instruction.

The

instruction

completes

normally

and

signals

no

exceptions

for

these

conditions.

Resultant

Conditions:

v

v

Zero-The

bit

value

for

the

bits

of

the

scalar

receiver

operand

is

either

all

zero

or

a

null

substring

reference

is

specified

for

the

receiver.

v

Not

zero-The

bit

value

for

the

bits

of

the

scalar

receiver

operand

is

not

all

zero.

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

1012

iSeries:

Machine

Interface

Instructions

APIs

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

NPM

Procedure

Parameter

List

Address

(NPM_PARMLIST_ADDR)

Bound

program

access

Built-in

number

for

NPMPARMLISTADDR

is

143.

NPM_PARMLIST_ADDR

(

)

:

space

pointer(16)

that

points

to

the

New

Program

Model

parameter

list

Description:

The

address

of

the

New

Program

Model

parameter

list

received

by

the

current

invocation

is

returned.

This

function

cannot

be

used

by

procedures

defined

to

be

a

program

entry

procedure.

Otherwise,

an

instruction

stream

not

valid

(hex

2A1B)

exception

will

be

signalled

during

module

creation.

Machine

Interface

Instructions

1013

Bound

Procedure

Parameter

List

Format:

Calls

to

procedures

use

the

parameter

list

format

shown

below.

The

parameter

list

is

required

to

be

quadword

aligned.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Operational

descriptor

list

address

Char(16)

16

10

Machine

work

area

Char(16)

32

20

Arguments

Char(*)

*

*

—-

End

—-

The

operational

descriptor

list

address

is

used

to

pass

the

address

of

an

operational

descriptor

to

the

current

invocation.

If

an

operational

descriptor

is

provided

by

the

caller,

the

machine

will

store

the

address

in

this

field

as

a

space

pointer.

If

an

operational

descriptor

is

not

provided,

the

contents

of

this

field

are

undefined.

(That

is,

the

machines

does

not

set

this

field

to

a

special

value

to

indicate

the

absence

of

an

operational

descriptor

list

address.)

The

Machine

Interface

does

not

define

the

layout

of

the

operational

descriptor

list,

and

it

is

the

MI

program’s

responsibility

to

pass

an

operational

descriptor

list

to

a

procedure

which

expects

it.

The

machine

work

area

is

reserved

for

use

by

the

machine.

Arguments

is

a

variable

length

field

used

to

pass

argument

values

to

the

current

invocation.

Even

though

the

actual

mechanism

used

by

the

machine

to

pass

argument

values

is

not

visible

at

the

Machine

Interface,

this

field

is

large

enough

to

accommodate

all

passed

argument

values,

with

each

argument

being

aligned

on

its

natural

boundary.

At

most

400

arguments

may

be

passed.

The

rules

for

natural

alignment

are

shown

in

Table

1

(page

1014).

For

packed

decimal

arguments,

the

length

in

bytes

is

derived

from

the

number

of

digits,

numberofDigits,

using

the

following

formula:

((numberofDigits/2)

+

1).

For

zoned

decimal

separate

leading

sign

and

zoned

decimal

separate

trailing

sign

arguments,

the

byte

length

is

one

greater

than

the

length

in

digits.

Table

1.

Rules

for

natural

alignment

Length

in

Bytes

Alignment

length

=

1

byte

length

=

2

halfword

length

=

3,

4

word

length

=

5,

6,

7,

8

doubleword

other

lengths

quadword

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

v

v

None

1014

iSeries:

Machine

Interface

Instructions

APIs

OPM

Parameter

Address

(OPM_PARM_ADDR)

Bound

program

access

Built-in

number

for

OPMPARMADDR

is

7.

OPM_PARM_ADDR

(

parameter_number

:

unsigned

binary(4)

value

which

specifies

a

non-bound

program

parameter

list

entry

)

:

space

pointer(16)

to

the

parameter

list

entry

specified

by

parameter_number

Description:

The

entry

in

the

non-bound

program

parameter

list

specified

by

parameter

number

is

returned.

If

the

parameter

number

referenced

is

greater

than

the

number

of

parameters

passed

to

the

program

entry

procedure,

an

address

is

returned

which

will

cause

a

parameter

reference

violation

(hex

0801)

exception

to

be

signaled

when

it

is

used.

This

function

can

only

be

used

by

procedures

defined

to

be

a

program

entry

procedure.

Otherwise,

an

instruction

stream

not

valid

(hex

2A1B)

exception

will

be

signaled

during

module

creation.

Notes:

1.

The

non-bound

program

operand

passing

protocol

is

″call

by

reference″,

and

hence

the

OPM_PARM_ADDR

built-in

is

architected

to

be

returning

the

reference

addresses

that

are

passed.

2.

Faster

code

will

be

generated

when

the

parameter

number

passed

to

the

built-in

is

a

literal.

Still

faster

code

will

be

generated

when

the

parameter

number

passed

to

the

built-in

is

a

literal

which

is

less

than

or

equal

to

the

minimum

number

of

parameters

required

value

associated

with

this

program

entry

procedure.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

v

v

None

OPM

Parameter

Count

(OPM_PARM_CNT)

Bound

program

access

Built-in

number

for

OPMPARMCNT

is

8.

OPM_PARM_CNT

(

)

:

unsigned

binary(4)

value

which

specifies

the

number

of

non-bound

program

parameters

passed

to

the

program

entry

procedure

Description:

The

parameter

count

in

the

non-bound

program

parameter

list

received

by

the

program

entry

procedure

is

returned.

Machine

Interface

Instructions

1015

This

function

can

only

be

used

by

procedures

defined

to

be

a

program

entry

procedure.

Otherwise,

an

instruction

stream

not

valid

(hex

2A1B)

exception

will

be

signaled

during

module

creation.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

v

v

None

Or

(OR)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-5]

OR

1097

Receiver

Source

1

Source

2

ORI

1897

Indicator

options

Receiver

Source

1

Source

2

Indicator

targets

ORB

1C97

Branch

options

Receiver

Source

1

Source

2

Branch

targets

Operand

1:

Character

variable

scalar

or

numeric

variable

scalar.

Operand

2:

Character

scalar

or

numeric

scalar.

Operand

3:

Character

scalar

or

numeric

scalar.

Operand

4-5:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Warning:

Temporary

Level

3

Header

Short

forms

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

[3-4]

ORS

1197

Receiver/Source

1

Source

2

ORIS

1997

Indicator

options

Receiver/Source

1

Source

2

Indicator

targets

ORBS

1D97

Branch

options

Receiver/Source

1

Source

2

Branch

targets

Operand

1:

Character

variable

scalar

or

numeric

variable

scalar.

Operand

2:

Character

scalar

or

numeric

scalar.

Operand

3-4:

v

1016

iSeries:

Machine

Interface

Instructions

APIs

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

The

Boolean

or

operation

is

performed

on

the

string

values

in

the

source

operands.

The

resulting

string

is

placed

in

the

receiver

operand.

The

operands

may

be

character

or

numeric

scalars.

They

are

both

interpreted

as

bit

strings.

Substringing

is

supported

for

both

character

and

numeric

operands.

The

length

of

the

operation

is

equal

to

the

length

of

the

longer

of

the

two

source

operands.

The

shorter

of

the

two

operands

is

logically

padded

on

the

right

with

hex

00.

The

excess

bytes

in

the

longer

operand

are

assigned

to

the

results.

The

bit

values

of

the

result

are

determined

as

follows:

Source

1

Bit

Source

2

Bit

Result

Bit

0

0

0

0

1

1

1

0

1

1

1

1

The

result

value

is

then

placed

(left-adjusted)

in

the

receiver

operand

with

truncating

or

padding

taking

place

on

the

right.

The

pad

value

used

in

this

instruction

is

a

hex

00.

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

be

specified

for

operands

1,

2,

and

3.

The

effect

of

specifying

a

null

substring

reference

for

one

source

operand

is

that

the

other

source

operand

is

ored

with

an

equal

length

string

of

all

hex

00s.

This

causes

the

value

of

the

other

operand

to

be

assigned

to

the

result.

When

a

null

substring

reference

is

specified

for

both

source

operands,

the

result

is

all

zero

and

the

instruction’s

resultant

condition

is

zero.

When

a

null

substring

reference

is

specified

for

the

receiver,

a

result

is

not

set

and

the

instruction’s

resultant

condition

is

zero

regardless

of

the

values

of

the

source

operands.

If

operands

overlap

but

do

not

share

all

of

the

same

bytes,

results

of

operations

performed

on

these

operands

are

not

predictable.

If

overlapped

operands

share

all

of

the

same

bytes,

the

results

are

predictable

when

direct

addressing

is

used.

If

indirect

addressing

is

used

(that

is,

based

operands,

parameters,

strings

with

variable

lengths,

and

arrays

with

variable

subscripts),

the

results

are

not

always

predictable.

When

the

receiver

operand

is

a

numeric

variable

scalar,

it

is

possible

that

the

result

produced

will

not

be

a

valid

value

for

the

numeric

type.

This

can

occur

due

to

padding

with

hex

00,

due

to

truncation,

or

due

to

the

resultant

bit

string

produced

by

the

instruction.

The

instruction

completes

normally

and

signals

no

exceptions

for

these

conditions.

Resultant

Conditions:

v

v

Zero-The

bit

value

for

the

bits

of

the

scalar

receiver

operand

is

either

all

zero

or

a

null

substring

reference

is

specified

for

the

receiver.

v

Not

zero-The

bit

value

for

the

bits

of

the

scalar

receiver

operand

is

not

all

zero.

Authorization

Required

v

v

None

Machine

Interface

Instructions

1017

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

1018

iSeries:

Machine

Interface

Instructions

APIs

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

OR

String

(ORSTR)

Bound

program

access

Built-in

number

for

ORSTR

is

451.

ORSTR

(

receiver_string

:

address

of

aggregate(*)

first_source_string

:

address

of

aggregate(*)

second_source_string

:

address

of

aggregate(*)

string_length

:

unsigned

binary(4,8)

value

which

specifies

the

length

of

the

three

strings

)

Description:

Each

byte

value

of

the

first

source

string,

for

the

number

of

bytes

indicated

by

string

length,

is

logically

ored

with

the

corresponding

byte

value

of

the

second

source

string,

on

a

bit-by-bit

basis.

The

results

are

placed

in

the

receiver

string.

If

the

strings

overlap

in

storage,

predictable

results

occur

only

if

the

overlap

is

fully

coincident.

If

the

space(s)

indicated

by

the

three

addresses

are

not

long

enough

to

contain

the

number

of

bytes

indicated

by

string

length,

a

space

addressing

violation

(hex

0601)

is

signalled.

Partial

results

in

this

case

are

unpredictable.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

Machine

Interface

Instructions

1019

08

Argument/Parameter

0801

Parameter

Reference

Violation

22

Object

Access

2202

Object

Destroyed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Override

Program

Attributes

(OVRPGATR)

Op

Code

(Hex)

Operand

1

Operand

2

0006

Attribute

identification

Attribute

modifier

Operand

1:

Unsigned

immediate

value.

Operand

2:

Unsigned

immediate

value.

Description:

This

program

creation

control

instruction

allows

one

of

a

set

of

program

attributes

specified

below

to

be

overridden.

The

overridden

program

attribute

is

in

effect

until

it

is

changed

by

another

OVRPGATR

instruction.

The

initial

program

attributes

are

set

to

the

ones

specified

when

the

program

is

created.

These

same

initial

program

attributes

are

the

ones

that

are

materialized

when

a

Materialize

Program

(MATPG)

is

done.

That

is,

the

OVRPGATR

instruction

has

no

effect

on

the

materialized

attributes.

The

OVRPGATR

instruction

consists

of

an

operation

code

and

two

operands.

Operand

1

is

an

unsigned

immediate

value

that

contains

a

representation

of

which

program

attribute

is

to

be

overridden.

Operand

2

is

an

unsigned

immediate

value

that

contains

a

representation

of

how

the

program

attribute

is

to

be

overridden.

This

instruction

may

not

be

branched

to,

and

is

not

counted

as

an

instruction

in

the

instruction

stream.

The

instruction

may

precede

or

follow

any

machine

instruction.

1020

iSeries:

Machine

Interface

Instructions

APIs

The

program

attributes

defined

by

operand

1

is

overridden

according

to

the

following

selection

values:

Attribute

Identification

Attribute

Description

1

Array

constrainment

attribute

Allowed

values

for

operand

2:

1

=

Constrain

array

references

2

=

Do

not

constrain

array

references

3

=

Fully

unconstrain

array

references

4

=

Terminate

override

of

array

constrainment

attributes

and

resume

use

of

the

attributes

specified

in

the

program

template

2

String

constrainment

attribute

Allowed

values

for

operand

2:

1

=

Constrain

string

references

2

=

Do

not

constrain

string

references

3

=

Terminate

override

of

string

constrainment

attribute

and

resume

use

of

the

attribute

specified

in

the

program

template

3

Suppress

binary

size

exception

attribute

Allowed

values

for

operand

2:

1

=

Suppress

binary

size

exceptions

2

=

Do

not

suppress

binary

size

exceptions

3

=

Terminate

override

of

suppression

of

binary

size

exception

attribute

and

resume

use

of

the

attribute

specified

in

the

program

template

4

Suppress

decimal

data

exception

attribute

Allowed

values

for

operand

2:

1

=

Suppress

decimal

data

exceptions

2

=

Do

not

suppress

decimal

data

exceptions

3

=

Terminate

override

of

suppression

of

decimal

data

exception

attribute

and

resume

use

of

the

attribute

specified

in

the

program

template

5

Copy

Bytes

with

Pointers

(CPYBWP)

alignment

data

check

attribute

Allowed

values

for

operand

2:

1

=

Constrain

CPYBWP

to

require

like

alignment

of

operands

(default)

2

=

Do

not

constrain

CPYBWP

to

require

like

alignment

of

operands

6

Compare

Pointer

for

Space

Addressibility

(CMPPSPAD)

null

pointer

tolerance

attribute

Allowed

values

for

operand

2:

1

=

Signal

pointer

does

not

exist

exceptions

for

operands

1

and

2

(default)

2

=

Do

not

signal

pointer

does

not

exist

exceptions

for

operands

1

and

2

PCO

Pointer

(PCOPTR)

Bound

program

access

Built-in

number

for

PCOPTR

is

144.

PCOPTR

(

)

:

space

pointer(16)

to

the

PCO

associated

with

the

activation

Description:

A

space

pointer

is

returned,

which

points

to

the

first

byte

of

the

PCO

(process

communication

object)

for

the

process

which

owns

the

program

activation

associated

with

the

current

Machine

Interface

Instructions

1021

invocation.

If

the

current

invocation

is

a

client

executing

in

a

shared

activation

group

then

the

pointer

returned

refers

to

an

object

owned

by

a

process

other

than

the

current

process.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

v

v

None

Propagate

Byte

(PROPB)

Bound

program

access

Built-in

number

for

PROPB

is

10.

PROPB

(

target_string

:

address

of

aggregate(*)

source_byte

:

signed

binary(4)

-

rightmost

byte

specifies

the

source

byte

value

OR

unsigned

binary(1)

OR

aggregate(1)

propagation_count

:

unsigned

binary

value

which

specifies

the

number

of

times

the

value

specified

by

source

byte

should

be

propagated

)

:

space

pointer(16)

to

the

target

string

Description:

The

byte

value

specified

by

source

byte

is

copied

into

the

storage

specified

by

target

string.

Propagation

count

specifies

the

number

of

bytes

of

storage

into

which

this

value

is

stored.

It

is

assumed

sufficient

storage

exists

at

the

location

specified

by

target

string.

If

the

value

of

progagation

count

is

0,

no

storage

is

altered.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

1022

iSeries:

Machine

Interface

Instructions

APIs

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Reallocate

Activation

Group-Based

Heap

Space

Storage

(REALCHSS)

Op

Code

(Hex)

Operand

1

Operand

2

03BA

Space

allocation

Size

of

space

reallocation

Operand

1:

Space

pointer.

Operand

2:

Binary(4)

scalar.

Bound

program

access

Built-in

number

for

REALCHSS

is

117.

REALCHSS

(

space_allocation

:

address

size_of_space_reallocation

:

signed

binary(4)

)

:

space

pointer(16)

to

space

reallocation

space

allocation

and

size

of

space_reallocation

correspond

to

operands

1

and

2

on

the

REALCHSS

operation;

the

return

value

corresponds

to

operand

1

after

the

function

completes.

Note:

The

term

″heap

space″

in

this

instruction

refers

to

an

″activation

group-based

heap

space″.

Description:

A

new

heap

space

storage

allocation

of

at

least

the

size

indicated

by

operand

2

is

provided

from

the

same

heap

space

as

the

original

allocation,

which

is

indicated

by

operand

1.

The

operand

1

space

pointer

is

set

to

address

the

first

byte

of

the

new

allocation,

which

will

begin

on

a

boundary

at

least

as

great

as

the

minimum

boundary

specified

when

the

heap

space

was

created.

Each

allocation

associated

with

a

heap

space

provides

a

continuum

of

contiguously

addressable

bytes.

Individual

allocations

within

a

heap

space

have

no

addressability

affinity

with

each

other.

The

maximum

single

allocation

allowed

is

determined

by

the

maximum

single

allocation

size

specified

when

the

heap

space

was

created.

The

maximum

single

allocation

possible

is

(16M

-

1

page)

bytes.

To

determine

the

current

page

size

use

the

MATRMD

instruction.

Storage

that

is

reallocated

maintains

the

same

mark/release

status

as

the

original

allocation.

If

the

original

allocation

was

marked,

the

new

allocation

carries

the

same

mark

and

will

be

released

by

a

Free

Activation

Group-Based

Heap

Space

Storage

from

Mark

(FREHSSMK)

which

specifies

that

mark

identifier.

The

original

heap

space

storage

allocation

will

be

freed.

Subsequent

references

to

the

original

allocation

will

cause

unpredictable

results.

The

contents

of

the

original

allocation

are

preserved

in

the

following

fashion:

v

Machine

Interface

Instructions

1023

v

If

the

new

allocation

size

is

greater

than

the

original

allocation

size,

the

entire

contents

of

the

original

allocation

will

appear

in

the

new

allocation.

The

contents

of

the

rest

of

the

new

allocation

are

unpredictable

unless

initialization

of

heap

allocations

was

specified

when

the

heap

space

was

created.

v

If

the

new

allocation

size

is

less

than

or

equal

to

the

original

allocation

size,

the

new

allocation

will

contain

at

least

as

much

of

the

original

allocation

contents

as

the

new

allocation

size

allows.

v

If

the

minimum

boundary

alignment

value

for

the

heap

space

indicates

at

least

a

16

byte

boundary,

valid

pointers

will

be

preserved.

REALCHSS

will

signal

an

object

domain

or

hardware

storage

protection

violation

(hex

4401)

exception

if

a

program

running

user

state

attempts

to

reallocate

heap

space

storage

in

a

heap

space

with

a

domain

of

system.

Operand

2

is

not

modified

by

the

instruction.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

1024

iSeries:

Machine

Interface

Instructions

APIs

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

45

Heap

Space

4502

Invalid

Request

4503

Heap

Space

Full

4504

Invalid

Size

Request

4505

Heap

Space

Destroyed

4506

Invalid

Heap

Space

Condition

Reinitialize

Static

Storage

(RINZSTAT)

Op

Code

(Hex)

Operand

1

RINZSTAT2

02D1

Activation

template

RINZSTAT

02C1

Activation

template

Operand

1:

Space

pointer.

Bound

program

access

Built-in

number

for

RINZSTAT2

is

664.

RINZSTAT2

(

activation_template

:

address

)

OR

Built-in

number

for

RINZSTAT

is

417.

RINZSTAT

(

activation_template

:

address

)

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Note

It

is

recommended

that

you

use

the

RINZSTAT2

instruction

which

supports

8-byte

activation

group

marks.

4-byte

marks

can

wrap

and

produce

unexpected

results.

Description:

This

instruction

reinitializes

the

static

storage

for

eligible

previously

activated

bound

programs,

including

bound

service

programs.

To

be

eligible,

the

program

must

have

the

allow

static

storage

re-initialization

attribute

set.

The

activation

mark

of

any

affected

program

activation

is

not

changed.

Operand

1

must

contain

a

space

pointer

to

the

activation

template.

Machine

Interface

Instructions

1025

The

activation

template

must

be

quadword

aligned.

The

format

of

the

structure

is

different

for

the

RINZSTAT

and

the

RINZSTAT2

instructions.

Format

of

activation

template

for

RINZSTAT2

instruction:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Activation

template

Char(24)

0

0

System

pointer

to

the

program

System

pointe

16

10

Activation

group

mark

UBin(8)

For

Non-Bound

programs,

the

following

datatype

should

be

used:

16

10

Activation

group

mark

(Non-Bound

program)

24

18

—-

End

—-

Format

of

activation

template

for

RINZSTAT

instruction:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Activation

template

Char(20)

0

0

System

pointer

to

the

program

System

pointer

16

10

Activation

group

mark

UBin(4)

20

14

—-

End

—-

If

the

system

pointer

to

the

program

is

a

null

pointer

value,

all

eligible

activations

of

bound

programs

or

bound

service

programs

within

the

activation

group

specified

by

the

activation

group

mark

will

be

interrogated.

If

the

thread

is

in

user

state

at

the

time

this

instruction

is

invoked

and

the

activation

group,

specified

by

the

activation

group

mark,

is

a

system

state

activation

group

an

activation

group

access

violation

(hex

2C12)

exception

will

be

signalled.

The

user

must

have

adequate

authority

to

all

bound

programs

with

the

allow

static

storage

re-initialization

attribute

in

the

activation

group

or

none

of

the

programs

will

be

reinitialized.

If

the

system

pointer

to

the

program

is

not

a

null

pointer

value,

only

the

program

activation

in

the

activation

group

specified,

provided

there

is

adequate

authority

and

the

program

has

the

allow

static

storage

re-initialization

attribute

will

have

its

static

storage

reinitialized.

If

the

activation

group

specified

by

the

activation

group

mark

is

not

found,

an

activation

group

not

found

(hex

2C13)

exception

will

be

signalled.

If

the

program

activation

can

not

be

found

in

the

activation

group,

an

invalid

operation

for

program

(hex

2C15)

exception

will

be

signalled.

If

the

program

does

not

have

the

allow

static

storage

re-initialization

attribute

set,

an

invalid

operation

for

program

(hex

2C15)

exception

will

be

signalled.

The

activation

group

mark

uniquely

identifies

an

activation

group

within

a

process.

A

value

of

zero

is

interpreted

to

be

a

request

to

use

the

activation

group

of

the

current

invocation.

Exported

data

to

the

activation

group

will

not

be

changed.

Warning:

Temporary

Level

3

Header

Usage

Notes

Static

storage

is

initialized

by

the

machine

each

time

a

program

(bound

program

or

bound

service

program)

is

activated

or

reinitialized

via

this

instruction.

Only

those

static

storage

locations

specified

by

the

high-level

language

(HLL)

compiler

are

initialized

by

the

machine.

Other

locations

are

uninitialized.

The

machine

can

only

initialize

static

storage

with

values

which

can

be

specified

as

constants

at

1026

iSeries:

Machine

Interface

Instructions

APIs

compile-time.

Complex

values

which

can

only

be

evaluated

at

run-time

cannot

be

initialized

using

this

mechanism.

For

example,

the

current

time

of

day

or

the

″construction″

of

a

C++

object.

Some

HLL

compilers

(e.g.

C++)

make

use

of

additional

run-time

static

initialization

(s-init)

mechanisms

to

initialize

variables

with

complex

values.

The

s-init

mechanism

is

triggered

by

execution

of

the

program

entry

point

(PEP)

of

a

bound

program

and

is

supported

by

language

run-time

code.

The

RINZSTAT

instruction

does

not

cause

this

s-init

code

to

be

re-executed.

The

use

of

the

RINZSTAT

instruction

on

a

program

containing

s-init

items

can

lead

to

an

inconsistent

internal

state

of

the

program.

Authorization

Required

v

v

Execute

–

–

Program

referenced

by

operand

1

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

Machine

Interface

Instructions

1027

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2C

Program

Execution

2C12

Activation

Group

Access

Violation

2C13

Activation

Group

Not

Found

2C15

Invalid

Operation

for

Program

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Remainder

(REM)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-6]

REM

1073

Remainder

Dividend

Divisor

REMI

1873

Indicator

options

Remainder

Dividend

Divisor

Indicator

targets

REMB

1C73

Branch

options

Remainder

Dividend

Divisor

Branch

targets

Operand

1:

Numeric

variable

scalar.

1028

iSeries:

Machine

Interface

Instructions

APIs

Operand

2:

Numeric

scalar.

Operand

3:

Numeric

scalar.

Operand

4-6:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Warning:

Temporary

Level

3

Header

Short

forms

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

[3-5]

REMS

1173

Remainder/Dividend

Divisor

REMIS

1973

Indicator

options

Remainder/Dividend

Divisor

Indicator

targets

REMBS

1D73

Branch

options

Remainder/Dividend

Divisor

Branch

targets

Operand

1:

Numeric

variable

scalar.

Operand

2:

Numeric

scalar.

Operand

3-5:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

The

remainder

is

the

result

of

dividing

the

dividend

by

the

divisor

and

placing

the

remainder

in

operand

1.

Operands

can

have

packed

or

zoned

decimal,

signed

or

unsigned

binary

type.

Source

operands

are

the

dividend

and

divisor.

The

receiver

operand

is

the

remainder.

If

operands

are

not

of

the

same

type,

source

operands

are

converted

according

to

the

following

rules:

1.

If

any

one

of

the

operands

has

zoned

or

packed

decimal

type,

source

operands

are

converted

to

packed

decimal.

2.

Otherwise,

the

binary

operands

are

converted

to

a

like

type.

Note:

unsigned

binary(2)

scalars

are

logically

treated

as

signed

binary(4)

scalars.

Source

operands

are

divided

according

to

their

type.

Packed

decimal

operands

are

divided

using

packed

decimal

division.

Unsigned

binary

division

is

used

with

unsigned

source

operands.

Signed

binary

operands

are

divided

using

two’s

complement

binary

division.

Better

performance

can

be

obtained

if

all

operands

have

the

same

type.

Signed

and

unsigned

binary

division

execute

faster

than

packed

decimal

division.

The

operands

must

be

numeric

with

any

implicit

conversions

occurring

according

to

the

rules

of

arithmetic

operations

as

outlined

in

the

Arithmetic

Operations.

Floating-point

is

not

supported

for

this

instruction.

Machine

Interface

Instructions

1029

MCNPFAO.htm

If

the

divisor

has

a

numeric

value

of

0,

a

zero

divide

(hex

0C0B)

exception

is

signaled.

If

the

dividend

has

a

value

of

0,

the

result

of

the

division

is

a

zero

value

remainder.

For

a

decimal

operation,

the

internal

quotient

value

produced

by

the

divide

operation

is

always

calculated

with

a

precision

of

zero

fractional

digit

positions.

If

necessary,

internal

alignment

of

the

assumed

decimal

point

for

the

dividend

and

divisor

operands

is

performed

to

insure

the

correct

precision

for

the

resultant

quotient

value.

These

internal

alignments

are

not

subject

to

detection

of

the

decimal

point

alignment

exception.

An

internal

quotient

and

the

corresponding

remainder

value

will

be

calculated

for

any

combination

of

decimal

attributes

which

may

be

specified

for

the

instruction’s

operands.

However,

as

described

below,

the

assignment

of

the

remainder

value

is

limited

to

that

portion

of

the

remainder

value

which

fits

in

the

remainder

operand.

If

the

dividend

is

shorter

than

the

divisor,

it

is

logically

adjusted

to

the

length

of

the

divisor.

The

division

operation

is

performed

according

to

the

rules

of

algebra.

Unsigned

binary

is

treated

as

a

positive

number

for

the

algebra.

Before

the

remainder

is

calculated,

an

intermediate

quotient

is

calculated.

The

attributes

of

this

quotient

are

derived

from

the

attributes

of

the

dividend

and

divisor

operands

as

follows:

Dividend

Divisor

Intermediate

Quotient

IM,SIM

or

SBIN(2)

IM,SIM

or

SBIN(2)

SBIN(2)

IM,SIM

or

SBIN(2)

SBIN(4)

SBIN(4)

IM,SIM,SBIN(2)

or

UBIN(2)

DECIMAL(P2,Q2)

DECIMAL(5+Q2,0)

IM,SIM,SBIN(2)

or

SBIN(4)

UBIN(2)

or

UBIN(4)

UBIN(4)

UBIN(2)

or

UBIN(4)

IM,SIM,SBIN(2)

or

SBIN(4)

UBIN(4)

UBIN(2)

or

UBIN(4)

UBIN(2)

or

UBIN(4)

UBIN(4)

SBIN(4)

IM,SIM

or

SBIN(2)

SBIN(4)

SBIN(4)

or

UBIN(4)

DECIMAL(P2,Q2)

DECIMAL(10+Q2,0)

DECIMAL(P1,Q1)

IM,SIM,SBIN(2)

or

UBIN(2)

DECIMAL(P1,0)

DECIMAL(P1,Q1)

SBIN(4)

or

UBIN(4)

DECIMAL(P1,0)

DECIMAL(P1,Q1)

DECIMAL(P2,Q2)

DECIMAL(P1-Q1+Q,0)

Where

Q

=

Larger

of

Q1

or

Q2

IM

=

IMMEDIATE

SIM

=

SIGNED

IMMEDIATE

SBIN

=

SIGNED

BINARY

UBIN

=

UNSIGNED

BINARY

DECIMAL

=

PACKED

OR

ZONED

After

the

intermediate

quotient

numeric

value

has

been

determined,

the

numeric

value

of

the

remainder

operand

is

calculated

as

follows:

1030

iSeries:

Machine

Interface

Instructions

APIs

Remainder

=

Dividend

-

(Quotient*Divisor)

When

signed

arithmetic

is

used,

the

sign

of

the

remainder

is

the

same

as

that

of

the

dividend

unless

the

remainder

has

a

value

of

0.

When

the

remainder

has

a

value

of

0,

the

sign

of

the

remainder

is

positive.

The

resultant

value

of

the

calculation

is

copied

into

the

remainder

operand.

If

this

operand

is

not

the

same

type

as

that

used

in

performing

the

operation,

the

resultant

value

is

converted

to

its

type.

If

necessary,

the

resultant

value

is

adjusted

to

the

length

of

the

remainder

operand,

aligned

at

the

assumed

decimal

point

of

the

remainder

operand,

or

both

before

being

copied

to

it.

Length

adjustment

and

decimal

point

alignment

are

performed

according

to

the

rules

of

arithmetic

operations

as

outlined

in

Arithmetic

Operations.

If

significant

digits

are

truncated

on

the

left

end

of

the

resultant

value,

a

size

(hex

0C0A)

exception

is

signaled

for

those

programs

that

request

to

be

notified

of

size

exceptions.

If

a

decimal

to

binary

conversion

causes

a

size

(hex

0C0A)

exception

to

be

signaled

in

programs

that

request

to

be

notified

of

size

exceptions,

the

binary

value

contains

the

correct

truncated

result

only

if

the

decimal

value

contains

15

or

fewer

significant

nonfractional

digits.

Resultant

Conditions:

v

v

Positive-The

algebraic

value

of

the

numeric

scalar

remainder

is

positive.

v

Negative-The

algebraic

value

of

the

numeric

scalar

remainder

is

negative.

v

Zero-The

algebraic

value

of

the

numeric

scalar

remainder

is

zero.

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C02

Decimal

Data

0C0A

Size

0C0B

Zero

Divide

Machine

Interface

Instructions

1031

MCNPFAO.htm
MCNPFAO.htm

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Remove

Independent

Index

Entry

(RMVINXEN)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

Operand

4

0484

Receiver

Index

Option

list

Argument

1032

iSeries:

Machine

Interface

Instructions

APIs

Operand

1:

Space

pointer

or

null.

Operand

2:

System

pointer.

Operand

3:

Space

pointer.

Operand

4:

Space

pointer.

Bound

program

access

Built-in

number

for

RMVINXEN

is

40.

RMVINXEN

(

receiver

:

address

OR

null

operand

index

:

address

of

system

pointer

option_list

:

address

argument

:

address

)

Warning:

The

following

information

is

subject

to

change

from

release

to

release.

Use

it

with

caution

and

be

prepared

to

adjust

for

changes

with

each

new

release.

Description:

The

index

entries

identified

by

operands

3

and

4

are

removed

from

the

independent

index

identified

by

operand

2

and

optionally

returned

in

the

receiver

specified

by

operand

1.

The

maximum

length

of

an

independent

index

entry

is

either

120

bytes

or

2,000

bytes

depending

on

how

the

maximum

entry

length

attribute

field

was

specified

when

the

index

was

created.

Note

that

all

indexes

created

in

Version

3

Release

6

or

later

have

a

maximum

entry

length

of

2,000

bytes.

The

option

list

(operand

3)

and

the

argument

(operand

4)

have

the

same

format

and

meaning

as

the

option

list

and

search

argument

for

the

Find

Independent

Index

Entry

(FNDINXEN)

instruction.

The

return

count

designates

the

number

of

index

entries

that

were

removed

from

the

index.

The

arguments

removed

are

returned

in

the

receiver

field

if

a

space

pointer

is

specified

for

operand

1.

If

operand

1

is

null,

the

entries

removed

from

the

index

are

not

returned.

If

neither

space

pointer

nor

null

is

specified

for

operand

1,

the

entries

are

returned

in

the

same

way

that

entries

are

returned

for

the

Find

Independent

Index

Entry

instruction

(FNDINXEN).

Every

entry

removed

causes

the

entries

removed

count

to

be

incremented

by

1.

The

current

value

of

this

count

is

available

through

the

Materialize

Independent

Index

Attributes

(MATINXAT)

instruction.

The

entries

removed

field

must

be

less

than

4,096.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Delete

–

–

Operand

2
v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

Machine

Interface

Instructions

1033

–

–

Contexts

referenced

for

address

resolution
v

Modify

–

–

Operand

2

Exceptions

02

Access

Group

0201

Object

Ineligible

for

Access

Group

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C04

Object

Storage

Limit

Exceeded

1C0E

IASP

Resources

Exceeded

1C11

Independent

ASP

Varied

Off

20

Machine

Support

2002

Machine

Check

2003

Function

Check

1034

iSeries:

Machine

Interface

Instructions

APIs

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Resolve

Data

Pointer

(RSLVDP)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

0163

Pointer

for

addressability

to

data

object

Data

object

identification

Program

Operand

1:

Data

pointer.

Operand

2:

Character(32)

scalar

or

null.

Machine

Interface

Instructions

1035

Operand

3:

System

pointer

or

null.

Bound

program

access

Built-in

number

for

RSLVDP

is

385.

RSLVDP

(

pointer_for_addressability_to_data_object

:

address

of

data

pointer

data_object_identification

:

address

OR

null

operand

program

:

address

of

system

pointer

OR

null

operand

)

Description:

A

data

pointer

with

addressability

to

and

the

attributes

of

an

external

scalar

data

element

is

returned

in

the

storage

area

identified

by

operand

1.

The

following

describes

the

instruction’s

function

when

operand

2

is

null:

v

v

If

operand

1

does

not

contain

a

data

pointer,

an

exception

is

signaled.

v

If

the

data

pointer

specified

by

operand

1

is

not

resolved

and

has

an

initial

value

declaration,

the

instruction

resolves

the

data

pointer

to

the

external

scalar

that

the

initial

value

describes.

The

initial

value

defines

the

external

scalar

to

be

located

and,

optionally,

defines

the

program

in

which

it

is

to

be

located.

If

the

program

name

is

specified

in

the

initial

value,

only

that

program’s

activation

entry

is

searched

for

the

external

scalar.

If

no

program

is

specified,

programs

associated

with

the

activation

entries

in

the

current

activation

group

in

which

the

program

is

executing,

are

searched

in

reverse

order

of

the

activation

entries,

and

operand

3

is

ignored.

The

current

activation

group

for

non-bound

programs

is

the

default

activation

group

whose

state

is

the

same

as

the

state

of

the

process

at

the

time

the

instruction

is

run.

v

If

the

data

pointer

is

currently

resolved

and

defines

an

existing

scalar,

the

instruction

causes

no

operation,

and

no

exception

is

signaled.

The

following

describes

the

instruction’s

function

when

operand

2

is

not

null:

v

v

A

data

pointer

that

is

resolved

to

the

external

scalar

identified

by

operand

2

is

returned

in

operand

1.

Operand

2

is

a

32-byte

value

that

provides

the

name

of

the

external

scalar

to

be

located.

v

Operand

3

specifies

a

system

pointer

that

identifies

the

program

whose

activation

is

to

be

searched

for

the

external

scalar

definition.

If

operand

3

is

null,

the

instruction

searches

all

activations

in

the

activation

group

from

which

the

instruction

is

executed,

starting

with

the

most

recent

activation

and

continuing

to

the

oldest.

The

activation

under

which

the

instruction

is

issued

also

participates

in

the

search.

If

operand

3

is

not

null,

the

instruction

searches

the

activation

of

the

program

addressed

by

the

system

pointer.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

1036

iSeries:

Machine

Interface

Instructions

APIs

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0604

External

Data

Object

Not

Found

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

Machine

Interface

Instructions

1037

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2404

Pointer

Not

Resolved

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Resolve

System

Pointer

(RSLVSP)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

Operand

4

0164

Pointer

for

addressability

to

object

Resolve

options

Context

through

which

object

is

to

be

located

Authority

to

be

set

1

(page

1048)

Operand

1:

System

pointer.

Operand

2:

Character(34,

128)

scalar

or

null.

Operand

3:

System

pointer

or

null.

Operand

4:

Character(2)

scalar

or

null.

Bound

program

access

Built-in

number

for

RSLVSP

is

30.

RSLVSP

(

pointer_for_addressability_to_object

:

address

of

system

pointer

resolve_options

:

address

OR

null

operand

context_through_which_object_is_to_be_located

:

address

of

system

pointer

OR

null

operand

authority_to_be_set

:

address

OR

null

operand

)

1038

iSeries:

Machine

Interface

Instructions

APIs

Description:

This

instruction

locates

an

object

identified

by

a

symbolic

address

and

stores

the

object’s

addressability

and

authority

1

(page

1048)

in

a

system

pointer.

A

resolved

system

pointer

is

returned

in

operand

1

with

addressability

to

a

system

object

and

the

requested

authority

currently

available

to

the

thread

for

the

object.

Note:

The

ownership

flag

is

never

set

in

the

system

pointer.

Operand

2

specifies

the

symbolic

identification

of

the

object

to

be

located.

Operand

3

identifies

the

context

to

be

searched

in

order

to

locate

the

object.

Operand

4

identifies

the

authority

states

to

be

set

in

the

pointer.

First,

the

instruction

locates

an

object

based

on

operands

1,

2

and

3.

Then,

the

instruction

sets

the

appropriate

authority

states

in

the

system

pointer.

An

object

not

found

(hex

2201)

exception

is

signaled

if

the

object

is

not

found.

The

object

to

be

located

is

either

addressed

through

a

machine

context

or

a

context

object.

The

following

object

types

can

only

be

addressed

through

the

system

ASP

machine

context

(i.e.

they

cannot

be

addressed

through

an

independent

ASP

machine

context

or

a

context

object):

Hex

08

=

User

profile

Hex

10

=

Logical

unit

description

Hex

11

=

Network

description

Hex

12

=

Controller

description

Hex

14

=

Class

of

service

description

Hex

15

=

Mode

description

Hex

16

=

Network

interface

description

Hex

17

=

Connection

list

Hex

1D

=

Auxiliary

server

The

following

object

types

can

only

be

addressed

through

the

system

ASP

machine

context

or

an

independent

ASP

machine

context

(i.e.

they

cannot

be

addressed

through

a

context

object):

Hex

04

=

Context

Other

objects

types

are

addressed

through

a

context

object,

which

may

reside

in

the

system

ASP,

basic

ASP,

or

an

ASP

group.

No

two

context

objects

with

the

same

name

and

subtype

can

exist

within

a

given

ASP

group

or

within

all

basic

ASPs

and

the

system

ASP

(combined).

Also,

a

context

object

in

the

system

ASP

or

basic

ASP

cannot

have

the

same

name

and

subtype

as

a

context

in

an

ASP

group.

But

context

objects

that

are

in

different

ASP

groups

may

have

the

same

name

and

subtype.

An

ASP

group

is

a

set

of

independent

ASPs

that

are

configured

such

that

they

always

vary

on

and

off

together.

The

search

for

the

object

to

be

located

proceeds

as

follows:

v

v

If

an

object

is

a

type

that

can

only

reside

in

the

system

ASP

machine

context,

then

only

that

machine

context

is

searched.

v

Otherwise,

if

the

search

method

field

in

the

extended

template

is

used

to

limit

the

search

to

a

context

object

(or

machine

context)

in

a

specified

independent

ASP

or

ASP

group,

then

only

that

context

object

(or

machine

context)

is

searched.

Machine

Interface

Instructions

1039

v

Otherwise,

the

name

space

of

the

current

thread

is

searched.

A

name

space

is

a

list

that

identifies

which

machine

contexts

RSLVSP

uses

to

search

for

a

context

object.

The

name

space

includes

the

system

ASP

and

basic

ASPs

and

may

include

one

ASP

group.

(Note

that

the

search

method

field

can

be

used

to

limit

the

search

to

just

the

ASP

groups

of

the

current

thread’s

name

space.)

When

a

name

space

is

used

to

resolve

to

an

object,

the

method

used

to

search

the

name

space

depends

on

the

type

of

object

being

resolved

to:

v

v

If

the

object

to

be

resolved

is

a

context

object,

then

each

machine

context

in

the

name

space

is

searched.

If

the

context

object

is

found,

this

instruction

will

resolve

to

the

context.

If

the

context

object

is

not

found,

an

object

not

found

(hex

2201)

exception

is

signaled.

v

If

the

object

to

be

resolved

can

reside

in

a

context

object

and

a

containing

context

is

specified,

then

the

search

algorithm

depends

on

whether

or

not

the

context

object

has

an

alias

context.

A

containing

context

object

is

specified

in

operand

3

(see

description

of

operand

3)

or

when

operand

1

defines

the

name

of

a

context

object

in

an

initial

value

declaration

(see

description

of

behavior

when

operand

2

is

null).

An

alias

context

is

a

context

object

on

an

independent

ASP

which

is

searched

before

searching

the

specified

context

in

the

system

ASP

or

basic

ASP.

Note

that

only

context

objects

in

the

system

ASP

or

basic

ASPs

can

have

an

alias

context.

The

alias

context

will

always

be

in

the

ASP

group

of

the

current

thread’s

name

space.

If

the

name

space

contains

an

ASP

group

and

the

ASP

group

has

an

alias

context

for

the

containing

context

object,

then

this

instruction

searches

for

the

specified

object

in

the

alias

context

first.

If

the

object

is

found,

the

instruction

resolves

to

that

object.

If

the

object

is

not

found

(or

if

the

context

does

not

have

an

alias

context)

the

instruction

then

searches

the

actual

containing

context

that

was

specified.

If

the

object

is

found

there,

the

instruction

resolves

to

that

object.

If

the

object

is

still

not

found

an

object

not

found

(hex

2201)

exception

is

signaled.

When

a

containing

context

is

specified,

the

current

thread

must

have

authority

to

each

context

object

that

is

searched

(e.g.

the

specified

context

object

and

the

alias

context,

if

any);

otherwise

an

unauthorized

for

operation

(hex

0A01)

exception

is

signaled.

If

an

object

is

found

in

an

alias

context,

the

specified

containing

context

in

the

system

ASP

or

basic

ASPs

will

not

be

searched

and

authority

will

only

be

verified

for

the

alias

context

(not

the

specified

containing

context

object

itself.)

v

If

the

object

to

be

resolved

can

reside

in

a

context

object

and

a

containing

context

is

not

specified,

the

name

resolution

list

is

used

to

search

for

the

object.

The

search

starts

with

the

first

context

object

in

the

name

resolution

list.

If

the

context

object

has

an

alias

context,

first

the

alias

context

is

searched.

Then

the

instruction

searches

the

actual

containing

context

that

was

specified.

If

the

object

still

has

not

been

found,

the

next

context

object

in

the

the

name

resolution

list

is

searched

in

a

similar

manner.

This

continues

until

all

context

objects

in

the

name

resolution

list

have

been

searched

(or

until

the

object

is

found).

If

the

object

is

not

found,

an

object

not

found

(hex

2201)

exception

is

signaled.

For

every

context

object

in

the

name

resolution

list,

the

current

thread

must

have

authority

to

each

context

object

that

is

searched

(e.g.

the

specified

context

object

and

the

alias

for

the

context

object,

if

any);

otherwise

an

unauthorized

for

operation

(hex

0A01)

exception

is

signaled.

For

every

context

object

in

the

name

resolution

list,

if

an

object

is

found

in

an

alias

context,

the

specified

containing

context

in

the

system

ASP

or

basic

ASPs

will

not

be

searched

and

authority

will

only

verified

for

the

alias

context

(not

the

specified

containing

context

object

itself.)

As

described

above,

objects

are

located

in

a

machine

context,

in

a

specified

containing

context

object,

or

using

a

name

resolution

list

of

context

objects.

Issues

regarding

name

spaces

are

now

described

for

these

cases.

If

an

object

cannot

reside

in

an

independent

ASP

machine

context

or

a

context

object,

then

name

spaces

do

not

apply.

v

v

Objects

in

a

machine

context

(i.e.

context

objects)

1040

iSeries:

Machine

Interface

Instructions

APIs

When

searching

a

name

space

for

a

context

object,

if

the

name

space

contains

an

ASP

group

and

it

is

varied

off,

then

that

ASP

group

is

bypassed

and

only

the

system

ASP

machine

context

is

searched

(for

objects

in

the

system

ASP

and

basic

ASPs).

v

Objects

in

a

context

When

searching

a

name

space,

if

a

containing

context

object

is

specified

and

that

context

object

resides

on

an

independent

ASP

that

is

varied

off,

an

object

not

available

(hex

220B)

exception

is

signaled.

If

the

containing

context

has

an

alias

context

and

the

alias

context

resides

on

an

independent

ASP

that

is

varied

off,

then

the

alias

context

is

bypassed

and

no

exception

is

signaled.

v

Objects

in

context

searched

using

name

resolution

list

If

a

name

resolution

list

is

used

to

find

an

object,

if

the

context

object

referenced

by

the

name

resolution

list

entry

is

destroyed

or

it

resides

on

an

independent

ASP

that

is

varied

off,

that

context

name

is

bypassed

and

the

search

continues

with

the

next

context

object

in

the

name

resolution

list.

If

the

context

object

referenced

by

the

name

resolution

list

entry

has

an

alias

context

and

the

alias

context

resides

on

an

independent

ASP

that

is

varied

off,

then

the

alias

context

is

bypassed

and

no

exception

is

signaled.

The

following

describes

the

instruction’s

function

when

operand

2

is

null

(or

if

the

operand

2

template

is

extended

and

the

field

ignore

object

specification

and

authorization

fields

is

set

to

1).

Note

that

operand

3

is

always

ignored

in

this

case.

v

v

If

operand

1

does

not

contain

a

system

pointer,

an

exception

is

signaled.

v

If

the

system

pointer

specified

by

operand

1

is

not

resolved

but

has

an

initial

value

declaration,

the

instruction

resolves

the

system

pointer

to

the

object

that

the

initial

value

describes.

The

initial

value

defines

the

following:

–

–

Object

to

be

located

(by

type

code,

subtype

code,

and

object

name)

–

Name

of

context

to

be

searched

to

locate

the

object

(optional)

–

Minimum

required

authorization

required

for

the

object

If

a

context

name

is

specified,

then

that

context

will

be

searched

to

locate

the

object.

If

no

context

is

specified,

the

context

object(s)

located

by

the

name

resolution

list

associated

with

the

thread

issuing

this

instruction

is

used

to

locate

the

object.

In

both

cases,

the

current

thread’s

name

space

will

be

used

(unless

the

search

method

field

in

the

extended

template

is

used

to

specify

a

different

method).

If

the

minimum

required

authorization

in

the

initial

value

is

not

set

(binary

0),

the

instruction

resolves

the

operand

1

system

pointer

to

the

first

object

encountered

with

the

designated

type

code,

subtype

code,

and

object

name

without

regard

to

the

authorization

available

to

the

thread

for

the

object.

If

one

or

more

authorization

(or

ownership)

states

are

required

(signified

by

binary

1’s),

the

context(s)

is

searched

until

an

object

is

encountered

with

the

designated

type,

subtype,

and

name

for

which

the

thread

currently

has

all

required

authorization

states.

v

If

the

system

pointer

specified

by

operand

1

is

currently

resolved

to

address

an

existing

object,

the

instruction

does

not

modify

the

addressability

contained

in

the

pointer

and

causes

only

the

authority

attribute

in

the

pointer

to

be

modified

based

on

operand

4.

If

operand

2

is

not

null,

then

the

object

identified

by

operand

2

is

resolved.

(But

if

the

operand

2

template

is

extended

and

the

field

ignore

object

specification

and

authorization

fields

is

set

to

binary

1,

then

the

object

identified

by

operand

2

is

ignored.

See

the

preceding

section,

starting

with

the

phrase

″The

following

describes

the

instruction’s

function

when

operand

2

is

null...″.)

When

the

object

identified

by

operand

2

is

resolved,

the

instruction

searches

the

context(s)

specified

by

operand

3

and

stores

the

resolved

system

pointer

in

operand

1.

Machine

Interface

Instructions

1041

The

format

of

operand

2

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Object

specification

Char(32)

0

0

Type

code

Char(1)

1

1

Subtype

code

Char(1)

2

2

Object

name

Char(30)

32

20

Required

authorization

(1

=

required)

Char(2)

32

20

Object

control

Bit

0

32

20

Object

management

Bit

1

32

20

Authorized

pointer

Bit

2

32

20

Space

authority

Bit

3

32

20

Retrieve

Bit

4

32

20

Insert

Bit

5

32

20

Delete

Bit

6

32

20

Update

Bit

7

32

20

Ownership

Bit

8

32

20

Excluded

Bit

9

32

20

Authority

list

management

Bit

10

32

20

Execute

Bit

11

32

20

Alter

Bit

12

32

20

Reference

Bit

13

32

20

Reserved

(binary

0)

Bit

14

32

20

Extended

template

Bit

15

0

=

The

template

is

not

extended

1

=

The

template

is

extended

34

22

—-

End

—-

The

allowed

type

codes

are

as

follows:

Hex

01

=

Access

group

Hex

02

=

Program

Hex

03

=

Module

Hex

04

=

Context

Hex

06

=

Byte

string

space

Hex

07

=

Journal

space

Hex

08

=

User

profile

Hex

09

=

Journal

port

Hex

0A

=

Queue

Hex

0B

=

Data

space

Hex

0C

=

Data

space

index

Hex

0D

=

Cursor

Hex

0E

=

Index

Hex

0F

=

Commit

block

Hex

10

=

Logical

unit

description

1042

iSeries:

Machine

Interface

Instructions

APIs

Hex

11

=

Network

description

Hex

12

=

Controller

description

Hex

13

=

Dump

space

Hex

14

=

Class

of

service

description

Hex

15

=

Mode

description

Hex

16

=

Network

interface

description

Hex

17

=

Connection

list

Hex

18

=

Queue

space

Hex

19

=

Space

Hex

1A

=

Process

control

space

Hex

1B

=

Authority

list

Hex

1C

=

Dictionary

Hex

1D

=

Auxiliary

server

Hex

1E

=

Byte

stream

file

Hex

21

=

Composite

object

group

Hex

23

=

Transaction

control

structure

All

other

codes

are

reserved.

If

other

codes

are

specified,

they

cause

a

scalar

value

invalid

(hex

3203)

exception

to

be

signaled.

This

instruction

will

not

resolve

to

hidden

contexts.

An

attempt

to

do

so

will

always

result

in

an

object

not

found

(hex

2201)

exception.

A

hidden

context

is

denoted

by

the

hidden

attribute

of

a

context.

See

the

MATCTX

instruction

for

additional

details.

When

resolving

to

an

object

that

can

reside

in

a

context

object,

operand

3

identifies

the

context

in

which

to

locate

the

object

identified

by

operand

2.

If

operand

3

is

null,

then

the

contexts

identified

in

the

name

resolution

list

associated

with

the

thread

issuing

this

instruction

are

searched

in

the

order

in

which

they

appear

in

the

list.

If

operand

3

is

not

null,

the

system

pointer

specified

must

address

a

context,

and

only

this

context

(and

possible

aliases

for

the

context)

are

used

to

locate

the

object.

If

the

required

authorization

field

in

operand

2

is

not

set

(all

values

set

to

0),

the

instruction

resolves

the

operand

1

system

pointer

to

the

first

object

encountered

with

the

designated

type

code,

subtype

code,

and

object

name

without

regard

to

the

authorization

currently

available

to

the

thread.

If

one

or

more

authorization

(or

ownership)

states

are

required

(signified

by

binary

1’s),

the

context

is

searched

until

an

object

is

encountered

with

the

designated

type

code,

subtype

code,

object

name,

and

the

user

profiles

governing

the

thread’s

execution

that

have

all

the

required

authorization

states.

If

the

bit

extended

template

is

set

to

binary

1,

then

the

extended

template

is

defined

starting

at

offset

34

of

the

operand

2

template.

The

extended

template

is

defined

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

34

22

Template

version

Char(1)

35

23

Search

method

Char(1)

Machine

Interface

Instructions

1043

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

Hex

00

=

Search

the

thread’s

name

space

Hex

01

=

Search

only

for

objects

residing

on

the

specified

independent

ASP

Hex

02

=

Search

only

for

objects

residing

on

the

ASP

group

containing

the

specified

independent

ASP

Hex

03

=

Search

only

the

ASP

group

of

the

name

space

36

24

Options

Char(1)

36

24

Ignore

object

specification

and

authorization

fields

Bit

0

1

=

Ignore

these

values

0

=

Use

these

values

36

24

Reserved

(binary

0)

Bits

1-7

37

25

Reserved

(binary

0)

Char(7)

44

2C

Independent

ASP

number

to

search

Char(2)

46

2E

ASP

number

of

context

containing

resolved

object

Char(2)

48

30

Context

containing

the

resolved

object

System

pointer

64

40

Reserved

(binary

0)

Char(64)

128

80

—-

End

—-

The

field

template

version

identifies

the

version

of

the

extended

template.

It

must

be

set

to

hex

00.

The

field

search

method

determines

how

the

name

space

is

searched:

v

v

A

value

of

hex

00

means

the

thread’s

name

space

is

searched,

as

described

above

(where

the

term

″name

space″

is

defined).

v

A

value

of

hex

01

means

that

the

the

search

is

restricted

to

objects

that

reside

on

a

specified

independent

ASP

(or

the

system

ASP

and

basic

ASPs).

The

field

independent

ASP

number

to

search

determines

which

ASP.

This

option

is

applicable

when

searching

a

specified

context

object

or

when

searching

the

name

resolution

list.

When

the

object

resides

in

an

ASP

group,

this

instruction

will

search

context

objects

in

all

independent

ASPs

of

the

ASP

group.

The

field

independent

ASP

number

to

search

must

specify

an

existing

independent

ASP.

A

value

of

0

specifies

the

system

ASP

and

basic

ASPs.

Values

33

through

255

specify

an

independent

ASP.

An

ASP

number

between

1

and

32

or

a

number

greater

than

255

results

in

a

template

value

invalid

(hex

3801)

exception

being

signaled.

If

the

specified

independent

ASP

is

not

varied

on,

then

a

object

not

available

(hex

220B)

exception

is

signaled.

v

A

value

of

hex

02

means

that

the

search

is

restricted

to

objects

that

reside

on

a

single

ASP

group

or

the

system

ASP

and

basic

ASPs.

The

field

independent

ASP

number

to

search

determines

which

one.

A

value

of

0

specifies

the

system

ASP

and

basic

ASPs.

Values

33

through

255

specify

the

ASP

group

or

UDFS

(User

Defined

File

System)

ASP

containing

that

independent

ASP.

(Any

independent

ASP

in

an

ASP

group

can

be

used

to

identify

that

ASP

group.)

This

option

is

applicable

when

searching

a

specified

context

object

or

when

searching

the

name

resolution

list.

The

rules

for

the

field

independent

ASP

number

to

search

are

the

same

as

those

given

for

search

method

hex

01.

A

User

Defined

File

System

(UDFS)

ASP

is

an

IASP

that

is

never

part

of

an

ASP

group.

1044

iSeries:

Machine

Interface

Instructions

APIs

v

A

value

of

hex

03

means

the

search

is

restricted

to

the

ASP

group

of

the

name

space

(not

the

system

ASP

or

basic

ASPs).

As

stated

above,

if

a

resolve

is

done

for

an

object

type

that

can

only

be

addressed

through

the

system

ASP

machine

context

then

only

the

system

machine

context

is

searched.

When

resolving

to

objects

that

can

only

reside

in

the

system

ASP

machine

context,

the

field

search

method

must

be

set

to

hex

00

(if

the

template

is

extended).

Otherwise

a

template

value

invalid

(hex

3801)

exception

is

signaled.

For

option

hex

01

or

hex

02,

if

a

context

address

is

provided

in

operand

3,

then

the

context

object

must

reside

in

the

same

ASP

group

as

the

specified

independent

ASP

to

search;

otherwise

an

auxiliary

storage

pool

number

invalid

(hex

1C09)

exception

is

signaled.

For

option

hex

01

or

hex

02,

execute

authority

is

required

for

the

device

description

for

every

independent

ASP

in

the

ASP

group

(the

ASP

group

that

contains

the

independent

ASP

number

to

search).

Authority

to

a

device

description

is

checked

only

when

the

corresponding

independent

ASP

is

searched.

Once

an

object

is

found,

the

remaining

independent

ASPs

do

not

have

to

be

searched.

For

option

hex

03,

if

a

context

address

is

provided

in

operand

3,

then

it

must

reference

a

context

object

in

an

ASP

group

of

the

current

thread’s

name

space

or

in

the

system

ASP

or

basic

ASP;

otherwise

an

auxiliary

storage

pool

number

invalid

(hex

1C09)

exception

is

signaled.

If

the

context

address

refers

to

a

context

object

in

the

system

ASP

or

basic

ASP,

then

only

the

alias

contexts

are

searched.

When

the

field

ignore

object

specification

and

authorization

fields

is

set

to

binary

0,

the

object

specification

and

required

authorization

will

be

used

as

defined

above.

If

this

field

is

set

to

binary

1,

then

the

object

specification

and

required

authorization

fields

will

be

ignored,

as

if

operand

2

were

a

null

pointer.

When

an

object

is

successfully

resolved

by

this

instruction,

the

field

context

containing

the

resolved

object

will

contain

a

pointer

to

the

context

object

in

which

the

object

was

found.

A

null

pointer

value

means

the

object

was

found

in

a

machine

context.

The

field

ASP

number

of

context

containing

resolved

object

indicates

the

ASP

number

on

which

the

context

containing

the

resolved

object

resides.

This

will

be

a

basic

ASP

number

or

an

independent

ASP

number.

When

the

field

ASP

number

of

context

containing

resolved

object

is

set

to

hex

00,

it

identifies

the

system

ASP.

Once

addressability

has

been

set

in

the

operand

1

pointer,

operand

4

is

used

to

determine

which,

if

any,

of

the

object

authority

states

is

to

be

set

into

the

pointer.

Only

the

object

authority

states

correlating

with

bits

0

through

7

and

11,

that

is,

object

control

through

update

and

execute,

can

be

set

into

the

pointer.

This

restriction

applies

whether

the

authority

mask

controlling

which

authorities

to

set

in

the

pointer

comes

from

operand

4,

operand

2,

or

the

initial

value

for

the

system

pointer.

If

operand

4

is

null,

the

object

authority

states

required

to

locate

the

object

are

set

in

the

operand

1

pointer.

This

required

object

authority

is

as

specified

in

operand

2

or

in

the

initial

value

for

operand

1

if

operand

2

is

null

(or

if

the

operand

2

template

is

extended

and

the

field

ignore

object

specification

and

authorization

fields

is

set

to

1).

If

the

thread

does

not

currently

have

authorized

pointer

authority

for

the

object,

no

authority

is

stored

in

the

system

pointer,

and

no

exception

is

signaled.

If

operand

2

is

null

(or

if

the

operand

2

template

is

extended

and

the

field

ignore

object

specification

and

authorization

fields

is

set

to

1)

and

operand

4

is

null

and

operand

1

is

a

resolved

system

pointer,

the

authority

states

in

the

pointer

are

not

modified.

If

operand

4

is

not

null,

it

specifies

the

object

authority

states

to

be

set

in

the

operand

1

system

pointer.

The

format

of

operand

4

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Requested

authorization

(1

=

set

authority)

Char(2)

0

0

Object

control

Bit

0

Machine

Interface

Instructions

1045

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Object

management

Bit

1

0

0

Authorized

pointer

Bit

2

0

0

Space

authority

Bit

3

0

0

Retrieve

Bit

4

0

0

Insert

Bit

5

0

0

Delete

Bit

6

0

0

Update

Bit

7

0

0

Reserved

(binary

0)

Bits

8-10

0

0

Execute

Bit

11

0

0

Alter

(will

be

ignored)

Bit

12

0

0

Reference

(will

be

ignored)

Bit

13

0

0

Reserved

(binary

0)

Bits

14-15

2

2

—-

End

—-

The

authority

states

set

in

the

operand

1

system

pointer

are

based

on

the

following:

v

v

The

authority

already

stored

in

the

pointer

can

be

increased

only

when

the

thread

has

authorized

pointer

authority

to

the

referenced

object.

If

this

authority

is

not

available

and

the

pointer

was

resolved

by

this

instruction,

the

authority

in

the

operand

1

system

pointer

is

set

to

the

not

set

state,

and

no

exception

is

signaled.

If

operand

2

is

null

(or

if

the

operand

2

template

is

extended

and

the

field

ignore

object

specification

and

authorization

fields

is

set

to

1),

if

operand

1

is

a

resolved

system

pointer

containing

authority,

and

if

authorized

pointer

authority

is

not

available

to

the

thread,

additional

authorities

cannot

be

stored

in

the

pointer.

v

If

the

thread

does

not

currently

have

all

the

authority

states

requested

in

operand

4,

only

the

requested

and

available

states

are

set

in

the

pointer,

and

no

exception

is

signaled.

v

A

thread

executing

in

user

state

may

not

set

any

additional

authority

in

a

system

pointer.

Operand

4

will

be

ignored

if

the

thread

executing

this

instruction

is

running

in

user

state.

v

Note

that

the

authority

stored

in

the

operand

1

system

pointer

is

a

source

of

authority

applies

to

this

instruction

when

operand

2

is

null

(or

if

the

operand

2

template

is

extended

and

the

field

ignore

object

specification

and

authorization

fields

is

set

to

1)

and

operand

1

is

a

resolved

system

pointer

with

authority

stored

in

it.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Contexts

referenced

for

address

resolution.

This

includes

the

operand

3

system

pointer

(when

it

is

not

a

null

system

pointer)

and

system

pointers

obtained

from

the

name

resolution

list.

Authority

is

1046

iSeries:

Machine

Interface

Instructions

APIs

also

checked

for

aliases

of

context

objects.

The

authority

supplied

in

the

actual

pointers

is

used

when

verifying

authority

for

each

context

(referenced

by

the

operand

3

or

the

name

resolution

list)

and

for

any

alias

context.

–

Device

description

for

every

independent

ASP

in

a

ASP

group

when

a

resolve

is

done

for

an

object

on

a

specified

independent

ASP

or

ASP

group.

See

the

description

of

the

search

method

field

for

details.

Lock

Enforcement

v

v

Materialization

–

–

Contexts

referenced

for

address

resolution

(including

operand

3)

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1002

Machine

Context

Damage

State

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C09

Auxiliary

Storage

Pool

Number

Invalid

20

Machine

Support

2002

Machine

Check

2003

Function

Check

Machine

Interface

Instructions

1047

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2404

Pointer

Not

Resolved

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Footnotes:

1

Programs

executing

in

user-state

may

not

assign

authority

in

the

resulting

system

pointer.

The

value

in

operand

4

is

ignored

and

no

exception

is

raised.

1048

iSeries:

Machine

Interface

Instructions

APIs

Retrieve

Computational

Attributes

(RETCA)

Bound

program

access

Built-in

number

for

RETCA

is

145.

RETCA

(

selector

:

unsigned

binary(4)

literal

value;

its

rightmost

byte

specifies

the

computational

attributes

to

retrieve

)

:

unsigned

binary(4)

value

which

contains

the

computational

attributes

specified

by

selector

Description:

The

right-most

byte

of

selector

specifies

the

computational

attributes

to

retrieve.

The

format

of

this

byte

is

as

follows:

Bit

Definition

0-3

Reserved

(must

be

0)

4

Exception

mask

5

Reserved

(must

be

0)

6

Exception

occurrence

7

Rounding

mode

All

other

bytes

of

selector

are

reserved

(must

be

0).

The

value

returned

by

RETCA

has

the

following

structure:

v

v

Byte

0:

Exception

mask

Bit

Meaning

0-1

Reserved

(binary

0)

2

Floating-point

overflow

3

Floating-point

underflow

4

Floating-point

zero

divide

5

Floating-point

inexact

result

6

Floating-point

invalid

operand

7

Reserved

(binary

0)

v

Byte

1:

Reserved

(binary

0)

v

Byte

2:

Exception

occurrence

Bit

Meaning

0-1

Reserved

(binary

0)

2

Floating-point

overflow

3

Floating-point

underflow

4

Floating-point

zero

divide

Machine

Interface

Instructions

1049

Bit

Meaning

5

Floating-point

inexact

result

6

Floating-point

invalid

operand

7

Reserved

(binary

0)

v

Byte

3:

Computational

mode

Bit

Meaning

0

Reserved

(binary

0)

1-2

Rounding

mode

v

00

-

Round

towards

positive

infinity

v

01

-

Round

towards

negative

infinity

v

10

-

Round

towards

0

v

11

-

Round

to

nearest

3-7

Reserved

(binary

0)

Note:

Any

floating-point

operations

currently

on

the

value

stack

will

be

computed

prior

to

retrieving

the

computational

attributes.

Therefore,

the

effect

of

such

floating-point

operations

on

the

exception

occurrence

byte,

for

example,

will

be

reflected

in

the

value

returned

by

the

function.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

v

v

None

Retrieve

Exception

Data

(RETEXCPD)

Op

Code

(Hex)

Operand

1

Operand

2

03E2

Receiver

Retrieve

options

Operand

1:

Space

pointer.

Operand

2:

Character(1)

scalar.

Description:

The

data

related

to

a

particular

occurrence

of

an

exception

is

returned

and

placed

in

the

specified

space.

Operand

1

is

a

space

pointer

that

identifies

the

receiver

template.

The

template

identified

by

operand

1

must

be

16-byte

aligned

in

the

space.

The

value

of

operand

2

specifies

the

type

of

exception

handler

for

which

the

exception

data

is

to

be

retrieved.

The

exception

handler

may

be

a

branch

point

exception

handler,

an

internal

entry

point

exception

handler,

or

an

external

entry

point

exception

handler.

1050

iSeries:

Machine

Interface

Instructions

APIs

An

exception

state

of

thread

invalid

(hex

1602)

exception

is

signaled

to

the

invocation

issuing

the

Retrieve

Exception

Data

instruction

if

the

retrieve

option

is

not

consistent

with

the

thread’s

exception

handling

state.

For

example,

the

exception

is

signaled

if

the

retrieve

option

specifies

retrieve

for

internal

entry

point

exception

handler

and

the

thread

exception

state

indicates

that

an

internal

exception

handler

has

not

been

invoked.

After

an

invocation

has

been

destroyed,

exception

data

associated

with

a

signaled

exception

description

within

that

invocation

is

lost.

The

format

of

operand

1

for

the

materialization

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Template

size

Char(8)

0

0

Number

of

bytes

provided

for

retrieval

Bin(4)

4

4

Number

of

bytes

available

for

retrieval

Bin(4)

8

8

Exception

identification

Char(2)

10

A

Compare

value

length

(maximum

of

32

bytes)

Bin(2)

12

C

Compare

value

Char(32)

44

2C

Message

reference

key

Char(4)

48

30

Exception

specific

data

Char(*)

*

*

Source

invocation

Invocation

pointer

or

Null

*

*

Target

invocation

Invocation

pointer

*

*

Source

instruction

address

UBin(2)

*

*

Target

instruction

address

UBin(2)

*

*

Machine-dependent

data

Char(10)

*

*

—-

End

—-

The

first

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

provided

for

retrieval

of

the

exception

data.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

exceptions

(other

than

the

materialization

length

invalid

(hex

3803)

exception)

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization.

The

message

reference

key

field

returns

the

architected

value

that

uniquely

identifies

the

message

in

the

process

queue

space.

The

source

invocation

and

source

instruction

address

identify

the

invocation

that

caused

the

exception

to

be

signaled.

For

machine

exceptions,

this

invocation

pointer

identifies

the

invocation

executing

when

the

exception

occurred.

For

user-signaled

exceptions,

this

invocation

pointer

locates

the

invocation

that

executed

the

Signal

Exception

(SIGEXCP)

instruction.

The

pointer

will

be

null

if

the

source

invocation

no

longer

exists

at

the

time

that

this

instruction

is

executed.

The

source

instruction

address

field

locates

the

instruction

that

caused

the

exception

to

be

signaled.

This

field

in

a

bound

program

invocation

will

be

set

to

0.

The

target

invocation

and

target

instruction

address

identify

the

invocation

that

is

the

target

of

the

exception.

This

invocation

is

the

last

invocation

that

was

given

the

chance

to

handle

the

exception.

For

machine

exceptions,

the

first

target

invocation

is

the

invocation

incurring

the

exception.

For

user-signaled

exceptions,

the

Signal

Exception

(SIGEXCP)

instruction

may

initially

locate

the

current

or

any

previous

Machine

Interface

Instructions

1051

invocation.

If

the

target

invocation

handles

the

exception

by

resignaling

the

exception,

the

immediately

previous

invocation

is

considered

to

be

the

target

invocation.

This

may

occur

repetitively

until

no

more

prior

invocations

exist

in

the

thread

and

the

signaled

program

invocation

entry

is

assigned

a

value

of

binary

0.

If

an

invocation

handles

the

exception

in

any

manner

other

than

resignaling

or

does

not

handle

the

exception,

that

invocation

is

considered

to

be

the

target.

The

target

instruction

address

field

specifies

the

number

of

the

instruction

that

is

currently

being

executed

in

the

target

invocation.

The

machine

extends

the

area

beyond

the

exception

specific

data

area

with

binary

0’s

so

that

the

pointers

to

program

invocations

are

aligned

on

a

16

byte

boundary.

The

operand

2

values

are

defined

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Retrieve

options

Char(1)

Hex

00

=

Retrieve

for

a

branch

point

exception

handler

Hex

01

=

Retrieve

for

an

internal

entry

point

exception

handler

Hex

02

=

Retrieve

for

an

external

entry

point

exception

handler

1

1

—-

End

—-

If

the

exception

data

retention

option

is

set

to

1

(do

not

save),

the

number

of

bytes

available

for

retrieval

is

set

to

0.

Exception

data

is

always

available

to

the

process

default

exception

handler.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

1052

iSeries:

Machine

Interface

Instructions

APIs

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

16

Exception

Management

1602

Exception

State

of

Thread

Invalid

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

Machine

Interface

Instructions

1053

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Retrieve

Invocation

Flags

(RETINVF)

Bound

program

access

Built-in

number

for

RETINVF

is

147.

RETINVF

(

)

:

unsigned

binary(4)

value

which

specifies

the

current

invocation

flags

Description:

The

current

invocation

flags

are

returned.

The

″read-only″

flags

are

returned

in

the

high-order

two

bytes

of

the

result;

the

″writeable″

flags

are

returned

in

the

low-order

two

bytes

of

the

result.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

v

v

None

Retrieve

Teraspace

Address

From

Space

Pointer

(RETTSADR)

Bound

program

access

Built-in

number

for

RETTSADR

is

623.

RETTSADR

(

source_pointer

:

space

pointer(16)

)

:

local

form

address

Description:

Retrieve

the

teraspace

address

from

source

pointer.

If

source

pointer

contains

a

null

pointer

value

then

a

null

pointer

value

is

returned.

If

source

pointer

contains

anything

except

a

space

address

that

points

to

teraspace,

then

a

space

address

is

not

a

teraspace

storage

address

(hex

0609)

exception

is

signalled.

If

any

exception

is

signalled

during

this

operation

the

result

is

undefined.

This

instruction

may

be

specified

in

a

program

template

only

when

the

(bound)

program

is

to

be

created

as

teraspace

capable.

1054

iSeries:

Machine

Interface

Instructions

APIs

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0602

Boundary

Alignment

0609

Space

Address

Is

Not

A

Teraspace

Storage

Address

24

Pointer

Specification

2402

Pointer

Type

Invalid

Retrieve

Thread

Count

(RETTHCNT)

Op

Code

(Hex)

Operand

1

0321

Count

Operand

1:

Unsigned

binary(4)

variable

scalar.

Bound

program

access

Built-in

number

for

RETTHCNT

is

514.

RETTHCNT

(

)

:

unsigned

binary(4)

/*

count

*/

Description:

A

count

of

the

number

of

threads

that

have

been

implicitly

or

explicitly

initiated

within

the

process

and

which

have

not

yet

terminated

is

returned.

Since

process

initiation

implicitly

initiates

a

thread,

the

minimum

value

of

count

is

1.

It

is

possible

that

this

instruction

may

be

used

in

a

cancel

or

return

handler

for

a

thread

that

is

terminating.

If

it

is,

the

count

that

will

be

returned

will

still

include

the

terminating

thread.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Machine

Interface

Instructions

1055

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

1056

iSeries:

Machine

Interface

Instructions

APIs

4402

Literal

Values

Cannot

Be

Changed

Retrieve

Thread

Identifier

(RETTHID)

Op

Code

(Hex)

Operand

1

0395

Thread

identifier

Operand

1:

Character(8)

variable

scalar.

Bound

program

access

Built-in

number

for

RETTHID

is

516.

RETTHID

(

)

:

aggregate(8)

/*

thread_identifier

*/

Description:

A

thread

identifier

is

returned

which

is

unique

within

the

process.

While

no

two

threads

initiated

within

the

same

process

will

have

the

same

identifier,

it

is

possible

that

threads

in

different

processes

may

have

the

same

value

for

the

identifier.

The

thread

identifier

is

used

on

some

instructions

to

identify

a

thread.

For

example,

it

may

be

useful

in

associating

queue

space

messages

with

a

particular

thread.

When

a

thread

ends,

its

thread

identifier

is

never

reused

within

the

process.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

Machine

Interface

Instructions

1057

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Return

External

(RTX)

Op

Code

(Hex)

Operand

1

02A1

Return

point

Operand

1:

Signed

binary(2)

scalar

or

null.

Description:

The

instruction

terminates

execution

of

the

invocation

in

which

the

instruction

is

specified.

The

automatic

storage

frame

is

deallocated.

A

Return

External

instruction

can

be

specified

within

an

invocation’s

subinvocation,

and

no

exception

is

signaled.

If

a

higher

invocation

exists

in

the

invocation

hierarchy,

the

instruction

causes

execution

to

resume

in

the

preceding

invocation

in

the

thread

hierarchy

at

an

instruction

location

indirectly

specified

by

operand

1.

If

operand

1

is

binary

0

or

null,

the

next

instruction

following

the

Call

External

instruction

from

which

control

was

relinquished

in

the

preceding

invocation

in

the

hierarchy

is

given

execution

control.

If

the

1058

iSeries:

Machine

Interface

Instructions

APIs

value

of

operand

1

is

not

0,

the

value

represents

an

index

into

the

instruction

definition

list

(IDL)

specified

as

the

return

list

operand

in

the

Call

External

instruction,

and

the

value

causes

control

to

be

passed

to

the

instruction

referenced

by

the

corresponding

IDL

entry.

The

first

IDL

entry

is

referenced

by

a

value

of

one.

If

operand

1

is

not

0

and

no

return

list

was

specified

in

the

Call

External

instruction,

or

if

the

value

of

operand

1

exceeds

the

number

of

entries

in

the

IDL,

or

if

the

value

is

negative,

a

return

point

invalid

(hex

2C02)

exception

is

signaled.

In

the

initial

thread

of

a

process,

if

a

higher

invocation

does

not

exist,

the

Return

External

instruction

causes

termination

of

the

current

process

state.

If

operand

1

is

not

0

and

is

not

null,

the

return

point

invalid

(hex

2C02)

exception

is

signaled.

If

the

returning

invocation

has

received

control

to

process

an

event,

then

control

is

returned

to

the

point

where

the

event

handler

was

invoked.

In

this

case,

if

operand

1

is

not

0

and

is

not

null,

then

a

return

point

invalid

(hex

2C02)

exception

is

signaled.

If

the

returning

invocation

has

received

control

from

the

machine

to

process

an

exception,

the

return

instruction

invalid

(hex

2C01)

exception

is

signaled.

If

the

returning

invocation

has

an

activation,

the

invocation

count

in

the

activation

is

decremented

by

1.

If

the

returning

invocation

currently

has

an

invocation

exit

set,

the

invocation

exit

is

not

given

control

and

is

implicitly

cleared.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

Machine

Interface

Instructions

1059

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C01

Return

Instruction

Invalid

2C02

Return

Point

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Return

From

Exception

(RTNEXCP)

Op

Code

(Hex)

Operand

1

03E1

Return

target

Operand

1:

Space

pointer.

Description:

An

internal

exception

handler

subinvocation

or

an

external

exception

handler

invocation

is

terminated,

and

control

is

passed

to

the

specified

instruction

in

the

specified

invocation.

All

intervening

1060

iSeries:

Machine

Interface

Instructions

APIs

invocations

are

marked

as

cancelled,

down

to,

but

not

including,

the

invocation

that

is

being

returned

to.

When

each

of

these

invocations

are

returned

to,

their

return

handlers

and

invocation

exit

(I-exit)

routines/cancel

handlers

will

be

found

and

run.

Note:

This

instruction

is

not

allowed

from

a

bound

program

invocation.

The

template

identified

by

operand

1

must

be

16-byte

aligned

in

the

space.

It

specifies

the

target

invocation

and

target

instruction

in

the

invocation

where

control

is

to

be

passed.

The

format

of

operand

1

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Invocation

address/offset

Space

pointer

or

Invocation

pointer

16

10

Reserved

(binary

0)

Char(1)

17

11

Action

Char(2)

17

11

Reserved

(binary

0)

Bits

0-4

17

11

Use

offset

option

Bit

5

0

=

Use

invocation

address

as

a

pointer

value

1

=

Use

invocation

address

as

an

offset

value

17

11

Unstack

option

Bit

6

0

=

The

action

performed

is

determined

by

the

setting

of

the

following

action

code

(bit

7).

1

=

If

the

exception

handler

is

an

internal

exception

handler,

resume

execution

with

the

instruction

that

follows

the

RTNEXCP

instruction

and

terminate

the

internal

exception

handler

subinvocation.

17

11

Action

code

Bit

7

0

=

Re-execute

the

instruction

that

caused

the

exception.

1

=

Resume

execution

with

the

instruction

that

follows

the

instruction

that

caused

the

exception

or

resume

execution

with

the

instruction

that

follows

the

instruction

that

invoked

the

invocation.

18

12

Reserved

(binary

0)

Char(1)

19

13

—-

End

—-

The

invocation

address/offset

field

is

a

space/invocation

pointer

that

identifies

the

invocation

to

which

control

will

be

passed.

The

target

invocation

address

field

can

also

be

an

offset

value

from

the

current

requesting

invocation

to

the

invocation

to

be

searched.

This

is

done

by

setting

the

use

offset

option

field

that

follows

the

invocation

address

field

to

1.

If

the

invocation

offset

value

locates

the

invocation

stack

base

entry,

the

invocation

offset

outside

range

of

current

stack

(hex

2C1A)

exception

is

signaled.

If

the

invocation

offset

value

is

a

positive

Machine

Interface

Instructions

1061

number

(which

represents

newer

invocations

on

the

stack)

a

template

value

invalid

(hex

3801)

exception

is

signaled.

The

current

instruction

in

an

invocation

is

the

one

that

caused

another

invocation

to

be

created.

The

unstack

option

is

only

valid

when

issued

in

an

internal

exception

handler

subinvocation

and

is

ignored

for

an

external

exception

handler

invocation.

This

option

will

cause

the

internal

exception

handler

subinvocation

to

be

terminated

and

control

will

resume

at

the

instruction

immediately

following

the

RTNEXCP

instruction.

In

effect,

this

option

will

cause

the

current

subinvocation

to

be

unstacked.

If

the

action

code

is

0,

then

the

current

instruction

of

the

addressed

invocation

is

reexecuted,

if

it

is

allowed.

If

the

action

code

is

1,

execution

resumes

with

the

instruction

following

the

current

instruction

of

the

addressed

invocation,

if

it

is

allowed.

If

it

is

not,

a

retry/resume

invalid

(hex

1604)

exception

will

be

signaled.

For

an

action

code

of

0

the

invocation

address/offset

field

must

identify

the

invocation

which

enabled

the

current

exception

handler.

Otherwise

a

template

value

invalid

(hex

3801)

exception

will

be

signalled.

The

Return

From

Exception

instruction

may

be

issued

only

from

the

initial

invocation

of

an

external

exception

handling

sequence

or

from

an

invocation

that

has

an

active

internal

exception

handler.

If

the

instruction

is

issued

from

an

invocation

that

is

not

an

external

exception

handler

and

has

no

internal

exception

handler

subinvocations,

the

return

instruction

invalid

(hex

2C01)

exception

is

signaled.

The

following

table

shows

the

actions

performed

by

the

Return

From

Exception

instruction:

Invocation

Issuing

Instruction

Addressing

Own

Invocation/Option

Addressing

Higher

Invocation/Option

Not

handling

exception

Error

(see

note

1)

Error

(see

note

1)

Handling

internal

exception(s)

Allowed

(see

note

2)

Allowed

(see

note

3)

Handling

external

exception(s)

Error

(see

note

1)

Allowed

(see

note

3)

Handling

external

exception(s)

and

internal

exception(s)

Allowed

(see

note

2)

Allowed

(see

note

3)

Notes::

1.

A

return

instruction

invalid

(hex

2C01)

exception

is

signaled.

If

there

are

no

more

internal

exception

handler

subinvocations

active

and

this

invocation

is

not

an

external

exception

handler,

the

instruction

may

not

be

issued.

2.

The

current

internal

exception

handler

subinvocation

is

terminated.

3.

All

invocations

after

the

addressed

invocation

are

terminated

and

execution

proceeds

within

the

addressed

invocation.

Any

invocation

exit

programs

set

for

the

terminated

invocations

will

be

given

control

before

execution

proceeds

within

the

addressed

invocation.

This

option

is

only

allowed

when

the

action

code

specified

is

a

1.

Whenever

an

invocation

is

terminated,

the

invocation

count

in

the

corresponding

activation

entry

(if

any)

is

decremented

by

1.

An

action

code

of

1

specifies

completion

of

an

instruction

rather

than

execution

of

the

following

instruction

if

the

current

instruction

in

the

addressed

invocation

signaled

a

size

(hex

0C0A)

exception

or

a

floating-point

inexact

result

(hex

0C0D)

exception.

Note:

The

previous

condition

does

not

apply

if

any

of

the

above

exceptions

were

explicitly

signaled

by

a

Signal

Exception

(SIGEXCP)

instruction.

A

Return

From

Exception

instruction

cannot

be

used

or

recognized

in

conjunction

with

a

branch

point

internal

exception

handler.

1062

iSeries:

Machine

Interface

Instructions

APIs

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

16

Exception

Management

1603

Invalid

Invocation

Address

1604

Retry/Resume

Invalid

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

Machine

Interface

Instructions

1063

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C01

Return

Instruction

Invalid

2C12

Activation

Group

Access

Violation

2C1A

Invocation

Offset

Outside

Range

of

Current

Stack

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Return

PCO

Pointer

(PCOPTR2)

Bound

program

access

Built-in

number

for

PCOPTR2

is

358.

PCOPTR2

(

)

:

space

pointer(16)

to

the

process’

PCO

(process

communication

object)

Description:

Return

PCO

Pointer

(PCOPTR2)

obtains

addressability

to

a

process’

PCO

(process

communication

object)

and

returns

it

in

a

space

pointer.

This

built-in

function

supports

a

high

performance

alternative

method

of

obtaining

the

PCO

pointer

of

the

currently

executing

process.

Note:

Another

alternative

for

obtaining

the

PCO

pointer

is

via

option

hex

17

on

the

Materialize

Process

Attributes

(MATPRATR)

instruction.

1064

iSeries:

Machine

Interface

Instructions

APIs

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

Machine

Interface

Instructions

1065

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

Scale

(SCALE)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-7]

SCALE

1063

Receiver

Source

Scale

factor

SCALEI

1863

Indicator

options

Receiver

Source

Scale

factor

Indicator

targets

SCALEB

1C63

Branch

options

Receiver

Source

Scale

factor

Branch

targets

Operand

1:

Numeric

variable

scalar.

Operand

2:

Numeric

scalar.

Operand

3:

Binary(2)

scalar.

Operand

4-7:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Warning:

Temporary

Level

3

Header

Short

forms

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

[3-6]

SCALES

1163

Receiver/Source

Scale

factor

SCALEIS

1963

Indicator

options

Receiver/Source

Scale

factor

Indicator

targets

SCALEBS

1D63

Branch

options

Receiver/Source

Scale

factor

Branch

targets

Operand

1:

Numeric

variable

scalar.

Operand

2:

Binary(2)

scalar.

Operand

3-6:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

1066

iSeries:

Machine

Interface

Instructions

APIs

Description:

The

scale

instruction

performs

numeric

scaling

of

the

source

operand

based

on

the

scale

factor

and

places

the

results

in

the

receiver

operand.

The

numeric

operation

is

as

follows:

Operand

1

=

Operand

2

*(B**N)

where:

N

is

the

binary

integer

value

of

the

scale

operand.

It

can

be

positive,

negative,

or

0.

If

N

is

0,

then

the

operation

simply

copies

the

source

operand

value

into

the

receiver

operand.

B

is

the

arithmetic

base

for

the

type

of

numeric

value

in

the

source

operand.

Base

Type

B

Binary

2

Packed/Zoned

10

Floating-point

2

The

operands

must

be

of

the

numeric

types

indicated

with

any

implicit

conversions

occurring

according

to

the

rules

of

arithmetic

operations

as

outlined

in

the

Arithmetic

Operations.

The

scale

operation

is

a

shift

of

N

unsigned

binary,

packed,

or

zoned

digits.

The

shift

is

to

the

left

if

N

is

positive,

to

the

right

if

N

is

negative.

For

a

signed

binary

source

operand,

the

scale

operation

is

performed

as

if

the

source

operand

is

multiplied

by

a

signed

binary

value

of

2**N.

For

a

floating-point

source

operand,

the

scale

operation

is

performed

as

if

the

source

operand

is

multiplied

by

a

floating-point

value

of

2**N.

If

the

source

and

receiver

operands

have

different

attributes,

the

scaling

operation

is

done

in

an

intermediate

field

with

the

same

attributes

as

the

source

operand.

If

a

fixed-point

scaling

operation

causes

nonzero

digits

to

be

truncated

on

the

left

end

of

the

intermediate

field,

a

size

(hex

0C0A)

exception

is

signaled.

For

a

floating-point

scaling

operation,

the

floating-point

overflow

(hex

0C06)

exception

and

the

floating-point

underflow

(hex

0C07)

exception

can

be

signaled

during

the

calculation

of

the

intermediate

result.

The

resultant

value

of

the

calculation

is

copied

into

the

receiver

operand.

If

this

operand

is

not

the

same

type

as

that

used

in

performing

the

operation,

the

resultant

value

is

converted

to

its

type.

If

necessary,

the

resultant

value

is

adjusted

to

the

length

of

the

receiver

operand,

aligned

at

the

assumed

decimal

point

of

the

receiver

operand,

or

both

before

being

copied

to

it.

Length

adjustment

and

decimal

point

alignment

are

performed

according

to

the

rules

of

arithmetic

operations

outlined

in

Arithmetic

Operations.

For

fixed-point

operations,

if

nonzero

digits

are

truncated

off

the

left

end

of

the

resultant

value,

a

size

(hex

0C0A)

exception

is

signaled.

For

floating-point

operations

involving

fixed-point

receiver

fields,

if

nonzero

digits

would

be

truncated

from

the

left

end

of

the

resultant

value,

an

invalid

floating-point

conversion

(hex

0C0C)

exception

is

signaled.

For

floating-point

receiver

fields,

if

the

exponent

of

the

resultant

value

is

either

too

large

or

too

small

to

be

represented

in

the

receiver

field,

the

floating-point

overflow

(hex

0C06)

exception

or

floating-point

underflow

(hex

0C07)

exception

is

signaled.

A

scalar

value

invalid

(hex

3203)

exception

is

signaled

if

the

value

of

N

is

beyond

the

range

of

the

particular

type

of

the

source

operand

as

specified

in

the

following

table.

Source

Operand

Type

Range

of

N

Signed

Binary(2)

-14

<=

N

<=

14

Unsigned

Binary(2)

-15

<=

N

<=

15

Signed

Binary(4)

-30

<=

N

<=

30

Unsigned

Binary(4)

-31

<=

N

<=

31

Machine

Interface

Instructions

1067

MCNPFAO.htm
MCNPFAO.htm

Source

Operand

Type

Range

of

N

Decimal(P,Q)

-31

<=

N

<=

31

For

a

scale

operation

in

floating-point,

no

limitations

are

placed

on

the

values

allowed

for

N

other

than

the

implicit

limits

imposed

due

to

the

floating-point

overflow

and

underflow

exceptions.

Limitations

(Subject

to

Change):

The

following

are

limits

that

apply

to

the

functions

performed

by

this

instruction.

If

a

decimal

to

binary

conversion

causes

a

size

(hex

0C0A)

exception

to

be

signaled,

the

binary

value

contains

the

correct

truncated

result

only

if

the

decimal

value

contains

15

or

fewer

significant

nonfractional

digits.

Resultant

Condition:

v

v

Positive-The

algebraic

value

of

the

receiver

operand

is

positive.

v

Negative-The

algebraic

value

of

the

receiver

operand

is

negative.

v

Zero-The

algebraic

value

of

the

receiver

operand

is

zero.

v

Unordered-The

value

assigned

a

floating-point

receiver

operand

is

NaN.

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C02

Decimal

Data

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

0C0A

Size

0C0C

Invalid

Floating-Point

Conversion

1068

iSeries:

Machine

Interface

Instructions

APIs

0C0D

Floating-Point

Inexact

Result

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

Machine

Interface

Instructions

1069

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Scan

(SCAN)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-5]

SCAN

10D3

Receiver

Base

Compare

operand

SCANB

1CD3

Branch

options

Receiver

Base

Compare

operand

Branch

targets

SCANI

18D3

Indicator

options

Receiver

Base

Compare

operand

Indicator

targets

Operand

1:

Binary

variable

scalar

or

binary

array.

Operand

2:

Character

variable

scalar.

Operand

3:

Character

scalar.

Operand

4-5:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

The

character

string

value

of

the

base

operand

is

scanned

for

occurrences

of

the

character

string

value

of

the

compare

operand.

The

base

and

compare

operands

must

both

be

character

strings.

The

length

of

the

compare

operand

must

not

be

greater

than

that

of

the

base

string.

The

operation

begins

at

the

left

end

of

the

base

string

and

continues

character

by

character,

from

left

to

right,

comparing

the

characters

of

the

base

string

with

those

of

the

compare

operand.

The

length

of

the

comparisons

are

equal

to

the

length

of

the

compare

operand

value

and

function

as

if

they

were

being

compared

in

the

Compare

Bytes

Left-Adjusted

(CMPBLA)instruction.

If

a

set

of

bytes

that

match

the

compare

operand

is

found,

the

binary

value

for

the

ordinal

position

of

its

leftmost

base

string

character

is

placed

in

the

receiver

operand.

If

the

receiver

operand

is

a

scalar,

only

the

first

occurrence

of

the

compare

operand

is

noted.

If

it

is

an

array,

as

many

occurrences

as

there

are

elements

in

the

array

are

noted.

The

operation

continues

until

no

more

occurrences

of

the

compare

operand

can

be

noted

in

the

receiver

operand

or

until

the

number

of

characters

(bytes)

remaining

to

be

scanned

in

the

base

string

is

less

than

the

length

of

the

compare

operand.

When

the

second

condition

occurs,

the

receiver

value

is

set

to

0.

If

the

receiver

operand

is

an

array,

all

its

remaining

elements

are

also

set

to

0.

The

base

operand

and

the

compare

operand

can

be

variable

length

substring

compound

operands.

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

be

specified

for

operands

2

and

3.

The

effect

of

specifying

a

null

substring

reference

for

the

compare

operand

or

both

operands

is

that

the

receiver

is

set

to

zero

(no

match

found)

and

the

instruction’s

resultant

1070

iSeries:

Machine

Interface

Instructions

APIs

condition

is

null

compare

operand.

Specifying

a

null

substring

reference

for

just

the

base

operand

is

not

allowed

due

to

the

requirement

that

the

length

of

the

compare

operand

must

not

be

greater

than

that

of

the

base

string.

Resultant

Conditions:

v

v

Zero-The

numeric

value(s)

of

the

receiver

operand

is

zero.

When

the

receiver

operand

is

an

array,

the

resultant

condition

is

zero

if

all

elements

are

zero.

One

of

these

two

conditions

will

result

when

the

compare

operand

is

not

a

null

substring

reference.

v

Positive-The

numeric

value(s)

of

the

receiver

operand

is

positive.

v

Null

compare

operand-The

compare

operand

is

a

null

substring

reference;

therefore,

the

receiver

has

been

set

to

zero

which

indicates

that

no

occurrences

were

found.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C08

Length

Conformance

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

Machine

Interface

Instructions

1071

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Scan

Extended

(SCANX)

Bound

program

access

Built-in

number

for

SCANX

is

415.

SCANX

(

base_locator

:

address

of

a

space

pointer(16)

base

locator

scan_controls

:

address

of

scan

controls

scan_options

:

literal(4)

containing

scan

options

)

:

signed

binary(4)

value

to

indicate

the

manner

in

which

the

instruction

completed

Description:

The

base

string

to

be

scanned

is

specified

by

the

base

locator

and

controls

operands.

The

base

locator

addresses

the

first

character

of

the

base

string.

The

controls

specifies

the

length

of

the

base

string

in

the

base

length

field.

1072

iSeries:

Machine

Interface

Instructions

APIs

The

scan

operation

begins

at

the

left

end

of

the

base

string

and

continues

character

by

character,

left-to-right.

The

scan

operation

can

be

performed

on

a

base

string

which

contains

all

simple

(1-byte)

or

all

extended

(2-byte)

character

codes

or

a

mixture

of

the

two.

When

the

base

string

is

being

interpreted

in

simple

character

mode,

the

operation

moves

through

the

base

string

one

byte

at

a

time.

When

the

base

string

is

being

interpreted

in

extended

character

mode,

the

operation

moves

through

the

base

string

2

bytes

at

a

time.

The

character

string

value

of

the

base

operand

is

scanned

for

occurrences

of

a

character

value

satisfying

the

criteria

specified

in

the

control

and

options

operands.

The

scan

is

completed

by

updating

the

base

locator

and

controls

operands

with

scan

status

when

a

character

value

being

scanned

for

is

found,

the

end

of

the

base

string

is

encountered,

or

an

escape

code

is

encountered

when

the

test

for

escape

codes

option

is

specified

within

the

scan

controls

operand.

A

completion

code

indicating

the

manner

in

which

the

instruction

completed

is

also

returned.

The

base

locator

is

set

with

addressability

to

the

character

(simple

or

extended)

which

caused

the

instruction

to

complete

execution.

The

controls

operand

is

set

with

information

which

identifies

the

mode

(simple

or

extended)

of

the

base

string

character

addressed

by

the

base

locator

and

which

provides

for

resumption

of

the

scan

operation

with

minimal

overhead.

The

controls

and

options

operands

specify

the

modes

to

be

used

in

interpreting

characters

during

the

scan

operation.

Characters

can

be

interpreted

in

one

of

two

character

modes:

simple

(1-byte)

and

extended

(2-byte).

Additionally,

the

base

string

can

be

scanned

in

one

of

two

scan

modes,

mixed

(base

string

may

contain

a

mixture

of

both

character

modes)

and

nonmixed

(base

string

contains

one

mode

of

characters).

When

the

mixed

scan

mode

is

specified

in

the

options

operand,

the

base

string

is

interpreted

as

containing

a

mixture

of

simple

and

extended

character

codes.

The

mode,

simple

or

extended,

with

which

the

string

is

to

be

interpreted,

is

controlled

initially

by

the

base

mode

indicator

in

the

controls

operand

and

thereafter

by

mode

control

characters

imbedded

in

the

base

string.

The

mode

control

characters

are

as

follows:

v

v

Hex

0E

=

Shift

out

(SO)

of

simple

character

mode

to

extended

mode.

v

Hex

0F

=

Shift

in

(SI)

to

simple

character

mode

from

extended

mode.

This

is

only

recognized

if

it

occurs

in

the

first

byte

position

of

an

extended

character

code.

When

the

nonmixed

scan

mode

is

specified

in

the

options

operand,

the

base

string

is

interpreted

using

only

the

character

mode

specified

by

the

base

mode

indicator

in

the

controls

operand.

Character

mode

shifting

can

not

occur

because

no

mode

control

characters

are

recognized

when

scanning

in

nonmixed

mode.

The

base

locator

operand

is

a

space

pointer

which

is

both

input

to

and

output

from

the

instruction.

On

input,

it

locates

the

first

character

of

the

base

string

to

be

processed.

On

output,

it

locates

the

character

of

the

base

string

which

caused

the

instruction

to

complete.

The

controls

operand

is

the

address

of

an

aggregate

which

specifies

additional

information

to

be

used

to

control

the

scan

operation.

The

aggregate

scan

controls

must

be

at

least

8

bytes

long

and

have

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Scan

controls

Char(24)

0

0

Control

indicators

Char(1)

0

0

Base

mode

Bit

0

0

=

Simple

1

=

Extended

0

0

Comparison

character

mode

Bit

1

Machine

Interface

Instructions

1073

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Simple

1

=

Extended

0

0

Reserved

Bits

2-5

0

0

Enhanced

options

Bit

6

0

=

Enhanced

options

fields

are

not

used

1

=

Enhanced

options

fields

are

used

0

0

Scan

state

Bit

7

0

=

Resume

scan

1

=

Start

scan

1

1

Ignored

Char(1)

2

2

Comparison

character

Char(2)

4

4

Reserved

(binary

0)

Char(1)

5

5

Base

end

Char(3)

5

5

Instruction

work

area

Char(1)

6

6

Base

length

Char(2)

8

8

Enhanced

length

UBin(8)

16

10

Enhanced

resume

info

UBin(8)

24

18

—-

End

—-

Only

the

first

8

or

24

bytes

of

scan

controls

are

used,

depending

upon

the

value

of

enhanced

options.

Any

excess

bytes

are

ignored.

The

base

mode

is

both

input

to

and

output

from

the

instruction.

In

either

case,

it

specifies

the

mode

of

the

character

in

the

base

string

currently

addressed

by

the

base

locator.

The

comparison

character

mode

is

not

changed

by

the

instruction.

It

specifies

the

mode

of

the

comparison

character

contained

in

the

controls

operand.

The

scan

state

is

both

input

to

and

output

from

the

instruction.

As

input,

it

indicates

whether

the

scan

operation

for

the

base

string

is

being

started

or

resumed.

If

it

is

being

started,

the

instruction

assumes

that

the

base

length

value

in

the

base

end

field

of

the

controls

operand

specifies

the

length

of

the

base

string,

and

the

instruction

work

area

value

is

ignored.

If

it

is

being

resumed,

the

instruction

assumes

the

base

end

field

has

been

set

by

a

prior

start

scan

execution

of

the

instruction

with

an

internal

machine

value

identifying

the

end

of

the

base

string.

For

a

start

scan

execution

of

the

instruction,

the

scan

state

field

is

reset

to

indicate

resume

scan

to

provide

for

subsequent

resumption

of

the

scan

operation.

Additionally,

for

a

start

scan

execution

of

the

instruction,

the

base

end

field

is

set

with

an

internally

optimized

value

which

identifies

the

end

of

the

base

string

being

scanned.

This

value

then

overlays

the

values

which

were

in

the

instruction

work

area

and

base

length

fields

on

input

to

the

instruction.

Predictable

operation

of

the

instruction

on

a

resume

scan

execution

depends

upon

this

base

end

field

being

left

intact

with

the

value

set

by

the

start

scan

execution.

For

a

resume

scan

execution

of

the

instruction,

the

scan

state

and

base

end

fields

are

unchanged.

The

comparison

character

is

input

to

the

instruction.

It

specifies

a

character

code

to

be

used

in

the

comparisons

performed

during

the

scanning

of

the

base

string.

The

comparison

character

mode

in

the

1074

iSeries:

Machine

Interface

Instructions

APIs

control

indicators

specifies

the

mode

(simple

or

extended)

of

the

comparison

character.

If

it

is

a

simple

character,

the

first

byte

of

the

comparison

character

field

is

ignored

and

the

comparison

character

is

assumed

to

be

specified

in

the

second

byte.

If

it

is

an

extended

character,

the

comparison

character

is

specified

as

a

2-byte

value

in

the

comparison

character

field.

When

enhanced

options

has

a

value

of

0,

the

base

end

value

is

used.

Otherwise

the

enhanced

length

and

enhanced

resume

info

fields

are

used

and

base

length

is

ignored.

The

value

of

enhanced

options

must

not

be

changed

between

start

scan

and

resume

scan

executions

on

the

same

string.

When

base

locator

points

to

a

space

pointer

which

contains

a

teraspace

address,

an

unsupported

space

use

(hex

0607)

exception

is

signaled

if

enhanced

options

has

a

value

of

0

and

resume

scan

is

specified.

The

base

end

field

is

both

input

to

and

output

from

the

instruction.

It

contains

data

which

identifies

the

end

of

the

base

string.

Initially,

for

a

start

scan

execution

of

the

instruction,

it

contains

the

length

of

the

base

string

in

the

base

length

field.

Additionally,

the

base

end

field

is

used

to

retain

information

over

multiple

instruction

executions

which

provides

for

minimizing

the

overhead

required

to

resume

the

scan

operation

for

a

particular

base

string.

This

information

is

set

on

the

initial

start

scan

execution

of

the

instruction

and

is

used

during

subsequent

resume

scan

executions

of

the

instruction

to

determine

the

end

of

the

base

string

to

be

scanned.

If

the

end

of

the

base

string

being

scanned

must

be

altered

during

iterative

usage

of

this

instruction,

a

start

scan

execution

of

the

instruction

must

be

performed

to

provide

for

correctly

resetting

the

internally

optimized

value

to

be

stored

in

the

base

end

from

the

values

specified

in

the

base

locator

operand

and

base

length

field.

The

enhanced

length

field

is

input

to

the

instruction.

It

contains

the

length

in

bytes

of

the

string

to

be

scanned

when

enhanced

options

has

a

value

of

1.

Current

machine

implementations

support

a

maximum

length

of

16777215;

larger

values

cause

a

scalar

value

invalid

(hex

3203)

exception

to

be

signaled.

The

enhanced

resume

info

field

is

both

input

to

and

output

from

the

instruction

but

is

only

used

when

enhanced

options

has

a

value

of

1.

This

field

is

set

with

internal

information

during

a

start

scan

execution

of

this

instruction

and

used

as

input

for

subsequent

resume

scan

executions

of

this

instruction.

If

the

end

of

the

base

string

being

scanned

must

be

altered

during

iterative

usage

of

this

instruction,

a

start

scan

execution

of

the

instruction

must

be

performed

to

provide

for

correctly

resetting

the

internally

optimized

value

to

be

stored

in

enhanced

resume

info

from

the

values

specified

in

the

base

locator

operand

and

enhanced

length

field.

For

the

special

case

of

a

start

scan

execution

where

a

length

value

of

zero

(no

characters

to

scan)

is

specified

in

either

the

base

length

field

when

enhanced

options

has

a

value

of

0

or

in

the

enhanced

length

field

when

enhanced

options

has

a

value

of

1,

the

instruction

results

in

a

not

found

resultant

condition.

In

this

case,

the

base

string

is

not

verified

and

the

scan

state

indicator,

the

base

end

field,

and

the

base

locator

are

not

changed.

The

options

operand

must

be

a

literal

which

specifies

the

options

to

be

used

to

control

the

scan

operation.

Scan

options

must

be

at

least

4

bytes

in

length

and

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Scan

options

Char(4)

0

0

Options

indicators

Char(1)

1

1

Reserved

(binary

0)

Char(3)

4

4

—-

End

—-

Machine

Interface

Instructions

1075

The

option

indicators

field

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Option

indicators

Char(1)

0

0

Reserved

(binary

0)

Bit

0

0

0

Scan

mode

Bit

1

0

=

Mixed

1

=

Nonmixed

0

0

Reserved

Bits

2-3

0

0

Comparison

relation

Bits

4-6

0

0

Equal,

(=)

relation

Bit

4

0

0

Less

than,

(<)

relation

Bit

5

0

0

Greater

than,

(>)

relation

Bit

6

0

=

No

match

on

relation

1

=

Match

on

relation

0

0

Test

for

escape

codes

Bit

7

0

=

Do

not

test

for

escape

codes

during

the

scan

1

=

Test

for

escape

codes

during

the

scan

1

1

—-

End

—-

The

scan

mode

specifies

whether

the

base

string

contains

a

mixture

of

character

modes,

or

contains

all

one

mode

of

characters;

that

is,

whether

or

not

mode

control

characters

should

be

recognized

in

the

base

string.

Mixed

specifies

that

there

is

a

mixture

of

character

modes

and,

therefore,

mode

control

characters

should

be

recognized.

Nonmixed

specifies

that

there

is

not

a

mixture

of

character

modes

and,

therefore,

mode

control

characters

should

not

be

recognized.

Note

that

the

base

mode

indicator

in

the

controls

operand

specifies

the

character

mode

of

the

base

string

character

addressed

by

the

base

locator.

The

comparison

relation

specifies

the

relation

or

relations

of

the

comparison

character

to

characters

of

the

base

string

which

will

satisfy

the

scan

operation

and

cause

completion

of

the

instruction

with

one

of

the

high,

low,

or

equal

resultant

conditions.

Multiple

relations

may

be

specified

in

conjunction

with

one

another.

Specifying

all

relations

insures

a

match

against

any

character

in

the

base

string

which

is

of

the

same

mode

as

the

comparison

character.

Specifying

no

relation

insures

a

not

found

resultant

condition,

unless

the

instruction

is

testing

for

escape

codes

and

an

escape

code

value

is

found,

regardless

of

the

values

of

the

characters

in

the

base

string

which

match

the

mode

of

the

comparison

character.

An

example

of

comparison

scanning

is

a

scan

of

simple

mode

characters

for

a

value

less

than

hex

40.

This

could

be

done

by

specifying

a

comparison

character

of

hex

40

and

a

comparison

relation

of

greater

than.

This

could

also

be

done

by

specifying

a

comparison

character

of

hex

3F

and

comparison

relations

of

equal

and

greater

than.

The

test

for

escape

codes

field

determines

whether

the

base

string

is

tested

for

values

less

than

hex

40

while

the

scan

is

being

performed.

This

testing,

if

requested,

is

always

performed

in

conjunction

with

whatever

comparison

processing

has

been

requested.

That

is,

escape

code

testing

is

performed

even

if

no

comparison

relation

is

specified.

The

following

material

discusses

this

function

in

more

detail.

Operation:

During

the

scan

operation,

the

characters

of

the

base

string

which

are

not

of

the

same

mode

as

the

comparison

character

are

skipped

over

until

the

mode

of

the

characters

being

processed

is

the

same

as

the

mode

of

the

comparison

character.

The

operation

then

proceeds

by

comparing

the

comparison

character

with

each

of

the

characters

of

the

base

string.

1076

iSeries:

Machine

Interface

Instructions

APIs

If

a

base

string

character

satisfying

the

criteria

specified

in

the

controls

and

options

operands

is

found,

the

base

locator

is

set

to

address

the

first

byte

of

it,

the

base

mode

indicator

is

set

to

indicate

the

mode

of

the

base

string

as

of

that

character,

and

the

instruction

is

completed

with

the

appropriate

completion

code,

based

on

the

comparison

relation

(high,

low,

or

equal)

of

the

comparison

character

to

the

base

string

character.

If

a

matching

base

string

character

is

not

found

prior

to

encountering

a

mode

change,

the

characters

of

the

base

string

are

again

skipped

over

until

the

mode

of

the

characters

being

processed

is

the

same

as

the

mode

of

the

comparison

character

before

comparisons

are

resumed.

If

a

matching

base

string

character

is

not

found

prior

to

encountering

the

end

of

the

base

string,

the

base

location

is

set

to

address

the

first

byte

of

the

character

encountered

at

the

end

of

the

base

string,

the

base

mode

indicator

is

set

to

indicate

the

mode

of

the

base

string

as

of

that

character,

and

the

instruction

is

completed

with

the

not

found

completion

code.

A

mode

control

string

results

in

the

changing

of

the

base

string

mode,

but

the

base

locator

is

left

addressing

the

mode

control

character.

If

test

for

escape

codes

has

a

value

of

1,

the

test

is

performed

on

the

characters

of

the

base

string

prior

to

their

being

skipped

or

compared

with

the

comparison

character.

Each

byte

of

the

base

string

is

checked

for

a

value

less

than

hex

40.

Additionally,

for

a

mixed

scan

mode,

when

such

a

value

is

encountered,

it

is

then

determined

if

it

is

a

valid

mode

control

character.

v

v

Hex

0E

(S0)

when

the

base

string

is

being

interpreted

in

simple

character

mode.

v

Hex

0F

(SI)

in

the

left

byte

of

the

character

code

when

the

base

string

is

being

interpreted

in

extended

character

mode.

If

a

byte

value

of

less

than

hex

40

is

not

a

valid

mode

control

character,

it

is

considered

to

be

an

escape

code.

The

base

locator

is

set

to

address

the

first

byte

of

the

base

string

character

(simple

or

extended)

which

contains

the

escape

code,

the

base

mode

indicator

is

set

to

indicate

the

mode

of

the

base

string

as

of

that

character,

and

the

completion

code

is

set

to

indicate

that

an

escape

code

was

found.

If

possible,

specify

scan

controls

on

an

8-byte

multiple

(doubleword)

boundary

relative

to

the

start

of

the

space

containing

it.

Appreciably

less

overhead

is

incurred

in

accessing

and

storing

the

value

of

the

controls

if

this

is

done.

For

the

case

where

a

base

string

is

to

be

just

scanned

for

byte

values

less

than

hex

40,

two

techniques

can

be

used.

v

v

A

direct

simple

mode

scan

for

a

value

less

than

hex

40

without

usage

of

the

test

for

escape

codes

feature.

v

A

scan

for

any

character

with

usage

of

the

test

for

escape

codes

feature.

The

direct

scan

approach,

the

former,

is

the

more

efficient.

The

following

diagram

defines

the

various

conditions

which

can

be

encountered

at

the

end

of

the

base

string

and

what

the

base

locator

addressability

is

in

each

case.

The

solid

vertical

line

represents

the

end

of

the

base

string.

The

dashes

represent

the

bytes

before

and

after

the

base

string

end.

The

V

is

positioned

over

the

byte

addressed

by

the

base

locator

in

each

case.

These

are

the

conditions

which

can

be

encountered

when

the

base

locator

input

to

the

instruction

addresses

a

byte

prior

to

the

base

string

end.

When

the

base

length

field

specifies

a

value

of

zero

for

a

start

scan

execution

of

the

instruction,

or

the

input

base

locator

addresses

a

point

beyond

the

end

of

the

instruction,

no

processing

is

performed

and

the

instruction

is

immediately

completed

with

the

not

found

completion

code

value.

Machine

Interface

Instructions

1077

An

analysis

of

the

diagram

shows

that

normally,

after

appropriate

processing

for

the

particular

found,

not

found,

or

escape

condition,

the

scan

can

be

restarted

at

the

byte

of

data

which

would

follow

the

base

string

end

in

the

data

stream

being

scanned.

Any

mode

shift

required

by

an

ending

mode

control

character

will

have

been

performed.

However,

one

ending

condition

may

require

subsequent

resumption

of

the

scan

at

the

character

encountered

at

the

end

of

the

base

string.

This

is

the

case

where

the

instruction

completes

with

the

not

found

completion

code

value

and

the

base

string

ends

with

an

extended

character

split

across

string

end.

That

is,

the

base

mode

indicator

specifies

extended

mode,

the

base

locator

addresses

the

last

byte

of

the

base

string,

and

that

byte

value

is

not

a

shift

out,

hex

0E

character.

In

this

case,

complete

verification

of

the

extended

character

and

relation

comparison

could

not

be

performed.

If

this

extended

character

is

to

be

processed,

it

must

be

done

through

another

execution

of

this

instruction

where

both

bytes

of

the

character

can

be

input

to

the

instruction

within

the

confines

of

the

base

string.

Completion

code

values:

v

v

(-1)

Low:

A

character

value

was

found

in

the

base

string

which

satisfies

the

criteria

specified

in

the

controls

and

options

operands

in

that

the

comparison

character

is

of

lower

string

value

to

the

base

string

character.

1078

iSeries:

Machine

Interface

Instructions

APIs

v

(0)

Equal:

A

character

value

was

found

in

the

base

string

which

satisfies

the

criteria

specified

in

the

controls

and

options

operands

in

that

the

comparison

character

is

of

equal

string

value

to

the

base

string

character.

v

(1)

High:

A

character

value

was

found

in

the

base

string

which

satisfies

the

criteria

specified

in

the

controls

and

options

operands

in

that

the

comparison

character

is

of

higher

string

value

to

the

base

string

character.

v

(2)

Not

found:

A

character

value

was

not

found

in

the

base

string

which

satisfied

the

criteria

specified

in

the

controls

and

options

operands.

v

(3)

Escape

code

encountered:

The

test

for

escape

code

option

was

specified

and

a

character

with

a

value

less

than

hex

40

was

found

which

is

not

a

valid

mode

control

character

for

the

type

of

scan

requested.

That

is,

hex

0E

and

hex

0F

are

valid

mode

control

characters

while

the

scan

is

being

performed

in

extended

mode,

but

are

not

when

the

scan

is

being

performed

in

simple

mode.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0607

Unsupported

Space

Use

08

Argument/Parameter

0801

Parameter

Reference

Violation

22

Object

Access

2202

Object

Destroyed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

32

Scalar

Specification

3203

Scalar

Value

Invalid

Machine

Interface

Instructions

1079

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Scan

with

Control

(SCANWC)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

4

Operand

[5-8]

SCANWC

10E4

Base

locator

Controls

Options

Escape

target

or

null

SCANWCB

1CE4

Branch

options

Base

locator

Controls

Options

Escape

target

or

null

Branch

targets

SCANWCI

18E4

Indicator

options

Base

locator

Controls

Options

Escape

target

or

null

Indicator

targets

Operand

1:

Space

pointer.

Operand

2:

Character(8)

variable

scalar.

Operand

3:

Character(4)

constant

scalar.

Operand

4:

Instruction

number,

relative

instruction

number,

branch

point,

instruction

pointer,

instruction

definition

list

element,

or

null.

Operand

5-8:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

The

base

string

to

be

scanned

is

specified

by

the

base

locator

and

controls

operands.

The

base

locator

addresses

the

first

character

of

the

base

string.

The

controls

specifies

the

length

of

the

base

string

in

the

base

length

field.

The

scan

operation

begins

at

the

left

end

of

the

base

string

and

continues

character

by

character,

left-to-right.

The

scan

operation

can

be

performed

on

a

base

string

which

contains

all

simple

(1-byte)

or

all

extended

(2-byte)

character

codes

or

a

mixture

of

the

two.

When

the

base

string

is

being

interpreted

in

simple

character

mode,

the

operation

moves

through

the

base

string

one

byte

at

a

time.

When

the

base

string

is

being

interpreted

in

extended

character

mode,

the

operation

moves

through

the

base

string

2

bytes

at

a

time.

The

character

string

value

of

the

base

locator

operand

is

scanned

for

occurrences

of

a

character

value

satisfying

the

criteria

specified

in

the

controls

and

options

operands.

The

scan

is

completed

by

updating

the

base

locator

and

controls

operands

with

scan

status

when

a

character

value

being

scanned

for

is

found,

the

end

of

the

base

string

is

encountered,

or

an

escape

code

is

encountered

when

the

escape

target

operand

is

specified.

The

base

locator

is

set

with

addressability

to

the

character

(simple

or

extended)

which

caused

the

instruction

to

complete

execution.

The

controls

operand

is

set

with

information

which

identifies

the

mode

(simple

or

extended)

of

the

base

string

character

addressed

by

the

base

locator

and

which

provides

for

resumption

of

the

scan

operation

with

minimal

overhead.

The

controls

and

options

operands

specify

the

modes

to

be

used

in

interpreting

characters

during

the

scan

operation.

Characters

can

be

interpreted

in

one

of

two

character

modes:

simple

(1-byte)

and

extended

1080

iSeries:

Machine

Interface

Instructions

APIs

(2-byte).

Additionally,

the

base

string

can

be

scanned

in

one

of

two

scan

modes,

mixed

(base

string

may

contain

a

mixture

of

both

character

modes)

and

nonmixed

(base

string

contains

one

mode

of

characters).

When

the

mixed

scan

mode

is

specified

in

the

options

operand,

the

base

string

is

interpreted

as

containing

a

mixture

of

simple

and

extended

character

codes.

The

mode,

simple

or

extended,

with

which

the

string

is

to

be

interpreted,

is

controlled

initially

by

the

base

mode

indicator

in

the

controls

operand

and

thereafter

by

mode

control

characters

imbedded

in

the

base

string.

The

mode

control

characters

are

as

follows:

Hex

0E

=

Shift

out

(SO)

of

simple

character

mode

to

extended

mode.

Hex

0F

=

Shift

in

(SI)

to

simple

character

mode

from

extended

mode.

This

is

only

recognized

if

it

occurs

in

the

first

byte

position

of

an

extended

character

code.

When

the

nonmixed

scan

mode

is

specified

in

the

options

operand,

the

base

string

is

interpreted

using

only

the

character

mode

specified

by

the

base

mode

indicator

in

the

controls

operand.

Character

mode

shifting

can

not

occur

because

no

mode

control

characters

are

recognized

when

scanning

in

nonmixed

mode.

The

base

locator

operand

is

a

space

pointer

which

is

both

input

to

and

output

from

the

instruction.

On

input,

it

locates

the

first

character

of

the

base

string

to

be

processed.

On

output,

it

locates

the

character

of

the

base

string

which

caused

the

instruction

to

complete.

The

controls

operand

must

be

a

character

scalar

which

specifies

additional

information

to

be

used

to

control

the

scan

operation.

It

must

be

at

least

8

bytes

long

and

have

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Controls

operand

Char(8)

0

0

Control

indicators

Char(1)

0

0

Base

mode

Bit

0

0

=

Simple

1

=

Extended

0

0

Comparison

character

mode

Bit

1

0

=

Simple

1

=

Extended

0

0

Reserved

(must

be

0)

Bits

2-6

0

0

Scan

state

Bit

7

0

=

Resume

scan

1

=

Start

scan

1

1

Reserved

Char(1)

2

2

Comparison

characters

Char(2)

4

4

Reserved

Char(1)

5

5

Base

end

Char(3)

5

5

Instruction

work

area

Char(1)

6

6

Base

length

Char(2)

8

8

—-

End

—-

Only

the

first

8

bytes

of

the

controls

operand

are

used.

Any

excess

bytes

are

ignored.

Reserved

fields

must

contain

binary

0s.

The

base

mode

is

both

input

to

and

output

from

the

instruction.

In

either

case,

it

specifies

the

mode

of

the

character

in

the

base

string

currently

addressed

by

the

base

locator.

Machine

Interface

Instructions

1081

The

comparison

character

mode

is

not

changed

by

the

instruction.

It

specifies

the

mode

of

the

comparison

character

contained

in

the

controls

operand.

The

scan

state

is

both

input

to

and

output

from

the

instruction.

As

input,

it

indicates

whether

the

scan

operation

for

the

base

string

is

being

started

or

resumed.

If

it

is

being

started,

the

instruction

assumes

that

the

base

length

value

in

the

base

end

field

of

the

controls

operand

specifies

the

length

of

the

base

string,

and

the

instruction

work

area

value

is

ignored.

If

it

is

being

resumed,

the

instruction

assumes

the

base

end

field

has

been

set

by

a

prior

start

scan

execution

of

the

instruction

with

an

internal

machine

value

identifying

the

end

of

the

base

string.

For

a

start

scan

execution

of

the

instruction,

the

scan

state

field

is

reset

to

indicate

resume

scan

to

provide

for

subsequent

resumption

of

the

scan

operation.

Additionally,

for

a

start

scan

execution

of

the

instruction,

the

base

end

field

is

set

with

an

internally

optimized

value

which

identifies

the

end

of

the

base

string

being

scanned.

This

value

then

overlays

the

values

which

were

in

the

instruction

work

area

and

base

length

fields

on

input

to

the

instruction.

Predictable

operation

of

the

instruction

on

a

resume

scan

execution

depends

upon

this

base

end

field

being

left

intact

with

the

value

set

by

the

start

scan

execution.

For

a

resume

scan

execution

of

the

instruction,

the

scan

state

and

base

end

fields

are

unchanged.

For

a

resume

scan

execution

of

the

instruction,

base

locator

must

not

contain

a

teraspace

address

or

an

unsupported

space

use

(hex

0607)

exception

is

signaled.

The

comparison

character

is

input

to

the

instruction.

It

specifies

a

character

code

to

be

used

in

the

comparisons

performed

during

the

scanning

of

the

base

string.

The

comparison

character

mode

in

the

control

indicators

specifies

the

mode

(simple

or

extended)

of

the

comparison

character.

If

it

is

a

simple

character,

the

first

byte

of

the

comparison

character

field

is

ignored

and

the

comparison

character

is

assumed

to

be

specified

in

the

second

byte.

If

it

is

an

extended

character,

the

comparison

character

is

specified

as

a

2-byte

value

in

the

comparison

character

field.

The

base

end

field

is

both

input

to

and

output

from

the

instruction.

It

contains

data

which

identifies

the

end

of

the

base

string.

Initially,

for

a

start

scan

execution

of

the

instruction,

it

contains

the

length

of

the

base

string

in

the

base

length

field.

Additionally,

the

base

end

field

is

used

to

retain

information

over

multiple

instruction

executions

which

provides

for

minimizing

the

overhead

required

to

resume

the

scan

operation

for

a

particular

base

string.

This

information

is

set

on

the

initial

start

scan

execution

of

the

instruction

and

is

used

during

subsequent

resume

scan

executions

of

the

instruction

to

determine

the

end

of

the

base

string

to

be

scanned.

If

the

end

of

the

base

string

being

scanned

must

be

altered

during

iterative

usage

of

this

instruction,

a

start

scan

execution

of

the

instruction

must

be

performed

to

provide

for

correctly

resetting

the

internally

optimized

value

to

be

stored

in

the

base

end

from

the

values

specified

in

the

base

locator

operand

and

base

length

field.

For

the

special

case

of

a

start

scan

execution

where

a

length

value

of

zero

(no

characters

to

scan)

is

specified

in

the

base

length

field,

the

instruction

results

in

a

not

found

resultant

condition.

In

this

case,

the

base

string

is

not

verified

and

the

scan

state

indicator,

the

base

end

field,

and

the

base

locator

are

not

changed.

The

options

operand

must

be

a

character

scalar

which

specifies

the

options

to

be

used

to

control

the

scan

operation.

It

must

be

at

least

4

bytes

in

length

and

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Options

operand

Char(4)

0

0

Options

indicators

Char(1)

1

1

Reserved

Char(3)

4

4

—-

End

—-

The

options

operand

must

be

specified

as

a

constant

character

scalar.

1082

iSeries:

Machine

Interface

Instructions

APIs

Only

the

first

4

bytes

of

the

options

operand

are

used.

Any

excess

bytes

are

ignored.

Reserved

fields

must

contain

binary

0s.

The

option

indicators

field

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Option

indicators

Char(1)

0

0

Reserved

Bit

0

0

0

Scan

mode

Bit

1

0

=

Mixed

1

=

Nonmixed

0

0

Reserved

Bits

2-3

0

0

Comparison

relation

Bits

4-6

0

0

Equal,

(=)

relation

Bit

4

0

0

Less

than,

(<)

relation

Bit

5

0

0

Greater

than,

(>)

relation

Bit

6

0

=

No

match

on

relation

1

=

Match

on

relation

0

0

Reserved

Bit

7

1

1

—-

End

—-

The

scan

mode

specifies

whether

the

base

string

contains

a

mixture

of

character

modes,

or

contains

all

one

mode

of

characters;

that

is,

whether

or

not

mode

control

characters

should

be

recognized

in

the

base

string.

Mixed

specifies

that

there

is

a

mixture

of

character

modes

and,

therefore,

mode

control

characters

should

be

recognized.

Nonmixed

specifies

that

there

is

not

a

mixture

of

character

modes

and,

therefore,

mode

control

characters

should

not

be

recognized.

Note

that

the

base

mode

indicator

in

the

controls

operand

specifies

the

character

mode

of

the

base

string

character

addressed

by

the

base

locator.

The

comparison

relation

specifies

the

relation

or

relations

of

the

comparison

character

to

characters

of

the

base

string

which

will

satisfy

the

scan

operation

and

cause

completion

of

the

instruction

with

one

of

the

high,

low,

or

equal

resultant

conditions.

Multiple

relations

may

be

specified

in

conjunction

with

one

another.

Specifying

all

relations

insures

a

match

against

any

character

in

the

base

string

which

is

of

the

same

mode

as

the

comparison

character.

Specifying

no

relation

insures

a

not

found

resultant

condition,

in

the

absence

of

an

escape

due

to

verification,

regardless

of

the

values

of

the

characters

in

the

base

string

which

match

the

mode

of

the

comparison

character.

An

example

of

comparison

scanning

is

a

scan

of

simple

mode

characters

for

a

value

less

than

hex

40.

This

could

be

done

by

specifying

a

comparison

character

of

hex

40

and

a

comparison

relation

of

greater

than

in

conjunction

with

a

branch

option

for

the

resultant

condition

of

high.

This

could

also

be

done

by

specifying

a

comparison

character

of

hex

3F

and

comparison

relations

of

equal

and

greater

than

in

conjunction

with

branch

options

for

equal

and

high.

The

target

of

the

branch

options

in

either

case

would

be

the

instructions

to

process

the

character

less

than

hex

40

in

value.

The

escape

target

operand

controls

the

verification

of

bytes

of

the

base

string

for

values

less

than

hex

40.

Verification,

if

requested,

is

always

performed

in

conjunction

with

whatever

comparison

processing

has

been

requested.

That

is,

verification

is

performed

even

if

no

comparison

relation

is

specified.

This

operand

is

discussed

in

more

detail

in

the

following

material.

During

the

scan

operation,

the

characters

of

the

base

string

which

are

not

of

the

same

mode

as

the

comparison

character

are

skipped

over

until

the

mode

of

the

characters

being

processed

is

the

same

as

the

mode

of

the

comparison

character.

The

operation

then

proceeds

by

comparing

the

comparison

character

with

each

of

the

characters

of

the

base

string.

These

comparisons

behave

as

if

the

characters

were

being

compared

in

the

Compare

Bytes

Left

Adjusted

(CMPBLA)

instruction.

Machine

Interface

Instructions

1083

If

a

base

string

character

satisfying

the

criteria

specified

in

the

controls

and

options

operands

is

found,

the

base

locator

is

set

to

address

the

first

byte

of

it,

the

base

mode

indicator

is

set

to

indicate

the

mode

of

the

base

string

as

of

that

character,

and

the

instruction

is

completed

with

the

appropriate

resultant

condition

based

on

the

comparison

relation

(high,

low,

or

equal)

of

the

comparison

character

to

the

base

string

character.

If

a

matching

base

string

character

is

not

found

prior

to

encountering

a

mode

change,

the

characters

of

the

base

string

are

again

skipped

over

until

the

mode

of

the

characters

being

processed

is

the

same

as

the

mode

of

the

comparison

character

before

comparisons

are

resumed.

If

a

matching

base

string

character

is

not

found

prior

to

encountering

the

end

of

the

base

string,

the

base

location

is

set

to

address

the

first

byte

of

the

character

encountered

at

the

end

of

the

base

string,

the

base

mode

indicator

is

set

to

indicate

the

mode

of

the

base

string

as

of

that

character,

and

the

instruction

is

completed

with

the

not

found

resultant

condition.

A

mode

control

string

results

in

the

changing

of

the

base

string

mode,

but

the

base

locator

is

left

addressing

the

mode

control

character.

If

the

escape

target

operand

is

specified

(operand

4

is

not

null),

verifications

are

performed

on

the

characters

of

the

base

string

prior

to

their

being

skipped

or

compared

with

the

comparison

character.

Each

byte

of

the

base

string

is

checked

for

a

value

less

than

hex

40.

Additionally,

for

a

mixed

scan

mode,

when

such

a

value

is

encountered,

it

is

then

determined

if

it

is

a

valid

mode

control

character.

v

v

Hex

0E

(S0)

when

the

base

string

is

being

interpreted

in

simple

character

mode.

v

Hex

0F

(SI)

in

the

left

byte

of

the

character

code

when

the

base

string

is

being

interpreted

in

extended

character

mode.

If

a

byte

value

of

less

than

hex

40

is

not

a

valid

mode

control

character,

it

is

considered

to

be

an

escape

code.

The

base

locator

is

set

to

address

the

first

byte

of

the

base

string

character

(simple

or

extended)

which

contains

the

escape

code,

the

base

mode

indicator

is

set

to

indicate

the

mode

of

the

base

string

as

of

that

character,

and

a

branch

is

taken

to

the

target

specified

by

the

escape

target

operand.

When

the

escape

target

branch

is

performed,

the

value

of

any

optional

indicator

operands

is

meaningless.

If

the

escape

target

operand

is

not

specified

(operand

4

is

null),

verifications

of

the

character

codes

in

the

base

string

are

not

performed.

However,

for

a

mixed

scan

mode,

mode

control

values

are

always

processed

as

described

previously

under

the

discussion

of

the

mixed

scan

mode.

If

possible,

use

a

space

pointer

machine

object

for

the

base

locator,

operand

1.

Appreciably

less

overhead

is

incurred

in

accessing

and

storing

the

value

of

the

base

locator

if

this

is

done.

If

possible,

specify

through

its

ODT

definition,

the

controls

operand

on

an

8-byte

multiple

(doubleword)

boundary

relative

to

the

start

of

the

space

containing

it.

Appreciably

less

overhead

is

incurred

in

accessing

and

storing

the

value

of

the

controls

if

this

is

done.

For

the

case

where

a

base

string

is

to

be

just

scanned

for

byte

values

less

than

hex

40,

two

techniques

can

be

used.

v

v

A

direct

simple

mode

scan

for

a

value

less

than

hex

40

without

usage

of

the

escape

target

verification

feature.

v

A

scan

for

any

character

with

usage

of

the

escape

target

verification

feature.

The

direct

scan

approach,

the

former,

is

the

more

efficient.

The

following

diagram

defines

the

various

conditions

which

can

be

encountered

at

the

end

of

the

base

string

and

what

the

base

locator

addressability

is

in

each

case.

The

solid

vertical

line

represents

the

end

of

the

base

string.

The

dashes

represent

the

bytes

before

and

after

the

base

string

end.

The

V

is

positioned

over

the

byte

addressed

by

the

base

locator

in

each

case.

These

are

the

conditions

which

can

be

encountered

when

the

base

locator

input

to

the

instruction

addresses

a

byte

prior

to

the

base

string

end.

1084

iSeries:

Machine

Interface

Instructions

APIs

When

the

base

length

field

specifies

a

value

of

zero

for

a

start

scan

execution

of

the

instruction,

or

the

input

base

locator

addresses

a

point

beyond

the

end

of

the

instruction,

no

processing

is

performed

and

the

instruction

is

immediately

completed

with

the

not

found

resultant

condition.

An

analysis

of

the

diagram

shows

that

normally,

after

appropriate

processing

for

the

particular

found,

not

found,

or

escape

condition,

the

scan

can

be

restarted

at

the

byte

of

data

which

would

follow

the

base

string

end

in

the

data

stream

being

scanned.

Any

mode

shift

required

by

an

ending

mode

control

character

will

have

been

performed.

However,

one

ending

condition

may

require

subsequent

resumption

of

the

scan

at

the

character

encountered

at

the

end

of

the

base

string.

This

is

the

case

where

the

instruction

completes

with

the

not

found

resultant

condition

and

the

base

string

ends

with

an

extended

character

split

across

string

end.

That

is,

the

base

mode

indicator

specifies

extended

mode,

the

base

locator

addresses

the

last

byte

of

the

base

string,

and

that

byte

value

is

not

a

shift

out,

hex

0E

character.

In

this

case,

complete

verification

of

the

extended

character

and

relation

comparison

could

not

be

performed.

If

this

extended

character

is

to

be

processed,

it

must

be

done

through

another

execution

of

the

Scan

instruction

where

both

bytes

of

the

character

can

be

input

to

the

instruction

within

the

confines

of

the

base

string.

Resultant

Conditions:

v

Machine

Interface

Instructions

1085

v

Equal:

A

character

value

was

found

in

the

base

string

which

satisfies

the

criteria

specified

in

the

controls

and

options

operands

in

that

the

comparison

character

is

of

equal

string

value

to

the

base

string

character.

v

High:

A

character

value

was

found

in

the

base

string

which

satisfies

the

criteria

specified

in

the

controls

and

options

operands

in

that

the

comparison

character

is

of

higher

string

value

to

the

base

string

character.

v

Low:

A

character

value

was

found

in

the

base

string

which

satisfies

the

criteria

specified

in

the

controls

and

options

operands

in

that

the

comparison

character

is

of

lower

string

value

to

the

base

string

character.

v

Not

found:

A

character

value

was

not

found

in

the

base

string

which

satisfied

the

criteria

specified

in

the

controls

and

options

operands.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0607

Unsupported

Space

Use

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

1086

iSeries:

Machine

Interface

Instructions

APIs

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Search

(SEARCH)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

4

Operand

[5-6]

SEARCH

1084

Receiver

Array

Find

Location

SEARCHB

1C84

Branch

options

Receiver

Array

Find

Location

Branch

targets

SEARCHI

1884

Indicator

options

Receiver

Array

Find

Location

Indicator

targets

Operand

1:

Binary

variable

scalar

or

binary

variable

array.

Operand

2:

Character

array

or

numeric

array.

Operand

3:

Character

variable

scalar

or

numeric

variable

scalar.

Machine

Interface

Instructions

1087

Operand

4:

Binary

scalar.

Operand

5-6:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

The

portions

of

the

array

operand

indicated

by

the

location

operand

are

searched

for

occurrences

of

the

value

indicated

in

the

find

operand.

The

operation

begins

with

the

first

element

of

the

array

operand

and

continues

element

by

element,

comparing

those

characters

of

each

element

(beginning

with

the

character

indicated

in

the

location

operand)

with

the

characters

of

the

find

operand.

The

location

operand

contains

an

integer

value

representing

the

relative

location

of

the

first

character

in

each

element

to

be

used

to

begin

the

compare.

The

integer

value

of

the

location

operand

must

range

from

1

to

L,

where

L

is

the

length

of

the

array

operand

elements;

otherwise,

a

scalar

value

invalid

(hex

3203)

exception

is

signaled.

A

value

of

1

indicates

the

leftmost

character

of

each

element.

The

length

of

the

find

operand

must

not

be

so

large

that

it

exceeds

the

length

of

the

array

operand

elements

when

used

with

the

location

operand

value;

otherwise,

a

length

conformance

(hex

0C08)

exception

is

signaled.

The

array

element

length

used

is

the

length

of

the

array

scalar

elements

and

not

the

length

of

the

entire

array

element,

which

can

be

larger

in

noncontiguous

arrays.

The

array

and

find

operands

can

be

either

character

or

numeric.

Any

numeric

operands

are

interpreted

as

logical

character

strings.

The

compares

between

these

operands

are

performed

at

the

length

of

the

find

operand

and

function

as

if

they

were

being

compared

in

the

Compare

Bytes

Left-Adjusted

(CMPBLA)

instruction.

As

each

occurrence

of

the

find

value

is

encountered,

the

integer

value

of

the

index

for

this

array

element

is

placed

in

the

receiver

operand.

If

the

receiver

operand

is

a

scalar,

only

the

first

element

containing

the

find

value

is

noted.

If

the

receiver

operand

is

an

array,

as

many

occurrences

as

there

are

elements

within

the

receiver

array

are

noted.

If

the

value

of

the

index

for

an

array

element

containing

an

occurrence

of

the

find

value

is

too

large

to

be

contained

in

the

receiver,

a

size

(hex

0C0A)

exception

is

signaled.

The

operation

continues

until

no

more

occurrences

of

elements

containing

the

find

value

can

be

noted

in

the

receiver

operand

or

until

the

array

operand

has

been

completely

searched.

When

the

second

condition

occurs,

the

receiver

value

is

set

to

LB-1,

where

LB

is

the

value

of

the

lower

bound

index

of

the

array.

If

LB

is

the

most

negative

32-bit

integer,

then

LB-1

is

the

most

positive

32-bit

integer;

otherwise,

LB-1

is

1

less

than

LB.

If

the

receiver

operand

is

an

array,

all

its

remaining

elements

are

also

set

to

LB-1.

The

find

operand

can

be

a

variable

length

substring

compound

operand.

Resultant

Conditions:

The

numeric

value(s)

of

the

receiver

operand

is

either

LB-1

or

in

the

range

LB

through

UB,

where

UB

is

the

value

of

the

upper

bound

index

of

the

array.

When

the

receiver

is

LB-1,

the

resultant

condition

is

zero.

When

the

receiver

is

in

the

range

LB

through

UB,

the

resultant

condition

is

positive.

When

the

receiver

is

an

array,

the

resultant

condition

is

zero

if

all

elements

are

LB-1;

otherwise,

it

is

positive.

The

resultant

condition

is

unpredictable

when

the

no

binary

size

exception

program

template

option

is

used.

1088

iSeries:

Machine

Interface

Instructions

APIs

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C08

Length

Conformance

0C0A

Size

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

Machine

Interface

Instructions

1089

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Sense

Exception

Description

(SNSEXCPD)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

03E3

Attribute

receiver

Invocation

template

Exception

template

Operand

1:

Space

pointer.

Operand

2:

Space

pointer.

Operand

3:

Space

pointer.

Note:

A

change

has

been

made

in

the

way

in

which

exceptions

are

handled

for

bound

programs.

This

instruction

is

intended

for

use

with

non-bound

programs,

but

can

be

used

against

bound

programs.

The

data

that

is

returned

when

a

bound

program

is

accessed

will

always

say

that

there

is

an

external

handler

for

the

sensed

exception,

that

there

is

no

exception

data

being

returned

and

a

starting

exception

description

number

of

0.

Description:

This

instruction

searches

the

invocation

specified

by

operand

2

for

an

exception

description

that

matches

the

exception

identifier

and

compare

value

specified

by

operand

3

and

returns

the

1090

iSeries:

Machine

Interface

Instructions

APIs

user

data

and

exception

handling

action

specified

in

the

exception

description.

The

exception

descriptions

of

the

invocation

are

searched

in

ascending

Object

Definition

Table

(ODT)

number

sequence.

The

template

identified

by

operand

1

must

be

16-byte

aligned.

The

format

of

the

attribute

receiver

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Template

size

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

8

8

Control

flags

Char(2)

8

8

Exception

handling

action

Bits

0-2

000

=

Do

not

handle-

Ignore

occurrence

of

exception

and

continue

processing

010

=

Do

not

handle-

Continue

search

for

an

exception

description

by

resignaling

the

exception

to

the

immediately

preceding

invocation

100

=

Defer

handling-

Save

exception

data

for

later

exception

handling

101

=

Pass

control

to

the

specified

exception

handler

8

8

No

data

Bit

3

0

=

Exception

data

is

returned

1

=

Exception

data

is

not

returned

8

8

Reserved

(binary

0)

Bit

4

8

8

User

data

indicator

Bit

5

0

=

User

data

not

present

1

=

User

data

present

8

8

Reserved

(binary

0)

Bits

6-7

8

8

Exception

handler

type

Bits

8-9

00

=

External

entry

point

01

=

Internal

entry

point

10

=

Branch

point

8

8

Reserved

(binary

0)

Bits

10-15

10

A

Relative

exception

description

number

Bin(2)

12

C

Reserved

(binary

0)

Char(4)

16

10

Pointer

to

user

data

(binary

0

if

value

of

user

data

indicator

is

0)

Space

pointer

32

20

—-

End

—-

Machine

Interface

Instructions

1091

The

first

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

exception

is

signaled

in

the

event

the

receiver

contains

insufficient

area

for

the

materialization,

other

than

the

materialization

length

invalid

(hex

3803)

exception

described

previously.

The

relative

exception

description

number

field

identifies

the

relative

number

of

the

exception

description

that

matched

the

search

criteria.

The

order

of

definition

of

the

exception

descriptions

in

the

ODT

determines

the

value

of

the

index.

A

value

of

1

indicates

that

the

first

exception

description

defined

in

the

ODT

matched

the

search

criteria.

The

format

of

the

invocation

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Invocation

address/offset

Space

pointer

or

Invocation

pointer

16

10

Search

flags

Char(2)

16

10

Use

offset

option

Bit

0

0

=

Use

invocation

address

as

a

pointer

value

1

=

Use

invocation

address

as

an

offset

value

16

10

Reserved

(binary

0)

Bits

1-15

18

12

First

exception

description

to

search

Bin(2)

20

14

—-

End

—-

The

template

identified

by

operand

2

must

be

16-byte

aligned.

The

invocation

address/offset

field

is

a

space/invocation

pointer

that

identifies

the

invocation

to

be

searched.

The

invocation

is

searched

for

a

matching

exception

description.

If

the

invocation

address

locates

either

an

invalid

invocation

or

the

invocation

stack

base

entry,

the

invalid

invocation

address

(hex

1603)

exception

is

signaled.

The

invocation

address/offset

field

can

also

be

an

offset

value

from

the

current

requesting

invocation

to

the

invocation

to

be

searched.

This

is

setting

the

use

offset

option

bit

field

that

follows

the

invocation

address

field

to

1.

If

the

invocation

offset

value

locates

the

invocation

stack

base

entry,

the

invocation

offset

outside

range

of

current

stack

(hex

2C1A)

exception

is

signaled.

If

the

invocation

offset

value

is

positive

or

zero,

a

materialization

length

invalid

(hex

3803)

exception

is

signaled.

The

first

exception

description

to

search

field

specifies

the

relative

number

of

the

exception

description

to

be

used

to

start

the

search.

The

number

must

be

a

nonzero

positive

binary

number

determined

by

the

order

of

definition

of

exception

descriptions

in

the

ODT.

A

value

of

1

indicates

that

the

first

exception

description

in

the

invocation

is

to

be

used

to

begin

the

search.

If

the

value

is

greater

than

the

number

of

exception

descriptions

for

the

invocation,

the

operand

1

template

is

materialized

with

the

number

of

bytes

available

for

materialization

set

to

0.

The

operand

3

exception

template

specifies

the

exception-related

data

to

be

used

as

a

search

argument.

The

format

of

the

template

is

as

follows:

1092

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Template

size

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

(must

be

at

least

44)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

+

8

8

Exception

identifier

Char(2)

10

A

Compare

value

length

(maximum

of

32)

Bin(2)

12

C

Compare

value

Char(32)

44

2C

—-

End

—-

Note:

Fields

noted

with

a

plus

sign

(+)

are

ignored

by

the

instruction.

The

exception

identifier

in

the

exception

description

can

be

specified

in

one

of

the

following

ways:

Hex

0000

=

Any

exception

ID

will

result

in

a

match

Hex

nn00

=

Any

exception

ID

in

class

nn

will

result

in

a

match

Hex

nnmm

=

Only

exception

ID

nnmm

will

result

in

a

match

If

a

match

on

exception

ID

is

detected,

the

corresponding

compare

values

are

matched.

If

the

compare

value

length

in

the

exception

description

is

less

than

the

compare

value

in

the

search

template,

the

length

of

the

compare

value

in

the

exception

description

is

used

for

the

match.

If

the

compare

value

length

in

the

exception

description

is

greater

than

the

compare

value

in

the

search

template,

an

automatic

mismatch

results.

If

a

match

on

exception

ID

and

compare

value

is

detected,

the

exception

handling

action

of

the

exception

description

determines

which

of

the

following

actions

is

taken:

IGNORE

The

operand

1

template

is

materialized.

DISABLE

The

exception

description

is

bypassed

and

the

search

for

an

exception

description

continues

with

the

next

exception

description

defined

for

the

invocation.

RESIGNAL

The

operand

1

template

is

materialized.

DEFER

The

operand

1

template

is

materialized.

HANDLE

The

operand

1

template

is

materialized.

If

no

exception

description

of

the

invocation

matches

the

exception

ID

and

compare

value

of

operand

3,

the

number

of

bytes

available

for

materialization

on

the

operand

1

template

is

set

to

0.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

Machine

Interface

Instructions

1093

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

16

Exception

Management

1603

Invalid

Invocation

Address

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C1A

Invocation

Offset

Outside

Range

of

Current

Stack

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

1094

iSeries:

Machine

Interface

Instructions

APIs

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

3802

Template

Size

Invalid

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Set

Access

State

(SETACST)

Op

Code

(Hex)

Operand

1

0341

Access

state

template

Operand

1:

Space

pointer.

Bound

program

access

Built-in

number

for

SETACST

is

70.

SETACST

(

access_state_template

:

address

)

Description:

The

instruction

specifies

the

access

state

(which

specifies

the

desired

speed

of

access)

that

the

issuing

thread

has

for

a

set

of

objects

or

subobject

elements

in

the

execution

interval

following

the

execution

of

the

instruction.

The

specification

of

an

access

state

for

an

object

momentarily

preempts

the

machine’s

normal

management

of

an

object.

Note:

This

instruction

should

be

used

with

caution

when

the

pointer

to

object

whose

access

state

is

to

be

changed

field

in

the

template

below

points

to

a

process

space

(i.e.

static

storage,

automatic

storage,

and

activation

group-based

heap

space

storage).

These

process

spaces

may

be

shared

by

other

programs,

so

explicit

access

management

may

affect

those

other

programs.

This

instruction

should

be

used

with

caution

when

the

pointer

to

object

whose

access

state

is

to

be

changed

field

in

the

template

below

points

to

handle-based

heap

space

storage.

Handle-based

heap

space

storage

may

be

shared

by

other

threads

in

the

process,

so

explicit

access

management

may

affect

programs

in

those

other

threads.

Machine

Interface

Instructions

1095

CAUTION:

MI

system

objects

can

be

implemented

with

one

or

more

storage

structures

for

the

functional

part

(encapsulated

part)

of

the

object.

Unless

explicitly

noted

otherwise,

if

a

system

pointer

is

specified

for

pointer

to

object

whose

access

state

is

to

be

changed,

the

SETACST

operations

only

act

on

the

first

(base)

storage

structure

of

an

MI

object’s

functional

part

and

the

object’s

primary

associated

space.

The

MI

objects

that

are

implemented

with

multiple

storage

structures

are:

v

Cursor

v

Byte

stream

file

v

Byte

string

space

v

Data

space

v

Data

space

index

v

Dump

space

v

Independent

index

v

Journal

space

v

Module

v

Program

v

Queue

v

Queue

space

v

User

profile

The

access

state

template

must

be

aligned

on

a

16-byte

boundary.

The

format

is:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Number

of

objects

to

be

acted

upon

Bin(4)

4

4

Reserved

(binary

0)

Char(12)

16

10

Access

state

specifications

[*]

Char(32)

(repeated

as

many

times

as

necessary)

16

10

Pointer

to

object

whose

access

state

is

to

be

changed

32

20

Access

state

code

33

21

Reserved

(binary

0)

36

24

Access

state

parameter

36

24

Access

pool

ID

40

28

Space

length

44

2C

Operational

object

size

Note:

This

value

is

returned

for

some

of

the

access

state

*

*

—-

End

—-

The

number

of

objects

field

specifies

how

many

objects

are

potential

candidates

for

access

state

modification.

An

access

state

specification

is

included

for

each

object

to

be

acted

upon.

The

pointer

to

object

field

identifies

the

object

or

space

which

is

to

be

acted

upon.

For

the

space

associated

with

a

system

object,

the

space

pointer

may

address

any

byte

in

the

space.

This

pointer

is

followed

by

parameters

that

define

in

detail

the

action

to

be

applied

to

the

object.

The

access

state

code

designates

the

desired

access

state.

The

allowed

values

are

as

follows:

Access

State

Code

(Hex)

Function

and

Required

Parameter

00

No

operations

are

performed.

1096

iSeries:

Machine

Interface

Instructions

APIs

Access

State

Code

(Hex)

Function

and

Required

Parameter

01

Associated

object

is

moved

into

main

storage

(if

not

already

there)

synchronously

with

the

execution

of

the

instruction.

02

Associated

object

is

moved

into

main

storage

(if

not

already

there)

asynchronously

with

the

execution

of

the

instruction.

This

operation

will

be

applied

to

all

internal

storage

areas

for

queue

objects.

03

Associated

object

is

placed

in

main

storage

without

regard

to

the

current

contents

of

the

object.

This

causes

access

to

secondary

storage

to

be

reduced

or

eliminated.

For

this

access

state

code,

a

space

pointer

must

be

provided.

04

Associated

object

is

removed

from

main

storage

in

a

manner

which

reduces

or

eliminates

access

to

secondary

storage.

Content

of

the

object

is

unpredictable

after

this

operation.

For

this

access

state

code,

a

space

pointer

must

be

provided.

10

The

object

is

synchronously

ensured

(changes

written

to

auxiliary

storage)

and

then

removed

from

main

storage.

If

the

system

pointer

points

to

an

object

whose

type

is

not

a

cursor,

data

space,

data

space

index,

program,

or

space

then

an

object

not

eligible

for

operation

(hex

2204)

exception

is

signaled.

This

option

returns

a

number

in

the

operational

object

size

field.

The

unit

assumed

is

the

machine

minimum

transfer

size

(page

size).

The

value

returned

is

the

total

size

of

the

operational

parts

of

the

object

examined/processed,

including

the

associated

space

(if

there

is

one).

Note:

This

number

is

not

the

number

of

pages

written

or

removed,

but

rather,

is

the

total

size

of

the

object

being

processed.

Some,

all

or

none

of

the

object

may

be

in

mainstore

prior

to

the

execution

of

the

instruction.

The

space

length

field

must

be

zero

for

this

operation.

The

entire

associated

space,

if

any,

will

be

processed

with

the

rest

of

the

object’s

storage.

The

access

pool

ID

field

is

ignored

for

this

operation.

The

associated

pointer

to

the

object

must

be

a

system

pointer.

This

operation

will

be

applied

to

all

internal

storage

areas

for

queue

objects.

18

This

operation

essentially

combines

the

functions

of

a

10

code

followed

by

asynchronously

bringing

the

operational

parts

of

the

object

into

main

storage.

The

object

is

brought

into

the

main

storage

pool

identified

by

the

access

pool

ID

field.

If

the

system

pointer

points

to

an

object

whose

type

is

not

a

cursor,

data

space,

data

space

index,

program,

or

space

then

an

object

not

eligible

for

operation

(hex

2204)

exception

is

signaled.

Note:

Because

this

function

first

removes

the

object

from

main

storage

and

then

brings

it

into

main

storage,

this

can

be

used

to

″move″

an

object

from

one

main

storage

pool

to

another.

This

option

returns

a

number

in

the

operational

object

size

field.

The

unit

assumed

is

the

machine

minimum

transfer

size

(page

size).

The

value

returned

is

the

total

size

of

the

object

processed.

Note:

If

this

value

is

larger

than

the

size

of

the

main

storage

pool

being

used,

unpredictable

parts

of

the

object

will

be

resident

in

the

main

storage

pool

following

processing.

A

preceding

access

code

of

40

is

ignored

for

this

operation.

The

space

length

field

must

be

zero

for

this

operation.

The

entire

associated

space,

if

any,

will

be

processed

with

the

rest

of

the

object’s

storage.

The

access

pool

ID

field

must

be

specified

for

this

access

code.

It

must

be

one

of

the

storage

pools

existing

in

the

machine

as

defined

by

the

machine

attribute.

The

associated

pointer

to

the

object

must

be

a

system

pointer.

This

operation

will

be

applied

to

all

internal

storage

areas

for

cursor,

data

space

and

data

space

index

objects.

20

Associated

object

attributes

are

moved

into

main

storage

synchronous

with

the

instruction’s

execution.

The

associated

attributes

are

the

attributes

that

are

common

to

all

system

objects.

The

associated

pointer

to

object

must

be

a

resolved

system

pointer.

The

″space

length″

field

is

ignored

for

this

access

code.

21

Associated

object

attributes

are

moved

into

main

storage

asynchronous

with

the

instruction’s

execution.

The

associated

attributes

are

the

attributes

that

are

common

to

all

system

objects.

The

associated

pointer

to

object

must

be

a

resolved

system

pointer.

The

″space

length″

field

is

ignored

for

this

access

code.

Machine

Interface

Instructions

1097

Access

State

Code

(Hex)

Function

and

Required

Parameter

22

Common

associated

object

attributes

plus

some

specified

amount

of

object-specific

attributes

are

moved

into

main

storage

synchronous

with

the

instruction’s

execution.

The

common

associated

attributes

are

the

attributes

that

are

common

to

all

system

objects.

The

object-specific

attributes

are

attributes

that

vary

from

one

object

type

to

another.

The

amount

of

these

attributes

brought

into

main

storage

is

controlled

by

the

space

length

field.

Note:

This

use

of

space

length

is

not

consistent

with

the

name

of

the

field.

For

this

code,

the

space

length

field

does

not

control

the

size

of

any

associated

space

processing,

it

controls

the

length

of

object-specific

attributes

processed.

The

space

length

field

works

in

the

following

manner:

it

specifies

the

amount

of

storage

above

and

beyond

the

common

object

attributes

which

will

be

synchronously

brought

into

storage.

Therefore,

a

space

length

of

0

is

valid,

and

results

in

an

operation

identical

to

access

code

20.

The

associated

pointer

to

object

must

be

a

resolved

system

pointer.

23

Common

associated

object

attributes

plus

some

specified

amount

of

object-specific

attributes

are

moved

into

main

storage

asynchronous

with

the

instruction’s

execution.

The

common

associated

attributes

are

the

attributes

that

are

common

to

all

system

objects.

The

object-specific

attributes

are

attributes

that

vary

from

one

object

type

to

another.

The

amount

of

these

attributes

brought

into

main

storage

is

controlled

by

the

space

length

field.

Note:

This

use

of

space

length

is

not

consistent

with

the

name

of

the

field.

For

this

code,

the

space

length

field

does

not

control

the

size

of

any

associated

space

processing,

it

controls

the

length

of

object-specific

attributes

processed.

The

space

length

field

works

in

the

following

manner:

it

specifies

the

amount

of

storage

above

and

beyond

the

common

object

attributes

which

will

be

asynchronously

brought

into

storage.

Therefore,

a

space

length

of

0

is

valid,

and

results

in

an

operation

identical

to

access

code

21.

The

associated

pointer

to

object

must

be

a

resolved

system

pointer.

30

The

associated

space

of

the

object

is

moved

into

main

storage

(if

not

already

there)

synchronously

with

the

execution

of

the

instruction.

The

space

length

field

is

honored

for

this

operation.

The

associated

pointer

to

the

object

must

be

a

system

pointer.

31

The

associated

space

of

the

object

is

moved

into

main

storage

(if

not

already

there)

asynchronously

with

the

execution

of

the

instruction.

The

space

length

field

is

honored

for

this

operation.

The

associated

pointer

to

the

object

must

be

a

system

pointer.

40

Perform

no

operation

on

the

associated

object.

The

main

storage

occupied

by

this

object

is

to

be

used,

if

possible,

to

satisfy

the

request

in

the

next

access

state

specification

entry.

Either

a

space

or

system

pointer

may

be

provided

for

this

access

state

code.

This

operation

will

be

applied

to

all

internal

storage

areas

for

queue

objects.

41

Wait

for

any

previously

issued

but

incomplete

hex

81

or

hex

91

access

state

code

operations

to

complete.

This

includes

all

previous

hex

81

and

hex

91

operations

that

may

have

been

performed

on

previous

Set

Access

State

instructions

within

the

current

thread

as

well

as

those

that

may

have

been

issued

in

previous

access

state

specification

entries

in

the

current

instruction.

The

pointer

is

ignored

for

this

access

state

code

entry.

This

operation

will

be

applied

to

all

internal

storage

areas

for

queue

objects.

80

Object

should

be

written

and

it

is

not

needed

in

main

storage

by

issuing

thread.

Object

is

written

to

nonvolatile

storage

synchronously

with

the

execution

of

the

instruction.

Any

main

storage

that

the

object

occupied

is

then

marked

as

to

make

it

quickly

available

for

replacement.

This

operation

will

be

applied

to

all

internal

storage

areas

for

queue

objects.

81

Object

should

be

written

and

it

is

not

needed

in

main

storage

by

issuing

process.

Object

is

written

to

nonvolatile

storage

asynchronously

with

the

execution

of

the

instruction.

Any

main

storage

that

the

object

occupied

is

then

marked

as

to

make

it

quickly

available

for

replacement.

If

desired,

the

thread

can

synchronize

with

any

outstanding

hex

81

access

state

operation

by

issuing

a

hex

41

access

state

operation

either

within

the

current

instruction

or

during

a

subsequent

Set

Access

State

instruction.

This

operation

will

be

applied

to

all

internal

storage

areas

for

queue

objects.

90

Associated

object

must

be

insured,

but

is

still

needed

in

main

storage.

Object

is

written

to

nonvolatile

storage

synchronously

with

the

execution

of

the

instruction.

Unlike

access

state

codes

hex

80

and

hex

81,

this

access

state

code

does

not

mark

any

main

storage

occupied

by

the

object

as

to

make

it

quickly

available

for

replacement.

This

operation

will

be

applied

to

all

internal

storage

areas

for

queue

objects.

1098

iSeries:

Machine

Interface

Instructions

APIs

Access

State

Code

(Hex)

Function

and

Required

Parameter

91

Associated

object

must

be

insured,

but

is

still

needed

in

main

storage.

Object

is

written

to

nonvolatile

storage

asynchronously

with

the

execution

of

the

instruction.

Unlike

access

state

codes

hex

80

and

hex

81,

this

access

state

code

does

not

mark

any

main

storage

occupied

by

the

object

as

to

make

it

quickly

available

for

replacement.

If

desired,

the

thread

can

synchronize

with

any

outstanding

hex

91

access

state

operation

by

issuing

a

hex

41

access

state

operation

either

within

the

current

instruction

or

during

a

subsequent

Set

Access

State

instruction.

Access

state

codes

hex

03

and

hex

04

may

be

used

for

spaces

only.

The

pointer

to

the

object

in

the

access

state

specification

must

be

a

space

pointer.

Otherwise,

the

pointer

type

invalid

(hex

2402)

exception

is

signaled.

Access

state

code

hex

40

may

be

used

in

conjunction

with

access

state

codes

hex

01,

hex

02,

or

hex

03.

The

access

state

specification

entry

with

access

state

code

hex

40

must

immediately

precede

the

access

state

specification

entry

with

access

state

code

hex

01,

hex

02,

or

hex

03

with

which

it

is

to

be

combined.

The

pointer

to

the

object

in

both

entries

must

be

a

space

pointer.

Otherwise,

the

pointer

type

invalid

(hex

2402)

exception

is

signaled.

The

access

state

parameter

field

in

the

access

state

specification

entry

with

code

hex

40

is

ignored.

The

access

pool

ID

and

the

space

length

in

the

entry

with

access

state

code

hex

01,

hex

02,

or

hex

03

are

used.

The

access

pool

ID

field

indicates

the

desired

main

storage

pool

in

which

the

object

is

to

be

placed

(0-16).

The

storage

pool

ID

entry

is

treated

as

a

4-byte

logical

binary

value.

When

a

0

storage

pool

ID

is

specified,

the

storage

pool

associated

with

the

issuing

thread

is

used.

The

space

length

field

designates

the

part

of

the

space

associated

with

the

object

to

be

operated

on.

If

the

pointer

to

the

object

entry

is

a

system

pointer,

the

operation

begins

with

the

first

byte

of

the

space.

If

the

pointer

to

the

object

entry

is

a

space

pointer

that

specifies

a

location,

the

operation

proceeds

for

the

number

of

storage

units

that

are

designated.

No

exception

is

signaled

when

the

number

of

referenced

bytes

of

the

space

are

not

allocated.

When

operations

on

objects

are

designated

by

system

pointers,

this

operation

is

performed

in

addition

to

the

access

state

modification

of

the

object.

This

entry

is

ignored

for

access

state

codes

hex

20

and

hex

21.

This

entry

will

be

truncated

to

a

maximum

of

65,536

for

access

state

codes

immediately

following

access

state

code

40.

The

operational

object

size

field

is

a

value

which

is

ignored

upon

input

to

the

instruction

and

is

set

by

the

instruction

for

access

codes

10

and

18.

It

represents,

in

units

of

minimum

machine

transfer

size,

the

total

size

of

the

object

which

could/did

participate

in

the

operation.

The

parts

of

an

object

which

are

considered

″operational″

are

decided

by

the

machine

and

does

include

the

associated

space,

if

any.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

Machine

Interface

Instructions

1099

Exceptions

04

Access

State

0401

Access

State

Specification

Invalid

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2204

Object

Not

Eligible

for

Operation

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

1100

iSeries:

Machine

Interface

Instructions

APIs

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2404

Pointer

Not

Resolved

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Set

Activation

Group-Based

Heap

Space

Storage

Mark

(SETHSSMK)

Op

Code

(Hex)

Operand

1

Operand

2

03B6

Mark

identifier

Heap

identifier

Operand

1:

Space

pointer

data

object.

Operand

2:

Binary(4)

scalar.

Bound

program

access

Built-in

number

for

SETHSSMK

is

118.

SETHSSMK

(

mark_identifier

:

address

of

space

pointer(16)

heap_identifier

:

address

of

signed

binary(4)

)

Note:

The

term

″heap

space″

in

this

instruction

refers

to

an

″activation

group-based

heap

space″.

Description:

The

heap

space

identified

by

operand

2

is

marked

and

the

mark

identifier

is

returned

in

operand

1.

Marking

a

heap

space

allows

a

subsequent

Free

Activation

Group-Based

Heap

Space

Storage

from

Mark

(FREHSSMK)

instruction,

using

the

mark

identifier

returned

in

operand

1,

to

free

all

outstanding

Machine

Interface

Instructions

1101

allocations

that

were

performed

against

the

heap

space

since

the

heap

space

was

marked

with

that

mark

identifier.

This

relieves

the

user

of

performing

a

Free

Activation

Group-Based

Heap

Space

Storage

(FREHSS)

for

every

individual

heap

space

allocation.

A

heap

space

may

have

multiple

marks.

The

heap

identifier

specified

in

operand

2

is

the

identifier

that

was

returned

on

the

Create

Activation

Group-Based

Heap

Space

(CRTHS)

instruction.

An

attempt

to

mark

the

default

heap

space

(heap

identifier

value

of

0)

will

result

in

an

invalid

request

(hex

4502)

exception.

An

attempt

to

mark

a

heap

space

that

has

been

created

to

not

allow

a

Set

Heap

Space

Storage

Mark

will

result

in

an

invalid

request

(hex

4502)

exception.

Operand

2

is

not

modified

by

the

instruction.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C04

Object

Storage

Limit

Exceeded

1C09

Auxiliary

Storage

Pool

Number

Invalid

20

Machine

Support

1102

iSeries:

Machine

Interface

Instructions

APIs

2002

Machine

Check

2003

Function

Check

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

45

Heap

Space

4501

Invalid

Heap

Identifier

4502

Invalid

Request

4503

Heap

Space

Full

4505

Heap

Space

Destroyed

4506

Invalid

Heap

Space

Condition

Set

Argument

List

Length

(SETALLEN)

Op

Code

(Hex)

Operand

1

Operand

2

0242

Argument

list

Length

Operand

1:

Operand

list.

Operand

2:

Binary

scalar.

Description:

This

instruction

specifies

the

number

of

arguments

to

be

passed

on

a

succeeding

Call

External

or

Transfer

Control

instruction.

The

current

length

of

the

variable-length

operand

list

(used

as

an

argument

list)

specified

by

operand

1

is

modified

to

the

value

indicated

in

the

binary

scalar

specified

by

operand

2.

This

length

value

specifies

the

number

of

arguments

(starting

from

the

first)

to

be

passed

from

the

list

when

the

operand

list

is

referenced

on

a

Call

External

or

Transfer

Control

instruction.

Only

variable-length

operand

lists

with

the

argument

list

attribute

may

be

modified

by

the

instruction.

The

value

in

operand

2

may

range

from

0

(meaning

no

arguments

are

to

be

passed)

to

the

maximum

size

specified

in

the

ODT

definition

of

the

operand

list

(meaning

all

defined

arguments

are

to

be

passed).

The

length

of

the

argument

list

remains

in

effect

for

the

duration

of

the

current

invocation

or

until

a

Set

Argument

List

Length

instruction

is

issued

against

this

operand

list.

Machine

Interface

Instructions

1103

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0803

Argument

List

Length

Modification

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

1104

iSeries:

Machine

Interface

Instructions

APIs

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Set

Bit

in

String

(SETBTS)

Op

Code

(Hex)

Operand

1

Operand

2

101E

Receiver

Offset

Operand

1:

Character

variable

scalar

or

numeric

variable

scalar.

Operand

2:

Binary

scalar.

Bound

program

access

Built-in

number

for

SETBTS

is

3.

SETBTS

(

receiver

:

address

offset

:

unsigned

binary(4)

)

The

offset

operand

must

be

between

0

and

65,535.

Description:

Sets

the

bit

of

the

receiver

operand

as

indicated

by

the

bit

offset

operand.

The

selected

bit

from

the

receiver

operand

is

set

to

a

value

of

binary

1.

The

receiver

operand

can

be

a

character

or

numeric

variable.

The

leftmost

bytes

of

the

receiver

operand

are

used

in

the

operation.

The

receiver

operand

is

interpreted

as

a

bit

string

with

the

bits

numbered

left

to

right

from

0

to

the

total

number

of

bits

in

the

string

minus

1.

The

offset

operand

indicates

which

bit

of

the

receiver

operand

is

to

be

set,

with

an

offset

of

zero

indicating

the

leftmost

bit

of

the

leftmost

byte

of

the

receiver

operand.

This

value

may

be

specified

as

a

constant

or

any

valid

binary

scalar

variable.

If

a

offset

value

less

than

zero

or

beyond

the

length

of

the

receiver

is

specified

a

scalar

value

invalid

(hex

3203)

exception

is

signaled.

Machine

Interface

Instructions

1105

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

1106

iSeries:

Machine

Interface

Instructions

APIs

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Set

Computational

Attributes

(SETCA)

Bound

program

access

Built-in

number

for

SETCA

is

146.

SETCA

(

new_attributes

:

unsigned

binary(4)

value

which

contains

the

new

computational

attribute

values

selector

:

unsigned

binary(4)

literal

value;

its

rightmost

byte

specifies

the

computational

attributes

to

set

)

Description:

The

right-most

byte

of

selector

specifies

the

computational

attributes

to

modify.

The

format

of

this

byte

is

as

follows:

Bit

Definition

0-3

Reserved

(must

be

0)

4

Exception

mask

5

Reserved

(must

be

0)

6

Exception

occurrence

7

Rounding

mode

All

other

bytes

of

selector

are

reserved

(must

be

zero).

The

new

attributes

operand

contains

the

new

values

for

the

computational

attribute

bytes

selected

by

selector.

Refer

to

Retrieve

Computational

Attributes

(RETCA)

for

more

information

on

the

structure

of

new

attributes.

If

any

of

the

reserved

fields

are

not

binary

0,

a

scalar

value

invalid

(hex

3203)

exception

is

signaled.

Note:

Any

floating-point

operations

currently

on

the

value

stack

will

be

computed

prior

to

changing

the

computational

attributes.

Machine

Interface

Instructions

1107

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

32

Scalar

Specification

3203

Scalar

Value

Invalid

Set

Data

Pointer

(SETDP)

Op

Code

(Hex)

Operand

1

Operand

2

0096

Receiver

Source

Operand

1:

Data

pointer.

Operand

2:

Numeric

variable

scalar,

character

variable

scalar,

numeric

variable

array,

or

character

variable

array.

Bound

program

access

Built-in

number

for

SETDP

is

388.

SETDP

(

space_addressability

:

address

data_type_attributes

:

aggregate(7)

OR

See

SETDPAT

for

format

literal(7)

)

:

data

pointer

Description:

For

non-bound

programs:

A

data

pointer

is

created

and

returned

in

the

storage

area

specified

by

operand

1

and

has

the

attributes

and

space

addressability

of

the

object

specified

by

operand

2.

Addressability

is

set

to

the

low-order

(leftmost)

byte

of

the

object

specified

by

operand

2.

If

operand

2

is

a

substring

compound

operand,

the

length

attribute

is

set

equal

to

the

length

of

the

substring.

If

operand

2

is

a

subscript

compound

operand,

the

attributes

and

addressability

of

the

single

array

element

specified

are

assigned

to

the

data

pointer.

If

operand

2

is

an

array,

the

attributes

and

addressability

of

the

first

element

of

the

array

are

assigned

to

the

data

pointer.

A

data

pointer

can

only

be

set

to

describe

an

element

of

a

data

array,

not

a

data

array

in

its

entirety.

For

bound

(including

service)

programs:

A

data

pointer

is

created

and

returned

with

the

space

addressability

provided

by

the

first

operand

and

the

attributes

specified

by

the

second

operand.

The

attributes

given

to

the

data

pointer

include

scalar

type

and

scalar

length.

For

all

programs:

When

the

addressability

in

the

data

pointer

is

modified,

the

instruction

signals

the

space

addressing

violation

(hex

0601)

exception

when

one

of

the

following

conditions

occurs:

v

1108

iSeries:

Machine

Interface

Instructions

APIs

v

When

the

space

address

to

be

stored

in

the

pointer

would

have

a

negative

offset

value.

v

When

the

offset

would

address

an

area

beyond

the

largest

space

allocatable

in

the

object.

This

maximum

offset

value

is

dependent

on

the

size

and

packaging

of

the

object

containing

the

space

and

is

independent

of

the

actual

size

of

the

space

allocated.

If

the

exception

is

signaled

by

this

instruction

for

one

of

these

reasons,

the

pointer

is

not

modified

by

the

instruction.

Attempts

to

use

a

pointer

whose

offset

value

lies

between

the

currently

allocated

extent

of

the

space

and

the

maximum

allocatable

extent

cause

the

space

addressing

violation

(hex

0601)

exception

to

be

signaled.

A

data

pointer

cannot

be

set

to

address

teraspace.

Otherwise,

an

unsupported

space

use

(hex

0607)

exception

is

signaled.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0607

Unsupported

Space

Use

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

Machine

Interface

Instructions

1109

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Set

Data

Pointer

Addressability

(SETDPADR)

Op

Code

(Hex)

Operand

1

Operand

2

0046

Receiver

Source

Operand

1:

Data

pointer.

Operand

2:

Numeric

variable

scalar,

character

variable

scalar,

numeric

variable

array,

or

character

variable

array.

Bound

program

access

Built-in

number

for

SETDPADR

is

389.

SETDPADR

(

data_pointer

:

data

pointer

space_addressability

:

address

)

:

data

pointer

/*

receiver

*/

Description:

For

non-bound

programs:

The

space

addressability

of

the

object

specified

for

operand

2

is

assigned

to

the

data

pointer

specified

by

operand

1.

If

operand

1

contains

a

resolved

data

pointer,

the

data

pointer’s

scalar

attribute

component

is

not

changed

by

the

instruction.

If

operand

1

contains

an

initialized

but

unresolved

data

pointer,

the

data

pointer

is

resolved

in

order

to

establish

the

scalar

attribute

component

1110

iSeries:

Machine

Interface

Instructions

APIs

of

the

pointer.

If

operand

1

contains

other

than

a

resolved

data

pointer,

the

instruction

creates

and

returns

a

data

pointer

in

operand

1

with

the

addressability

of

the

object

specified

for

operand

2,

and

the

instruction

establishes

the

attributes

as

a

character(1)

scalar.

For

bound

(including

service)

programs:

The

space

addressability

specified

by

operand

2

is

combined

with

attribute

information

from

operand

1

and

returned

in

a

data

pointer.

If

operand

1

contains

a

resolved

data

pointer,

the

data

pointer’s

scalar

attribute

component

is

not

changed

by

the

instruction.

If

operand

1

contains

an

initialized

but

unresolved

data

pointer,

the

data

pointer

is

resolved

in

order

to

establish

the

scalar

attribute

component

of

the

pointer.

If

operand

1

contains

other

than

a

resolved

data

pointer,

the

instruction

creates

and

returns

a

data

pointer

with

the

addressability

specified

by

operand

2

and

the

attributes

of

a

character(1)

scalar.

For

all

programs:

When

the

addressability

is

set

into

a

data

pointer,

the

space

addressing

violation

(hex

0601)

exception

is

signaled

by

the

instruction

only

when

the

space

address

to

be

stored

in

the

pointer

has

a

negative

offset

value

or

if

the

offset

addresses

beyond

the

largest

space

allocatable

in

the

object.

This

maximum

offset

value

is

dependent

on

the

size

and

packaging

of

the

object

containing

the

space

and

is

independent

of

the

actual

size

of

the

space

allocated.

If

the

exception

is

signaled

for

this

reason,

the

pointer

is

not

modified

by

the

instruction.

Attempts

to

use

a

pointer

whose

offset

value

lies

between

the

currently

allocated

extent

of

the

space

and

the

maximum

allocatable

extent

of

the

space

cause

the

space

addressing

violation

(hex

0601)

exception

to

be

signaled.

A

data

pointer

cannot

be

set

to

address

teraspace.

Otherwise,

an

unsupported

space

use

(hex

0607)

exception

is

signaled.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0604

External

Data

Object

Not

Found

0607

Unsupported

Space

Use

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

Machine

Interface

Instructions

1111

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Set

Data

Pointer

Attributes

(SETDPAT)

Op

Code

(Hex)

Operand

1

Operand

2

004A

Receiver

Attributes

Operand

1:

Data

pointer.

Operand

2:

Character(7)

scalar.

Description:

The

value

of

the

character

scalar

specified

by

operand

2

is

interpreted

as

an

encoded

representation

of

an

attribute

set

that

is

assigned

to

the

attribute

portion

of

the

data

pointer

specified

by

1112

iSeries:

Machine

Interface

Instructions

APIs

operand

1.

The

addressability

portion

of

the

data

pointer

is

not

modified.

If

operand

1

contains

an

initialized

but

unresolved

data

pointer,

the

data

pointer

is

resolved

in

order

to

establish

the

addressability

in

the

pointer.

The

attributes

specified

by

the

instruction

are

then

assigned

to

the

data

pointer.

If

operand

1

does

not

contain

a

data

pointer

at

the

initiation

of

the

instruction’s

execution,

a

pointer

does

not

exist

(hex

2401)

exception

or

pointer

type

invalid

(hex

2402)

exception

is

signaled.

The

format

of

the

attribute

set

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Data

pointer

attributes

Char(7)

0

0

Scalar

type

Char(1)

Hex

00

=

Signed

binary

Hex

01

=

Floating-point

Hex

02

=

Zoned

decimal

Hex

03

=

Packed

decimal

Hex

04

=

Character

Hex

06

=

Onlyns

Hex

07

=

Onlys

Hex

08

=

Either

Hex

09

=

Open

Hex

0A

=

Unsigned

binary

1

1

Scalar

length

Bin(2)

If

binary:

1

1

Length

(only

2,

4

or

8

for

binary)

Bits

0-

If

floating-point:

1

1

Length

(only

4

or

8

for

floating-point)

Bits

0-

If

zoned

decimal

or

packed

decimal:

1

1

Fractional

digits

(F)

Bits

0-

1

1

Total

digits

(T)

Bits

8-

(where

1

<=

T

<=

63,

0

<=

F

<=

T)

If

character:

1

1

Length

(L,

where

1

<=

L

<=

32,767)

Bits

0-

If

Onlyns:

Machine

Interface

Instructions

1113

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

1

1

Length

(L,

where

1

<=

L

<=

16,383)

Bits

0-15

L

is

the

number

of

double-byte

characters

If

Onlys:

1

1

Length

(L,

where

2

<=

L

<=

32,766)

Bits

0-15

v

L

is

the

number

of

bytes

v

L

is

even

v

L

includes

any

SO

and

SI

characters

If

Either:

1

1

Length

(L,

where

1

<=

L

<=

32,766)

Bits

0-15

v

L

is

the

number

of

bytes

v

L

includes

any

SO

and

SI

characters

If

Open:

1

1

Length

(L,

where

1

<=

L

<=

32,766)

Bits

0-15

v

L

is

the

number

of

bytes

v

L

includes

any

SO

and

SI

characters

3

3

Reserved

(binary

0)

Bin(4)

7

7

—-

End

—-

Support

for

usage

of

a

data

pointer

describing

an

Onlyns,

Onlys,

Either,

or

Open

scalar

value

is

limited

to

the

Copy

Extended

Characters

Left

Adjusted

With

Pad

instruction

(CPYECLAP).

Usage

of

such

a

data

pointer

defined

value

on

any

other

instruction

is

not

supported

and

results

in

the

signaling

of

the

scalar

type

invalid

(hex

3201)

exception.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

1114

iSeries:

Machine

Interface

Instructions

APIs

0604

External

Data

Object

Not

Found

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

Machine

Interface

Instructions

1115

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Set

Instruction

Pointer

(SETIP)

Op

Code

(Hex)

Operand

1

Operand

2

1022

Receiver

Branch

target

Operand

1:

Instruction

pointer.

Operand

2:

Instruction

number,

relative

instruction

number,

or

branch

point.

Description:

The

value

of

the

branch

target

(operand

2)

is

used

to

set

the

value

of

the

instruction

pointer

specified

by

operand

1.

The

instruction

number

indicated

by

the

branch

target

must

provide

the

address

of

an

instruction

within

the

program

containing

the

Set

Instruction

Pointer

instruction.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1116

iSeries:

Machine

Interface

Instructions

APIs

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Set

Invocation

Exit

(SETIEXIT)

Op

Code

(Hex)

Operand

1

Operand

2

0252

Invocation

exit

program

Argument

list

Operand

1:

System

pointer.

Operand

2:

Operand

list

or

null.

Description:

This

instruction

allows

the

external

entry

point

of

the

program

specified

by

operand

1

to

be

given

control

when

the

requesting

invocation

is

destroyed

due

to

normal

exception

handling

actions,

or

due

to

any

thread

termination.

Normal

exception

handling

actions

are

considered

to

be

those

actions

performed

by

the

Return

From

Exception

(RTNEXCP)

or

the

Signal

Exception

(SIGEXCP)

instructions.

Machine

Interface

Instructions

1117

Operand

1

is

a

system

pointer

addressing

the

program

that

is

to

receive

control.

The

operand

1

system

pointer

must

be

in

either

the

static

or

automatic

storage

of

the

program

invoking

this

instruction.

Operand

2

specifies

an

operand

list

that

identifies

the

arguments

to

be

passed

to

the

invocation

exit

program

being

called.

If

operand

2

is

null,

no

arguments

are

passed

to

the

invocation.

No

operand

verification

takes

place

when

this

instruction

is

executed.

Nor

are

copies

made

of

the

operands,

so

changes

made

to

the

operand

values

after

execution

of

this

instruction

will

be

used

during

later

operand

verification.

Operand

verification

occurs

on

the

original

form

of

the

operands

when

the

invocation

exit

program

is

invoked.

At

that

time

execute

authorization

verification

to

the

invocation

exit

program

and

any

contexts

referenced

for

materialization

take

place.

Also,

materialization

lock

enforcement

occurs

to

contexts

referenced

for

materialization.

Operand

1

must

point

to

a

non-bound

program

or

a

bound

program.

Operand

1

should

not

point

to

a

bound

service

program

or

a

Java(TM)

program

or

else

an

error

will

occur

when

an

attempt

is

made

to

invoke

the

invocation

exit

program.

If

an

invocation

exit

program

currently

exists

for

the

requesting

invocation,

it

is

replaced,

and

no

exception

is

signaled.

The

invocation

exit

set

by

this

instruction

is

implicitly

cleared

when

the

invocation

exit

program

is

given

control,

or

the

program

which

set

the

invocation

exit

completes

execution.

If

any

invocations

are

to

be

destroyed

due

to

normal

exception

handling

actions,

then

those

invocation

exit

programs

associated

with

the

invocations

to

be

destroyed

are

given

control

before

execution

proceeds

to

the

signaled

exception

handler.

The

invocation

exit

program

that

is

being

destroyed

is

terminated,

and

its

associated

invocation

execution

is

terminated.

Termination

of

invocations

due

to

a

previous

Signal

Exception

instruction,

a

Return

From

Exception

instruction,

a

process

termination,

or

a

thread

termination,

is

then

resumed.

If

a

process

phase

is

terminated

and

the

process

was

not

in

termination

phase,

then

the

invocations

are

terminated.

Invocation

exit

programs

set

for

the

terminated

invocations

are

allowed

to

run.

If

an

invocation

to

be

terminated

is

an

invocation

exit

program,

then

the

following

occurs:

v

v

If

an

invocation

exit

has

been

set

for

this

invocation

exit,

it

is

allowed

to

run.

v

The

invocation

exit

is

terminated

and

the

associated

invocation

is

terminated

(the

invocation

exit

is

not

reinvoked).

Invocation

exit

programs

for

the

remaining

invocations

to

be

terminated

are

then

allowed

to

run.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

1118

iSeries:

Machine

Interface

Instructions

APIs

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2208

Object

Compressed

220B

Object

Not

Available

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Machine

Interface

Instructions

1119

Set

Invocation

Flags

(SETINVF)

Bound

program

access

Built-in

number

for

SETINVF

is

5.

SETINVF

(

set_mask

:

unsigned

binary(4)

value

which

specifies

the

invocation

flags

to

be

set

)

Description:

Operand

1

selects

which

invocation

flags

are

to

be

set.

Only

the

invocation

flags

that

are

″writeable″

can

be

set.

Any

″read-only″

flags

selected

by

the

stack

value

are

unchanged.

The

operation

is

performed

by

doing

a

bit-wise

Boolean

or

of

the

16

writeable

status

bits

with

the

low-order

two

bytes

of

the

set

mask

operand,

and

then

replacing

the

writeable

status

bits

with

the

result

of

this

or.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

v

v

None

Set

Object

Pointer

from

Pointer

(SETOBPFP)

Bound

program

access

Built-in

number

for

SETOBPFP

is

455.

SETOBPFP

(

receiver

:

address

of

object

pointer

source_pointer

:

address

of

system

pointer

)

Description:

The

instruction

returns

an

object

pointer

to

the

XOM

object

addressed

by

the

source

pointer.

Upon

return,

the

object

pointer

will

address

the

XOM

object.

The

source

pointer

must

address

a

XOM

object

or

a

pointer

addressing

invalid

object

type

(hex

2403)

exception

will

be

signalled.

The

source

pointer

must

be

a

resolved

system

pointer

or

a

pointer

not

resolved

(hex

2404)

exception

will

be

signalled.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

1120

iSeries:

Machine

Interface

Instructions

APIs

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0604

External

Data

Object

Not

Found

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2403

Pointer

Addressing

Invalid

Object

Type

2404

Pointer

Not

Resolved

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

Machine

Interface

Instructions

1121

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Set

Space

Pointer

(SETSPP)

Op

Code

(Hex)

Operand

1

Operand

2

0082

Receiver

Source

Operand

1:

Space

pointer.

Operand

2:

Numeric

variable

scalar,

character

variable

scalar,

numeric

variable

array,

character

variable

array,

or

pointer

data

object.

Description:

A

space

pointer

is

returned

in

operand

1

and

is

set

to

address

the

lowest

order

(leftmost)

byte

of

the

byte

string

identified

by

operand

2.

When

the

addressability

is

set

in

a

space

pointer,

the

instruction

signals

the

space

addressing

violation

(hex

0601)

exception

when

the

offset

addresses

beyond

the

largest

space

allocatable

in

the

object

or

when

the

space

address

to

be

stored

in

the

pointer

has

a

nonpositive

offset

value.

This

offset

value

is

dependent

on

the

size

and

packaging

of

the

object

containing

the

space

and

is

independent

of

the

actual

size

of

the

space

allocated.

If

the

exception

is

signaled

for

this

reason,

the

pointer

is

not

modified

by

the

instruction.

Attempts

to

use

a

pointer

whose

offset

value

lies

between

the

currently

allocated

extent

of

the

space

and

the

maximum

allocatable

extent

of

the

space

cause

the

space

addressing

violation

(hex

0601)

exception

to

be

signaled.

If

a

pointer

data

object

specified

for

operand

2

contains

a

data

pointer

value

upon

execution

of

the

instruction,

the

addressability

is

set

to

the

pointer

storage

form

rather

than

to

the

scalar

described

by

the

data

pointer

value.

The

variable

scalar

references

allowed

on

operand

2

cannot

be

described

through

a

data

pointer

value.

The

object

destroyed

(hex

2202)

exception,

the

parameter

reference

violation

(hex

0801)

exception,

and

the

pointer

does

not

exist

(hex

2401)

exception

are

not

signaled

when

operand

1

is

a

space

pointer

machine

object

and

operand

2

is

based

on

a

space

pointer

machine

object.

This

occurs

when

the

basing

space

pointer

machine

object

for

operand

2

contains

an

internal

machine

value

that

indicates

one

of

these

error

conditions

exists.

If

the

corresponding

exception

is

not

signaled,

operand

1

is

set

with

an

internal

machine

value

that

preserves

the

exception

condition

which

existed

for

operand

2.

The

appropriate

exception

condition

is

signaled

for

either

pointer

upon

a

subsequent

attempt

to

reference

the

space

data

the

pointer

addresses.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

1122

iSeries:

Machine

Interface

Instructions

APIs

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

Machine

Interface

Instructions

1123

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Set

Space

Pointer

from

Pointer

(SETSPPFP)

Op

Code

(Hex)

Operand

1

Operand

2

0022

Receiver

Source

pointer

Operand

1:

Space

pointer.

Operand

2:

Data

pointer,

system

pointer,

or

space

pointer.

Bound

program

access

Built-in

number

for

SETSPPFP

is

141.

SETSPPFP

(

source_pointer

:

system

pointer

OR

data

pointer

OR

space

pointer(16)

)

:

address

/*

receiver

*/

The

source

pointer

operand

corresponds

to

operand

2

on

the

SETSPPFP

operation.

The

return

value

corresponds

to

operand

1

after

the

function

completes.

Description:

A

space

pointer

is

returned

in

operand

1

with

the

addressability

to

a

space

from

the

pointer

specified

by

operand

2.

The

meaning

of

the

pointers

allowed

for

operand

2

is

as

follows:

Pointer

Meaning

Data

pointer

or

space

pointer

The

space

pointer

returned

in

operand

1

is

set

to

address

the

same

byte

addressed

by

the

operand

2

source

pointer.

System

pointer

The

space

pointer

returned

in

operand

1

is

set

to

address

the

first

byte

of

the

space

associated

with

the

system

object

addressed

by

the

system

pointer

for

operand

2.

The

space

addressed

is

either

the

created

system

space

or

an

associated

space

for

the

system

object

addressed

by

the

system

pointer.

If

the

operand

2

system

pointer

addresses

a

system

object

with

no

associated

space,

the

invalid

space

reference

(hex

0605)

exception

is

signaled.

The

object

destroyed

(hex

2202)

exception,

parameter

reference

violation

(hex

0801)

exception,

and

pointer

does

not

exist

(hex

2401)

exception

are

not

signaled

when

operand

1

and

operand

2

are

space

pointer

machine

objects.

This

occurs

when

operand

2

contains

an

internal

machine

value

that

indicates

one

of

these

error

conditions

exists.

If

the

corresponding

exception

is

not

signaled,

operand

1

is

set

with

an

internal

machine

value

that

preserves

the

exception

condition

that

existed

for

operand

2.

The

appropriate

exception

condition

will

be

signaled

for

either

pointer

when

a

subsequent

attempt

is

made

to

reference

the

space

data

that

the

pointer

addresses.

1124

iSeries:

Machine

Interface

Instructions

APIs

If

operand

2

is

a

system

pointer

to

a

XOM

object,

the

object

not

eligible

for

operation

(hex

2204)

exception

will

be

signalled.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Space

authority

–

–

Operand

2

(if

a

system

pointer)
v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0604

External

Data

Object

Not

Found

0605

Invalid

Space

Reference

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

16

Exception

Management

1604

Retry/Resume

Invalid

Machine

Interface

Instructions

1125

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2204

Object

Not

Eligible

for

Operation

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Set

Space

Pointer

Offset

(SETSPPO)

Op

Code

(Hex)

Operand

1

Operand

2

0092

Receiver

Source

1126

iSeries:

Machine

Interface

Instructions

APIs

Operand

1:

Space

pointer.

Operand

2:

Binary

scalar.

Description:

The

value

of

the

binary

scalar

specified

by

operand

2

is

assigned

to

the

offset

portion

of

the

space

pointer

identified

by

operand

1.

The

space

pointer

continues

to

address

the

same

space

object.

Operand

1

must

contain

a

space

pointer;

otherwise,

a

pointer

type

invalid

(hex

2402)

exception

is

signaled.

When

operand

1

points

into

teraspace,

the

pointer

offset

value

might

not

be

set

correctly

because

there

is

no

binary

field

large

enough

to

hold

a

full

teraspace

offset.

However,

an

exception

may

or

may

not

be

signaled.

Note

that

STSPPO

signals

an

exception

when

attempted

on

a

space

pointer

containing

a

teraspace

address,

so

there

can

be

no

expectation

that

a

stored

offset

can

later

be

used

to

set

a

teraspace

offset.

However,

an

alternative

to

SETSPPO

for

handling

some

teraspace

values

is

to

use

a

pointer

to

the

start

of

the

teraspace

allocation

and

then

add

in

an

offset

computed

using

the

SUBSPPFO

instruction.

Offsets

within

one

teraspace

allocation

can

be

used

to

set

a

space

pointer

in

this

way

when

the

specific

allocation

size

is

known

to

be

smaller

than

the

maximum

value

of

a

binary

variable.

See

STSPPO

for

more

information.

When

the

addressability

in

the

space

pointer

is

modified,

the

instruction

signals

a

space

addressing

violation

(hex

0601)

exception

when

one

of

the

following

conditions

occurs:

v

v

The

space

address

to

be

stored

in

the

pointer

has

a

negative

offset

value.

v

The

offset

addresses

beyond

the

largest

space

allocatable

in

the

object.

This

maximum

offset

value

is

dependent

on

the

size

and

packaging

of

the

object

containing

the

space

and

is

independent

of

the

actual

size

of

the

space

allocated.

If

the

exception

is

signaled

by

this

instruction

for

this

reason,

the

pointer

is

not

modified

by

the

instruction.

Attempts

to

use

a

pointer

whose

offset

value

lies:

between

the

currently

allocated

extent

of

the

space

and

the

maximum

allocatable

extent,

or

whose

offset

is

outside

all

teraspace

allocations,

cause

the

space

addressing

violation

(hex

0601)

exception

to

be

signaled.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

Machine

Interface

Instructions

1127

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

1128

iSeries:

Machine

Interface

Instructions

APIs

Set

Space

Pointer

with

Displacement

(SETSPPD)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

0093

Receiver

Source

Displacement

Operand

1:

Space

pointer.

Operand

2:

Numeric

variable

scalar,

character

variable

scalar,

numeric

variable

array,

character

variable

array,

or

pointer

data

object.

Operand

3:

Binary

scalar.

Description:

A

space

pointer

is

returned

in

operand

1

and

is

set

to

the

space

addressability

of

the

lowest

(leftmost)

byte

of

the

object

specified

for

operand

2

as

modified

algebraically

by

an

integer

displacement

specified

by

operand

3.

Operand

3

can

have

a

positive

or

negative

value.

I.e.

Operand

1

=

Address_of(Operand

2)

+

Operand

3

When

the

addressability

is

set

in

a

space

pointer,

the

instruction

signals

the

space

addressing

violation

(hex

0601)

exception

when

the

space

address

to

be

stored

in

the

pointer

has

a

negative

offset

value

or

when

the

offset

addresses

beyond

the

largest

space

allocatable

in

the

object.

This

maximum

offset

value

is

dependent

on

the

size

and

packaging

of

the

object

containing

the

space

and

is

independent

of

the

actual

size

of

the

space

allocated.

If

the

exception

is

signaled

for

this

reason,

the

pointer

is

not

modified

by

the

instruction.

Attempts

to

use

a

pointer

whose

offset

value

lies:

between

the

currently

allocated

extent

of

the

space

and

the

maximum

allocatable

extent

of

the

space,

or

whose

offset

is

outside

all

teraspace

allocations,

cause

the

space

addressing

violation

(hex

0601)

exception

to

be

signaled.

If

a

pointer

data

object

specified

for

operand

2

contains

a

data

pointer

value

upon

execution

of

the

instruction,

the

addressability

is

set

to

the

pointer

storage

form

rather

than

to

the

scalar

described

by

the

data

pointer

value.

The

variable

scalar

references

allowed

on

operand

2

cannot

be

described

through

a

data

pointer

value.

The

object

destroyed

(hex

2202)

exception,

the

parameter

reference

violation

(hex

0801)

exception,

and

the

pointer

does

not

exist

(hex

2401)

exception

are

not

signaled

when

operand

1

is

a

space

pointer

machine

object

and

operand

2

is

based

on

a

space

pointer

machine

object.

This

occurs

when

the

basing

space

pointer

machine

object

for

operand

2

contains

an

internal

machine

value

that

indicates

one

of

these

error

conditions

exists.

If

the

corresponding

exception

is

not

signaled,

operand

1

is

set

with

an

internal

machine

value

that

preserves

the

exception

condition

which

existed

for

operand

2.

The

appropriate

exception

condition

is

signaled

for

either

pointer

upon

a

subsequent

attempt

to

reference

the

space

data

the

pointer

addresses.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Machine

Interface

Instructions

1129

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

1130

iSeries:

Machine

Interface

Instructions

APIs

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Set

System

Pointer

from

Pointer

(SETSPFP)

Op

Code

(Hex)

Operand

1

Operand

2

0032

Receiver

Source

pointer

Operand

1:

System

pointer.

Operand

2:

System

pointer,

space

pointer,

data

pointer,

instruction

pointer,

label

pointer

or

object

pointer.

Bound

program

access

Built-in

number

for

SETSPFP

is

142.

SETSPFP

(

source_pointer

:

system

pointer

OR

data

pointer

OR

space

pointer(16)

OR

label

pointer

OR

object

pointer

)

:

system

pointer

/*

receiver

*/

The

source

pointer

operand

corresponds

to

operand

2

on

the

SETSPFP

operation.

The

return

value

corresponds

to

operand

1

after

the

function

completes.

Description:

This

instruction

returns

a

system

pointer

to

the

system

object

addressed

by

the

supplied

pointer.

If

operand

2

is

a

system

pointer,

then

a

system

pointer

addressing

the

same

object

is

returned

in

operand

1

containing

the

same

authority

as

the

input

pointer.

If

operand

2

is

a

space

pointer

or

a

data

pointer,

then

a

system

pointer

addressing

the

system

object

associated

with

the

space

addressed

by

operand

2

is

returned

in

operand

1.

The

system

object

associated

with

machine

supplied

spaces

used

for

automatic,

static,

activation

group-based

heap

space

and

handle-based

heap

space

storage

is

the

process

control

space

(PCS)

object

with

which

they

are

affiliated.

The

system

object

associated

with

a

teraspace

is

the

PCS

object

used

by

the

process

which

contains

the

currently

executing

thread.

If

operand

2

is

an

instruction

pointer

or

label

pointer,

then

a

system

pointer

addressing

the

program

system

object

that

contains

the

instruction

or

label

addressed

by

operand

2

is

returned

in

operand

1.

If

operand

2

is

an

unresolved

system

pointer

or

data

pointer,

the

pointer

is

resolved

first.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Contexts

referenced

for

address

resolution

Machine

Interface

Instructions

1131

Lock

Enforcement

v

v

Materialization

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0604

External

Data

Object

Not

Found

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1002

Machine

Context

Damage

State

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

1132

iSeries:

Machine

Interface

Instructions

APIs

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Signal

Exception

(SIGEXCP)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3-4

SIGEXCP

10CA

Attribute

template

Exception

data

SIGEXCPB

1CCA

Branch

options

Attribute

template

Exception

data

Branch

targets

SIGEXCPI

18CA

Indicator

options

Attribute

template

Exception

data

Indicator

targets

Operand

1:

Space

pointer.

Operand

2:

Space

pointer.

Operand

3-4:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

This

instruction

signals

a

new

exception

or

resignals

an

existing

exception

to

the

thread.

Optionally,

the

instruction

branches

to

one

of

the

specified

targets

based

on

the

results

of

the

signal

and

Machine

Interface

Instructions

1133

the

selected

branch

options

in

the

extender

field,

or

it

sets

indicators

based

on

the

results

of

the

signal.

The

signal

is

presented

starting

at

the

invocation

identified

in

the

signal

template.

The

template

identified

by

operand

1

specifies

the

signal

option

and

starting

point.

It

must

be

16-byte

aligned

in

the

space

with

the

following

format.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Target

invocation

address

Space

pointer

or

Invocation

pointer

16

10

Signal

option

Char(1)

16

10

Signal/resignal

option

Bit

0

0

=

Signal

new

exception.

1

=

Resignal

currently

handled

exception

(valid

only

for

an

external

exception

handler).

16

10

Invoke

PDEH

(process

default

exception

handler)

option

Bit

1

0

=

Invoke

PDEH

if

no

exception

description

found

for

invocation.

1

=

Do

not

invoke

PDEH

if

no

exception

description

found

for

invocation

(ignore

if

base

invocation

entry

specified).

16

10

Exception

description

search

control

Bit

2

0

=

Exception

description

search

control

not

present

1

=

Exception

description

present

16

10

Reserved

(binary

0)

Bits

3-7

17

11

Reserved

(binary

0)

Char(1)

18

12

First

exception

description

to

search

Bin(2)

20

14

—-

End

—-

The

target

invocation

address

pointer

uniquely

identifies

the

invocation

to

which

the

exception

is

to

be

signalled.

Signalling

directly

to

the

PDEH

can

not

be

accomplished

via

this

instruction.

If

the

target

invocation

address

pointer

locates

neither

a

valid

invocation

entry

nor

the

base

invocation

entry,

the

invalid

invocation

address

(hex

1603)

exception

is

signaled.

The

invocation

which

issued

this

instruction

will

be

checked

to

ensure

it

has

the

proper

authority

to

send

an

exception

message

to

the

target

invocation.

If

the

authority

check

fails,

activation

group

access

violation

(hex

2C12)

exception

will

be

signaled.

If

the

program

associated

with

the

invocation

has

defined

an

exception

description

to

handle

the

exception,

the

specified

action

is

taken;

otherwise,

the

PDEH

is

invoked

unless

the

invoke

PDEH

option

bit

is

1

(the

exception

is

considered

ignored).

If

the

base

invocation

entry

is

addressed

instead

of

an

existing

invocation,

the

PDEH

will

be

invoked.

A

change

has

been

made

to

the

way

in

which

exception

handlers

are

determined

for

bound

programs.

The

following

description

relates

only

to

the

invocation

of

exception

handlers

related

to

non-bound

programs.

In

both

instances

the

actions

of

signalling

and

handling

have

been

broken

apart.

1134

iSeries:

Machine

Interface

Instructions

APIs

Note:

Exception

descriptions

of

an

invocation

are

searched

in

ascending

ODT

number

sequence.

If

the

exception

description

search

control

specified

exception

description

search

control

not

present,

the

search

begins

with

the

first

exception

description

defined

in

the

ODT.

Otherwise,

the

first

exception

description

to

search

value

identifies

the

relative

number

of

the

exception

description

to

be

used

to

start

the

search.

The

value

must

be

a

nonzero

positive

binary

number

determined

by

the

order

of

definition

of

exception

descriptions

in

the

ODT.

This

value

is

also

returned

by

the

Sense

Exception

Description

(SNSEXCPD)

instruction.

A

value

of

1

indicates

that

the

first

exception

description

in

the

invocation

is

to

be

used

to

begin

the

search.

If

the

value

is

greater

than

the

number

of

exception

descriptions

for

the

invocation,

the

template

value

invalid

(hex

3801)

exception

is

signaled.

If

an

exception

ID

in

an

exception

description

corresponds

to

the

signaled

exception,

the

corresponding

compare

values

are

verified.

If

the

compare

value

length

in

the

exception

description

is

less

than

the

compare

value

length

in

the

signal

template,

the

length

of

the

compare

value

in

the

exception

description

is

used

for

the

match.

If

the

compare

value

length

in

the

exception

description

is

greater

than

the

compare

value

length

in

the

signal

template,

an

automatic

mismatch

results.

Machine-signaled

exceptions

have

a

4-byte

compare

value

of

binary

0’s.

An

exception

description

may

monitor

for

an

exception

with

a

generic

ID

as

follows:

Hex

0000

=

Any

signaled

exception

ID

results

in

a

match.

Hex

nn00

=

Any

signaled

exception

ID

in

class

nn

results

in

a

match.

Hex

nnmm

=

The

signaled

exception

ID

must

be

exactly

nnmm

in

order

for

a

match

to

occur.

An

exception

description

may

be

in

one

of

five

states,

each

of

which

determines

an

action

to

be

taken

when

the

match

criteria

on

the

exception

ID

and

compare

value

are

met.

IGNORE

No

exception

handling

occurs.

The

Signal

Exception

instruction

is

assigned

a

resultant

condition

of

ignored.

If

a

corresponding

branch

or

indicator

setting

is

present,

that

action

takes

place.

DISABLE

The

exception

description

is

bypassed,

and

the

search

for

a

monitor

continues

with

the

next

exception

description

defined

for

the

invocation.

RESIGNAL

The

search

for

a

monitoring

exception

description

is

to

be

reinitiated

at

the

preceding

invocation.

A

resignal

from

the

initial

invocation

in

the

thread

results

in

the

Machine

Interface

Instructions

1135

When

this

instruction

is

invoked

with

the

resignal

option,

all

invocations

up

to,

but

not

including,

the

interrupted

invocation

are

cancelled

and

the

message

is

signalled

to

the

next

oldest

invocation

in

the

stack.

This

implies

that

the

Return

from

Exception

(RTNEXCP)

instruction

can

no

longer

return

to

the

invocation

that

issued

the

resignal

request.

Any

cancel

handlers

set

for

the

cancelled

invocations

will

be

given

control

before

execution

proceeds

in

the

signaled

exception

handler.

If

a

failure

to

invoke

an

external

exception

handler

or

an

invocation

exit

occurs,

a

failure

to

invoke

program

event

is

signaled.

For

each

destroyed

invocation,

the

invocation

count

in

the

corresponding

activation

entry

(if

any)

is

decremented

by

1.

The

template

identified

by

operand

2

must

be

16-byte

aligned

in

the

space.

It

specifies

the

exception-related

data

to

be

passed

with

the

exception

signal.

The

format

of

the

exception

data

is

the

same

as

that

returned

by

the

Retrieve

Exception

Data

(RETEXCPD)

instruction.

The

format

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Template

size

Char(8)

0

0

Number

of

bytes

of

data

to

be

signaled

Bin(4)

(must

be

at

least

48

bytes)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

+

8

8

Exception

identification

Char(2)

10

A

Compare

value

length

(maximum

of

32

bytes)

Bin(2)

12

C

Compare

value

Char(32)

44

2C

Reserved

Char(4)

+

48

30

Exception

specific

data

Char(*)

*

*

—-

End

—-

Note:

Fields

shown

here

with

a

plus

sign

(+)

are

ignored

by

the

instruction.

Operand

2

is

ignored

if

signal/resignal

option

is

resignal

because

the

exception-related

data

is

the

same

as

for

the

exception

currently

being

processed;

however,

it

must

be

specified

when

signaling

a

new

exception.

The

maximum

size

for

exception

specific

data

that

is

to

accompany

an

exception

signaled

by

the

Signal

Exception

instruction

is

65,503

bytes,

including

the

standard

exception

data.

The

following

parameters

will

be

given

the

following

default

values:

Message

status

-

log

message

+

retain

+

action

pending

Initial

monitor

priority

-

64

Interrupt

class

mask

-

Message

generated

by

Signal

Exception

instruction

Source

invocation

-

invocation

issuing

SIGEXCP

instruction

Resultant

Conditions:

v

1136

iSeries:

Machine

Interface

Instructions

APIs

v

Exception

ignored.

v

Exception

deferred.

Warning:

Temporary

Level

3

Header

Authorization

Required

The

invocation

which

originated

the

exception

must

have

proper

activation

group

access

to

the

target

invocation.

The

following

algorithm

is

used

to

determine

this

access.

1.

The

invocation

which

invoked

the

SIGEXCP

instruction

must

have

access

to

the

invocation

identified

as

the

Originating

Invocation.

2.

The

Originating

Invocation

must

have

access

to

the

invocation

identified

as

the

Source

Invocation

or

to

the

invocation

directly

called

by

the

Source

invocation.

3.

The

Originating

Invocation

must

have

access

to

the

invocation

identified

as

the

Target

Invocation

or

to

the

invocation

directly

called

by

the

Target

Invocation.

If

any

of

the

access

checks

fail

then

an

activation

group

access

violation

(hex

2C12)

exception

will

be

signaled.

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

16

Exception

Management

1602

Exception

State

of

Thread

Invalid

1603

Invalid

Invocation

Address

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

Machine

Interface

Instructions

1137

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C12

Activation

Group

Access

Violation

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

3802

Template

Size

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Sine

(SIN)

Bound

program

access

Built-in

number

for

SIN

is

398.

SIN

(

source

:

floating

point(8)

value

)

:

floating

point(8)

value

which

is

the

sine

of

the

source

value

Description:

The

sine

of

the

numeric

value

of

the

source

operand,

whose

value

is

considered

to

be

in

radians,

is

computed

and

the

result

is

returned.

1138

iSeries:

Machine

Interface

Instructions

APIs

The

result

is

in

the

range:

-1

<=

SIN(source)

<=

1

See

floating

point

results

from

special

values

for

additional

information.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0C

Computation

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

0C0D

Floating-Point

Inexact

Result

0C0E

Floating-Point

Zero

Divide

Sine

Hyperbolic

(SINH)

Bound

program

access

Built-in

number

for

SINH

is

407.

SINH

(

source

:

floating

point(8)

value

)

:

floating

point(8)

value

which

is

the

sine

hyperbolic

of

the

source

value

Description:

The

sine

hyperbolic

of

the

numeric

value

of

the

source

operand

is

computed

and

the

result

(in

radians)

is

returned.

The

result

is

in

the

range:

-infinity

<=

SINH(source)

<=

+infinity

See

floating

point

results

from

special

values

for

additional

information.

Machine

Interface

Instructions

1139

NCBCON.htm
NCBCON.htm

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0C

Computation

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

0C0D

Floating-Point

Inexact

Result

0C0E

Floating-Point

Zero

Divide

Store

and

Set

Computational

Attributes

(SSCA)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

107B

Receiver

Source

Controls

Operand

1:

Character(5)

variable

scalar.

Operand

2:

Character(5)

scalar

or

null.

Operand

3:

Character(5)

scalar

or

null.

Description:

This

instruction

stores

and

optionally

sets

the

attributes

for

controlling

computational

operations

for

the

thread

this

instruction

is

executed

in.

The

receiver

is

assigned

the

values

that

each

of

the

computational

attributes

had

at

the

start

of

execution

of

the

instruction.

It

has

the

same

format

and

bit

assignment

as

the

source.

The

source

specifies

new

values

for

the

computational

attributes

for

the

thread.

The

particular

computational

attributes

that

are

selected

for

modification

are

determined

by

the

controls

operand.

The

source

operand

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Floating-point

exception

masks

Char(2)

0

=

Disabled

(exception

is

masked)

1

=

Enabled

(exception

is

unmasked)

1140

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Reserved

(binary

0)

Bits

0-9

0

0

Floating-point

overflow

Bit

10

0

0

Floating-point

underflow

Bit

11

0

0

Floating-point

zero

divide

Bit

12

0

0

Floating-point

inexact

result

Bit

13

0

0

Floating-point

invalid

operand

Bit

14

0

0

Reserved

(binary

0)

Bit

15

2

2

Floating-point

exception

occurrence

flags

Char(2)

0

=

Exception

has

not

occurred

1

=

Exception

has

occurred

2

2

Reserved

(binary

0)

Bits

0-9

2

2

Floating-point

overflow

Bit

10

2

2

Floating-point

underflow

Bit

11

2

2

Floating-point

zero

divide

Bit

12

2

2

Floating-point

inexact

result

Bit

13

2

2

Floating-point

invalid

operand

Bit

14

2

2

Reserved

(binary

0)

Bit

15

4

4

Modes

Char(1)

4

4

Reserved

Bit

0

4

4

Floating-point

rounding

mode

Bits

1-2

00=

Round

toward

positive

infinity

01=

Round

toward

negative

infinity

10=

Round

toward

zero

11=

Round

to

nearest

(default)

4

4

Reserved

Bits

3-7

5

5

—-

End

—-

If

any

of

the

reserved

fields

are

not

binary

0,

a

scalar

value

invalid

(hex

3203)

exception

is

signaled.

The

controls

operand

is

used

to

select

those

attributes

that

are

to

be

set

from

the

bit

values

of

the

source

operand.

The

format

of

the

controls

is

the

same

as

that

for

the

source.

A

value

of

one

for

a

bit

in

controls

indicates

that

the

corresponding

computational

attribute

for

the

thread

is

to

be

set

from

the

value

of

that

bit

of

the

source.

A

value

of

zero

for

a

bit

in

controls

indicates

that

the

corresponding

computational

attribute

for

the

thread

is

not

to

be

changed,

and

will

retain

the

value

it

had

prior

to

this

instruction.

For

an

attribute

controlled

by

a

multiple-bit

field,

such

as

the

rounding

modes,

all

of

the

bits

in

the

field

must

be

ones

or

all

must

be

zeros.

A

mixture

of

ones

and

zeros

in

such

a

field

results

in

a

scalar

value

invalid

(hex

3203)

exception.

If

the

source

and

controls

operands

are

both

null,

the

instruction

will

just

return

the

current

computational

attributes.

If

the

source

is

specified,

the

computational

attributes

of

the

thread

are

modified

under

control

of

the

controls

operand.

If

the

source

operand

is

specified

and

the

controls

operand

is

null,

the

instruction

will

change

all

of

the

computational

attributes

to

the

values

specified

in

the

source.

With

the

floating-point

exception

masks

field,

it

is

possible

to

unmask/mask

the

exception

processing

and

handling

for

each

of

the

five

floating-point

exceptions

that

are

maskable.

If

an

exception

that

is

unmasked

occurs,

then

the

corresponding

floating

point

exception

occurrence

bit

is

set,

and

the

exception

is

signaled.

If

an

exception

that

is

masked

occurs,

the

exception

is

not

signaled,

but

the

floating

point

exception

occurrence

flag

is

still

set

to

indicate

the

occurrence

of

the

exception.

Machine

Interface

Instructions

1141

The

floating-point

exception

occurrence

flag

for

each

exception

may

be

set

or

cleared

by

this

instruction

from

the

source

operand

under

control

of

the

controls

operand.

Unless

specified

otherwise

by

a

particular

instruction,

or

precluded

due

to

implicit

conversions,

all

floating-point

operations

are

performed

as

if

correct

to

infinite

precision,

and

then

rounded

to

fit

in

a

destinations

format

while

potentially

signaling

an

exception

that

the

result

is

inexact.

To

allow

control

of

the

floating-point

rounding

operations

performed

within

a

thread,

four

floating-point

rounding

modes

are

supported.

Assume

y

is

the

infinitely

precise

number

that

is

to

be

rounded,

bracketed

most

closely

by

x

and

z,

where

x

is

the

largest

representable

value

less

than

y

and

z

is

the

smallest

representable

value

greater

than

y.

Note

that

x

or

z

may

be

infinity.

The

following

diagram

shows

this

relationship

of

x,

y,

and

z

on

a

scale

of

numerically

progressing

values

where

the

vertical

bars

denote

values

representable

in

a

floating-point

format.

Given

the

above,

if

y

is

not

exactly

representable

in

the

receiving

field

format,

the

rounding

modes

change

y

as

follows:

Round

to

nearest

with

round

to

even

in

case

of

a

tie

is

the

default

rounding

mode

in

effect

upon

the

initiation

of

a

thread.

For

this

rounding

mode,

y

is

rounded

to

the

closer

of

x

or

z.

If

they

are

equally

close,

the

even

one

(the

one

whose

least

significant

bit

is

a

zero)

is

chosen.

For

the

purposes

of

this

mode

of

rounding,

infinity

is

treated

as

if

it

was

even.

Except

for

the

case

of

y

being

rounded

to

a

value

of

infinity,

the

rounded

result

will

differ

from

the

infinitely

precise

result

by

at

most

half

of

the

least

significant

digit

position

of

the

chosen

value.

This

rounding

mode

differs

slightly

from

the

decimal

round

algorithm

performed

for

the

optional

round

form

of

an

instruction.

This

rounding

mode

would

round

a

value

of

0.5

to

0,

where

the

decimal

round

algorithm

would

round

that

value

to

1.

Round

toward

positive

infinity

indicates

directed

rounding

upward

is

to

occur.

For

this

mode,

y

is

rounded

to

z.

Round

toward

negative

infinity

indicates

directed

rounding

downward

is

to

occur.

For

this

mode,

y

is

rounded

to

x.

Round

toward

zero

indicates

truncation

is

to

occur.

For

this

mode,

y

is

rounded

to

the

smaller

(in

magnitude)

of

x

or

z.

Arithmetic

operations

upon

infinity

are

exact.

Negative

infinity

is

less

than

every

finite

value,

which

is

less

than

positive

infinity.

The

computational

attributes

are

set

with

a

default

value

upon

thread

initiation.

The

default

attributes

are

as

follows:

v

v

The

floating-point

inexact

result

exception

is

masked.

The

other

floating-point

exceptions

are

unmasked.

v

All

floating

point

occurrence

bits

have

a

zero

value.

v

Round

to

the

nearest

rounding

mode.

1142

iSeries:

Machine

Interface

Instructions

APIs

These

attributes

can

be

modified

by

a

program

executing

this

instruction.

The

new

attributes

are

then

in

effect

for

the

program

executing

this

instruction

and

for

programs

invoked

subsequent

to

it

unless

changed

through

another

execution

of

this

instruction.

External

exception

handlers

and

invocation

exit

routines

are

invoked

with

the

same

attributes

as

were

last

in

effect

for

the

program

invocation

they

are

related

to.

Event

handlers

do

not

really

relate

to

another

invocation

in

the

thread.

As

such,

they

are

invoked

with

the

attributes

that

were

in

effect

at

the

point

the

thread

was

interrupted

to

handle

the

event.

Upon

return

to

the

invocation

of

a

program

from

subsequent

program

invocations,

the

computational

attributes,

other

than

floating

point

exception

occurrence

attributes,

are

restored

to

those

that

were

in

effect

when

the

program

gave

up

control.

The

floating

point

exception

occurrence

attributes

are

left

intact

reflecting

the

occurrence

of

any

floating-point

exceptions

during

the

execution

of

subsequent

invocations.

Internal

exception

handlers

execute

under

the

invocation

of

the

program

containing

them.

As

such,

the

above

discussion

of

how

computational

attributes

are

restored

upon

returning

from

an

external

exception

handler

does

not

apply.

The

execution

of

an

internal

exception

handler

occurs

in

a

manner

similar

to

the

execution

of

an

internal

subroutine

invoked

through

the

Call

Internal

(CALLI)

instruction.

If

the

internal

exception

handler

modifies

the

attributes,

the

modification

remains

in

effect

for

that

invocation

when

the

exception

handler

completes

the

exception.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

Machine

Interface

Instructions

1143

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Store

Parameter

List

Length

(STPLLEN)

Op

Code

(Hex)

Operand

1

0241

Length

Operand

1:

Binary

variable

scalar.

Description:

A

value

is

returned

in

operand

1

that

represents

the

number

of

parameters

associated

with

the

invocation’s

external

entry

point

for

which

arguments

have

been

passed

on

the

preceding

Call

External

(CALLX)

or

Transfer

Control

(XCTL)

instruction.

The

value

can

range

from

0

(no

parameters

were

received)

to

the

maximum

size

possible

for

the

parameter

list

associated

with

the

external

entry

point.

1144

iSeries:

Machine

Interface

Instructions

APIs

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

Machine

Interface

Instructions

1145

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3202

Scalar

Attributes

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Store

Space

Pointer

Offset

(STSPPO)

Op

Code

(Hex)

Operand

1

Operand

2

00A2

Receiver

Source

Operand

1:

Binary

variable

scalar.

Operand

2:

Space

pointer.

Description:

The

offset

value

of

the

space

pointer

referenced

by

operand

2

is

stored

in

the

binary

variable

scalar

defined

by

operand

1.

If

operand

2

does

not

contain

a

space

pointer,

a

pointer

does

not

exist

(hex

2401)

exception

is

signaled.

If

operand

2

points

to

teraspace,

an

unsupported

space

use

(hex

0607)

exception

is

signaled.

This

is

necessary

because

no

binary

variable

is

large

enough

to

contain

an

arbitrary

teraspace

offset.

However,

to

retrieve

a

teraspace

offset

value

within

some

specific

allocation

that

is

known

to

be

smaller

than

the

maximum

value

of

a

binary

result

variable,

the

SUBSPPFO

instruction

can

be

used.

A

pointer

to

the

start

of

the

teraspace

allocation

can

be

subtracted

from

a

pointer

to

the

current

location

within

the

allocation

that

is

being

referenced,

for

example.

If

binary

size

(hex

0C0A)

exceptions

are

to

be

signaled

either

because

the

program

creation

attribute

indicated

to

do

so

or

because

a

translator

directive

indicated

to

do

so,

they

will

be

signalled

under

the

following

conditions:

v

v

The

offset

value

is

greater

than

32,767

and

operand

1

is

a

signed

binary

(2)

scalar.

v

The

offset

value

is

greater

than

65,535

and

operand

1

is

an

unsigned

binary

(2)

scalar.

1146

iSeries:

Machine

Interface

Instructions

APIs

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0607

Unsupported

Space

Use

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C0A

Size

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

Machine

Interface

Instructions

1147

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Subtract

Logical

Character

(SUBLC)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-6]

SUBLC

1027

Difference

Minuend

Subtrahend

SUBLCI

1827

Indicator

options

Difference

Minuend

Subtrahend

Indicator

targets

SUBLCB

1C27

Branch

options

Difference

Minuend

Subtrahend

Branch

targets

Operand

1:

Character

variable

scalar.

Operand

2:

Character

scalar.

Operand

3:

Character

scalar.

Operand

4-6:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Warning:

Temporary

Level

3

Header

Short

forms

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

[3-5]

SUBLCS

1127

Difference/Minuend

Subtrahend

SUBLCIS

1927

Indicator

options

Difference/Minuend

Subtrahend

Indicator

targets

SUBLCBS

1D27

Branch

options

Difference/Minuend

Subtrahend

Branch

targets

1148

iSeries:

Machine

Interface

Instructions

APIs

Operand

1:

Character

variable

scalar.

Operand

2:

Character

scalar.

Operand

3-5:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

The

unsigned

binary

value

of

the

subtrahend

operand

is

subtracted

from

the

unsigned

binary

value

of

the

minuend

operand,

and

the

result

is

placed

in

the

difference

operand.

If

the

short

form

is

not

used

and

if

neither

source

operand

is

an

immediate

value,

then

operands

2

and

3

must

be

the

same

length.

The

length

can

be

a

maximum

of

256

bytes.

In

the

case

that

the

short

form

is

not

used

and

operand

2

or

3

is

an

immediate

operand,

it

is

treated

as

a

character

value

and

extended

on

the

right

with

hex

00

bytes

to

match

the

length

of

the

other

operand.

The

subtraction

operation

is

performed

as

though

the

ones

complement

of

the

second

operand

and

a

low-order

1-bit

were

added

to

the

first

operand.

The

result

value

is

then

placed

(left-adjusted)

into

the

receiver

operand

with

truncating

or

padding

taking

place

on

the

right.

The

pad

value

used

in

this

instruction

is

a

byte

value

of

hex

00.

If

operands

overlap

but

do

not

share

all

of

the

same

bytes,

results

of

operations

performed

on

these

operands

are

not

predictable.

If

overlapped

operands

share

all

of

the

same

bytes,

the

results

are

predictable

when

direct

addressing

is

used.

If

indirect

addressing

is

used

(that

is,

based

operands,

parameters,

strings

with

variable

lengths,

and

arrays

with

variable

subscripts),

the

results

are

not

always

predictable.

Resultant

Conditions:

The

logical

difference

of

the

character

scalar

operands

is:

v

v

Zero

with

carry

out

of

the

high-order

bit

position

v

Not-zero

with

carry

v

Not-zero

with

no

carry.

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

Machine

Interface

Instructions

1149

08

Argument/Parameter

0801

Parameter

Reference

Violation

20

Machine

Support

2002

Machine

Check

2003

Function

Check

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3202

Scalar

Attributes

Invalid

36

Space

Management

3601

Space

Extension/Truncation

1150

iSeries:

Machine

Interface

Instructions

APIs

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Subtract

Numeric

(SUBN)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-7]

SUBN

1047

Difference

Minuend

Subtrahend

SUBNR

1247

Difference

Minuend

Subtrahend

SUBNB

1C47

Branch

options

Difference

Minuend

Subtrahend

Branch

targets

SUBNBR

1E47

Branch

options

Difference

Minuend

Subtrahend

Branch

targets

SUBNI

1847

Indicator

options

Difference

Minuend

Subtrahend

Indicator

targets

SUBNIR

1A47

Indicator

options

Difference

Minuend

Subtrahend

Indicator

targets

Operand

1:

Numeric

variable

scalar.

Operand

2:

Numeric

scalar.

Operand

3:

Numeric

scalar.

Operand

4-7:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Warning:

Temporary

Level

3

Header

Short

forms

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

[3-6]

SUBNS

1147

Difference/Minuend

Subtrahend

SUBNSR

1347

Difference/Minuend

Subtrahend

SUBNBS

1D47

Branch

options

Difference/Minuend

Subtrahend

Branch

targets

SUBNBSR

1F47

Branch

options

Difference/Minuend

Subtrahend

Branch

targets

SUBNIS

1947

Indicator

options

Difference/Minuend

Subtrahend

Indicator

targets

SUBNISR

1B47

Indicator

options

Difference/Minuend

Subtrahend

Indicator

targets

Operand

1:

Numeric

variable

scalar.

Operand

2:

Numeric

scalar.

Operand

3-6:

Machine

Interface

Instructions

1151

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Caution:

If

operands

overlap

but

do

not

share

all

of

the

same

bytes,

results

of

operations

performed

on

these

operands

are

not

predictable.

If

overlapped

operands

share

all

of

the

same

bytes,

the

results

are

predictable

when

direct

addressing

is

used

or

whenever

the

assume

coincident

operand

overlap

attribute

has

been

specified

in

the

program

template.

If

the

assume

coincident

operand

overlap

attribute

has

not

been

specified

in

the

program

template

and

indirect

addressing

is

used

(that

is,

based

operands,

parameters,

strings

with

variable

lengths,

and

arrays

with

variable

subscripts),

the

results

are

not

always

predictable.

Description:

The

difference

is

the

result

of

subtracting

the

subtrahend

from

the

minuend.

Operands

can

have

floating-point,

packed

or

zoned

decimal,

signed

or

unsigned

binary

type.

Source

operands

are

the

minuend

and

subtrahend.

The

receiver

operand

is

the

difference.

If

operands

have

different

types,

source

operands,

minuend

and

subtrahend,

are

converted

according

to

the

following

rules:

1.

If

any

one

of

the

operands

has

floating

point

type,

source

operands

are

converted

to

floating

point

type.

2.

Otherwise,

if

any

one

of

the

operands

has

zoned

or

packed

decimal

type,

source

operands

are

converted

to

packed

decimal.

3.

Otherwise,

the

binary

operands

are

converted

to

a

like

type.

Note:

unsigned

binary(2)

scalars

are

logically

treated

as

signed

binary(4)

scalars.

Minuend

and

subtrahend

are

subtracted

according

to

their

type.

Floating

point

operands

are

subtracted

using

floating

point

subtraction.

Packed

decimal

operands

are

subtracted

using

packed

decimal

subtraction.

Unsigned

binary

subtraction

is

used

with

unsigned

binary

operands.

Signed

binary

operands

are

subtracted

using

two’s

complement

binary

subtraction.

Better

performance

can

be

obtained

if

all

operands

have

the

same

type.

Signed

and

unsigned

binary

subtractions

execute

faster

than

either

packed

decimal

or

floating

point

subtractions.

Decimal

operands

used

in

floating-point

operations

cannot

contain

more

than

15

total

digit

positions.

For

a

decimal

operation,

alignment

of

the

assumed

decimal

point

takes

place

by

padding

with

0’s

on

the

right

end

of

the

source

operand

with

lesser

precision.

Floating-point

subtraction

uses

exponent

comparison

and

significand

subtraction.

Alignment

of

the

binary

point

is

performed,

if

necessary,

by

shifting

the

significand

of

the

value

with

the

smaller

exponent

to

the

right.

The

exponent

is

increased

by

one

for

each

binary

digit

shifted

until

the

two

exponents

agree.

The

operation

uses

the

length

and

the

precision

of

the

source

and

receiver

operands

to

calculate

accurate

results.

Operations

performed

in

decimal

are

limited

to

31

decimal

digits

in

the

intermediate

result.

The

subtract

operation

is

performed

according

to

the

rules

of

algebra.

The

result

of

the

operation

is

copied

into

the

difference

operand.

If

this

operand

is

not

the

same

type

as

that

used

in

performing

the

operation,

the

resultant

value

is

converted

to

its

type.

If

necessary,

the

resultant

value

is

adjusted

to

the

length

of

the

difference

operand,

aligned

at

the

assumed

decimal

point

of

the

difference

operand,

or

both

before

being

copied

to

it.

For

fixed-point

operation,

if

significant

digits

are

truncated

on

the

left

end

of

the

resultant

value,

a

size

(hex

0C0A)

exception

is

signaled.

1152

iSeries:

Machine

Interface

Instructions

APIs

For

the

optional

round

form

of

the

instruction,

specification

of

a

floating-point

receiver

operand

is

invalid.

For

floating-point

operations

involving

a

fixed-point

receiver

field,

if

nonzero

digits

would

be

truncated

off

the

left

end

of

the

resultant

value,

an

invalid

floating-point

conversion

(hex

0C0C)

exception

is

signaled.

For

a

floating-point

difference

operand,

if

the

exponent

of

the

resultant

value

is

either

too

large

or

too

small

to

be

represented

in

the

difference

field,

the

floating-point

overflow

(hex

0C06)

exception

or

the

floating-point

underflow

(hex

0C07)

exception

is

signaled.

If

a

decimal

to

binary

conversion

causes

a

size

(hex

0C0A)

exception

to

be

signaled,

the

binary

value

contains

the

correct

truncated

result

only

if

the

decimal

value

contains

15

or

fewer

significant

nonfractional

digits.

Size

exceptions

can

be

inhibited.

Resultant

Conditions:

v

v

Positive-The

algebraic

value

of

the

numeric

scalar

difference

is

positive.

v

Negative-The

algebraic

value

of

the

numeric

scalar

difference

is

negative.

v

Zero-The

algebraic

value

of

the

numeric

scalar

difference

is

zero.

v

Unordered-The

value

assigned

a

floating-point

difference

operand

is

NaN.

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C02

Decimal

Data

0C03

Decimal

Point

Alignment

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

Machine

Interface

Instructions

1153

0C0A

Size

0C0C

Invalid

Floating-Point

Conversion

0C0D

Floating-Point

Inexact

Result

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

1154

iSeries:

Machine

Interface

Instructions

APIs

4402

Literal

Values

Cannot

Be

Changed

Subtract

Space

Pointer

Offset

(SUBSPP)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

0087

Receiver

pointer

Source

pointer

Decrement

Operand

1:

Space

pointer.

Operand

2:

Space

pointer.

Operand

3:

Binary

scalar.

Description:

The

value

of

the

binary

scalar

specified

by

operand

3

is

subtracted

from

the

space

address

contained

in

the

space

pointer

specified

by

operand

2;

the

result

is

stored

in

the

space

pointer

identified

by

operand

1.

I.e.

Operand

1

=

Operand

2

-

Operand

3

Operand

3

can

have

a

positive

or

negative

value.

The

space

object

that

the

pointer

is

addressing

is

not

changed

by

the

instruction.

If

operand

2

does

not

contain

a

space

pointer,

a

pointer

type

invalid

(hex

2402)

exception

is

signaled.

When

the

addressability

in

the

space

pointer

is

modified,

the

instruction

signals

a

space

addressing

violation

(hex

0601)

exception

when

one

of

the

following

conditions

occurs,

for

any

space

except

teraspace:

v

v

The

space

address

to

be

stored

in

the

pointer

has

a

negative

offset

value.

v

The

offset

addresses

beyond

the

largest

space

allocatable

in

the

object.

This

maximum

offset

value

is

dependent

on

the

size

and

packaging

of

the

object

containing

the

space

and

is

independent

of

the

actual

size

of

the

space

allocated.

If

the

exception

is

signaled

by

this

instruction

for

one

of

these

reasons,

the

pointer

is

not

modified

by

the

instruction.

In

contrast,

when

modifying

the

addressability

of

a

space

pointer

to

teraspace,

if

the

address

computed

either

overflows

or

underflows

the

offset,

the

result

is

wrapped

back

within

teraspace

and

no

exception

is

signalled.

However,

since

the

size

of

teraspace

and

thus

the

size

of

the

offset

portion

of

a

teraspace

address

is

implementation-dependent,

the

wrapped

result

may

vary

between

machine

implementations.

Attempts

to

use

a

pointer

whose

offset

value

lies:

between

the

currently

allocated

extent

of

the

space

and

the

maximum

allocatable

extent

of

the

space,

or

whose

offset

is

outside

all

teraspace

allocations,

cause

the

space

addressing

violation

(hex

0601)

exception

to

be

signaled.

The

object

destroyed

(hex

2202)

exception,

parameter

reference

violation

(hex

0801)

exception,

and

pointer

does

not

exist

(hex

2401)

exception

are

not

signaled

when

operand

1

and

operand

2

are

space

pointer

machine

objects.

This

occurs

when

operand

2

contains

an

internal

machine

value

that

indicates

one

of

these

error

conditions

exists.

If

the

corresponding

exception

is

not

signaled,

operand

1

is

set

with

an

internal

machine

value

that

preserves

the

exception

condition

that

existed

for

operand

2.

The

appropriate

exception

condition

will

be

signaled

for

either

pointer

when

a

subsequent

attempt

is

made

to

reference

the

space

data

that

the

pointer

addresses.

Machine

Interface

Instructions

1155

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

1156

iSeries:

Machine

Interface

Instructions

APIs

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Subtract

Space

Pointers

For

Offset

(SUBSPPFO)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

0033

Offset

difference

Minuend

pointer

Subtrahend

pointer

Operand

1:

Binary(4)

variable

scalar.

Operand

2:

Space

pointer.

Operand

3:

Space

pointer.

Description:

The

offset

portion

of

the

space

address

contained

in

the

operand

3

space

pointer

is

subtracted

from

the

offset

of

the

space

address

contained

in

the

space

pointer

specified

by

operand

2;

the

result

is

stored

in

the

4

byte

binary

scalar

identified

by

operand

1.

The

offsets

for

operands

2

and

3

are

strictly

unsigned

values,

while

the

operand

1

result

can

have

a

positive

or

negative

value.

No

check

is

made

to

determine

that

the

space

pointers

point

to

the

same

space.

In

addition,

the

existence

of

the

pointers

is

not

checked

except

for

pointers

used

as

a

base

for

the

operands.

When

the

space

pointers

point

to

different

spaces,

or

exactly

one

of

the

pointer

operands

is

subject

to

the

pointer

does

not

exist

condition,

the

resulting

value

is

undefined,

but

no

exception

is

signaled

for

those

conditions.

However,

if

both

operand

2

and

operand

3

are

subject

to

the

pointer

does

not

exist

condition,

the

result

value

is

zero.

If

either

operand

2

or

operand

3

contains

a

pointer

which

is

not

a

space

pointer,

a

pointer

type

invalid

(hex

2402)

exception

is

signaled.

A

size

(hex

0C0A)

exception

can

be

signalled

when

the

program

attribute

to

signal

size

exceptions

is

in

effect,

under

the

following

conditions:

v

v

the

operand

1

field

is

unsigned

binary

and

the

resulting

value

of

the

subtraction

is

negative

v

the

offset

value

produced

by

the

subtraction

is

larger

than

the

result

field

can

contain.

The

object

destroyed

(hex

2202)

exception,

parameter

reference

violation

(hex

0801)

exception,

and

pointer

does

not

exist

(hex

2401)

exception

are

not

signaled

when

operand

2

and

operand

3

are

space

pointer

Machine

Interface

Instructions

1157

machine

objects.

This

occurs

when

operand

2

or

operand

3

contains

an

internal

machine

value

that

indicates

one

of

these

error

conditions

exists.

Even

if

the

corresponding

exception

is

not

signaled,

the

operand

1

value

is

undefined

in

those

cases.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0607

Unsupported

Space

Use

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

0C

Computation

0C0A

Size

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

1158

iSeries:

Machine

Interface

Instructions

APIs

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Synchronize

Shared

Storage

Accesses

(SYNCSTG)

Op

Code

(Hex)

Operand

1

03E5

Action

Operand

1:

Character

(4)

constant

or

unsigned

binary

(4)

constant.

Bound

program

access

Built-in

number

for

SYNCSTG

is

617.

SYNCSTG

(

action

:

unsigned

binary

(4)

literal

)

Description:

Enforces

an

ordering

on

shared

storage

accesses

performed

by

the

issuing

thread.

In

this

discussion,

shared

storage

accesses

are

reads

and

writes

from/to

storage

shared

among

multiple

threads.

The

threads

may

be

associated

with

the

same

or

different

processes.

The

action

field

specifies

what

type

of

shared

storage

accesses

(reads,

writes,

or

both)

are

to

be

ordered.

v

v

0

=

both

reads

and

writes

to

shared

storage

performed

by

this

thread

will

be

ordered.

v

1

=

only

reads

from

shared

storage

performed

by

this

thread

will

be

ordered.

v

2

=

only

writes

to

shared

storage

performed

by

this

thread

will

be

ordered.

The

affected

shared

storage

accesses

will

be

ordered

in

the

sense

that

accesses

appearing

in

the

logical

flow

of

the

source

code

before

the

SYNCSTG

will

be

guaranteed

to

be

completed

from

the

standpoint

of

the

issuing

thread

before

those

appearing

in

the

logical

flow

after

the

SYNCSTG.

For

instance,

if

two

reads

from

two

shared

locations

are

separated

by

a

SYNCSTG(0),

then

the

second

access

will

read

a

value

Machine

Interface

Instructions

1159

no

less

current

than

the

first

access.

If

two

writes

to

two

shared

locations

are

separated

by

a

SYNCSTG(0),

then

the

first

write

will

be

available

before

the

second

write.

To

completely

enforce

shared

storage

access

ordering

between

two

or

more

threads,

it

is

necessary

that

all

threads

dependent

on

the

access

ordering

—

both

readers

and

writers

of

the

shared

data

—

use

appropriate

SYNCSTG

operations

or

some

other

synchronization

mechanism

such

as

locks,

mutexes,

semaphores,

or

data

queues

(this

list

is

not

intended

to

be

exhaustive).

This

instruction

is

only

guaranteed

to

affect

the

ordering

of

shared

storage

accesses,

and

is

necessary

only

when

the

accesses

are

to

different

shared

storage

locations

and

the

semantics

of

the

program

depend

on

the

ordering

of

the

shared

accesses

between

two

or

more

threads.

In

addition,

this

instruction

is

only

necessary

in

cases

where

other

synchronization

mechanisms

(locks,

mutexes,

etc)

are

not

being

used

to

serialize

access

to

the

shared

storage

locations.

This

instruction

may

have

an

associated

performance

penalty,

so

it

is

recommended

that

SYNCSTG

be

used

conservatively

when

possible.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

Tangent

(TAN)

Bound

program

access

Built-in

number

for

TAN

is

402.

TAN

(

source

:

floating

point(8)

value

)

:

floating

point(8)

value

which

is

the

tangent

of

the

source

value

Description:

The

tangent

of

the

numeric

value

of

the

source

operand,

whose

value

is

considered

to

be

in

radians,

is

computed

and

the

result

is

returned.

The

result

is

in

the

range:

-infinity

<=

TAN(source)

<=

+infinity

See

floating

point

results

from

special

values

for

additional

information.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

1160

iSeries:

Machine

Interface

Instructions

APIs

NCBCON.htm

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0C

Computation

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

0C0D

Floating-Point

Inexact

Result

0C0E

Floating-Point

Zero

Divide

Tangent

Hyperbolic

(TANH)

Bound

program

access

Built-in

number

for

TANH

is

409.

TANH

(

source

:

floating

point(8)

value

)

:

floating

point(8)

value

which

is

the

tangent

hyperbolic

of

the

source

value

Description:

The

tangent

hyperbolic

of

the

numeric

value

of

the

source

operand

is

computed

and

the

result

(in

radians)

is

returned.

The

result

is

in

the

range:

-1

<=

TANH(source)

<=

+1

See

floating

point

results

from

special

values

for

additional

information.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0C

Computation

Machine

Interface

Instructions

1161

NCBCON.htm

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

0C0D

Floating-Point

Inexact

Result

0C0E

Floating-Point

Zero

Divide

Test

and

Replace

Bytes

(TESTRPL)

Bound

program

access

Built-in

number

for

TESTRPL

is

413.

TESTRPL

(

source

:

address

of

an

aggregate

which

is

the

source

for

tested

bytes

and

the

receiver

for

replaced

bytes

source_length

:

is

an

unsigned

binary(4)

value

which

specifies

the

length

of

the

source

aggregate

being

tested

and

optionally

modified

position

:

address

of

an

aggregate

which

provides

relative

position

information

within

the

replacement

operand

for

byte

values

which

match

source

values

replacement

:

address

of

an

aggregate

which

provides

replacement

byte

values

for

source

values

which

matched

a

position

operand

value

other_length

:

unsigned

binary(4)

value

which

specifies

the

lengths

of

the

relative

position

and

replacement

bytes

aggregates

)

Description:

Bytes

in

the

source

are

tested

for

matching

values

in

the

position

aggregate.

If

a

match

is

found,

the

byte

value

from

the

same

relative

offset

within

the

replacement

aggregate,

as

the

matching

value

is

within

the

position

aggregate,

is

used

to

change

the

source

byte

value.

The

operation

proceeds

byte

by

byte

from

left

to

right

until

each

byte

in

the

source

has

been

tested

and

optionally

modified.

Each

byte

of

the

source

is

compared

with

the

individual

byte

values

in

the

position

aggregate.

If

a

byte

of

equal

value

does

not

exist

in

the

position

aggregate,

the

source

byte

value

is

left

unchanged.

If

a

byte

of

equal

value

is

found

in

the

position

aggregate,

the

corresponding

byte

in

the

same

relative

location

within

the

replacement

aggregate

is

used

to

modify

the

original

source

value.

If

a

byte

value

in

the

position

aggregate

is

duplicated,

the

first

occurrence

(leftmost)

is

used.

If

any

of

the

other

operands

overlap

with

the

source

aggregate

but

do

not

share

all

of

the

same

bytes,

results

of

this

operation

are

unpredictable.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

1162

iSeries:

Machine

Interface

Instructions

APIs

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

08

Argument/Parameter

0801

Parameter

Reference

Violation

22

Object

Access

2202

Object

Destroyed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Test

and

Replace

Characters

(TSTRPLC)

Op

Code

(Hex)

Operand

1

Operand

2

10A2

Receiver

Replacement

Operand

1:

Character

variable

scalar.

Operand

2:

Character

scalar.

Description:

The

character

string

value

represented

by

operand

1

is

tested

byte

by

byte

from

left

to

right.

Until

a

byte

with

a

value

in

the

range

of

hex

F1

to

hex

F9

(inclusive)

is

found,

each

byte

that

has

a

value

outside

that

range

is

assigned

a

byte

value

equal

to

the

leftmost

byte

of

operand

2.

Thus

any

byte

to

the

left

of

the

leftmost

nonzero

zoned

decimal

data

value

is

replaced

with

the

leftmost

byte

value

of

operand

2.

Both

operands

must

be

character

strings.

Only

the

first

character

of

the

replacement

string

is

used

in

the

operation.

The

operation

stops

when

the

first

nonzero

zoned

decimal

digit

is

found

or

when

all

characters

of

the

receiver

operand

have

been

replaced.

Machine

Interface

Instructions

1163

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

1164

iSeries:

Machine

Interface

Instructions

APIs

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Test

Authority

(TESTAU)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-5]

TESTAU

10F7

Available

authority

template

receiver

System

object

or

object

template

Required

authority

template

TESTAUB

1CF7

Branch

options

Available

authority

template

receiver

System

object

or

object

template

Required

authority

template

Branch

targets

TESTAUI

18F7

Indicator

options

Available

authority

template

receiver

System

object

or

object

template

Required

authority

template

Indicator

targets

Operand

1:

Character(2)

variable

scalar

or

null.

Operand

2:

System

pointer

or

space

pointer

data

object.

Operand

3:

Character(2)

scalar.

Operand

4-5:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Machine

Interface

Instructions

1165

Bound

program

access

Built-in

number

for

TESTAU

is

63.

TESTAU

(

available_authority_template_receiver

:

address

OR

null

operand

system_object_or_object_template

:

address

of

system

pointer

OR

address

of

space

pointer(16)

required_authority_template

:

address

)

:

signed

binary(4)

/*

return_code

*/

The

return

code

will

be

set

as

follows:

Return

code

Meaning

1

Authorized.

0

Not

Authorized.

This

built-in

function

is

used

to

provide

support

for

the

branch

and

indicator

forms

of

the

TESTAU

instruction.

The

user

must

specify

code

to

process

the

return

code

and

perform

the

desired

branching

or

indicator

setting.

Description:

This

instruction

verifies

that

the

object

authorities

and/or

ownership

rights

specified

by

operand

3

are

currently

available

to

the

thread

for

the

object

specified

by

operand

2.

If

operand

1

is

not

null,

all

of

the

authorities

and/or

ownership

specified

by

operand

3

that

are

currently

available

to

the

thread

are

returned

in

operand

1.

If

an

object

template

is

not

specified

(i.e.

operand

2

is

a

system

pointer),

then

authority

verification

is

performed

relative

to

the

invocation

executing

this

instruction.

If

an

object

template

is

specified

(i.e.

operand

2

is

a

space

pointer),

then

authority

verification

is

performed

relative

to

the

invocation

specified

in

the

template.

Specifying

an

invocation

causes

the

invocations

subsequent

to

it

to

be

bypassed

in

the

authority

verification

process.

This

has

the

influence

of

excluding

the

program

adopted

user

profiles

for

any

of

these

excluded

invocations

from

acting

as

a

source

of

authority

to

the

authority

verification

process.

The

required

authorities

and/or

ownership

are

specified

by

the

required

authority

template

of

operand

3.

This

template

includes

a

test

option

that

indicates

whether

all

of

the

specified

authorities

are

required

or

whether

any

one

or

more

of

the

specified

authorities

is

sufficient.

This

option

can

be

used,

for

example,

to

test

for

operational

authority

by

coding

a

template

value

of

hex

0F01

in

operand

3.

Using

the

any

option

does

not

affect

what

is

returned

in

operand

1.

If

operand

1

is

not

null

and

the

any

option

is

specified,

all

of

the

authorities

specified

by

operand

3

that

are

available

to

the

process

are

returned

in

operand

1.

If

the

required

authority

is

available,

one

of

the

following

occurs:

v

v

Branch

form

indicated

–

–

Conditional

transfer

of

control

to

the

instruction

indicated

by

the

appropriate

branch

target

operand.
v

Indicator

form

specified

–

1166

iSeries:

Machine

Interface

Instructions

APIs

–

The

leftmost

byte

of

each

of

the

indicator

operands

is

assigned

the

following

values:

-

Hex

F1-

If

the

result

of

the

test

matches

the

corresponding

indicator

option

-

Hex

F0-

If

the

result

of

the

test

does

not

match

the

corresponding

indicator

option

If

no

branch

options

are

specified,

instruction

execution

proceeds

to

the

next

instruction.

If

operand

1

is

null

and

neither

the

branch

or

indicator

form

is

used,

an

invalid

operand

type

(hex

2A06)

exception

is

signaled.

The

format

for

the

available

authority

template

(operand

1)

is

as

follows:

(1

=

authorized)

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Authorization

template

Char(2)

0

0

Object

control

Bit

0

0

0

Object

management

Bit

1

0

0

Authorized

pointer

Bit

2

0

0

Space

authority

Bit

3

0

0

Retrieve

Bit

4

0

0

Insert

Bit

5

0

0

Delete

Bit

6

0

0

Update

Bit

7

0

0

Ownership

(1

=

yes)

Bit

8

0

0

Excluded

Bit

9

0

0

Authority

list

management

Bit

10

0

0

Execute

Bit

11

0

0

Alter

Bit

12

0

0

Reference

Bit

13

0

0

Reserved

(binary

0)

Bits

14-15

2

2

—-

End

—-

If

operand

2

is

a

system

pointer,

it

identifies

the

object

for

which

authority

is

to

be

tested.

If

operand

2

is

a

space

pointer,

it

provides

addressability

to

the

object

template.

The

format

for

the

optional

object

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Object

template

Char(32)

0

0

Relative

invocation

Bin(2)

2

2

Reserved

(binary

0)

Char(14)

16

10

System

object

System

pointer

32

20

—-

End

—-

The

relative

invocation

field

in

the

object

template

identifies

an

invocation

relative

to

the

current

invocation

at

which

the

authority

verification

is

to

be

performed.

The

value

of

the

relative

invocation

field

must

be

less

than

or

equal

to

zero.

A

value

of

zero

identifies

the

current

invocation,

-1

identifies

the

prior

invocation,

-2,

the

invocation

prior

to

that,

and

so

on.

A

value

larger

than

the

number

of

invocations

currently

on

the

invocation

stack

or

a

positive

value

results

in

the

signaling

of

the

template

value

invalid

(hex

3801)

exception.

The

program

adopted

and

propagated

user

profiles

for

the

identified

invocation

and

older

invocations

will

be

included

in

the

authority

verification

process.

Program

adopted

user

profiles

for

invocations

newer

than

the

identified

invocation

will

not

be

included

in

the

authority

verification

process.

If

the

current

invocation

is

specified,

its

program

adopted

user

profile

is

included

whether

or

not

it

is

to

be

propagated.

Machine

Interface

Instructions

1167

The

system

object

field

specifies

a

system

pointer

which

identifies

the

object

for

which

authority

is

to

be

tested.

The

format

for

the

required

authority

template

(operand

3)

is

as

follows:

(1

=

authorized)

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Authorization

template

Char(2)

0

0

Object

control

Bit

0

0

0

Object

management

Bit

1

0

0

Authorized

pointer

Bit

2

0

0

Space

authority

Bit

3

0

0

Retrieve

Bit

4

0

0

Insert

Bit

5

0

0

Delete

Bit

6

0

0

Update

Bit

7

0

0

Ownership

(1

=

yes)

Bit

8

0

0

Excluded

Bit

9

0

0

Authority

list

management

Bit

10

0

0

Execute

Bit

11

0

0

Alter

Bit

12

0

0

Reference

Bit

13

0

0

Reserved

(binary

0)

Bit

14

0

0

Test

option

Bit

15

0

=

All

of

the

above

authorities

must

be

present.

1

=

Any

one

or

more

of

the

above

authorities

must

be

present.

2

2

—-

End

—-

This

instruction

will

tolerate

a

damaged

object

referenced

by

operand

2

when

the

reference

is

a

resolved

pointer.

The

instruction

will

not

tolerate

damaged

contexts

or

programs

when

resolving

pointers.

Damaged

user

profiles

encountered

during

the

authority

verification

processing

result

in

the

signaling

of

the

authority

verification

terminated

due

to

damaged

object

(hex

1005)

exception.

Resultant

Conditions:

v

v

Authorized

-

the

required

authority

is

available.

v

Unauthorized

-

the

required

authority

is

not

available.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Contexts

referenced

for

address

resolution

1168

iSeries:

Machine

Interface

Instructions

APIs

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1002

Machine

Context

Damage

State

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

Machine

Interface

Instructions

1169

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Test

Bit

in

String

(TSTBTS)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

[4]

TSTBTSB

1C0E

Branch

options

Source

Offset

Branch

targets

TSTBTSI

180E

Indicator

options

Source

Offset

Indicator

targets

Operand

1:

Character

scalar

or

numeric

scalar.

Operand

2:

Binary

scalar.

Operand

3:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

1170

iSeries:

Machine

Interface

Instructions

APIs

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Bound

program

access

Built-in

number

for

TSTBTS

is

1.

TSTBTS

(

source

:

address

offset

:

unsigned

binary(4)

)

:

signed

binary(4)

/*

return_code

*/

The

return

code

will

be

set

as

follows:

Return

code

Meaning

1

Bit

set.

0

Bit

clear.

This

built-in

function

is

used

to

provide

support

for

the

branch

and

indicator

forms

of

the

TSTBTS

instruction.

The

user

must

specify

code

to

process

the

return_code

and

perform

the

desired

branching

or

indicator

setting.

The

offset

parameter

must

be

between

0

and

65,535.

Description:

Tests

the

bit

of

the

source

operand

as

indicated

by

the

offset

operand

to

determine

if

the

bit

is

set

or

not

set.

Based

on

the

test,

the

resulting

condition

is

used

with

the

extender

field

to

either

v

v

Transfer

control

conditionally

to

the

instruction

indicated

in

one

of

the

branch

target

operands

(branch

form).

v

Assign

a

value

to

each

of

the

indicator

operands

(indicator

form).

The

source

operand

can

be

character

or

numeric.

The

leftmost

bytes

of

the

source

operand

are

used

in

the

operation.

The

source

operand

is

interpreted

as

a

bit

string

with

the

bits

numbered

left

to

right

from

0

to

the

total

number

of

bits

in

the

string

minus

one.

The

offset

operand

indicates

which

bit

of

the

source

operand

is

to

be

tested,

with

a

offset

of

zero

indicating

the

leftmost

bit

of

the

leftmost

byte

of

the

source

operand.

If

an

offset

value

less

than

zero

or

beyond

the

length

of

the

string

is

specified

a

scalar

value

invalid

(hex

3203)

exception

is

signaled.

Resultant

Conditions:

v

v

Zero-The

selected

bit

of

the

bit

string

source

operand

is

zero.

v

One-The

selected

bit

of

the

bit

string

source

operand

is

one.

Machine

Interface

Instructions

1171

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

1172

iSeries:

Machine

Interface

Instructions

APIs

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Test

Bits

Under

Mask

(TSTBUM)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

[4,

5]

TSTBUMB

1C2A

Branch

options

Source

Mask

Branch

targets

TSTBUMI

182A

Indicator

options

Source

Mask

Indicator

targets

Operand

1:

Character

variable

scalar

or

numeric

variable

scalar.

Operand

2:

Character

scalar

or

numeric

scalar.

Operand

3

[4,

5]

v

v

Branch

Form-Instruction

number,

relative

instruction

number,

branch

point,

or

instruction

pointer.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

Selected

bits

from

the

leftmost

byte

of

the

source

operand

are

tested

to

determine

their

bit

values.

Based

on

the

test,

the

resulting

condition

is

used

with

the

extender

field

to:

v

v

Transfer

control

conditionally

to

the

instruction

indicated

in

one

of

the

branch

target

operands

(branch

form).

v

Assign

a

value

to

each

of

the

indicator

operands

(indicator

form).

The

source

and

the

mask

operands

can

be

character

or

numeric.

The

leftmost

byte

of

each

of

the

operands

is

used

in

the

operands.

The

operands

are

interpreted

as

bit

strings.

The

testing

is

performed

bit

by

bit

with

only

those

bits

indicated

by

the

mask

operand

being

tested.

A

1-bit

in

the

mask

operand

specifies

that

the

corresponding

bit

in

the

source

value

is

to

be

tested.

A

0-bit

in

the

mask

operand

specifies

that

the

corresponding

bit

in

the

source

value

is

to

be

ignored.

Machine

Interface

Instructions

1173

Resultant

Conditions:

The

selected

bits

of

the

bit

string

source

operand

are

all

zeros,

all

ones,

or

mixed

ones

and

zeros.

A

mask

operand

of

all

zeros

causes

a

zero

resultant

condition.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

1174

iSeries:

Machine

Interface

Instructions

APIs

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Test

Exception

(TESTEXCP)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3-4

TESTEXCP

104A

Receiver

Exception

description

TESTEXCPB

1C4A

Branch

options

Receiver

Exception

description

Branch

options

TESTEXCPI

184A

Indicator

options

Receiver

Exception

description

Indicator

options

Operand

1:

Space

pointer.

Operand

2:

Exception

description.

Operand

3-4:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

The

instruction

tests

the

signaled

status

of

the

exception

description

specified

in

operand

2,

and

optionally

alters

the

control

flow

or

sets

the

specified

indicators

based

on

the

test.

Exception

data

is

returned

at

the

location

identified

by

operand

1.

The

branch

or

indicator

setting

occurs

based

on

the

conditions

specified

in

the

extender

field

depending

on

whether

or

not

the

specified

exception

description

is

signaled.

Operand

2

is

an

exception

description

whose

signaled

status

is

to

be

tested.

An

exception

can

be

signaled

only

if

the

referenced

exception

description

is

in

the

deferred

state.

Operand

1

addresses

a

space

into

which

the

exception

data

is

placed

if

an

exception

identified

by

the

exception

description

has

been

signaled.

Machine

Interface

Instructions

1175

The

template

identified

by

operand

1

must

be

16-byte

aligned

in

the

space

and

is

formatted

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Template

size

Char(8)

0

0

Number

of

bytes

provided

for

materialization

Bin(4)

4

4

Number

of

bytes

available

for

materialization

Bin(4)

(0

if

exception

description

is

not

signaled)

8

8

Exception

identification

Char(2)

10

A

Compare

value

length

(maximum

of

32

bytes)

Bin(2)

12

C

Compare

value

Char(32)

44

2C

Message

reference

key

Char(4)

48

30

Exception-specific

data

Char(*)

*

*

Source

invocation

address

Invocation

pointer

or

Null

pointer

*

*

Target

invocation

address

Invocation

pointer

*

*

Signaling

program

instruction

address

UBin(2)

*

*

Signaled

program

instruction

address

UBin(2)

*

*

Machine-dependent

data

Char(10)

*

*

—-

End

—-

The

first

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

This

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

materialization

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

exceptions

(other

than

the

materialization

length

invalid

(hex

3803)

exception)

are

signaled

in

the

event

that

the

receiver

contains

insufficient

area

for

the

materialization.

If

the

exception

description

is

not

in

the

signaled

state,

the

number

of

bytes

available

for

the

materialization

entry

is

set

to

binary

0’s,

and

no

other

bytes

are

modified.

The

message

reference

key

field

holds

the

architected

value

that

uniquely

identifies

the

exception

message

in

a

process

queue

space.

The

source

invocation

address

field

will

contain

a

null

pointer

value

if

the

source

invocation

no

longer

exists

when

this

instruction

is

executed.

The

area

beyond

the

exception-specific

data

area

is

extended

with

binary

0’s

so

that

pointers

to

program

invocations

are

properly

aligned.

If

no

branch

options

are

specified,

instruction

execution

proceeds

at

the

instruction

following

the

Test

Exception

instruction.

If

the

exception

data

retention

option,

from

the

exception

description,

is

set

to

1

(do

not

save),

no

data

is

returned

by

this

instruction.

Resultant

Conditions:

v

v

Exception

signaled.

v

Exception

not

signaled.

1176

iSeries:

Machine

Interface

Instructions

APIs

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

16

Exception

Management

1601

Exception

Description

Status

Invalid

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

Machine

Interface

Instructions

1177

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Test

Extended

Authorities

(TESTEAU)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-5]

TESTEAU

10FB

Available

authority

template

receiver

Required

authority

template

Relative

invocation

TESTEAUB

1CFB

Branch

options

Available

authority

template

receiver

Required

authority

template

Relative

invocation

Branch

targets

TESTEAUI

18FB

Indicator

options

Available

authority

template

receiver

Required

authority

template

Relative

invocation

Indicator

targets

Operand

1:

Character(8)

variable

scalar

or

null.

Operand

2:

Character(8)

scalar.

Operand

3:

Binary(2)

variable

scalar

or

constant

or

null.

Operand

4-5:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

1178

iSeries:

Machine

Interface

Instructions

APIs

Bound

program

access

Built-in

number

for

TESTEAU

is

64.

TESTEAU

(

available_authority_template_receiver

:

address

OR

null

operand

required_authority_template

:

address

relative_invocation

:

address

of

signed

binary(2)

OR

null

operand

)

:

signed

binary(4)

/*

return_code

*/

The

return

code

will

be

set

as

follows:

Return

code

Meaning

1

Authorized.

0

Not

Authorized.

This

built-in

function

is

used

to

provide

support

for

the

branch

and

indicator

forms

of

the

TESTEAU

operation.

The

user

must

specify

code

to

process

the

return

code

and

perform

the

desired

branching

or

indicator

setting.

Description:

This

instruction

verifies

that

the

privileged

instructions

and

special

authorities

specified

by

operand

2

are

currently

available

to

the

thread.

If

operand

1

is

not

null,

all

of

the

privileged

instructions

and

special

authorities

specified

by

operand

2

that

are

currently

available

to

the

thread

are

returned

in

operand

1.

Note:

The

term

authority

verification

refers

to

the

testing

of

the

required

privileged

instruction

and

special

authorities.

If

operand

3

is

null,

the

authority

verification

is

performed

relative

to

the

invocation

executing

this

instruction.

If

an

operand

3

is

specified,

the

authority

verification

is

performed

relative

to

the

invocation

specified.

Specifying

an

invocation

causes

the

invocations

subsequent

to

it

to

be

bypassed

in

the

authority

verification

process.

This

has

the

influence

of

excluding

the

program

adopted

user

profiles

for

any

of

these

excluded

invocations

from

acting

as

a

source

of

authority

to

the

authority

verification

process.

The

required

privileged

instructions

and

special

authorities

are

specified

by

the

required

authority

template

of

operand

2.

If

the

required

authority

is

available,

one

of

the

following

occurs:

v

v

Branch

form

indicated

–

–

Conditional

transfer

of

control

to

the

instruction

indicated

by

the

appropriate

branch

target

operand.
v

Indicator

form

specified

–

–

The

leftmost

byte

of

each

of

the

indicator

operands

is

assigned

the

following

values:

-

Hex

F1

-

If

the

result

of

the

test

matches

the

corresponding

indicator

option

-

Hex

F0

-

If

the

result

of

the

test

does

not

match

the

corresponding

indicator

option

Machine

Interface

Instructions

1179

If

no

branch

options

are

specified,

instruction

execution

proceeds

to

the

next

instruction.

If

operand

1

is

null

and

neither

the

branch

or

indicator

form

is

used,

an

invalid

operand

type

exception

is

signaled.

The

format

for

the

available

authority

template

receiver

(operand

1)

is

as

follows:

(1

=

authorized)

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Authority

template

Char(8)

0

0

Privileged

instruction

template

Char(4)

0

0

Create

Logical

Unit

Description

Bit

0

0

0

Create

Network

Description

Bit

1

0

0

Create

Controller

Description

Bit

2

0

0

Create

user

profile

Bit

3

0

0

Modify

user

profile

Bit

4

0

0

Diagnose

Bit

5

0

0

Terminate

machine

processing

Bit

6

0

0

Initiate

process

Bit

7

0

0

Modify

Resource

Management

Control

Bit

8

0

0

Create

Mode

Description

Bit

9

0

0

Create

Class

of

Service

Description

Bit

10

0

0

Reserved

(binary

0)

Bits

11-31

4

4

Special

authority

template

Char(4)

4

4

All

object

Bit

0

4

4

Load

(unrestricted)

Bit

1

4

4

Dump

(unrestricted)

Bit

2

4

4

Suspend

(unrestricted)

Bit

3

4

4

Load

(restricted)

Bit

4

4

4

Dump

(restricted)

Bit

5

4

4

Suspend

(restricted)

Bit

6

4

4

Process

control

Bit

7

4

4

Reserved

(binary

0)

Bit

8

4

4

Service

Bit

9

4

4

Auditor

authority

Bit

10

4

4

Spool

control

Bit

11

4

4

I/O

system

configuration

Bit

12

4

4

Reserved

(binary

0)

Bits

13-23

4

4

Modify

machine

attributes

Bits

24-31

4

4

Group

2

B

4

4

Group

3

B

4

4

Group

4

B

4

4

Group

5

B

4

4

Group

6

B

4

4

Group

7

B

4

4

Group

8

B

4

4

Group

9

B

8

8

—-

End

—-

The

format

for

the

required

authority

template

(operand

2)

is

as

follows:

(1

=

authorized)

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Required

authority

Char(8)

0

0

Privileged

instruction

template

Char(4)

1180

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Create

Logical

Unit

Description

Bit

0

0

0

Create

Network

Description

Bit

1

0

0

Create

Controller

Description

Bit

2

0

0

Create

user

profile

Bit

3

0

0

Modify

user

profile

Bit

4

0

0

Diagnose

Bit

5

0

0

Terminate

machine

processing

Bit

6

0

0

Initiate

process

Bit

7

0

0

Modify

Resource

Management

Control

Bit

8

0

0

Create

Mode

Description

Bit

9

0

0

Create

Class

of

Service

Description

Bit

10

0

0

Reserved

(binary

0)

Bits

11-3

4

4

Special

authority

template

Char(4)

4

4

All

object

Bit

0

4

4

Load

(unrestricted)

Bit

1

4

4

Dump

(unrestricted)

Bit

2

4

4

Suspend

(unrestricted)

Bit

3

4

4

Load

(restricted)

Bit

4

4

4

Dump

(restricted)

Bit

5

4

4

Suspend

(restricted)

Bit

6

4

4

Process

control

Bit

7

4

4

Reserved

(binary

0)

Bit

8

4

4

Service

Bit

9

4

4

Auditor

authority

Bit

10

4

4

Spool

control

Bit

11

4

4

I/O

system

configuration

-

DAC

Bit

12

4

4

Reserved

(binary

0)

Bits

13-2

4

4

Modify

machine

attributes

Bits

24-3

4

4

Group

2

Bit

24

4

4

Group

3

Bit

25

4

4

Group

4

Bit

26

4

4

Group

5

Bit

27

4

4

Group

6

Bit

28

4

4

Group

7

Bit

29

4

4

Group

8

Bit

30

4

4

Group

9

Bit

31

8

8

—-

End

—-

The

relative

invocation

operand

(operand

3)

identifies

an

invocation

relative

to

the

current

invocation

at

which

the

authority

verification

is

to

be

performed.

The

value

of

the

relative

invocation

operand

must

be

less

than

or

equal

to

zero.

A

value

of

zero

identifies

the

current

invocation,

-1

identifies

the

prior

invocation,

-2,

the

invocation

prior

to

that,

and

so

on.

A

value

larger

than

the

number

of

invocations

currently

on

the

invocation

stack

or

a

positive

value

results

in

the

signaling

of

the

scalar

value

invalid

(hex

3203)

exception.

Machine

Interface

Instructions

1181

An

immediate

value

is

not

allowed

for

operand

3.

The

program

adopted

and

propagated

user

profiles

for

the

identified

invocation

and

older

invocations

will

be

included

in

the

authority

verification

process.

Program

adopted

user

profiles

for

invocations

newer

than

the

identified

invocation

will

not

be

included

in

the

authority

verification

process.

If

the

current

invocation

is

specified,

its

program

adopted

user

profile

is

included

whether

or

not

it

is

to

be

propagated.

Damaged

user

profiles

encountered

during

the

authority

verification

processing

result

in

the

signaling

of

the

authority

verification

terminated

due

to

damaged

object

(hex

1005)

exception

Resultant

Conditions:

v

v

Authorized

-

the

required

authority

is

available.

v

Unauthorized

-

the

required

authority

is

not

available.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1002

Machine

Context

Damage

State

1004

System

Object

Damage

State

1182

iSeries:

Machine

Interface

Instructions

APIs

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

Machine

Interface

Instructions

1183

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Test

Initial

Thread

(TSTINLTH)

Op

Code

(Hex)

Operand

1

03A1

Result

Operand

1:

Signed

binary(4)

variable

scalar.

Bound

program

access

Built-in

number

for

TSTINLTH

is

509.

TSTINLTH

(

)

:

signed

binary(4)

/*

result

*/

Description:

The

result

is

set

to

indicate

whether

execution

is

within

a

process’s

initial

thread

or

a

secondary

thread.

A

process’s

initial

thread

is

the

thread

that

is

implicitly

initiated

by

the

machine

when

a

process

is

initiated.

Each

process

has

a

minimum

of

one

thread

associated

with

it.

This

is

true

regardless

of

whether

the

initiation

phase,

problem

phase,

or

termination

phase

program

of

the

initial

thread

is

executing.

The

returned

result

will

have

one

of

two

possible

values.

0

execution

is

within

a

secondary

thread.

1

execution

is

within

the

initial

thread.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

08

Argument/Parameter

1184

iSeries:

Machine

Interface

Instructions

APIs

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Test

Pending

Interrupts

(TESTINTR)

Bound

program

access

Built-in

number

for

TESTINTR

is

359.

TESTINTR

(

)

:

An

unsigned

binary(4)

with

the

set

of

pending

thread

interrupts

is

returned

Machine

Interface

Instructions

1185

Description:

The

set

of

pending

interrupts

is

returned

for

the

current

thread.

The

format

of

the

returned

pending

interrupts

is

defined

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Pending

interrupts

UBin(4)

0

0

Time

slice

end

Bit

0

0

0

Transfer

lock

Bit

1

0

0

Asynchronous

lock

retry

Bit

2

0

0

Suspend

process

Bit

3

0

0

Resume

process

Bit

4

0

0

Modify

resource

management

attributes

Bit

5

0

0

Modify

process

or

thread

attributes

Bit

6

0

0

Terminate

machine

processing

Bit

7

0

0

Terminate

process

or

thread

Bit

8

0

0

Wait

time-out

Bit

9

0

0

Event

schedule

Bit

10

0

0

Thread

operations

between

threads

Bit

11

0

0

Cancel

long

running

MI

instruction

Bit

12

0

0

Reserved

(binary

0)

Bit

13

0

0

Deliver

queue

space

message

Bit

14

0

0

Signal

schedule

Bit

15

0

0

Reserved

(binary

0)

Bits

16-31

4

4

—-

End

—-

Note:

Other

alternatives

for

obtaining

the

pending

interrupt

information

are

option

hex

20

or

option

hex

24

on

the

Materialize

Process

Attributes

(MATPRATR)

instruction.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

1186

iSeries:

Machine

Interface

Instructions

APIs

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

Test

Performance

Data

Collection

(TESTPDC)

Op

Code

(Hex)

Extender

Operand

1

Operand

[2-3]

TESTPDCB

1C21

Branch

options

Dummy

scalar

Branch

targets

TESTPDCI

1821

Indicator

options

Dummy

scalar

Indicator

targets

Operand

1:

Character(2)

scalar

or

null.

Operand

[

2-3

]

:

v

Machine

Interface

Instructions

1187

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Bound

program

access

Built-in

number

for

TESTPDC

is

576.

TESTPDC

(

)

:

signed

binary(4)

/*

return_code

*/

The

return

code

will

be

set

as

follows:

Return

code

Meaning

0

The

thread

is

not

in

an

active

Performance

Data

Collector

(PDC)

trace

collection.

1

The

thread

is

in

an

active

Performance

Data

Collector

(PDC)

trace

collection.

This

built-in

function

is

used

to

provide

support

for

the

branch

and

indicator

forms

of

the

TESTPDC

instruction.

The

user

must

specify

code

to

test

the

return

code

and

perform

the

desired

branching

or

indicator

setting.

Description:

A

test

is

performed

to

determine

whether

or

not

the

thread

is

in

an

active

Performance

Data

Collector

(PDC)

trace

collection.

One

of

the

following

occurs:

v

v

Branch

form

indicated

–

–

Conditional

transfer

of

control

to

the

instruction

indicated

by

the

appropriate

branch

target

operand.
v

Indicator

form

specified

–

–

The

leftmost

byte

of

each

of

the

indicator

operands

is

assigned

the

following

values:

Hex

F1-

If

the

result

of

the

test

matches

the

corresponding

indicator

option

Hex

F0-

If

the

result

of

the

test

does

not

match

the

corresponding

indicator

option

If

no

branch

options

are

specified,

instruction

execution

proceeds

to

the

next

instruction.

Resultant

Conditions:

v

v

True

-

The

thread

is

in

an

active

Performance

Data

Collector

(PDC)

trace

collection.

v

False

-

The

thread

is

not

in

an

active

Performance

Data

Collector

(PDC)

trace

collection.

1188

iSeries:

Machine

Interface

Instructions

APIs

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

08

Argument/Parameter

0801

Parameter

Reference

Violation

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2C

Program

Execution

2C04

Branch

Target

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Machine

Interface

Instructions

1189

Test

Pointer

(TESTPTR)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

01D3

Source

pointer

Test

type

Test

result

Operand

1:

Pointer

data

object.

Operand

2:

Character(1)

scalar

immediate

or

constant.

Operand

3:

Signed

binary(4)

variable

scalar.

Bound

program

access

Built-in

number

for

TESTPTR

is

538.

TESTPTR

(

source_pointer

:

pointer(16)

test_type

:

literal(1)

OR

literal(4)

)

:

signed

binary(4)

/*

return_code

*/

Description:

Test

the

pointer

specified

by

source

pointer

in

the

manner

specified

by

test

type.

The

value

of

the

return

code

is

determined

by

test

type.

The

test

type

operand

may

be

declared

as

a

literal

of

any

scalar

data

type.

If

test

type

is

a

4

byte

literal,

only

the

least

significant

byte

is

used

to

determine

the

operation

to

be

performed.

The

remaining

bytes

must

be

binary

zero.

Test

Type

Description

Hex

00

Test

the

source

pointer

procedure

pointer

to

see

if

it

points

to

a

procedure

expecting

optimized

procedure

parameter

passing.

If

source

pointer

is

a

null

pointer

value

then

a

pointer

does

not

exist

(hex

2401)

exception

is

signalled.

If

source

pointer

is

not

a

procedure

pointer

then

a

pointer

type

invalid

(hex

2402)

exception

is

signalled.

If

source

pointer

is

a

procedure

pointer,

but

it

identifies

an

activation

which

does

not

exist

then

an

object

destroyed

(hex

2202)

exception

is

signalled.

When

an

exception

is

signalled,

the

value

of

return

code

is

undefined.

When

an

exception

is

not

signalled,

the

value

of

return

code

will

be:

0

=

source

pointer

does

not

point

to

a

procedure

expecting

optimized

parameter

passing.

1

=

source

pointer

points

to

a

procedure

expecting

optimized

parameter

passing.

Hex

01

Test

the

source

pointer

to

see

if

it

points

to

teraspace.

If

source

pointer

is

a

null

pointer

value

then

a

pointer

does

not

exist

(hex

2401)

exception

is

signalled.

If

source

pointer

is

not

a

space

pointer

then

a

pointer

type

invalid

(hex

2402)

exception

is

signalled.

When

an

exception

is

signalled,

the

value

of

return

code

is

undefined.

When

an

exception

is

not

signalled,

the

value

of

return

code

will

be:

0

=

source

pointer

does

not

point

to

teraspace.

1

=

source

pointer

points

to

teraspace.

Hex

02-FF

Reserved.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

1190

iSeries:

Machine

Interface

Instructions

APIs

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

08

Argument/Parameter

0801

Parameter

Reference

Violation

22

Object

Access

2202

Object

Destroyed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Test

Subset

(TESTSUBSET)

Bound

program

access

Built-in

number

for

TESTSUBSET

is

464.

TESTSUBSET

(

first_source_string

:

address

of

aggregate(*)

second_source_string

:

address

of

aggregate(*)

string_length

:

unsigned

binary(4,8)

literal

value

which

specifies

the

length

of

the

two

strings

)

:

unsigned

binary(4,8)

value

specifying

the

boolean

result

of

the

test

/*

result

*/

Description:

Each

byte

value

of

the

first

source

string,

for

the

number

of

bytes

indicated

by

string

length,

is

logically

anded

with

the

corresponding

byte

value

of

the

second

source

string,

on

a

bit-by-bit

basis.

The

results

are

then

compared

with

the

first

source

string.

The

result

is

set

to

1

if

the

strings

are

equal,

otherwise

it

is

set

to

0.

If

the

strings

overlap

in

storage,

predictable

results

occur

only

if

the

overlap

is

fully

coincident.

If

the

space(s)

indicated

by

the

two

addresses

are

not

long

enough

to

contain

the

number

of

bytes

indicated

by

string

length,

a

space

addressing

violation

(hex

0601)

exception

is

signalled.

Partial

results

in

this

case

are

unpredictable.

Machine

Interface

Instructions

1191

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

08

Argument/Parameter

0801

Parameter

Reference

Violation

22

Object

Access

2202

Object

Destroyed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Test

Temporary

Object

(TESTTOBJ)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

[3]

TESTTOBJB

1CA1

Branch

options

Object

Branch

targets

TESTTOBJI

18A1

Indicator

options

Object

Indicator

targets

Operand

1:

System

pointer.

Operand

2

[3]:

v

v

Branch

Form-Instruction

number,

relative

instruction

number,

branch

point,

or

instruction

pointer.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

1192

iSeries:

Machine

Interface

Instructions

APIs

Bound

program

access

Built-in

number

for

TESTTOBJ

is

462.

TESTTOBJ

(

object

:

address

of

system

pointer

)

:

signed

binary(4)

/*

return_code

*/

The

return

code

will

be

set

as

follows:

Return

code

Meaning

1

Pointer

addresses

temporary

object

0

Pointer

does

not

address

temporary

object

(permanent

object)

This

built-in

function

is

used

to

provide

support

for

the

branch

and

indicator

forms

of

the

TESTTOBJ

operation.

The

user

must

specify

code

to

process

the

return

code

and

perform

the

desired

branching

or

indicator

setting.

Description:

The

object

addressed

by

the

pointer

in

operand

1

is

checked

to

determine

if

it

is

a

temporary

object.

Note:

A

temporary

object

is

an

object

that

does

not

persist

across

IPL’s.

It

is

automatically

destroyed

at

system

termination.

Based

on

results,

the

resulting

condition

is

used

with

the

extender

to

transfer

control

(branch

form)

or

to

assign

a

value

to

indicator

operand

(indicator

form).

Operand

1

The

object

to

be

tested

is

addressed

by

this

system

pointer.

Any

system

object

can

be

tested.

An

unresolved

system

pointer

will

be

resolved

by

this

instruction.

Resultant

Conditions:

v

v

Temporary-The

object

specified

by

the

system

pointer

is

a

temporary

object.

This

is

the

equal

condition.

v

Not

temporary-The

object

specified

by

the

system

pointer

is

not

a

temporary

object.

It

is

a

permanent

object.

This

is

the

unequal

condition.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Object

management

–

–

Operand

1
v

Execute

Machine

Interface

Instructions

1193

–

–

Context

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Operand

1

–

Context

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

1194

iSeries:

Machine

Interface

Instructions

APIs

2202

Object

Destroyed

2203

Object

Suspended

2204

Object

Not

Eligible

for

Operation

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Test

User

List

Authority

(TESTULA)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-5]

TESTULA

10E7

Available

authority

template

receiver

System

object

Test

options

template

TESTULAB

1CE7

Branch

options

Available

authority

template

receiver

System

object

Required

authority

template

Branch

targets

TESTULAI

18E7

Indicator

options

Available

authority

template

receiver

System

object

Required

authority

template

Indicator

targetsOperand

1:

Space

pointer

or

null.

Operand

2:

System

pointer.

Machine

Interface

Instructions

1195

Operand

3:

Space

pointer.

Operand

4-5:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Bound

program

access

Built-in

number

for

TESTULA

is

151.

TESTULA

(

available_authority_template_receiver

:

address

OR

null

operand

system_object

:

address

of

system

pointer

test_options_template

:

address

)

:

signed

binary(4)

/*

return_code

*/

The

return

code

will

be

set

as

follows:

Return

code

Meaning

1

Authorized.

0

Not

Authorized.

This

built-in

function

is

used

to

provide

support

for

the

branch

and

indicator

forms

of

the

TESTULA

instruction.

The

user

must

specify

code

to

process

the

return

code

and

perform

the

desired

branching

or

indicator

setting.

Description:

This

instruction

verifies

that

the

object

authorities

and/or

ownership

rights

specified

by

operand

3

are

available

to

the

user

list

specified

by

operand

3

for

the

object

specified

by

operand

2.

The

user

list

consists

of

a

governing

user

profile

and

a

list

of

group

profiles

for

a

thread.

The

profiles

can

be

specified

either

by

system

pointers,

or

a

uid

for

the

user

profile

and

a

gid

for

the

group

profiles.

Any

program

adopted

user

profiles

for

the

current

thread

are

not

included

in

the

authority

verification

process

when

this

instruction

is

used.

If

operand

1

is

not

null,

all

of

the

authorities

and/or

ownership

specified

by

operand

3

that

are

currently

available

to

the

user

list

are

returned

in

operand

1.

If

the

required

authority

is

available,

one

of

the

following

occurs:

v

v

Branch

form

indicated

–

–

Conditional

transfer

of

control

to

the

instruction

indicated

by

the

appropriate

branch

target

operand.

v

Indicator

form

specified

–

–

The

leftmost

byte

of

each

of

the

indicator

operands

is

assigned

the

following

values:

-

Hex

F1-

If

the

result

of

the

test

matches

the

corresponding

indicator

option

-

Hex

F0-

If

the

result

of

the

test

does

not

match

the

corresponding

indicator

option

If

no

branch

options

are

specified,

instruction

execution

proceeds

to

the

next

instruction.

The

required

authorities

and/or

ownership

are

specified

by

the

required

authority

field

of

operand

3.

This

field

includes

a

test

option

that

indicates

whether

all

of

the

specified

authorities

are

required

or

whether

any

one

or

more

of

the

specified

authorities

is

sufficient.

This

option

can

be

used,

for

example,

to

test

for

operational

authority

by

coding

a

template

value

of

hex

1196

iSeries:

Machine

Interface

Instructions

APIs

0F01

in

operand

3.

Using

the

any

option

does

not

affect

what

is

returned

in

operand

1.

If

operand

1

is

not

null

and

the

any

option

is

specified,

all

of

the

authorities

specified

by

operand

3

that

are

available

to

the

user

list

are

returned

in

operand

1.

If

operand

1

is

not

null,

it

provides

addressability

to

a

template

which

contains

a

list

of

available

authorization

templates

and

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

Bin(4)

4

4

Number

of

bytes

available

Bin(4)

8

8

Number

of

authorization

templates

returned

Bin(2)

10

A

Reserved

Char(6)

16

10

Authorization

templates

[*]

Char(2)

16

10

Object

control

Bit

0

16

10

Object

management

Bit

1

16

10

Authorized

pointer

Bit

2

16

10

Space

authority

Bit

3

16

10

Retrieve

Bit

4

16

10

Insert

Bit

5

16

10

Delete

Bit

6

16

10

Update

Bit

7

16

10

Ownership

(1

=

yes)

Bit

8

16

10

Excluded

Bit

9

16

10

Authority

list

management

Bit

10

16

10

Execute

Bit

11

16

10

Alter

Bit

12

16

10

Reference

Bit

13

16

10

Reserved

(binary

0)

Bits

14-15

*

*

—-

End

—-

The

first

4

bytes

of

the

template

identify

the

total

number

of

bytes

provided

for

use

by

the

instruction.

The

value

is

supplied

as

input

to

the

instruction

and

is

not

modified

by

the

instruction.

A

value

of

less

than

8

causes

the

materialization

length

invalid

(hex

3803)

exception

to

be

signaled.

The

second

4

bytes

of

the

template

identify

the

total

number

of

bytes

available

to

be

materialized.

The

instruction

materializes

as

many

bytes

as

can

be

contained

in

the

area

specified

as

the

receiver.

If

the

byte

area

identified

by

the

receiver

is

greater

than

that

required

to

contain

the

information

requested,

then

the

excess

bytes

are

unchanged.

No

exceptions

(other

than

the

materialization

length

invalid

(hex

3803)

exception)

are

signaled.

The

number

of

authorization

templates

returned

field

is

how

many

authorization

templates

were

returned

in

the

space

provided.

This

does

not

indicate

the

total

possible

that

could

be

returned.

A

maximum

of

one

authorization

template

will

be

returned.

Operand

2

identifies

the

object

for

which

authority

is

to

be

tested.

The

program

adopted

and

propagated

user

profiles

for

any

invocations

of

the

current

thread

will

not

be

included

in

the

authority

verification

process

of

the

user

list.

Operand

3

identifies

the

profiles

to

be

used

in

the

authority

verification

process.

The

profiles

or

users

may

be

indicated

either

by

uid/gid

or

by

system

pointer,

but

not

both

in

one

request.

A

user

profile

(system

pointer

or

uid)

must

always

be

specified

and

the

number

of

group

profiles

(or

gids)

may

be

zero

or

more,

but

not

negative.

If

the

number

of

group

profiles

(or

gids)

is

negative

or

greater

than

17,

the

template

value

invalid

(hex

3801)

exception

will

be

signaled.

The

format

of

the

test

options

template

(operand

3)

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Number

of

group

profiles

Bin(2)

2

2

Required

authority

Char(2)

Machine

Interface

Instructions

1197

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

4

4

User

indicator

Char(1)

Hex

80

=

Users

are

identified

by

system

pointers

Hex

40

=

Profiles

are

identified

by

uid/gid

5

5

Test

flags

Char(1)

5

5

Ignore

pointer

authority

Bit

0

5

5

Reserved

Bits

1-7

6

6

Reserved

(binary

0)

Char(10)

16

10

—-

End

—-

The

ignore

pointer

authority

bit

indicates

whether

the

authority

stored

in

the

operand

2

system

pointer

should

be

ignored

when

testing

the

user

list’s

authority

to

the

object.

Immediately

following

this

information

will

be

the

identification

of

the

user

profile

and

the

group

profile

list.

The

first

entry

always

identifies

the

user

to

be

the

user

profile

followed

by

a

list

of

the

users

in

the

group

profile

list.

The

number

of

users

in

the

list

is

indicated

by

the

number

of

group

profiles

field.

The

format

of

the

identification

is

either

in

system

pointers

or

in

uid/gids

as

specified

by

the

user

indicator

field.

If

the

option

for

system

pointers

is

selected,

the

user

identification

will

have

the

following

format.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

User

profile

System

pointer

16

10

—-

End

—-

Following

the

user

profile

pointer

will

be

a

list

of

system

pointers

for

the

group

profiles.

Each

entry

in

the

list

will

have

the

following

format.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Group

profile

System

pointer

16

10

—-

End

—-

If

the

option

for

uid/gid

is

selected,

the

user

identification

will

have

the

following

format.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

User

profile

(uid)

UBin(4)

4

4

—-

End

—-

Following

the

user

profile

(uid)

will

be

a

list

of

gids

for

the

group

profile

list.

Each

entry

in

the

list

will

have

the

following

format.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Group

profile

(gid)

UBin(4)

4

4

—-

End

—-

1198

iSeries:

Machine

Interface

Instructions

APIs

The

format

for

the

required

authority

field

(operand

3)

is

as

follows:

(1

=

authorized)

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Authorization

template

Char(2)

0

0

Object

control

Bit

0

0

0

Object

management

Bit

1

0

0

Authorized

pointer

Bit

2

0

0

Space

authority

Bit

3

0

0

Retrieve

Bit

4

0

0

Insert

Bit

5

0

0

Delete

Bit

6

0

0

Update

Bit

7

0

0

Ownership

(1

=

yes)

Bit

8

0

0

Excluded

Bit

9

0

0

Authority

list

management

Bit

10

0

0

Execute

Bit

11

0

0

Alter

Bit

12

0

0

Reference

Bit

13

0

0

Reserved

(binary

0)

Bit

14

0

0

Test

option

Bit

15

0

=

All

of

the

above

authorities

must

be

present.

1

=

Any

one

or

more

of

the

above

authorities

must

be

present.

2

2

—-

End

—-

This

instruction

will

tolerate

a

damaged

object

referenced

by

operand

2

when

the

reference

is

a

resolved

pointer.

The

instruction

will

not

tolerate

damaged

contexts

or

programs

when

resolving

pointers.

Damaged

user

profiles

encountered

during

the

authority

verification

processing

result

in

the

signaling

of

the

authority

verification

terminated

due

to

damaged

object

(hex

1005)

exception.

This

instruction

will

not

tolerate

destroyed

profiles

or

invalid

system

pointers/uid/gids

to

the

users

specified

in

operand

3.

If

system

pointers

are

specified

and

any

of

them

are

null

or

do

not

point

to

a

user

profile,

or

if

the

uid

or

any

of

the

gids

are

not

in

use

or

the

user

profile

for

it

is

destroyed,

the

authority

verification

terminated

due

to

destroyed

object

(hex

2207)

exception

will

be

signaled.

Resultant

Conditions:

v

v

Authorized

-

the

required

authority

is

available.

v

Unauthorized

-

the

required

authority

is

not

available.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

Machine

Interface

Instructions

1199

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A0A

ID

Index

Not

Available

10

Damage

Encountered

1002

Machine

Context

Damage

State

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

1200

iSeries:

Machine

Interface

Instructions

APIs

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

3803

Materialization

Length

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Transfer

Control

(XCTL)

Op

Code

(Hex)

Operand

1

Operand

2

0282

Program

to

be

called

or

call

template

Argument

list

Operand

1:

System

pointer

or

space

pointer

data

object.

Operand

2:

Operand

list

or

null.

Description:

The

instruction

destroys

the

calling

invocation

and

passes

control

to

either

the

program

entry

procedure

of

a

bound

program

or

the

external

entry

point

of

a

non-bound

program.

If

operand

1

specifies

a

Java(TM)

program

or

a

bound

service

program,

an

invalid

operation

for

program

(hex

2C15)

exception

is

signaled.

Machine

Interface

Instructions

1201

Operand

1

may

be

specified

as

a

system

pointer

which

directly

addresses

the

program

that

is

to

receive

control

or

as

a

space

pointer

to

a

call

template

which

identifies

the

program

to

receive

control.

Specifying

a

template

allows

for

additional

controls

over

how

the

specified

program

is

to

be

invoked.

The

format

of

the

call

template

is

the

following:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Call

options

Char(4)

0

0

Suppress

adopted

user

profiles

Bit

0

0

=

No

1

=

Yes

0

0

Reserved

(binary

0)

Bits

1-30

0

0

Force

thread

state

to

user

state

for

transfer

Bit

31

0

=

No

1

=

Yes

4

4

Reserved

(binary

0)

Char(12)

16

10

Program

to

be

called

System

pointer

32

20

—-

End

—-

The

suppress

adopted

user

profiles

option

specifies

whether

or

not

the

program

adopted

and

propagated

user

profiles

which

may

be

serving

as

sources

of

authority

to

the

thread

are

to

be

suppressed

from

supplying

authority

to

the

new

invocation.

Specifying

yes

causes

the

propagation

of

adopted

user

profiles

to

be

stopped

as

of

the

calling

invocation,

thereby,

not

allowing

the

called

invocation

to

benefit

from

their

authority.

Specifying

no

allows

the

normal

propagation

of

adopted

and

propagated

user

profiles

to

occur.

The

called

program

may

adopt

its

owning

user

profile,

if

necessary,

to

supplement

the

authority

available

to

its

invocation.

The

force

thread

state

to

user

state

for

transfer

option

specifies

whether

or

not

the

transfer

control

needs

to

be

done

in

the

current

thread

state

or

change

the

thread

state

to

user

state.

Operand

2

specifies

an

operand

list

that

identifies

the

arguments

to

be

passed

to

the

invocation

to

which

control

is

being

transferred.

Automatic

objects

allocated

by

the

transferring

invocation

are

destroyed

as

a

result

of

the

transfer

operation

and,

therefore,

cannot

be

passed

as

arguments.

An

argument

list

length

violation

(hex

0802)

exception

is

signaled

if

the

number

of

arguments

passed

does

not

correspond

to

the

number

required

by

the

parameter

list

of

the

target

program.

An

unsupported

space

use

(hex

0607)

exception

is

signalled

if

this

call

would

pass

a

parameter

stored

in

teraspace

to

a

program

which

is

not

teraspace

capable.

To

be

teraspace

capable,

a

non-bound

program

must

be

created

as

teraspace

capable

or

a

bound

program

must

be

created

with

a

teraspace

capable

program

entry

procedure.

If

the

transferring

invocation

has

an

activation,

the

invocation

count

is

decremented

by

1.

If

the

transferring

invocation

has

received

control

to

process

an

exception,

or

an

invocation

exit,

the

return

instruction

invalid

(hex

2C01)

exception

is

signaled.

If

the

transferring

invocation

currently

has

an

invocation

exit

set,

the

invocation

exit

is

not

given

control

and

is

implicitly

cleared.

Common

Program

Call

Processing:

The

details

of

processing

differ

for

non-bound

and

bound

programs.

The

following

outlines

the

common

steps.

1202

iSeries:

Machine

Interface

Instructions

APIs

1.

A

check

is

made

to

determine

if

the

caller

has

authority

to

invoke

the

program

and

that

the

object

is

indeed

a

program

object.

The

specified

program

must

be

either

a

bound

program

that

contains

a

program

entry

procedure

or

a

non-bound

program.

2.

The

activation

group

in

which

the

program

is

to

be

run

is

located

or

created

if

it

doesn’t

exist.

3.

If

the

program

requires

an

activation

entry

and

it

is

not

already

active

within

the

appropriate

activation

group,

it

is

activated.

Bound

programs

always

require

an

activation;

non-bound

programs

require

an

activation

only

if

they

use

static

storage.

The

invocation

count

of

a

newly

created

activation

is

set

to

1

while

the

invocation

count

of

an

existing

activation

is

incremented

by

1.

4.

The

invocation

created

for

the

target

program

has

the

following

attributes

(as

would

be

reported

via

the

Materialize

Invocation

Attributes

(MATINVAT)

instruction.)

v

v

the

invocation

mark

is

at

least

one

higher

than

any

previous

invocation

within

the

thread.

The

invocation

mark

value

is

generated

from

the

thread

mark

counter

and

is

unique

within

the

thread.

There

is

no

relationship

between

the

values

of

the

invocation

mark

and

the

marks

of

the

activation

or

activation

group

associated

with

the

invocation.

v

the

invocation

number

is

the

same

as

the

invocation

number

of

the

transferring

invocation.

v

the

invocation

type

is

hex

02

to

indicate

a

XCTL

type

of

invocation.
5.

The

automatic

storage

frame

(ASF),

if

required,

is

allocated

on

a

16-byte

boundary.

6.

Control

is

transferred

to

the

program

entry

procedure

(or

external

entry

point)

of

the

program.

7.

Normal

flow-of-control

resumes

at

the

instruction

following

the

caller

of

the

program

issuing

the

XCTL

instruction.

The

details

of

locating

the

target

activation

group

and

activating

the

program

differ

depending

upon

the

model

of

the

program.

Bound

Program:

A

bound

program

is

activated

and

run

in

an

activation

group

specified

by

program

attributes.

There

are

two

logical

steps

involved:

v

v

locate

the

existing,

or

create

a

new

activation

group

for

the

program

v

locate

an

existing,

or

create

a

new

activation

entry

for

the

program

within

the

activation

group

After

locating

the

activation

entry

for

the

program,

control

is

passed

to

the

program

entry

procedure

for

the

program.

If

required,

the

activation

group

is

destroyed

when

the

invocation

for

the

program

entry

procedure

is

destroyed.

Non-bound

Program:

The

automatic

storage

frame

begins

with

a

64

byte

header.

If

the

program

defines

no

automatic

data

items

the

frame

consists

solely

of

the

64-byte

header,

otherwise

the

automatic

storage

items

are

located

immediately

following

the

header.

In

prior

releases

of

the

machine,

this

header

contained

invocation

information

which

is

now

available

via

the

Materialize

Invocation

Attributes

(MATINVAT)

instruction.

This

header

is

not

initialized

and

the

contents

of

the

header

are

not

used

by

the

machine.

(The

space

is

allocated

merely

to

provide

for

compatibility

with

prior

implementations

of

the

machine.)

The

update

PASA

stack

program

attribute,

supported

in

prior

implementations

of

the

machine,

is

no

longer

meaningful

and

is

ignored,

if

specified

as

an

attribute

of

the

program.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Operand

1

Machine

Interface

Instructions

1203

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0607

Unsupported

Space

Use

08

Argument/Parameter

0801

Parameter

Reference

Violation

0802

Argument

List

Length

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1C

Machine-Dependent

1C02

Program

Limitation

Exceeded

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

1204

iSeries:

Machine

Interface

Instructions

APIs

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

2A

Program

Creation

2AB5

Observable

Information

Necessary

For

Retranslation

Not

Encapsulated

2C

Program

Execution

2C01

Return

Instruction

Invalid

2C15

Invalid

Operation

for

Program

2C1D

Automatic

Storage

Overflow

2C1E

Activation

Access

Violation

2C1F

Program

Signature

Violation

2C20

Static

Storage

Overflow

2C21

Program

Import

Invalid

2C22

Data

Reference

Invalid

2C23

Imported

Object

Invalid

2C24

Activation

Group

Export

Conflict

2C25

Import

Not

Found

2C2A

Caller

Parameter

Mask

Does

Not

Match

Imported

Procedure

Parameter

Mask

2C2B

Invalid

Storage

Model

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

Machine

Interface

Instructions

1205

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Transfer

Object

Lock

(XFRLOCK)

Op

Code

(Hex)

Operand

1

Operand

2

0382

Receiving

process

control

space

Lock

transfer

template

Operand

1:

System

pointer.

Operand

2:

Space

pointer.

Bound

program

access

Built-in

number

for

XFRLOCK

is

54.

XFRLOCK

(

receiving_process_control_space

:

address

of

system

pointer

lock_transfer_template

:

address

)

Description:

Locks

designated

in

the

lock

transfer

template

(operand

2)

are

either

allocated

to

the

receiving

process

(operand

1),

the

thread

identified

within

the

lock

transfer

template,

or

to

the

transaction

control

structure

attached

to

the

thread

issuing

this

instruction.

Upon

completion

of

the

transfer

lock

request,

the

current

process,

thread,

or

transaction

control

structure

no

longer

holds

the

transferred

lock(s).

Operand

2

identifies

the

objects

and

the

associated

lock

states

that

are

to

be

transferred

to

the

receiving

process,

or

to

the

receiving

thread,

or

to

the

transaction

control

structure

attached

to

the

thread

issuing

this

instruction.

The

space

contains

a

system

pointer

to

each

object

that

is

to

have

a

lock

transferred

and

a

byte

which

defines

whether

this

entry

is

active.

If

the

entry

is

active,

the

space

also

contains

the

lock

states

to

be

transferred.

Operand

2

must

be

aligned

on

a

16-byte

boundary.

The

format

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Number

of

lock

transfer

requests

in

template

Bin(4)

4

4

Offset

to

lock

state

selection

bytes

Bin(2)

6

6

Reserved

Char(8)

+

14

E

Transfer

lock

options

Char(2)

14

E

Reserved

Bits

0-6

+

14

E

Template

extension

specified

Bit

7

0

=

Template

extension

is

not

specified.

1

=

Template

extension

is

specified.

14

E

Lock

scope

Bit

8

0

=

Transfer

lock

scope

object

type

locks.

1

=

Transfer

thread

scoped

locks.

14

E

Lock

scope

object

type

Bit

9

1206

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Process

containing

the

current

thread.

1

=

Transaction

control

structure

attached

to

the

current

thread.

14

E

Change

lock

scope

Bit

10

0

=

No.

1

=

Yes.

14

E

Reserved

(binary

0)

Bits

11-15

16

10

—-

End

—-

The

transfer

lock

template

extension

is

only

present

if

template

extension

specified

is

indicated

above.

Otherwise,

the

object

lock(s)

to

be

transferred

should

immediately

follow.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Transfer

lock

template

extension

Char(16)

0

0

Extension

options

0

0

Reserved

0

0

New

lock

scope

0

=

Lock

scope

is

lock

scope

object

type.

1

=

Lock

scope

is

to

the

current

thread.

0

0

Lock

scope

object

type

0

=

Process

containing

the

current

thread.

1

=

Transaction

control

structure

attached

to

the

cu

0

0

Reserved

1

1

Extension

area

1

1

Reserved

9

9

Reserved

(binary

0)

12

C

Open

thread

handle

16

10

Object

lock(s)

to

be

transferred

[*]

System

pointer

(repeated

as

specified

by

number

of

lock

transfer

requests

in

template

above)

*

*

—-

End

—-

The

lock

state

selection

is

located

by

adding

the

offset

to

lock

state

selection

bytes

above

to

operand

2.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Lock

state

selection

[*]

Char(1)

(repeated

for

each

pointer

in

the

template)

0

0

Lock

state

to

transfer.

Only

one

state

may

be

requested

per

entry.

(1

=

transfer)

Bits

0-4

0

0

LSRD

Bit

0

0

0

LSRO

Bit

1

0

0

LSUP

Bit

2

0

0

LEAR

Bit

3

0

0

LENR

Bit

4

0

0

Reserved

(binary

0)

Bit

5

+

Machine

Interface

Instructions

1207

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Lock

count

Bit

6

0

=

The

current

lock

count

is

transferred.

1

=

A

lock

count

of

1

is

transferred.

0

0

Entry

active

indicator

Bit

7

0

=

Entry

not

active.

This

entry

is

not

used.

1

=

Entry

active.

This

lock

is

transferred.

*

*

—-

End

—-

Note:

Fields

indicated

by

a

plus

sign

(+)

are

ignored

by

the

instruction.

Locks

to

be

transferred

in

one

instruction

must

be

either

all

process

scoped,

all

thread

scoped,

or

all

transaction

control

structure

scoped.

Process

scoped

locks

may

be

transferred

from

the

process

containing

the

current

thread

to

the

receiving

process

or

to

the

transaction

control

structure

that

is

attached

to

the

current

thread.

Thread

scoped

locks

may

be

transferred

from

the

current

thread

to

either

the

initial

thread

of

the

process

associated

with

the

receiving

process

control

space,

the

thread

specified

by

the

open

thread

handle

field

in

the

transfer

lock

template

extension,

or

to

the

transaction

control

structure

attached

to

the

current

thread.

Transaction

control

structure

scoped

locks

may

be

transferred

from

the

transaction

control

structure

attached

to

the

current

thread

to

either

the

process

containing

the

current

thread

or

the

current

thread.

The

lock

scope

for

a

lock

held

on

an

object

may

be

changed.

When

change

lock

scope

has

a

value

of

no,

the

following

lock

transfers

are

permitted:

v

v

If

lock

scope

specifies

transfer

thread

scoped

locks

and

no

template

extension

is

specified

then

the

initial

thread

of

the

receiving

process

identified

by

operand

1

is

used

for

the

transfer.

v

If

lock

scope

specifies

transfer

thread

scoped

locks

and

a

template

extension

is

specified

and

the

open

thread

handle

is

binary

zero,

then

the

initial

thread

of

the

receiving

process

identified

by

operand

1

is

used

for

the

transfer.

v

If

lock

scope

specifies

transfer

thread

scoped

locks

and

an

open

thread

handle

is

specified,

then

the

thread

associated

with

the

open

thread

handle

is

used

for

the

transfer.

The

receiving

process

identified

by

operand

1

is

ignored.

v

If

lock

scope

specifies

transfer

lock

scope

object

type

locks

and

the

lock

scope

object

type

is

process

containing

the

current

thread,

then

the

receiving

process

identified

by

operand

1

is

used

for

the

transfer.

The

open

thread

handle

is

ignored.

v

If

lock

scope

specifies

transfer

lock

scope

object

type

locks

and

the

lock

scope

object

type

is

transaction

control

structure

attached

to

the

current

thread,

then

a

template

value

invalid

(hex

3801)

exception

is

signaled.

When

change

lock

scope

has

a

value

of

no,

the

new

lock

scope

and

lock

receiver

object

type

fields

in

the

template

extension

are

ignored.

When

change

lock

scope

has

a

value

of

yes,

the

template

extension

must

be

present.

If

the

template

extension

is

not

present,

a

template

value

invalid

(hex

3801)

exception

is

signaled.

When

change

lock

scope

is

specified,

then

locks

may

either

be

transferred

between

the

transaction

control

structure

attached

to

the

current

thread

and

the

current

thread

or

the

process

containing

the

current

thread,

the

process

containing

the

current

thread

and

the

transaction

control

structure

attached

to

the

current

thread

or

the

current

thread,

or

the

current

thread

and

the

process

containing

the

current

thread

1208

iSeries:

Machine

Interface

Instructions

APIs

or

the

transaction

control

structure

attached

to

the

current

thread.

Table

1

(page

1209)

defines

the

permissible

lock

transfers

when

change

lock

scope

is

specified.

Table

1.

Change

Lock

Scope

Current

Lock

Scope

New

Lock

Scope

Process1

Transaction

control

structure2

Thread

Process3

Transaction

control

structure4

Process1

Ignored

Allowed

Allowed

Allowed

Transaction

control

structure2

Allowed

Ignored

Allowed

Allowed

Thread/Process3

Allowed

Allowed

Ignored

Allowed

Thread/Transaction

control

structure4

Allowed

Allowed

Allowed

Ignored

Notes:

1

Lock

scope

is

process

containing

the

current

thread.

2

Lock

scope

is

transaction

control

structure

attached

to

the

current

thread.

3

Lock

scope

is

thread

with

the

process

containing

the

current

thread

as

the

logical

parent

for

lock

conflict

checking.

4

Lock

scope

is

thread

with

the

transaction

control

structure

attached

to

the

current

thread

as

the

logical

parent

for

lock

conflict

checking.

When

change

lock

scope

has

a

value

of

yes,

the

receiving

process

identified

by

operand

1

and

the

open

thread

handle

are

ignored.

If

the

receiving

process

control

space

(operand

1)

does

not

reference

an

active

process,

the

process

control

space

not

associated

with

a

process

(hex

2802)

exception

is

signaled

and

no

locks

are

transferred.

If

the

receiving

thread

identified

by

the

open

thread

handle

does

not

reference

an

active

thread,

the

thread

handle

not

associated

with

an

active

thread

(hex

2804)

exception

is

signaled

and

no

locks

are

transferred.

If

either

lock

scope

object

type

or

lock

receiver

object

type

has

a

value

of

transaction

control

structure

attached

to

the

current

thread

and

a

transaction

control

structure

is

not

attached

to

the

current

thread,

an

object

not

available

to

process

(hex

2205)

exception

is

signaled.

If

lock

receiver

object

type

has

a

value

of

transaction

control

structure

attached

to

the

current

thread

and

the

transaction

control

structure

state

does

not

allow

objects

to

be

locked

on

behalf

of

the

transaction

control

structure,

a

object

not

eligible

for

operation

(hex

2204)

exception

is

signaled.

If

a

thread

contained

by

the

receiving

process

is

issuing

the

instruction

to

transfer

process

scoped

locks,

then

no

operation

is

performed,

and

no

exception

is

signaled.

If

the

thread

issuing

the

instruction

is

the

receiver

of

the

transferred

thread

scoped

locks,

then

no

operation

is

performed,

and

no

exception

is

signaled.

If

the

transaction

control

structure

attached

to

the

current

thread

is

the

receiver

of

transaction

control

structure

scoped

locks,

then

no

operation

is

performed,

and

no

exception

is

signaled.

Machine

Interface

Instructions

1209

The

lock

count

transferred

is

either

the

current

lock

count

held

by

the

transferring

process,

thread

or

transaction

control

structure

or

a

count

of

1.

If

the

receiving

process,

thread

or

transaction

control

structure

already

holds

an

identical

lock,

then

the

final

lock

count

is

the

sum

of

the

count

originally

held

by

the

receiving

process,

thread

or

transaction

control

structure

and

the

transferred

count.

Only

process

scoped

locks

currently

allocated

to

the

process

containing

the

thread

issuing

the

instruction

or

thread

scoped

locks

currently

allocated

to

the

thread

issuing

the

instruction

or

the

transaction

control

structure

attached

to

the

thread

issuing

the

instruction

can

be

transferred.

If

the

transfer

of

an

allocated

lock

would

result

in

the

violation

of

the

lock

allocation

rules,

then

the

lock

cannot

be

transferred.

An

implicit

lock

may

not

be

transferred.

No

locks

are

transferred

if

an

entry

in

the

template

is

invalid.

The

locks

specified

by

operand

2

are

transferred

sequentially

and

individually.

If

one

lock

cannot

be

transferred

because

the

process

or

thread

does

not

hold

the

indicated

lock

on

the

object,

then

exception

data

is

saved

to

identify

the

lock

that

could

not

be

transferred.

Processing

of

the

next

lock

to

be

transferred

continues.

If

any

lock

was

not

transferred,

the

invalid

object

lock

transfer

request

(hex

1A04)

exception

is

signaled.

When

an

object

lock

is

transferred,

the

transferring

thread

or

its

containing

process

or

the

transaction

control

structure

attached

to

the

thread

synchronously

loses

the

record

of

the

lock,

and

the

object

is

locked

to

the

receiving

process,

thread

or

transaction

control

structure.

However,

the

receiving

thread

obtains

the

lock

asynchronously

after

the

instruction

currently

being

executed

in

that

thread

is

completed.

If

the

target

is

a

process,

the

receiving

process

obtains

the

lock

asynchronously

after

the

instruction

currently

being

executed

in

the

initial

thread

of

that

process

is

completed.

The

receiving

transaction

control

structure

obtains

the

locks

before

the

completion

of

this

instruction.

If

the

transferring

process,

thread

or

transaction

control

structure

holds

multiple

locks

for

the

object,

any

lock

states

not

transferred

are

retained

in

the

process,

thread

or

transaction

control

structure.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

1210

iSeries:

Machine

Interface

Instructions

APIs

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1A04

Invalid

Object

Lock

Transfer

Request

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2204

Object

Not

Eligible

for

Operation

2205

Object

Not

Available

to

Process

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

Machine

Interface

Instructions

1211

28

Process/Thread

State

2802

Process

Control

Space

Not

Associated

with

a

Process

2804

Thread

Handle

Not

Associated

with

an

Active

Thread

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Translate

(XLATE)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

Operand

4

1094

Receiver

Source

Position

Replacement

Operand

1:

Character

variable

scalar.

Operand

2:

Character

scalar.

Operand

3:

Character

scalar

or

null.

Operand

4:

Character

scalar.

Description:

Selected

characters

in

the

string

value

of

the

source

operand

are

translated

into

a

different

encoding

and

placed

in

the

receiver

operand.

The

characters

selected

for

translation

and

the

character

values

they

are

translated

to

are

indicated

by

entries

in

the

position

and

replacement

strings.

All

the

operands

must

be

character

strings.

The

source

and

receiver

values

must

be

of

the

same

length.

The

position

and

replacement

operands

can

differ

in

length.

If

operand

3

is

null,

a

256-character

string

is

used,

ranging

in

value

from

hex

00

to

hex

FF

(EBCDIC

collating

sequence).

The

operation

begins

with

all

the

operands

left-adjusted

and

proceeds

character

by

character,

from

left

to

right

until

the

character

string

value

of

the

receiver

operand

is

completed.

Each

character

of

the

source

operand

value

is

compared

with

the

individual

characters

in

the

position

operand.

If

a

character

of

equal

value

does

not

exist

in

the

position

string,

the

source

character

is

placed

unchanged

in

the

receiver

operand.

If

a

character

of

equal

value

is

found

in

the

position

string,

the

corresponding

character

in

the

same

relative

location

within

the

replacement

string

is

placed

in

the

receiver

operand

as

the

source

character

translated

value.

If

the

replacement

string

is

shorter

than

the

position

string

and

a

match

of

a

source

to

position

string

character

occurs

for

which

there

is

no

corresponding

replacement

character,

the

source

character

is

placed

unchanged

in

the

receiver

operand.

If

the

replacement

string

is

longer

than

the

position

string,

the

rightmost

excess

characters

of

the

replacement

string

are

not

1212

iSeries:

Machine

Interface

Instructions

APIs

used

in

the

translation

operation

because

they

have

no

corresponding

position

string

characters.

If

a

character

in

the

position

string

is

duplicated,

the

first

occurrence

(leftmost)

is

used.

If

operands

overlap

but

do

not

share

all

of

the

same

bytes,

results

of

operations

performed

on

these

operands

are

not

predictable.

If

overlapped

operands

share

all

of

the

same

bytes,

the

results

are

predictable

when

direct

addressing

is

used.

If

indirect

addressing

is

used

(that

is,

based

operands,

parameters,

strings

with

variable

lengths,

and

arrays

with

variable

subscripts),

the

results

are

not

always

predictable.

The

receiver,

source,

position,

and

replacement

operands

can

be

variable

length

substring

compound

operands.

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

be

specified

for

all

of

the

operands

on

this

instruction.

The

effect

of

specifying

a

null

substring

reference

for

either

the

position

or

replacement

operands

is

that

the

source

operand

is

copied

to

the

receiver

with

no

change

in

value.

The

effect

of

specifying

a

null

substring

reference

for

both

the

receiver

and

the

source

operands

(they

must

have

the

same

length)

is

that

no

result

is

set.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C08

Length

Conformance

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

Machine

Interface

Instructions

1213

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Translate

Bytes

(XLATEB)

Bound

program

access

Built-in

number

for

XLATEB

is

24.

XLATEB

(

source_string

:

address

of

aggregate(*)

translate_table

:

address

of

aggregate(256)

translate_length

:

unsigned

binary(4)

value

which

specifies

the

length

of

the

source

string

to

translate

)

Description:

Translates

the

data

specified

by

source

string.

Translate

length

specifies

the

number

of

bytes

to

translate.

Each

byte

of

storage

is

modified

with

the

corresponding

entry

in

the

translation

table

specified

by

translate

table.

1214

iSeries:

Machine

Interface

Instructions

APIs

The

translation

table

is

exactly

256

bytes

in

length

and

specifies

the

translated

values

for

the

256

possible

byte

values.

The

results

are

undefined

if

the

table

is

less

than

256

bytes.

The

translate

table

and

the

source

string

should

not

overlap.

Otherwise,

the

results

are

undefined.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Translate

Bytes

One

Byte

at

a

Time

(XLATEB1)

Bound

program

access

Built-in

number

for

XLATEB1

is

414.

XLATEB1

(

receiver

:

address

of

aggregate(*)

for

the

results

of

the

translation

source_string

:

address

of

the

source

bytes

to

translate

translate_table

:

address

of

aggregate(256)

translate_length

:

unsigned

binary(4)

value

which

specifies

the

number

of

bytes

to

translate

)

Description:

Translates

the

data

specified

by

source

string

into

the

receiver.

Translate

length

specifies

the

number

of

bytes

to

translate.

Each

byte

of

the

source

string

is

translated

using

the

corresponding

entry

in

the

translation

table

specified

by

translate

table.

Contrast

this

operation

with

XLATEB,

which

does

not

support

overlapping

operands.

Bytes

are

translated

as

follows:

Machine

Interface

Instructions

1215

v

v

The

source

byte

value

is

used

as

an

offset

and

added

to

the

location

of

translate

table.

v

The

byte

value

contained

in

the

offset

location

is

the

translated

byte.

This

value

is

copied

to

the

receiver

in

the

same

relative

position

as

the

original

byte

value

within

the

source

string.

The

translation

table

is

exactly

256

bytes

in

length

and

specifies

the

translated

values

for

the

256

possible

byte

values.

The

results

are

undefined

if

the

table

is

less

than

256

bytes.

If

receiver

overlaps

with

source

string

and/or

translate

table,

the

overlapped

operands

are

updated

for

every

byte

translated.

The

operation

proceeds

from

left

to

right,

one

byte

at

a

time.

The

following

example

shows

the

results

of

an

overlapped

operands

translate

operation.

Receiver,

source

string,

and

translate

table

are

coincident,

with

a

value

of

hex

050403020103.

Hex

050403020103

-

Initial

value

Hex

030403020103

-

After

the

1st

character

is

translated

Hex

030103020103

-

After

the

2nd

character

is

translated

Hex

030102020103

-

After

the

3rd

character

is

translated

Hex

030102020103

-

After

the

4th

character

is

translated

Hex

030102020103

-

After

the

5th

character

is

translated

Hex

030102020102

-

After

the

6th

character,

the

final

result

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

08

Argument/Parameter

0801

Parameter

Reference

Violation

22

Object

Access

2202

Object

Destroyed

220B

Object

Not

Available

1216

iSeries:

Machine

Interface

Instructions

APIs

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Translate

Multiple

Bytes

(XLATEMB)

Op

Code

(Hex)

Operand

1

1071

Translation

template

Operand

1:

Space

pointer.

Bound

program

access

Built-in

number

for

XLATEMB

is

390.

XLATEMB

(

translation_template

:

address

)

Description:

The

source

data

string

specified

in

the

operand

1

translation

template

is

converted

starting

with

the

left-most

input

byte

using

the

function

byte,

control

map

1,

control

map

2,

and

the

verification

map.

The

converted

data

string

is

returned

in

the

receiver

space

specified

in

the

operand

1

translation

template.

Terminology:

ASCII

Abbreviation

for

American

National

Standard

Code

for

Information

Interchange.

Control

map

A

special

layout

of

bytes

used

to

control

data

conversion.

The

different

types

of

control

maps

will

be

discussed

later

in

this

document.

Code

page

A

collection

of

characters

assigned

to

code

points.

Code

points

A

unique

bit-pattern

assigned

to

each

graphic

character,

to

be

used

by

the

computer

when

entering,

storing,

viewing,

printing,

or

exchanging

information.

Double

Byte

Character

Set

(DBCS)

A

set

of

characters

in

which

each

character

is

represented

by

a

2-byte

code.

Endian

The

order

of

the

bytes

in

memory.

On

big

endian

systems

the

most

significant

value

is

stored

in

the

lowest

address.

On

little

endian

systems

the

least

significant

value

is

stored

in

the

lowest

address.

For

example,

take

the

integer

value

13488.

In

big

endian

it

is

stored

as

hex

’34B0’

and

on

little

endian

it

would

be

stored

as

hex

’B034’.

The

machine

by

default

is

big

endian.

EBCDIC

Abbreviation

for

extended

binary

coded

decimal

interchange

code.

Graphic

Term

used

to

designate

pure

DBCS

data.

ISO/IEC

10646

The

international

standard

used

to

represent

most

of

the

world’s

written

languages

by

assigning

multiple

bytes

for

each

character.

This

standard

was

written

by

the

International

Organization

for

Standardization

(ISO)

and

the

International

Electrotechnical

Commission

(IEC).

Mixed

data

Data

that

contains

single-byte

and

double-byte

encoding.

Machine

Interface

Instructions

1217

Well

formed

mixed

data

Mixed

data

where

DBCS

data

is

bracketed

by

shift-out

(SO)

and

shift-in

(SI)

controls.

Octet

An

ordered

sequence

of

eight

bits,

considered

as

a

unit.

Single

Byte

Character

Set

(SBCS)

A

set

of

characters

in

which

each

character

is

represented

by

a

1-byte

code.

Substitution

Value

A

single-byte

or

multiple-byte

code

to

be

output

from

a

conversion

when

the

input

character

is

not

found

in

a

ward

control

block

or

ward.

UCS-2

Level

1

Defines

the

form

and

level

of

UCS.

UCS-2

is

a

16-bit

form

of

UCS.

Level

1

is

an

implementation

level

that

does

not

support

combining

of

characters.

Every

UCS-2

Level

1

character

must

be

made

up

of

only

2

bytes.

UTF-16

Defines

a

form

and

level

of

UCS.

UTF-16

allows

access

to

63K

characters

as

single

UCS

16-bit

units.

It

can

access

an

additional

1

million

characters

by

a

mechanism

known

as

surrogate

pairs.

Two

ranges

of

UCS

code

values

are

reserved

for

the

high

(first)

and

low

(second)

values

of

these

pairs.

The

high

range

is

from

hex

D800

to

hex

DBFF

and

the

low

range

is

from

hex

DC00

to

hex

DFFF.

A

properly

formed

surrogate

requires

a

high

range

code

value

followed

by

a

low

range

value

to

form

a

valid

character.

UTF-8

UTF-8

is

the

Unicode

Transformation

Format

that

serializes

a

Unicode

code

point

as

a

sequence

of

one

to

four

bytes.

These

sequences

are

mathematically

equivalent

to

the

set

of

UTF-16

characters.

Universal

Multiple-Octet

Coded

Character

Set

(UCS)

Character

set

defined

by

IS0/IEC

standard

10646.

Ward

A

set

of

256

single-byte

or

multiple-byte

codes

where

all

of

the

codes

share

a

common

first

hex

input

byte

when

converting

from

a

2-byte

code.

Ward

control

block

A

set

of

256

2-byte

values

within

a

control

map.

The

2-byte

values

provide

the

offsets

from

the

start

of

the

control

map

space

to

the

beginning

of

all

of

the

wards

within

the

control

map.

Operand

1:

Operand

1

is

a

space

pointer

to

a

128-byte

translation

template

aligned

on

a

16-byte

boundary.

If

the

translation

template

is

not

aligned

on

a

16-byte

boundary,

boundary

alignment

(hex

0602)

exception

is

signaled.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Function

Bin(2)

2

2

Control

flags

Char(2)

2

2

Control

map

type

Bit

0

0

=

Control

map

type

D

not

supplied.

1

=

Control

map

type

D

supplied.

2

2

Substitution

check

Bit

1

0

=

Do

not

check

for

substitution.

1

=

Check

for

substitution

on

conversion

from

UCS.

2

2

Override

default

multiple-byte

substitution

value

Bit

2

0

=

Use

the

default

UCS-2

Level

1

multiple-byte

substitution

value.

1

=

Use

the

specified

multiple-byte

substitution

value.

2

2

Ward

transparency

Bit

3

1218

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Use

the

multiple-byte

substitution

value

when

converting

characters

in

an

empty

ward.

1

=

Do

not

convert

characters

in

an

empty

ward.

2

2

Well

formed

mixed

data

output

Bit

4

0

=

Do

not

ensure

well

formed

mixed

data

on

output

1

=

Ensure

well

formed

mixed

data

on

output

2

2

Caching

requested

Bit

5

0

=

Do

not

request

caching

for

function

hex

0100

requests

1

=

Do

request

caching

for

function

hex

0100

requests

2

2

Endian

mode

Bit

6

0

=

Handle

the

input

and

output

of

Unicode

data

as

big

endian

1

=

Handle

the

input

and

output

of

Unicode

data

as

little

endian

2

2

UTF-16

casing

map

Bit

7

0

=

Use

UCS-2

Level

1

maps

for

casing

requests

1

=

Use

UTF-16

maps

for

casing

requests

2

2

Reserved

(binary

0)

Bits

8-15

+

4

4

Source

length

Bin(4)

8

8

Receiver

buffer

length

Bin(4)

12

C

Receiver

converted

data

length

Bin(4)

16

10

Source

range

Char(4)

16

10

Range

1

lower

limit

Bits

0-7

16

10

Range

1

upper

limit

Bits

8-15

16

10

Range

2

lower

limit

Bits

16-23

16

10

Range

2

upper

limit

Bits

24-31

20

14

Single-byte

substitution

value

Char(1)

21

15

Multiple-byte

substitution

value

Char(2)

23

17

Reserved

(binary

0)

Char(41)

+

64

40

Source

Space

pointer

80

50

Receiver

Space

pointer

96

60

Verification

pointer

Space

pointer

112

70

Control

map

Space

pointer

128

80

—-

End

—-

Machine

Interface

Instructions

1219

Note:

Fields

annotated

with

a

plus

sign

(+)

are

reserved

fields.

A

reserved

field

value

of

non-zero

results

in

the

signaling

of

the

template

value

invalid

(hex

3801)

exception.

1220

iSeries:

Machine

Interface

Instructions

APIs

Translation

Template

Field

Descriptions:

Function

The

function

selected

determines

the

type

of

conversion

to

be

performed.

Table

1

(page

1221)

outlines

the

types

of

conversions

that

may

be

performed

and

the

operands

required

for

each

function.

The

Table

1

(page

1221)

columns

are

defined

as

follows:

v

v

Function

-

The

function

selected.

v

Control

map

type

-

The

type

of

control

map

required

as

input

for

the

given

function.

v

Verification

map

allowed

-

A

verification

map

is

allowed

for

the

given

function.

A

verification

map

is

never

required.

v

Source

data

type

-

The

source

data

type

required

for

the

given

function.

v

Receiver

data

type

-

The

receiver

data

type

returned

for

the

given

function.

v

Estimated

required

buffer

size

-

Value

used

to

determine

the

actual

required

receiver

buffer

length.

Multiply

the

estimated

required

buffer

size

value

by

the

source

length

to

get

the

required

receiver

buffer

length.

If

this

value

is

less

than

the

minimum

buffer

size,

use

the

minimum

buffer

size

value

for

the

receiver

buffer

length.

Table

1.

XLATEMB

supported

functions

Function

(hex)

Control

map

type

Verification

map

allowed

Source

data

type

Receiver

data

type

Estimated

required

buffer

size

0001

A

or

D

No

SBCS

UCS-2/UTF-16

2

0002

B

or

D

Yes

UCS-2/UTF-16

SBCS

.5

0003

C

or

D

No

Graphic

UCS-2/UTF-16

1

0004

C

or

D

Yes

UCS-2/UTF-16

Graphic

1

0005

C

or

D

No

Mixed

EBCDIC

UCS-2/UTF-16

2

0006

C

or

D

Yes

UCS-2/UTF-16

Mixed

EBCDIC

2

0007

C

No

Mixed

ASCII

UCS-2/UTF-16

2

Machine

Interface

Instructions

1221

Control

flags

v

v

Control

map

type:

Determines

which

control

map

type

will

be

supplied

for

the

specified

function.

This

field

is

verified

against

the

function

specified

when

a

type

Dcontrol

map

is

specified.

A

control

map

type

of

D

specified

with

an

incorrect

function

results

in

the

signaling

of

the

template

value

invalid

(hex

3801)

exception.

Refer

to

Table

1

(page

1221)

for

details

on

which

functions

require

this

flag

to

be

set.

v

Substitution

check:

Check

for

substitution

on

conversion

from

UCS-2

Level

1

or

UTF-16

or

UTF-8

data.

Substitution

check

is

only

supported

for

functions

0002,

0004,

0006,

0008,

000C,

0034,

0036,

and

0038.

When

a

substitution

character

is

encountered,

a

substitution

character

used

(hex

0C20)

exception

is

signaled

at

instruction

completion.

Complete

results

are

placed

in

the

receiver

and

receiver

converted

data

length

fields.

The

number

of

substitutions

in

the

receiver

data

will

be

stored

in

the

number

of

substitutions

field

of

the

exception

data

for

the

substitution

character

used

(hex

0C20)

exception.

v

Override

default

multiple-byte

substitution

value:

Determines

which

multiple-byte

substitution

value

will

be

placed

into

the

receiver

space

when

using

a

type

C

or

type

D

control

map

and

substitution

is

required

on

conversion

to

UCS-2

Level

1

data.

Override

default

multiple-byte

substitution

value

is

only

supported

for

functions

0003,

0005,

and

0007.

When

substitution

is

required

and

the

function

is

0003,

0005,

or

0007,

the

multiple-byte

substitution

value

will

be

one

of

the

following:

–

–

If

the

override

default

multiple-byte

substitution

value

is

0,

the

default

UCS-2

Level

1

substitution

value

of

hex

FFFD

will

be

used.

–

If

the

override

default

multiple-byte

substitution

value

is

1,

the

multiple-byte

substitution

value

specified

in

the

template

will

be

used.

Note:

The

override

default

multiple-byte

substitution

value

field

must

be

set

to

0

for

functions

0001,

0002,

0004,

0006,

0008,

0009,

000A,

000B,

000C,

0033,

0034,

0035,

0036,

0037,

0038,

003B,

003C,

00FE,

00FF

and

0100

or

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

v

Ward

transparency:

Determines

whether

source

characters

in

an

empty

ward

are

converted

using

a

multiple-byte

substitution

value,

or

moved

to

the

receiver

space

transparently

with

no

conversion

taking

place.

Ward

transparency

is

only

supported

for

functions

0003,

0004,

0005,

and

0007.

If

the

ward

transparency

field

is

binary

1,

then

the

multiple-byte

substitution

value

is

not

used

and

the

override

default

multiple-byte

substitution

value

field

is

ignored.

Note:

The

ward

transparency

field

must

be

set

to

binary

0

for

functions

0001,

0002,

0006,

0008,

0009,

000A,

000B,

000C,0033,

0034,

0035,

0036,

0037,

0038,

003B,

003C,

00FE,

00FF

and

0100

or

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

When

using

the

ward

transparency

feature

with

functions

0005

and

0007,

the

first

entry

in

the

control

map

ward

control

block

must

be

non-zero,

or

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

v

Well

formed

mixed

data

output:

Determines

whether

a

DBCS

character

in

the

last

two

bytes

of

the

receiver

space

(as

defined

by

receiver

buffer

size)

should

be

replaced

by

a

shift-in

control.

Note:

The

well

formed

mixed

data

output

field

must

be

set

to

0

for

function

0100

or

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

Note:

This

control

is

only

applied

where

data

truncation

is

necessary.

Mixed

data

output

will

always

be

well

formed

if

the

receiver

space

is

large

enough.

1222

iSeries:

Machine

Interface

Instructions

APIs

Source

length

The

length

of

the

source

data

contained

in

the

space

addressed

by

the

source

space

pointer.

A

length

value

of

less

than

1

results

in

the

signaling

of

the

template

value

invalid

(hex

3801)

exception.

Receiver

buffer

length

The

length

of

the

receiver

space

pointed

to

by

the

receiver

space

pointer.

A

length

value

of

less

than

1

results

in

the

signaling

of

the

template

value

invalid

(hex

3801)

exception.

Receiver

converted

data

length

The

length

of

the

data

placed

in

the

receiver

space

after

conversion.

This

field

is

set

by

the

machine

and

will

always

be

less

than

or

equal

to

the

value

specified

for

receiver

buffer

length.

Source

range

The

range

of

the

double-byte

content

of

the

mixed

ASCII

source

input

data.

Source

range

is

only

used

with

function

0007.

The

source

range

field

is

divided

into

2

ranges,

range

1

and

range

2.

Each

range

has

a

1

byte

lower

and

1

byte

upper

limit.

Some

actual

working

examples

of

source

ranges

are

defined

below:

Source

Ranges

Supported

Language

Hex

819FE0FC

Japanese

Hex

81BF0000

Korean

Hex

81FC0000

Simplified

Chinese

Hex

81FC0000

Traditional

Chinese

Hex

8FFE0000

Republic

of

Korea

National

Standard

Note:

A

template

value

invalid

(hex

3801)

exception

will

be

signaled

if

one

of

the

following

occurs:

v

v

If

the

function

is

0007

and

range

1

is

set

to

nulls.

v

If

the

function

is

0007

and

the

upper

limit

is

less

than

the

lower

limit

for

either

range

1

or

range

2.

If

range

2

is

nulls

then

it

will

not

be

used

and

no

exception

will

be

signaled.

Note:

The

source

range

field

must

be

set

to

binary

0

for

any

function

except

function

0007

or

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

Single-byte

substitution

value

A

single-byte

value

to

be

output

from

a

conversion

when

the

following

occurs:

v

v

A

type

C

or

type

D

control

map

ward

control

block

entry

is

hex

zeros

and

single-byte

data

is

being

processed.

v

A

type

B

control

mapward

control

block

entry

is

hex

zeros.

Note:

The

single-byte

substitution

value

must

be

set

to

hex

00

for

functions

0001,

0003,

0004,

0005,

0007,

0009,

000A,

000B,

000C,

0033,

0035,

0036,

0037,

003B,

003C,

00FE,

00FF

and

0100

or

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

Machine

Interface

Instructions

1223

Multiple-byte

substitution

value

A

2-byte

value

to

be

output

from

a

conversion

when

a

type

C

or

type

D

control

map

ward

control

block

entry

is

hex

zeros

and

multiple-byte

data

is

being

processed.

The

multiple-byte

substitution

value

is

ignored

if

the

ward

transparency

feature

is

being

used.

Note:

The

multiple-byte

substitution

value

must

be

set

to

hex

0000

for

functions

0001,

0002,

0009,

000A,

000B,

000C,

0033,

0034,

0035,

0037,

003B,

003C,

00FE,

00FF

and

0100

or

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

If

the

function

is

0003,

0005,

or

0007,

and

the

override

default

multiple-byte

substitution

value

field

is

0,

then

the

multiple-byte

substitution

value

must

be

set

to

hex

0000

or

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

Source

A

space

pointer

to

the

source

data.

The

length

is

defined

by

the

source

length

field.

Receiver

A

space

pointer

to

the

receiver

data

buffer.

The

number

of

bytes

available

is

specified

by

the

receiver

buffer

length

field.

If

an

error

occurs

during

conversion

this

buffer

will

contain

the

data

converted

up

to

the

point

of

the

error.

The

length

of

the

data

converted

is

stored

in

the

receiver

converted

data

length

field.

Note:

Undefined

results

can

occur

if

the

storage

locations

specified

by

source

and

receiver

overlap.

1224

iSeries:

Machine

Interface

Instructions

APIs

Verification

pointer

(optional)

A

space

pointer

to

a

verification

map

to

be

used

to

verify

UCS-2

Level

1

source

data.

The

verification

map

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Map

size

UBin(2)

2

2

Verification

map

entry

Char(2)

4

4

—-

End

—-

The

map

size

is

a

hex

value

that

indicates

the

number

of

2-byte

verification

map

entries

that

exist

in

the

map.

Each

verification

map

entry

contains

one

UCS-2

Level

1

code.

Note:

The

number

of

2-byte

verification

map

entries

is

determined

by

the

number

specified

in

the

map

size

field.
If

a

verification

map

is

specified,

it

is

used

to

verify

that

the

UCS-2

Level

1

data

in

the

source

input

is

correct.

The

verification

map

contains

a

list

of

valid

UCS-2

Level

1

codes.

The

map

values

must

be

encoded

in

UCS-2

Level

1

and

must

be

sorted

in

ascending

numerical

order.

Failure

to

sort

the

verification

map

will

result

in

unpredictable

results.

Refer

to

Table

1

(page

1221)

for

specific

function

codes

which

support

use

of

the

verification

map.

If

any

UCS-2

Level

1

code

is

not

found

in

the

verification

map

during

the

conversion,

a

source

verification

error

(hex

0C21)

exception

is

signaled.

If

unused,

the

verification

pointer

must

be

a

null

pointer

value.

This

ensures

no

verification

takes

place.

Note:

The

verification

pointer

field

must

be

set

to

a

null

pointer

value

for

functions

0033,

0034,

0035,

0036,

0037,

0038,

003B,

003C,

00FE,

00FF

and

0100

or

a

template

value

invalid

(hex

3801)

exception

will

be

signaled.

The

following

is

an

example

of

a

verification

map:

0011009A0100010101020103010401050106010701080109010A010B010C010D03B103B2

Table

2

(page

1225)

shows

the

layout

of

the

example

verification

map

shown

above

with

offsets

and

entry

number

included

for

clarity.

The

first

2-byte

value,

at

offset

hex

0000,

indicates

the

number

of

2-byte

UCS-2

Level

1

codes

in

the

remainder

of

the

map.

In

this

example,

the

first

value

in

the

map

is

hex

0011

(decimal

17),

indicating

that

there

are

17

2-byte

codes

in

the

remainder

of

the

map.

Table

2.

Verification

map

layout

Offset

Entry

Number

Verification

Map

Value

0000

0011

(

Number

of

entries

in

verification

map.

)

0002

1

009A

0004

2

0100

Machine

Interface

Instructions

1225

Control

map

A

space

pointer

to

a

control

map

to

be

used

in

the

conversion

of

the

source

data.

Refer

to

Table

1

(page

1221)

for

information

on

types

of

maps

required

for

the

various

functions.

If

unused,

the

control

map

pointer

must

be

a

null

pointer

value.

1226

iSeries:

Machine

Interface

Instructions

APIs

Control

map

types

The

following

list

explains

the

different

types

of

control

maps:

Type

A

—

Used

to

map

SBCS

data

to

UCS-2

Level

1

multiple-byte

data.

The

type

A

control

map

has

the

following

format:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Type

A

control

map

[256]

Char(2)

A

type

A

control

map

consists

of

256

2-byte

codes.

0

0

Type

A

map

entries

Char(2)

The

type

A

control

map

entries

are

indexed

by

the

hex

input

byte.

Hex

input

values

can

range

from

00

to

FF

for

a

total

of

256

2-byte

values.

All

entries

are

required

to

be

fully

populated

for

the

index

range

of

hex

00

to

hex

FF.

To

ensure

proper

conversion,

unused

entries

should

be

set

to

some

value.

512

200

—-

End

—-

Note:

The

type

A

control

map

entry

field

is

repeated

256

times

to

give

the

byte

total

of

512.

The

following

is

a

partial

example

of

a

type

A

control

map:

0100010101020103010401050106010701080109010A010B010C...01FE01FF

Table

3

(page

1227)

shows

a

partial

layout

of

the

example

type

A

control

map

shown

above

with

hex

input

values

and

offsets

included

for

clarity.

To

find

the

result

with

a

3-byte

input

value

of

hex

0C0805,

do

the

following:

1.

Use

the

first

input

byte,

hex

0C,

to

index

into

the

map.

2.

At

offset

hex

0018,

the

control

map

value

is

hex

010C.

3.

Now

index

into

the

space,

using

the

second

input

byte

of

hex

08.

4.

At

offset

hex

0010,

the

control

map

value

is

hex

0108.

5.

Now

index

into

the

space,

using

the

third

input

byte

of

hex

05.

6.

At

offset

hex

000A,

the

control

map

value

is

hex

0105.

7.

The

result

placed

in

the

receiver

data

buffer

is

hex

010C01080105.

Table

3.

Type

A

map

layout

Hex

Input

Value

Offset

Control

Map

Value

00

0000

Machine

Interface

Instructions

1227

Template

Value

Invalid

exception

reason

codes:

This

instruction

supports

setting

of

the

optional

reason

code

field

in

the

exception

data

which

can

be

retrieved

when

the

template

value

invalid

(hex

3801)

exception

is

signaled.

The

template

value

invalid

reason

codes

are

defined

as

follows:

Reason

Code

Description

Hex

0001

Template

value

is

not

valid.

The

template

field

in

error

can

be

determined

by

using

the

offset,

stored

in

the

template

offset

information

of

the

exception

data

for

the

template

value

invalid

(hex

3801)

exception,

to

offset

from

the

start

of

the

operand

1

translation

template

to

the

start

of

the

field

in

error.

Hex

0002

Unsupported

function

selected.

No

conversion

will

occur.

Hex

0004

The

specified

type

D

control

map

is

not

supported.

No

conversion

will

occur.

Hex

0005

The

source

range

field

was

specified

incorrectly

for

one

of

the

following

conditions:

v

v

Range

1

is

set

to

nulls.

v

The

upper

limit

is

less

than

the

lower

limit

for

either

range

1

or

range

2.

Note:

Reason

code

hex

0005

can

only

occur

when

function

0007

is

selected.

Hex

0006

The

specified

type

E

control

map

is

invalid.

No

conversion

will

occur.

XLATEMB

Examples:

Example

1:

Convert

hex

0B05

using

XLATEMB

function

01

(convert

from

SBCS

to

UCS-2

Level

1).

This

example

uses

the

type

A

control

map

in

Table

3

(page

1227).

To

find

the

result:

1.

Use

the

first

byte

of

the

input

data,

hex

0B,

to

index

(2-bytes

for

each

index

value)

into

the

type

A

map.

2.

At

offset

hex

0016,

the

corresponding

UCS-2

Level

1

value

is

hex

010B.

3.

Use

the

second

byte

of

the

input

data,

hex

05,

to

index

(2-bytes

for

each

index

value)

into

the

type

A

map.

4.

At

offset

hex

000A,

the

corresponding

UCS-2

Level

1

value

hex

0105

is

output.

5.

The

instruction

completes

with

a

value

of

hex

010B0105

placed

in

the

receiver

and

a

hex

0004

will

be

placed

in

the

receiver

converted

data

length.

Example

2:

Convert

hex

03B1009A

using

function

0002

(convert

from

UCS-2

Level

1

to

SBCS).

This

example

uses

the

verification

map

in

Table

2

(page

1225)

andtype

B

map

in

Table

4

(page

1227).

To

find

the

result:

1.

The

first

UCS-2

Level

1

input

value,

hex

03B1,

is

compared

against

the

verification

map.

Since

the

value

is

found

at

offset

hex

0020

in

the

verification

map,

processing

will

continue.

2.

Use

the

first

byte

of

the

input

data,

hex

03,

to

index

into

the

type

B

control

map

ward

control

block

starting

at

offset

hex

0000.

3.

At

offset

hex

0006,

the

ward

control

block

entry

value

is

hex

0300.

4.

Use

hex

0300

to

offset

from

the

start

of

the

control

map

to

the

start

of

the

ward

detail

for

ward

03.

5.

Use

the

second

input

byte,

hex

B1,

to

index

into

the

ward

detail

for

ward

03.

6.

At

offset

hex

03B1,

the

corresponding

SBCS

value

hex

8A

is

output.

7.

The

second

UCS-2

Level

1

input

value,

hex

009A,

will

be

compared

against

the

verification

map.

Since

the

value

is

found

at

offset

hex

0002

in

the

verification

map,

processing

will

continue.

8.

Use

the

first

byte

of

the

input

data,

hex

00,

to

index

into

the

type

B

control

map

ward

control

block,

starting

at

offset

hex

0000.

9.

At

offset

hex

0000,

the

ward

control

block

entry

value

is

hex

0200.

10.

Use

hex

0200

to

offset

from

the

start

of

the

control

map

to

the

start

of

the

ward

detail

for

ward

00.

11.

Use

the

second

input

byte,

hex

9A,

to

index

into

the

ward

detail

for

ward

00.

1228

iSeries:

Machine

Interface

Instructions

APIs

12.

At

offset

hex

029A,

the

corresponding

SBCS

value

hex

3A

is

output.

13.

The

final

output

of

hex

8A3A

is

placed

in

the

receiver

and

a

hex

0002

will

be

placed

in

the

receiver

converted

data

length.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

As

appropriate

for

the

space

objects

pointed

to

by

the

operand

1

template.

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

0A

Authorization

0A01

Unauthorized

for

Operation

0C

Computation

0C20

Substitution

Character

Used

0C21

Source

Verification

Error

0C22

Unpaired

Shift

Control

0C23

Source

Information

Error

0C24

Receiver

Buffer

Length

Exceeded

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

Machine

Interface

Instructions

1229

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2403

Pointer

Addressing

Invalid

Object

Type

32

Scalar

Specification

3203

Scalar

Value

Invalid

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Translate

with

Table

(XLATEWT)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

109F

Receiver

Source

Table

Operand

1:

Character

variable

scalar.

Operand

2:

Character

scalar.

Operand

3:

Character

scalar.

Description:

The

source

characters

are

translated

under

control

of

the

translate

table

and

placed

in

the

receiver.

The

operation

begins

with

the

leftmost

character

of

operand

2

and

proceeds

character-by-
character,

left-to-right.

Characters

are

translated

as

follows:

v

v

The

source

character

is

used

as

an

offset

and

added

to

the

location

of

operand

3.

v

The

character

contained

in

the

offset

location

is

the

translated

character.

This

character

is

copied

to

the

receiver

in

the

same

relative

position

as

the

original

character

in

the

source

string.

1230

iSeries:

Machine

Interface

Instructions

APIs

If

operand

3

is

less

than

256

bytes

long,

the

character

in

the

source

may

specify

an

offset

beyond

the

end

of

operand

3.

If

operand

2

is

longer

than

operand

1,

then

only

the

leftmost

portion

of

operand

2,

equal

to

the

length

of

operand

1,

is

translated.

If

operand

2

is

shorter

than

operand

1,

then

only

the

leftmost

portion

of

operand

1,

equal

to

the

length

of

operand

2,

is

changed.

The

remaining

portion

of

operand

1

is

unchanged.

If

operand

1

overlaps

with

operand

2

and/or

3,

the

overlapped

operands

are

updated

for

every

character

translated.

The

operation

proceeds

from

left

to

right,

one

character

at

a

time.

The

following

example

shows

the

results

of

an

overlapped

operands

translate

operation.

Operands

1,

2,

and

3

have

the

same

coincident

character

string

with

a

value

of

hex

050403020103.

Hex

050403020103-Initial

value

Hex

030403020103-After

the

1st

character

is

translated

Hex

030103020103-After

the

2nd

character

is

translated

Hex

030102020103-After

the

3rd

character

is

translated

Hex

030102020103-After

the

4th

character

is

translated

Hex

030102020103-After

the

5th

character

is

translated

Hex

030102020102-After

the

6th

character,

the

final

result

Note

that

the

instruction

does

not

use

the

length

specified

for

the

table

operand

to

constrain

access

of

the

bytes

addressed

by

the

table

operand.

If

operand

3

is

less

than

256

characters

long,

and

a

source

character

specifies

an

offset

beyond

the

end

of

operand

3,

the

result

characters

are

obtained

from

byte

locations

in

the

space

following

operand

3.

If

that

portion

of

the

space

is

not

currently

allocated,

a

space

addressing

violation

(hex

0601)

exception

is

signaled.

If

operand

3

is

a

constant

with

a

length

less

than

256,

source

characters

specifying

offsets

greater

than

or

equal

to

the

length

of

the

constant

are

translated

into

unpredictable

characters.

All

of

the

operands

support

variable

length

substring

compound

scalars.

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

be

specified

for

all

of

the

operands

on

this

instruction.

Specifying

a

null

substring

reference

for

the

table

operand

does

not

affect

the

operation

of

the

instruction.

In

this

case,

the

bytes

addressed

by

the

table

operand

are

still

accessed

as

described

above.

This

is

due

to

the

definition

of

the

function

of

this

instruction

which

does

not

use

the

length

specified

for

the

table

operand

to

constrain

access

of

the

bytes

addressed

by

the

table

operand.

The

effect

of

specifying

a

null

substring

reference

for

either

or

both

of

the

receiver

and

the

source

operands

is

that

no

result

is

set.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Machine

Interface

Instructions

1231

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

1232

iSeries:

Machine

Interface

Instructions

APIs

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Translate

with

Table

and

DBCS

Skip

(XLATWTDS)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

1077

Target

Length

Table

Operand

1:

Character

variable

scalar.

Operand

2:

Binary(4)

scalar.

Operand

3:

Character

scalar.

Bound

program

access

Built-in

number

for

XLATWTDS

is

148.

XLATWTDS

(

target

:

address

length

:

address

of

unsigned

binary(4)

table

:

address

)

Description:

The

simple

(single

byte)

characters

in

the

target

are

translated

under

control

of

the

translate

table,

for

the

length

defined

by

operand

2.

The

extended

(double

byte)

character

portions

of

the

target

are

bypassed

and

not

translated.

The

operation

begins

with

the

leftmost

character

of

operand

1

and

proceeds

character-by-character,

left-to-right,

skipping

over

any

Double

byte

character

(DBCS)

data

portions.

The

target,

operand

1,

should

have

double

byte

character

data

surrounded

by

a

shift

out

control

character

(SO

=

hex

0E)

and

a

shift

in

control

character

(SI=

hex

0F).

Once

a

SO

character

is

encountered,

the

translating

of

single

byte

characters

halts.

The

operation

will

then

proceed

double

byte

character-by-double

byte

character

until

a

SI

character

is

encountered.

This

shift

in

character

is

then

used

to

restart

the

translating

of

single

byte

characters.

The

length

operand,

operand

2,

is

the

number

of

bytes

and

must

contain

a

value

between

1

and

32,767.

For

length

values

outside

this

range

a

scalar

value

invalid

(hex

3203)

exception

is

signaled.

Single

byte

characters

are

translated

as

follows:

v

v

The

target

character

is

used

as

an

offset

and

added

to

the

location

of

operand

3.

v

The

character

contained

at

the

offset

location

of

operand

3

is

the

translated

character.

This

character

replaces

the

original

character

in

the

target.

The

following

example

shows

the

step-by-step

results

of

this

translate

operation.

The

translate

table

for

this

example

has

the

following

hex

value:

C3D406C5D504C1C2C4C5C6C7C8C9C1C6

Hex

05040ED2D2E1E10F03

-

Initial

target

value

Hex

04040ED2D2E1E10F03

-

After

the

1st

character

is

translated

Machine

Interface

Instructions

1233

Hex

04D50ED2D2E1E10F03

-

After

the

2nd

character

is

translated

Hex

04D50ED2D2E1E10F03

-

SO

character

encountered,

skip

the

DBCS

portion

Hex

04D50ED2D2E1E10F03

-

Resume

translating

after

SI

control

character

Hex

04D50ED2D2E1E10FC5

-

Translate

9th

character

Hex

04D50ED2D2E1E10FC5

-

Final

target

value

The

translate

table,

operand

3,

is

assumed

to

be

256

bytes

long.

If

the

table

is

less

than

256

characters

long,

and

a

target

character

specifies

an

offset

beyond

the

end

of

the

table,

the

resultant

characters

are

obtained

from

byte

locations

in

the

space

following

translate

table.

If

that

portion

of

the

space

is

not

currently

allocated,

a

space

addressing

violation

(hex

0601)

exception

is

signaled.

This

operation

only

translates

the

target

string

and

does

not

validate

the

double

byte

portions

of

the

target.

For

example,

if

a

DBCS

portion

of

the

target

string

is

preceded

by

the

Shift

Out

control

character,

but

missing

the

closing

Shift

In

character,

then

an

invalid

extended

character

data

(hex

0C12)

exception

will

NOT

be

signaled.

However,

the

Copy

Extended

Characters

Left-Adjusted

With

Pad

(CPYECLAP)

instruction

can

be

used

to

validate

extended

character

data,

if

necessary.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1234

iSeries:

Machine

Interface

Instructions

APIs

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Trim

Length

(TRIML)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

10A7

Receiver

length

Source

string

Trim

character

Operand

1:

Numeric

variable

scalar.

Operand

2:

Character

scalar.

Operand

3:

Character(1)

scalar.

Description:

The

operation

determines

the

resultant

length

of

operand

2

after

the

character

specified

by

operand

3

has

been

trimmed

from

the

end

of

operand

2.

The

resulting

length

is

stored

in

operand

1.

Operand

2

is

trimmed

from

the

end

as

follows:

if

the

rightmost

(last)

character

of

operand

2

is

equal

to

Machine

Interface

Instructions

1235

the

character

specified

by

operand

3,

the

length

of

the

trimmed

operand

2

string

is

reduced

by

1.

This

operation

continues

until

the

rightmost

character

is

no

longer

equal

to

operand

3

or

the

trimmed

length

is

zero.

If

operand

3

is

longer

than

one

character,

only

the

first

(leftmost)

character

is

used

as

the

trim

character.

Operands

2

and

3

are

not

changed

by

this

instruction.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0C

Computation

0C0A

Size

10

Damage

Encountered

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

1236

iSeries:

Machine

Interface

Instructions

APIs

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Unlock

Object

(UNLOCK)

Op

Code

(Hex)

Operand

1

03F1

Unlock

template

Operand

1:

Space

pointer.

Bound

program

access

Built-in

number

for

UNLOCK

is

55.

UNLOCK

(

unlock_template

:

address

)

Description:

The

instruction

releases

the

object

locks

that

are

specified

in

the

unlock

template.

The

template

specified

by

operand

1

identifies

the

system

objects

and

the

lock

states

(on

those

objects)

that

are

to

be

released.

The

unlock

template

must

be

aligned

on

a

16-byte

boundary.

The

format

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Number

of

unlock

requests

in

template

Bin(4)

4

4

Offset

to

lock

state

selection

bytes

Bin(2)

6

6

Reserved

Char(8)

+

14

E

Unlock

options

Char(2)

Machine

Interface

Instructions

1237

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

14

E

Reserved

Bits

0-3

+

14

E

Unlock

type

Bits

4-5

00

=

Unlock

specific

locks

now

allocated

to

process,

thread,

or

transaction

control

structure

01

=

Cancel

specific

asynchronously

waiting

lock

request

for

the

current

thread,

or

release

allocated

locks

for

the

current

thread

or

its

containing

process

10

=

Cancel

all

asynchronously

waiting

lock

requests

for

current

thread

11

=

Invalid

14

E

Reserved

(binary

0)

Bits

6-7

14

E

Lock

scope

Bit

8

0

=

Lock

is

scoped

to

the

lock

scope

object

type.

1

=

Lock

is

scoped

to

the

current

thread.

14

E

Lock

scope

object

type

Bit

9

0

=

Process

containing

the

current

thread.

1

=

Transaction

control

structure

attached

to

the

current

thread.

14

E

Reserved

(binary

0)

Bits

10-15

16

10

Object(s)

to

unlock

[*]

System

pointer

(one

for

each

unlock

request)

*

*

—-

End

—-

The

unlock

options

is

located

by

adding

the

offset

to

lock

state

selection

bytes

above

to

operand

1.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Unlock

options

[*]

Char(1)

(repeated

for

unlock

request)

0

0

Lock

state

to

unlock

(only

one

state

can

be

selected)

(1

=

unlock)

Bits

0-4

0

0

LSRD

Bit

0

0

0

LSRO

Bit

1

0

0

LSUP

Bit

2

0

0

LEAR

Bit

3

0

0

LENR

Bit

4

0

0

Lock

count

option

Bit

5

0

=

Lock

count

reduced

by

1

1

=

All

locks

are

unlocked.

The

lock

count

is

set

to

0.

0

0

Reserved

(binary

0)

Bit

6

+

0

0

Entry

active

indicators

Bit

7

1238

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Entry

not

active.

This

entry

is

not

used.

1

=

Entry

active.

These

locks

are

unlocked.

*

*

—-

End

—-

Note:

Fields

indicated

by

a

plus

sign

(+)

are

ignored

by

the

instruction.

The

unlock

type

field

specifies

if

locks

are

to

be

released

or

outstanding

lock

requests

are

to

be

canceled.

If

all

asynchronous

lock

waits

are

being

canceled

(unlock

type

specified

as

10

),

then

objects

to

unlock

and

unlock

options

for

each

object

are

not

required.

If

the

asynchronous

lock

fields

are

provided

in

the

template,

then

the

data

is

ignored.

Specifying

01

for

unlock

type

attempts

to

cancel

an

asynchronous

lock

request

that

is

identical

to

the

one

defined

in

the

template.

After

the

instruction

attempts

to

cancel

the

specified

request,

program

execution

continues

just

as

if

00

had

been

specified

for

unlock

type.

A

waiting

lock

request

is

canceled

if

the

number

of

active

requests

in

the

template,

the

objects,

the

objects

corresponding

lock

states,

and

the

order

of

the

active

entries

in

the

template

all

match.

When

a

lock

is

released,

the

lock

count

is

reduced

by

1

or

set

to

0

in

the

specified

state.

This

option

is

specified

by

the

lock

count

option

parameter.

If

01

is

specified

for

unlock

type

and

the

lock

count

option

for

an

object

lock

is

0

(lock

count

reduced

by

1),

then

a

successful

cancel

satisfies

this

request,

and

no

additional

locks

on

the

object

are

unlocked.

If

the

lock

count

option

for

an

object

lock

is

set

to

1

(set

lock

count

to

0),

the

results

of

the

cancel

are

disregarded,

and

all

held

locks

on

the

object

are

unlocked.

Specific

locks

can

be

unlocked

only

if

they

are

allocated

to

the

process,

thread,

or

the

transaction

control

structure

attached

to

the

thread

issuing

the

unlock

instruction.

The

lock

scope

specified

by

lock

scope

and

lock

scope

object

type

must

also

match

the

scope

of

the

locks

currently

allocated

for

the

process,

thread,

or

the

transaction

control

structure.

If

lock

scope

object

type

has

a

value

of

transaction

control

structure

attached

to

the

current

thread

and

a

transaction

control

structure

is

not

attached

to

the

current

thread,

the

lock

must

be

allocated

to

the

process

containing

the

current

thread.

Implicit

locks

may

not

be

unlocked

with

this

instruction.

No

locks

are

unlocked

if

an

entry

in

the

template

is

invalid.

Object

locks

to

unlock

are

processed

sequentially

and

individually.

If

one

specific

object

lock

cannot

be

unlocked

because

the

process,

thread,

or

the

transaction

control

structure

does

not

hold

the

indicated

lock

on

the

object,

then

exception

data

is

saved,

but

processing

of

the

instruction

continues.

After

all

requested

object

locks

have

been

processed,

the

invalid

unlock

request

(hex

1A03)

exception

is

signaled

if

any

object

lock

was

not

unlocked.

If

01

is

specified

for

unlock

type

and

the

cancel

attempt

is

unsuccessful,

an

invalid

unlock

request

(hex

1A03)

exception

is

signaled

when

any

object

lock

in

the

template

is

not

unlocked.

Machine

Interface

Instructions

1239

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

Execute

–

–

Contexts

referenced

for

address

resolution

Lock

Enforcement

v

v

Materialize

–

–

Contexts

referenced

for

address

resolution

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

0A

Authorization

0A01

Unauthorized

for

Operation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

1A

Lock

State

1A01

Invalid

Lock

State

1A03

Invalid

Unlock

Request

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

1240

iSeries:

Machine

Interface

Instructions

APIs

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2205

Object

Not

Available

to

Process

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Unlock

Object

Location

(UNLOCKOL)

Op

Code

(Hex)

Operand

1

03C5

Unlock

template

Operand

1:

Space

pointer.

Bound

program

access

Built-in

number

for

UNLOCKOL

is

499.

UNLOCKOL

(

unlock_template

:

address

)

Description:

The

lock

states

specified

in

the

unlock

template

(operand

1)

are

removed

for

the

object

locations

specified

in

the

unlock

template.

Machine

Interface

Instructions

1241

Any

object

location(s)

within

the

unlock

template

need

not

exist

when

this

instruction

is

issued

although

the

object

pointer

must

be

a

valid

pointer

as

used

to

lock

the

object

location.

The

unlock

template

identified

by

operand

1

must

be

aligned

on

a

16-byte

boundary.

The

format

of

the

unlock

template

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Number

of

object

location

unlock

requests

in

template

UBin(4)

4

4

Offset

to

unlock

options

UBin(4)

8

8

Reserved

(binary

0)

Char(24)

+

32

20

Object

location(s)

to

be

unlocked

[*]

Object

pointer

(repeated

as

specified

by

the

number

of

object

location

unlock

requests

in

template

field

above)

*

*

—-

End

—-

The

unlock

options

field

is

located

by

adding

the

offset

to

unlock

options

field

above

to

operand

1.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Unlock

options

[*]

Char(1)

(repeated

for

each

unlock

request)

0

0

Lock

state

to

unlock

Bits

0-4

(1

=

unlock

requested,

0

=

unlock

not

requested)

Only

one

state

may

be

requested;

else

the

template

value

invalid

(hex

3801)

exception

is

signaled.

0

0

LSRD

lock

Bit

0

0

0

LSRO

lock

Bit

1

0

0

LSUP

lock

Bit

2

0

0

LEAR

lock

Bit

3

0

0

LENR

lock

Bit

4

0

0

Lock

count

option

Bit

5

0

=

Lock

count

reduced

by

1

1

=

All

locks

are

unlocked.

(The

lock

count

is

set

to

0).

0

0

Reserved

(binary

0)

Bit

6

0

0

Entry

active

indicator

Bit

7

0

=

Entry

not

active.

This

entry

is

not

used.

1

=

Entry

active.

Lock

is

to

be

unlocked.

*

*

—-

End

—-

Note:

Fields

indicated

with

a

plus

sign

(+)

are

ignored

by

the

instruction.

This

instruction

can

request

the

deallocation

of

one

or

more

lock

states

on

one

or

more

object

locations.

The

locks

are

deallocated

sequentially

until

all

specified

locks

are

deallocated.

When

a

lock

is

deallocated,

the

lock

count

is

either

reduced

by

1

or

set

to

0

for

the

specified

state.

This

option

is

specified

by

the

lock

count

option.

Specific

locks

can

be

unlocked

only

if

they

are

held

by

the

thread

issuing

the

unlock

instruction.

If

an

object

location

lock

cannot

be

unlocked

because

the

thread

does

not

hold

the

indicated

lock,

then

exception

data

is

saved

but

processing

of

the

instruction

continues.

After

all

requested

object

location

1242

iSeries:

Machine

Interface

Instructions

APIs

locks

have

been

processed,

the

invalid

unlock

request

(hex

1A03)

exception

is

signaled

if

any

requested

object

location

lock

was

not

unlocked

because

the

thread

did

not

have

a

lock

on

the

object

location.

No

locks

are

unlocked

if

a

template

value

is

invalid.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1A

Lock

State

1A03

Invalid

Unlock

Request

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C06

Machine

Lock

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

Machine

Interface

Instructions

1243

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

Unlock

Pointer-Based

Mutex

(UNLKMTX)

Op

Code

(Hex)

Operand

1

Operand

2

03D6

Mutex

Result

Operand

1:

Space

pointer.

Operand

2:

Signed

binary(4)

variable

scalar.

Bound

program

access

Built-in

number

for

UNLKMTX

is

158.

UNLKMTX

(

mutex

:

address

)

:

signed

binary(4)

/*

result

*/

Note:

The

term

″mutex″

in

this

instruction

refers

to

a

″pointer-based

mutex″.

Description:

The

mutex,

whose

address

is

contained

in

operand

1,

is

released

(unlocked).

The

mutex

must

be

aligned

on

a

16-byte

boundary.

The

mutex

must

have

been

previously

created

by

the

CRTMTX

instruction

or

be

a

copy

of

a

mutex

that

was

previously

created

by

the

CRTMTX

instruction,

and

must

be

currently

allocated

to

the

issuer

by

1244

iSeries:

Machine

Interface

Instructions

APIs

means

of

a

successful

LOCKMTX

instruction.

See

the

CRTMTX

instruction

for

additional

information

regarding

mutex

copies.

An

EPERM

error

number

is

returned

if

the

mutex

is

not

locked

by

the

requesting

thread.

Result

is

used

to

indicate

the

success

or

failure

of

the

UNLKMTX

instruction.

If

a

non-recursive

mutex

is

unlocked

by

this

instruction,

then

result

is

set

to

0.

If

the

mutex

has

been

recursively

locked,

this

instruction

will

release

one

lock

and

result

is

set

to

a

negative

number

whose

absolute

value

is

the

number

of

locks

which

still

remain

on

the

mutex,

if

not

0.

See

the

LOCKMTX

instruction

for

additional

information

on

using

the

recursive

behavior

of

a

mutex.

If

an

error

occurs,

then

the

result

is

set

to

an

error

number.

An

EINVAL

error

number

is

returned

if

the

mutex

has

not

been

initialized,

or

if

it

has

been

altered.

The

ETYPE

error

number

is

returned

if

the

mutex

operand

references

a

synchronization

object

that

is

not

a

pointer-based

mutex.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Error

conditions

The

result

is

set

to

one

of

the

following:

EINVAL

3021

-

The

value

specified

for

the

argument

is

not

correct.

EPERM

3027

-

Operation

not

permitted.

ETYPE

3493

-

Object

type

mismatch.

A

synchronization

object

at

this

address

is

not

a

pointer-based

mutex.

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

Machine

Interface

Instructions

1245

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Unlock

Space

Location

(UNLOCKSL)

Op

Code

(Hex)

Operand

1

Operand

2

03F2

Space

location

or

unlock

template

Lock

request

Operand

1:

Space

pointer

data

object.

1246

iSeries:

Machine

Interface

Instructions

APIs

Operand

2:

Character(1)

scalar

or

null.

Bound

program

access

Built-in

number

for

UNLOCKSL

is

56.

UNLOCKSL

(

space_location

:

address

of

space

pointer(16)

lock_request

:

address

OR

null

operand

)

Description:

When

operand

2

is

not

null,

the

lock

type

specified

by

operand

2

is

removed

from

the

space

location

(operand

1).

When

the

operand

2

is

null,

the

lock

type

is

removed

for

the

space

locations

specified

in

the

unlock

template

(operand

1).

Any

space

location(s)

specified

by

operand

1,

or

within

the

template

specified

by

operand

1,

need

not

exist

when

this

instruction

is

issued

although

the

space

pointer

must

be

a

valid

pointer

as

used

to

lock

the

space

location.

A

space

pointer

machine

object

cannot

be

specified

for

operand

1.

The

following

is

the

format

of

operand

2

when

not

null:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Lock

request

Char(1)

0

0

Lock

state

selection

Bits

0-4

(1

=

lock

requested,

0

=

lock

not

requested)

Only

one

state

may

be

requested

per

entry.

0

0

LSRD

lock

Bit

0

0

0

LSRO

lock

Bit

1

0

0

LSUP

lock

Bit

2

0

0

LEAR

lock

Bit

3

0

0

LENR

lock

Bit

4

0

0

Reserved

(binary

0)

Bits

5-7

1

1

—-

End

—-

If

a

space

location

lock

cannot

be

unlocked

because

the

thread

does

not

hold

the

indicated

lock,

then

the

invalid

space

location

unlocked

(hex

1A05)

exception

is

signaled.

When

operand

2

is

null,

the

lock

request

template

identified

by

operand

1

must

be

aligned

on

a

16-byte

boundary.

The

format

of

operand

1

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Number

of

space

location

unlock

requests

in

template

Bin(4)

4

4

Offset

to

lock

state

selection

values

Bin(2)

6

6

Reserved

(binary

0)

Char(26)

+

32

20

Space

location(s)

to

be

unlocked

[*]

Space

pointer

(repeated

as

specified

by

number

of

space

location

unlock

requests

in

template

above)

*

*

—-

End

—-

Machine

Interface

Instructions

1247

The

unlock

options

is

located

by

adding

the

offset

to

lock

state

selection

values

above

to

operand

1.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Unlock

options

[*]

Char(1)

(repeated

for

each

unlock

request)

0

0

Lock

state

to

unlock

Bits

0-4

(1

=

unlock

requested,

0

=

unlock

not

requested)

Only

one

state

may

be

requested.

0

0

LSRD

lock

Bit

0

0

0

LSRO

lock

Bit

1

0

0

LSUP

lock

Bit

2

0

0

LEAR

lock

Bit

3

0

0

LENR

lock

Bit

4

0

0

Lock

count

option

Bit

5

0

=

Lock

count

reduced

by

1

1

=

All

locks

are

unlocked.

(The

lock

count

is

set

to

0).

0

0

Reserved

(binary

0)

Bit

6

0

0

Entry

active

indicator

Bit

7

0

=

Entry

not

active.

This

entry

is

not

used.

1

=

Entry

active.

Lock

is

to

be

unlocked.

*

*

—-

End

—-

Note:

Fields

indicated

with

a

plus

sign

(+)

are

ignored

by

the

instruction.

This

instruction

can

request

the

deallocation

of

one

or

more

lock

states

on

one

or

more

space

locations.

The

locks

are

deallocated

sequentially

until

all

specified

locks

are

deallocated.

When

a

lock

is

deallocated,

the

lock

count

is

either

reduced

by

1

or

set

to

0

for

the

specified

state.

This

option

is

specified

by

the

lock

count

option.

Specific

locks

can

be

unlocked

only

if

they

are

held

by

the

thread

issuing

the

Unlock

Space

Location

instruction.

If

a

space

location

lock

cannot

be

unlocked

because

the

thread

does

not

hold

the

indicated

lock,

then

exception

data

is

saved

but

processing

of

the

instruction

continues.

After

all

requested

space

location

locks

have

been

processed,

the

invalid

unlock

request

(hex

1A03)

exception

is

signaled

if

any

space

location

lock

was

not

unlocked.

No

locks

are

unlocked

if

a

template

value

is

invalid.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

1248

iSeries:

Machine

Interface

Instructions

APIs

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1A

Lock

State

1A03

Invalid

Unlock

Request

1A05

Invalid

Space

Location

Unlocked

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C06

Machine

Lock

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

Machine

Interface

Instructions

1249

32

Scalar

Specification

3201

Scalar

Type

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Unlock

Teraspace

Storage

Location

(UNLCKTSL)

Op

Code

(Hex)

Operand

1

03D5

Unlock

request

template

Operand

1:

Space

pointer

data

object.

Bound

program

access

Built-in

number

for

UNLCKTSL

is

622.

UNLCKTSL

(

unlock_request_template

:

address

of

space

pointer(16)

)

Description:

The

locks

specified

in

the

unlock

template

(operand

1)

are

unlocked.

UNLCKTSL

can

unlock

any

location

locked

by

the

LOCKTSL

or

LOCKSL

instruction.

A

maximum

of

4093

locations

can

be

unlocked

with

one

UNLCKTSL

instruction.

Any

teraspace

storage

location(s)

specified

within

the

template

must

either

be

mapped

or

allocated,

otherwise

an

invalid

unlock

request

(hex

1A03)

exception

is

signaled.

A

location

specified

within

the

template

which

is

not

a

teraspace

storage

location

(i.e.

is

a

single

level

store

location)

need

not

exist

when

this

instruction

is

issued.

If

a

teraspace

storage

location

lock

cannot

be

unlocked

because

the

thread

does

not

hold

the

indicated

lock,

an

invalid

unlock

request

(hex

1A03)

exception

is

signaled.

The

lock

request

template

identified

by

operand

1

must

be

aligned

on

a

16-byte

boundary

or

an

boundary

alignment

(hex

0602)

exception

is

signaled.

The

format

of

operand

1

is

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Number

of

unlock

requests

in

template

UBin(4)

1250

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

4

4

Offset

to

lock

state

selection

values

UBin(2)

6

6

Reserved

(binary

0)

Char(9)

15

F

Lock

request

options

Char(1)

15

F

Lock

scope

Bit

0

0

=

Lock

is

scoped

to

the

current

thread

1

=

Lock

is

scoped

to

the

lock

scope

object

type

15

F

Lock

scope

object

type

Bit

1

0

=

Process

containing

the

current

thread

1

=

Transaction

control

structure

attached

to

the

current

thread.

15

F

Reserved

(binary

0)

Bits

2-7

16

10

Reserved

(binary

0)

Char(16)

32

20

Location(s)

to

be

unlocked

[*]

Space

pointer

(repeated

as

specified

by

number

of

unlock

requests

in

template

above)

*

*

—-

End

—-

The

unlock

options

is

located

by

adding

the

offset

to

lock

state

selection

values

above

to

operand

1.

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Unlock

options

[*]

Char(1)

(repeated

for

each

unlock

request)

0

0

Lock

state

to

unlock

Bits

0-4

(1

=

unlock

requested,

0

=

unlock

not

requested)

Only

one

state

may

be

requested.

0

0

LSRD

lock

Bit

0

0

0

LSRO

lock

Bit

1

0

0

LSUP

lock

Bit

2

0

0

LEAR

lock

Bit

3

0

0

LENR

lock

Bit

4

0

0

Lock

count

option

Bit

5

0

=

Lock

count

reduced

by

1

1

=

All

locks

are

unlocked.

(The

lock

count

is

set

to

0).

0

0

Reserved

(binary

0)

Bit

6

0

0

Entry

active

indicator

Bit

7

0

=

Entry

not

active.

This

entry

is

not

used.

1

=

Entry

active.

Lock

is

to

be

unlocked.

*

*

—-

End

—-

This

instruction

can

request

the

deallocation

of

one

or

more

lock

states

on

one

or

more

locations.

The

locks

are

deallocated

sequentially

until

all

specified

locks

are

deallocated.

When

a

lock

is

deallocated,

the

lock

count

is

either

reduced

by

1

or

set

to

0

for

the

specified

state.

This

option

is

specified

by

the

lock

count

option.

Machine

Interface

Instructions

1251

The

lock

scope

field

and

the

lock

scope

object

type

field

determine

which

scope

all

specified

unlock

requests

will

be

allocated

to,

either

a

thread,

process

or

transaction

control

structure:

v

v

When

lock

scope

has

a

value

of

lock

is

scoped

to

the

lock

scope

object

type

and

lock

scope

object

type

has

a

value

of

process

containing

the

current

thread,

the

lock

scope

will

be

the

process

containing

the

current

thread.

v

When

lock

scope

has

a

value

of

lock

is

scoped

to

the

lock

scope

object

type

and

lock

scope

object

type

has

a

value

of

transaction

control

structure

attached

to

the

current

thread,

the

lock

scope

will

be

the

transaction

control

structure

that

is

attached

to

the

current

thread.

If

the

current

thread

does

not

have

a

transaction

control

structure

attached,

then

the

lock

scope

will

be

the

process

containing

the

current

thread.

v

When

lock

scope

has

a

value

of

lock

is

scoped

to

the

current

thread,

the

lock

scope

will

be

to

the

current

thread.

If

lock

scope

object

type

has

a

value

of

transaction

control

structure

attached

to

the

current

thread

and

the

transaction

control

structure

state

does

not

allow

objects

to

be

locked

on

behalf

of

the

transaction

control

structure,

a

object

not

eligible

for

operation

(hex

2204)

exception

is

signaled.

Allocated

process

scoped

locks

and

thread

scoped

locks,

allocated

by

the

initial

thread

of

the

process,

are

released

when

the

process

terminates.

Allocated

thread

scoped

locks

are

released

when

the

thread

terminates.

If

a

thread

requested

a

process

scoped

lock,

the

process

will

continue

to

hold

that

lock

after

termination

of

the

requesting

thread.

If

a

thread

requested

a

transaction

control

structure

scoped

lock,

the

transaction

control

structure

will

continue

to

hold

that

lock

after

the

termination

of

the

requesting

thread.

Specific

locks

can

be

unlocked

only

if

they

are

held

by

the

thread

issuing

the

Unlock

Teraspace

Storage

Location

instruction.

If

a

space

location

lock

cannot

be

unlocked

because

the

thread

does

not

hold

the

indicated

lock,

or

if

the

address

is

a

teraspace

storage

address

which

is

not

mapped

or

allocated,

then

exception

data

is

saved

but

processing

of

the

instruction

continues.

After

all

requested

unlocks

have

been

processed,

an

invalid

unlock

request

(hex

1A03)

exception

is

signaled

if

any

location

lock

was

not

unlocked.

No

locks

are

unlocked

if

a

template

value

is

invalid.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

1252

iSeries:

Machine

Interface

Instructions

APIs

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1A

Lock

State

1A03

Invalid

Unlock

Request

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

1C06

Machine

Lock

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2204

Object

Not

Eligible

for

Operation

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

38

Template

Specification

3801

Template

Value

Invalid

44

Protection

Violation

Machine

Interface

Instructions

1253

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

Verify

(VERIFY)

Op

Code

(Hex)

Extender

Operand

1

Operand

2

Operand

3

Operand

[4-5]

VERIFY

10D7

Receiver

Source

Class

VERIFYB

1CD7

Branch

options

Receiver

Source

Class

Branch

targets

VERIFYI

18D7

Indicator

options

Receiver

Source

Class

Indicator

targets

Operand

1:

Binary

variable

scalar

or

binary

array.

Operand

2:

Character

scalar.

Operand

3:

Character

scalar.

Operand

4-5:

v

v

Branch

Form-Branch

point,

instruction

pointer,

relative

instruction

number,

or

absolute

instruction

number.

v

Indicator

Form-Numeric

variable

scalar

or

character

variable

scalar.

Description:

Each

character

of

the

source

operand

character

string

value

is

checked

to

verify

that

it

is

among

the

valid

characters

indicated

in

the

class

operand.

The

operation

begins

at

the

left

end

of

the

source

string

and

continues

character

by

character,

from

left

to

right.

Each

character

of

the

source

value

is

compared

with

the

characters

of

the

class

operand.

If

a

match

for

the

source

character

exists

in

the

class

string,

the

next

source

character

is

verified.

If

a

match

for

the

source

character

does

not

exist

in

the

class

string,

the

binary

value

for

the

relative

location

of

the

character

within

the

source

string

is

placed

in

the

receiver

operand.

If

the

receiver

operand

is

a

scalar,

only

the

first

occurrence

of

an

invalid

character

is

noted.

If

the

receiver

operand

is

an

array,

as

many

occurrences

as

there

are

elements

in

the

array

are

noted.

The

operation

continues

until

no

more

occurrences

of

invalid

characters

can

be

noted

or

until

the

end

of

the

source

string

is

encountered.

When

the

second

condition

occurs,

the

current

receiver

value

is

set

to

0.

If

the

receiver

operand

is

an

array,

all

its

remaining

entries

are

set

to

0’s.

The

source

and

class

operands

can

be

variable

length

substring

compound

operands.

Substring

operand

references

that

allow

for

a

null

substring

reference

(a

length

value

of

zero)

may

be

specified

for

operands

2

and

3.

The

effect

of

specifying

a

null

substring

reference

for

the

class

operand

when

a

nonnull

string

reference

is

specified

for

the

source

is

that

all

of

the

characters

of

the

source

are

considered

invalid.

In

this

case,

the

receiver

is

accordingly

set

with

the

offset(s)

to

the

bytes

of

the

source,

and

the

instruction’s

resultant

condition

is

positive.

The

effect

of

specifying

a

null

substring

reference

for

the

source

operand

(no

characters

to

verify)

is

that

the

receiver

is

set

to

zero

and

the

instruction’s

resultant

condition

is

zero

regardless

of

what

is

specified

for

the

class

operand.

Resultant

Conditions:

The

numeric

value(s)

of

the

receiver

is

either

0

or

positive.

When

the

receiver

operand

is

an

array,

the

resultant

condition

is

0

if

all

elements

are

0.

1254

iSeries:

Machine

Interface

Instructions

APIs

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1044

Partial

System

Object

Damage

1C

Machine-Dependent

1C03

Machine

Storage

Limit

Exceeded

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2201

Object

Not

Found

2202

Object

Destroyed

2203

Object

Suspended

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

Machine

Interface

Instructions

1255

2402

Pointer

Type

Invalid

2C

Program

Execution

2C04

Branch

Target

Invalid

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Wait

On

Time

(WAITTIME)

Op

Code

(Hex)

Operand

1

0349

Wait

template

Operand

1:

Character(16)

scalar.

Bound

program

access

Built-in

number

for

WAITTIME

is

66.

WAITTIME

(

wait_template

:

address

)

Description:

This

instruction

causes

the

thread

to

wait

for

a

specified

time

interval.

The

current

thread

is

placed

in

wait

state

for

the

amount

of

time

specified

by

the

wait

template

in

accordance

with

the

specified

wait

options.

The

format

of

the

wait

template

for

operand

1

is:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Wait

time

interval

Char(8)

8

8

Wait

options

Char(2)

8

8

Access

state

control

for

entering

wait

Bit

0

0

=

Do

not

modify

access

state

1

=

Modify

access

state

8

8

Access

state

control

for

leaving

wait

Bit

1

0

=

Do

not

modify

access

state

1

=

Modify

access

state

8

8

Multiprogramming

level

(MPL)

control

during

wait

Bit

2

1256

iSeries:

Machine

Interface

Instructions

APIs

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

=

Do

not

remain

in

current

MPL

set

1

=

Remain

in

current

MPL

set

8

8

Asynchronous

signals

processing

option

Bit

3

0

=

Do

not

allow

asynchronous

signal

processing

during

wait

1

=

Allow

asynchronous

signal

processing

during

wait

8

8

Reserved

(binary

0)

Bits

4-15

10

A

Reserved

Char(6)

16

10

—-

End

—-

See

“Standard

Time

Format”

on

page

1272

for

additional

information

on

the

format

of

the

wait

time

interval.

The

access

state

control

options

control

whether

the

process

access

group

(PAG)

will

be

explicitly

transferred

between

main

and

auxiliary

storage

when

entering

and

leaving

a

wait

as

a

result

of

execution

of

this

instruction.

Specification

of

modify

access

state

requests

that

the

PAG

be

purged

from

main

to

auxiliary

storage

for

entering

a

wait

and

requests

that

the

PAG

be

transferred

from

auxiliary

to

main

storage

for

leaving

a

wait.

Specification

of

do

not

modify

access

state

requests

that

the

PAG

not

be

explicitly

transferred

between

main

and

auxiliary

storage

as

a

result

of

executing

this

instruction.

The

access

state

of

the

PAG

is

modified

when

entering

the

wait

if

the

process

is

not

multi-threaded

(i.e.,

the

waiting

thread

is

the

only

thread

in

the

process),

if

the

process’

instruction

wait

initiation

access

state

control

attribute

specifies

allow

access

state

modification,

if

the

access

state

control

for

entering

wait

option

specifies

modify

access

state,

and

if

the

MPL

control

during

wait

option

specifies

do

not

remain

in

current

MPL

set.

The

multiprogramming

level

(MPL)

control

during

wait

option

controls

whether

the

thread

will

be

removed

from

the

current

MPL

set

or

remain

in

the

current

MPL

set

when

the

thread

enters

a

wait

as

a

result

of

executing

this

instruction.

When

the

MPL

control

during

wait

option

specifies

remain

in

current

MPL

set

and

the

access

state

control

for

entering

wait

option

specifies

do

not

modify

access

state,

the

machine

will

check

the

wait

time

requested.

If

the

wait

time

requested

is

less

than

an

implementation-defined

limit

(which

will

not

exceed

2

seconds),

the

thread

will

remain

in

the

current

MPL.

If

the

wait

time

requested

is

greater

than

this

limit,

the

MPL

control

during

wait

option

is

ignored

and

the

thread

is

automatically

removed

from

the

MPL

at

the

beginning

of

the

wait.

The

automatic

removal

does

not

change

or

affect

the

total

wait

time

specified

for

the

thread

in

the

wait

time

interval.

The

asynchronous

signals

processing

option

controls

the

action

to

be

taken

if

an

asynchronous

signal

is

pending

or

received

while

in

wait.

If

an

asynchronous

signal

that

is

not

blocked

or

ignored

is

generated

for

the

thread

and

the

asynchronous

signals

processing

option

indicates

allow

asynchronous

signals

processing

during

wait,

the

wait

will

be

terminated

and

an

asynchronous

signal

terminated

MI

wait

(hex

4C01)

exception

is

signaled.

Otherwise,

when

the

asynchronous

signals

processing

option

indicates

do

not

allow

asynchronous

signals

processing

during

wait,

the

thread

remains

in

the

wait

for

the

amount

of

time

specified

by

the

wait

time

interval.

While

the

thread

is

in

wait

state

it

may

be

interrupted

for

events

unless

the

thread

is

masked.

Machine

Interface

Instructions

1257

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

0603

Range

08

Argument/Parameter

0801

Parameter

Reference

Violation

10

Damage

Encountered

1004

System

Object

Damage

State

1005

Authority

Verification

Terminated

Due

to

Damaged

Object

1044

Partial

System

Object

Damage

20

Machine

Support

2002

Machine

Check

2003

Function

Check

22

Object

Access

2202

Object

Destroyed

2203

Object

Suspended

2207

Authority

Verification

Terminated

Due

to

Destroyed

Object

2208

Object

Compressed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

1258

iSeries:

Machine

Interface

Instructions

APIs

2E

Resource

Control

Limit

2E01

User

Profile

Storage

Limit

Exceeded

32

Scalar

Specification

3201

Scalar

Type

Invalid

3202

Scalar

Attributes

Invalid

3203

Scalar

Value

Invalid

36

Space

Management

3601

Space

Extension/Truncation

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4C

Signals

Management

4C01

Asynchronous

Signal

Terminated

MI

Wait

X

To

The

Y

Power

(POWER)

Bound

program

access

Built-in

number

for

POWER

is

411.

POWER

(

source

:

floating

point(8)

value

exponent

:

floating

point(8)

value

)

:

floating

point(8)

value

computed

from

source

raised

to

the

power

exponent

Description:

The

computation

source

exponent

is

performed

and

the

result

returned.

See

floating

point

results

from

special

values

for

additional

information.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

Machine

Interface

Instructions

1259

NCBCON.htm

0C

Computation

0C06

Floating-Point

Overflow

0C07

Floating-Point

Underflow

0C09

Floating-Point

Invalid

Operand

0C0D

Floating-Point

Inexact

Result

0C0E

Floating-Point

Zero

Divide

XOR

(Exclusive

Or)

String

(XORSTR)

Bound

program

access

Built-in

number

for

XORSTR

is

453.

XORSTR

(

receiver_string

:

address

of

aggregate(*)

first_source_string

:

address

of

aggregate(*)

second_source_string

:

address

of

aggregate(*)

string_length

:

unsigned

binary(4,8)

value

which

specifies

the

length

in

bytes

of

the

three

strings

)

Description:

Each

byte

value

of

the

first

source

string,

for

the

number

of

bytes

indicated

by

string

length,

is

logically

xored

(exclusive

or)

with

the

corresponding

byte

value

of

the

second

source

string,

on

a

bit-by-bit

basis.

The

results

are

placed

in

the

receiver

string.

If

the

strings

overlap

in

storage,

predictable

results

occur

only

if

the

overlap

is

fully

coincident.

If

the

space(s)

indicated

by

the

three

addresses

are

not

long

enough

to

contain

the

number

of

bytes

indicated

by

string

length,

a

space

addressing

violation

(hex

0601)

exception

is

signalled.

Partial

results

in

this

case

are

unpredictable.

Warning:

Temporary

Level

3

Header

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

06

Addressing

0601

Space

Addressing

Violation

0602

Boundary

Alignment

08

Argument/Parameter

0801

Parameter

Reference

Violation

1260

iSeries:

Machine

Interface

Instructions

APIs

22

Object

Access

2202

Object

Destroyed

220B

Object

Not

Available

24

Pointer

Specification

2401

Pointer

Does

Not

Exist

2402

Pointer

Type

Invalid

44

Protection

Violation

4401

Object

Domain

or

Hardware

Storage

Protection

Violation

4402

Literal

Values

Cannot

Be

Changed

Yield

(YIELD)

Op

Code

(Hex)

0610

Bound

program

access

Built-in

number

for

YIELD

is

539.

YIELD

(

)

Description:

The

dispatching

algorithm

is

run.

If

another

thread

of

equal

or

higher

priority

is

eligible

to

run,

then

a

thread

is

chosen

and

dispatched.

Otherwise,

the

current

thread

resumes

execution.

Warning:

Temporary

Level

3

Header

Usage

Notes

The

yield()

function

is

a

common

technique

used

on

other

platforms

to

serialize

on

a

resource

or

to

allow

other

threads

of

equal

or

higher

priority

to

execute

before

the

current

thread

begins

execution

of

a

long

running

function.

v

v

Serialization

of

a

resource

A

″spin″

lock

is

a

high

speed

synchronization

primitive

in

which

the

application

″loops″

on

the

setting

of

a

variable

which

is

used

to

synchronize

access

to

a

resource.

A

typical

application

implementation

of

a

spin

lock

might

be:

1.

Compare

and

swap

on

a

variable

that

synchronizes

access

to

a

resource.

2.

If

not

available

and

first

time

in

loop,

invoke

the

yield()

function.

3.

Otherwise

if

not

the

first

time

in

loop,

wait

for

a

small

time

quantum.

This

time

quantum

is

incremented

each

time

through

the

loop.

4.

Loop

back

to

the

compare

and

swap

statement.
v

Allow

threads

of

equal

or

higher

priority

to

run

The

yield()

function

allows

a

thread

to

immediately

relinquish

control

to

a

thread

of

equal

or

higher

priority.

On

other

platforms,

this

is

done

because

the

kernel

can

not

(usually)

be

preempted.

On

Machine

Interface

Instructions

1261

iSeries(TM),

the

duration

of

time

another

thread

of

equal

or

higher

priority

may

be

prevented

from

executing

until

the

current

thread

reaches

time-slice

end

is

considered

to

be

very

large,

especially

considering

the

processing

speeds

of

current

machines.

Authorization

Required

v

v

None

Lock

Enforcement

v

v

None

Exceptions

v

v

None

Concepts

These

are

the

concepts

for

this

category.

iSeries

Machine

Interface

Introduction

v

“Overview”

v

“What’s

New

for

V5R3”

v

“Instruction

Format

Conventions

Used”

on

page

1264

v

“Reserved

and

Obsolete

Fields”

on

page

1268

v

“Definition

Of

The

NBP

Operand

Syntax”

on

page

1269

v

“Names”

on

page

1272

v

“Character

Constants”

on

page

1272

v

“Standard

Time

Format”

on

page

1272

v

“Storage

Terminology”

on

page

1274

v

“Storage

Limitations”

on

page

1274

v

“Atomicity”

on

page

1275

v

“Shared

Storage

Access

Ordering”

on

page

1276

v

“External

Standards

and

Architectures”

on

page

1276

v

“Logical

partitioning”

on

page

1276

Overview

This

web

page

contains

the

following:

v

v

Detailed

descriptions

of

the

iSeries

machine

interface

instruction

fields

and

the

formats

of

these

fields

v

A

description

of

the

format

used

in

describing

each

instruction

v

A

list

of

the

terms

in

the

syntax

that

define

the

characteristics

of

the

operands

v

A

discussion

of

some

pervasive

topics

that

apply

to

a

wide

range

of

instructions.

You

should

read

this

web

page

in

its

entirety

before

attempting

to

write

instructions.

What’s

New

for

V5R3

The

following

changes

have

been

made

to

the

MI

architecture

for

V5R3:

1262

iSeries:

Machine

Interface

Instructions

APIs

1.

8

byte

activation

and

invocation

marks

are

now

supported.

If

you

are

currently

using

4

byte

marks,

it

is

suggested

you

change

to

use

the

8

byte

marks.

8

byte

marks

are

supported

on

the

following

MI

instructions:

v

“Activate

Bound

Program

(ACTBPGM)”

on

page

5

v

“Find

Relative

Invocation

Number

(FNDRINVN)”

on

page

396

v

“Materialize

Activation

Attributes

(MATACTAT)”

on

page

458

v

“Materialize

Activation

Export

(MATACTEX)”

on

page

464

v

“Materialize

Activation

Group

Attributes

(MATAGPAT)”

on

page

466

v

“Materialize

Activation

Group-Based

Heap

Space

Attributes

(MATHSAT)”

on

page

472

v

“Materialize

Invocation

Attributes

(MATINVAT)”

on

page

579

v

“Materialize

Invocation

Entry

(MATINVE)”

on

page

591

v

“Materialize

Invocation

Stack

(MATINVS)”

on

page

597

v

“Materialize

Process

Activation

Groups

(MATPRAGP)”

on

page

739

v

“Materialize

Process

Message

(MATPRMSG)”

on

page

770

v

“Materialize

Pointer

(MATPTR)”

on

page

718

v

“Reinitialize

Static

Storage

(RINZSTAT)”

on

page

1025

2.

The

“Compare

and

Swap

(CMPSW)”

on

page

74

has

a

new

operand

that

can

be

used

to

specify

whether

or

not

to

perform

storage

synchronization.

3.

The

following

instructions

now

support

63

digits

for

zoned

decimal

and

packed

decimal

values:

v

“Copy

Numeric

Value

(CPYNV)”

on

page

254

v

“Convert

Character

to

Numeric

(CVTCN)”

on

page

155

v

“Convert

External

Form

to

Numeric

Value

(CVTEFN)”

on

page

174

v

“Convert

Numeric

to

Character

(CVTNC)”

on

page

188

v

“Edit

(EDIT)”

on

page

341

v

“Set

Data

Pointer

Attributes

(SETDPAT)”

on

page

1112

4.

The

“Lock

Teraspace

Storage

Location

(LOCKTSL)”

on

page

446

and

“Unlock

Teraspace

Storage

Location

(UNLCKTSL)”

on

page

1250

instructions

support

locks

scoped

to

a

Transaction

Control

Structure.

5.

The

“Materialize

Journal

Port

Attributes

(MATJPAT)”

on

page

603

instruction

supports

a

Quiesced

Status

field.

6.

The

maximum

sequence

number

has

been

increased

on

the

“Materialize

Journal

Space

Attributes

(MATJSAT)”

on

page

612.

7.

The

“Materialize

Machine

Data

(MATMDATA)”

on

page

693

supports

materializing

the

time-of-day

clock

as

Coordinated

Universal

Time

(UTC).

8.

The

“Materialize

Process

Mutex

(MATPRMTX)”

on

page

788

can

materialize

additional

mutex

information.

9.

The

“Translate

Multiple

Bytes

(XLATEMB)”

on

page

1217

supports

UTF-8.

10.

The

“Materialize

Resource

Management

Data

(MATRMD)”

on

page

833

has

new

options

to

materialize

the

following

information:

v

Dynamic

thread

resources

affinity

adjustment

v

ASP

space

information

v

Processor

utilization

data

v

Shared

processor

pool

information

v

Multiprocessor

utilizations

v

Machine

resource

portions

v

Interrupt

polling

control

Machine

Interface

Instructions

1263

11.

The

“Materialize

Machine

Attributes

(MATMATR)”

on

page

619

has

new

options

to

materialize

the

following

information:

v

Memory

on

demand

v

Hardware

Management

Console

(HMC)

Information
12.

The

following

new

instructions

have

been

added:

v

“Atomic

Add

(ATMCADD)”

on

page

33

v

“Atomic

And

(ATMCAND)”

on

page

35

v

“Atomic

Or

(ATMCOR)”

on

page

37

v

“Call

Program

with

Variable

Length

Argument

List

(CALLPGMV)”

on

page

48

v

“Check

Lock

Value

(CHKLKVAL)”

on

page

50

v

“Clear

Lock

Value

(CLRLKVAL)”

on

page

72

v

“Materialize

Machine

Information

(MATMIF)”

on

page

697

v

“Materialize

Time

of

Day

Clock

Attributes

(MATTODAT)”

on

page

938

Instruction

Format

Conventions

Used

The

user

must

be

aware

that

not

every

instruction

uses

every

field

described

in

this

section.

Only

the

information

pertaining

to

the

fields

that

are

used

by

an

instruction

is

provided

for

each

instruction.

Each

instruction

is

formatted

with

the

instruction

name

followed

by

its

base

mnemonic.

Following

this,

for

instructions

supported

by

Non-Bound

Programs

(NBP),

is

the

operation

code

(op

code)

in

hexadecimal

and

the

number

of

operands

with

their

general

meaning.

Example:

ADD

NUMERIC

(ADDN)

Op

Code

(Hex)

Operand

1

Operand

2

Operand

3

1043

Sum

Addend

1

Addend

2

This

information

is

followed

by

the

operands

and

their

syntax.

See

“Definition

Of

The

NBP

Operand

Syntax”

on

page

1269

for

a

detailed

discussion

of

the

syntax

of

instruction

operands.

Example:

Operand

1:

Numeric

variable

scalar.

Operand

2:

Numeric

scalar.

Operand

3:

Numeric

scalar.

For

instructions

that

are

supported

in

Bound

Programs

(BP),

a

bound

program

access

box

is

provided

that

describes

the

operands

and

return

values

associated

with

the

instruction

in

bound

programs.

For

example:

Bound

program

access

Built-in

number

for

ALCHSS

is

111.

ALCHSS

(

heap_identifier

:

signed

binary(4)

OR

unsigned

binary(4)

OR

null

operand

size_of_space_allocation

:

signed

binary(4)

)

:

space

pointer(16)

to

a

space

allocation

1264

iSeries:

Machine

Interface

Instructions

APIs

Note:

Within

the

bound

program

access

box,

a

data

type

like

signed

binary(1,2,4)

is

a

short

hand

notation

for

the

3

data

types

signed

binary(1),

signed

binary(2),

and

signed

binary(4)

all

being

supported.

A

description

of

the

parameters

for

bound

program

access

to

the

instruction

is

given.

See

the

corresponding

programming

language

reference

manual

for

details

as

to

how

this

information

should

be

interpreted

for

a

given

language.

If

an

operand

is

passed

by

reference,

the

data

type

of

the

operand

is

preceded

by

the

word

address.

If

an

operand

is

passed

by

value,

the

data

type

of

the

operand

is

not

preceded

by

the

word

address.

A

local

form

address,

which

is

a

type

of

address

that

can

only

refer

to

teraspace,

can

be

used

on

any

instructions

that

specify

an

address

operand

unless

explicitly

prohibited.

An

address

is

the

value

contained

in

any

space

pointer,

the

location

of

a

data

object

or

the

result

of

an

address

computation.

If

the

built-in

function

has

a

return

value,

it

is

specified

following

the

closing

’)

:’

characters.

Not

all

built-in

functions

have

a

return

value.

If

the

built-in

function

has

a

return

value,

it

may

be

returned

either

by

address

or

by

value

and

will

state

which

method

is

used.

Description:

A

detailed

description

and

a

functional

definition

of

the

instruction

is

given.

Note:

When

the

description

refers

to

a

space

pointer

or

procedure

pointer

and

the

length

of

the

pointer

is

not

explicitly

given,

the

length

should

be

inferred

from

the

context.

A

pointer’s

length

is

explicitly

specified

in

operand

and

template

definitions.

When

an

instruction

takes

a

template

(data

structure)

as

input

or

provides

a

template

as

output,

the

format

of

the

template

is

defined

as

a

series

of

fields.

Each

field

is

given

a

name

and

an

associated

data

type.

The

valid

data

types

are:

Bin(1)

Signed

1-byte

binary

(not

valid

if

template

is

used

by

a

non-bound

program

instruction).

UBin(1)

Unsigned

1-byte

binary

(not

valid

if

template

is

used

by

a

non-bound

program

instruction).

Bin(2)

Signed

2-byte

binary

UBin(2)

Unsigned

2-byte

binary

Bin(4)

Signed

4-byte

binary

UBin(4)

Unsigned

4-byte

binary

Bin(8)

Signed

8-byte

binary

(not

valid

if

template

is

used

by

a

non-bound

program

instruction).

UBin(8)

Unsigned

8-byte

binary

(not

valid

if

template

is

used

by

a

non-bound

program

instruction).

Bit

x

A

1-bit

field

occupies

position

x.

Bits

are

numbered

from

the

highest

most

position

being

0

(left-most)

and

the

lowest

most

position

being

n

(right-most).

Bit

y-z

A

series

of

1-bit

fields

that

occupy

positions

x

through

z

inclusive.

Bits

are

numbered

from

the

highest

most

position

being

0

(left-most)

and

the

lowest

most

position

being

n

(right-most).

Char(n)

Fixed

length

string

of

″n″

1-byte

characters.

Char(1)

is

also

used

to

represent

1-byte

binary

values.

Char(8)

is

used

to

represent

8-byte

binary.

The

character

string

may

be

redefined

to

be

series

of

1

or

more

other

data

types.

Char(*)

Variable

length

string

of

1-byte

characters.

The

character

string

may

be

redefined

to

be

series

of

1

or

more

other

data

types.

Float(4)

A

4-byte

floating

point

number.

Float(8)

An

8-byte

floating

point

number.

Machine

Interface

Instructions

1265

Data

pointer

A

16-byte

area

that

contains

a

data

pointer

(must

be

on

a

16-byte

boundary).

Instruction

pointer

A

16-byte

area

that

contains

an

instruction

pointer

(must

be

on

a

16-byte

boundary).

Invocation

pointer

A

16-byte

area

that

contains

an

invocation

pointer

(must

be

on

a

16-byte

boundary).

Label

pointer

A

16-byte

area

that

contains

a

label

pointer

(must

be

on

a

16-byte

boundary).

Object

pointer

A

16-byte

area

that

contains

an

XOM

object

pointer

(must

be

on

a

16-byte

boundary).

Procedure

pointer(16)

A

16-byte

area

that

contains

a

procedure

pointer

(must

be

on

a

16-byte

boundary).

Procedure

pointer(8)

An

8-byte

area

that

contains

a

local

pointer

that

identifies

an

active

instance

of

a

procedure

(not

valid

in

a

template

for

a

non-bound

program,

and

valid

in

a

bound

program

template

only

when

the

program

is

to

be

created

as

teraspace

capable)

Space

pointer(16)

A

16-byte

area

that

contains

a

space

pointer

(must

be

on

a

16-byte

boundary).

Space

pointer(8)

An

8-byte

area

that

contains

a

local

pointer

to

teraspace

(not

valid

in

a

template

for

a

non-bound

program,

and

valid

in

a

bound

program

template

only

when

the

program

is

to

be

created

as

teraspace

capable)

Suspend

pointer

A

16-byte

area

that

contains

a

system

pointer

(must

be

on

a

16-byte

boundary).

Synchronization

pointer

A

16-byte

area

that

contains

a

synchronization

pointer

(must

be

on

a

16-byte

boundary).

System

pointer

A

16-byte

area

that

contains

a

system

pointer

(must

be

on

a

16-byte

boundary).

Open

pointer

A

16-byte

area

that

contains

a

pointer

with

an

unspecified

type

(must

be

on

a

16-byte

boundary).

Example:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Materialization

size

specification

Char(8)

0

0

Number

of

bytes

provided

for

materialization

UBin(4)

4

4

Number

of

bytes

available

for

materialization

UBin(4)

8

8

Object

identification

Char(32)

8

8

Object

type

Char(1)

9

9

Object

subtype

Char(1)

10

A

Object

name

Char(30)

40

28

Reserved

(binary

0)

Char(4)

44

2C

Performance

class

Char(4)

44

2C

Space

alignment

Bit

0

44

2C

Reserved

(binary

0)

Bits

1-4

44

2C

Main

storage

pool

selection

Bit

5

44

2C

Transient

storage

pool

selection

Bit

6

44

2C

Block

transfer

on

implicit

access

state

modification

Bit

7

44

2C

Unit

number

Bits

8-15

44

2C

Reserved

(binary

0)

Bits

16-31

48

30

Context

System

pointer

64

40

—-

End

—-

This

hypothetical

template

is

composed

of:

1.

An

8-byte

character

string

which

is

defined

to

be

composed

of

2

unsigned

4-byte

binary

values.

1266

iSeries:

Machine

Interface

Instructions

APIs

2.

A

32-byte

character

string

which

is

defined

to

be

composed

of

three

fields:

a

1-byte

character

field,

another

1-byte

character

field,

and

lastly

a

30-byte

character

field.

3.

A

4-byte

character

string

which

is

defined

to

be

reserved

for

future

use

and

that

will

contain

a

value

of

binary

zeroes.

4.

A

4-byte

character

string

which

is

defined

to

be

composed

of

a

series

of

bit

fields:

1-bit

fields

are

defined

for

positions

0,

5,

6,

and

7;

a

4-bit

field

is

reserved

in

positions

1

through

4;

an

8-bit

field

is

defined

in

positions

8

through

15;

and

a

16-bit

field

is

defined

as

being

reserved

in

positions

16-31.

5.

A

system

pointer

to

a

context

object.

This

pointer

is

on

a

16-byte

boundary

with

respect

to

the

beginning

of

the

template.

The

architecture

assumes

that

the

template

begins

on

a

16-byte

boundary.

6.

The

template

is

64

bytes

in

length.

When

a

template

field

represents

an

array

or

repeating

structure,

the

field

data

type

will

be

proceeded

by

a

″dimension″

which

indicates

the

number

of

elements

in

the

array

or

the

number

of

times

the

structure

is

repeated.

Example:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Array

of

binary

numbers

[12]

Bin(4)

48

30

Repeating

structure

[4]

Char(4)

48

30

Structure

field

1

Char(1)

49

31

Structure

field

2

Char(1)

50

32

Structure

field

3

Bin(2)

64

40

Array

of

pointers

[3]

Space

pointer

112

70

Variable

array

1

[5]

Char(*)

*

*

Variable

array

2

[*]

Char(*)

*

*

—-

End

—-

In

this

example,

there

is:

1.

Twelve

occurrences

of

a

signed

4-byte

binary

number.

2.

Four

occurrences

of

a

4-byte

structure

which

is

composed

of

3

fields;

2

1-byte

character

strings

and

1

signed

2-byte

binary

number.

3.

Three

occurrences

of

a

16-byte

space

pointer.

4.

Five

occurrences

of

a

variable

length

character

string.

Normally

the

instruction

will

provide

additional

information

regarding

how

to

determine

the

length

of

each

occurrence.

5.

A

variable

number

of

occurrences

of

a

variable

length

character

string.

Normally

the

instruction

will

provide

additional

information

regarding

how

to

determine

the

number

of

occurrences

and

the

length

of

each

occurrence.

When

terms

are

defined

or

fields

in

a

template

are

described,

they

are

highlighted

as

follows:

term

definition.

When

a

term

is

referenced

or

a

value

of

a

field

is

referred

to,

it

is

highlighted

as

follows:

term

reference.

Fields

in

a

template

are

generally

described

in

the

same

order

as

they

are

defined

in

the

template.

However,

some

fields

are

more

appropriately

described

with

other

related

fields,

so

they

may

not

appear

in

exact

order.

Limitations

(Subject

to

Change):

These

are

the

limits

that

apply

to

the

functions

performed

by

the

instruction.

These

limits

are

subject

to

change.

Machine

Interface

Instructions

1267

Resultant

Conditions:

These

are

the

conditions

that

can

be

set

at

the

end

of

the

standard

operation

in

order

to

perform

a

conditional

branch

or

set

a

conditional

indicator.

Warning:

Temporary

Level

4

Header

Authorization

Required:

A

list

of

the

object

authorization

required

for

each

of

the

operands

in

the

instruction

or

for

any

objects

subsequently

referenced

by

the

instruction

is

given.

Lock

Enforcement:

Describes

the

specification

of

the

lock

states

that

are

to

be

enforced

during

execution

of

the

instruction.

The

following

states

of

enforcement

can

be

specified

for

an

instruction:

v

v

Enforcement

for

materialization

Access

to

a

system

object

is

allowed

if

no

other

process

is

holding

a

locked

exclusive

no

read

(LENR)

lock

on

the

object.

In

general,

this

rule

applies

to

instructions

that

access

an

object

for

materialization

and

retrieval.

v

Enforcement

for

modification

Access

to

a

system

object

is

allowed

if

no

other

process

is

holding

a

locked

exclusive

no

read

(LENR),

locked

exclusive

allow

read

(LEAR),

or

locked

shared

read

only

(LSRO)

lock.

In

general,

this

rule

applies

to

instructions

that

modify

or

alter

the

contents

of

a

system

object.

v

Enforcement

of

object

control

Access

is

prohibited

if

another

process

is

holding

any

lock

on

the

system

object.

In

general,

this

rule

applies

to

instructions

that

destroy

or

rename

a

system

object.

Error

Conditions:

For

those

instructions

supported

in

bound

programs

that

return

a

completion

value,

this

section

lists

the

possible

values

that

can

be

returned.

Exceptions:

The

″exceptions″

sections

contain

a

list

of

exceptions

that

can

be

caused

by

the

instruction.

Exceptions

related

to

specific

operands

are

indicated

for

each

exception

by

the

exception

under

the

heading

operand.

An

entry

under

the

word,

other,

indicates

that

the

exception

applies

to

the

instruction

but

not

to

a

particular

operand.

Reserved

and

Obsolete

Fields

Reserved

Fields

Fields

in

an

instruction

template

that

are

specified

as

being

reserved

must

contain

binary

0s

on

input

and

will

usually

contain

binary

0s

on

output.

In

most

cases,

specifying

a

value

other

than

zero

may

cause

an

exception

or

unpredictable

results.

As

the

MI

Architecture

evolves

and

responds

to

new

and

changing

requirements,

it

is

necessary

to

make

use

of

reserved

fields

to

support

new

function.

The

MI

user

must

be

aware

that

on

subsequent

releases

v

v

a

formerly

reserved

field

may

not

return

binary

0s

v

a

reserved

field

that

was

not

checked

for

binary

0s

may

begin

to

have

binary

0

values

enforced

on

input

v

a

formerly

reserved

field

may

begin

to

accept

nonzero

values

in

support

of

a

new

or

expanded

function.

So,

for

example,

if

a

template

byte

had

the

first

six

bits

used,

followed

by

two

reserved

bits,

code

that

relies

on

having

all

the

defined

bits

turned

on

should

check

the

bits

individually

instead

of

comparing

the

whole

byte

to

hex

FC.

1268

iSeries:

Machine

Interface

Instructions

APIs

Obsolete

Fields

As

the

MI

Architecture

evolves

and

responds

to

new

and

changing

requirements,

it

is

necessary

sometimes

to

remove

support

for

an

existing

field

in

a

template.

When

this

occurs,

the

field

will

remain

in

the

template

to

provide

compatibility

with

existing

instances

of

the

instruction

but

the

field

will

be

marked

as

obsolete.

Values

provided

by

the

MI

user

in

obsolete

fields

will

be

ignored

by

the

machine.

Definition

Of

The

NBP

Operand

Syntax

Syntax

consists

of

the

allowable

choices

for

each

instruction

operand.

The

following

are

the

common

terms

used

in

the

syntax

and

the

meanings

of

those

terms:

v

v

Numeric:

Numeric

attribute

of

binary,

packed

decimal,

zoned-decimal,

or

floating-point

v

Character:

character

attribute

v

Scalar:

–

–

Scalar

data

object

that

is

not

an

array

(see

note

1)

–

Constant

scalar

object

–

Immediate

operand

(signed

or

unsigned)

–

Element

of

an

array

of

scalars

(see

notes

1

and

2)

–

Substring

of

a

character

scalar

or

a

character

scalar

constant

data

object

(see

notes

1

and

3)
v

Data

Pointer

Defined

Scalar:

–

–

A

scalar

defined

by

a

data

pointer

–

Substring

of

a

character

scalar

defined

by

a

data

pointer

(see

notes

1

and

3)
v

Pointer:

–

–

Pointer

data

object

that

is

not

an

array

(see

note

1)

–

Element

of

an

array

of

pointers

(see

notes

1

and

2)

–

Space

pointer

machine

object
v

Array:

An

array

of

scalars

or

an

array

of

pointers

(see

note

1)

v

Variable

Scalar:

Same

as

scalar

except

constant

scalar

objects

and

immediate

operand

values

are

excluded.

v

Data

Pointer:

A

pointer

data

object

that

is

to

be

used

as

a

data

pointer.

–

–

If

the

operand

is

a

source

operand,

the

pointer

storage

form

must

contain

a

data

pointer

when

the

instruction

is

executed.

–

If

the

operand

is

a

receiver

operand,

a

data

pointer

is

constructed

by

the

instruction

in

the

specified

area

regardless

of

its

current

contents

(see

note

4).
v

Open

pointer:

specifies

that

all

16-byte

pointer

types

are

supported

by

the

instruction.

When

a

new

pointer

type

is

added

to

the

architecture,

the

instruction’s

implementation

doesn’t

require

any

updates.

However,

if

an

instruction

lists

all

of

the

defined

16-byte

pointer

types

as

valid

data

types

for

an

operand,

that

instruction’s

implementation

may

have

to

be

updated

when

a

new

pointer

type

is

defined.

v

Space

Pointer:

A

space

pointer

data

object

or

a

space

pointer

machine

object.

v

Space

Pointer

Data

Object:

A

pointer

data

object

that

is

to

be

used

as

a

space

pointer.

–

Machine

Interface

Instructions

1269

–

If

the

operand

is

a

source

operand,

the

pointer

storage

form

must

contain

a

space

pointer

when

the

instruction

is

executed.

–

If

the

operand

is

a

receiver

operand,

a

space

pointer

is

constructed

by

the

instruction

in

the

specified

area

regardless

of

its

current

contents

(see

note

4).
v

System

Pointer:

a

pointer

data

object

that

is

to

be

used

as

a

system

pointer.

–

–

If

the

operand

is

a

source

operand,

the

specified

area

must

contain

a

system

pointer

when

the

instruction

is

executed.

–

If

the

operand

is

a

receiver

operand,

a

system

pointer

is

constructed

by

the

instruction

in

the

specified

area

regardless

of

its

current

contents

(see

note

4).
v

Relative

Instruction

Number:

Signed

immediate

operand.

(NBP

only)

v

Instruction

Number:

Unsigned

immediate

operand.

(NBP

only)

v

Instruction

Pointer:

A

pointer

data

object

that

is

to

be

used

as

an

instruction

pointer.

(NBP

only)

–

–

If

the

operand

is

a

source

operand,

the

specified

area

must

contain

an

instruction

pointer

when

the

instruction

is

executed.

–

If

the

operand

is

a

receiver

operand,

an

instruction

pointer

is

constructed

by

the

instruction

in

the

specified

area

regardless

of

its

current

contents

(see

notes

4

and

5).
v

Invocation

Pointer:

A

pointer

data

object

that

is

to

be

used

as

an

invocation

pointer.

–

–

If

the

operand

is

a

source

operand,

the

specified

area

must

contain

an

invocation

pointer

when

the

instruction

is

executed.

–

If

the

operand

is

a

receiver

operand,

an

invocation

pointer

is

constructed

by

the

instruction

in

the

specified

area

regardless

of

its

current

contents

(see

note

4).
v

Procedure

Pointer:

A

pointer

data

object

that

is

to

be

used

as

a

procedure

pointer.

–

–

If

the

operand

is

a

source

operand,

the

specified

area

must

contain

a

procedure

pointer

when

the

instruction

is

executed.

–

If

the

operand

is

a

receiver

operand,

a

procedure

pointer

is

constructed

by

the

instruction

in

the

specified

area

regardless

of

its

current

contents

(see

note

4).
v

Label

Pointer:

A

pointer

data

object

that

is

to

be

used

as

an

label

pointer.

–

–

If

the

operand

is

a

source

operand,

the

specified

area

must

contain

a

label

pointer

when

the

instruction

is

executed.

–

If

the

operand

is

a

receiver

operand,

a

label

pointer

is

constructed

by

the

instruction

in

the

specified

area

regardless

of

its

current

contents

(see

note

4).
v

Suspend

Pointer:

A

pointer

data

object

that

is

to

be

used

as

an

suspend

pointer.

–

–

If

the

operand

is

a

source

operand,

the

specified

area

must

contain

a

suspend

pointer

when

the

instruction

is

executed.

–

If

the

operand

is

a

receiver

operand,

a

suspend

pointer

is

constructed

by

the

instruction

in

the

specified

area

regardless

of

its

current

contents

(see

note

4).
v

Synchronization

Pointer:

A

pointer

data

object

that

is

to

be

used

as

an

synchronization

pointer.

–

–

If

the

operand

is

a

source

operand,

the

specified

area

must

contain

a

synchronization

pointer

when

the

instruction

is

executed.

–

If

the

operand

is

a

receiver

operand,

a

synchronization

pointer

is

constructed

by

the

instruction

in

the

specified

area

regardless

of

its

current

contents

(see

note

4).

1270

iSeries:

Machine

Interface

Instructions

APIs

v

Object

Pointer:

A

pointer

data

object

that

is

to

be

used

as

an

XOM

object

pointer.

–

–

If

the

operand

is

a

source

operand,

the

specified

area

must

contain

an

XOM

object

pointer

when

the

instruction

is

executed.

–

If

the

operand

is

a

receiver

operand,

an

XOM

object

pointer

is

constructed

by

the

instruction

in

the

specified

area

regardless

of

its

current

contents

(see

note

4).
v

Instruction

Definition

List

Element:

An

entry

in

an

instruction

definition

list

that

can

be

used

as

a

branch

target

(NBP

only).

A

compound

subscript

operand

form

must

always

be

used

(see

note

5).

Notes:

1.

An

instruction

operand

in

which

the

primary

operand

is

a

scalar

or

a

pointer

may

also

have

an

operand

form

in

which

an

explicit

base

pointer

is

specified.

See

ODT

Object

References

for

more

information

on

compound

operands.

2.

A

compound

subscript

operand

may

be

used

to

select

a

specific

element

from

an

array

of

scalars

or

from

an

array

of

pointers.

See

ODT

Object

References

for

more

information

on

compound

operands.

3.

A

compound

substring

operand

may

be

used

to

define

a

substring

of

a

character

scalar,

or

a

character

constant

scalar

object.

A

compound

substring

operand

that

disallows

a

null

substring

reference

(a

length

value

of

zero)

may,

unless

precluded

by

the

particular

instruction,

be

specified

for

any

operand

syntactically

defined

as

allowing

a

character

scalar.

A

compound

substring

operand

that

allows

a

null

substring

reference

may

be

specified

for

an

operand

syntactically

defined

as

allowing

a

character

scalar

only

if

the

instruction

specifies

that

it

is

allowed.

Whether

a

compound

substring

operand

does

or

does

not

allow

a

null

substring

reference

is

controlled

through

the

specification

of

the

length

secondary

operand

field.

See

ODT

Object

References

for

more

information

on

compound

operands.

4.

A

compound

subscript

operand

form

may

be

used

to

select

an

element

from

an

array

of

pointers

to

act

as

the

operand

for

an

instruction.

See

ODT

Object

References

for

more

information

on

compound

operands.

5.

Compound

subscript

forms

are

not

allowed

on

branch

target

operands

that

are

used

for

conditional

branching.

Selection

of

elements

of

instruction

pointer

arrays

and

elements

of

instruction

definition

lists

may,

however,

be

referenced

for

branch

operands

by

the

branch

instruction.

Alternate

choices

of

NBP

operand

types

and

the

allowable

variations

within

each

choice

are

indicated

in

the

syntax

descriptions

as

shown

in

the

following

example.

Operand

1:

Numeric

variable

scalar.

Operand

2:

Numeric

scalar.

Operand

3:

Instruction

number,

branch

point

or

instruction

pointer.

Operand

1

must

be

variable

scalar.

Operands

1

and

2

must

be

numeric.

Operand

3

can

be

an

instruction

number,

branch

point

or

instruction

pointer.

When

a

length

is

specified

in

the

syntax

for

an

NBP

operand,

character

scalar

operands

must

be

at

least

the

size

specified.

Any

excess

beyond

that

required

by

the

instruction

is

ignored.

Scalar

NBP

operands

that

are

operated

on

by

instructions

requiring

1-byte

operands,

such

as

pad

values

or

indicator

operands,

can

be

greater

than

1

byte

in

length;

however,

only

the

first

byte

of

the

character

string

is

used.

The

remaining

bytes

are

ignored

by

the

instruction.

Machine

Interface

Instructions

1271

MINPO.htm#HDRODTORF
MINPO.htm#HDRODTORF
MINPO.htm#HDRODTORF
MINPO.htm#HDRODTORF

Names

The

MI

architecture

treats

names,

unless

explicitly

stated

otherwise,

as

a

sequence

of

unencoded

bytes.

That

is,

the

machine

treats

each

byte

of

an

object

name

as

a

sequence

of

bits

which

the

machine

stores

and

returns

without

modification.

Names,

being

unencoded,

are

not

associated

with

any

Coded

Character

Set

Identifier

(CCSID)

or

any

other

National

Language

Support

information

by

the

machine.

The

machine

does

not

perform

(unless

explicitly

stated)

any

character

translations

on

names.

Character

Constants

The

character

constants

specified

in

an

instruction

(in

the

form

’X’

where

X

represents

a

single

character)

are

required

by

the

machine

to

be

from

the

EBCDIC

invariant

character

set.

This

includes

the

following

characters.

’A’

=

hex

C1

’a’

=

hex

81

’0’

=

hex

F0

’:’

=

hex

7A

’B’

=

hex

C2

’b’

=

hex

82

’1’

=

hex

F1

’;’

=

hex

5E

’C’

=

hex

C3

’c’

=

hex

83

’2’

=

hex

F2

’?’

=

hex

6F

’D’

=

hex

C4

’d’

=

hex

84

’3’

=

hex

F3

’E’

=

hex

C5

’e’

=

hex

85

’4’

=

hex

F4

’F’

=

hex

C6

’f’

=

hex

86

’5’

=

hex

F5

’G’

=

hex

C7

’g’

=

hex

87

’6’

=

hex

F6

’H’

=

hex

C8

’h’

=

hex

88

’7’

=

hex

F7

’I’

=

hex

C9

’i’

=

hex

89

’8’

=

hex

F8

’J’

=

hex

D1

’j’

=

hex

91

’9’

=

hex

F9

’K’

=

hex

D2

’k’

=

hex

92

’+’

=

hex

4E

’L’

=

hex

D3

’l’

=

hex

93

’>’

=

hex

6E

’M’

=

hex

D4

’m’

=

hex

94

’=’

=

hex

7E

’N’

=

hex

D5

’n’

=

hex

95

’<’

=

hex

4C

’O’

=

hex

D6

’o’

=

hex

96

’%’

=

hex

6C

’P’

=

hex

D7

’p’

=

hex

97

’@’

=

hex

7C

’Q’

=

hex

D8

’q’

=

hex

98

’*’

=

hex

5C

’R’

=

hex

D9

’r’

=

hex

99

’’’

=

hex

7D

’S’

=

hex

E2

’s’

=

hex

A2

’"’

=

hex

7F

’T’

=

hex

E3

’t’

=

hex

A3

’(’

=

hex

4D

’U’

=

hex

E4

’u’

=

hex

A4

’)’

=

hex

5D

’V’

=

hex

E5

’v’

=

hex

A5

’,’

=

hex

6B

’W’

=

hex

E6

’w’

=

hex

A6

’_’

=

hex

6D

’X’

=

hex

E7

’x’

=

hex

A7

’-’

=

hex

60

’Y’

=

hex

E8

’y’

=

hex

A8

’.’

=

hex

4B

’Z’

=

hex

E9

’z’

=

hex

A9

’/’

=

hex

61

Standard

Time

Format

The

Standard

Time

Format

is

defined

as

a

64-bit

(8-byte)

unsigned

binary

value

as

follows:

Offset

Dec

Hex

Field

Name

Data

Type

and

Length

0

0

Standard

Time

Format

UBin(8)

0

0

Time

Bits

0-48

0

0

Uniqueness

bits

Bits

49-63

8

8

—-

End

—-

The

time

field

is

a

binary

number

which

can

be

interpreted

as

a

time

value

in

units

of

8

microseconds.

A

binary

1

in

bit

48

is

equal

to

8

microseconds.

The

uniqueness

bits

field

may

contain

any

combination

of

binary

1s

and

0s.

These

bits

do

not

provide

additional

granularity

for

a

time

value;

they

merely

allow

unique

64-bit

values

to

be

returned,

such

as

when

the

value

of

the

time-of-day

(TOD)

clock

is

materialized.

1272

iSeries:

Machine

Interface

Instructions

APIs

A

number

of

MI

instructions

define

fields

to

contain

a

binary

value

which

may

represent

a

time

stamp

or

time

interval,

or

may

specify

a

wait

time-out

period.

Unless

explicitly

stated

otherwise,

the

format

of

the

field

is

the

Standard

Time

Format.

Examples

of

binary

values

as

time

intervals:

A

hex

value

of...

Represents...

0000000000008000

8

microseconds

00000000F4240000

1

second

00000D693A400000

1

hour

0008CD0E3A000000

1

week

Examples

of

binary

values

as

time

stamps:

A

hex

value

of...

Represents...

0000000000000000

08/23/1928

12:03:06.314752

4A2FEC4C82000000

01/01/1970

00:00:00.000000

8000000000000000

01/01/2000

00:00:00.000000

DFFFFFFFFFFF8000

07/07/2053

20:57:40.263928

Time-of-Day

(TOD)

Clock

The

time-of-day

(TOD)

clock

is

a

machine

facility

which

provides

a

consistent

measure

of

elapsed

time.

The

value

of

the

TOD

clock

can

be

materialized

in

“Standard

Time

Format”

on

page

1272.

The

time

field

of

the

TOD

clock

is

incremented

by

adding

a

binary

1

in

bit

48

every

8

microseconds.

This

gives

the

TOD

clock

a

granularity

of

8

microseconds.

However,

the

observed

granularity

cannot

be

accurately

predicted

because

retrieval

latency

depends

on

the

current

implementation

of

the

machine

facility

and

the

workload

on

the

machine

when

the

request

is

made.

Depending

upon

the

MI

instruction

used,

the

value

of

the

TOD

clock

may

be

materialized

as

either

the

Coordinated

Universal

Time

(UTC)

for

the

system,

with

or

without

a

time

zone

offset,

or

the

local

time

for

the

system.

Coordinated

Universal

Time

(UTC)

is

a

universally

coordinated

time

scale

that

is

kept

by

timing

laboratories

around

the

world

and

is

determined

using

highly

precise

atomic

clocks.

The

International

Bureau

of

Weights

and

Measures

makes

use

of

data

from

the

timing

laboratories

to

provide

the

international

standard

UTC.

UTC

is

the

current

term

for

what

was

commonly

referred

to

as

Greenwich

Mean

Time

(GMT).

Zero

hours

UTC

is

midnight

in

Greenwich,

England,

which

lies

on

the

zero

longitudinal

meridian.

The

time

zone

offset

is

a

signed

integer

which

indicates

the

local

time

zone,

including

any

adjustment

for

Daylight

Savings

Time,

as

measured

in

minutes

of

time

westward

from

Greenwich,

England.

The

time

zone

offset

can

be

used

to

convert

between

UTC

and

local

time

for

the

system.

The

local

time

for

the

system

is

generated

by

applying

the

time

zone

offset

for

the

system

to

the

UTC

for

the

system.

When

the

value

of

the

time

zone

offset

is

binary

0,

then

the

UTC

and

the

local

time

for

a

system

are

identical.

Both

the

value

of

the

TOD

clock

as

UTC

and

the

time

zone

offset

for

the

system

can

be

materialized

using

the

Materialize

Time

Of

Day

Attributes

(MATTODAT)

instruction.

The

value

of

the

TOD

clock

as

either

UTC

or

as

local

time

for

the

system

can

be

materialized

using

the

Materialize

Machine

Data

(MATMDATA)

instruction.

The

TOD

clock

machine

facility

guarantees

that

each

request

to

materialize

the

value

of

the

TOD

clock

will

receive

a

unique,

monotonically

increasing

value.

However,

the

MI

user

must

be

aware

that

under

the

following

conditions

unique,

monotonically

increasing

values

may

not

be

observed:

v

v

Values

across

threads

Machine

Interface

Instructions

1273

Each

request

may

have

a

different

latency

between

when

the

request

is

made

and

when

the

value

is

returned.

Therefore,

the

values

returned

for

requests

from

different

threads

may

not

be

in

the

same

order

in

which

the

requests

are

made.

v

Modification

of

the

TOD

clock

Modification

of

the

TOD

clock

to

an

earlier

value

can

result

in

the

materialization

of

values

which

are

not

unique

nor

monotonically

increasing

as

compared

to

values

materialized

before

the

modification.

v

Time

zone

offset

change

A

time

zone

offset

change,

such

as

when

changing

from

Daylight

Saving

Time

to

Standard

Time,

can

result

in

the

materialization

of

local

time

values

which

are

not

unique

nor

monotonically

increasing

as

compared

to

local

time

values

materialized

before

the

change.

Storage

Terminology

The

term

basic

storage

unit

is

defined

to

mean

512

bytes

of

storage.

Basic

storage

units

are

commonly

used

to

return

the

size

information

about

MI

objects.

The

term

page

is

defined

to

mean

one

or

more

basic

storage

units

used

by

the

machine

to

manage

memory

and

DASD.

The

number

of

bytes

in

a

page

can

be

determined

with

option

hex

12

of

the

Materialize

Resource

Machine

Data

(MATRMD)

instruction.

The

term

machine

minimum

transfer

size

is

defined

to

be

the

smallest

number

of

bytes

that

may

be

transferred

as

a

block

to

and

from

main

storage.

The

number

of

bytes

in

the

machine

minimum

transfer

size

can

be

determined

with

option

hex

9

of

the

Materialize

Resource

Machine

Data

(MATRMD)

instruction.

Storage

Limitations

The

following

sub-sections

describe

data

object

size

limits

that

are

checked

during

module

or

program

creation

and

storage

limits

that

are

checked

when

the

program

is

activated

or

run.

In

some

cases

the

creation-time

limits

are

more

generous

than

the

run-time

limits,

so

it’s

possible

to

create

a

program

that

will

not

run.

The

values

in

the

following

tables

are

in

bytes.

Throughout

this

section,

the

following

abbreviations

are

used:

K

=

1024,

M

=

1048576,

G

=

1073741824,

page

=

page

size.

See

“Storage

Terminology”

for

more

details

on

the

page

size.

Size

limits

for

data

objects

in

bound

programs

Storage

type

Program

attribute

Not

teraspace

capable

Teraspace

capable

Teraspace

storage

model

Automatic

16M-1page

16M-1page

2G-64K-1

Procedure

argument

block

16M-1page

16M-1page

2G-64K-1

Static

16M-1page

16M-1page

4G-1

Exported

16M-1page

16M-1page

16M-1page

Imported

16M-1page

16M-1page

16M-1page

Literal

(constant)

16M-1page

16M-1page

16M-1page

Not

mapped

(based)

16M-1K-1

4G-1

4G-1

1274

iSeries:

Machine

Interface

Instructions

APIs

Size

limits

for

data

objects

in

non-bound

programs

Storage

type

Program

attribute

Not

teraspace

capable

Teraspace

capable

Automatic

16M-1page

16M-1page

Static

(internal)

16M-1page

16M-1page

Static

(named

external)

64K-1

64K-1

Constant

32K-1

32K-1

Based

(space

pointer)

16M-1K-1

16M-1K-1

Based

(PCO(Process

Communications

Object))

16M-1page

16M-1page

Parameter

16M-1K-1

*

16M-1K-1

*

Note:

*

Assumes

parameter

allocated

in

program-managed

storage.

Machine

managed

storage

limits

Storage

type

Program

storage

model

Single

Level

Store

Teraspace

Automatic

stack,

initial

thread

16M-1page

64M

Automatic

stack,

secondary

thread

16M-1page

16M

Static

per

compilation

unit

(bound)

16M-1page-16

4G-1

Static

in

activation

group

2G-1

approx.

512G

Static

constants

per

non-bound

program

16M-1page

16M-1page

Static

constants

per

bound

program

approx.

256G

approx.

256G

Program

managed

storage

limits

Storage

type

Maximum

#

bytes

Pointer-based

heap

allocation

16M-1p

(see

ALCHSS)

Pointer-based

heap

4G-512K

(see

CRTHS)

Space

object,

associated

space

16M-1

page

*

PCO

(Process

Communications

Object)

16M-1

page

Note:

*

This

is

the

maximum

recommended

size,

for

best

access

performance.

The

absolute

maximum

for

a

space

object

is

16M-256

and

for

an

associated

space

of

another

type

of

object,

16M-32,

depending

upon

the

alignment

chosen

when

the

space

or

associated

space

is

created.

Atomicity

Atomicity

of

MI

Instructions

MI

instructions

are

not

atomic

unless

they

explicitly

state

that

they

perform

some

function

atomically.

So,

it

is

possible

for

the

function

performed

by

an

MI

instruction

to

be

only

partially

completed

from

the

viewpoint

of

a

program

in

another

thread,

or

within

the

same

thread

when

an

exception

occurs.

When

a

program

is

being

created,

many

hardware

instructions

may

be

generated

that

will

perform

one

MI

instruction’s

function

at

run

time.

Without

the

use

of

an

external

control

mechanism

such

as

a

locking

protocol,

sequences

of

instructions

cannot

be

atomic.

Further,

the

set

of

hardware

instructions

that

implement

an

MI

instruction,

generated

when

a

module

or

program

is

created,

can

be

changed

over

time

to

provide

more

efficient

programs

or

to

accommodate

new

hardware.

Thus

even

those

MI

instructions

for

which

the

generated

code

appears

to

be

atomic

should

not

be

assumed

to

be

so

unless

they

are

specified

as

performing

a

function

atomically.

Machine

Interface

Instructions

1275

Atomicity

of

Storage

Operations

A

storage

operation

reads

data

from

storage

or

writes

data

to

storage.

An

MI

instruction’s

function

may

use

from

zero

to

very

many

storage

operations.

An

individual

storage

operation

may

be

atomic

or

not.

An

atomic

storage

operation

is

performed

such

that

it

appears

to

be

either

complete

or

not

yet

started

to

all

possible

observers

(i.e.

all

threads,

whether

on

the

same

or

another

processor).

On

the

other

hand,

storage

operations

that

are

not

atomic

may

appear

to

be

partially

performed

to

some

observers.

Atomicity

can

affect

the

use

of

shared

storage

areas.

If

a

program

modifies

shared

data

while

holding

a

lock

that

guarantees

exclusive

access

(only

one

reader

or

writer

can

concurrently

access

the

data)

then

atomicity

is

not

an

issue.

However,

if

programs

do

not

have

exclusive

access,

then

the

atomicity

of

storage

operations

may

be

important.

For

example,

a

program

running

in

one

thread

may

periodically

update

a

value

in

a

space,

which

is

in

turn

read

by

a

program

running

in

another

thread.

If

the

operation

used

to

store

a

new

value

is

atomic,

then

the

other

threads

will

always

observe

either

the

old

value

or

the

new

value.

If

the

operation

used

to

store

a

new

value

is

not

atomic,

then

the

other

threads

may

observe

the

old

value,

the

new

value,

or

some

composite

consisting

of

part

of

the

old

value

and

part

of

the

new

value.

The

MI

makes

only

these

guarantees

regarding

the

atomicity

of

storage

operations.

v

v

a

storage

operation

on

a

16

byte

MI

pointer

is

atomic

v

a

storage

operation

that

directly1

(page

1277)

refers

to

a

local

pointer

aligned

on

an

8

byte

boundary

is

atomic

v

a

storage

operation

that

directly1

(page

1277)

refers

to

a

binary

data

object

aligned

on

a

boundary

that

is

a

multiple

of

its

length

is

atomic

v

the

storage

update

performed

by

a

Compare

and

Swap

instruction

is

atomic

v

the

storage

update

performed

by

the

Atomic

Add

instruction

is

atomic

v

the

storage

update

performed

by

the

Atomic

And

instruction

is

atomic

v

the

storage

update

performed

by

the

Atomic

Or

instruction

is

atomic

v

the

storage

update

performed

by

the

Check

Lock

Value

instruction

is

atomic

v

the

storage

update

performed

by

the

Clear

Lock

Value

instruction

is

atomic

Note

that

operations

on

character

data

are

guaranteed

to

be

atomic

only

when

Compare

and

Swap

is

used.

Also

note

that,

even

though

individual

storage

operations

on

properly

aligned

binary

data

objects

are

atomic,

MI

instructions

operating

on

such

data

are

not

atomic

(unless

their

descriptions

explicitly

say

that

they

are).

For

example,

a

CPYNV

from

one

4

byte

binary

data

object

to

another,

where

both

are

aligned

on

4

byte

boundaries,

is

not

guaranteed

to

be

an

atomic

operation,

even

though

the

read

of

one

data

object

and

write

of

the

other

are

each

individually

atomic.

Shared

Storage

Access

Ordering

Previous

sections

discussed

atomicity

of

MI

instructions

and

individual

storage

operations.

For

a

related

discussion

of

the

ordering

of

multiple

operations

that

access2

(page

1277)

shared3

(page

1277)

storage,

see

Storage

Synchronization

Concepts

External

Standards

and

Architectures

Some

of

the

instructions

may

make

reference

to

external

standards

and

architectures.

To

fully

understand

the

functions

performed

by

those

instructions,

it

may

be

necessary

to

obtain

a

copy

of

the

pertinent

document.

Logical

partitioning

Support

for

logical

partitions

has

evolved

since

its

initial

release.

Most

MI

instructions

work

the

same

in

all

logical

partitions.

However,

a

few

MI

instructions

work

differently

depending

on

the

logical

1276

iSeries:

Machine

Interface

Instructions

APIs

MCNSYNC.htm#HDRSTGSYNC

partitioning

environment.

Any

differences

are

described

in

the

documentation

for

the

MI

instruction.

MATMATR

option

01E0

can

be

used

to

materialize

the

firmware

level

and

other

logical

paritioning

information.

The

following

list

describes

some

of

the

terms

used

with

logical

partitioning:

Firmware

level

The

level

of

the

Licensed

Internal

Code

used

by

the

hypervisor.

Full

System

Partition

Mode

A

physical

machine

with

a

single

partition

owning

all

system

resources.

Hardware

Management

Console

Attached

appliance

designed

to

control

the

physical

machine.

It

is

used

to

define

and

manage

logical

partitions

and

other

system

wide

functions.

If

the

physical

machine

has

Hardware

Management

Console,

some

system

attributes

must

be

set

here.

Hardware

Management

Console

is

not

supported

on

all

firmware

levels.

Hypervisor

A

hypervisor

is

a

specialized

portion

of

the

machine

that

enables

logical

partitioning.

Logical

partition

A

subset

of

a

single

physical

machine

that

contains

resources

(processors,

memory,

input/output

devices).

A

logical

partition

operates

as

an

independent

system.

If

hardware

requirements

are

met,

multiple

logical

partitions

can

exist

within

a

physical

machine.

Logical

Partition

Mode

A

physical

machine

with

firmware

level

hex

10

and

one

or

more

partitions

owning

system

resources.

Hardware

Management

Console

is

used

to

enter

and

exit

this

mode.

Primary

logical

partition

A

logical

partition

which

provides

certain

general

functions

on

which

all

logical

partitions

are

dependent.

A

primary

logical

partition

is

not

supported

on

all

firmware

levels.

Secondary

logical

partition

A

logical

partition

which

maintains

a

dependency

on

the

primary

logical

partition.

Otherwise,

it

operates

as

a

stand-alone

system.

Secondary

logical

partitions

are

independent

of

each

other.

Secondary

logical

partitions

are

not

supported

on

all

firmware

levels.

The

following

list

describes

the

logical

partitioning

environments:

Physical

machine

with

firmware

level

hex

00

A

primary

logical

partition

exists.

Some

system

attributes

must

be

set

in

the

primary

logical

partition

only.

The

physical

machine

may

have

zero

or

more

secondary

logical

partitions.

Physical

machine

with

firmware

level

hex

10,

no

Hardware

Management

Console

A

primary

partition

does

NOT

exist.

System

attributes

must

be

set

in

a

partition.

This

environment

is

in

Full

System

Partition

Mode.

Physical

machine

with

firmware

level

hex

10,

Hardware

Management

Console

attached

A

primary

partition

does

NOT

exist.

Some

system

attributes

must

be

set

in

a

partition

and

other

system

attributes

must

be

set

using

Hardware

Management

Console.

This

environment

may

be

in

Full

System

Partition

Mode

or

Logical

Partition

Mode.

Footnotes:

1

Direct

references

do

not

include

operations

that

reference

the

storage

containing

a

data

object

by

using

another

view,

such

as

a

reference

to

a

structure

that

contains

the

data

object

or

a

reference

to

the

address

of

a

storage

range

that

contains

the

data

object.

2

(load

from

or

store

to)

3

(used

by

more

than

one

thread)

ISeries(TM)

Machine

Interface

Instructions

Machine

Interface

Instructions

1277

Instruction

name

“Arc

Cosine

(ACOS)”

on

page

29

“Activate

Bound

Program

(ACTBPGM)”

on

page

5

“Activate

Program

(ACTPG)”

on

page

10

“Add

Logical

Character

(ADDLC)”

on

page

13

“Add

Numeric

(ADDN)”

on

page

15

“Add

Space

Pointer

(ADDSPP)”

on

page

19

“Allocate

Activation

Group-Based

Heap

Space

Storage

(ALCHSS)”

on

page

21

“And

(AND)”

on

page

24

“And

Complemented

String

(ANDCSTR)”

on

page

27

“AND

String

(ANDSTR)”

on

page

28

“Arc

Sine

(ASIN)”

on

page

30

“Arc

Tangent

(ATAN)”

on

page

31

“Arc

Tangent

Hyperbolic

(ATANH)”

on

page

32

“Atomic

Add

(ATMCADD)”

on

page

33

“Atomic

And

(ATMCAND)”

on

page

35

“Atomic

Or

(ATMCOR)”

on

page

37

“Branch

(B)”

on

page

39

“Compute

Array

Index

(CAI)”

on

page

113

“Call

Internal

(CALLI)”

on

page

46

“Call

Program

with

Variable

Length

Argument

List

(CALLPGMV)”

on

page

48

“Call

External

(CALLX)”

on

page

41

“Concatenate

(CAT)”

on

page

137

“Compute

Date

Duration

(CDD)”

on

page

115

“Check

Lock

Value

(CHKLKVAL)”

on

page

50

“Cipher

(CIPHER)”

on

page

53

“Clear

Bit

in

String

(CLRBTS)”

on

page

68

“Clear

Invocation

Exit

(CLRIEXIT)”

on

page

70

“Clear

Invocation

Flags

(CLRINVF)”

on

page

71

“Clear

Lock

Value

(CLRLKVAL)”

on

page

72

“Compute

Math

Function

Using

One

Input

Value

(CMF1)”

on

page

119

“Compute

Math

Function

Using

Two

Input

Values

(CMF2)”

on

page

126

“Compare

Bytes

Left-Adjusted

(CMPBLA)”

on

page

81

“Compare

Bytes

Left-Adjusted

with

Pad

(CMPBLAP)”

on

page

83

“Compare

Bytes

Right-Adjusted

(CMPBRA)”

on

page

85

“Compare

Bytes

Right-Adjusted

with

Pad

(CMPBRAP)”

on

page

88

“Compare

Numeric

Value

(CMPNV)”

on

page

91

“Compare

Pointer

for

Space

Addressability

(CMPPSPAD)”

on

page

97

“Compare

Pointer

for

Object

Addressability

(CMPPTRA)”

on

page

94

“Compare

Pointers

for

Equality

(CMPPTRE)”

on

page

103

“Compare

Pointer

Type

(CMPPTRT)”

on

page

100

“Compare

Space

Addressability

(CMPSPAD)”

on

page

106

“Compare

and

Swap

(CMPSW)”

on

page

74

“Compare

and

Swap

(CMPSW)”

on

page

74

“Compare

To

Pad

(CMPTOPAD)”

on

page

108

“Complement

String

(COMSTR)”

on

page

109

“Cosine

(COS)”

on

page

264

“Cosine

Hyperbolic

(COSH)”

on

page

265

“Cotangent

(COT)”

on

page

266

“Compress

Data

(CPRDATA)”

on

page

110

“Copy

Bytes

to

Bits

Arithmetic

(CPYBBTA)”

on

page

234

“Copy

Bytes

to

Bits

Logical

(CPYBBTL)”

on

page

236

“Copy

Bytes

Left-Adjusted

(CPYBLA)”

on

page

220

“Copy

Bytes

Left-Adjusted

with

Pad

(CPYBLAP)”

on

page

222

“Copy

Bytes

Overlapping

(CPYBO)”

on

page

228

“Copy

Bytes

Overlap

Left-Adjusted

(CPYBOLA)”

on

page

224

“Copy

Bytes

Overlap

Left-Adjusted

with

Pad

(CPYBOLAP)”

on

page

226

“Copy

Bytes

Right-Adjusted

(CPYBRA)”

on

page

231

“Copy

Bytes

Right-Adjusted

with

Pad

(CPYBRAP)”

on

page

232

“Copy

Bytes

Repeatedly

(CPYBREP)”

on

page

229

“Copy

Bits

Arithmetic

(CPYBTA)”

on

page

208

“Copy

Bits

Logical

(CPYBTL)”

on

page

210

“Copy

Bits

with

Left

Logical

Shift

(CPYBTLLS)”

on

page

212

“Copy

Bits

with

Right

Arithmetic

Shift

(CPYBTRAS)”

on

page

214

“Copy

Bits

with

Right

Logical

Shift

(CPYBTRLS)”

on

page

217

“Copy

Bytes

with

Pointers

(CPYBWP)”

on

page

238

“Copy

Bytes

(CPYBYTES)”

on

page

219

“Copy

Extended

Characters

Left-Adjusted

With

Pad

(CPYECLAP)”

on

page

241

“Copy

Hex

Digit

Numeric

to

Numeric

(CPYHEXNN)”

on

page

245

1278

iSeries:

Machine

Interface

Instructions

APIs

“Copy

Hex

Digit

Numeric

to

Zone

(CPYHEXNZ)”

on

page

247

“Copy

Hex

Digit

Zone

To

Numeric

(CPYHEXZN)”

on

page

248

“Copy

Hex

Digit

Zone

To

Zone

(CPYHEXZZ)”

on

page

250

“Copy

Numeric

Value

(CPYNV)”

on

page

254

“Create

Activation

Group-Based

Heap

Space

(CRTHS)”

on

page

266

“Create

Independent

Index

(CRTINX)”

on

page

271

“Create

Pointer-Based

Mutex

(CRTMTX)”

on

page

281

“Create

Space

(CRTS)”

on

page

285

“Compute

Time

Duration

(CTD)”

on

page

131

“Compute

Timestamp

Duration

(CTSD)”

on

page

134

“Convert

BSC

to

Character

(CVTBC)”

on

page

139

“Convert

Character

to

BSC

(CVTCB)”

on

page

143

“Convert

Character

to

Hex

(CVTCH)”

on

page

147

“Convert

Character

to

MRJE

(CVTCM)”

on

page

149

“Convert

Character

to

Numeric

(CVTCN)”

on

page

155

“Convert

Character

to

SNA

(CVTCS)”

on

page

158

“Convert

Date

(CVTD)”

on

page

168

“Convert

Decimal

Form

to

Floating-Point

(CVTDFFP)”

on

page

172

“Convert

External

Form

to

Numeric

Value

(CVTEFN)”

on

page

174

“Convert

Floating-Point

to

Decimal

Form

(CVTFPDF)”

on

page

178

“Convert

Hex

to

Character

(CVTHC)”

on

page

182

“Convert

MRJE

to

Character

(CVTMC)”

on

page

183

“Convert

Numeric

to

Character

(CVTNC)”

on

page

188

“Convert

SNA

to

Character

(CVTSC)”

on

page

191

“Convert

Time

(CVTT)”

on

page

202

“Convert

Timestamp

(CVTTS)”

on

page

205

“Decompress

Data

(DCPDATA)”

on

page

297

“Deactivate

Program

(DEACTPG)”

on

page

295

“Decrement

Date

(DECD)”

on

page

300

“Decrement

Time

(DECT)”

on

page

304

“Decrement

Timestamp

(DECTS)”

on

page

307

“Dequeue

(DEQ)”

on

page

311

“Dequeue

(DEQ)”

on

page

311

“Destroy

Activation

Group-Based

Heap

Space

(DESHS)”

on

page

324

“Destroy

Independent

Index

(DESINX)”

on

page

326

“Destroy

Pointer-Based

Mutex

(DESMTX)”

on

page

328

“Destroy

Space

(DESS)”

on

page

331

“Divide

(DIV)”

on

page

333

“Divide

with

Remainder

(DIVREM)”

on

page

337

“Extended

Character

Scan

(ECSCAN)”

on

page

380

“Edit

(EDIT)”

on

page

341

“Edit

(EDIT)”

on

page

341

“Exponential

Function

of

E

(EEXP)”

on

page

379

“End

(END)”

on

page

368

“Enqueue

(ENQ)”

on

page

369

“Ensure

Object

(ENSOBJ)”

on

page

372

“Exchange

Bytes

(EXCHBY)”

on

page

374

“Extract

Exponent

(EXTREXP)”

on

page

384

“Extract

Magnitude

(EXTRMAG)”

on

page

386

“Find

Byte

(FINDBYTE)”

on

page

390

“Find

Independent

Index

Entry

(FNDINXEN)”

on

page

391

“Find

Relative

Invocation

Number

(FNDRINVN)”

on

page

396

“Free

Activation

Group-Based

Heap

Space

Storage

(FREHSS)”

on

page

403

“Free

Activation

Group-Based

Heap

Space

Storage

From

Mark

(FREHSSMK)”

on

page

404

“Generate

Universal

Unique

Identifier

(GENUUID)”

on

page

406

“Increment

Date

(INCD)”

on

page

408

“Increment

Time

(INCT)”

on

page

412

“Increment

Timestamp

(INCTS)”

on

page

415

“Initialize

Exception

Handler

Control

Actions

(INITEHCA)”

on

page

419

“Insert

Independent

Index

Entry

(INSINXEN)”

on

page

419

“Invocation

Pointer

(INVP)”

on

page

423

“Copy

Numeric

Value

(CPYNV)”

on

page

254

“Copy

Numeric

Value

(CPYNV)”

on

page

254

“Edit

(EDIT)”

on

page

341

“Logarithm

Base

E

(Natural

Logarithm)

(LN)”

on

page

453

“Lock

Object

(LOCK)”

on

page

424

“Lock

Pointer-Based

Mutex

(LOCKMTX)”

on

page

435

“Lock

Object

Location

(LOCKOL)”

on

page

431

“Lock

Space

Location

(LOCKSL)”

on

page

440

Machine

Interface

Instructions

1279

“Lock

Teraspace

Storage

Location

(LOCKTSL)”

on

page

446

“Materialize

Activation

Attributes

(MATACTAT)”

on

page

458

“Materialize

Activation

Export

(MATACTEX)”

on

page

464

“Materialize

Access

Group

Attributes

(MATAGAT)”

on

page

453

“Materialize

Activation

Group

Attributes

(MATAGPAT)”

on

page

466

“Materialize

Authority

List

(MATAL)”

on

page

486

“Materialize

Allocated

Object

Locks

(MATAOL)”

on

page

477

“Materialize

Authority

(MATAU)”

on

page

482

“Materialize

Authorized

Objects

(MATAUOBJ)”

on

page

492

“Materialize

Authorized

Users

(MATAUU)”

on

page

502

“Materialize

Bound

Program

(MATBPGM)”

on

page

507

“Materialize

Context

(MATCTX)”

on

page

539

“Materialize

Dump

Space

(MATDMPS)”

on

page

552

“Materialize

Data

Space

Record

Locks

(MATDRECL)”

on

page

547

“Materialize

Exception

Description

(MATEXCPD)”

on

page

556

“Materialize

Activation

Group-Based

Heap

Space

Attributes

(MATHSAT)”

on

page

472

“Materialize

Instruction

Attributes

(MATINAT)”

on

page

566

“Materialize

Invocation

(MATINV)”

on

page

574

“Materialize

Invocation

Attributes

(MATINVAT)”

on

page

579

“Materialize

Invocation

Entry

(MATINVE)”

on

page

591

“Materialize

Invocation

Stack

(MATINVS)”

on

page

597

“Materialize

Independent

Index

Attributes

(MATINXAT)”

on

page

560

“Materialize

Journal

Port

Attributes

(MATJPAT)”

on

page

603

“Materialize

Journal

Space

Attributes

(MATJSAT)”

on

page

612

“Materialize

Machine

Attributes

(MATMATR)”

on

page

619

“Materialize

Machine

Attributes

(MATMATR)”

on

page

619

“Materialize

Machine

Data

(MATMDATA)”

on

page

693

“Materialize

Machine

Information

(MATMIF)”

on

page

697

“Materialize

Mutex

(MATMTX)”

on

page

704

“Materialize

Object

Locks

(MATOBJLK)”

on

page

708

“Materialize

Program

(MATPG)”

on

page

800

“Materialize

Program

Name

(MATPGMNM)”

on

page

820

“Materialize

Process

Activation

Groups

(MATPRAGP)”

on

page

739

“Materialize

Process

Attributes

(MATPRATR)”

on

page

742

“Materialize

Process

Record

Locks

(MATPRECL)”

on

page

795

“Materialize

Process

Locks

(MATPRLK)”

on

page

767

“Materialize

Process

Message

(MATPRMSG)”

on

page

770

“Materialize

Process

Mutex

(MATPRMTX)”

on

page

788

“Materialize

Pointer

(MATPTR)”

on

page

718

“Materialize

Pointer

Information

(MATPTRIF)”

on

page

729

“Materialize

Pointer

Locations

(MATPTRL)”

on

page

736

“Materialize

Queue

Attributes

(MATQAT)”

on

page

822

“Materialize

Queue

Messages

(MATQMSG)”

on

page

829

“Materialize

Resource

Management

Data

(MATRMD)”

on

page

833

“Materialize

Space

Attributes

(MATS)”

on

page

916

“Materialize

Selected

Locks

(MATSELLK)”

on

page

912

“Materialize

System

Object

(MATSOBJ)”

on

page

921

“Materialize

Machine

Data

(MATMDATA)”

on

page

693

“Materialize

Time

of

Day

Clock

Attributes

(MATTODAT)”

on

page

938

“Materialize

User

Profile

(MATUP)”

on

page

941

“Materialize

User

Profile

Pointers

from

ID

(MATUPID)”

on

page

949

“Find

Character

Constrained

(MEMCHR)”

on

page

391

“Memory

Compare

(MEMCMP)”

on

page

954

“Memory

Copy

(MEMCPY)”

on

page

955

“Memory

Move

(MEMMOVE)”

on

page

956

“Modify

Automatic

Storage

Allocation

(MODASA)”

on

page

957

“Modify

Automatic

Storage

Allocation

(MODASA)”

on

page

957

“Modify

Exception

Description

(MODEXCPD)”

on

page

962

“Modify

Invocation

Authority

Attributes

(MODINVAU)”

on

page

968

“Modify

Independent

Index

(MODINX)”

on

page

965

“Modify

Space

Attributes

(MODS)”

on

page

971

“Modify

Space

Attributes

(MODS)”

on

page

971

“Modify

Space

Attributes

(MODS)”

on

page

971

“Multiply

(MULT)”

on

page

1002

“Materialize

or

Verify

Licensed

Internal

Code

Options

(MVLICOPT)”

on

page

713

“Negate

(NEG)”

on

page

1006

“No

Operation

(NOOP)”

on

page

1010

“No

Operation

and

Skip

(NOOPS)”

on

page

1010

“Not

(NOT)”

on

page

1011

1280

iSeries:

Machine

Interface

Instructions

APIs

“NPM

Procedure

Parameter

List

Address

(NPM_PARMLIST_ADDR)”

on

page

1013

“OPM

Parameter

Address

(OPM_PARM_ADDR)”

on

page

1015

“OPM

Parameter

Count

(OPM_PARM_CNT)”

on

page

1015

“Or

(OR)”

on

page

1016

“OR

String

(ORSTR)”

on

page

1019

“Override

Program

Attributes

(OVRPGATR)”

on

page

1020

“PCO

Pointer

(PCOPTR)”

on

page

1021

“Return

PCO

Pointer

(PCOPTR2)”

on

page

1064

“X

To

The

Y

Power

(POWER)”

on

page

1259

“Propagate

Byte

(PROPB)”

on

page

1022

“Reallocate

Activation

Group-Based

Heap

Space

Storage

(REALCHSS)”

on

page

1023

“Remainder

(REM)”

on

page

1028

“Retrieve

Computational

Attributes

(RETCA)”

on

page

1049

“Retrieve

Exception

Data

(RETEXCPD)”

on

page

1050

“Retrieve

Invocation

Flags

(RETINVF)”

on

page

1054

“Retrieve

Teraspace

Address

From

Space

Pointer

(RETTSADR)”

on

page

1054

“Retrieve

Thread

Count

(RETTHCNT)”

on

page

1055

“Retrieve

Thread

Identifier

(RETTHID)”

on

page

1057

“Reinitialize

Static

Storage

(RINZSTAT)”

on

page

1025

“Remove

Independent

Index

Entry

(RMVINXEN)”

on

page

1032

“Resolve

Data

Pointer

(RSLVDP)”

on

page

1035

“Resolve

System

Pointer

(RSLVSP)”

on

page

1038

“Return

From

Exception

(RTNEXCP)”

on

page

1060

“Return

External

(RTX)”

on

page

1058

“Scale

(SCALE)”

on

page

1066

“Scan

(SCAN)”

on

page

1070

“Scan

with

Control

(SCANWC)”

on

page

1080

“Scan

Extended

(SCANX)”

on

page

1072

“Search

(SEARCH)”

on

page

1087

“Set

Access

State

(SETACST)”

on

page

1095

“Set

Argument

List

Length

(SETALLEN)”

on

page

1103

“Set

Bit

in

String

(SETBTS)”

on

page

1105

“Set

Computational

Attributes

(SETCA)”

on

page

1107

“Set

Data

Pointer

(SETDP)”

on

page

1108

“Set

Data

Pointer

Addressability

(SETDPADR)”

on

page

1110

“Set

Data

Pointer

Attributes

(SETDPAT)”

on

page

1112

“Set

Activation

Group-Based

Heap

Space

Storage

Mark

(SETHSSMK)”

on

page

1101

“Set

Invocation

Exit

(SETIEXIT)”

on

page

1117

“Set

Invocation

Flags

(SETINVF)”

on

page

1120

“Set

Instruction

Pointer

(SETIP)”

on

page

1116

“Set

Object

Pointer

from

Pointer

(SETOBPFP)”

on

page

1120

“Set

System

Pointer

from

Pointer

(SETSPFP)”

on

page

1131

“Set

Space

Pointer

(SETSPP)”

on

page

1122

“Set

Space

Pointer

with

Displacement

(SETSPPD)”

on

page

1129

“Set

Space

Pointer

from

Pointer

(SETSPPFP)”

on

page

1124

“Set

Space

Pointer

Offset

(SETSPPO)”

on

page

1126

“Signal

Exception

(SIGEXCP)”

on

page

1133

“Sine

(SIN)”

on

page

1138

“Sine

Hyperbolic

(SINH)”

on

page

1139

“Sense

Exception

Description

(SNSEXCPD)”

on

page

1090

“Store

and

Set

Computational

Attributes

(SSCA)”

on

page

1140

“Store

Parameter

List

Length

(STPLLEN)”

on

page

1144

“Compute

Length

of

Null-Terminated

String

(STRLENNULL)”

on

page

118

“Compare

Null-Terminated

Strings

Constrained

(STRNCMPNULL)”

on

page

90

“Copy

Null-Terminated

String

Constrained

(STRNCPYNULL)”

on

page

252

“Copy

Null-Terminated

String

Constrained,

Null

Padded

(STRNCPYNULLPAD)”

on

page

253

“Store

Space

Pointer

Offset

(STSPPO)”

on

page

1146

“Subtract

Logical

Character

(SUBLC)”

on

page

1148

“Subtract

Numeric

(SUBN)”

on

page

1151

“Subtract

Space

Pointer

Offset

(SUBSPP)”

on

page

1155

“Subtract

Space

Pointers

For

Offset

(SUBSPPFO)”

on

page

1157

“Synchronize

Shared

Storage

Accesses

(SYNCSTG)”

on

page

1159

“Tangent

(TAN)”

on

page

1160

“Tangent

Hyperbolic

(TANH)”

on

page

1161

“Test

Authority

(TESTAU)”

on

page

1165

“Test

Extended

Authorities

(TESTEAU)”

on

page

1178

“Test

Exception

(TESTEXCP)”

on

page

1175

“Test

Pending

Interrupts

(TESTINTR)”

on

page

1185

“Test

Performance

Data

Collection

(TESTPDC)”

on

page

1187

Machine

Interface

Instructions

1281

“Test

Pointer

(TESTPTR)”

on

page

1190

“Test

and

Replace

Bytes

(TESTRPL)”

on

page

1162

“Test

Subset

(TESTSUBSET)”

on

page

1191

“Test

Temporary

Object

(TESTTOBJ)”

on

page

1192

“Test

User

List

Authority

(TESTULA)”

on

page

1195

“Trim

Length

(TRIML)”

on

page

1235

“Test

Bit

in

String

(TSTBTS)”

on

page

1170

“Test

Bits

Under

Mask

(TSTBUM)”

on

page

1173

“Test

Initial

Thread

(TSTINLTH)”

on

page

1184

“Test

and

Replace

Characters

(TSTRPLC)”

on

page

1163

“Unlock

Teraspace

Storage

Location

(UNLCKTSL)”

on

page

1250

“Unlock

Pointer-Based

Mutex

(UNLKMTX)”

on

page

1244

“Unlock

Object

(UNLOCK)”

on

page

1237

“Unlock

Object

Location

(UNLOCKOL)”

on

page

1241

“Unlock

Space

Location

(UNLOCKSL)”

on

page

1246

“Verify

(VERIFY)”

on

page

1254

“Wait

On

Time

(WAITTIME)”

on

page

1256

“Transfer

Control

(XCTL)”

on

page

1201

“Transfer

Object

Lock

(XFRLOCK)”

on

page

1206

“Translate

(XLATE)”

on

page

1212

“Translate

Bytes

(XLATEB)”

on

page

1214

“Translate

Bytes

One

Byte

at

a

Time

(XLATEB1)”

on

page

1215

“Translate

Multiple

Bytes

(XLATEMB)”

on

page

1217

“Translate

with

Table

(XLATEWT)”

on

page

1230

“Translate

with

Table

and

DBCS

Skip

(XLATWTDS)”

on

page

1233

“Exclusive

Or

(XOR)”

on

page

376

“XOR

(Exclusive

Or)

String

(XORSTR)”

on

page

1260

“Yield

(YIELD)”

on

page

1261

iSeries(TM)

Machine

Interface

Instructions

Sorted

by

Topic

Within

each

topic,

the

instructions

are

listed

in

alphabetical

order.

v

“Introduction”

v

v

“Computation

and

Branching”

on

page

1283

v

“Bound

Program

Computation

and

Branching

Built-in

Functions”

on

page

1285

v

“Date/Time/Timestamp”

on

page

1286

v

“Pointer/name

resolution”

on

page

1286

v

“Space

Addressing”

on

page

1286

v

“Space

Management”

on

page

1287

v

“Heap

Management”

on

page

1287

v

“Program

Management”

on

page

1287

v

“Program

Execution”

on

page

1287

v

“Program

creation

control”

on

page

1288

v

“Independent

Index”

on

page

1288

v

“Queue

Management”

on

page

1288

v

“Object

Lock

Management”

on

page

1288

v

“Mutex

Management”

on

page

1289

v

“Shared

Storage

Synchronization”

on

page

1289

v

“Exception

Management”

on

page

1289

v

“Queue

Space

Management”

on

page

1290

v

“Context

Management”

on

page

1290

v

“Authorization

Management”

on

page

1290

v

“Process

and

Thread

Management”

on

page

1290

v

“Storage

and

Resource

Management”

on

page

1290

v

“Dump

Space

Management”

on

page

1290

v

“Journal

Management”

on

page

1291

v

“Machine

Observation”

on

page

1291

v

“Machine

Interface

Support

Functions”

on

page

1291

v

“iSeries(TM)

Exceptions”

on

page

1291

v

Program

Object

Specifications

Introduction

v

v

“iSeries

Machine

Interface

Introduction”

on

page

1262

1282

iSeries:

Machine

Interface

Instructions

APIs

MINPO.htm

Computation

and

Branching

v

v

Arithmetic

Operations

v

Array

Index

Operations

v

Boolean

Operations

v

“Add

Logical

Character

(ADDLC)”

on

page

13

v

“Add

Numeric

(ADDN)”

on

page

15

v

“And

(AND)”

on

page

24

v

“Branch

(B)”

on

page

39

v

“Cipher

(CIPHER)”

on

page

53

v

“Clear

Bit

in

String

(CLRBTS)”

on

page

68

v

“Compare

Bytes

Left-Adjusted

(CMPBLA)”

on

page

81

v

“Compare

Bytes

Left-Adjusted

with

Pad

(CMPBLAP)”

on

page

83

v

“Compare

Bytes

Right-Adjusted

(CMPBRA)”

on

page

85

v

“Compare

Bytes

Right-Adjusted

with

Pad

(CMPBRAP)”

on

page

88

v

“Compare

Numeric

Value

(CMPNV)”

on

page

91

v

“Compare

and

Swap

(CMPSW)”

on

page

74

v

“Compress

Data

(CPRDATA)”

on

page

110

v

“Compute

Array

Index

(CAI)”

on

page

113

v

“Compute

Math

Function

Using

One

Input

Value

(CMF1)”

on

page

119

v

“Compute

Math

Function

Using

Two

Input

Values

(CMF2)”

on

page

126

v

“Concatenate

(CAT)”

on

page

137

v

“Convert

BSC

to

Character

(CVTBC)”

on

page

139

v

“Convert

Character

to

BSC

(CVTCB)”

on

page

143

v

“Convert

Character

to

Hex

(CVTCH)”

on

page

147

v

“Convert

Character

to

MRJE

(CVTCM)”

on

page

149

v

“Convert

Character

to

Numeric

(CVTCN)”

on

page

155

v

“Convert

Character

to

SNA

(CVTCS)”

on

page

158

v

“Convert

Decimal

Form

to

Floating-Point

(CVTDFFP)”

on

page

172

v

“Convert

External

Form

to

Numeric

Value

(CVTEFN)”

on

page

174

v

“Convert

Floating-Point

to

Decimal

Form

(CVTFPDF)”

on

page

178

v

“Convert

Hex

to

Character

(CVTHC)”

on

page

182

v

“Convert

MRJE

to

Character

(CVTMC)”

on

page

183

v

“Convert

Numeric

to

Character

(CVTNC)”

on

page

188

v

“Convert

SNA

to

Character

(CVTSC)”

on

page

191

v

“Copy

Bits

Arithmetic

(CPYBTA)”

on

page

208

v

“Copy

Bits

Logical

(CPYBTL)”

on

page

210

v

“Copy

Bits

with

Left

Logical

Shift

(CPYBTLLS)”

on

page

212

v

“Copy

Bits

with

Right

Arithmetic

Shift

(CPYBTRAS)”

on

page

214

v

“Copy

Bits

with

Right

Logical

Shift

(CPYBTRLS)”

on

page

217

v

“Copy

Bytes

Left-Adjusted

(CPYBLA)”

on

page

220

v

“Copy

Bytes

Left-Adjusted

with

Pad

(CPYBLAP)”

on

page

222

v

“Copy

Bytes

Overlap

Left-Adjusted

(CPYBOLA)”

on

page

224

v

“Copy

Bytes

Overlap

Left-Adjusted

with

Pad

(CPYBOLAP)”

on

page

226

v

“Copy

Bytes

Repeatedly

(CPYBREP)”

on

page

229

Machine

Interface

Instructions

1283

MCNPFAO.htm
MCNPFAI.htm
MCNPFBO.htm

v

“Copy

Bytes

Right-Adjusted

(CPYBRA)”

on

page

231

v

“Copy

Bytes

Right-Adjusted

with

Pad

(CPYBRAP)”

on

page

232

v

“Copy

Bytes

to

Bits

Arithmetic

(CPYBBTA)”

on

page

234

v

“Copy

Bytes

to

Bits

Logical

(CPYBBTL)”

on

page

236

v

“Copy

Extended

Characters

Left-Adjusted

With

Pad

(CPYECLAP)”

on

page

241

v

“Copy

Hex

Digit

Numeric

to

Numeric

(CPYHEXNN)”

on

page

245

v

“Copy

Hex

Digit

Numeric

to

Zone

(CPYHEXNZ)”

on

page

247

v

“Copy

Hex

Digit

Zone

To

Numeric

(CPYHEXZN)”

on

page

248

v

“Copy

Hex

Digit

Zone

To

Zone

(CPYHEXZZ)”

on

page

250

v

“Copy

Numeric

Value

(CPYNV)”

on

page

254

v

“Decompress

Data

(DCPDATA)”

on

page

297

v

“Divide

(DIV)”

on

page

333

v

“Divide

with

Remainder

(DIVREM)”

on

page

337

v

“Edit

(EDIT)”

on

page

341

v

“Exchange

Bytes

(EXCHBY)”

on

page

374

v

“Exclusive

Or

(XOR)”

on

page

376

v

“Extended

Character

Scan

(ECSCAN)”

on

page

380

v

“Extract

Exponent

(EXTREXP)”

on

page

384

v

“Extract

Magnitude

(EXTRMAG)”

on

page

386

v

“Multiply

(MULT)”

on

page

1002

v

“Negate

(NEG)”

on

page

1006

v

“Not

(NOT)”

on

page

1011

v

“Or

(OR)”

on

page

1016

v

“Remainder

(REM)”

on

page

1028

v

“Scale

(SCALE)”

on

page

1066

v

“Scan

(SCAN)”

on

page

1070

v

“Scan

with

Control

(SCANWC)”

on

page

1080

v

“Search

(SEARCH)”

on

page

1087

v

“Set

Bit

in

String

(SETBTS)”

on

page

1105

v

“Set

Instruction

Pointer

(SETIP)”

on

page

1116

v

“Store

and

Set

Computational

Attributes

(SSCA)”

on

page

1140

v

“Subtract

Logical

Character

(SUBLC)”

on

page

1148

v

“Subtract

Numeric

(SUBN)”

on

page

1151

v

“Test

and

Replace

Characters

(TSTRPLC)”

on

page

1163

v

“Test

Bit

in

String

(TSTBTS)”

on

page

1170

v

“Test

Bits

Under

Mask

(TSTBUM)”

on

page

1173

v

“Translate

(XLATE)”

on

page

1212

v

“Translate

Multiple

Bytes

(XLATEMB)”

on

page

1217

v

“Translate

with

Table

(XLATEWT)”

on

page

1230

v

“Translate

with

Table

and

DBCS

Skip

(XLATWTDS)”

on

page

1233

v

“Trim

Length

(TRIML)”

on

page

1235

v

“Verify

(VERIFY)”

on

page

1254

1284

iSeries:

Machine

Interface

Instructions

APIs

Bound

Program

Computation

and

Branching

Built-in

Functions

v

v

Floating

point

results

from

special

values

v

“And

Complemented

String

(ANDCSTR)”

on

page

27

v

“AND

String

(ANDSTR)”

on

page

28

v

“Arc

Cosine

(ACOS)”

on

page

29

v

“Arc

Sine

(ASIN)”

on

page

30

v

“Arc

Tangent

(ATAN)”

on

page

31

v

“Arc

Tangent

Hyperbolic

(ATANH)”

on

page

32

v

“Compute

Length

of

Null-Terminated

String

(STRLENNULL)”

on

page

118

v

Compare

Null-Terminated

Strings

(STRCMPNULL)

v

“Compare

Null-Terminated

Strings

Constrained

(STRNCMPNULL)”

on

page

90

v

“Compare

To

Pad

(CMPTOPAD)”

on

page

108

v

“Complement

String

(COMSTR)”

on

page

109

v

“Cosine

(COS)”

on

page

264

v

“Cosine

Hyperbolic

(COSH)”

on

page

265

v

“Cotangent

(COT)”

on

page

266

v

“Copy

Bytes

(CPYBYTES)”

on

page

219

v

“Copy

Bytes

Overlapping

(CPYBO)”

on

page

228

v

Copy

Null-Terminated

String

(STRCPYNULL)

v

“Copy

Null-Terminated

String

Constrained

(STRNCPYNULL)”

on

page

252

v

“Copy

Null-Terminated

String

Constrained,

Null

Padded

(STRNCPYNULLPAD)”

on

page

253

v

“Exponential

Function

of

E

(EEXP)”

on

page

379

v

“Find

Byte

(FINDBYTE)”

on

page

390

v

“Find

Character

Constrained

(MEMCHR)”

on

page

391

v

Find

Character

in

Null-Terminated

String

(STRCHRNULL)

v

“Logarithm

Base

E

(Natural

Logarithm)

(LN)”

on

page

453

v

“Memory

Compare

(MEMCMP)”

on

page

954

v

“Memory

Copy

(MEMCPY)”

on

page

955

v

“Memory

Move

(MEMMOVE)”

on

page

956

v

“OR

String

(ORSTR)”

on

page

1019

v

“Propagate

Byte

(PROPB)”

on

page

1022

v

“Retrieve

Computational

Attributes

(RETCA)”

on

page

1049

v

“Scan

Extended

(SCANX)”

on

page

1072

v

“Set

Computational

Attributes

(SETCA)”

on

page

1107

v

“Sine

(SIN)”

on

page

1138

v

“Sine

Hyperbolic

(SINH)”

on

page

1139

v

“Tangent

(TAN)”

on

page

1160

v

“Tangent

Hyperbolic

(TANH)”

on

page

1161

v

“Test

and

Replace

Bytes

(TESTRPL)”

on

page

1162

v

“Test

Subset

(TESTSUBSET)”

on

page

1191

v

“Translate

Bytes

(XLATEB)”

on

page

1214

v

“Translate

Bytes

One

Byte

at

a

Time

(XLATEB1)”

on

page

1215

v

“XOR

(Exclusive

Or)

String

(XORSTR)”

on

page

1260

v

“X

To

The

Y

Power

(POWER)”

on

page

1259

Machine

Interface

Instructions

1285

NCBCON.htm
SCMPNUL.htm
SCNULL.htm
SCHRNUL.htm

Date/Time/Timestamp

v

v

Date/Time

Concepts

v

“Compute

Date

Duration

(CDD)”

on

page

115

v

“Compute

Time

Duration

(CTD)”

on

page

131

v

“Compute

Timestamp

Duration

(CTSD)”

on

page

134

v

“Convert

Date

(CVTD)”

on

page

168

v

“Convert

Time

(CVTT)”

on

page

202

v

“Convert

Timestamp

(CVTTS)”

on

page

205

v

“Decrement

Date

(DECD)”

on

page

300

v

“Decrement

Time

(DECT)”

on

page

304

v

“Decrement

Timestamp

(DECTS)”

on

page

307

v

“Increment

Date

(INCD)”

on

page

408

v

“Increment

Time

(INCT)”

on

page

412

v

“Increment

Timestamp

(INCTS)”

on

page

415

v

“Materialize

Time

of

Day

Clock

Attributes

(MATTODAT)”

on

page

938

Pointer/name

resolution

v

v

“Compare

Pointer

for

Object

Addressability

(CMPPTRA)”

on

page

94

v

“Compare

Pointer

for

Space

Addressability

(CMPPSPAD)”

on

page

97

v

“Compare

Pointers

for

Equality

(CMPPTRE)”

on

page

103

v

“Compare

Pointer

Type

(CMPPTRT)”

on

page

100

v

“Copy

Bytes

with

Pointers

(CPYBWP)”

on

page

238

v

“Materialize

Pointer

(MATPTR)”

on

page

718

v

“Materialize

Pointer

Information

(MATPTRIF)”

on

page

729

v

“Materialize

Pointer

Locations

(MATPTRL)”

on

page

736

v

“Resolve

Data

Pointer

(RSLVDP)”

on

page

1035

v

“Resolve

System

Pointer

(RSLVSP)”

on

page

1038

v

“Retrieve

Teraspace

Address

From

Space

Pointer

(RETTSADR)”

on

page

1054

v

“Set

Object

Pointer

from

Pointer

(SETOBPFP)”

on

page

1120

v

“Set

Space

Pointer

from

Pointer

(SETSPPFP)”

on

page

1124

v

“Set

System

Pointer

from

Pointer

(SETSPFP)”

on

page

1131

v

“Test

Pointer

(TESTPTR)”

on

page

1190

Space

Addressing

v

v

“Add

Space

Pointer

(ADDSPP)”

on

page

19

v

“Compare

Space

Addressability

(CMPSPAD)”

on

page

106

v

“Set

Data

Pointer

(SETDP)”

on

page

1108

v

“Set

Data

Pointer

Addressability

(SETDPADR)”

on

page

1110

v

“Set

Data

Pointer

Attributes

(SETDPAT)”

on

page

1112

v

“Set

Space

Pointer

(SETSPP)”

on

page

1122

v

“Set

Space

Pointer

Offset

(SETSPPO)”

on

page

1126

v

“Set

Space

Pointer

with

Displacement

(SETSPPD)”

on

page

1129

1286

iSeries:

Machine

Interface

Instructions

APIs

MINDTCON.htm

v

“Store

Space

Pointer

Offset

(STSPPO)”

on

page

1146

v

“Subtract

Space

Pointer

Offset

(SUBSPP)”

on

page

1155

v

“Subtract

Space

Pointers

For

Offset

(SUBSPPFO)”

on

page

1157

Space

Management

v

v

“Create

Space

(CRTS)”

on

page

285

v

“Destroy

Space

(DESS)”

on

page

331

v

“Materialize

Space

Attributes

(MATS)”

on

page

916

v

“Modify

Space

Attributes

(MODS)”

on

page

971

Heap

Management

v

v

“Allocate

Activation

Group-Based

Heap

Space

Storage

(ALCHSS)”

on

page

21

v

“Create

Activation

Group-Based

Heap

Space

(CRTHS)”

on

page

266

v

“Destroy

Activation

Group-Based

Heap

Space

(DESHS)”

on

page

324

v

“Free

Activation

Group-Based

Heap

Space

Storage

(FREHSS)”

on

page

403

v

“Free

Activation

Group-Based

Heap

Space

Storage

From

Mark

(FREHSSMK)”

on

page

404

v

“Materialize

Activation

Group-Based

Heap

Space

Attributes

(MATHSAT)”

on

page

472

v

“Reallocate

Activation

Group-Based

Heap

Space

Storage

(REALCHSS)”

on

page

1023

v

“Set

Activation

Group-Based

Heap

Space

Storage

Mark

(SETHSSMK)”

on

page

1101

Program

Management

v

v

“Materialize

Bound

Program

(MATBPGM)”

on

page

507

v

“Materialize

or

Verify

Licensed

Internal

Code

Options

(MVLICOPT)”

on

page

713

v

“Materialize

Program

(MATPG)”

on

page

800

v

“Materialize

Program

Name

(MATPGMNM)”

on

page

820

Program

Execution

v

v

“Activate

Bound

Program

(ACTBPGM)”

on

page

5

v

“Activate

Program

(ACTPG)”

on

page

10

v

“Call

External

(CALLX)”

on

page

41

v

“Call

Internal

(CALLI)”

on

page

46

v

“Call

Program

with

Variable

Length

Argument

List

(CALLPGMV)”

on

page

48

v

“Clear

Invocation

Exit

(CLRIEXIT)”

on

page

70

v

“Clear

Invocation

Flags

(CLRINVF)”

on

page

71

v

“Deactivate

Program

(DEACTPG)”

on

page

295

v

“End

(END)”

on

page

368

v

“Find

Relative

Invocation

Number

(FNDRINVN)”

on

page

396

v

“Invocation

Pointer

(INVP)”

on

page

423

v

“Materialize

Activation

Attributes

(MATACTAT)”

on

page

458

v

“Materialize

Activation

Export

(MATACTEX)”

on

page

464

v

“Materialize

Activation

Group

Attributes

(MATAGPAT)”

on

page

466

Machine

Interface

Instructions

1287

v

“Materialize

Invocation

(MATINV)”

on

page

574

v

“Materialize

Invocation

Attributes

(MATINVAT)”

on

page

579

v

“Materialize

Invocation

Entry

(MATINVE)”

on

page

591

v

“Materialize

Invocation

Stack

(MATINVS)”

on

page

597

v

“Modify

Automatic

Storage

Allocation

(MODASA)”

on

page

957

v

“NPM

Procedure

Parameter

List

Address

(NPM_PARMLIST_ADDR)”

on

page

1013

v

“OPM

Parameter

Address

(OPM_PARM_ADDR)”

on

page

1015

v

“OPM

Parameter

Count

(OPM_PARM_CNT)”

on

page

1015

v

“Reinitialize

Static

Storage

(RINZSTAT)”

on

page

1025

v

“Retrieve

Invocation

Flags

(RETINVF)”

on

page

1054

v

“Return

External

(RTX)”

on

page

1058

v

“Set

Argument

List

Length

(SETALLEN)”

on

page

1103

v

“Set

Invocation

Exit

(SETIEXIT)”

on

page

1117

v

“Set

Invocation

Flags

(SETINVF)”

on

page

1120

v

“Store

Parameter

List

Length

(STPLLEN)”

on

page

1144

v

“Transfer

Control

(XCTL)”

on

page

1201

Program

creation

control

v

v

“No

Operation

(NOOP)”

on

page

1010

v

“No

Operation

and

Skip

(NOOPS)”

on

page

1010

v

“Override

Program

Attributes

(OVRPGATR)”

on

page

1020

Independent

Index

v

v

“Create

Independent

Index

(CRTINX)”

on

page

271

v

“Destroy

Independent

Index

(DESINX)”

on

page

326

v

“Find

Independent

Index

Entry

(FNDINXEN)”

on

page

391

v

“Insert

Independent

Index

Entry

(INSINXEN)”

on

page

419

v

“Materialize

Independent

Index

Attributes

(MATINXAT)”

on

page

560

v

“Modify

Independent

Index

(MODINX)”

on

page

965

v

“Remove

Independent

Index

Entry

(RMVINXEN)”

on

page

1032

Queue

Management

v

v

“Dequeue

(DEQ)”

on

page

311

v

“Enqueue

(ENQ)”

on

page

369

v

“Materialize

Queue

Attributes

(MATQAT)”

on

page

822

v

“Materialize

Queue

Messages

(MATQMSG)”

on

page

829

Object

Lock

Management

v

v

“Lock

Object

(LOCK)”

on

page

424

v

“Lock

Object

Location

(LOCKOL)”

on

page

431

v

“Lock

Space

Location

(LOCKSL)”

on

page

440

1288

iSeries:

Machine

Interface

Instructions

APIs

v

“Lock

Teraspace

Storage

Location

(LOCKTSL)”

on

page

446

v

“Materialize

Allocated

Object

Locks

(MATAOL)”

on

page

477

v

“Materialize

Data

Space

Record

Locks

(MATDRECL)”

on

page

547

v

“Materialize

Object

Locks

(MATOBJLK)”

on

page

708

v

“Materialize

Process

Locks

(MATPRLK)”

on

page

767

v

“Materialize

Process

Record

Locks

(MATPRECL)”

on

page

795

v

“Materialize

Selected

Locks

(MATSELLK)”

on

page

912

v

“Transfer

Object

Lock

(XFRLOCK)”

on

page

1206

v

“Unlock

Object

(UNLOCK)”

on

page

1237

v

“Unlock

Object

Location

(UNLOCKOL)”

on

page

1241

v

“Unlock

Space

Location

(UNLOCKSL)”

on

page

1246

v

“Unlock

Teraspace

Storage

Location

(UNLCKTSL)”

on

page

1250

Mutex

Management

v

v

“Create

Pointer-Based

Mutex

(CRTMTX)”

on

page

281

v

“Destroy

Pointer-Based

Mutex

(DESMTX)”

on

page

328

v

“Lock

Pointer-Based

Mutex

(LOCKMTX)”

on

page

435

v

“Materialize

Mutex

(MATMTX)”

on

page

704

v

“Materialize

Process

Mutex

(MATPRMTX)”

on

page

788

v

“Unlock

Pointer-Based

Mutex

(UNLKMTX)”

on

page

1244

Shared

Storage

Synchronization

v

v

“Atomic

Add

(ATMCADD)”

on

page

33

v

“Atomic

And

(ATMCAND)”

on

page

35

v

“Atomic

Or

(ATMCOR)”

on

page

37

v

“Check

Lock

Value

(CHKLKVAL)”

on

page

50

v

“Clear

Lock

Value

(CLRLKVAL)”

on

page

72

v

Shared

Storage

Synchronization

Concepts

v

“Synchronize

Shared

Storage

Accesses

(SYNCSTG)”

on

page

1159

Exception

Management

v

v

“Initialize

Exception

Handler

Control

Actions

(INITEHCA)”

on

page

419

v

“Materialize

Exception

Description

(MATEXCPD)”

on

page

556

v

“Modify

Exception

Description

(MODEXCPD)”

on

page

962

v

“Retrieve

Exception

Data

(RETEXCPD)”

on

page

1050

v

“Return

From

Exception

(RTNEXCP)”

on

page

1060

v

“Sense

Exception

Description

(SNSEXCPD)”

on

page

1090

v

“Signal

Exception

(SIGEXCP)”

on

page

1133

v

“Test

Exception

(TESTEXCP)”

on

page

1175

Machine

Interface

Instructions

1289

MCNSYNC.htm

Queue

Space

Management

v

v

“Materialize

Process

Message

(MATPRMSG)”

on

page

770

Context

Management

v

v

“Materialize

Context

(MATCTX)”

on

page

539

Authorization

Management

v

v

“Materialize

Authority

(MATAU)”

on

page

482

v

“Materialize

Authority

List

(MATAL)”

on

page

486

v

“Materialize

Authorized

Objects

(MATAUOBJ)”

on

page

492

v

“Materialize

Authorized

Users

(MATAUU)”

on

page

502

v

“Materialize

User

Profile

(MATUP)”

on

page

941

v

“Materialize

User

Profile

Pointers

from

ID

(MATUPID)”

on

page

949

v

“Modify

Invocation

Authority

Attributes

(MODINVAU)”

on

page

968

v

“Test

Authority

(TESTAU)”

on

page

1165

v

“Test

Extended

Authorities

(TESTEAU)”

on

page

1178

v

“Test

User

List

Authority

(TESTULA)”

on

page

1195

Process

and

Thread

Management

v

“Materialize

Process

Activation

Groups

(MATPRAGP)”

on

page

739

v

“Materialize

Process

Attributes

(MATPRATR)”

on

page

742

v

“PCO

Pointer

(PCOPTR)”

on

page

1021

v

“Retrieve

Thread

Count

(RETTHCNT)”

on

page

1055

v

“Retrieve

Thread

Identifier

(RETTHID)”

on

page

1057

v

“Return

PCO

Pointer

(PCOPTR2)”

on

page

1064

v

“Test

Pending

Interrupts

(TESTINTR)”

on

page

1185

v

“Wait

On

Time

(WAITTIME)”

on

page

1256

Storage

and

Resource

Management

v

v

“Ensure

Object

(ENSOBJ)”

on

page

372

v

“Materialize

Access

Group

Attributes

(MATAGAT)”

on

page

453

v

“Materialize

Resource

Management

Data

(MATRMD)”

on

page

833

v

“Set

Access

State

(SETACST)”

on

page

1095

v

“Yield

(YIELD)”

on

page

1261

Dump

Space

Management

v

v

“Materialize

Dump

Space

(MATDMPS)”

on

page

552

1290

iSeries:

Machine

Interface

Instructions

APIs

Journal

Management

v

“Materialize

Journal

Port

Attributes

(MATJPAT)”

on

page

603

v

“Materialize

Journal

Space

Attributes

(MATJSAT)”

on

page

612

Machine

Observation

v

v

“Materialize

Instruction

Attributes

(MATINAT)”

on

page

566

v

“Materialize

System

Object

(MATSOBJ)”

on

page

921

v

“Test

Performance

Data

Collection

(TESTPDC)”

on

page

1187

v

“Test

Temporary

Object

(TESTTOBJ)”

on

page

1192

Machine

Interface

Support

Functions

v

v

“Generate

Universal

Unique

Identifier

(GENUUID)”

on

page

406

v

“Materialize

Machine

Attributes

(MATMATR)”

on

page

619

v

“Materialize

Machine

Data

(MATMDATA)”

on

page

693

v

“Materialize

Machine

Information

(MATMIF)”

on

page

697

iSeries(TM)

Exceptions

v

General

exception

information

v

All

exceptions

(page

)

v

02

Access

Group

(page

1291)

v

04

Access

State

(page

)

v

06

Addressing

(page

)

v

08

Argument/Parameter

(page

)

v

0A

Authorization

(page

)

v

0C

Computation

(page

)

v

0E

Context

Operation

(page

)

v

10

Damage

Encountered

(page

)

v

12

Data

Base

Management

(page

)

v

14

Event

Management

(page

)

v

16

Exception

Management

(page

)

v

18

Independent

Index

(page

)

v

1A

Lock

State

(page

1296)

v

1C

Machine-Dependent

(page

)

v

1E

Machine

Observation

(page

)

v

20

Machine

Support

(page

)

v

22

Object

Access

(page

)

v

24

Pointer

Specification

(page

)

v

26

Process

Management

(page

)

v

28

Process/Thread

State

(page

)

v

2A

Program

Creation

(page

)

v

2C

Program

Execution

(page

)

v

2E

Resource

Control

Limit

(page

)

v

30

Journal

(page

)

v

32

Scalar

Specification

(page

)

v

34

Source/Sink

Management

(page

)

v

36

Space

Management

(page

)

v

38

Template

Specification

(page

)

v

3A

Wait

Time-Out

(page

)

v

3C

Service

(page

)

v

3E

Commitment

Control

(page

)

v

40

Dump

Space

Management

(page

)

v

44

Protection

Violation

(page

)

v

45

Heap

Space

(page

)

v

46

Queue

Space

(page

)

v

48

Kernel

Environment

(page

)

v

4A

Java(TM)

(page

)

v

4C

Signals

Management

(page

)

v

4E

Handle-Based

Object

(page

)

v

Error

Conditions

The

following

is

a

list

of

all

exceptions

in

alphabetic

and

numeric

order

by

group.

The

subtypes

within

each

group

are

in

numeric

order.

02

Access

Group

01

Object

ineligible

for

access

group

Machine

Interface

Instructions

1291

EXCEPS.htm
MINEN.htm
EX0201.htm

EX0201.htm″>Object

ineligible

for

access

group

04

Access

State

01

Access

state

specification

invalid

EX0401.htm″>Access

state

specification

invalid

06

Addressing

01

Space

addressing

violation

02

Boundary

alignment

03

Range

04

External

data

object

not

found

05

Invalid

space

reference

07

Unsupported

space

use

09

Space

address

is

not

a

teraspace

address

EX0609.htm″>Space

address

is

not

a

teraspace

address

08

Argument/Parameter

01

Parameter

reference

violation

02

Argument

list

length

violation

03

Argument

list

length

modification

violation

0A

Authorization

01

Unauthorized

for

operation

02

Privileged

instruction

03

Attempt

to

grant/retract

authority

state

to

an

object

that

is

not

authorized

04

Special

authorization

required

05

Create/modify

user

profile

beyond

level

of

authorization

06

Grant/retract

authority

invalid

08

Unable

to

generate

UID/GID

09

Duplicate

UID/GID

specified

0A

ID

index

not

available

0B

Cannot

transfer

to

new

owner

or

primary

group

EX0A0B.htm″>Cannot

transfer

to

new

owner

or

primary

group

0C

Computation

01

Conversion

02

Decimal

data

1292

iSeries:

Machine

Interface

Instructions

APIs

EX0401.htm
EX0601.htm
EX0602.htm
EX0603.htm
EX0604.htm
EX0605.htm
EX0607.htm
EX0609.htm
EX0801.htm
EX0802.htm
EX0803.htm
EX0A01.htm
EX0A02.htm
EX0A03.htm
EX0A04.htm
EX0A05.htm
EX0A06.htm
EX0A08.htm
EX0A09.htm
EX0A0A.htm
EX0A0B.htm
EX0C01.htm
EX0C02.htm

03

Decimal

point

alignment

04

Edit

digit

count

05

Edit

mask

syntax

06

Floating-point

overflow

07

Floating-point

underflow

08

Length

conformance

09

Floating-point

invalid

operand

0A

Size

0B

Zero

divide

0C

Invalid

floating-point

conversion

0D

Floating-point

inexact

result

0E

Floating-point

zero

divide

0F

Master

key

not

defined

10

Weak

key

not

valid

11

Key

parity

invalid

12

Invalid

extended

character

data

13

Invalid

extended

character

operation

14

Invalid

compressed

data

15

Date

boundary

overflow

16

Data

format

error

17

Data

value

error

18

Date

boundary

underflow

19

Space

pointer

operands

do

not

point

to

the

same

space

object

20

Substitution

character

used

21

Source

verification

error

22

Unpaired

shift

control

23

Source

information

error

24

Receiver

buffer

length

exceeded

EX0C24.htm″>Receiver

buffer

length

exceeded

0E

Context

Operation

01

Duplicate

object

identification

02

Object

ineligible

for

context

EX0E02.htm″>Object

ineligible

for

context

10

Damage

Encountered

02

Machine

context

damage

state

Machine

Interface

Instructions

1293

EX0C03.htm
EX0C04.htm
EX0C05.htm
EX0C06.htm
EX0C07.htm
EX0C08.htm
EX0C09.htm
EX0C0A.htm
EX0C0B.htm
EX0C0C.htm
EX0C0D.htm
EX0C0E.htm
EX0C0F.htm
EX0C10.htm
EX0C11.htm
EX0C12.htm
EX0C13.htm
EX0C14.htm
EX0C15.htm
EX0C16.htm
EX0C17.htm
EX0C18.htm
EX0C19.htm
EX0C20.htm
EX0C21.htm
EX0C22.htm
EX0C23.htm
EX0C24.htm
EX0E01.htm
EX0E02.htm
EX1002.htm

04

System

object

damage

state

05

Authority

verification

terminated

due

to

damaged

object

44

Partial

system

object

damage

EX1044.htm″>Partial

system

object

damage

12

Data

Base

Management

01

Conversion

mapping

error

02

Key

mapping

error

03

Cursor

not

set

04

Data

space

entry

limit

exceeded

05

Data

space

entry

already

locked

06

Data

space

entry

not

found

07

Data

space

index

invalid

08

Incomplete

key

description

09

Duplicate

key

value

in

existing

data

space

entry

0A

End

of

path

0B

Duplicate

key

value

detected

0D

No

entries

locked,

or

entries

locked

to

a

different

thread

0F

Duplicate

key

value

in

uncommitted

data

space

entry

11

Compare

key

mapping

error

12

Incomplete

compare

key

description

13

Invalid

mapping

template

14

Invalid

selection

template

15

Data

space

not

addressed

by

index

16

Data

space

not

addressed

by

cursor

17

Key

value

changed

since

set

cursor

18

Invalid

key

value

modification

19

Invalid

rule

option

1A

Data

space

entry

size

exceeded

1B

Logical

data

space

entry

size

limit

exceeded

1C

Key

size

limit

exceeded

1D

Logical

key

size

limit

exceeded

21

Unable

to

maintain

a

unique

key

data

space

index

25

Invalid

data

base

operation

26

Data

space

index

with

invalid

floating-point

field

build

termination

27

Data

space

index

key

with

invalid

floating-point

field

30

Specified

data

space

entry

rejected

1294

iSeries:

Machine

Interface

Instructions

APIs

EX1004.htm
EX1005.htm
EX1044.htm
EX1201.htm
EX1202.htm
EX1203.htm
EX1204.htm
EX1205.htm
EX1206.htm
EX1207.htm
EX1208.htm
EX1209.htm
EX120A.htm
EX120B.htm
EX120D.htm
EX120F.htm
EX1211.htm
EX1212.htm
EX1213.htm
EX1214.htm
EX1215.htm
EX1216.htm
EX1217.htm
EX1218.htm
EX1219.htm
EX121A.htm
EX121B.htm
EX121C.htm
EX121D.htm
EX1221.htm
EX1225.htm
EX1226.htm
EX1227.htm
EX1230.htm

31

New

data

space

entry

image

rejected

32

Join

value

changed

33

Data

space

index

with

non-user

exit

selection

routine

build

termination

34

Non-user

exit

selection

routine

failure

36

No

mapping

code

specified

37

Operation

not

valid

with

join

cursor

38

Derived

field

operation

error

39

Derived

field

operation

error

during

build

index

40

Invalid

entry

definition

table

41

ISV

parameter

value

in

runtime

data

pointer

array

not

correct

42

Non-unique

fanout

on

unique

join

43

Invalid

data

definitional

attributes

template

(DDAT)

45

Invalid

frogger

array

template

46

Invalid

global

literal

list

47

Invalid

per-data

space

selection

template

48

Re-create/replace

cursor

49

No

control

block

for

shared

derivation

50

Referential

constraint

violation

51

Object

unavailable

for

referential

constraint

enforcement

52

Invalid

constraint

state

53

Invalid

journal

for

referential

constraint

enforcement

54

Cursor

must

be

activated

under

secondary

commit

cycle

55

Operation

conflict

with

data

space

constraints

56

Constraint

structure

damage

57

Check

constraint

violation

63

Data

space

index

templates

are

invalid

64

Data

space

index

templates/keys

are

invalid

65

Copy

index

not

temporary

(invalid

-

nonenforcing)

66

Data

spaces

for

copy

index

and

permanent

index

do

not

match

9D

Maximum

number

of

unique

encoded

vector

index

values

exceeded

EX129D.htm″>Maximum

number

of

unique

encoded

vector

index

values

exceeded

14

Event

Management

01

Duplicate

event

monitor

02

Event

monitor

not

present

03

Machine

event

requires

specification

of

a

compare

value

04

Wait

on

event

attempted

while

masked

Machine

Interface

Instructions

1295

EX1231.htm
EX1232.htm
EX1233.htm
EX1234.htm
EX1236.htm
EX1237.htm
EX1238.htm
EX1239.htm
EX1240.htm
EX1241.htm
EX1242.htm
EX1243.htm
EX1245.htm
EX1246.htm
EX1247.htm
EX1248.htm
EX1249.htm
EX1250.htm
EX1251.htm
EX1252.htm
EX1253.htm
EX1254.htm
EX1255.htm
EX1256.htm
EX1257.htm
EX1263.htm
EX1264.htm
EX1265.htm
EX1266.htm
EX129D.htm
EX1401.htm
EX1402.htm
EX1403.htm
EX1404.htm

05

Disable

timer

event

monitor

invalid

06

Signal

timer

event

monitor

invalid

07

Wait

on

event

not

allowed

in

kernel

mode

07.htm″>Wait

on

event

not

allowed

in

kernel

mode

16

Exception

Management

01

Exception

description

status

invalid

02

Exception

state

of

thread

invalid

03

Invalid

invocation

address

04

Retry/resume

invalid

05

No

inquiry

message

found

for

reply

message

06

Invalid

control

action

specified

EX1606.htm″>Invalid

control

action

specified

18

Independent

Index

01

Duplicate

key

argument

in

index

1A

Lock

State

01

Invalid

lock

state

02

Lock

request

not

grantable

03

Invalid

unlock

request

04

Invalid

object

lock

transfer

request

05

Invalid

space

location

unlocked

EX1A05.htm″>Invalid

space

location

unlocked

1C

Machine-Dependent

01

Machine-dependent

request

invalid

02

Program

limitation

exceeded

03

Machine

storage

limit

exceeded

04

Object

storage

limit

exceeded

05

System

address

range

limit

exceeded

06

Machine

lock

limit

exceeded

07

Modify

main

storage

pool

controls

invalid

08

Requested

function

not

valid

09

Auxiliary

storage

pool

number

invalid

0A

Service

processor

unable

to

process

request

1296

iSeries:

Machine

Interface

Instructions

APIs

EX1405.htm
EX1406.htm
EX1407.htm
EX1601.htm
EX1602.htm
EX1603.htm
EX1604.htm
EX1605.htm
EX1606.htm
EX1801.htm
EX1A01.htm
EX1A02.htm
EX1A03.htm
EX1A04.htm
EX1A05.htm
EX1C01.htm
EX1C02.htm
EX1C03.htm
EX1C04.htm
EX1C05.htm
EX1C06.htm
EX1C07.htm
EX1C08.htm
EX1C09.htm
EX1C0A.htm

0B

Program

not

valid

for

machine

0C

Attribute

cannot

be

modified

from

a

secondary

partition

0D

Requested

data

collection

function

not

valid

0E

IASP

resources

exceeded

0F

Software

license

management

function

failed

10

Failure

due

to

logical

partitioning

action

11

Independent

ASP

varied

offL

EX1C11.htm″>Independent

ASP

varied

offL

1E

Machine

Observation

01

Program

not

observable

02

Invocation

not

found

03

Invalid

D-code

instruction

04

DBGINT

error

05

DBGINT

error

on

operation

EX1E05.htm″>DBGINT

error

on

operation

20

Machine

Support

01

Diagnose

02

Machine

check

03

Function

check

04

Invalid

OS/400(R)

PASE

System

Call

EX2004.htm″>Invalid

OS/400(R)

PASE

System

Call

22

Object

Access

01

Object

not

found

02

Object

destroyed

03

Object

suspended

04

Object

not

eligible

for

operation

05

Object

not

available

to

process

06

Object

not

eligible

for

destruction

07

Authority

verification

terminated

due

to

destroyed

object

08

Object

compressed

0A

Program

not

eligible

for

operation

0B

Object

not

available

0D

Object

has

partial

transactions

EX220D.htm″>Object

has

partial

transactions

24

Pointer

Specification

Machine

Interface

Instructions

1297

EX1C0B.htm
EX1C0C.htm
EX1C0D.htm
EX1C0E.htm
EX1C0F.htm
EX1C10.htm
EX1C11.htm
EX1E01.htm
EX1E02.htm
EX1E03.htm
EX1E04.htm
EX1E05.htm
EX2001.htm
EX2002.htm
EX2003.htm
EX2004.htm
EX2201.htm
EX2202.htm
EX2203.htm
EX2204.htm
EX2205.htm
EX2206.htm
EX2207.htm
EX2208.htm
EX220A.htm
EX220B.htm
EX220D.htm

01

Pointer

does

not

exist

02

Pointer

type

invalid

03

Pointer

addressing

invalid

object

type

04

Pointer

not

resolved

EX2404.htm″>Pointer

not

resolved

26

Process

Management

02

Queue

full

EX2602.htm″>Queue

full

28

Process/Thread

State

01

Process

ineligible

for

operation

02

Process

control

space

not

associated

with

a

process

03

User

profile

UID/GID

invalid

04

Thread

handle

not

associated

with

an

active

thread

0A

Process

attribute

modification

invalid

EX280A.htm″>Process

attribute

modification

invalid

2A

Program

Creation

01

Program

header

invalid

02

ODT

syntax

error

03

ODT

relational

error

04

Operation

code

invalid

05

Invalid

op

code

extender

field

06

Invalid

operand

type

07

Invalid

operand

attribute

08

Invalid

operand

value

range

09

Invalid

branch

target

operand

0A

Invalid

operand

length

0B

Invalid

number

of

operands

0C

Invalid

operand

ODT

reference

0D

Reserved

bits

are

not

zero

10

Automatic

storage

for

procedure

exceeds

maximum

11

Machine

automatic

storage

exceeds

maximum

12

Data

type

or

length

of

initial

value

not

valid

13

Exceeded

internal

limit

on

number

of

temporary

segments

14

Static

data

initialized

to

address

of

automatic

data

15

Initial

value

for

static

data

not

valid

16

Number

of

procedures

exceeds

maximum

allowed

17

Type

table

entry

not

valid

18

Alias

table

entry

not

valid

19

Size

of

constants

exceeds

maximum

1298

iSeries:

Machine

Interface

Instructions

APIs

EX2401.htm
EX2402.htm
EX2403.htm
EX2404.htm
EX2602.htm
EX2801.htm
EX2802.htm
EX2803.htm
EX2804.htm
EX280A.htm
EX2A01.htm
EX2A02.htm
EX2A03.htm
EX2A04.htm
EX2A05.htm
EX2A06.htm
EX2A07.htm
EX2A08.htm
EX2A09.htm
EX2A0A.htm
EX2A0B.htm
EX2A0C.htm
EX2A0D.htm
EX2A10.htm
EX2A11.htm
EX2A12.htm
EX2A13.htm
EX2A14.htm
EX2A15.htm
EX2A16.htm
EX2A17.htm
EX2A18.htm
EX2A19.htm

1A

Procedure

size

exceeds

maximum

1B

Instruction

stream

not

valid

1C

Size

of

literals

exceeds

maximum

1D

Dictionary

entry

not

valid

1E

Level

of

machine

interface

not

supported

on

target

release

1F

Size

of

dictionary

exceeds

maximum

20

Internal

machine

operation

not

valid

21

Size

of

internal

binding

table

exceeds

maximum

22

Size

of

internal

label

table

exceeds

maximum

23

Size

of

internal

symbolic

register

table

exceeds

maximum

24

Size

of

internal

computation

table

exceeds

maximum

28

Size

of

internal

basic

block

table

exceeds

maximum

29

Size

of

internal

successor

arc

table

exceeds

maximum

2A

Size

of

internal

register

table

exceeds

maximum

2B

Size

of

internal

late

bound

offset

table

exceeds

maximum

2C

Invalid

function

prototype

component

entry

5E

An

error

was

detected

in

a

static

storage

definition

or

initialization

5F

Overlapping

initializations

not

valid

60

Dictionary

ID

is

not

valid

61

Binding

specification

value

not

valid

62

Copyright

component

value

not

valid

63

Module

limitation

exceeded

A0

Attempt

to

delete

part

that

may

not

be

deleted

B0

Object

list

referential

extension

not

valid

B1

Symbol

resolution

list

referential

extension

not

valid

B2

Service

program

export

list

referential

extension

not

valid

B3

Secondary

associated

spaces

list

referential

extension

not

valid

B4

Program

limitation

exceeded

B5

Observable

information

necessary

for

retranslation

not

encapsulated

B6

Procedure

order

list

referential

extension

not

valid

C0

Attempt

to

delete

part

that

may

not

be

deleted

C1

An

attempt

was

made

to

delete

a

required

module

part

EX2AC1.htm″>An

attempt

was

made

to

delete

a

required

module

part

2C

Program

Execution

01

Return

instruction

invalid

02

Return

point

invalid

04

Branch

target

invalid

05

Activation

in

use

by

invocation

06

Instruction

cancellation

07

Instruction

termination

08

Branch

target

defined

by

label

pointer

not

valid

Machine

Interface

Instructions

1299

EX2A1A.htm
EX2A1B.htm
EX2A1C.htm
EX2A1D.htm
EX2A1E.htm
EX2A1F.htm
EX2A20.htm
EX2A21.htm
EX2A22.htm
EX2A23.htm
EX2A24.htm
EX2A28.htm
EX2A29.htm
EX2A2A.htm
EX2A2B.htm
EX2A2C.htm
EX2A5E.htm
EX2A5F.htm
EX2A60.htm
EX2A61.htm
EX2A62.htm
EX2A63.htm
EX2AA0.htm
EX2AB0.htm
EX2AB1.htm
EX2AB2.htm
EX2AB3.htm
EX2AB4.htm
EX2AB5.htm
EX2AB6.htm
EX2AC0.htm
EX2AC1.htm
EX2C01.htm
EX2C02.htm
EX2C04.htm
EX2C05.htm
EX2C06.htm
EX2C07.htm
EX2C08.htm

10

Process

object

destroyed

11

Process

object

access

invalid

12

Activation

group

access

violation

13

Activation

group

not

found

14

Activation

group

in

use

15

Invalid

operation

for

program

16

Program

activation

not

found

17

Default

activation

group

not

destroyed

18

Invalid

source

invocation

19

Invalid

origin

invocation

1A

Invocation

offset

outside

range

of

current

stack

1B

Invocation

not

eligible

for

operation

1C

Instruction

not

valid

for

invocation

type

1D

Automatic

storage

overflow

1E

Activation

access

violation

1F

Program

signature

violation

20

Static

storage

overflow

21

Program

import

invalid

22

Data

reference

invalid

23

Imported

object

invalid

24

Activation

group

export

conflict

25

Import

not

found

26

Invalid

activation

group

27

Unresolved

import

28

Activation

group

directory

error

29

Caller

parameter

mask

does

not

match

procedure

parameter

mask

2A

Caller

parameter

mask

does

not

match

imported

procedure

parameter

mask

2B

Invalid

Storage

Model

EX2C2B.htm″>Invalid

Storage

Model

2E

Resource

Control

Limit

01

User

profile

storage

limit

exceeded

02

Security

audit

journal

failure

EX2E02.htm″>Security

audit

journal

failure

30

Journal

01

Apply

journal

changes

failure

02

Entry

not

journaled

03

Maximum

objects

through

a

journal

port

limit

exceeded

04

Invalid

journal

space

05

Invalid

selection/transaction

list

entry

06

Journal

space

not

at

a

recoverable

boundary

1300

iSeries:

Machine

Interface

Instructions

APIs

EX2C10.htm
EX2C11.htm
EX2C12.htm
EX2C13.htm
EX2C14.htm
EX2C15.htm
EX2C16.htm
EX2C17.htm
EX2C18.htm
EX2C19.htm
EX2C1A.htm
EX2C1B.htm
EX2C1C.htm
EX2C1D.htm
EX2C1E.htm
EX2C1F.htm
EX2C20.htm
EX2C21.htm
EX2C22.htm
EX2C23.htm
EX2C24.htm
EX2C25.htm
EX2C26.htm
EX2C27.htm
EX2C28.htm
EX2C29.htm
EX2C2A.htm
EX2C2B.htm
EX2E01.htm
EX2E02.htm
EX3001.htm
EX3002.htm
EX3003.htm
EX3004.htm
EX3005.htm
EX3006.htm

07

Journal

ID

not

unique

08

Object

already

being

journaled

09

Transaction

list

limit

reached

0A

Data

space

index

currently

journaled

0B

Data

space

index

currently

in

force

mode

0C

Underlying

data

space

not

journaled

to

same

journal

0E

File

ID

not

available

10

Unrecoverable

system

managed

access

path

protection

failure

11

Journal

violation

12

Object

entry

invalid

20

Remote

journal

operation

error

EX3020.htm″>Remote

journal

operation

error

32

Scalar

Specification

01

Scalar

type

invalid

02

Scalar

attributes

invalid

03

Scalar

value

invalid

EX3203.htm″>Scalar

value

invalid

34

Source/Sink

Management

01

Source/sink

configuration

invalid

02

Source/sink

physical

address

invalid

03

Source/sink

object

state

invalid

04

Source/sink

resource

not

available

41

Invalid

starting

verb

index

was

specified

42

System

pointer

area

was

tagged

and

non-zero

43

Invalid

open

in

list

of

operations

44

Unsupported

stream

operation

45

Incorrect

length

specified

EX3445.htm″>Incorrect

length

specified

36

Space

Management

01

Space

extension/truncation

02

Invalid

space

modification

EX3602.htm″>Invalid

space

modification

38

Template

Specification

01

Template

value

invalid

02

Template

size

invalid

03

Materialization

length

invalid

04

Invalid

mutex

EX3804.htm″>Invalid

mutex

Machine

Interface

Instructions

1301

EX3007.htm
EX3008.htm
EX3009.htm
EX300A.htm
EX300B.htm
EX300C.htm
EX300E.htm
EX3010.htm
EX3011.htm
EX3012.htm
EX3020.htm
EX3201.htm
EX3202.htm
EX3203.htm
EX3401.htm
EX3402.htm
EX3403.htm
EX3404.htm
EX3441.htm
EX3442.htm
EX3443.htm
EX3444.htm
EX3445.htm
EX3601.htm
EX3602.htm
EX3801.htm
EX3802.htm
EX3803.htm
EX3804.htm

3A

Wait

Time-Out

01

Dequeue

time-out

02

Lock

time-out

03

Event

time-out

04

Space

location

lock

wait

time-out

05

Object

location

lock

wait

time-out

EX3A05.htm″>Object

location

lock

wait

time-out

3C

Service

01

Invalid

service

session

state

02

Unable

to

start

service

session

EX3C02.htm″>Unable

to

start

service

session

3E

Commitment

Control

01

Invalid

commit

block

status

change

02

Commit

block

must

be

decommitted

03

Commit

block

is

attached

to

process

04

Commit

blocks

control

uncommitted

changes

05

Operation

not

valid

on

commit

block

in

prepared

state

06

Commitment

control

resource

limit

exceeded

07

Operation

not

valid

on

commit

block

in

decommit

only

state

08

Object

under

commitment

control

being

journaled

incorrectly

09

Reconstruct

of

commit

block

environment

failure

10

Operation

not

valid

under

commitment

control

11

Process

has

attempted

to

attach

too

many

commit

blocks

12

Objects

under

commitment

control

13

Commit

block

not

journaled

14

Errors

during

decommit

15

Object

ineligible

for

commitment

control

16

Object

ineligible

for

removal

from

commitment

control

EX3E16.htm″>Object

ineligible

for

removal

from

commitment

control

40

Dump

Space

Management

01

Dump

data

space

size

limit

exceeded

02

Invalid

dump

data

insertion

03

Invalid

dump

space

modification

04

Invalid

dump

data

retrieval

04.htm″>Invalid

dump

data

retrieval

44

Protection

Violation

01

Object

domain

or

hardware

storage

protection

violation

1302

iSeries:

Machine

Interface

Instructions

APIs

EX3A01.htm
EX3A02.htm
EX3A03.htm
EX3A04.htm
EX3A05.htm
EX3C01.htm
EX3C02.htm
EX3E01.htm
EX3E02.htm
EX3E03.htm
EX3E04.htm
EX3E05.htm
EX3E06.htm
EX3E07.htm
EX3E08.htm
EX3E09.htm
EX3E10.htm
EX3E11.htm
EX3E12.htm
EX3E13.htm
EX3E14.htm
EX3E15.htm
EX3E16.htm
EX4001.htm
EX4002.htm
EX4003.htm
EX4004.htm
EX4401.htm

02

Literal

values

cannot

be

changed

03

Cannot

Change

Contents

of

Protected

Context

EX4403.htm″>Cannot

Change

Contents

of

Protected

Context

45

Heap

Space

01

Invalid

heap

identifier

02

Invalid

request

03

Heap

space

full

04

Invalid

size

request

05

Heap

space

destroyed

06

Invalid

heap

space

condition

07

Invalid

mark

identifier

46

Queue

Space

01

Queue

space

not

associated

with

the

process

02

Queue

space

cannot

be

modified

03

Message

reference

index

does

not

identify

a

valid

message

04

Queue

space

not

eligible

for

destruction

EX4604.htm″>Queue

space

not

eligible

for

destruction

48

Kernel

Environment

01

Function

code

out

of

range

02

Kernel

environment

already

active

03

Kernel

environment

not

initialized

04

Kernel

environment

not

active

05

MI

wait

in

kernel

mode

terminated

EX4805.htm″>MI

wait

in

kernel

mode

terminated

4A

Java

A0

Generic

Java

exception

A1

Java

class

format

error

A2

Java

verify

error

A3

Java

archive

file

error

A4

Java

invalid

native

method

return

A5

Java

virtual

machine

terminated

A6

Java

native

interface

unattached

caller

A7

Java

Stand-Alone

Program

Creation

Error

EX4AA7.htm″>Java

Stand-Alone

Program

Creation

Error

4C

Signals

Management

01

Asynchronous

signal

terminated

MI

wait

02

Signal

controls

not

initialized

03

Asynchronous

signal

received

Machine

Interface

Instructions

1303

EX4402.htm
EX4403.htm
EX4501.htm
EX4502.htm
EX4503.htm
EX4504.htm
EX4505.htm
EX4506.htm
EX4507.htm
EX4601.htm
EX4602.htm
EX4603.htm
EX4604.htm
EX4801.htm
EX4802.htm
EX4803.htm
EX4804.htm
EX4805.htm
EX4AA0.htm
EX4AA1.htm
EX4AA2.htm
EX4AA3.htm
EX4AA4.htm
EX4AA5.htm
EX4AA6.htm
EX4AA7.htm
EX4C01.htm
EX4C02.htm
EX4C03.htm

03.htm″>Asynchronous

signal

received

4E

Handle-Based

Object

01

Invalid

handle

02

Invalid

handle

type

03

Handle-based

primitive

exists

-

Storage

Synchronization

1304

iSeries:

Machine

Interface

Instructions

APIs

EX4E01.htm
EX4E02.htm
EX4E03.htm
MCNSYNC.htm

Appendix

A.

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

500

Columbus

Avenue

Thornwood,

NY

10594-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

″AS

IS″

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

©

Copyright

IBM

Corp.

1998,

2004

1305

IBM

Corporation

Software

Interoperability

Coordinator,

Department

49XA

3605

Highway

52

N

Rochester,

MN

55901

U.S.A.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrate

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

If

you

are

viewing

this

information

softcopy,

the

photographs

and

color

illustrations

may

not

appear.

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

other

countries,

or

both:
Advanced

36
Advanced

Function

Printing
Advanced

Peer-to-Peer

Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2

Universal

Database
Distributed

Relational

Database

Architecture
Domino
DPI
DRDA
eServer
GDDM
IBM
Integrated

Language

Environment
Intelligent

Printer

Data

Stream
IPDS
iSeries

1306

iSeries:

Machine

Interface

Instructions

APIs

Lotus

Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating

System/2
Operating

System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print

Services

Facility
RISC

System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

Appendix

A.

Notices

1307

1308

iSeries:

Machine

Interface

Instructions

APIs

Appendix

B.

Terms

and

conditions

for

downloading

and

printing

publications

Permissions

for

the

use

of

the

publications

you

have

selected

for

download

are

granted

subject

to

the

following

terms

and

conditions

and

your

indication

of

acceptance

thereof.

Personal

Use:

You

may

reproduce

these

Publications

for

your

personal,

noncommercial

use

provided

that

all

proprietary

notices

are

preserved.

You

may

not

distribute,

display

or

make

derivative

works

of

these

Publications,

or

any

portion

thereof,

without

the

express

consent

of

IBM(R).

Commercial

Use:

You

may

reproduce,

distribute

and

display

these

Publications

solely

within

your

enterprise

provided

that

all

proprietary

notices

are

preserved.

You

may

not

make

derivative

works

of

these

Publications,

or

reproduce,

distribute

or

display

these

Publications

or

any

portion

thereof

outside

your

enterprise,

without

the

express

consent

of

IBM.

Except

as

expressly

granted

in

this

permission,

no

other

permissions,

licenses

or

rights

are

granted,

either

express

or

implied,

to

the

Publications

or

any

information,

data,

software

or

other

intellectual

property

contained

therein.

IBM

reserves

the

right

to

withdraw

the

permissions

granted

herein

whenever,

in

its

discretion,

the

use

of

the

Publications

is

detrimental

to

its

interest

or,

as

determined

by

IBM,

the

above

instructions

are

not

being

properly

followed.

You

may

not

download,

export

or

re-export

this

information

except

in

full

compliance

with

all

applicable

laws

and

regulations,

including

all

United

States

export

laws

and

regulations.

IBM

MAKES

NO

GUARANTEE

ABOUT

THE

CONTENT

OF

THESE

PUBLICATIONS.

THE

PUBLICATIONS

ARE

PROVIDED

″AS-IS″

AND

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESSED

OR

IMPLIED,

INCLUDING

BUT

NOT

LIMITED

TO

IMPLIED

WARRANTIES

OF

MERCHANTABILITY

AND

FITNESS

FOR

A

PARTICULAR

PURPOSE.

All

material

copyrighted

by

IBM

Corporation.

By

downloading

or

printing

a

publication

from

this

site,

you

have

indicated

your

agreement

with

these

terms

and

conditions.

©

Copyright

IBM

Corp.

1998,

2004

1309

1310

iSeries:

Machine

Interface

Instructions

APIs

Appendix

C.

Code

disclaimer

information

This

document

contains

programming

examples.

IBM(R)

grants

you

a

nonexclusive

copyright

license

to

use

all

programming

code

examples

from

which

you

can

generate

similar

function

tailored

to

your

own

specific

needs.

All

sample

code

is

provided

by

IBM

for

illustrative

purposes

only.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

All

programs

contained

herein

are

provided

to

you

″AS

IS″

without

any

warranties

of

any

kind.

The

implied

warranties

of

non-infringement,

merchantability

and

fitness

for

a

particular

purpose

are

expressly

disclaimed.

©

Copyright

IBM

Corp.

1998,

2004

1311

1312

iSeries:

Machine

Interface

Instructions

APIs

����

Printed

in

USA

	Contents
	Machine Interface Instructions
	APIs
	iSeries(TM) Machine Interface
	Activate Bound Program (ACTBPGM)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Activate Program (ACTPG)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Add Logical Character (ADDLC)
	Warning: Temporary Level 3 Header
	Short forms
	Authorization Required
	Lock Enforcement
	Exceptions

	Add Numeric (ADDN)
	Warning: Temporary Level 3 Header
	Short forms
	Authorization Required
	Lock Enforcement
	Exceptions

	Add Space Pointer (ADDSPP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Allocate Activation Group-Based Heap Space Storage (ALCHSS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	And (AND)
	Warning: Temporary Level 3 Header
	Short forms
	Authorization Required
	Lock Enforcement
	Exceptions

	And Complemented String (ANDCSTR)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	AND String (ANDSTR)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Arc Cosine (ACOS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Arc Sine (ASIN)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Arc Tangent (ATAN)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Arc Tangent Hyperbolic (ATANH)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Atomic Add (ATMCADD)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Atomic And (ATMCAND)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Atomic Or (ATMCOR)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Branch (B)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Call External (CALLX)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Call Internal (CALLI)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Call Program with Variable Length Argument List (CALLPGMV)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Check Lock Value (CHKLKVAL)
	Warning: Temporary Level 3 Header
	Usage Notes
	Authorization Required
	Lock Enforcement
	Exceptions

	Cipher (CIPHER)
	Warning: Temporary Level 3 Header
	Function Identifier 0002
	Function Identifier 0005
	Function Identifier 0007
	Function Identifier 0008
	Function Identifier 0010
	Function Identifier 0011
	Function Identifier 0013
	Function Identifier 0015
	Limitations (Subject to Change)
	Authorization Required
	Exceptions

	Clear Bit in String (CLRBTS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Clear Invocation Exit (CLRIEXIT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Clear Invocation Flags (CLRINVF)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Clear Lock Value (CLRLKVAL)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Compare and Swap (CMPSW)
	Warning: Temporary Level 3 Header
	Storage Synchronization
	Usage Note
	Authorization Required
	Lock Enforcement
	Exceptions

	Compare and Swap (CMPSW)
	Warning: Temporary Level 3 Header
	Storage Synchronization
	Usage Note
	Authorization Required
	Lock Enforcement
	Exceptions

	Compare Bytes Left-Adjusted (CMPBLA)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Compare Bytes Left-Adjusted with Pad (CMPBLAP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Compare Bytes Right-Adjusted (CMPBRA)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Compare Bytes Right-Adjusted with Pad (CMPBRAP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Compare Null-Terminated Strings Constrained (STRNCMPNULL)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Compare Numeric Value (CMPNV)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Compare Pointer for Object Addressability (CMPPTRA)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Compare Pointer for Space Addressability (CMPPSPAD)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Compare Pointer Type (CMPPTRT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Compare Pointers for Equality (CMPPTRE)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Compare Space Addressability (CMPSPAD)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Compare To Pad (CMPTOPAD)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Complement String (COMSTR)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Compress Data (CPRDATA)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Compute Array Index (CAI)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Compute Date Duration (CDD)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Compute Length of Null-Terminated String (STRLENNULL)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Compute Math Function Using One Input Value (CMF1)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Compute Math Function Using Two Input Values (CMF2)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Compute Time Duration (CTD)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Compute Timestamp Duration (CTSD)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Concatenate (CAT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Convert BSC to Character (CVTBC)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Convert Character to BSC (CVTCB)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Convert Character to Hex (CVTCH)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Convert Character to MRJE (CVTCM)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Convert Character to Numeric (CVTCN)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Convert Character to SNA (CVTCS)
	Warning: Temporary Level 3 Header
	Limitations (Subject to Change)
	Resultant Conditions
	Authorization Required
	Lock Enforcement
	Exceptions

	Convert Date (CVTD)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Convert Decimal Form to Floating-Point (CVTDFFP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Convert External Form to Numeric Value (CVTEFN)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Convert Floating-Point to Decimal Form (CVTFPDF)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Convert Hex to Character (CVTHC)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Convert MRJE to Character (CVTMC)
	Warning: Temporary Level 3 Header
	Limitations (Subject to Change)
	Resultant Conditions
	Authorization Required
	Lock Enforcement
	Exceptions

	Convert Numeric to Character (CVTNC)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Convert SNA to Character (CVTSC)
	Warning: Temporary Level 3 Header
	Limitations (Subject to Change)
	Resultant Conditions
	Authorization Required
	Lock Enforcement
	Exceptions

	Convert Time (CVTT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Convert Timestamp (CVTTS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Bits Arithmetic (CPYBTA)
	Warning: Temporary Level 3 Header
	Limitations (Subject to Change)
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Bits Logical (CPYBTL)
	Warning: Temporary Level 3 Header
	Limitations (Subject to Change)
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Bits with Left Logical Shift (CPYBTLLS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Bits with Right Arithmetic Shift (CPYBTRAS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Bits with Right Logical Shift (CPYBTRLS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Bytes (CPYBYTES)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Bytes Left-Adjusted (CPYBLA)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Bytes Left-Adjusted with Pad (CPYBLAP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Bytes Overlap Left-Adjusted (CPYBOLA)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Bytes Overlap Left-Adjusted with Pad (CPYBOLAP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Bytes Overlapping (CPYBO)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Bytes Repeatedly (CPYBREP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Bytes Right-Adjusted (CPYBRA)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Bytes Right-Adjusted with Pad (CPYBRAP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Bytes to Bits Arithmetic (CPYBBTA)
	Warning: Temporary Level 3 Header
	Limitations (Subject to Change)
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Bytes to Bits Logical (CPYBBTL)
	Warning: Temporary Level 3 Header
	Limitations (Subject to Change)
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Bytes with Pointers (CPYBWP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Extended Characters Left-Adjusted With Pad (CPYECLAP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Hex Digit Numeric to Numeric (CPYHEXNN)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Hex Digit Numeric to Zone (CPYHEXNZ)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Hex Digit Zone To Numeric (CPYHEXZN)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Hex Digit Zone To Zone (CPYHEXZZ)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Null-Terminated String Constrained (STRNCPYNULL)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Null-Terminated String Constrained, Null Padded (STRNCPYNULLPAD)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Numeric Value (CPYNV)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Numeric Value (CPYNV)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Copy Numeric Value (CPYNV)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Cosine (COS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Cosine Hyperbolic (COSH)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Cotangent (COT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Create Activation Group-Based Heap Space (CRTHS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Create Independent Index (CRTINX)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Create Pointer-Based Mutex (CRTMTX)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Error conditions
	Exceptions

	Create Space (CRTS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Deactivate Program (DEACTPG)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Decompress Data (DCPDATA)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Decrement Date (DECD)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Decrement Time (DECT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Decrement Timestamp (DECTS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Dequeue (DEQ)
	Warning: Temporary Level 3 Header
	Resultant Conditions
	Authorization Required
	Lock Enforcement
	Exceptions

	Dequeue (DEQ)
	Warning: Temporary Level 3 Header
	Resultant Conditions
	Authorization Required
	Lock Enforcement
	Exceptions

	Destroy Activation Group-Based Heap Space (DESHS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Destroy Independent Index (DESINX)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Destroy Pointer-Based Mutex (DESMTX)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Error conditions
	Exceptions

	Destroy Space (DESS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Divide (DIV)
	Warning: Temporary Level 3 Header
	Short forms
	Authorization Required
	Lock Enforcement
	Exceptions

	Divide with Remainder (DIVREM)
	Warning: Temporary Level 3 Header
	Resultant Conditions
	Authorization Required
	Lock Enforcement
	Exceptions

	Edit (EDIT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Edit (EDIT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Edit (EDIT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	End (END)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Enqueue (ENQ)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Ensure Object (ENSOBJ)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Exchange Bytes (EXCHBY)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Exclusive Or (XOR)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Exponential Function of E (EEXP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Extended Character Scan (ECSCAN)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Extract Exponent (EXTREXP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Extract Magnitude (EXTRMAG)
	Warning: Temporary Level 3 Header
	Short forms
	Authorization Required
	Lock Enforcement
	Exceptions

	Find Byte (FINDBYTE)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Find Character Constrained (MEMCHR)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Find Independent Index Entry (FNDINXEN)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Find Relative Invocation Number (FNDRINVN)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Free Activation Group-Based Heap Space Storage (FREHSS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Free Activation Group-Based Heap Space Storage From Mark (FREHSSMK)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Generate Universal Unique Identifier (GENUUID)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Increment Date (INCD)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Increment Time (INCT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Increment Timestamp (INCTS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Initialize Exception Handler Control Actions (INITEHCA)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Insert Independent Index Entry (INSINXEN)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Invocation Pointer (INVP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Lock Object (LOCK)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Lock Object Location (LOCKOL)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Lock Pointer-Based Mutex (LOCKMTX)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Error conditions
	Exceptions

	Lock Space Location (LOCKSL)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Lock Teraspace Storage Location (LOCKTSL)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Logarithm Base E (Natural Logarithm) (LN)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Access Group Attributes (MATAGAT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Activation Attributes (MATACTAT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Activation Export (MATACTEX)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Activation Group Attributes (MATAGPAT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Activation Group-Based Heap Space Attributes (MATHSAT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Allocated Object Locks (MATAOL)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Authority (MATAU)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Authority List (MATAL)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Authorized Objects (MATAUOBJ)
	Usage note:
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Authorized Users (MATAUU)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Bound Program (MATBPGM)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Context (MATCTX)
	Usage note:
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Data Space Record Locks (MATDRECL)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Dump Space (MATDMPS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Exception Description (MATEXCPD)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Independent Index Attributes (MATINXAT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Instruction Attributes (MATINAT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Invocation (MATINV)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Invocation Attributes (MATINVAT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Invocation Entry (MATINVE)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Invocation Stack (MATINVS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Journal Port Attributes (MATJPAT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Journal Space Attributes (MATJSAT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Machine Attributes (MATMATR)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Machine Attributes (MATMATR)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Machine Data (MATMDATA)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Machine Information (MATMIF)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Error conditions
	Exceptions

	Materialize Mutex (MATMTX)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Object Locks (MATOBJLK)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize or Verify Licensed Internal Code Options (MVLICOPT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Pointer (MATPTR)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Pointer Information (MATPTRIF)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Pointer Locations (MATPTRL)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Process Activation Groups (MATPRAGP)
	Warning: Temporary Level 3 Header
	Authorization
	Lock Enforcement
	Exceptions

	Materialize Process Attributes (MATPRATR)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Process Locks (MATPRLK)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Process Message (MATPRMSG)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Process Mutex (MATPRMTX)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Process Record Locks (MATPRECL)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Program (MATPG)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Program Name (MATPGMNM)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Queue Attributes (MATQAT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Queue Messages (MATQMSG)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Resource Management Data (MATRMD)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Selected Locks (MATSELLK)
	Warning: Temporary Level 3 Header
	Authorization
	Lock Enforcement
	Exceptions

	Materialize Space Attributes (MATS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize System Object (MATSOBJ)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Machine Data (MATMDATA)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize Time of Day Clock Attributes (MATTODAT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Error conditions
	Exceptions

	Materialize User Profile (MATUP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Materialize User Profile Pointers from ID (MATUPID)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Memory Compare (MEMCMP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Memory Copy (MEMCPY)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Memory Move (MEMMOVE)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Modify Automatic Storage Allocation (MODASA)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Modify Automatic Storage Allocation (MODASA)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Modify Exception Description (MODEXCPD)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Modify Independent Index (MODINX)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Modify Invocation Authority Attributes (MODINVAU)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Modify Space Attributes (MODS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Modify Space Attributes (MODS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Modify Space Attributes (MODS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Multiply (MULT)
	Warning: Temporary Level 3 Header
	Short forms
	Authorization Required
	Lock Enforcement
	Exceptions

	Negate (NEG)
	Warning: Temporary Level 3 Header
	Short forms
	Authorization Required
	Lock Enforcement
	Exceptions

	No Operation (NOOP)
	No Operation and Skip (NOOPS)
	Not (NOT)
	Warning: Temporary Level 3 Header
	Short forms
	Authorization Required
	Lock Enforcement
	Exceptions

	NPM Procedure Parameter List Address (NPM_PARMLIST_ADDR)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	OPM Parameter Address (OPM_PARM_ADDR)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	OPM Parameter Count (OPM_PARM_CNT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Or (OR)
	Warning: Temporary Level 3 Header
	Short forms
	Authorization Required
	Lock Enforcement
	Exceptions

	OR String (ORSTR)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Override Program Attributes (OVRPGATR)
	PCO Pointer (PCOPTR)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Propagate Byte (PROPB)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Reallocate Activation Group-Based Heap Space Storage (REALCHSS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Reinitialize Static Storage (RINZSTAT)
	Warning: Temporary Level 3 Header
	Usage Notes
	Authorization Required
	Lock Enforcement
	Exceptions

	Remainder (REM)
	Warning: Temporary Level 3 Header
	Short forms
	Authorization Required
	Lock Enforcement
	Exceptions

	Remove Independent Index Entry (RMVINXEN)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Resolve Data Pointer (RSLVDP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Resolve System Pointer (RSLVSP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Retrieve Computational Attributes (RETCA)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Retrieve Exception Data (RETEXCPD)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Retrieve Invocation Flags (RETINVF)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Retrieve Teraspace Address From Space Pointer (RETTSADR)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Retrieve Thread Count (RETTHCNT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Retrieve Thread Identifier (RETTHID)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Return External (RTX)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Return From Exception (RTNEXCP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Return PCO Pointer (PCOPTR2)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Scale (SCALE)
	Warning: Temporary Level 3 Header
	Short forms
	Authorization Required
	Lock Enforcement
	Exceptions

	Scan (SCAN)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Scan Extended (SCANX)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Scan with Control (SCANWC)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Search (SEARCH)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Sense Exception Description (SNSEXCPD)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Set Access State (SETACST)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Set Activation Group-Based Heap Space Storage Mark (SETHSSMK)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Set Argument List Length (SETALLEN)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Set Bit in String (SETBTS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Set Computational Attributes (SETCA)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Set Data Pointer (SETDP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Set Data Pointer Addressability (SETDPADR)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Set Data Pointer Attributes (SETDPAT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Set Instruction Pointer (SETIP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Set Invocation Exit (SETIEXIT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Set Invocation Flags (SETINVF)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Set Object Pointer from Pointer (SETOBPFP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Set Space Pointer (SETSPP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Set Space Pointer from Pointer (SETSPPFP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Set Space Pointer Offset (SETSPPO)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Set Space Pointer with Displacement (SETSPPD)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Set System Pointer from Pointer (SETSPFP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Signal Exception (SIGEXCP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Sine (SIN)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Sine Hyperbolic (SINH)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Store and Set Computational Attributes (SSCA)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Store Parameter List Length (STPLLEN)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Store Space Pointer Offset (STSPPO)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Subtract Logical Character (SUBLC)
	Warning: Temporary Level 3 Header
	Short forms
	Authorization Required
	Lock Enforcement
	Exceptions

	Subtract Numeric (SUBN)
	Warning: Temporary Level 3 Header
	Short forms
	Authorization Required
	Lock Enforcement
	Exceptions

	Subtract Space Pointer Offset (SUBSPP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Subtract Space Pointers For Offset (SUBSPPFO)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Synchronize Shared Storage Accesses (SYNCSTG)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Tangent (TAN)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Tangent Hyperbolic (TANH)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Test and Replace Bytes (TESTRPL)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Test and Replace Characters (TSTRPLC)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Test Authority (TESTAU)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Test Bit in String (TSTBTS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Test Bits Under Mask (TSTBUM)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Test Exception (TESTEXCP)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Test Extended Authorities (TESTEAU)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Test Initial Thread (TSTINLTH)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Test Pending Interrupts (TESTINTR)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Test Performance Data Collection (TESTPDC)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Test Pointer (TESTPTR)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Test Subset (TESTSUBSET)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Test Temporary Object (TESTTOBJ)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Test User List Authority (TESTULA)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Transfer Control (XCTL)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Transfer Object Lock (XFRLOCK)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Translate (XLATE)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Translate Bytes (XLATEB)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Translate Bytes One Byte at a Time (XLATEB1)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Translate Multiple Bytes (XLATEMB)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Translate with Table (XLATEWT)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Translate with Table and DBCS Skip (XLATWTDS)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Trim Length (TRIML)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Unlock Object (UNLOCK)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Unlock Object Location (UNLOCKOL)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Unlock Pointer-Based Mutex (UNLKMTX)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Error conditions
	Exceptions

	Unlock Space Location (UNLOCKSL)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Unlock Teraspace Storage Location (UNLCKTSL)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Verify (VERIFY)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Wait On Time (WAITTIME)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	X To The Y Power (POWER)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	XOR (Exclusive Or) String (XORSTR)
	Warning: Temporary Level 3 Header
	Authorization Required
	Lock Enforcement
	Exceptions

	Yield (YIELD)
	Warning: Temporary Level 3 Header
	Usage Notes
	Authorization Required
	Lock Enforcement
	Exceptions

	Concepts
	iSeries Machine Interface Introduction
	Overview
	What's New for V5R3
	Instruction Format Conventions Used
	Warning: Temporary Level 4 Header

	Reserved and Obsolete Fields
	Reserved Fields
	Obsolete Fields

	Definition Of The NBP Operand Syntax
	Names
	Character Constants
	Standard Time Format
	Time-of-Day (TOD) Clock
	Storage Terminology
	Storage Limitations
	Size limits for data objects in bound programs
	Size limits for data objects in non-bound programs
	Machine managed storage limits
	Program managed storage limits

	Atomicity
	Atomicity of MI Instructions
	Atomicity of Storage Operations

	Shared Storage Access Ordering
	External Standards and Architectures
	Logical partitioning

	ISeries(TM) Machine Interface Instructions
	iSeries(TM) Machine Interface Instructions Sorted by Topic
	Introduction
	Computation and Branching
	Bound Program Computation and Branching Built-in Functions
	Date/Time/Timestamp
	Pointer/name resolution
	Space Addressing
	Space Management
	Heap Management
	Program Management
	Program Execution
	Program creation control
	Independent Index
	Queue Management
	Object Lock Management
	Mutex Management
	Shared Storage Synchronization
	Exception Management
	Queue Space Management
	Context Management
	Authorization Management
	Process and Thread Management
	Storage and Resource Management
	Dump Space Management
	Journal Management
	Machine Observation
	Machine Interface Support Functions

	iSeries(TM) Exceptions

	Appendix A. Notices
	Trademarks

	Appendix B. Terms and conditions for downloading and printing publications
	Appendix C. Code disclaimer information

