
IBM® Tivoli® Netcool/OMNIbus Probe for
Message Bus
Version 13.0

Reference Guide
September 25, 2020

IBM

SC27-8701-14

Note

Before using this information and the product it supports, read the information in Appendix A, “Notices
and Trademarks,” on page 101.

Edition notice

This edition (SC27-8701-14) applies to version 13.0 of IBM Tivoli Netcool/OMNIbus Probe for Message Bus and to all
subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SC27-8701-13.
© Copyright International Business Machines Corporation 2015, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this guide.. v
Document control page..v
Conventions used in this guide.. x

Chapter 1. Probe for Message Bus.. 1
Summary.. 1
Installing probes.. 4
Migrating to the Probe for Message Bus..4

Identifying new and changed features of the Probe for Message Bus... 4
Configuring the probe.. 7

Enabling the max_line_length property.. 8
Enabling the max_http_payload_size property...8
Configuring the parser with a different JsonMessageDepth...10
Generating events from a nested JSON.. 11
Specifying multiple parser configurations to parse different JSON structures..................................12
Upgrading to Probe for Message Bus version 5 or newer... 15

Using the transport module...17
Configuring the transport properties files... 18
Configuring the JMS transport... 18
Configuring the data file transport...21
Configuring the MQTT transport.. 21
Configuring the Web Socket transport...22
Configuring the Web Hook transport... 32
Configuring the Cometd transport... 40
Configuring the socket transport... 42
Configuring the Kafka transport...43

Message Bus Probe integrations with event sources... 47
Probe integration for Amazon Web Services... 48
Probe integration for Ciena Blue Planet MCP.. 50
Probe integration for IBM Cloud Platform Common Services (CS) Monitoring.................................. 52
Probe integration for IBM Event Streams for IBM Cloud.. 58
Probe integration for iDirect Pulse...60
Probe integration for Kafka.. 61
Probe integration for Microsoft Azure Monitoring... 63
Probe integration for Nokia 1350 OMS..65
Probe integration for Nokia NSP.. 66

Using the transformer module.. 66
Using XSLT files to transform events...66
Using the transformer testing tool...68
Configuring the transformer definition file.. 69
Using the XML validation tool...71

Running the probe... 71
Data acquisition... 72

Peer-to-peer failover functionality.. 72
HTTP/HTTPS command interface.. 72

Properties and command line options.. 74
Properties and command line options provided by the Java Probe Integration Library (probe-sdk-

java) version 11.0... 80
Elements.. 83
Error messages.. 87

 iii

Common error messages...88
ProbeWatch messages.. 92
Using the probe with the Gateway for Message Bus.. 92

Requirements... 92
Sample implementation using JMS... 93

Frequently asked questions.. 94
Troubleshooting...94
Known issues with the Probe for Message Bus.. 95

Appendix A. Notices and Trademarks...101
Notices... 101
Trademarks..102

iv

About this guide

The following sections contain important information about using this guide.

Document control page
Table 1. Document modification history

Document version Publication date Comments

SC27-8701-00 December 10, 2015 First IBM publication.

The Probe for Message Bus addresses the following
enhancement requests:

RFE 59587: Request to provide filtering support on the Java
Message Service (JMS) Transport Module.

RFE 71751: Request to add support for the REST API
protocol within the JMS Transport Module.

RFE 63631: Request to enhance the event parser to process
JSON messages.

SC27-8701-01 July 28, 2016 Version updated to 2.0 in “Summary” on page 1.

Updated “Elements” on page 83 with new element
$resync_event.

Updated “Enabling the max_line_length property” on page
8 and “Enabling the max_http_payload_size property” on
page 8 command from %JAVA_USED% to
%JAVA_EXEC_USED%.

Updated “Properties and command line options” on page
74. Added descriptions for the following property:
JsonNestedPayload.

Version 2.0 of the probe addresses the following
enhancement request:

RFE 80771: Request to enhance the Probe for Message Bus
for JSON parsing.

© Copyright IBM Corp. 2015, 2020 v

Table 1. Document modification history (continued)

Document version Publication date Comments

SC27-8701-02 November 24,
2016

Version updated to 3.0 in “Summary” on page 1.

The following topics added:

• “Authenticating the probe using REST or WebSocket” on
page 29

• “Resynchronizing the probe with the REST API” on page
31

• “Subscribing to receive notifications using WebSocket” on
page 31

• “Restarting the probe and re-connecting with the persistent
URI” on page 31

• “Configuring the parser with a different
JsonMessageDepth” on page 10

• “Generating events from a nested JSON” on page 11

Descriptions for the following WebSocket transport
properties were added to “Configuring the Web Socket
transport” on page 22:

• httpHeaders
• refreshRetryCount
• securityProtocol
• webSocketRefreshInterval
• webSocketRefreshMessage
• webSocketPeristentURI

Descriptions for the following probe properties were added to
“Properties and command line options” on page 74:

• JsonMessageDepth
• JsonNestedHeader
• MessageHeader
• RecordData

SC27-8701-03 March 14, 2017 Version updated to 4.0 in “Summary” on page 1.

Support for the disconnectProbe and shutdownProbe
commands using HTTP added. See “HTTP/HTTPS command
interface” on page 72.

“Properties and command line options provided by the Java
Probe Integration Library (probe-sdk-java) version 11.0” on
page 80 updated to reflect the probe's usage of version 11
of the Probe Framework.

Error message added to “Error messages” on page 87.

Issue added to “Known issues with the Probe for Message
Bus” on page 95.

vi IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Table 1. Document modification history (continued)

Document version Publication date Comments

SC27-8701-04 July 20, 2017 Version updated to 5.0 in “Summary” on page 1.

Added support for Ciena's Blue Planet MCP Release 17.02.

“Probe integration for Ciena Blue Planet MCP” on page 50
added.

Description of the deprecated WebSocketId property
removed from “Properties and command line options” on
page 74.

Addition of the keepTokens property to the
restWebSocketTransport.properties file to enable the
probe to extract multiple attributes from the incoming JSON
data.

Addition of the webSocketSubscribeMessage property to
the restWebSocketTransport.properties file to
specify the message that the probe sends after successfully
connecting through the WebSocket channel.

Addition of the following properties to the
restWebSocketTransport.properties file to enable the
overriding of the global HTTP header settings:

• loginRequestHeaders
• loginRefreshHeaders
• logoutRequestHeaders
• resyncRequestHeaders
• subscribeRequestHeaders
• subscribeRefreshHeaders
• webSocketSubscribeMessage

SC27-8701-05 August 18, 2017 Guide updated to describe how to upgrade to version 5 of the
probe to make use of the enhanced JSON functionality.

The following topics added:

• “Upgrading to Probe for Message Bus version 5 or newer”
on page 15

• “Migrating the probe parser configuration to the JSON
parser configuration file” on page 15

• “Migrating the WebSocketID property to the Websocket
transport properties file” on page 17

The following topics updated:

• “Configuring the probe” on page 7
• “Example configuration” on page 13

About this guide vii

Table 1. Document modification history (continued)

Document version Publication date Comments

SC27-8701-06 November 23,
2017

Version updated to 6.0 in “Summary” on page 1.

“Using the transport module” on page 17 updated.

WebSocket transport enhanced to support OAuth
authentication and extended to replace the HTTP transport
for alarm subscription and notification.

The following topics added:

• “Configuring the Web Hook transport” on page 32
• “Probe integration for IBM Cloud Platform Common

Services (CS) Monitoring” on page 52
• “Authenticating the probe Using OAuth authentication” on

page 29
• “Specifying a callback URL” on page 39
• “Subscribing to receive notifications using an HTTP server”

on page 39
• “Configuring the Cometd transport” on page 40
• “Probe integration for Nokia 1350 OMS” on page 65

“Known issues with the Probe for Message Bus” on page 95
has been updated.

The guide has also been reorganized for clarity.

SC27-8701-07 April 12, 2018 Version updated to 7.0 in “Summary” on page 1.

Support added for Kafka.

The following topic was added “Probe integration for Kafka”
on page 61:

“Probe integration for IBM Cloud Platform Common Services
(CS) Monitoring” on page 52 updated.

The following topics were added

• “Configuring the Message Bus Probe to receive notifications
from Prometheus” on page 52:

• “Configuring Prometheus in Kubernetes from the command
line” on page 53:

• “Configuring the Message Bus Probe to receive notifications
from Logstash” on page 56:

• “Configuring Logstash in ICP from the command line” on
page 57:

viii IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Table 1. Document modification history (continued)

Document version Publication date Comments

SC27-8701-08 October 11, 2018 Version updated to 8.0 in “Summary” on page 1.

Updated the table in “Using the transport module” on page
17.

Description for webSocketHeaders added to “Configuring
the Web Socket transport” on page 22.

Updated “Probe integration for Kafka” on page 61.

Descriptions for respondWithContent,
validateBodySyntax, validateRequestURI, and
idleTimeout added to “Configuring the Web Hook
transport” on page 32.

Added the following topics:

• “Configuring the Kafka transport” on page 43.

SC27-8701-09 February 28, 2019 Version updated to 9.0 in “Summary” on page 1.

“Message Bus Probe integrations with event sources” on
page 47 added.

“Probe integration for Amazon Web Services” on page 48
and “Probe integration for Microsoft Azure Monitoring” on
page 63 added.

HTTP/HTTPS transport removed from the Message Bus
Probe, the functionality being replaced by the Webhook
Transport.

SC27-8701-10 August 29, 2019 Version updated to 10.0 in “Summary” on page 1.

Probe updated to enable the transport properties file
encryption mechanism.

Descriptions for new Webhook transport properties added to
“Configuring the Web Hook transport” on page 32

Running the probe with the Webhook transport and HTTP
transport updated to provide event sender as a token, adding
HTTP headers to be parsed into Message payload. Note: XML
payload is currently not supported.

Details about the integration with Nokia NSP moved to the
new Probe Integration for Nokia NSP Reference Guide.

About this guide ix

Table 1. Document modification history (continued)

Document version Publication date Comments

SC27-8701-11 January 31, 2020 Version updated to 11.0 in “Summary” on page 1.

“Message Bus Probe integrations with event sources” on
page 47 updated.

“Probe integration for Ciena Blue Planet MCP” on page 50
updated.

“Probe integration for IBM Event Streams for IBM Cloud” on
page 58 added.

“Probe integration for Kafka” on page 61 updated.

“Probe integration for Microsoft Azure Monitoring” on page
63 renamed.

“Troubleshooting” on page 94 added.

SC27-8701-12 March 20, 2020 Version updated to 12.0 in “Summary” on page 1.

“Probe integration for IBM Event Streams for IBM Cloud” on
page 58 updated.

SC27-8701-13 April 30, 2020 “Properties and command line options” on page 74
updated.

SC27-8701-14 September 25,
2020

Version updated to 13.0 in “Summary” on page 1.

Note: The IBM Tivoli Netcool/OMNIbus Probe for Message Bus was previously documented in the IBM®

Tivoli® Netcool/OMNIbus Probe for Message Bus reference guide (SC14-7649-04).

Conventions used in this guide
All probe guides use standard conventions for operating system-dependent environment variables and
directory paths.

Operating system-dependent variables and paths

All probe guides use standard conventions for specifying environment variables and describing directory
paths, depending on what operating systems the probe is supported on.

For probes supported on UNIX and Linux operating systems, probe guides use the standard UNIX
conventions such as $variable for environment variables and forward slashes (/) in directory paths. For
example:

$OMNIHOME/probes

For probes supported only on Windows operating systems, probe guides use the standard Windows
conventions such as %variable% for environment variables and backward slashes (\) in directory paths.
For example:

%OMNIHOME%\probes

For probes supported on UNIX, Linux, and Windows operating systems, probe guides use the standard
UNIX conventions for specifying environment variables and describing directory paths. When using the
Windows command line with these probes, replace the UNIX conventions used in the guide with Windows
conventions. If you are using the bash shell on a Windows system, you can use the UNIX conventions.

x IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Note: The names of environment variables are not always the same in Windows and UNIX environments.
For example, %TEMP% in Windows environments is equivalent to $TMPDIR in UNIX and Linux
environments. Where such variables are described in the guide, both the UNIX and Windows conventions
will be used.

Operating system-specific directory names

Where Tivoli Netcool/OMNIbus files are identified as located within an arch directory under NCHOME or
OMNIHOME, arch is a variable that represents your operating system directory. For example:

$OMNIHOME/probes/arch

The following table lists the directory names used for each operating system.

Note: This probe may not support all of the operating systems specified in the table.

Table 2. Directory names for the arch variable

Operating system Directory name represented by arch

AIX® systems aix5

Red Hat Linux® and SUSE systems linux2x86

Linux for System z linux2s390

Solaris systems solaris2

Windows systems win32

OMNIHOME location

Probes and older versions of Tivoli Netcool/OMNIbus use the OMNIHOME environment variable in many
configuration files. Set the value of OMNIHOME as follows:

• On UNIX and Linux, set $OMNIHOME to $NCHOME/omnibus.
• On Windows, set %OMNIHOME% to %NCHOME%\omnibus.

About this guide xi

xii IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Chapter 1. Probe for Message Bus

The IBM Tivoli Netcool/OMNIbus Probe for Message Bus can acquire XML and JSON events from various
sources using Java™ Message Service (JMS), Webhook, Message Queue Telemetry Transport (MQTT),
Web Socket or data files. It then converts these events into Netcool/OMNIbus events and sends them to
the ObjectServer.

The probe can also be used with the IBM Tivoli Netcool/OMNIbus Gateway for Message Bus. If you wish
to use the probe with the gateway, see “Using the probe with the Gateway for Message Bus” on page 92
before installing or configuring the probe.

This guide contains the following sections:

• “Summary” on page 1
• “Installing probes” on page 4
• “Migrating to the Probe for Message Bus” on page 4
• “Configuring the probe” on page 7
• “Using the transport module” on page 17
• “Message Bus Probe integrations with event sources” on page 47
• “Using the transformer module” on page 66
• “Running the probe” on page 71
• “Data acquisition” on page 72
• “Properties and command line options” on page 74
• “Properties and command line options provided by the Java Probe Integration Library (probe-sdk-java)

version 11.0” on page 80
• “Elements” on page 83
• “Error messages” on page 87
• “ProbeWatch messages” on page 92
• “Using the probe with the Gateway for Message Bus” on page 92
• “Frequently asked questions” on page 94
• “Troubleshooting” on page 94
• “Known issues with the Probe for Message Bus” on page 95

Summary
Each probe works in a different way to acquire event data from its source, and therefore has specific
features, default values, and changeable properties. Use this summary information to learn about this
probe.

Probe for Message Bus

Table 3. Summary

Probe target XML or JSON event sources

Probe executable name nco_p_message_bus

Installation package omnibus_arch_probe_nco_p_message_bus_version

Package version 13.0

© Copyright IBM Corp. 2015, 2020 1

Table 3. Summary (continued)

Probe supported on For details of supported operating systems, see the following
Release Notice on the IBM Software Support website:

http://www-01.ibm.com/support/docview.wss?
uid=swg21970413

Properties files The probe is supplied with the following properties files installed
in the $OMNIHOME/probes/arch directory:

message_bus.props

message_bus_aws.props

message_bus_azure.props

message_bus_ciena_mcp.props

message_bus_contrail.props

message_bus_iDirect_pulse.props

message_bus_kafka.props

message_bus_logstash.props

message_bus_nokia_oms1350.props

message_bus_nokia_nfmp.props

message_bus_prometheus.props

Rules file The probe is supplied with the following rules files installed in
the $OMNIHOME/probes/arch directory:

message_bus.rules

message_bus_aws.rules

message_bus_azure.rules

message_bus_cbe.rules

message_bus_ciena_mcp.rules

message_bus_ciena_notificationMap.rules

message_bus_ciena_resyncMap.rules

message_bus_contrail.rules

message_bus_iDirect_pulse.rules

message_bus_kafka.rules

message_bus_logstash.rules

message_bus_netcool.rules

message_bus_nokia_nfmp.rules

message_bus_nokia_oms1350.rules

message_bus_prometheus.rules

message_bus_wbe.rules

message_bus_wef.rules

2 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

http://www-01.ibm.com/support/docview.wss?uid=swg21970413
http://www-01.ibm.com/support/docview.wss?uid=swg21970413

Table 3. Summary (continued)

Transport properties files The probe supports the following transport properties file
installed in the $OMNIHOME/java/conf/ directory:

awsWebhookTransport.properties

cienaMcpTransport.properties

cometdTransport.properties

eventSourceTransport.properties

fileTransport.properties

iDirectPulseTransport.properties

jmsTransport.properties

kafkaClient.properties

kafkaConnectionProperties.json

kafkaTransport.properties

logstashWebhookTransport.properties

message_bus_azure_WebhookTransport.properties

messageHubKafkaClient.properties

messageHubKafkaJavaSys.properties

messageHubKafkaTransport.properties

mqttTransport.properties

nokiaOms1350CometdTransport.properties

nokiaNspKafkadTransport.properties

prometheusWebhookTransport.properties

restWebSocketTransport.properties

restWebhookTransport.properties

Requirements The MQTT transport has dependency on wmqtt.jar. You can
download the JAR file from the following site:

http://www-01.ibm.com/support/docview.wss?
rs=203&uid=swg24006006

Copy the JAR file to $OMNIHOME/java/jars

For details of any additional software that this probe requires,
refer to the README file that is supplied in its download package.

Connection method JMS, Webhook, MQTT, WebSocket with REST API, data file,
EventSource, Kafka

Multicultural support Available

For information about configuring multicultural support,
including language options, see the IBM Tivoli Netcool/OMNIbus
Installation and Deployment Guide.

Peer-to-peer failover functionality Available

Chapter 1. Probe for Message Bus 3

http://www-01.ibm.com/support/docview.wss?rs=203&uid=swg24006006
http://www-01.ibm.com/support/docview.wss?rs=203&uid=swg24006006

Table 3. Summary (continued)

IP environment IPv4 and IPv6

For communications between the probe and the XML event
source, or between the probe and the JSON event source, the
probe supports the IPv6 environment on all operating systems
except Windows XP and Windows 2003.

Installing probes
All probes are installed in a similar way. The process involves downloading the appropriate installation
package for your operating system, installing the appropriate files for the version of Netcool/OMNIbus
that you are running, and configuring the probe to suit your environment.

The installation process consists of the following steps:

1. Downloading the installation package for the probe from the Passport Advantage Online website.

Each probe has a single installation package for each operating system supported. For details about
how to locate and download the installation package for your operating system, visit the following
page on the IBM Tivoli Knowledge Center:

http://www-01.ibm.com/support/knowledgecenter/SSSHTQ/omnibus/probes/all_probes/wip/
reference/install_download_intro.html

2. Installing the probe using the installation package.

The installation package contains the appropriate files for all supported versions of Netcool/OMNIbus.
For details about how to install the probe to run with your version of Netcool/OMNIbus, visit the
following page on the IBM Tivoli Knowledge Center:

http://www-01.ibm.com/support/knowledgecenter/SSSHTQ/omnibus/probes/all_probes/wip/
reference/install_install_intro.html

3. Configuring the probe.

This guide contains details of the essential configuration required to run this probe. It combines topics
that are common to all probes and topics that are peculiar to this probe. For details about additional
configuration that is common to all probes, see the IBM Tivoli Netcool/OMNIbus Probe and Gateway
Guide.

Migrating to the Probe for Message Bus
This topic describes how to migrate from the legacy XML Probe to the Probe for Message Bus.

The following topics describe the steps required to migrate to the Probe for Message Bus:

• “Identifying new and changed features of the Probe for Message Bus” on page 4.
• “Configuration files” on page 6.

Identifying new and changed features of the Probe for Message Bus

When migrating from the legacy probe to the Probe for Message Bus, there are some important points to
note about the features that are available and the properties that are required to configure them:

• Some properties form the legacy probe have been deprecated in the Probe for Message Bus.
• Some features, and the properties required to configure them, have been added to the Probe for

Message Bus.

The following table compares the features, and the properties required to configure them, of the legacy
XML Probe and the Probe for Message Bus.

4 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

http://www-01.ibm.com/support/knowledgecenter/SSSHTQ/omnibus/probes/all_probes/wip/reference/install_download_intro.html
http://www-01.ibm.com/support/knowledgecenter/SSSHTQ/omnibus/probes/all_probes/wip/reference/install_download_intro.html
http://www-01.ibm.com/support/knowledgecenter/SSSHTQ/omnibus/probes/all_probes/wip/reference/install_install_intro.html
http://www-01.ibm.com/support/knowledgecenter/SSSHTQ/omnibus/probes/all_probes/wip/reference/install_install_intro.html

Table 4. Comparison of properties between the legacy XML Probe and the Probe for Message Bus

Legacy XML Probe property Message Bus Probe property Functional description

ConnectionCheckInterva
l

HeartbeatInterval Interval between successive connection
status checks.

Not available in the legacy
probe.

Cookie HTTP cookie name to be retrieved from
the probe store.

DisconnectionOnInactiv
ity

Inactivity Indicates whether the probe
disconnects from the target system
when the inactivity timeout period is
reached.

Not available in the legacy
probe.

EnableSSL Indicates whether SSL connectivity.

FlushBufferInterval FlushBufferInterval Interval at which the probe flushes all
alerts in the buffer to the ObjectServer.

Not available in the legacy
probe.

Host Host name or IP address of the instance
of the XML or JSON event source to
which the probe connects.

Inactivity Inactivity Time (in seconds) that the probe allows
the port to receive no incoming data
before disconnecting.

Not available in the legacy
probe.

InitialResync Indicates whether the probe requests all
active alarms from the host server on
startup.

Not available in the legacy
probe.

JsonNestedPayload Indicates whether nested parsing on
JSON data is enabled. You can specify
either XML or JSON tree structure.

Not available in the legacy
probe.

KeyStore Location of the keystore file that
contains the client certificate for the SSL
and trusted authority certificate.

Not available in the legacy
probe.

KeyStorePassword Password required to access the
certificate specified by the Keystore
property.

Not available in the legacy
probe.

MaxEventQueueSize Maximum number of events that can be
queued between the non native process
and the ObjectServer.

Not available in the legacy
probe.

MessagePayload Type of message payload, either XML or
the JSON tree.

Not available in the legacy
probe.

Password Password associated with the
Username property for logging into the
XML event source.

Chapter 1. Probe for Message Bus 5

Table 4. Comparison of properties between the legacy XML Probe and the Probe for Message Bus
(continued)

Legacy XML Probe property Message Bus Probe property Functional description

Not available in the legacy
probe.

Port Port of the instance of the XML or JSON
event source to which the probe
connects.

Not available in the legacy
probe.

ResyncInterval Interval at which the probe makes
successive resynchronization requests.

Retry RetryCount and
RetryInterval

Indicates whether the probe retries
connecting to the target system before
shutting down.

StreamCapture StreamCapture Indicates whether or not the probe
stores the XML or JSON event data in a
stream capture file.

StreamCaptureFile StreamCaptureFile Location of the stream capture file.

TransformerFile TransformerFile Location of the transformer properties
file.

TransportFile TransportFile Location of the transport properties file.

TransportType TransportType Transport method to be used or the
name of the transport module class to
use.

Not available in the legacy
probe.

Username User account for logging into the XML or
JSON event source.

Not available in the legacy
probe.

WebSocketID (Deprecated in
version 5.0 of the Message
Bus Probe.)

JSON field name where the WebSocket
subscription ID is stored as a field value
in the response message during a
subscription request.

Note: This property is deprecated in
version 5.0 of Message Bus Probe. To
enable the probe to extract multiple
attributes from incoming JSON data, use
the keepTokens property in the
restWebSocketTransport.propert
ies file.

Configuration files
The configuration files have been renamed. If you update those file accordingly if they have some custom
settings in the legacy probe.

The following table shows the configuration files that have been renamed.

6 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Table 5. Comparison of configuration file names between the legacy XML Probe and the Probe for
Message Bus

Legacy XML Probe property Message Bus Probe property

xml.rules message_bus.rules

xml_cbe.rules message_bus_cbe.rules

xml_netcool.rules message_bus_netcool.rules

xml_wbe.rules message_bus_wbe.rules

xml_wef.rules message_bus_wef.rules

xml.props message_bus.props

nco_p_xml.bat nco_p_message_bus.bat

nco_p_xml.env nco_p_message_bus.env

Configuring the probe
Before running the probe for the first time, you must specify a minimum set of properties.

To run the probe successfully, the following properties are the minimum that you must specify in the
message_bus.props file:

• Server - This generic property specifies the name of the primary ObjectServer or the proxy server to
which alerts are sent. The default is NCOMS.

• TransformerFile - This probe-specific property specifies the location of the transformer properties
file. For XML events, specify the XML transformer properties file. For JSON events, specify the JSON
parser configuration file, for more details on the JSON configuration format, refer to “Configuring the
JSON parser to parse different JSON structures” on page 13.

• TransportFile - This probe-specific property specifies the location of the transport properties file.
• TransportType - This probe-specific property specifies the transport method to be used (JMS, MQTT,

Webhook, WebSocket, or data file).

For installations of the probe on Windows operating systems, you must edit the values of the following
properties to specify the full directory paths to their respective files:

• PropsFile
• RulesFile
• StreamCaptureFile
• TransformerFile
• TransportFile

For example, the value of the TransformerFile property might be:

'C:\\IBM\\Tivoli\\Netcool\\omnibus\\java\\conf\\transformers.xml'

or

'C:\\IBM\\Tivoli\\Netcool\\omnibus\\probes\\win32\
\message_bus_parser_config.json'

Chapter 1. Probe for Message Bus 7

Enabling the max_line_length property
The -Dcom.ibm.csi.netcool.integrations.max_line_length property of the Transport module
allows you to limit the amount of data that can be read at one time. Making the reading from files
bounded in this way allows you to prevent unbounded reads from files being exploited in a denial of
service attack.

Note: The max_line_length property is specified in bytes.

UNIX and Linux operating system

If you are running the probe on UNIX or Linux operating systems, customize the probe scripts using the
following steps:

1. Update nco_p_message_bus.env by adding the following line at the end of the file:

NCO_PROBE_JAVA_ARGS=-Dcom.ibm.csi.netcool.integrations.max_line_length=xxxx

2. Update nco_jprobe by updating the following command:

exec "$JAVA" $NCO_PROBE_JAVA_ARGS $NCO_JPROBE_JAVA_FLAGS -cp "$CLASSPATH" -
DOMNIHOME="$OMNIHOME" -DKERN_ARCH="$KERN_ARCH"
com.ibm.tivoli.netcool.omnibus.oidk.Probe "$@"

Windows operating system

If you are running the probe on Windows operating systems, update nco_p_message_bus.bat using
the following steps:

1. Add the following line before the line discussed in Step 2:

set TRANSPORT_EXTRA_ARGS=-
Dcom.ibm.csi.netcool.integrations.max_line_length=xxxx

2. Add the TRANSPORT_EXTRA_ARGS variable to the following line:

%JAVA_EXEC_USED% -DOMNIHOME=%NEWOMNIHOME% ^ -cp %PROBE_CLASSPATH
%;%CP_CLASSPATH%;%FW_CLASSPATH%;%PS_CLASSPATH%;%NS_CLASSPATH%;%TS_CLASSPATH
%;%MESSAGEBUS_CLASSPATH%;%TRANSPORT_EXTRA_ARGS% ^
com.ibm.tivoli.netcool.omnibus.oidk.Probe %*

Selecting a value for the max_line_length property

If you set max_line_length to a relatively small value (for example 100 bytes), and if the probe reads a
line from the data file that is greater than max_line_length, the probe shuts down and writes the
following exception to the error log:

Error: E-JPR-000-000: Line length exceeds maximum size of %d chars. Increase
this value using the property com.ibm.csi.netcool.integrations.max_line_length.
Snippet of parsed line: '%s'

If the RetryCount property is set to a value greater than 0, the probe restarts and reopens the data file.
When the probe reaches the line that triggered the IOException, it shuts down again and restarts.

To avoid this type of shutdown and restart loop, perform one of the following steps:

• Either remove the lines from the data file that trigger the probe restarting.
• Or set max_line_length to a value greater than the longest line length in the data file.

Enabling the max_http_payload_size property
The -Dcom.ibm.csi.netcool.integrations.max_http_payload_size property of the HTTP
Transport module allows you to limit the amount of data embedded in the body of an HTTP POST request.
The data in the HTTP POST must be an XML message. If a valid XML message is too large, its

8 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

transformation speed is relatively slow. In a worst case scenario, very large messages may stall at some
point before getting to the transformation part.

Although the probe can still run and process other HTTP POST requests, the mounting stalled points will
eventually crash the probe due to memory depletion. To prevent a denial of service attack, the
max_http_payload_size property allows you to bar large XML messages from entering the pipeline.

Note: The max_http_payload_size property is specified in bytes.

UNIX and Linux operating system

If you are running the probe on UNIX or Linux operating systems, customize the probe scripts using the
following steps:

1. Update nco_p_message_bus.env by adding the following line at the end of the file:

NCO_PROBE_JAVA_ARGS=-
Dcom.ibm.csi.netcool.integrations.max_http_payload_size=xxxx

2. Update nco_jprobe by updating the following command:

exec "$JAVA" $NCO_PROBE_JAVA_ARGS $NCO_JPROBE_JAVA_FLAGS -cp "$CLASSPATH" -
DOMNIHOME="$OMNIHOME" -DKERN_ARCH="$KERN_ARCH"
com.ibm.tivoli.netcool.omnibus.oidk.Probe "$@"

Windows operating system

If you are running the probe on Windows operating systems, update nco_p_message_bus.bat using
the following steps:

1. Add the following line before the line discussed in Step 2:

set TRANSPORT_EXTRA_ARGS=-
Dcom.ibm.csi.netcool.integrations.max_http_payload_size=xxxx

2. Add the TRANSPORT_EXTRA_ARGS variable to the following line:

%JAVA_EXEC_USED% -DOMNIHOME=%NEWOMNIHOME% ^ -cp %PROBE_CLASSPATH
%;%CP_CLASSPATH%;%FW_CLASSPATH%;%PS_CLASSPATH%;%NS_CLASSPATH%;%TS_CLASSPATH
%;%MESSAGEBUS_CLASSPATH%;%TRANSPORT_EXTRA_ARGS% ^
com.ibm.tivoli.netcool.omnibus.oidk.Probe %*

Selecting a value for the max_http_payload_size property

The payload size specified must be between 5120 and 2097152.

If you set max_http_payload_size to a value outside of this range (for example, 12300000), when the
probe starts it uses the maximum allowable payload value instead and writes the following exception to
the error log:

Error: D-JPR-000-000: [HttpParser]: Property
[com.ibm.csi.netcool.integrations.max_http_payload_size]'s value: 12300000 is
out of range.Valid range is from 5120 to 2097152; Max valid value will be used
as the http payload size limit.

If the probe receives an XML message that exceeds the value set for max_http_payload_size, the
probe writes the following exception to the error log:

Error message for xml message's size exceeding max_http_payload_size:
Information: I-JPR-104-000: [stderr]
com.ibm.tivoli.netcool.integrations.transportmodule.http.HttpException:
HttpParse: Abort reading payload, number of byte exceeds the limit (2097152):
%d

Note: %d will indicate the actual size of the input HTTP payload.

Chapter 1. Probe for Message Bus 9

Configuring the parser with a different JsonMessageDepth
Changing the value set for the JsonMessageDepth property changes the tokens that the parser
generates.

The table that follows the example JSON data below illustrates how changing the JsonMessageDepth
property in the message_bus.props file determines which key-value pairs the parser generates.

{
 "properties": {
 "storage": {
 "type": "object",
 "oneOf": [
 {"$ref": "#/definitions/diskDevice"},
 {"$ref": "#/definitions/diskUUID"},
 {"$ref": "#/definitions/nfs"},
 {"$ref": "#/definitions/tmpfs"}
]
 },
 "fstype": {
 "enum": ["ext3", "ext4", "btrfs"]
 },
 "options": {
 "type": "array",
 "minItems": 1,
 "items": {
 "type": "string"
 },
 "uniqueItems": true
 }
 }
}

Table 6. Tokens genarated

JSON parser properties Tokens generated

MessagePayload = “json.properties”
JsonMessageDepth = 1
MessageHeader = “”
JsonNestedPayload = “”
JsonNestedHeader = “”

None. There is no field or key-value pair in the first
level.

MessagePayload = “json.properties”
JsonMessageDepth = 2
MessageHeader = “”
JsonNestedPayload = “”
JsonNestedHeader = “”

options.minItems=1
options.type=array
options.uniqueItems=true
resync_event=false
storage.type=object

MessagePayload = “json.properties”
JsonMessageDepth = 3 (the default)
MessageHeader = “”
JsonNestedPayload = “”
JsonNestedHeader = “”

fstype.enum=ext3,ext4,btrfs
options.items.type=string
options.minItems=1
options.type=array
options.uniqueItems=true
resync_event=false
storage.type=object

Note: Array values such as the enum object are
treated as fields or key-value pairs at the same
level as the node. With this configuration, the
oneOf array of objects is not generated because it
is one level deeper.

10 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Table 6. Tokens genarated (continued)

JSON parser properties Tokens generated

MessagePayload = “json.properties”
JsonMessageDepth = 4
MessageHeader = “”
JsonNestedPayload = “”
JsonNestedHeader = “”

fstype.enum=ext3,ext4,btrfs
options.items.type=string
options.minItems=1
options.type=array
options.uniqueItems=true
resync_event=false
storage.oneOf.0.$ref=
 #/definitions/diskDevice
storage.oneOf.1.$ref=
 #/definitions/diskUUID
storage.oneOf.2.$ref=
 #/definitions/nfs
storage.oneOf.3.$ref=
 #/definitions/tmpfs
storage.type=object

Note: With this configuration, the oneOf array of
objects is generated.

Note: The resync_event token is not part of the JSON message, but is generated by the probe for
internal use.

Generating events from a nested JSON
Some event sources send events as a nested JSON in a JSON message. The parser can be configured to
extract and parse the nested JSON.

Given the following data which contains a nested JSON in one of its objects, payload, the parser needs
to be configured using both the MessagePayload property and the JsonNestedPayload property.
Example parser configuration and the tokens generated are shown in the table that follows.

{
"payload" :"{\"properties\": {\"storage\": {\"type\": \"object\",\"oneOf\": [
{\"$ref\": \"#\/definitions\/diskDevice\"}, {\"$ref\":
\"#\/definitions\/diskUUID\"},{\"$ref\": \"#\/definitions\/nfs\"},{\"$ref\":
\"#\/definitions\/tmpfs\"}]},\"fstype\":{\"enum\":[\"ext3\",\"ext4\",\"btrfs\"]},
\"options\":{\"type\":\"array\",\"minItems\":\"1\",\"items\": {\"type\":
\"string\"},\"uniqueItems\": \"true\"}}}",

 "header": {"options" : "none"},
 "log":{"message":"Alert"}
}

Table 7. Tokens generated

Json parser properties Tokens generated

MessagePayload = “json.payload”
JsonMessageDepth = 1
MessageHeader = “”
JsonNestedPayload =
 “json.properties.storage”
JsonNestedHeader = “”

resync_event=false
type=object

MessagePayload = “json.payload”
JsonMessageDepth = 2
MessageHeader = “”
JsonNestedPayload =
 “json.properties.storage”
JsonNestedHeader = “”

enum=ext3,ext4,btrfs
resync_event=false
type=object

Chapter 1. Probe for Message Bus 11

Table 7. Tokens generated (continued)

Json parser properties Tokens generated

MessagePayload = “json.payload”
JsonMessageDepth = 3
MessageHeader = “”
JsonNestedPayload =
 “json.properties.storage”
JsonNestedHeader = “”

oneOf.0.$ref=#/definitions/diskDevice
oneOf.1.$ref=#/definitions/diskUUID
oneOf.2.$ref=#/definitions/nfs
oneOf.3.$ref=#/definitions/tmpfs
resync_event=false
type=object

MessagePayload = “json.payload”
JsonMessageDepth = 3
MessageHeader = “”
JsonNestedPayload =
 “json.properties.storage”
JsonNestedHeader =
 “json.properties.fstype”

enum=ext3,ext4,btrfs
oneOf.0.$ref=#/definitions/diskDevice
oneOf.1.$ref=#/definitions/diskUUID
oneOf.2.$ref=#/definitions/nfs
oneOf.3.$ref=#/definitions/tmpfs
resync_event=false
type=object

Note: The fstype object is not under the ‘storage’
object but is also parsed because it is specified as
the Header object.

MessagePayload = “json.log”
JsonMessageDepth = 3
MessageHeader = “json.header”
JsonNestedPayload = “”
JsonNestedHeader = “”

message=Alert
options=none
resync_event=false

Note: The resync_event token is not part of the Json message but is generated by the probe for
internal use.

Specifying multiple parser configurations to parse different JSON structures
If the probe’s transport is configured to retrieve JSON alarms using resynchronization and notification,
and has different alarm structures, you can configure the probe’s JSON parser with different settings to
parse the JSON alarms and generate elements from them.

The following configuration file is provided with the probe as a template:

{
 "eventSources" : [{
 "endpoint" : "/notification",
 "name" : "NotificationAlarmParser",
 "config" : {
 "dataToRecord" : [],
 "messagePayload" : "json",
 "messageHeader" : "",
 "jsonNestedPayload" : "",
 "jsonNestedHeader" : "",
 "messageDepth" : 3
 }
 }, {
 "endpoint" : "/resync",
 "name" : "ResyncAlarmParser",
 "config" : {
 "dataToRecord" : [],
 "messagePayload" : "json",
 "messageHeader" : "",
 "jsonNestedPayload" : "",
 "jsonNestedHeader" : "",
 "messageDepth" : 3
 }
 }, {
 "name" : "OtherAlarmParser",
 "type" : "ANY",
 "config" : {
 "dataToRecord" : [],
 "messagePayload" : "json",
 "messageHeader" : "",

12 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

 "jsonNestedPayload" : "",
 "jsonNestedHeader" : "",
 "messageDepth" : 5
 }
 }]
}

Each alarm that the probe receives from the transport contains an endpoint value to indicate the source
of the alarm. For example, for the Web Socket transport, the endpoint for resynchronization alarms is
resync and the endpoint for notification is the Web Socket URI. To determine the endpoint value to
use in the configuration file, you should run the probe with debug level logging and use the endpoint
logged when an alarm is received.

When a probe receives an alarm from the source, the following messages are logged.

Note: The endpoint for this case is set to the Web Socket URI path: /lab/notification/api. So the
endpoint attribute should be set to /lab/notification/api.

2017-06-23T12:06:51: Debug: D-JPR-000-000: Received message from websocket.
2017-06-23T12:06:51: Debug: D-JPR-000-000: Received message with length of 824
from endpoint /lab/notification/api: <MESSAGE > …

The probe parser uses the following criteria, in order, when performing the parser configuration lookup:

1. Exact match of the parser’s endpoint attribute with the endpoint value in the message.
2. Parser whose endpoint matches the start of the endpoint value in the message.

For example, a parser with endpoint: /lab/notification/api will be used to parse messages
containing endpoint= /lab/notification/api

3. Parser whose endpoint is ANY.

This is the last parser configuration used and if there is no ANY parser configuration set, the probe
considers the message as unparsed.

Configuring the JSON parser to parse different JSON structures

To configure multiple parser configurations, use the following steps:

1. Create a parser configuration file (.json) in $OMNIHOME/probes/<arch>/ParserConfig.json

A template is provided in $OMNIHOME/probes/<arch>/message_bus_parser_config.json.
This template contains three parser configurations: notification, resynchronized alarm, and a common
parser for any alarms that does not match the endpoint criteria of the other two parsers. This
OtherAlarmParser is indicated by the configuration with endpoint = “ANY”.

2. Update the endpoint attribute to be the same as the endpoint set by the transport used by the probe.

For example, for the restWebSocket transport, the endpoints for alarms retrieved from
resynchronization and notifications are the resync and webSocketURI transport property values
respectively.

3. Update “messagePayload”, ”messageHeader”,
jsonNestedPayload”, ”jsonNestedHeader”, ”messageDepth”, and ”dataToRecord” to suit the
alarm structure to be parsed.

4. Optionally, update the OtherAlarmParser configuration so that the parser traverses the JSON event
and generates elements on the leaf nodes instead of flattening the JSON event.

5. In the probe properties file, set the TransfomerFile property to the parser configuration file created
in Step 1.

TransformerFile : ‘$OMNIHOME/probes/<arch>/ParserConfig.json’

Example configuration

Given the following JSON alarms received by the probe transport using notification and resynchronization
respectively, the parser can be configured to parse both alarm structures.

Chapter 1. Probe for Message Bus 13

Sample Notification Structure

{
 "payload": {
 "id": 1,
 "body": {
 "value": "{\"header\":{\"timestamp\":\"2017-07-
06T09:07:56Z\",\"event\":{\"alarm\":{\"id\":\"1234567\",\"resource\":\"4\",\"node-
id\":\"node01\",\"condition-type\":\"Link Down\",\"condition-
severity\":\"WARNING\",\"condition-source\":\"NETWORK\",\"condition-
state\":\"ACTIVE\",\"additional-text\":\"Link Down\",\"first-raise-time\":\"2000-01-
01T00:00:58.000+0000\",\"last-raise-time\":\"2000-01-01T00:00:58.000+0000\",\"number-
of-occurrences\":1,\"acknowledge-state\":\"ACKNOWLEDGED\",\"acknowledge-update-
time\":\"2017-07-06T09:07:56.463+0000\",\"additional-attrs\":{\"source\":\"EMS-
1\"}},\"_type\":\"alarmAcknowledged\"}}",
 "attributes": 1
 }
 },
 "event": "sample_alarm”
}

Sample resynchronized alarm structure

{
 "data": [
 {
 "id": "1222383102379613532",
 "type": "FilteredAlarm",
 "attributes": {
 "id": "1234567",
 "node-id": "node01",
 "state": "ACTIVE",
 "resource": "SWITCH",
 "condition-severity": "CRITICAL",
 "first-raise-time": "2017-07-06T13:43:19.000+0000",
 "last-raise-time": "2017-07-06T13:43:19.000+0000",
 "number-of-occurrences": 1,
 "acknowledge-state": "NOT_ACKNOWLEDGED"
 }
 },
 {
 "id": "-4067638085156070319",
 "type": "FilteredAlarm",
 "attributes": {
 "id": "7654321",
 "node-id": "node02",
 "state": "ACTIVE",
 "resource": "SWITCH",
 "condition-severity": "CRITICAL",
 "first-raise-time": "2017-07-06T13:42:59.000+0000",
 "last-raise-time": "2017-07-06T13:42:59.000+0000",
 "number-of-occurrences": 1,
 "acknowledge-state": "NOT_ACKNOWLEDGED"
 }
 }
]
}

The configuration to parse the above alarms and generate elements from the alarms (italics) as shown
below.

Note: The endpoint is configured to the correct source.

{
 "eventSources": [
 {
 "endpoint": "/lab/notification/api",
 "name": "NotificationAlarmParser",
 "config": {
 "dataToRecord": [],
 "messagePayload": "json.payload.body.value",
 "messageHeader": "json",
 "jsonNestedPayload": "json.event.alarm",
 "jsonNestedHeader": "json.header",
 "messageDepth": 5
 }
 },
 {

14 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

 "endpoint": “resync",
 "name": ”ResynchAlarmParser",
 "config": {
 "dataToRecord": [],
 "messagePayload": "json.payload.body.value",
 "messageHeader": "json",
 "jsonNestedPayload": "json.event.alarm",
 "jsonNestedHeader": "json.header",
 "messageDepth": 5
 }
 }]
}

The parser will generate the following elements for rules files consumption.

acknowledge-state=ACKNOWLEDGED
acknowledge-update-time=2017-07-06T09:07:56.463+0000
additional-attrs.source=EMS-1
additional-text=Link Down
condition-severity=WARNING
condition-source=NETWORK
condition-state=ACTIVE
condition-type=Link Down
first-raise-time=2000-01-01T00:00:58.000+0000
id=1234567
last-raise-time=2000-01-01T00:00:58.000+0000
node-id=node01
number-of-occurrences=1
resource=4
resync_event=false
timestamp=2017-07-06T09:07:56Z

Upgrading to Probe for Message Bus version 5 or newer
Version 5 of the Probe for Message Bus has an enhanced JSON parser that supports multiple parser
configurations using a parser configuration file. This enables the probe to recognize the JSON structure by
the endpoint and use a specific configuration for the JSON events received.

This is useful when the JSON event structure of resynchronized events is different from that of the events
received from notification or subscription channels. For some event sources, the resynchronized alarm is
usually sent in batches or an array of events while notification events are sent as a single event.

Note: To support this new feature, the order of precedence of the MessagePayload and
TransformerFile probe properties has changed. The TransformerFile property now takes
precedence over the MessagePayload property in order to determine the type of event source that the
probe will receive. It will be either XML or JSON depending on the file extension.

If your existing probe configuration has the MessagePayload property set or starts with json and the
default TransformerFile property value is used, uncomment the TransformerFile property and set
it to an empty string ('') to bypass it. The probe will then load your existing parser configuration as is.
However, you should migrate the configuration to the new JSON parser configuration file as shown in
“Migrating the probe parser configuration to the JSON parser configuration file” on page 15.

In this version of the probe, the WebSocketID probe property has been deprecated and replaced with a
new property in the WebSocket transport, see “Migrating the WebSocketID property to the Websocket
transport properties file” on page 17.

Migrating the probe parser configuration to the JSON parser configuration file

To migrate the probe parser configuration from the probe properties file to the new JSON parser
configuration file format, use the following steps:

1. Check the current probe properties file to determine whether probe is configured to receive JSON or
XML events. View the probe properties file and check the MessagePayload probe property in the
properties file: $OMNIHOME/probes/<arch>/message_bus.props

If the MessagePayload property is set to, or starts with, json, the probe is configured to consume
JSON events. Proceed to step 2.

Chapter 1. Probe for Message Bus 15

If the MessagePayload property is set to xml, the probe is configured to consume XML events. Leave
this value as it is and verify that the TransformerFileproperty is set to the XML transformer file
path.

Note: The remaining steps do not apply if the probe is configured to parse XML events.
2. If the probe is configured to consume JSON events, the probe properties are mapped to the JSON

configuration as shown in the following table:

Table 8. Mapping of probe properties to JSON configuration attributes

Probe property name JSON parser configuration attribute name

MessagePayload messagePayload

MessageHeader messageHeader

JsonNestedPayload jsonNestedPayload

JsonNestedHeader jsonNestedHeader

MessageDepth messageDepth

RecordData dataToRecord

For example, if the probe is configured with the following properties:

• MessagePayload: json.payload.body.value
• MessageHeader: json
• JsonNestedPayload: json.event.alarm
• JsonNestedHeader: json.header
• MessageDepth: 5
• RecordData: first-raise-time,last-raise-time

The JSON parser configuration file will be:

{
 "eventSources": [
 {
 "endpoint": "/lab/notification/api",
 "name": "AllJsonEventSource",
 "type": "ANY",
 "config": {
 "dataToRecord": [
 "first-raise-time",
 "last-raise-time"
],
 "messagePayload": "json.payload.body.value",
 "messageHeader": "json",
 "jsonNestedPayload": "json.event.alarm",
 "jsonNestedHeader": "json.header",
 "messageDepth": 5
 }
 }
]
}

3. Edit the template JSON parser configuration file provided in $OMNIHOME/probes/<arch>/
message_bus_parser_config.json and copy the above JSON configuration into the file.

Note: The name attribute can be used to assign a name to the event source. If there is only one event
source configured in the JSON configuration, the endpoint attribute will be ignored.

4. In the message_bus.props properties file, set the TransformerFile property to the JSON parser
configuration file used in step 3.

16 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

5. Restart the probe and verify that the probe starts successfully and parses the JSON events correctly.

Migrating the WebSocketID property to the Websocket transport properties file
The WebSocketID property is often used to keep an attribute received from a JSON event and used in
variable substitution during runtime. The WebSocketID property is specific to the WebSocket transport.
Hence, it is deemed more suitable as a transport property rather than a probe property.

A new WebSocket transport property, keepTokens, was introduced to replace the WebSocketID probe
property and allows you to specify more than one attribute to keep. If the WebSocket transport type is
used and the WebSocketID property is enabled, the probe will not start due to an unrecognized property.
To resolve this, use the following steps:

1. View the Message Bus Probe properties file ($OMNIHOME/probes/<arch>/message_bus.props)
and check the values set for the TransportType and WebSocketID properties.

If the TransportType property is set to WebSocket, then proceed with the following steps.
2. Copy the WebSocketID property value if it has been set.
3. Edit the WebSocket transport property file ($OMNIHOME/java/conf/
restWebSocketTransport.properties)

4. Uncomment the keepTokens property and set the value to the value copied from the probe
properties file in Step 2. For example:

keepTokens=subscriptionId
5. Save the restWebSocketTransport.properties file.
6. Restart the probe and verify that the probe runs successfully.

Using the transport module
The transport module enables the probe to acquire XML and JSON formatted events.

Before using the transport module, configure the transport properties file appropriate to the transport
protocol you are using to transfer events. The probe supports the use of Java Message Service (JMS),
Webhook, Message Queue Telemetry Transport (MQTT), Web Socket, and data files.

The transport properties files are located in the following directory:

$OMNIHOME/java/conf/

After installation, the probe defaults to using the JMS properties file (jmsTransport.properties)
located in $OMNIHOME/java/conf. To change this setting, specify a new transport type and transport
properties by changing the values set for the following properties:

• TransportType
• TransportFile

The following table lists the properties file associated with each available protocol:

Table 9. Transport properties files

Transport protocol Transport type Properties file

Java Message Service
(JMS)

JMS jmsTransport.properties

Data file File fileTransport.properties

EventSource EventSource eventSourceTransport.properties

Message Queue Telemetry
Transport (MQTT)

MQTT mqttTransport.properties

Chapter 1. Probe for Message Bus 17

Table 9. Transport properties files (continued)

Transport protocol Transport type Properties file

WebSocket WebSocket restWebSocketTransport.properties

WebHook Webhook restWebhookTransport.properties

CometD Cometd cometdTransport.properties

Socket Socket socketTransport.properties

Kafka KAFKA kafkaTransport.properties

Configuring the transport properties files
Transport properties files define how the probe receives events using the transport module.

The following sections describe the property settings available for each transport protocol:

• “Configuring the JMS transport” on page 18
• “Configuring the data file transport” on page 21
• “Configuring the MQTT transport” on page 21
• “Configuring the Web Socket transport” on page 22
• “Configuring the Web Hook transport” on page 32
• “Configuring the Cometd transport” on page 40
• “Configuring the socket transport” on page 42
•

Note: On Windows platforms, the delimiter in all the paths defined in the Java properties files should be
escaped, for example, if you are setting the path for the key store, the path should be defined as follows:

keyStore=C:\\IBM\\Tivoli\\Netcool\\omnibus\\java\\security\\client.jks

Configuring the JMS transport

The JMS transport allows the probe to connect to and receive messages from a JMS provider.

JMS transport properties

The following table describes the properties used to configure the jmsTransport.properties file.

Table 10. JMS transport properties

Property name Description

jmsFilter Use this property to specify the expression for JMS servers
for sending the intended messages or events to the probe.

Note: This property is only used if the probe subscribes to
a topic.

18 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Table 10. JMS transport properties (continued)

Property name Description

initialContextFactory Use this property to specify the context factory class name
of the JMS provider.

Note: The initialContextFactory is the initial context
factory for the Java Naming Directory Interface (JNDI)
provider being used. The default is the Websphere JNDI
provider.

providerURL Use this property to specify the URL of the JMS provider.

You can specify the URL of the data store for the JNDI
provider, or you can specify the path to a binding file.

Note: If you specify a binding file, always create that file
using the IBM WebSphere® MQ JMS Administration tool. In
addition, copy the WebSphere jar files to the $OMNIHOME/
java directory. For information about creating binding files
and JMS Administration tool jar files, see the IBM
WebSphere MQ knowledge center.

queueConnectionFactory Use this property to specify the identifier of the queue
connection factory.

queueName Use this property to specify the names of the queues on
which the consumer receives messages.

You can enter more than one queueName property in the
JMS properties file. For example:

queueName=topicOne
queueName=topicTwo

topicName Use this property to specify the names of the topics to
which the consumer subscribes for messages.

You can enter more than one topicName property in the
JMS properties file. For example:

topicName=topicOne
topicName=topicTwo

topicConnectionFactory Use this property to specify the identifier of the topic
connection factory.

username Use this property to specify the user name for the JMS
connection.

password Use this property to specify the password for the JMS
connection.

Note: The transport property files do not support
encrypted passwords. You must specify the password in
plain text.

Chapter 1. Probe for Message Bus 19

Connecting to ActiveMQ using SSL
You can configure the probe to communicate with ActiveMQ that uses a Secure Socket Layer (SSL)
encrypted connection. A Java keystore file is required for this connection that you create using the Java
keytool command.

To connect to ActiveMQ using an SSL connection:

• Determine the SSL port and certificate from the ActiveMQ system
• Import the SSL certificate and enable the SSL connection on the probe system

Determining the SSL port and certificate from the Active MQ system

To determine the SSL port that ActiveMQ uses and export the SSL certificate, use the following steps:

1. Log in to the system that hosts ActiveMQ and open the following file:

$ACTIVEMQ_HOME/conf/activemq.xml

Where $ACTIVEMQ_HOME is the installation directory of ActiveMQ.
2. In activemq.xml, locate the section beginning with the <amq:transportConnections> element.

For example:

<amq:transportConnectors>
<amq:transportConnector uri="ssl://localhost:61616" />
</amq:transportConnectors>

3. Note the port number (in this example, 61616) in the uri attribute of the
<amq:transportConnector> element and close the file.

4. Check what the alias of the certificate (broker.ks) is:

keytool -list -v -keystore broker.ks
5. Locate the SSL certificate and export that to a file using the following command:

keytool -export -alias broker -keystore broker.ks -file broker_certs

This creates file named broker_certs that contains the SSL certificate.

Importing the SSL certificate and enable the SSL connection

To import the SSL certificate and enable SSL communications on the probe, use the following steps:

1. Copy the broker_cert file to the following location on the system running the probe:

$NCHOME/platform/arch/jre-directory/lib/security

Where arch is a variable that represents your operating system directory and jre-directory is the
name of the directory that contains the Java Runtime Environment. For example:

$NCHOME/platform/solaris2/jre_1.5.6/lib/security
2. Import the SSL certificate:

keytool -import -alias broker -keystore cacerts -file broker_cert -storepass
storepassword

Where storepassword is the password for the certificate store (cacerts).
3. Edit the jmsTransport.props file to define the SSL connection:

a. Edit the file $NCHOME/java/confjmsTransport.props.
b. Set the value of the providerURL property as follows:

providerURL = ssl://activemqurl:port

Where activemqurl is the URL of the ActiveMQ system and port is the port number that the
ActiveMQ system uses for SSL connections.

c. Save the file.

20 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Configuring the data file transport

The data file transport allows the probe to read XML files, probe stream capture, and JSON files.

Data File transport properties

The following table describes the properties used to configure the fileTransport.properties file.

Note: You can specify a value for either the jsonFilename property, the streamfilename property or
the xmlfilename property, but you cannot specify a value for more than more than one of these
properties.

Table 11. Data file transport properties

Property name Description

jsonFilename Use this property to specify the full path to a JSON file.

streamFilename Use this property to specify a stream capture file to run
through the probe.

xmlFilename Use this property to run a standard stream of XML through
the probe.

sleepInterval Use this property to specify the interval (in milliseconds)
that the probe waits between iterations when tailing the
source file. The default is 1000 milliseconds.

Configuring the MQTT transport

The MQTT transport allows the probe to connect to and receive messages from an MQTT provider.

MQTT transport properties

The following table describes the properties used to configure the mqttTransport.properties file.

Table 12. MQTT transport properties

Property name Description

connectionURL Use this property to specify the URL of the MQTT bus
provider.

The default is tcp://localhost:1883/.

clientId Use this property to specify an ID for each MQTT client
connection to the MQTT provider. The clientId of each
MQTT client connection must be unique.

The default is MQTTClient.

Chapter 1. Probe for Message Bus 21

Table 12. MQTT transport properties (continued)

Property name Description

topicName Use this property to specify the name of a topic to
subscribe to for messages. To subscribe to multiple topics,
you can define multiple topic names.

The default is "".

Note: The MQTT wildcard character # can be used to
define a wildcard set of topics to subscribe to. For
example, a value of # would register interest in all topics
known to the MQTT provider.

cleanStart Use this property to specify whether or not the connection
should perform a clean start.

The default is false.

If you specify a value of false, any message stored by the
MQTT provider for a connection client ID will be returned
on startup.

keepAlive Use this property to specify the frequency (in seconds) with
which the MQTT provider connection is polled during
periods of inactivity. Polling keeps the connection alive and
active.

The default is 30.

The following is an example of an MQTT properties file:

Example format of MQTT properties file
Uncomment the relevant lines and change the settings accordingly
#
connectionURL - the URL of the MQTT provider
connectionURL=tcp://example.sbank.uk.ibm.com:1883
#
clientId - the id to be used for this instance of an MQTT client
(must be unique for each client)
clientId=MQTTProbeClient
#
topicName - name of a topic on which to subscribe for messages
(can be more than one)
topicName=topica
topicName=topicb
#
cleanStart - true or false - decide whether to do a clean start
when reading messages
cleanStart=false
#
keepAlive - duration, in seconds, to keep the connection alive
with no activity
keepAlive=30
#

Configuring the Web Socket transport
The Web Socket transport allows the probe to connect to the target device to send the following types of
HTTP requests:

• loginRequest: This is sent after the OAuth access token request to log into the target system.
• loginRefresh This is sent periodically to refresh the login on the target device.
• logoutRequest This is sent before disconnecting from the target device.

22 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

• resynchRequest This is sent to request an event resynchronization with the target device.
• subscribeRequest This is sent to subscribe to received events from the target device as they are

created.
• subscribeRefresh This is sent periodically to refresh the event subscription on the target device.

Web Socket transport properties

The following table describes the properties in the restWebSocketTransport.properties file. The
restWebSocketTransport.properties file controls the integration with the Message Bus Probe
using Web Socket.

Note: When using the WebSocket transport, you must specify values for the Host and Port properties in
the message_bus.props file.

Table 13. Properties in the restWebSocketTransport.properties file

Property name Description

httpVersion Use this property to specify the version of the HTTP
protocol that the target system supports.

The default is 1.1.

httpHeaders Use this property to specify the HTTP header options to
use in all HTTP requests. This property accepts a comma
separated list of key-value pairs using the equals sign (=)
as the value separator.

For options that accept multiple values, use the double-
quote (") character around the value and a use semi-colon
(;) as the value separator; for example: Keep-
alive="timeout 30;max 10",Connection=Keep-
alive

For the authorization header option, the credentials that
follow the single whitespace after Basic are encoded as a
Base-64 encoded string. For example, to authenticate with
the username Me, and the password MyPassword, set the
httpHeader property to Authorization=Basic
Me:MyPassword. The probe passes this as an
authorization header with every request.

The default value is "".

Note: The httpHeaders property sets the headers for all
HTTP requests. However, you can override these global
HTTP header options using the following properties:

• loginRequestHeaders
• loginRefreshHeaders
• logoutRequestHeaders
• resyncRequestHeaders
• subscribeRequestHeaders
• subscribeRefreshHeaders

Chapter 1. Probe for Message Bus 23

Table 13. Properties in the restWebSocketTransport.properties file (continued)

Property name Description

responseTimeout Use this property to specify how long (in seconds) the
probe waits for a response from the target system before
timing out.

The default is 60 seconds.

loginRequestURI Use this property to specify the URI that the probe uses to
request a login.

loginRequestMethod Use this property to specify the message type that the
probe sends to request a login.

loginRequestContent Use this property to specify any additional information that
the probe sends with the login request.

loginRequestHeaders Use this property to specify an HTTP header to send with
all login requests. This overrides the global HTTP header
options configured by the httpHeader property.

loginRefreshURI Use this property to specify the URI that the probe uses to
refresh the login on the target device.

loginRefreshMethod Use this property to specify the message type that the
probe sends to refresh the login on the target device.

loginRefreshContent Use this property to specify any additional information that
the probe sends with the login refresh request.

loginRefreshHeaders Use this property to specify an HTTP header to send with
all login refresh requests. This overrides the global HTTP
header options configured by the httpHeader property.

loginRefreshInterval Use this property to specify the interval (in seconds) that
the probe leaves between successive login refresh
requests.

This can be disabled by setting it to "" or leaving it
commented out. If set to a negative value or an valid value
such as String, it will default to 60 seconds.

logoutRequestURI Use this property to specify the URI that the probe uses to
request a logout from the target device.

logoutRequestMethod Use this property to specify the message type that the
probe sends to request a logout from the target device.

logoutRequestContent Use this property to specify any additional information that
the probe sends with the logout request.

logoutRequestHeaders Use this property to specify an HTTP header to send with
all logout requests. This overrides the global HTTP header
options configured by the httpHeader property.

24 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Table 13. Properties in the restWebSocketTransport.properties file (continued)

Property name Description

resyncRequestURI Use this property to specify the URI that the probe uses to
request a resynchronization with the target system at
startup. You can append the URI that you specify with this
property with a query filter that limits the scope of the
events that are returned by the request.

Note: resyncRequestURI and
resyncRequestMethod=GET can be used
independently, together with httpversion and
responsetimeout, to perform the resynchornization.
However, either initialResync or resyncinterval
must also be specified.

resyncRequestMethod Use this property to specify the message type that the
probe sends to request a resynchronization with the target
system.

Note: resyncRequestURI and
resyncRequestMethod=GET can be used independently,
together with httpversion and responsetimeout, to
perform the resynchornization. However, either
initialResync or resyncinterval must also be
specified.

resyncRequestContent Use this property to specify any additional information that
the probe sends with the resynchronization request.

resyncRequestHeaders Use this property to specify an HTTP header to send with
all resynchronization requests. This overrides the global
HTTP header options configured by the httpHeader
property.

subscribeRequestURI Use this property to specify the URI that the probe uses to
request a subscription to receive new alarms as they are
created in the target system.

subscribeRequestMethod Use this property to specify the message type that the
probe sends to request a subscription to receive new
alarms.

subscribeRequestContent Use this property to specify any additional information that
the probe sends with the subscription request.

subscribeRequestHeaders Use this property to specify an HTTP header to send with
all subscription requests. This overrides the global HTTP
header options configured by the httpHeader property.

subscribeRefreshURI Use this property to specify the URI that the probe uses to
request a subscription refresh.

subscribeRefreshMethod Use this property to specify the message type that the
probe sends to request a subscription refresh.

Chapter 1. Probe for Message Bus 25

Table 13. Properties in the restWebSocketTransport.properties file (continued)

Property name Description

subscribeRefreshContent Use this property to specify any additional information that
the probe sends with the subscription refresh request.

subscribeRefreshHeaders Use this property to specify an HTTP header to send with
all subscription refresh requests. This overrides the global
HTTP header options configured by the httpHeader
property.

subscribeRefreshInterval Use this property to specify the interval (in seconds) that
the probe leaves between successive subscription refresh
requests.

This can be disabled by setting it to "" or leaving it
commented out. If it is set to a negative value or an valid
value such as String, it will default to 60 seconds.

keepTokens Use this property to specify a comma-separated list of the
attributes that the probe extracts from the incoming JSON
data. These data items can be used in token substitution
throughout the runtime of the probe.

webSocketHeaders Use this property to specify a comma-separated list of
HTTP headers to send with the initial Websocket
handshake request. This overrides the global HTTP header
options configured by the httpHeader property.

Example use: By setting
"webSocketHeaders=Authorization=Bearer +
+token++", the Authorization Header will be included in
the handshake to provide a Bearer token for
authentication. The "++token++" will be substituted with
a value retrieved from prior requests such as login or
resync requests. This must be used with the keepTokens
property, for example: "keepTokens=token" so that the
value of the "token" attribute received from the HTTP
response is kept in memory.

webSocketURI Use this property to specify the URI that the probe uses to
request a WebSocket connection with the REST API.

Note: webSocketURI can work independently allowing
the probe to subscribe to the target system.

webSocketPeristentURI Use this property to specify the persistent URI that the
probe uses to re-establish a WebSocket connection.

Note: This property takes precedence over
webSocketURI if both are set. But, the probe uses
webSocketURI if webSocketPeristentURI contains
tokens that can not be resolved to construct the final URI
to use to establish the WebSocket connection.

webSocketSubProtocol Use this property to specify the WebSocket subprotocol to
use.

26 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Table 13. Properties in the restWebSocketTransport.properties file (continued)

Property name Description

webSocketSubscribeMessage Use this property to specify the subscribe message that the
probe sends to the server through the WebSocket channel
after successfully establishing the connection.

webSocketRefreshMessage Use this property to specify the refresh message to send in
the Ping frame that the probe sends to the WebSocket.

webSocketRefreshInterval Use this property to specify the interval (in seconds) that
the probe leaves between sending successive refresh
requests to the WebSocket.

This can be disabled by setting it to "" or leaving it
commented out. If it is set to a negative value or an valid
value such as String, it will default to 60 seconds.

webSocketMaxFramePayloadLength Use this property to configure the size in bytes of the
payload frame of the WebSocket. Specify a value between
1 and 512000 bytes (512KB). The default value is 65536
(bytes).

If the probe receives a websocket frame that is bigger than
the value set for this property, the probe fails and writes a
message to the error log.

refreshRetryCount Use this property to specify the maximum number of times
that the probes sends a refresh request.

If set to an invalid value such as a string or a value less
than zero, it will default to zero and no limit is applied. The
default is 0.

securityProtocol Use this property to specify the security protocol to use
when retrieving events from the REST API.

tokenEndpointURI Use this property to specify the URI that the probe uses to
obtain an access token for the target device.

This is the path on the remote host to request an access
token, for example:

tokenEndpointURI=/oauth/token

By default, this property is not set, which disables the
OAuth token request; no access token request will be sent
to the server.

basicAuthenticationUsername Use this property to specify the basic authentication
username that the probe should use in the authentication
header to gain access to the target device.

basicAuthenticationPassword Use this property to specify the password associated with
the basic authentication username that the probe should
use in the authentication header.

Chapter 1. Probe for Message Bus 27

Table 13. Properties in the restWebSocketTransport.properties file (continued)

Property name Description

clientId Use this property to specify the Client ID registered
with the Oauth server. This parameter will be sent in the
HTTP request-body. Leave this property empty if this
should be omitted to use the Basic Authentication
client authentication method.

clientSecret Use this property to specify the Client Secret string
registered to the clientId. This parameter will be sent in
the HTTP request-body. Leave this property empty if this
should be omitted to use the Basic Authentication
client authentication method.

scope Use this property to specify the level of access to the target
server that the probe is requesting.

You can specify a comma-separated list of scopes, for
example:

scope=read,write

The following is an example of a restWebSocketTransport.properties file:

Example format of Web Socket properties file
#httpVersion=1.1
#httpHeaders=
#responseTimeout=60
#loginRequestURI=
#loginRequestMethod=
#loginRequestContent
#loginRequestHeaders=
#loginRefreshURI=
#loginRefreshMethod=
#loginRefreshContent=
#loginRefreshHeaders=
#loginRefreshInterval=
#logoutRequestURI=
#logoutRequestMethod=
#logoutRequestContent=
#logoutRequestHeaders=
#resyncRequestURI=
#resyncRequestMethod=
#resyncRequestContent=
#resyncRequestHeaders=
#subscribeRequestURI=
#subscribeRequestMethod=
#subscribeRequestContent=
#subscribeRequestHeaders=
#subscribeRefreshURI=
#subscribeRefreshMethod=
#subscribeRefreshContent=
#subscribeRefreshHeaders=
#subscribeRefreshInterval=
#keepTokens=
#webSocketURI=
#webSocketPersistentURI=
#webSocketSubProtocol=
#webSocketSubscribeMessage=
#webSocketRefreshMessage=
#webSocketRefreshInterval=
#webSocketMaxFramePayloadLength=65536
#refreshRetryCount=0
#securityProtocol=
#tokenEndpointURI=
#basicAuthenticationUsername=
#basicAuthenticationPassword=
#clientId=

28 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

#clientSecret=
#scope=

Authenticating the probe Using OAuth authentication
The Web Hook and Web Socket transports support OAuth authentication with an OAuth server to request
access to a restricted resource using an access token.

To request an access token, the transport uses the resource owner password credential grant method,
whereby the probe sends a token request to the token end point specified by the tokenEndpointURI
property in the restWebhookTransport.properties file.

Along with the token request, the probe sends the resource credentials specified by the Username and
Password properties in the message_bus.props file to log into the OAuth server.

In response, the token end point sends to the probe the access_token and refresh_token.

The probe will send the access_token to gain access to the restricted resource and will send the
refresh_token to refresh the access token shortly before it expires.

For OAuth servers that require a client to authenticate using the basic authentication method, set the
<code> basicAuthenticationUsername and basicAuthenticationPassword properties.

Set the clientId and clientSecret properties to send the credentials in the POST request body.

Set the scope property to specify a comma-separated list of scopes to set in the access token request.

To use the access token in another transport property, use the ++OAuth.access_token++ variable
name in the transport property. For example, to use this in the Web Hook transport httpHeader
property: httpHeader=Authorization=Bearer ++Oauth.access_token++

Authenticating the probe using REST or WebSocket
The probe can authenticate with the client by passing the username and password with every request it
makes to the service as an HTTP basic authentication header.

To specify HTTP header options to use in all HTTP requests, use the httpHeaders property in the
restWebSocketTransport.properties file. The httpHeader property allows you to specify a list of
(comma-separated) HTTP header options.

To authenticate the probe, include Authorization in the list of header options. For example, to
authenticate using the username Me and the password MyPassword, include in the value set for the
httpHeader property the following header option:

Authorization=Basic Me:MyPassword.

The probe encodes the Username:Password credentials that follow the single whitespace after Basic
as a Base-64 encoded string. The probe prefixes to the resulting string Basic and a space, and passes
this as an authorization header with every request. The probe passes this as an authorization header with
every request.

Connecting to WebSocket using SSL
The probe supports Secure Sockets Layer (SSL) connections between the probe and WebSocket. SSL
connections provide additional security when the probe retrieves alarms from the target systems.

To enable SSL connections, obtain any required SSL certificates and Trusted Authority certificates for
WebSocket. Add the certificates to a local Java keystore so that they can be referenced by the KeyStore
property.

Prerequisites

The following tools are available to create the keystore:

• The OpenSSL toolkit.

This is available from http://www.openssl.org/.
• The IBM KeyMan utility.

Chapter 1. Probe for Message Bus 29

http://www.openssl.org/

This is available from http://www.alphaworks.ibm.com/tech/keyman/download.
• The Keytool toolkit.

This is available in the JRE package.

Converting the key and certificate into PKCS12 format

If you have a key and a certificate from the server in separate files, you must combine them into a single
PKCS12 format file to load into a new keystore. To convert the server certificate into PKCS12 format, use
the following OpenSSL toolkit command:

openssl pkcs12 -export -inkey key_file-in cert_file-out cert_pkcs12

Where

key_file is the key file retrieved from the server.

cert_file is the certificate retrieved from the server.

cert_pkcs12 is the combined file in PKCS12 format for loading into the keystore.

Creating the SSL keystore

You can create a Java keystore using either the KeyMan utility or the Keytool utility.

To create a Java keystore using the KeyMan utility, follow these steps:

1. Start the KeyMan utility.
2. Click Create New and select the Keystore token option.
3. Click File > Import and choose the certificate that you retrieved from the server.

This imports the certificate into the keystore.
4. Click File > Save and enter a password and name for the keystore; for example,
trusted_keystore.jks.

To create a Java keystore using the Keytool utility, follow these steps:

1. Generate a keystore and self-signed certificate using the following command:

keytool -genkey -keyalg RSA -alias alias_name -keystore keystore_file -
storepass keystore_password -validity 360 -keysize 2048

2. Import the WebSocket SSL certificate into the newly created Java keystore file using the following
command:

keytool -import -trustcacerts -alias alias_name -file cert_file -keystore
keystore_file

3. Verify that the certificates are in a Java keystore using the following command:

keytool -list -v -keystore keystore_file

Enabling SSL connections

To enable SSL-based connections between the probe and the Element Management System (EMS) server,
make the following changes to the probe's properties file:

1. Set the EnableSSL property to true.

When the EnableSSL property is set to true, the following properties are enabled:

• KeyStore
• KeyStorePassword

2. Use the KeyStore property to specify the location of the keystore file.
3. Use the KeyStorePassword property to specify a password for the keystore.

30 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

http://www.alphaworks.ibm.com/tech/keyman/download

Note: You can encrypt the keystore file password using the nco_aes_crypt utility (for FIPS 104-2
mode security).

4. Set the Port property to the port that the probe uses for HTTPS connections.

Resynchronizing the probe with the REST API
The probe can create an ad hoc resynchronization request using REST API.

To do this, set the following properties in the restWebSocketTransport.properties file:

resyncRequestURI=/api/resynchronization
resyncRequestMethod=GET
resyncRequestContent=

Configuring HTTP requests
Each HTTP request can be configured by using the corresponding URI, Method, Content and Header
transport properties.

For example, to configure the loginRequest use the following steps:

1. Specify the path in the loginRequestURI property, for example: /login
2. Specify the HTTP Method in the loginRequestMethod property, for example: POST, GET, PATCH,

and so forth.
3. If required, specify the HTTP body in the loginRequestContent property, for example: {\"sample
\":\"json\"}

4. If required, specify additional HTTP headers in the loginRequestRequestHeaders property. This
will override any headers set in the httpHeader property.

Note: For loginRefresh and subscribeRefresh requests, you can use the loginRefreshInterval
and subscribeRefreshInterval properties respectively to enable the HTTP request to be sent
periodically.

Subscribing to receive notifications using WebSocket
You can instruct the probe to receive subscriptions through WebSocket.

To do this, set the following properties in the restWebSocketTransport.properties file:

webSocketURI=/websocket
httpHeaders=Authorization=Basic ++Username++:++Password++,Content-Type=application/json
httpVersion=1.1
responseTimeout=2
webSocketRefreshMessage=Ping
webSocketRefreshInterval=10

Note:

Leave the following properties empty:

subscribeRequestURI=
subscribeRequestMethod=
subscribeRequestContent=
subscribeRefreshURI=
subscribeRefreshMethod=
subscribeRefreshContent=
subscribeRefreshInterval=

Restarting the probe and re-connecting with the persistent URI
If the probe shuts down, you can specify that when it restarts, it resumes the subscription through the
WebSocket with a different URI if necessary. For example, you can specify a URI with a query filter to
query new alarms from a specific time.

You specify the URI with which the probe resumes the subscription using the webSocketPeristentURI
property in the restWebSocketTransport.properties file. When the probe restarts, it resumes the
subscription with this URI. If there are tokens used in the URI, it reconstructed with the last value

Chapter 1. Probe for Message Bus 31

recorded in the DataBackupFile. This value is recorded in the file specified by the DataBackupFile
property which is loaded during probe startup.

The content of the file specified by DataBackupFile is determined by the RecordData property. This
property allows you to specify a comma-separated list of attributes from the event that the probe records
in the data backup file.

Configuring the Web Hook transport
The Web Hook transport allows the probe to send the following types of HTTP requests to the target
device:

• loginRequest: This is sent after the OAuth access token request to log into the target system.
• loginRefresh This is sent periodically to refresh the login on the target device.
• logoutRequest This is sent before disconnecting from the target device.
• resynchRequest This is sent to request an event resynchronization with the target device.
• subscribeRequest This is sent to subscribe to received events from the target device as they are

created.
• subscribeRefresh This is sent periodically to refresh the event subscription on the target device.

The transport also enables the probe to create a callback URL to which the target server or an HTTP client
can sed notifications using POST or GET requests.

Web Hook transport properties

The following table describes the properties in the restWebhookTransport.properties file.

Note: When using the Web Hook transport, you must specify values for the Host and Port properties in
the message_bus.props file.

Table 14. Properties in the restWebHookTransport.properties file

Property name Description

httpVersion Use this property to specify the version of the HTTP
protocol that the target system supports.

The default is 1.1.

32 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Table 14. Properties in the restWebHookTransport.properties file (continued)

Property name Description

httpHeaders Use this property to specify the HTTP header options to
use in all HTTP requests. This property accepts a comma
separated list of key-value pairs using the equals sign (=)
as the value separator.

For options that accept multiple values, use the double-
quote (") character around the value and a use semi-colon
(;) as the value separator; for example: Keep-
alive="timeout 30;max 10",Connection=Keep-
alive

For the authorization header option, the credentials that
follow the single whitespace after Basic are encoded as a
Base-64 encoded string. For example, to authenticate with
the username Me, and the password MyPassword, set the
httpHeader property to Authorization=Basic
Me:MyPassword. The probe passes this as an
authorization header with every request.

The default value is "".

Note: The httpHeaders property sets the headers for all
HTTP requests. However, you can override these global
HTTP header options using the following properties:

• loginRequestHeaders
• loginRefreshHeaders
• logoutRequestHeaders
• resyncRequestHeaders
• subscribeRequestHeaders
• subscribeRefreshHeaders

responseTimeout Use this property to specify how long (in seconds) the
probe waits for a response from the target system before
timing out.

The default is 60 seconds.

loginRequestURI Use this property to specify the URI that the probe uses to
request a login.

loginRequestMethod Use this property to specify the message type that the
probe sends to request a login.

loginRequestContent Use this property to specify any additional information that
the probe sends with the login request.

loginRequestHeaders Use this property to specify an HTTP header to send with
all login requests. This overrides the global HTTP header
options configured by the httpHeader property.

loginRefreshURI Use this property to specify the URI that the probe uses to
refresh the login on the target device.

Chapter 1. Probe for Message Bus 33

Table 14. Properties in the restWebHookTransport.properties file (continued)

Property name Description

loginRefreshMethod Use this property to specify the message type that the
probe sends to refresh the login on the target device.

loginRefreshContent Use this property to specify any additional information that
the probe sends with the login refresh request.

loginRefreshHeaders Use this property to specify an HTTP header to send with
all login refresh requests. This overrides the global HTTP
header options configured by the httpHeader property.

loginRefreshInterval Use this property to specify the interval (in seconds) that
the probe leaves between successive login refresh
requests.

This can be disabled by setting it to "" or leaving it
commented out. If set to a negative value or an valid value
such as String, it will default to 60 seconds.

logoutRequestURI Use this property to specify the URI that the probe uses to
request a logout from the target device.

logoutRequestMethod Use this property to specify the message type that the
probe sends to request a logout from the target device.

logoutRequestContent Use this property to specify any additional information that
the probe sends with the logout request.

logoutRequestHeaders Use this property to specify an HTTP header to send with
all logout requests. This overrides the global HTTP header
options configured by the httpHeader property.

resyncRequestURI Use this property to specify the URI that the probe uses to
request a resynchronization with the target system at
startup. You can append the URI that you specify with this
property with a query filter that limits the scope of the
events that are returned by the request.

Note: resyncRequestURI and
resyncRequestMethod=GET can be used
independently, together with httpversion and
responsetimeout, to perform the resynchornization.
However, either initialResync or resyncinterval
must also be specified.

resyncRequestMethod Use this property to specify the message type that the
probe sends to request a resynchronization with the target
system.

Note: resyncRequestURI and
resyncRequestMethod=GET can be used independently,
together with httpversion and responsetimeout, to
perform the resynchornization. However, either
initialResync or resyncinterval must also be
specified.

34 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Table 14. Properties in the restWebHookTransport.properties file (continued)

Property name Description

resyncRequestContent Use this property to specify any additional information that
the probe sends with the resynchronization request.

resyncRequestHeaders Use this property to specify an HTTP header to send with
all resynchronization requests. This overrides the global
HTTP header options configured by the httpHeader
property.

serverBasicAuthenticationUsernam
e

Use this property to specify the webhook (server) basic
authentication username.

serverBasicAuthenticationPasswor
d

Use this property to specify the webhook (server) basic
authentication password. This is used together with
serverBasicAuthenticationUsername to support
basic authentication for the server component and is used
for client authentication using the HTTP Basic
Authentication scheme. Both the
serverBasicAuthenticationUsername and
serverBasicAuthenticationPassword properties
must be set to enable basic authentication.

If these properties are set, the probe will accept HTTP
requests with the correct credentials specified in the
Authorization header. If the credentials do not match, the
probe will reject the request with the error code: 401
Unauthorized.

An empty password is not supported.

Note: You can encrypt the password using the
nco_aes_crypt utility within Netcool/OMNIbus. The
transport module only supports AES_FIPS, so you must
use -c AES_FIPS.

subscribeRequestURI Use this property to specify the URI that the probe uses to
request a subscription to receive new alarms as they are
created in the target system.

subscribeRequestMethod Use this property to specify the message type that the
probe sends to request a subscription to receive new
alarms.

subscribeRequestContent Use this property to specify any additional information that
the probe sends with the subscription request.

subscribeRequestHeaders Use this property to specify an HTTP header to send with
all subscription requests. This overrides the global HTTP
header options configured by the httpHeader property.

subscribeRefreshURI Use this property to specify the URI that the probe uses to
request a subscription refresh.

subscribeRefreshMethod Use this property to specify the message type that the
probe sends to request a subscription refresh.

Chapter 1. Probe for Message Bus 35

Table 14. Properties in the restWebHookTransport.properties file (continued)

Property name Description

subscribeRefreshContent Use this property to specify any additional information that
the probe sends with the subscription refresh request.

subscribeRefreshHeaders Use this property to specify an HTTP header to send with
all subscription refresh requests. This overrides the global
HTTP header options configured by the httpHeader
property.

subscribeRefreshInterval Use this property to specify the interval (in seconds) that
the probe leaves between successive subscription refresh
requests.

This can be disabled by setting it to "" or leaving it
commented out. If it is set to a negative value or an valid
value such as String, it will default to 60 seconds.

keepTokens Use this property to specify a comma-separated list of the
attributes that the probe extracts from the incoming JSON
data. These data items can be used in token substitution
throughout the runtime of the probe.

refreshRetryCount Use this property to specify the maximum number of times
that the probes sends a refresh request.

If set to an invalid value such as a string or a value less
than zero, it will default to zero and no limit is applied. The
default is 0.

securityProtocol Use this property to specify the security protocol to use
when retrieving events from the REST API.

tokenEndpointURI Use this property to specify the URI that the probe uses to
obtain an access token for the target device.

This is the path on the remote host to request an access
token, for example:

tokenEndpointURI=/oauth/token

By default, this property is not set, which disables the
OAuth token request; no access token request will be sent
to the server.

basicAuthenticationUsername Use this property to specify the basic authentication
username that the probe should use in the authentication
header to gain access to the target device.

basicAuthenticationPassword Use this property to specify the password associated with
the basic authentication username that the probe should
use in the authentication header.

36 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Table 14. Properties in the restWebHookTransport.properties file (continued)

Property name Description

clientId Use this property to specify the Client ID registered
with the Oauth server. This parameter will be sent in the
HTTP request-body. Leave this property empty if this
should be omitted to use the Basic Authentication
client authentication method.

clientSecret Use this property to specify the Client Secret string
registered to the clientId. This parameter will be sent in
the HTTP request-body. Leave this property empty if this
should be omitted to use the Basic Authentication
client authentication method.

scope Use this property to specify the level of access to the target
server that the probe is requesting.

You can specify a comma-separated list of scopes, for
example:

scope=read,write

webhookURI Use this property to specify the path of the Web Hook URI
on the local server into which the target device will POST
notifications.

This property can be set to a URL to specify the scheme
(HTTP or HTTPS), port number, and path, for example:

webhookURI=/probe/webhook

or

webhookURI=http://hostname:80/probe/webhook

If only the path is specified, the HTTP(s) server will bind to
the local port number specified in the Port property of the
message_bus.props file. Make sure the local port is free.

If unset or empty, the probe will generate a path.

By default this property is set to OFF, the HTTP(s) server is
disabled.

respondWithContent Use this property to specify whether the probe includes the
HTTP body received from the client HTTP request in the
HTTP response. Set this property to ON to configure probe
webhook to include the HTTP body.

The default is OFF.

validateBodySyntax Use this property to specify that the probe performs a
JSON and XML syntax format check on the HTTP request
body.

The default is ON.

Chapter 1. Probe for Message Bus 37

Table 14. Properties in the restWebHookTransport.properties file (continued)

Property name Description

validateRequestURI Use this property to specify whether the probe checks the
URI paths. Set this property to ON to enable URI path
check. Setting this property to OFF disables the URI check
and the webhook will accept all HTTP request regardless of
the path set.

The default is ON.

idleTimeout Use this property to specify the time (in seconds) to allow
an idle HTTP client to be connected. When the timeout
period has elapsed, the idle client is disconnected to free
up resources.

The default is 180.

The following is an example of a restWebHookTransport.properties file:

Example format of Web Hook properties file

#httpVersion=1.1
#httpHeaders=
#responseTimeout=60
#loginRequestURI=
#loginRequestMethod=
#loginRequestContent
#loginRequestHeaders=
#loginRefreshURI=
#loginRefreshMethod=
#loginRefreshContent=
#loginRefreshHeaders=
#loginRefreshInterval=
#logoutRequestURI=
#logoutRequestMethod=
#logoutRequestContent=
#logoutRequestHeaders=
#resyncRequestURI=
#resyncRequestMethod=
#resyncRequestContent=
#resyncRequestHeaders=
#subscribeRequestURI=
#subscribeRequestMethod=
#subscribeRequestContent=
#subscribeRequestHeaders=
#subscribeRefreshURI=
#subscribeRefreshMethod=
#subscribeRefreshContent=
#subscribeRefreshHeaders=
#subscribeRefreshInterval=
#keepTokens=
#refreshRetryCount=0
#securityProtocol=
#tokenEndpointURI=
#basicAuthenticationUsername=
#basicAuthenticationPassword=
#clientId=
#clientSecret=
#scope=
#webhookURI=OFF
#respondWithContent=OFF
#validateBodySyntax=ON
#validateRequestURI=ON
#idleTimeout=180

38 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Authenticating the probe Using OAuth authentication
The Web Hook and Web Socket transports support OAuth authentication with an OAuth server to request
access to a restricted resource using an access token.

To request an access token, the transport uses the resource owner password credential grant method,
whereby the probe sends a token request to the token end point specified by the tokenEndpointURI
property in the restWebhookTransport.properties file.

Along with the token request, the probe sends the resource credentials specified by the Username and
Password properties in the message_bus.props file to log into the OAuth server.

In response, the token end point sends to the probe the access_token and refresh_token.

The probe will send the access_token to gain access to the restricted resource and will send the
refresh_token to refresh the access token shortly before it expires.

For OAuth servers that require a client to authenticate using the basic authentication method, set the
<code> basicAuthenticationUsername and basicAuthenticationPassword properties.

Set the clientId and clientSecret properties to send the credentials in the POST request body.

Set the scope property to specify a comma-separated list of scopes to set in the access token request.

To use the access token in another transport property, use the ++OAuth.access_token++ variable
name in the transport property. For example, to use this in the Web Hook transport httpHeader
property: httpHeader=Authorization=Bearer ++Oauth.access_token++

Specifying a callback URL
The Web Hook transport allows you to enable the HTTP(s) server capabilities (Web Hook) of the probe
and to specify a callback URL to which a target server or an HTTP client can POST notifications.

Use the webhookURI property in the restWebhookTransport.properties file to specify a callback
URL for the client to POST notifications.

The webhookURI property can specify the scheme (HTTP or HTTPS), port number, and path of the
callback URL, for example:

webhookURI=/probe/webhook

or

webhookURI=http://hostname:80/probe/webhook

If you leave the webhookURI property blank, the probe will randomly generate a URL.

If you want to disable the Web Hook capabilities of the probe and only the use probe as an HTTP client,
set the webhookURI property to OFF.

Subscribing to receive notifications using an HTTP server
You can use the Web Hook transport to create an HTTP endpoint to listen to notifications from a target
system by sending the probe's webhook URL in a HTTP request body, such as a POST request.

To do this, set the following properties in the restWebHookTransport.properties file:

httpHeader=Authorization=Bearer ++Oauth.access_token++,Accept=application/json,
 Content-Type=application/json
subscribeRequestURI=/monitoring/external/api/v1/faults
subscribeRequestMethod=POST
subscribeRequestBody={"severities":["minor","major","critical","clear"],"notification-target":
 "++WebhookUrl++"}

Where ++WebhookUrl++ is a reserved variable that will be substituted with the full URL at runtime.

Chapter 1. Probe for Message Bus 39

Configuring the Cometd transport
The Cometd transport allows the probe to connect to a target system using a Bayeux client.

CometD is a scalable HTTP-based event routing bus that uses an AJAX push technology pattern known as
Comet. It implements the Bayeux protocol.

Cometd transport properties

The following table describes the properties used to configure the cometdTransport.properties file.

Table 15. Cometd transport properties

Property name Description

bayeuxClientTransport Use this property to which transport the probe uses to
connect to the Bayeux server.

This property can take the following values:

long-polling: The probe only uses the long-polling
transport.

websocket: The probe uses the Websocket transport first
and falls back to long-polling.

The default is long-polling.

serverUri Use this property to specify the Cometd server path to
include in the URL used to connect to the comet server.

The default is /cometd/cometd

subscriptionChannel Use this property to specify the channel on the Cometd
server to which the probe subscribes to receive events.

The default is /channel

loginRequests Use this property to send REST requests to login or
authenticate with the target system.

The loginRequest property takes in a JSON with the
following format and constructs an HTTP request to send
to the server right after the probe connects to the server:

{"requests":[{"uri":"/some/
uri","method":"POST","header":{"Content-
Type":"application/
json","Authorization":"Basic ++Username++:+
+Password++"},"data":"{\"username\":\"+
+Username++\",\"password\":\"++Password++
\""},{"uri":"/some/other/
uri","method":"POST","data":"{}","header":
{"Content-Type":"application/
json","Connection":"Keep-Alive"}}]}

40 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Table 15. Cometd transport properties (continued)

Property name Description

resyncRequests Use this property to request a resynchronization with the
target system.

The resyncRequests property takes the same JSON
format as the loginRequests property. Responses from
resyncRequests will be added to the probe's message
queue for parsing.

logoutRequests Use this property to un-subscribe or initiate a logout from a
system.

The logoutRequests property takes the same JSON
format as the loginRequests property. Logout requests will
be sent to the server before the probe disconnects.

securityProtocol Use this property to specify the security protocol to use
when retrieving events from the target system.

connectTimeout Use this property to specify how long (in seconds) the
probe waits for a Web Socket connection to be opened
before timing out.

The default is 320.

responseTimeout Use this property to specify how long (in seconds) the
probe waits for an exchange or reply from the server before
timing out.

The default is 20.

Note: You should set this parameter to a value greater than
the estimated network delay.

idleTimeout Use this property to specify how long (in seconds) the
probe allows the HTTP Client component of the CometD
transport to be idle before timing out.

The default is 20.

maxMessageSize Use this property to specify the maximum number of bytes
allowed for each WebSocket message.

The default is 8192.

stickyReconnect Use this property to specify whether to keep using the Web
Socket transport when the probe detects a Web Socket
transport failure after the Web Socket transport
successfully connected to the server.

The default is true.

Chapter 1. Probe for Message Bus 41

Table 15. Cometd transport properties (continued)

Property name Description

httpHeaders Use this property to set or override any HTTP header
options such as Authorization header for basic
authentication. This property is in JSON format.

Example value for this property:

{"Accept":"application/json","User-
Agent":"IBM Netcool/OMNIbus Message Bus
Probe"}

The following is an example of an Cometd properties file:

Example format of CometD properties file

bayeuxClientTransport=long-polling
serverUri=/cometd/cometd
subscriptionChannel=/channel
loginRequests=
resyncRequests=
logoutRequests=
securityProtocol = "TLSv1.2"
connectTimeout=75
responseTimeout=320
idleTimeout=20
maxMessageSize=8192
stickyReconnect=true
httpHeaders=

Configuring the socket transport

The socket transport allows the probe to connect to a target system and subscribe to receive all events
sent to a specific port.

Socket transport properties

The following table describes the properties in the socketTransport.properties file.

Note: When using the Socket transport, you must specify values for the Host and Port properties in the
message_bus.props file.

Table 16. Properties in the socketTransport.properties file

Property name Description

serverPort Use this property to specify the port on the server to which
the target system sends events.

clientAddress Use this property to specify the client address to which the
probe connects.

subscribeMessages Use this property to specify a list of the messages that the
probe will send when subscribing as an asynchronous
client.

42 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Table 16. Properties in the socketTransport.properties file (continued)

Property name Description

subscribeResponses Use this property to specify a list of response processors
for the subscribe messages.

Note: This property must contain the same number of
entries as the subscribeMessagesproperty.

disconnectMessages Use this property to specify the messages sent when
disconnecting an asynchronous client.

disconnectResponses Use this property to specify response processors for the
disconnect messages.

activeAlarmMessages Use this property to specify the messages sent when
requesting active alarms as an asynchronous client.

messageTerminator Use this property to specify the regular expression that
marks the end of each alert from the target system.

readResponseAttempts Use this property to specify the number of times the probe
should attempt to read a response sent as a result of
subscribing, disconnecting, or getting active alarms.

readResponseDelay Use this property to specify the interval (in seconds) that
the probe should wait between successive read attempts.

threadPoolSize Use this property to specify the maximum number of
threads to use to process connections made to the probe
when it is running as a server.

The following is an example of a socketTransport.properties file:

Example format of Socket properties file
serverPort=12345
clientAddress=some.host.com:port
subscribeMessages=/first/message.txt:/second/message.xml
subscribeResponses=none:xslt("/second/response_processor.xsl","\n\n")
disconnectMessages=/first/message.txt:/second/message.xml
disconnectResponses=none:xslt("/second/response_processor.xsl","\n\n")
activeAlarmMessages=/first/message.txt:/second/message.xml
messageTerminator=\n\n
readResponseAttempts = 60
readResponseDelay = 1
threadPoolSize = 10

Configuring the Kafka transport

The Kafka transport allows the probe to integrate with a Kafka server to consume events.

Kafka transport properties table

The following table describes the properties used to configure the kafkaTransport.properties file.

Chapter 1. Probe for Message Bus 43

Table 17. Kafka transport properties

Property name Description

kafkaClientMode Use this property to set the transport as a Kafka client to
run as a consumer or a producer.

This property takes the following values:

CONSUMER: A Kafka consumer reads data from topics.

PRODUCER: A Kafka producer writes data to topics.

connectionPropertiesFile Use this property to specify the JSON file holding the Kafka
connection properties.

Kafka connection properties table

The following table describes the properties used to configure the
kafkaConnectionProperties.json file.

44 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Table 18. Kafka connection properties

Property name Description

zookeeper_client target Use this property to specify the ZooKeeper
endpoint. When this property is empty, the
transport will not initiate connection to
ZooKeeper.

The default is empty.

properties Use this property to specify the path to a file
holding ZooKeeper client properties in key-
value format, for example: key=value

The default is empty.

java_sys_props Use this property to specify the path to a file
holding ZooKeeper client Java system
properties required in a secure connection.

The default is empty.

topic_watch Use this property to enable the ZooKeeper
topic watch service. Valid values are:

true: Enable the ZooKeeper topic watch
service.

false: Disable the ZooKeeper topic watch
service.

The default is true.

broker_watch Use this property to enable the ZooKeeper
broker watch service. Valid values are:

true: Enable the ZooKeeper broker watch
service.

false: Disable the ZooKeeper broker watch
service.

The default is true.

brokers Use this property to specify broker
endpoints in a comma-separated list. For
example: “localhost:9092,
localhost:9093, localhost:9094”

The brokers must belong to the same
cluster managed by a zookeeper.

The default is empty.

topics Use this property to specify topics in a
comma-separated list. For example:
“topic1, topic2, topic3”

The default is empty.

Chapter 1. Probe for Message Bus 45

Table 18. Kafka connection properties (continued)

Property name Description

Kafka_client properties Use this property to specify the path to a file
holding Kafka client properties.

The default is empty.

java_sys_props Use this property to specify the path to a file
holding the Kafka client’s Java system
properties required in a secure connection.

The default is empty.

Kafka configuration for different connection protocols

Kafka supports following types of connection protocol:

• SASL_PLAINTEXT
• SASL_SSL

The following table describes the configuration required by each connection protocol.

Table 19. Connection protocol configuration

Connection
protocol

Configuration required

SASL_PLAINTEXT Kafka producer properties

security.protocol=SASL_PLAINTEXT

Note: Must combine with SASL-specific configurations.

SASL_SSL Kafka producer properties

acks=all
security.protocol=SASL_SSL
sasl.mechanism=PLAIN
ssl.protocol=TLSv1.2
ssl.enabled.protocols=TLSv1.2

ssl.truststore.location=<path>\<trust_store_file>
ssl.truststore.password=<trust_store_password>
ssl.truststore.type=JKS

Java system properties

java.security.auth.login.config=<path>/user_jaas.conf
https.protocols=TLSv1.2

Note: Must combine with SASL-specific configurations.

The following table describes SASL-specific configurations.

46 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Table 20. SASL-specific configuration

SASL: Kafka user access control SASL: Kerberos

Java system properties

java.security.auth.login.config=<path>/
user_jaas.conf

Example user_jass.conf

KafkaClient {

org.apache.kafka.common.security.plain.Plai
nLoginModule required
 serviceName="kafka"
 username="myUserName"
 password="myPasword";
};

Java system properties

java.security.auth.login.config=<path>/
user_jass.conf
java.security.krb5.conf=<path>/krb5.conf

Example user_jass.conf

When using IBM JDK

KafkaClient {

com.ibm.security.auth.module.Krb5LoginModule
required
 debug=true
 credsType=both
 useKeytab="<path>/kafka.keytab"
 principal="username/instance@realm";
};

When using Oracle JDK

KafkaClient {

com.sun.security.auth.module.Krb5LoginModule
required
 debug=true
 renewTicket=true
 serviceName="kafka"
 useKeyTab=true
 keyTab="<path>/kafka.keytab"
 principal="username/instance@realm";
};

Note: This is the generic format of principal:
username/instance@realm. Some organizations
might use servicename instead of username or
without username

principal="servicename/instance@realm"
principal="instance@realm

Consult your organization administrator for principal
information.

Note:

Kafka producer properties are configured in the file specified in the kafka_client.properties field.

Java system properties are configured in the file specified in the kafka_client.java_sys_props
field.

In broker list configuration, a broker endpoint without a protocol prefix is assumed to be using the
protocol configured in the security.protocol property. An unconfigured security.protocol
denotes PLAINTEXT.

Message Bus Probe integrations with event sources
You can use the Message Bus Probe to integrate Netcool/OMNIbus with XML or JSON event sources.

The probe comes with configuration files for integrating with the following event sources:

• Amazon Web Services

Chapter 1. Probe for Message Bus 47

• Ciena Blue Planet MCP
• IBM Cloud Private
• IBM Event Streams for IBM Cloud
• iDirect Pulse
• Juniper Contrail Alert API

Note: The integration with Juniper Contrail Alert API is described in a separate guide, which you can
access using the above link.

• Kafka
• Microsoft Azure Monitoring
• Nokia 1350 OMS
• Nokia Network Services Platform (NSP)

Note: The integration with Nokia NSP is described in a separate guide, which you can access using the
above link.

Probe integration for Amazon Web Services
The Message Bus Probe can be configured to obtain events from Amazon Web Services. The integration
requires the following items to be installed on the probe's server:

• Curl
• Perl
• Scope-based event grouping

For details see: https://www.ibm.com/support/knowledgecenter/en/SSSHTQ_8.1.0/
com.ibm.netcool_OMNIbus.doc_8.1.0/omnibus/wip/install/task/
omn_con_ext_installingscopebasedegrp.html

The following configuration files are supplied with the probe for the integration:

• aws_NHttp_MsgBusProbe.pl
• aws_create_MsgBusTools.sql
• aws_remove_MsgBusTools.sql
• awsWebhookTransport.properties
• message_bus_aws.props
• message_bus_aws.rules
• message_bus_aws.json

Note: On UNIX, make aws_NHttp_MsgBusProbe.pl an executable file using the command chmod +x
<filename>.

To enable the Message Bus Probe to receive notifications from AWS using the Webhook transport, use the
following steps:

1. Update the following property in the awsWebhookTransport.properties file:

webhookURI=/probe/aws

Note: The value set for webhookURI must be consistent with the message endpoint configured on
AWS.

2. Set the following properties in the message_bus_aws.props file:

.

.

.
Server : '<YOUR_OBJECT_SERVER>'
JsonParserName : 'AWS'
TransformerFile : '${OMNIHOME}/probes/<platform>/message_bus_aws.json'

48 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

https://www.ibm.com/support/knowledgecenter/SSSHTQ/omnibus/probes/message_bus/wip/concept/messbuspr_juniper_intro.html
https://www.ibm.com/support/knowledgecenter/SSSHTQ/omnibus/probes/message_bus/wip/concept/messbuspr_nknsp_intro.html
https://www.ibm.com/support/knowledgecenter/en/SSSHTQ_8.1.0/com.ibm.netcool_OMNIbus.doc_8.1.0/omnibus/wip/install/task/omn_con_ext_installingscopebasedegrp.html
https://www.ibm.com/support/knowledgecenter/en/SSSHTQ_8.1.0/com.ibm.netcool_OMNIbus.doc_8.1.0/omnibus/wip/install/task/omn_con_ext_installingscopebasedegrp.html
https://www.ibm.com/support/knowledgecenter/en/SSSHTQ_8.1.0/com.ibm.netcool_OMNIbus.doc_8.1.0/omnibus/wip/install/task/omn_con_ext_installingscopebasedegrp.html

RulesFile : '$OMNIHOME/probes/<platform>/message_bus_aws.rules'

Host : '<probe_server_IP>'
Port : <probe_server_port>
TransportFile : '${OMNIHOME}/java/conf/awsWebhookTransport.properties'
TransportType : 'Webhook'

EnableSSL : 'true'
KeyStore : '<PATH_TO_YOUR_KEYSTORE_FILE>.jks'
KeyStorePassword : '<YOUR_KEYSTORE_PASSWORD>'

NHttpd.EnableHTTP : TRUE
NHttpd.ExpireTimeout : 30
NHttpd.ListeningPort : 8899
 # <this is an example; other available ports can be used>
.
.
.

3. Create MessageBus probe tools for AWS:

$OMNIHOME/bin/nco_sql -user user -password password <
aws_create_MsgBusTools.sql

The command performs the following steps:

a. Adds two columns to the alerts.status table: AWSTargetConfirmation, AWSAutoConfirm.
b. Creates a trigger group aws_triggers holding aws_target_confirmation and
aws_process_target_status.

4. The forwarding of AWS notifications requires confirmation of SubscribeURL. Before running the
probe, decide the option for the AWS target confirmation: auto or manual.

a. Edit message_bus_aws.rules under the section:

if (match($(json.Type), "SubscriptionConfirmation"))
b. Amend the @AWSAutoConfirm assignment with 1 for auto, 0 for manual.

The act of confirmation is achieved by sending an HTTP command to the AWS’s SubscribeURL or
opening the SubscribeURL using a web browser.

Auto confirmation method:

This involves message_bus_aws.rules and the two triggers: aws_target_confirmation and
aws_process_target_status.

Right after where the SubscriptionConfirmation message is inserted at the ObjectServer, the
trigger will invoke the aws_NHttp_MsgBusProbe.pl script to send a GET command to the
SubscribeURL, and feedback the HTTP response to the probe rules file for status update.

Manual confirmation method:

Copy the SubscribeURL from the ExtendedAttr field to a web browser, and open the page.
5. Go to the AWS system and configure the notification destination (subscribe the probe’s webhook).

During this time the probe must be alive so that the SubscriptionConfirmation message can
reach the ObjectServer through the probe.

To run the PA daemon, use the following command:

$OMNIHOME/bin/nco_pad -name NCO_PA -configfile $OMNIHOME/etc/nco_pa.conf -
admingroup root

To check the PA status, use the following command:

$OMNIHOME/bin/nco_pa_status -server NCO_PA -user <unix_root> -password
<unix_root_password>

6. In the Event List, the SubscriptionConfirmation message appears as an event with the
Summary starting AWS Subscription… followed by a brief description of the confirmation state.
The SubscribeURL string is stored in the ExtendedAttr field.

Chapter 1. Probe for Message Bus 49

Note: SubscribeURL can comprise a few hundred characters, hence the use of ExtendedAttr
(length: 4096) as its storage.

7. If the SubscriptionConfirmation message Summary indicates that the URL has not yet been
successfully confirmed (regardless of the message being fresh or auto-confirmation attempt having
failed), use the manual method.

8. After SubscribeURL confirmation, verify that the probe can receive AWS notifications.
9. You can choose to keep or to delete the SubscriptionConfirmation message in the

ObjectServer after the integration with AWS is established.
10. To stop AWS sending notifications to the probe, unsubscribe the probe’s webhook in AWS.

The probe will receive an UnsubscribeConfirmation message.

Probe integration for Ciena Blue Planet MCP
The Message Bus Probe can be configured to obtain events from Blue Planet MCP Release 3.0.

The following configuration files are supplied with the probe for the integration:

• message_bus_ciena_mcp.props
• message_bus_ciena_mcp.rules
• message_bus_ciena_notificationMap.rules
• message_bus_ciena_resyncMap.rules
• cienaMcpTransport.properties
• ciena_mcp_parser_config.json

To enable the Message Bus Probe to connect to the Blue Planet MCP REST API, and to subscribe to
notifications using Web Socket, use the following steps:

1. Configure the probe properties in the message_bus_ciena_mcp.props file.

Username : 'username'
Password : 'password'
Host : 'mcp.ciena.com'
Port : 443
EnableSSL : 'true'
KeyStore : '/home/netcool/keystore.jks'
KeyStorePassword : 'password'

RulesFile : '$OMNIHOME/probes/linux2x86/message_bus_ciena_mcp.rules'
PropsFile : '$OMNIHOME/probes/linux2x86/message_bus_ciena_mcp.props'
TransportFile : '$OMNIHOME/java/conf/cienaMcpTransport.properties'
TransportType : 'WebSocket'
TransformerFile : '$OMNIHOME/probes/linux2x86/ciena_mcp_parser_config.json'
MessageLog : '$OMNIHOME/log/message_bus_ciena_mcp.log'

InitialResync : 'true'
HeartbeatInterval : 1

Update the properties with the values appropriate for your system.
2. Configure the transport properties in the cienaMcpTransport.properties file.

Get the client token from /tron/api/v1/tokens
loginRequestURI=/tron/api/v1/tokens
loginRequestMethod=POST
loginRequestContent={\"username\":\"++Username++\",\"password\":\"++Password++\"}

++Username++ and ++Password++ used in loginRequestContent will be substituted with the
values specified for Username and Password in the probe properties file. When correctly
authenticated, the response will contain a token which will be used in subsequent API queries.

#Use with pagination
resyncRequestURI=/nsa/api/v2_0/alarms/filter/filteredAlarms?filter%5Bstate%5D%5B
%5D=ACTIVE&filter%5Bseverity%5D%5B%5D=CRITICAL%2CMAJOR%2CMINOR%2CWARNING&offset=+
+{0,100,100}++&pageSize=100

50 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

resyncRequestMethod=GET
resyncRequestHeaders=Authorization=Bearer ++token++

These properties specify the Alarms (v2) REST API query to retrieve network alarms for
resynchronisation purposes. This query filters only for active alarms having Critical, Major, Minor
and Warning severities. The token value will be substituted with the token value retrieved from
successful authentication with Blue Planet MCP.

The query also uses an offset pagination functionality to enable the probe to request for data in
batches. The offset value ++{start, stop, step}++ will be substituted with the correct number at
runtime by the probe. In the example above, the offset number is derived by adding the start and step
numbers namely: 0+100=100. You should specify 0 for the start value to indicate that the start of
the returned data is from the first record and specify similar values for the step and pageSize. The
stop value is currently not used to calculate the offset value and can be ignored. When 100 is
specified for the step and pageSize, MCP returns 100 records for each queried batch.

Connecting to Frostpush websocket
webSocketURI=/kafkacomet/socket/websocket?user_id=++user++&vsn=1.0.0
webSocketHeaders=Authorization=Bearer ++token++
webSocketSubscribeMessage={\"topic\":\"topics:bp.aeprocessor.v1.alarms\",\"ref\":0,\"event
\":\"phx_join\",\"payload\":{}}
webSocketRefreshMessage={\"topic\":\"topics:bp.aeprocessor.v1.alarms\",\"event\":\"heartbeat
\",\"payload\":{},\"ref\":\"1\"}
webSocketRefreshInterval=20

These properties configure the probe to subscribe to notifications using WebSocket. The ++user++
variable will be substituted with the value specified for Username in the probe properties file.

To keep the WebSocket connection open, a heartbeat must be sent with a frequency of less than every
30 seconds. If the Blue Planet MCP server does not receive a heartbeat every 30 seconds, in the
absence of any other messages, the connection will be terminated. The default
webSocketRefreshInterval value is 20 seconds.

Refresh the tokens every hour , change the interval if necessary.
loginRefreshURI=/tron/api/v1/tokens
loginRefreshMethod=POST
loginRefreshContent={\"username\":\"++Username++\",\"password\":\"++Password++\"}
loginRefreshInterval=3600
refreshRetryCount=5

Blue Planet MCP sets the session inactivity timeout value per system or user, this can be viewed and
configured in the Blue Planet MCP UI System > Security > Inactivity tab. For the HTTP channel to be
kept alive, loginRefreshInterval should be set to a value lower than the MCP session inactivity
timeout value. The default loginRefreshInterval value is 3600 seconds. The default
refreshRetryCount is 5 times.

3. Configure the transformer properties in the ciena_mcp_parser_config.json file. Update the
endpoint attribute of NotificationAlarmParser to match the webSocketURI used in the
cienaMcpTransport.properties file.

{
 "eventSources" : [{
 "endpoint" : "/kafkacomet/socket/websocket",
 "name" : "NotificationAlarmParser",
 "config" : {
 "dataToRecord" : [],
 "messagePayload" : "json.payload.body.value",
 "messageHeader" : "",
 "jsonNestedPayload" : "json.event.alarm",
 "jsonNestedHeader" : "",
 "messageDepth" : 4
 }
 }, {
 "endpoint" : "resync",
 "name" : "ResyncAlarmParser",
 "config" : {
 "dataToRecord" : [],
 "messagePayload" : "json.data",
 "messageHeader" : "",
 "jsonNestedPayload" : "",

Chapter 1. Probe for Message Bus 51

 "jsonNestedHeader" : "",
 "messageDepth" : 3
 }
 }, {
 "name" : "OtherAlarmParser",
 "type" : "ANY",
 "config" : {
 "dataToRecord" : [],
 "messagePayload" : "json",
 "messageHeader" : "",
 "jsonNestedPayload" : "",
 "jsonNestedHeader" : "",
 "messageDepth" : 5
 }
 }]
}

Probe integration for IBM Cloud Platform Common Services (CS) Monitoring
The Message Bus Probe can be configured to integrate with IBM Cloud Platform Common Services (CS)
Monitoring by using either Logstash or Prometheus to forward CS events to Netcool/OMNIbus.

CS uses Logstash to collect and normalize container logs running on CS. A Logstash pipeline can be
configured to forward these normalized events in JSON format to the probe. Prometheus is an open-
source system monitoring and alerting toolkit. It collects metrics from CS and allows users to configure
alerting rules to send alerts when a condition is triggered.

You can choose to receive CS events via either Logstash, Prometheus or both. Two sets of configuration
files are provided with the probe: one for Logstash and one for Prometheus. To receive CS events for both,
two probes are required.

Note: A containerised version of the Probe for Message Bus is also available. It is delivered in the form of
helm packages: one for Logstash and one for Prometheus. Each package pulls the probe Docker image
and deploys a cluster of containerised Message Bus Probes within the Kubernetes platform environment.
The probes process events and alerts from Logstash or Prometheus and send them to a NOI operational
dashboard. For details about the helm package used to deploy a cluster of Probes for Message Bus onto
Kubernetes see https://www.ibm.com/support/knowledgecenter/en/SSSHTQ/omnibus/helms/
cloud_monitoring/wip/concept/cemh_intro.html.

Configuring the Message Bus Probe to receive notifications from Prometheus
The Message Bus Probe can be configured to integrate with IBM Cloud Platform Common Services on Red
Hat Open Shift Container Platform (OCP) using Prometheus to forward cluster alerts to Netcool/OMNIbus.

The following configuration files are supplied with the probe for the integration with CS Monitoring using
Prometheus:

• message_bus_prometheus.props
• message_bus_prometheus.rules
• message_bus_prometheus_parser.json
• prometheusWebhookTransport.properties

Note: The default probe rules require OMNIbus event grouping triggers to be installed.

To integrate the Message Bus Probe with CS Monitoring using Prometheus, use the following steps:

1. Install/update the Message Bus Probe using IBM Installation Manager, see “Installing probes” on
page 4.

2. Edit the probe configuration in the following probe properties file:

$OMNIHOME/probes/<arch>/message_bus_prometheus.props

Where <arch> is the architecture directory, for example linux2x86
3. Update the following property values with the appropriate path:

PropsFile : '$OMNIHOME/probes/linux2x86/message_bus_prometheus.props'
RulesFile : '$OMNIHOME/probes/linux2x86/message_bus_prometheus.rules'

52 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

https://www.ibm.com/support/knowledgecenter/en/SSSHTQ/omnibus/helms/cloud_monitoring/wip/concept/cemh_intro.html
https://www.ibm.com/support/knowledgecenter/en/SSSHTQ/omnibus/helms/cloud_monitoring/wip/concept/cemh_intro.html

TransportType : 'Webhook'
TransportFile : '$OMNIHOME/java/conf/prometheusWebhhookTransport.properties'

4. Edit the Port property to a free local port number, for example: 80.
5. Edit the Webhook transport configuration in the following transport properties file:

$OMNIHOME/probes/java/conf/prometheusWebhookTransport.properties
6. Update the following property value with the appropriate path:

webhookURI=/probe/webhook/prometheus

7. Update the endpoint attribute in $OMNIHOME/probes/<arch>linux2x86/
message_bus_prometheus_parser.json to be the same as the webhookURI path if you have
updated the webhookURI property.

8. If you require secure connection, refer to “Connecting to WebSocket using SSL” on page 29.
9. Start the probe with the propsfile option to specify the Prometheus properties file using the

following command:

$OMNIHOME/probes/nco_p_message_bus -propsfile $OMNIHOME/probes/linux2x86/
message_bus_prometheus.props

10. Verify that the probe is running.

The Webhook URL will be logged in the probe log file for reference. This is the URL of the probe
Webhook.

11. Re-configure Prometheus in ICP to forward HTTP POST notifications to the probe host with the path
specified in the webhookURI property.

For example: http://<probehost>:80/probe/webhook/prometheus

See “Configuring Prometheus in Kubernetes from the command line” on page 53.
12. Optional. Verify the probe version info with the version command line option using the following

command:

$OMNIHOME/probes/nco_p_message_bus -version

Configuring Prometheus in Kubernetes from the command line
Procedure for configuring Prometheus to point to the probe's webhook running on Red Hat Open Shift
Container Platform (OCP). It can also be used with the on-premises version of the probe.

Modifying Prometheus Alert Manager and Alert Rules Configuration for OCP Monitoring

1. Determine the Prometheus Alert Manager configuration secret in the cluster. The default Secret that
contains the Alert Manager configuration is in openshift-monitoring. See Applying custom
Alertmanager configuration

2. A sample Alert Manager configuration with the probe webhook config applied is shown below. The
sample endpoint http://<probehost>:80/probe/webhook/prometheus.

global:
 resolve_timeout: '5m'
receivers:
- name: 'null'
- name: 'netcool_probe'
 webhook_configs:
 - url: 'http://<probehost>:80/probe/webhook/prometheus'
 send_resolved: true
route:
 group_by:
 - alertname
 group_interval: 5m
 group_wait: 30s
 receiver: netcool_probe
 repeat_interval: 5s
 routes:
 - receiver: netcool_probe

Chapter 1. Probe for Message Bus 53

https://docs.openshift.com/container-platform/4.3/monitoring/cluster-monitoring/configuring-the-monitoring-stack.html#applying-custom-alertmanager-configuration_configuring-monitoring
https://docs.openshift.com/container-platform/4.3/monitoring/cluster-monitoring/configuring-the-monitoring-stack.html#applying-custom-alertmanager-configuration_configuring-monitoring

 match:
 alertname: Watchdog

3. Apply the updated Alert Manager configuration file.
4. For details about applying custom alerting rules, see Managing cluster alerts.
5. Verify that your probe is receiving the OCP Monitoring alerts and events appear on the Netcool/

OMNIbus Event List.

Modifying Prometheus Alert Manager and Alert Rules on IBM Cloud Platform Common Services in
Red Hat OCP 4.2

To modify the default CS Monitoring configuration, use the following steps:

1. Determine the Prometheus Alert Manager config map in the kube-system namespace. In the
default configmaps in the kube-system namespace it is: monitoring-prometheus-
alertmanager.

2. Edit the Prometheus Alert Manager config map to add a new receiver in the receivers section.
The default Prometheus deployment config map name is monitoring-prometheus-
alertmanager in the kube-system namespace. If a separate Prometheus or CS Monitoring instance
is deployed, determine the alertmanager config map and add the new receiver. To do this from the
command line, configure the kubectl client and follow the steps below.

3. Load the config map into a file using the following command:

kubectl get configmap monitoring-prometheus-alertmanager --namespace=kube-
system -o yaml > alertmanager.yaml

4. Edit the alertmanager.yaml file and add the configuration as shown below:

route:
 receiver: 'netcool_probe'

receivers:
- name: 'netcool_probe'
 webhook_configs:
 - url: 'http://<probehost>:80/probe/webhook/prometheus'
 send_resolved: true

Replace the url parameter with the probe's webhook URL. This can be the probe's webhook URL
deployed either on Kubernetes or on-premises.

5. Save the changes in the file and replace the config map using the following command:

$ kubectl replace configmaps monitoring-prometheus-alertmanager --
namespace=kube-system -f alertmanager.yaml

configmap "monitoring-prometheus-alertmanager" replaced
6. Review the sample alert rules CRD YAML below. You may update the rules or add more rules to

generate more alerts to monitor your cluster. The Message Bus Probe rules file expects the following
attributes from the alerts generated by Prometheus Alert Manager:

• labels.severity: The severity of the alert. Should be set to critical, major, minor, or
warning. This is mapped to the Severity field in the ObjectServer alerts.status table.

• labels.instance: The instance generating the alert. This is mapped to the Node field in the
ObjectServer alerts.status table.

• labels.alertname: The alert rule name. This is mapped to the AlertGroup field in the
ObjectServer alerts.status table.

• annotations.description: (Optional) The full description of the alert. This is mapped to the
Summary field in the ObjectServer alerts.status table.

• annotations.summary: A short description or summary of the alert. This is mapped to the
Summary field in the ObjectServer alerts.status table if annotations.description is unset.

54 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

https://docs.openshift.com/container-platform/4.3/monitoring/cluster-monitoring/managing-cluster-alerts.html#managing-cluster-alerts

• annotations.type: The alert type. For example, "Container", "Service", or "Service". This is
mapped to the AlertKey field in the ObjectServer alerts.status table.

• labels.release: (Optional) If set, will be mapped to the ScopeId field in the ObjectServer
alerts.status table which will be used as the first level group to group related events.

• labels.job: (Optional) If set, will be mapped to the SiteName field in the ObjectServer
alerts.status table which will be used as the sub-group to group related events.

Note: Sample alert-rules CRD. This file is also available in the included CloudPak under
pak_extensions/prometheus-rules.

File: netcool-rules.yaml
Please modify these rules to monitor specific workloads,
containers, services or nodes in your cluster
apiVersion: monitoringcontroller.cloud.ibm.com/v1
kind: AlertRule
metadata:
 name: netcool-rules
spec:
 enabled: true
 data: |-
 groups:
 - name: alertrules.rules
 rules:
 ## Sample workload monitoring rules
 - alert: jenkins_down
 expr: absent(container_memory_usage_bytes{pod_name=~".*jenkins.*"})
 for: 30s
 labels:
 severity: critical
 annotations:
 description: Jenkins container is down for more than 30 seconds.
 summary: Jenkins down
 type: Container
 - alert: jenkins_high_cpu
 expr: sum(rate(container_cpu_usage_seconds_total{pod_name=~".*jenkins.*"}[1m]))
 / count(node_cpu_seconds_total{mode="system"}) * 100 > 70
 for: 30s
 labels:
 severity: warning
 annotations:
 description: Jenkins CPU usage is {{ humanize $value}}%.
 summary: Jenkins high CPU usage
 type: Container
 - alert: jenkins_high_memory
 expr: sum(container_memory_usage_bytes{pod_name=~".*jenkins.*"}) > 1.2e+09
 for: 30s
 labels:
 severity: warning
 annotations:
 description: Jenkins memory consumption is at {{ humanize $value}}.
 summary: Jenkins high memory usage
 type: Container
 ## End - Sample workload monitoring rules.
 ## Sample container monitoring rules
 - alert: container_restarts
 expr: delta(kube_pod_container_status_restarts_total[1h]) >= 1
 for: 10s
 labels:
 severity: warning
 annotations:
 description: The container {{ $labels.container }} in pod {{ $labels.pod }}
 has restarted at least {{ humanize $value}} times in the last hour on instance
 {{ $labels.instance }}.
 summary: Containers are restarting
 type: Container
 ## End - Sample container monitoring rules.
 ## Sample node monitoring rules
 - alert: high_cpu_load
 expr: node_load1 > 1.5
 for: 30s
 labels:
 severity: critical
 annotations:
 description: Docker host is under high load, the avg load 1m is at {{ $value}}.
 Reported by instance {{ $labels.instance }} of job {{ $labels.job }}.
 summary: Server under high load
 type: Server

Chapter 1. Probe for Message Bus 55

 - alert: high_memory_load
 expr: (sum(node_memory_MemTotal_bytes) - sum(node_memory_MemFree_bytes +
node_memory_Buffers_bytes
 + node_memory_Cached_bytes)) / sum(node_memory_MemTotal_bytes) * 100 > 85
 for: 30s
 labels:
 severity: warning
 annotations:
 description: Docker host memory usage is {{ humanize $value}}%. Reported by
 instance {{ $labels.instance }} of job {{ $labels.job }}.
 summary: Server memory is almost full
 type: Server
 - alert: high_storage_load
 expr: (node_filesystem_size_bytes{fstype="aufs"} -
node_filesystem_free_bytes{fstype="aufs"})
 / node_filesystem_size_bytes{fstype="aufs"} * 100 > 85
 for: 30s
 labels:
 severity: warning
 annotations:
 description: Docker host storage usage is {{ humanize $value}}%. Reported by
 instance {{ $labels.instance }} of job {{ $labels.job }}.
 summary: Server storage is almost full
 type: Server
 - alert: monitor_service_down
 expr: up == 0
 for: 30s
 labels:
 severity: critical
 annotations:
 description: Service {{ $labels.instance }} is down.
 summary: Monitor service non-operational
 type: Service
 ## End - Sample node monitoring rules.

7. Use the following command to create a new AlertRule in the kube-system namespace.

$ kubectl apply -f netcool-rules.yaml --namespace kube-system

Note: It usually takes a couple of minutes for Prometheus to reload the updated config maps and
apply the new configuration.

8. Verify that Prometheus events appear on the OMNIbus Event List.

Configuring the Message Bus Probe to receive notifications from Logstash
The Message Bus Probe can be configured to integrate with IBM Cloud Private (ICP) using Logstash to
forward ICP events to Netcool/OMNIbus.

The following configuration files are supplied with the probe for the integration with ICP using Logstash:

• message_bus_logstash.props
• message_bus_logstash.rules
• message_bus_logstash_parser.json
• logstashWebhookTransport.properties

Note: The default probe rules require OMNIbus event grouping triggers to be installed.

To integrate the Message Bus Probe with ICP using Logstash, use the following steps:

1. Install/update the Message Bus Probe using IBM Installation Manager, see “Installing probes” on
page 4.

2. Edit the probe configuration in the following probe properties file:

$OMNIHOME/probes/<arch>/message_bus_logstash.props

Where <arch> is the architecture directory, for example linux2x86
3. Update the following property values with the appropriate path:

PropsFile : '$OMNIHOME/probes/linux2x86/message_bus_logstash.props'
RulesFile : '$OMNIHOME/probes/linux2x86/message_bus_logstash.rules'
TransportType : 'Webhook'
TransportFile : '$OMNIHOME/java/conf/logstashWebhhookTransport.properties'

56 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

4. Edit the Port property to a free local port number, for example: 80.
5. Edit the Webhook transport configuration in the following transport properties file:

$OMNIHOME/probes/java/conf/logstashWebhookTransport.properties
6. Update the following property value with the appropriate path:

webhookURI=/probe/webhook/logstash

7. Update the endpoint attribute in $OMNIHOME/probes/<arch>linux2x86/
message_bus_logstash_parser.json to be the same as the webhookURI path if you have
updated the webhookURI property.

8. If you require secure connection, refer to “Connecting to WebSocket using SSL” on page 29.
9. Start the probe with the propsfile option to specify the Logstash properties file using the following

command:

$OMNIHOME/probes/nco_p_message_bus -propsfile $OMNIHOME/probes/linux2x86/
message_bus_logstash.props

10. Verify that the probe is running.

The Webhook URL will be logged in the probe log file for reference. This is the URL of the probe
Webhook.

11. Re-configure Logstash in ICP to forward HTTP POST notifications to the probe host with the path
specified in the webhookURI property.

For example: http://<probehost>:80/probe/webhook/logstash

See “Configuring Logstash in ICP from the command line” on page 57.
12. Optional. Verify the probe version info with the version command line option using the following

command:

$OMNIHOME/probes/nco_p_message_bus -version

Configuring Logstash in ICP from the command line
Procedure for configuring Logstash to point to the probe's webhook running on ICP. It can also be used
with the on-premises version of the probe.

Modifying Logstash configuration on IBM Cloud Private 3.2.0

To modify the default Logstash configuration, use the following steps:

1. Determine the Logstash Pipeline ConfigMap in the same namespace. In this procedure, the ConfigMap
in the kube-system namespace is logging-elk-logstash-pipeline-config. If a separate
Logstash is deployed, determine the pipeline ConfigMap and add a new http output. Note: In ICP
3.1.2 or below, the Logstash Pipeline ConfigMap name is logging-elk-logstash-config.

2. Edit the Logstash pipeline ConfigMap to add a new http output. To do this via the command line,
configure kubectl client and follow the steps below.

3. Load the config map into a file using the following command:

kubectl get configmap logging-elk-logstash-pipeline-config --namespace=kube-
system -o yaml > logging-elk-logstash-pipeline-config.yaml

4. Edit the logging-elk-logstash-pipeline-config.yaml file and modify the output object to
add a new http output object as shown below (using the full webhook URL as shown in step 1
above in the http.url parameter):

output {
 elasticsearch {
 index => "logstash-%{+YYYY.MM.dd}"
 hosts => "elasticsearch:9200"
 }
 http {
 url => "http://<ip_address>:<port>/probe/webhook/logstash"
 format => "json"

Chapter 1. Probe for Message Bus 57

 http_method => "post"
 pool_max_per_route => "5"
 }
 }

Note: (Optional) The pool_max_per_route is set to limit concurrent connections to the probe to 5
so that Logstash does not flood the probe which may cause event loss.

5. Save the changes in the file and replace the config map using the following command:

kubectl replace --namespace kube-system logging-elk-logstash-pipeline-config -f logging-elk-
logstash-pipeline-config.yaml
configmap "logging-elk-logstash-pipeline-config" replaced

Note: It usually takes a minute or so for Logstash to reload the new configmap.
6. Check the logs to make sure there are no errors sending HTTP POST notifications to the probe.

Probe integration for IBM Event Streams for IBM Cloud
The Message Bus Probe can be configured to integrate with IBM Event Streams for IBM Cloud.

Configuring the Message Bus Probe

The following configuration files are supplied with the probe for the integration with the Message Bus
server:

• message_bus.props
• message_bus_parser_config.json
• kafkaClient.properties
• kafkaConnectionProperties.json
• kafkaTransport.properties

The integration also requires the following files which you must create manually:

• kafka_client_jaas.conf
• kafkaClient_javaSys.properties

To configure the Message Bus Probe to consume new events from IBM Event Streams, use the following
steps:

1. Create and configure an IBM Event Streams on IBM Cloud. For details about how to do so, see the
following web page: https://cloud.ibm.com/docs/services/EventStreams?topic=eventstreams-
getting_started

Note: The credentials needed by the probe to connect to the target can be found under Service
Credentials in the Event Stream service created.

2. Install/update the Message Bus Probe using IBM Installation Manager, see “Installing probes” on
page 4.

3. Configure the properties in the message_bus.props file.

Example values:

PropsFile : 'C:\IBM\Tivoli\Netcool\omnibus\probes\win32\message_bus.props'
RulesFile : 'C:\IBM\Tivoli\Netcool\omnibus\probes\win32\message_bus_kafka.rules'
TransportType : 'KAFKA'
TransportFile : 'C:\IBM\Tivoli\Netcool\omnibus\java\conf\kafkaTransport.properties'
TransformerFile : 'C:\IBM\Tivoli\Netcool\omnibus\probes
\win32\message_bus_parser_config.json'
MessagePayload : 'JSON'

EnableSSL : 'true'
NHttpd.EnableHTTP : TRUE
NHttpd.ListeningPort : 8080
HeartbeatInterval : 10

58 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

https://cloud.ibm.com/docs/services/EventStreams?topic=eventstreams-getting_started
https://cloud.ibm.com/docs/services/EventStreams?topic=eventstreams-getting_started

Note: There is no need to configure Username and Password in probe properties file, instead the
probe takes the values specified in the kafka_client_jaas.conf file.

4. Configure the parser properties in the message_bus_parser_config.json file.

Example values:

{
 "eventSources" : [{
 "endpoint" : "/notification",
 "name" : "NotificationAlarmParser",
 "config" : {
 "dataToRecord" : [],
 "messagePayload" : "json",
 "messageHeader" : "",
 "jsonNestedPayload" : "",
 "jsonNestedHeader" : "",
 "messageDepth" : 3
 }
 }, {
 "endpoint" : "/resync",
 "name" : "ResyncAlarmParser",
 "config" : {
 "dataToRecord" : [],
 "messagePayload" : "json",
 "messageHeader" : "",
 "jsonNestedPayload" : "",
 "jsonNestedHeader" : "",
 "messageDepth" : 3
 }
 }, {
 "name" : "OtherAlarmParser",
 "type" : "ANY",
 "config" : {
 "dataToRecord" : [],
 "messagePayload" : "json",
 "messageHeader" : "",
 "jsonNestedPayload" : "",
 "jsonNestedHeader" : "",
 "messageDepth" : 5
 }
 }]
}

5. Configure the Kafka client login details in the kafka_client_jaas.conf file.

Example values:

KafkaClient {
 org.apache.kafka.common.security.plain.PlainLoginModule required
 serviceName="kafka"
 username="<Event Streams USER>"
 password="<Event Streams API_KEY>";
};

6. Specify the Java security authentication configuration to use in the
kafkaClient_javaSys.properties file.

Example value:

java.security.auth.login.config=C:\IBM\Tivoli\Netcool\omnibus\java\conf
\kafka_client_jaas.conf

7. Configure the Kafka client properties in the kafkaClient.properties file.

Example values:

key.deserializer=org.apache.kafka.common.serialization.StringDeserializer
value.deserializer=org.apache.kafka.common.serialization.StringDeserializer

key.serializer=org.apache.kafka.common.serialization.StringSerializer
value.serializer=org.apache.kafka.common.serialization.StringSerializer

acks=all
security.protocol=SASL_SSL
sasl.mechanism=PLAIN
ssl.protocol=TLSv1.2

Chapter 1. Probe for Message Bus 59

ssl.enabled.protocols=TLSv1.2
ssl.keystore.location=C:\IBM\Tivoli\Netcool\platform\win32\jre_1.8.0\jre\lib\security
\cacerts
ssl.keystore.password=changeit
ssl.keystore.type=JKS
group.id=test-consumer-group

8. Configure the Kafka client connection properties in the kafkaConnectionProperties.json file.

Example values:

{
 "zookeeper_client" :
 {
 "target" : "",
 "properties" : "",
 "java_sys_props" : "",
 "topic_watch": false,
 "broker_watch": false
 },
 "brokers" :"<KAFKA_BROKERS_SASL>,
 "topics": "<Event Streams TOPIC NAME>",
 "kafka_client" :
 {
 "properties" : "C:\\IBM\\Tivoli\\Netcool\\omnibus\\java\\conf\\kafkaClient.properties",
 "java_sys_props" : "C:\\IBM\\Tivoli\\Netcool\\omnibus\\java\\conf\
\kafkaClient_javaSys.properties"
 }
}

Note: Event Streams service provides a list of brokers. If you wish to use multiple brokers, you can
configure this file with multiple brokers, each separated with a comma.

9. Configure the Kafka transport properties in the kafkaTransport.properties file.

Example values:

KafkaClientMode=CONSUMER
ConnectionPropertiesFile=C:\IBM\Tivoli\Netcool\omnibus\java\conf
\kafkaConnectionProperties.json

10. Start the probe with the propsfile option to specify the Kafka properties file using the following
command:

$OMNIHOME\probes\nco_p_message_bus -propsfile $OMNIHOME\probes
\win32\message_bus_message.props

11. To test if your Event Stream service is configured correctly and has started successfully, send events
to the target using the sample producer application provided in the IBM Event Streams.

Probe integration for iDirect Pulse
The Message Bus Probe can be configured to integrate with iDirect Pulse version 2.1/2.2.

The following configuration files are supplied with the probe for the integration with iDirect Pulse:

• message_bus_iDirect_pulse.props
• message_bus_iDirect_pulse.rules
• iDirectPulseTransport.properties

To integrate the Message Bus Probe with iDirect Pulse, use the following steps:

1. Install/update the Message Bus Probe using IBM Installation Manager, see “Installing probes” on
page 4.

2. Edit the probe configuration in the following probe properties file:

$OMNIHOME/probes/java/<arch>/message_bus_iDirect_pulse.props

Where <arch> is the architecture directory, for example linux2x86
3. Update the following property values with the appropriate path:

MessageLog : '$OMNIHOME/log/message_bus_iDirect_pulse.log'
PropsFile : '$OMNIHOME/probes/linux2x86/message_bus_iDirect_pulse.props'

60 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

RulesFile : '$OMNIHOME/probes/linux2x86/message_bus_iDirect_pulse.rules'
DataBackupFile : '$OMNIHOME/var/message_bus_pulse.backup'
TransportFile : '$OMNIHOME/java/conf/iDirectPulseTransport.properties'

4. Uncomment and update the following properties with the appropriate host information and user
credentials:

Host : ''
Port : 80
Username : ''
Password : ''

5. If you require secure connection, refer to “Connecting to WebSocket using SSL” on page 29.
6. Start the probe with the propsfile option to specify the iDirect Pulse properties file using the

following command:

$OMNIHOME/probes/nco_p_message_bus -propsfile $OMNIHOME/probes/linux2x86/
message_bus_iDirect_pulse.props

7. Verify that the probe is running.
8. Optional. Verify the probe version info with the version command line option using the following

command:

$OMNIHOME/probes/nco_p_message_bus -version

Probe integration for Kafka
The Message Bus Probe can be configured to integrate with a Kafka server to consume events.

The Message Bus Probe connects to the Kafka server using the Kafka transport. This enables the probe
support the Kafka Client version 2.3.1 and Zookeeper version 3.4.14.

Check the Apache Kafka compatibility matrix for the support of the target system with respect to the
dependency.

Configuring the Message Bus Probe to consume new events from Kafka

The following configuration files are supplied with the probe for the integration with Kafka:

• message_bus_kafka.props
• message_bus_kafka.rules
• kafkaTransport.properties
• kafkaConnectionProperties.json
• kafkaClient.properties

To configure the Message Bus Probe to consume new events from Kafka, use the following steps:

1. Install/update the Message Bus Probe using IBM Installation Manager, see “Installing probes” on
page 4.

2. Edit the probe configuration in the following probe properties file:

$OMNIHOME/probes/<arch>/message_bus_kafka.props

Where <arch> is the architecture directory, for example linux2x86
3. Update the following property values with the appropriate path:

Manager : 'Kafka'
MessageLog : '$OMNIHOME/log/message_bus_kafka.log'
PropsFile : '$OMNIHOME/probes/linux2x86/message_bus_kafka.props'
RulesFile : '$OMNIHOME/probes/linux2x86/message_bus_kafka.rules'
TransportType : 'KAFKA'
TransportFile : '$OMNIHOME/java/conf/kafkaTransport.properties'
TransformerFile : '$OMNIHOME/probes/linux2x86/message_bus_parser_config.json'
MessagePayload : 'JSON'

Chapter 1. Probe for Message Bus 61

4. Configure the Kafka transport properties.

a. Edit the Kafka transport configuration in the following transport properties file:

$OMNIHOME/probes/java/conf/kafkaTransport.properties
b. Update the following property value with the appropriate path:

kafkaClientMode=CONSUMER
connectionPropertiesFile=$OMNIHOME/java/conf/kafkaConnectionProperties.json

5. For descriptions of the Kafka transport properties, see the “Configuring the Kafka transport” on page
43.

6. Configure the Kafka connection properties.

Kafka connection properties are defined in the kafkaConnectionProperties.json file. This file
contains the following properties:

{
 "zookeeper_client" :
 {
 "target" : "",
 "properties" : "",
 "java_sys_props" : "",
 "topic_watch": true,
 "broker_watch": true
 },
 "brokers" : "",
 "topics": "",
 "kafka_client" :
 {
 "properties" : "",
 "java_sys_props" : ""
 }
 }

The ZooKeeper event access is required.

a. Within the sample configuration file supplied with the probe, update the path to the ZooKeeper
client properties file.

 "zookeeper_client" :
 {
 "target" : "localhost:2181",
 "properties" : "<Path to zookeeper client properties file>",
 "java_sys_props" : "",
 "topic_watch": true,
 "broker_watch": true
 },

b. Update the path to the Kafka client properties file:

 "brokers" : "PLAINTEXT://localhost:9092",
 "topics": "topicABC,topicXYZ",
 "kafka_client" :
 {
 "properties" : "<omnihome_path>/java/conf/kafkaClient.properties",
 "java_sys_props" : ""
 }

7. Specify additional configuration to use with SASL authentication, if SASL authentication is required.

Kafka brokers supports client authentication using SASL. Additional configuration settings are
required to authenticate with SASL.

a. Enable the following properties in the Kafka connection properties file
(kafkaConnectionProperties.json)

62 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

"java_sys_props" : "<Path to a text file containing java system
properties configuration>"

Example:

"java_sys_props" : "java.security.auth.login.config=C:\\IBM\\Tivoli\
\Netcool\\omnibus\\java\\conf\\java_sys_prop.conf"

b. Create and enable the following properties in the Java system properties file
(java_sys_prop.conf):

Example:

KafkaClient {
 org.apache.kafka.common.security.plain.PlainLoginModule required
 serviceName="kafka"
 username="wfE7hGteeNl4i9JJ"
 password="xtPqsWiPXN4cSwi6h2BE4GbaJ3uheal2";
 };

c. Enable and set the following properties in the Kafka client properties file
(kafkaClient.properties)

security.protocol
 ssl.enabled.protocols

 ssl.keystore.location
 ssl.keystore.password
 ssl.keystore.type

 Included when trust stores are in use.
 ssl.truststore.location
 ssl.truststore.password
 ssl.truststore.type

Example:

security.protocol=SASL_SSL
 ssl.enabled.protocols=TLSv1.2

 ssl.keystore.location=C:\\Programs\\ibm-java-sdk-80-win-x86_64\\sdk
\\jre\\lib\\security\\cacerts
 ssl.keystore.password=changeit
 ssl.keystore.type=JKS

 ssl.truststore.location=C:\\Programs\\ibm-java-sdk-80-win-x86_64\\sdk
\\jre\\lib\\security\\cacerts
 ssl.truststore.password=changeit
 ssl.truststore.type=JKS

8. For descriptions of the Kafka connection properties, see the “Configuring the Kafka transport” on
page 43.

9. Start the probe with the propsfile option to specify the Kafka properties file using the following
command:

$OMNIHOME/probes/nco_p_message_bus -propsfile $OMNIHOME/probes/linux2x86/
message_bus_kafka.props

10. Verify that the probe is running.

Probe integration for Microsoft Azure Monitoring
The Message Bus Probe can be configured to obtain events from Microsoft Azure Monitoring.

The following configuration files are supplied with the probe for the integration:

• message_bus_azure.props
• message_bus_azure.rules
• message_bus_azure_WebhookTransport.properties

Chapter 1. Probe for Message Bus 63

• message_bus_azure_config.json

To enable the Message Bus Probe to host a Webhook server for listening to incoming data from Azure
Monitoring, use the following steps:

1. Set the following properties in the message_bus_azure.props file:

.

.

.
 SETTING PROBE LOGS, PROPS, RULES:
 MessageLog : '$OMNIHOME/log/message_bus_azure.log'
 PropsFile : '$OMNIHOME/probes//message_bus_azure.props'
 RulesFile : '$OMNIHOME/probes//message_bus_azure.rules'

 SETTING TRANSPORT TYPE:
 TransportType : 'Webhook'
 TransportFile : '$OMNIHOME/java/conf/message_bus_azure_WebhookTransport.properties'

 SETTING PARSER CONFIGURATIONS. (SUPPORTS JSON)
 TransformerFile : '$OMNIHOME/probes//message_bus_azure_parser.json'
 MessagePayload : 'JSON'
.
.
.

2. Set the following properties in the message_bus_azure_parser.json file:

Note: The probe package contains a default parser configuration for Microsoft Azure Monitoring.

 {
 "eventSources" : [{
 "endpoint" : "/notification",
 "name" : "NotificationAlarmParser",
 "config" : {
 "dataToRecord" : [],
 "messagePayload" : "json",
 "messageHeader" : "",
 "jsonNestedPayload" : "",
 "jsonNestedHeader" : "",
 "messageDepth" : 5
 }
 }, {
 "endpoint" : "/resync",
 "name" : "ResyncAlarmParser",
 "config" : {
 "dataToRecord" : [],
 "messagePayload" : "json",
 "messageHeader" : "",
 "jsonNestedPayload" : "",
 "jsonNestedHeader" : "",
 "messageDepth" : 3
 }
 }, {
 "name" : "OtherAlarmParser",
 "type" : "ANY",
 "config" : {
 "dataToRecord" : [],
 "messagePayload" : "json.data.context",
 "messageHeader" : "json",
 "jsonNestedPayload" : "",
 "jsonNestedHeader" : "",
 "messageDepth" : 5
 }
 }]
 }

.

.

.

3. Update webhookURI property in the message_bus_WebhookTransport.properties file.

webhookURI=http://:<Probe's Webhook Port>/probe/webhook

Note: webHookURI property can be initialized in one of three ways:

64 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Option 1: Assign host and port value in URI as described above. For example:

webhookURI=http://:<User_Assigned_Host>:<User_Assigned_Port>/probe/webhook

Option 2: Assign host and port value in probes properties file and assign webhookURI property with
webhook path's value only. For example:

webhookURI=/probe/webhook

Option 3: When Host and Port are not assigned in the probe's property and transport configuration
file, by default probe attempts to use hostname and port 80 to construct the webhook's path on local
server. For example:

webhookURI=http://:<Sys_Resolved_Host>:80/probe/webhook

Probe integration for Nokia 1350 OMS
The Message Bus Probe can be configured to integrate with Nokia 1350 OMS.

Note: Nokia has integrated Nokia 1350 OMS into the Network Functions Manager - Transport (NFM-T)
module within Nokia Network Services Platform. This probe is compatible with NFM-T R17.9 and R17.12.

The following configuration files are supplied with the probe for the integration with Nokia 1350 OMS:

• message_bus_nokia_oms1350.props
• message_bus_nokia_oms1350.rules
• cometdTransport.properties

To integrate the Message Bus Probe with Nokia 1350 OMS, use the following steps:

1. Install/update the Message Bus Probe using IBM Installation Manager, see “Installing probes” on
page 4.

2. Edit the probe configuration in the following probe properties file:

$OMNIHOME/probes/java/<arch>/message_bus_nokia_oms1350.props

Where <arch> is the architecture directory, for example linux2x86
3. Update the following property values with the appropriate path:

MessageLog : '$OMNIHOME/log/message_bus_nokia_oms1350.log'
PropsFile : '$OMNIHOME/probes/linux2x86/message_bus_nokia_oms1350.props'
RulesFile : '$OMNIHOME/probes/linux2x86/message_bus_nokia_oms1350.rules'
MessagePayload : 'json'
TransportType : 'Cometd'
TransportFile : '$OMNIHOME/java/conf/nokiaOms1350CometdTransport.properties'
HeartbeatInterval : 60

4. Uncomment and update the following properties with the appropriate host information and user
credentials:

Host : ''
Port :
Username : ''
Password : ''

5. If you require secure connection, refer to “Connecting to WebSocket using SSL” on page 29.
6. Start the probe with the propsfile option to specify the Nokia 1350 OMS properties file using the

following command:

$OMNIHOME/probes/nco_p_message_bus -propsfile $OMNIHOME/probes/linux2x86/
message_bus_nokia_om1350.props

7. Verify that the probe is running.
8. Optional. Verify the probe version info with the version command line option using the following

command:

$OMNIHOME/probes/nco_p_message_bus -version

Chapter 1. Probe for Message Bus 65

Probe integration for Nokia NSP
Details about the integration with Nokia NSP have been moved to the Probe Integration for Nokia NSP
Reference Guide.

Using the transformer module
The transformer module reads the XML event stream and converts the event data into a format suitable
for the destination application.

The endpoint from which the events are generated determines which transformation is required.

The probe uses the transformer module to transform the XML messages into a set of typed name-value
pairs. For this conversion, the transformer module uses the netcool2nvpairs.xsl file to convert
Netcool® XML events. For other XML events, the probe uses the XSLT file created for that type of XML
event to generate the name-value pairs.

This section contains the following topics:

• “Using XSLT files to transform events” on page 66
• “Using the transformer testing tool” on page 68
• “Configuring the transformer definition file” on page 69
• “Using the XML validation tool” on page 71

Using XSLT files to transform events
Each XML event source generates events in a format that is specified by its own XML schema. You create
an Extensible Stylesheet Language Translation (XSLT) file to transform events from that event source to
another XML format, making it possible for applications to share XML events.

The following table shows the XSLT files that are supplied with the transformer module.

Table 21. XSLT files supplied with the transformer module

XSLT file Description

addnvpairs.xsl This XSLT file is a support template. For details see
“Probe XSLT files” on page 67.

cbe2nvpairs.xsl This XSLT file converts Common Base Event (CBE)
events into name-value pairs for the probe to read.

netcool2cbe.xsl This XSLT file converts a Netcool event into an
event in CBE format.

netcool2nvpairs.xsl This XSLT file converts Netcool events into name-
value pairs that the probe can read.

u20002nvpairs.xsl This XSLT file converts U2000 events into name-
value pairs.

netcool2wef.xsl This XSLT file converts Netcool events from the
gateway into Web Services Distributed
Management (WSDM) Event Format (WEF) events.

wbe2nvpairs.xsl This XSLT file converts WebSphere Business Event
(WBE) events into name-value pairs for the probe
to read.

66 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Table 21. XSLT files supplied with the transformer module (continued)

XSLT file Description

wbepl2nvpairs.xsl This XSLT file includes wbm2nvpairs.xsl for
handling WebSphere Business Monitoring (WBM)
events that are contained within WBE events.

wbm2nvpairs.xsl This example XSLT file contains support XSLT
match functions for handling specific WBM trade
array event elements.

wef2nvpairs.xsl This XSLT file converts WEF events into name-
value pairs for the probe to read.

If you require other types of XSLT files, you must create them. The following topics provide information
that will help you to create XSLT files.

For details of the syntax required for XSLT files, see the XSL Transformations page on the W3C Web site:

http://www.w3.org/TR/xslt

Probe XSLT files

The input can be any XML message that is to be inserted into the ObjectServer. This type of XSLT file must
generate a set of name-type-value elements in the following format:

name:type:"value"

where:

• name consists of alphanumeric characters and underscores.
• type can be string, utc, or integer.
• value is any arbitrary string that does not include a new-line character.

The module is supplied with an XSLT template, addnvpairs.xsl, that you must include in your XSLT
file. You can call the template as a function, providing the function with the name, type, and value, to
format the output correctly. To use the support template, include the XSLT file using the following XSLT
include directive:

<xsl:include href="addnvpair.xsl"/>

Note: The href parameter for the file is relative to the location of the XSLT file that is including it. All
XSLT files supplied with the module are installed in the same directory. If the XSLT file that you create is
not in the same directory, you must specify the relative path to the support template within the href
parameter. The module is supplied with a basic name-value pair XSLT file (netcool2nvpairs.xsl)
which converts a Netcool XML event into a name-value pair for consumption by the probe.

The following example shows the content of the netcool2nvpairs.xsl with the include directive
highlighted:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0"
 xmlns:tns="http://item.tivoli.ibm.com/omnibus/netcool/nvpairs"
 xmlns:ens="http://item.tivoli.ibm.com/omnibus/netcool"
 exclude-result-prefixes="tns ens">
<xsl:output method="text"/>
<xsl:strip-space elements="*"/>

<xsl:include href="addnvpair.xsl"/>

<xsl:template match="/">
 <xsl:for-each select="ens:netcoolEvent">
 <xsl:call-template name="AddNVPair">
 <xsl:with-param name="name">
 <xsl:text>NetcoolEventAction</xsl:text>

Chapter 1. Probe for Message Bus 67

http://www.w3.org/TR/xslt

 </xsl:with-param>
 <xsl:with-param name="type">
 <xsl:text>string</xsl:text>
 </xsl:with-param>
 <xsl:with-param name="value">
 <xsl:value-of select="@type"/>
 </xsl:with-param>
 </xsl:call-template>
 <xsl:apply-templates/>
 </xsl:for-each>
</xsl:template>

<xsl:template match="ens:netcoolEvent/ens:netcoolField">
 <xsl:call-template name="AddNVPair">
 <xsl:with-param name="name">
 <xsl:value-of select="@name"/>
 </xsl:with-param>
 <xsl:with-param name="type">
 <xsl:value-of select="@type"/>
 </xsl:with-param>
 <xsl:with-param name="value">
 <xsl:value-of select="."/>
 </xsl:with-param>
 </xsl:call-template>
</xsl:template>

</xsl:stylesheet>

Within this example there are two other directives that you should include in all probe XSLT files:

• <xsl:output method="text"/>

This sets the XSLT to plain text, rather than the default of XML. As the output is required in name-type-
value elements, it must be in plain text.

• <xsl:strip-space elements="*"/>

This directive forces all unessential whitespace to be stripped from the output.

For additional guidance about creating XSLT files for use with the Message Bus Probe, see the following
Tech Note: http://www-01.ibm.com/support/docview.wss?uid=swg21622274

Using the transformer testing tool
The transformer testing tool helps you verify the XSLT file created for an XML event source.

The transformer testing tool allows you to check that the XSLT file that you have created for an XML event
source generates XML events in the expected format. This tool runs the source XML through the XSLT file
and prints the result of the XSLT transformation.

To start the transformer testing tool, run the following command:

java -cp $OMNIHOME/java/jars/Transformer.jar
com.ibm.tivoli.netcool.integrations.transformer.XSLTTransformer XSLT_file
Source_file

where:

• XSLT_file is the name of the XSLT file that you are testing.
• Source_file is the name of the XML file conforming to the schema file of the event source.

Example output from the transformer testing tool

The following is sample output from the transformer testing tool:

java -cp $OMNIHOME/java/jars/Transformer.jar
com.ibm.tivoli.netcool.integrations.transformer.XSLTTransformer
netcool2nvpairs.xsl netcool.xml
Output from applying transformer 'netcool2nvpairs.xsl' to source file
'netcool.xml':-
NetcoolEventAction:string:update
Identifier:string:"GATEWAY:Gateway Reader@hostname.Mon Nov 10 14:37:55 2008"
NodeAlias:string:"hostname"
Manager:string:"ConnectionWatch"

68 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

http://www-01.ibm.com/support/docview.wss?uid=swg21622274

Agent:string:""
AlertGroup:string:"Gateway"
AlertKey:string:"GATEWAY:Gateway Reader"
Severity:integer:"0"
Summary:string:"A GATEWAY process Gateway Reader running on
hostname has disconnected as username gateway"
StateChange:utc:"2008-11-10T14:38:33"
FirstOccurrence:utc:"2008-11-10T14:37:55"
LastOccurrence:utc:"2008-11-10T14:37:55"
InternalLast:utc:"2008-11-10T14:37:55"
Poll:integer:"0"
Type:integer:"1"
Tally:integer:"1"
Class:integer:"0"
Grade:integer:"0"
Location:string:""
OwnerUID:integer:"65534"
OwnerGID:integer:"0"
Acknowledged:integer:"0"
Flash:integer:"0"
EventId:string:""
ExpireTime:integer:"0"
ProcessReq:integer:"0"
SuppressEscl:integer:"0"
Customer:string:""
Service:string:""
PhysicalSlot:integer:"0"
PhysicalPort:integer:"0"
PhysicalCard:string:""
TaskList:integer:"0"
NmosSerial:string:""
NmosObjInst:integer:"0"
NmosCauseType:integer:"0"
LocalNodeAlias:string:""
LocalPriObj:string:""
LocalSecObj:string:""
LocalRootObj:string:""
RemoteNodeAlias:string:""
RemotePriObj:string:""
RemoteSecObj:string:""
RemoteRootObj:string:""
X733EventType:integer:"0"
X733ProbableCause:integer:"0"
X733SpecificProb:string:""
X733CorrNotif:string:""
URL:string:""
ExtendedAttr:string:""
ServerName:string:"NCOMS"
ServerSerial:integer:"1841"

Configuring the transformer definition file
The transformer definition file maps the XML event sources to their related XSLT files, and directs the
probe and the gateway to use the XSLT file associated to the XML event source.

The transformers.xml transformer definition file, located in the $OMNIHOME/java/conf directory,
defines how the messages that the probe reads, or that the gateway sends, are transformed. This file is
divided into two logical sections, one for the probe (southbound) and one for the gateway (northbound).

After creating an XSLT file for each event source, you create a transformer entry in the transformer
definition file. This enables the transformer module to use the specified XSLT file when transforming
events for that event source.

By default, the probe section enables the following transformations:

• messages received on a topic name of cbe are transformed by the cbe2nvpairs XSLT file
• messages received on a topic name of wef are transformed by the wef2nvpairs XSLT file
• messages received on a topic name of wbe are transformed by the wbe2nvpairs XSLT file
• messages received on a topic name of netcool are transformed by the netcool2nvpairs XSLT file

By default, the gateway section enables the following transformations:

• Netcool events that have an identifier of cbeEvents are transformed into CBE events (using the
netcool2cbe XSLT file) and published to the JMS using the topic cbe

Chapter 1. Probe for Message Bus 69

• Netcool events that have an identifier of wefEvents are transformed into WEF events (using the
netcool2wef XSLT file) and published to the JMS using the topic wef

• Netcool events that have an identifier of netcoolEvents are published to the JMS using the topic
netcool (without using an XSLT transformer)

Each entry takes the following format:

<tns:transformer name="transformer_name" type="southbound | northbound"
endpoint="event_endpoint" className="class_name">

<tns:property name="property_name" type="property_type" value="property_value"
description="description"/>

</tns:transformer>

where:

• transformer_name specifies the name of the transformer definition for an event source.
• type specifies the type of transformer being defined.

This is either southbound for transformers used by the probe, or northbound for transformers used
by the gateway.

• event_endpoint maps the endpoint from which the event arrived to an XSLT transformer and
determines the endpoint to which the event source sends events.

• class_name is the name of the class to be used.
• property_name is the name of a property to be set in the transformation.

For XSLT transformers, this is the name of the XSLT file to use.
• property_type identifies the type of entry that is set by the property_name field.

For an XSLT file name, this would be string.
• property_value is the field that specifies the path to the XSLT file created for the event source.
• description specifies the description for the XSLT file created for the event source.

Sample transformer file

The following is a sample transformer file with transformers for various event sources:

<?xml version="1.0" encoding="UTF-8" ?>
- <tns:transformers
 xmlns:tns="http://item.tivoli.ibm.com/omnibus/netcool/transformer"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

< !-- Southbound (probe) transformer definitions -->

< tns:transformer name="cbe2nvpairs" type="southbound" endpoint="cbe"
 className="com.ibm.tivoli.netcool.integrations.transformer.XSLTTransformer">

< tns:property name="xsltFilename" type="java.lang.String" value="${OMNIHOME}/java
 /conf/cbe2nvpairs.xsl" description="XSLT file for converting CBE events to
 name/value pairs"/>

< /tns:transformer>

< tns:transformer name="wef2nvpairs" type="southbound" endpoint="wef"
 className="com.ibm.tivoli.netcool.integrations.transformer.XSLTTransformer">

< tns:property name="xsltFilename" type="java.lang.String" value="${OMNIHOME}/
 java/conf/wef2nvpairs.xsl" description="XSLT file for converting WEF events
 to name/value pairs"/>

< /tns:transformer>

< tns:transformer name="netcool2nvpairs" type="southbound" endpoint="netcool"
 className="com.ibm.tivoli.netcool.integrations.transformer.XSLTTransformer">

< tns:property name="xsltFilename" type="java.lang.String" value="${OMNIHOME}/
 java/conf/netcool2nvpairs.xsl" description="XSLT file for converting Netcool
 events to name/value pairs"/>

70 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

< /tns:transformer>

< !-- Northbound (gateway) transformer definitions -->

< tns:transformer name="netcool2wef" type="northbound" endpoint="wef"
 className="com.ibm.tivoli.netcool.integrations.transformer.XSLTTransformer">

< tns:property name="xsltFilename" type="java.lang.String" value="${OMNIHOME}/
 java/conf/netcool2wef.xsl" description="XSLT file for converting Netcool
 events to WEF events"/>

< /tns:transformer>

< tns:transformer name="netcool2cbe" type="northbound" endpoint="cbe"
 className="com.ibm.tivoli.netcool.integrations.transformer.XSLTTransformer">

< tns:property name="xsltFilename" type="java.lang.String" value="${OMNIHOME}/
 java/conf/netcool2cbe.xsl" description="XSLT file for converting Netcool
 events to CBE events"/>

< /tns:transformer>

< tns:transformer name="netcoolEvents" type="northbound" endpoint="netcool"
 className="com.ibm.tivoli.netcool.integrations.transformer.
 EmptyTransformer">

< /tns:transformer>

< /tns:transformers>

You can prevent events from an event source being transformed by specifying an empty transformer for
that event source. The following example shows the entry for an event source with empty transformer
details:

<tns:transformer name="empty" id="empty" className="com.micromuse.common.
 transformer.EmptyTransformer"/>
 </tns:transformers>

Using the XML validation tool
You can use the XML validation tool to verify transformed XML events.

The XML validation tool allows you to validate transformed XML events against the XML schema of an
event source.

To validate the XML output, run the following command:

java -cp $OMNIHOME/java/jars/Transformer.jar
com.ibm.tivoli.netcool.integrations.transformer.XMLValidator XML_schema
XML_file

where:

• XML_schema is the XML schema against which you are validating the XML output.
• XML_file is the name of the XML output file whose format you are validating.

Running the probe
Probes can be run in a variety of ways. The way you chose depends on a number of factors, including your
operating system, your environment, and the any high availability considerations that you may have.

For details about how to run the probe, visit the following page on the IBM Tivoli Knowledge Center:

http://www-01.ibm.com/support/knowledgecenter/SSSHTQ/omnibus/probes/all_probes/wip/concept/
running_probe.html

Chapter 1. Probe for Message Bus 71

http://www-01.ibm.com/support/knowledgecenter/SSSHTQ/omnibus/probes/all_probes/wip/concept/running_probe.html
http://www-01.ibm.com/support/knowledgecenter/SSSHTQ/omnibus/probes/all_probes/wip/concept/running_probe.html

Data acquisition
The probe acquires events from various sources using Java Message Service (JMS), Webhook, Message
Queue Telemetry Transport (MQTT), Web Socket or data files.

Data acquisition is described in the following topics:

• “Peer-to-peer failover functionality” on page 72

Peer-to-peer failover functionality
The probe supports failover configurations where two probes run simultaneously. One probe acts as the
master probe, sending events to the ObjectServer; the other acts as the slave probe on standby. If the
master probe fails, the slave probe activates.

While the slave probe receives heartbeats from the master probe, it does not forward events to the
ObjectServer. If the master probe shuts down, the slave probe stops receiving heartbeats from the
master and any events it receives thereafter are forwarded to the ObjectServer on behalf of the master
probe. When the master probe is running again, the slave probe continues to receive events, but no longer
sends them to the ObjectServer.

Example property file settings for peer-to-peer failover

You set the peer-to-peer failover mode in the properties files of the master and slave probes. The settings
differ for a master probe and slave probe.

Note: In the examples, make sure to use the full path for the property value. In other words replace
$OMNIHOME with the full path. For example: /opt/IBM/tivoli/netcool/omnibus.

The following example shows the peer-to-peer settings from the properties file of a master probe:

Server : "NCOMS"
RulesFile : "master_rules_file"
MessageLog : "master_log_file"
PeerHost : "slave_hostname"
PeerPort : 5555 # [communication port between master and slave probe]
Mode : "master"
PidFile : "$OMNIHOME/var/message_bus"

The following example shows the peer-to-peer settings from the properties file of the corresponding
slave probe:

Server : "NCOMS"
RulesFile : "slave_rules_file"
MessageLog : "slave_log_file"
PeerHost : "master_hostname"
PeerPort : 5555 # [communication port between master and slave probe]
Mode : "slave"
PidFile : "$OMNIHOME/var/message_bus2"

HTTP/HTTPS command interface
IBM Tivoli Netcool/OMNIbus Version 7.4.0 (and later) includes a facility for managing the probe over an
HTTP/HTTPS connection. This facility uses the nco_http utility supplied with Tivoli Netcool/OMNIbus.

The HTTP/HTTPS command interface replaces the Telnet-based command line interface used in previous
versions of IBM Tivoli Netcool/OMNIbus.

The following sections show:

• How to configure the command interface.
• The format of the nco_http command line.
• The format of the individual probe commands.
• The messages that appear in the log files.

72 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

• How to store frequently-used commands in a properties file.

For more information on the HTTP/HTTPS command interface and the utilities it uses, see the chapter on
remotely administering probes in the IBM Tivoli Netcool/OMNIbus Probe and Gateway Guide.

Configuring the command interface

To configure the HTTP/HTTPS command interface, set the following properties in the probe's property
file:

NHttpd.EnableHTTP: Set this property to True.
NHttpd.ListeningPort: Set this property to the number of the port that the probe uses to listen for
HTTP commands, namely 4000.

Optionally, set a value for the following property as required:

NHttpd.ExpireTimeout: Set this property to the maximum time (in seconds) that the HTTP
connection remains idle before it is disconnected.

The IBM Tivoli Netcool/OMNIbus Probe and Gateway Guide contains a full description of these and all
properties for the HTTP/HTTPS command interface.

Format of the nco_http command line

The format of the nco_http command line to send a command to the probe is:

$OMNIHOME/bin/nco_http -uri probeuri:probeport/probes/message_bus -datatype
application/json -method post -data '{"command":"command-name","params":
[command-parameters]}'

Where:

• probeuri is the URI of the probe.
• probeport is the port that the probe uses to listen for HTTP/HTTPS commands. Specify the same value

as that set for the NHttp.ListeningPort.
• command-name is the name of the command to send to the probe. The following command names are

available:

disconnectProbe
shutdownProbe

• command-parameters is a list of zero or more command parameters. For commands that have no
parameters, this component is empty. The command descriptions in the following section define the
parameters that each takes.

Probe commands
The following sections define the structure of the JavaScript Object Notation (JSON)-formatted
commands that you can send to the probe. There is an example of each command.

All the examples use a probe URI of http://localhost and a HTTP listening port of 8080.

disconnectProbe

Use the disconnectProbe command to disconnect the probe from the target system, and to return OK if
successful.

The format of the -data option for the disconnectProbe command is:

-data '{"command":"disconnectProbe","params":[]}'

The following command performs a disconnection:

$OMNIHOME/bin/nco_http -uri http://localhost:8080/probes/message_bus -datatype
application/JSON -method POST -data '{"command":"disconnectProbe","params":[]}'

Chapter 1. Probe for Message Bus 73

shutdownProbe

Use the shutdownProbe command to shutdown the probe, and to return OK if successful.

The format of the -data option for the shutdownProbe command is:

-data '{"command":"shutdownProbe","params":[]}'

The following command performs a disconnection:

$OMNIHOME/bin/nco_http -uri http://localhost:8080/probes/message_bus -datatype
application/JSON -method POST -data '{"command":"shutdownProbe","params":[]}'

Messages in the log file
The nco_http utility can make extensive entries in the probe's log file indicating the progress of each
operation. These messages can help isolate problems with a request, such as a syntax problem in a
command.

To obtain the detailed log information, set the probe's MessageLevel property to debug. This enables
the logging of the additional information that tracks the progress of a command's execution. For example,
the following shows the progress of a disconnectProbe command:

Information: I-JPR-000-000: DISCONNECT 'DisonnectProbe command received.
Disconnecting from target.

Storing commands in the nco_http properties file
You can use the nco_http utility's properties file ($OMNIHOME/etc/nco_http.props) to hold
frequently used command characteristics.

If you have a particular command that you send to the probe regularly, you can store characteristics of
that command in the nco_http properties file. Once you have done that, the format of the nco_http
command line is simplified.

You can use one or more of the following nco_http properties to hold default values for the equivalent
options on the nco_http command line:

Data
DataType
Method
URI

Specify the value of each property in the same way as you would on the command line. Once you have
these values in place you do not need to specify the corresponding command line switch unless you want
to override the value of the property.

The following is an example of the use of the properties file and the simplification of the nco_http
command that results. In this example, the nco_http properties file contains the following values (note
that line breaks appear for presentational purposes only; when editing the properties use one line for
each property value):

Data : '{"command":"disconnectProbe","params":[]}'
DataType : 'application/JSON'
Method : 'POST'

Properties and command line options
You use properties to specify how the probe interacts with the device. You can override the default values
by using the properties file or the command line options.

The following table describes the properties and command line options specific to this probe. For
information about default properties and command line options, see the IBM Tivoli Netcool/OMNIbus
Probe and Gateway Guide.

74 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Table 22. Probe properties and command line options

Property name Command line option Description

Cookie string -cookie string Use this property to specify the HTTP
cookie name to be retrieved from the
probe store. The probe uses the value
retrieved from the cookie to replace +
+property_setting++ in the
restWebSocketTransport.propert
ies file. You can specify multiple values
for this property by separating each
string with a comma (,).

The default is "".

The XML or JSON event source sends
the cookie in response to the probe's
login request. The default setting for this
property instructs the probe to replace
the ++property_setting++ token in
the
restWebSocketTransport.propert
ies file with the cookie value.

EnableSSL string -noenablessl (This is
equivalent to EnableSSL
with a value of false.)

-enablessl (This is
equivalent to EnableSSL
with a value of true.)

Use this property to specify whether SSL
connectivity between the probe and the
EMS server is enabled or disabled. This
property takes the following values:

false: SSL connectivity between the
probe and the EMS server is disabled.

true: SSL connectivity between the
probe and the EMS server is enabled.

The default is false.

Note: This property is only used by the
probe if you are using the WebSocket
TransportType.

Host string -host string Use this property to specify the host
name or IP address of the instance of
the XML or JSON event source to which
the probe connects.

This property is only used by the probe if
you are using the WebSocket,
WebHook, or CometD TransportType.

The default is "".

Note: The probe also uses this value to
replace the ++Host++ token in the
restWebSocketTransport.propert
ies file.

Chapter 1. Probe for Message Bus 75

Table 22. Probe properties and command line options (continued)

Property name Command line option Description

JsonMessageDepth integer -jsonmessagedepth integer Use this property to specify the number
of levels in the message to traverse
during parsing. This enables you to
prevent the probe from having to
traverse all sub-trees exhaustively.

The default is 3.

JsonNestedHeader string -jsonnestedheader string Use this property to specify either XML
or the JSON tree structure to the nested
message header.

Note: The message header is included in
the events generated by the probe.

The default is "".

JsonNestedPayload string -jsonnestedpayload
string

Use this property to specify whether
nested parsing on JSON data is enabled.
To enable, specify either XML or JSON
tree structure to the nested message
payload in the JSON string values in the
JSON array as specified by the
MessagePayload property. This
property has the same semantics as
MessagePayload except that the
default value is blank (an empty string),
which turns off nested parsing.

The default is "".

JsonParserName string -jsonparsername string Use this property to specify the parser
type. This property takes the following
values:

DEFAULT: Generic parser for all target
systems.

AWS: Specific parser for the AWS
integration.

The default is "DEFAULT".

KeyStore string -keystore string Use this property to specify the location
of the keystore file that contains the
client certificate for the SSL and trusted
authority certificate.

The default is "".

76 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Table 22. Probe properties and command line options (continued)

Property name Command line option Description

KeyStorePassword string -keystorepassword string Use this property to specify the
password required to access the
certificate specified by the Keystore
property.

The default is "".

Note: You can encrypt this password
using the nco_aes_crypt utility within
Netcool/OMNIbus.

MessageHeader string -messageheader string Use this property to specify either XML
or the JSON tree structure to the
message header.

Note: The message header is included in
the events generated by the probe.

The default is "".

MessagePayload string -messagepayload string Use this property to specify either XML
or the JSON tree structure to the
message payload.

The default is xml.

If this property is set to xml, the
TransformerFile property must be
set to the XML data transformer
configuration file. For JSON object
parsing, consider migrating to use the
new JSON parser configuration file.

Note: If you specify a JSON tree
structure, it must start with json to
indicate that the message is a JSON
object. A probe event is derived from a
JSON object pointed by message
payload. The message payload object
consists of name-value data pairs. The
probe processes the message payload
object to generate probe name-value
pair elements.

PartialResync string -partialresync string Use this property to specify that the
probe performs a partial resync on
startup.

If this property is set to true, the probe
performs a partial resync based on the
last event received timestamp stored in
a persistent file.

The default is false.

Note: This property is only for use with
the Probe Integration for Nokia Network
Services Platform.

Chapter 1. Probe for Message Bus 77

Table 22. Probe properties and command line options (continued)

Property name Command line option Description

Password string -password string Use this property to specify the
password associated with the
Username property for logging into the
XML or JSON event source.

The default is "".

Note: The probe uses this value to
replace the ++Password++ token (if it is
specified) in the
restWebSocketTransport.propert
ies file or in the
restWebHookTransport.propertie
s file.

Port

integer

-port

integer

Use this property to specify the host
port of the instance of the XML or JSON
event source to which the probe
connects.

This property is only used by the probe if
you are using the WebSocket,
WebHook, or CometD TransportType.

The default is 0.

Note: The probe also uses this value to
replace the ++Port++ token in the
restWebSocketTransport.propert
ies file.

RecordData string -recorddata string Use this property to specify a comma-
separated list of attributes from the
event to be recorded in the file specified
by the DataBackupFile property.

The data recorded can be used by the
probe to resolve transport properties
using tokens with the prefix
"RecordData.". For example, if the
event generated by the probe has a URL
attribute that should be recorded, set
the RecordData property to URL.

To use this attribute to resolve a
property in the probe's transport
property file, set the property with the
following token: WebSocketURL=++URL
++

StreamCapture string -streamcapture string Use this property to specify whether or
not the probe stores the XML or JSON
event data in a stream capture file.

The default is false.

78 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Table 22. Probe properties and command line options (continued)

Property name Command line option Description

StreamCaptureFile string -streamcapturefile
string

Use this property to specify the location
of the stream capture file.

On UNIX and Linux operating systems,
the default is $OMNIHOME/var/
message_bus.stream.

On Windows operating systems, you
must specify the full directory path to
the file. For example: C:\\IBM\
\Tivoli\\Netcool\\omnibus\\var
\\ message_bus.stream

TransformerFile string -transformerfile string Use this property to specify the location
of the transformer properties file.

This property can be used to specify the
transformer configuration file for XML
event data transformation, or the JSON
parser configuration file for parsing
different JSON object structures.

On UNIX and Linux operating systems,
the default is $OMNIHOME/java/conf/
transformers.xml.

On Windows operating systems, you
must specify the full directory path to
the file. For example: 'C:\\IBM\
\Tivoli\\Netcool\\omnibus\
\java\\conf\\transformers.xml'

TransportFile string -transportfile string Use this property to specify the location
of the transport properties file.

On UNIX and Linux operating systems,
the default is $OMNIHOME/java/conf/
jmsTransport.properties.

On Windows operating systems, you
must specify the full directory path to
the file. For example: 'C:\\IBM\
\Tivoli\\Netcool\\omnibus\
\java\\conf\
\jmsTransport.properties'

Chapter 1. Probe for Message Bus 79

Table 22. Probe properties and command line options (continued)

Property name Command line option Description

TransportType string -transporttype string Use this property to either specify the
transport method to be used or to define
the name of the transport module class
to use. This property takes the following
values:

• Cometd
• EventSource
• File
• HTTP
• JMS
• KAFKA
• MQTT
• Socket
• Webhook
• WebSocket

The default is JMS.

Username string -username string Use this property to specify the user
account for logging into the XML or
JSON event source.

This property is only used by the probe if
you are using the WebSocket
TransportType.

The default is "".

Note: The probe uses this value to
replace the ++Username++ token (if it is
specified) in the
restWebSocketTransport.propert
ies file or in the
restWebHookTransport.propertie
s file.

Properties and command line options provided by the Java Probe
Integration Library (probe-sdk-java) version 11.0

All probes can be configured by a combination of generic properties and properties specific to the probe.

The following table describes the properties and command line options that are provided by the Java
Probe Integration Library (probe-sdk-java) version 11.0.

Note: Some of the properties listed may not be applicable to your probe.

80 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Table 23. Properties and command line options

Property name Command line option Description

CommandPort integer -commandport integer Use this property to specify the port to
which users can Telnet to communicate
with the probe using the Command Line
Interface (CLI) supplied.

The default is 6970.

CommandPortLimit integer -commandportlimit integer Use this property to specify the
maximum number of Telnet
connections that can be made to the
probe.

The default is 10.

DataBackupFile string -databackupfile string Use this property to specify the path to
the file that stores data between probe
sessions.

The default is "".

Note: Specify the path relative to
$OMNIHOME/var.

HeartbeatInterval integer -heartbeatinterval
integer

Use this property to specify the
frequency (in seconds) with which the
probe checks the status of the host
server.

The default is 1.

Inactivity integer -inactivity integer Use this property to specify the length
of time (in seconds) that the probe
allows the port to receive no incoming
data before disconnecting.

The default is 0 (which instructs the
probe to not disconnect during periods
of inactivity).

InactivityAction string -inactivityaction string Use this property to specify the action
the probe takes when the inactivity
timeout is reached:

SHUTDOWN: The probe sends a
ProbeWatch message to notify the user
and then shuts down.

CONTINUE: The probe sends a
ProbeWatch message to notify the user,
but does not shut down.

The default is SHUTDOWN.

Chapter 1. Probe for Message Bus 81

Table 23. Properties and command line options (continued)

Property name Command line option Description

InitialResync string -initialresync string Use this property to specify whether the
probe performs resynchronization on
startup. This property takes the
following values:

false: The probe does not request
resynchronization on startup.

true: The probe requests
resynchronization on startup.

For most probes, the default value for
this property is false.

If you are running the JDBC Probe, the
default value for the InitialResync
property is true. This is because the
JDBC Probe only acquires data using
the resynchronization process.

MaxEventQueueSize integer -maxeventqueuesize
integer

Use this property to specify the
maximum number of events that can be
queued between the non native process
and the ObjectServer.

The default is 0.

Note: You can increase this number to
increase the event throughput when a
large number of events is generated.

ResyncInterval integer -resyncinterval integer Use this property to specify the interval
(in seconds) at which the probe makes
successive resynchronization requests.

For most probes, the default value for
this property is 0 (which instructs the
probe to not make successive
resynchronization requests).

If you are running the JDBC Probe, the
default value for the ResyncInterval
property is 60. This is because the
JDBC Probe only acquires data using
the resynchronization process.

RetryCount integer -retrycount integer Use this property to specify how many
times the probe attempts to retry a
connection before shutting down.

The default is 0 (which instructs the
probe to not retry the connection).

82 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Table 23. Properties and command line options (continued)

Property name Command line option Description

RetryInterval integer -retryinterval integer Use this property to specify the length
of time (in seconds) that the probe
waits between successive connection
attempts to the target system.

The default is 0 (which instructs the
probe to use an exponentially
increasing period between successive
connection attempts, for example, the
probe will wait for 1 second, then 2
seconds, then 4 seconds, and so forth).

RotateEndpoint string -rotateendpoint string Use this property to specify whether the
probe attempts to connect to another
endpoint if the connection to the first
endpoint fails.

This property takes the following
values:

false: The probe does not attempt to
connect to another endpoint if the
connection to the first endpoint fails.

true: The probe attempts to connect to
another endpoint if the connection to
the first endpoint fails.

The default is false.

Elements
The probe breaks event data down into tokens and parses them into elements. Elements are used to
assign values to ObjectServer fields; the field values contain the event details in a form that the
ObjectServer understands.

During installation of the probe, several rules files are installed in addition to the main
message_bus.rules file. These files contain default rules for specific event sources that can be
included in the main rules file. The following table lists these files and the format of their event sources.

Table 24. Additional rules files

Rules file Event source format

message_bus_cbe.rules Common Base Event (CBE)

message_bus_netcool.rules Netcool

message_bus_wbe.rules WebSphere Business Event (WBE)

message_bus_wef.rules WSDM Event Format (WEF)

The probe can create different elements based on the XSLT file of an event source. The following table
describes the elements that the probe generates. Not all the elements described are generated for each
event. The elements that the probe generates depend on the event type.

Chapter 1. Probe for Message Bus 83

Table 25. Elements

Element name Element description

$Acknowledged This element indicates whether the alert has been
acknowledged. Alerts can be acknowledged manually by
a network operator or automatically by a correlation or
workflow process.

$Agent This element displays the agent information.

$AlertGroup This element shows the descriptive name of the type of
failure indicated by the alert.

$AlertKey This element displays the descriptive key that indicates
the managed object instance referenced by the alert.

$Class This element identifies the class of the XML event source
from which the alert was generated. The $Class
controls the applicability of context-sensitive event list
tools.

$Customer This element displays the name of the customer affected
by this alert.

$EventId This element displays the ID of the event.

$ExpireTime This element contains the number of seconds from the
time an alert was last received by the ObjectServer
(stored by the LastOccurence field) until it is cleared
automatically. This element is used by the Netcool/
OMNIbus Expire automation.

$ExtendedAttr This element displays the extended attribute type of the
managed entity. The probe groups the respective
elements based on their parent-child relation; and then
sorts all the elements in the parent and child sections by
their associated values.

$FirstOccurrence This element contains the time in seconds (from
midnight Jan 1, 1970) when this alert was created or
when polling started at the probe.

$Flash This element indicates whether the option to make the
event list flash is enabled.

$Grade This element indicates the escalation status for the alert.

$Identifier This element contains the identifier information of the
alert.

$InternalLast This element displays the time when the alert was at the
ObjectServer.

$LastOccurrence This element contains the time when this alert was last
updated at the probe.

84 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Table 25. Elements (continued)

Element name Element description

$LocalNodeAlias This element displays the alias of the network entity
indicated by the alert. For network devices or hosts, this
is the logical (layer-3) address of the entity, or another
logical address that enables direct communication with
the XML event source. Use it in managed object instance
identification.

$LocalPriObj This element displays the primary object referenced by
the alert.

$LocalRootObj This element displays an object that is equivalent to the
primary object referenced in the alarm. Use it in
managed object instance identification.

$LocalSecObj This element displays the secondary object referenced
by the alert.

$NmosCauseType This element displays the type of the cause that
triggered the alert.

$NmosObjInst This element shows the populated details of the alert.

$NmosSerial This element displays the serial number of a suppressed
alert.

$Node This element identifies the managed entity from which
the alert originated.

$NodeAlias This element displays the alias of the node. For network
devices or hosts, this should be the logical (layer-3)
address of the entity. For IP devices or hosts, this should
be the IP address.

$OwnerGID This element displays the group identifier of the group
that is assigned to handle this alert. The default is 0,
which is the identifier for the public group.

$OwnerUID This element shows the identifier of the user who is
assigned to handle this alert. The default is 65534, which
is the identifier for the nobody user.

$PhysicalCard This element displays the card name or description
indicated by the alert.

$PhysicalPort This element displays the port number indicated by the
alert.

$PhysicalSlot This element displays the slot number indicated by the
alert.

$Poll This element displays the time (in seconds) the probe
has polled for the alert.

Chapter 1. Probe for Message Bus 85

Table 25. Elements (continued)

Element name Element description

$ProcessReq This element indicates whether the alert should be
processed by Netcool/OMNIbus.

$RemoteNodeAlias This element displays the network address of the remote
network entity. Use it in managed object instance
identification.

$RemotePriObj This element displays the primary object of a remote
network entity referenced by an alarm. Use it in managed
object instance identification.

$RemoteRootObj This element displays an object that is equivalent to the
remote entity's primary object referenced in the alarm.
Use it in managed object instance identification.

$RemoteSecObj This element displays the secondary object of a remote
network entity referenced by an alarm. Use it in managed
object instance identification.

$resync_event This element indicates whether the current event was
received by the probe during resynchronization of active
alarms with the target system.

$ServerName This element displays the name of the originating
ObjectServer. The Gateway for Message Bus uses it to
control propagation of alerts between ObjectServers..

$ServerSerial This element displays the serial number of the alert on
the originating ObjectServer.

$Service This element displays the name of the service affected
by this alert.

$Severity This element indicates the severity level of the alert. It
provides an indication of how the perceived capability of
the managed object has been affected. The color of the
alert in the event list is controlled by the severity value.

$StateChange This element indicates the state change of the alert. It is
an automatically maintained ObjectServer timestamp of
the last insert or update of the alert from any XML event
source.

$Summary This element contains the summary information on the
cause of the alert.

$SuppressEscl This element displays the suppression level manually
selected by operators from the event list.

$Tally This element shows the number of times that the alert
has occurred.

86 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Table 25. Elements (continued)

Element name Element description

$TaskList This element indicates whether an operator has added
the alert to the Task List.

$Type This element identifies the alert type.

$URL This element displays an optional URL, which provides a
link to additional information in the XML event source.

$X733CorrNotif This element displays a listing of all notifications with
which this notification is correlated.

$X733EventType This element indicates the alert type.

$X733ProbableCause This element the indicates probable cause of the alert.

$X733SpecificProb This element indicates the probable cause of the alert.

Error messages
Error messages provide information about problems that occur while running the probe. You can use the
information that they contain to resolve such problems.

The following table describes the error messages specific to this probe. For information about generic
error messages, see the IBM Tivoli Netcool/OMNIbus Probe and Gateway Guide.

Table 26. Error messages

Error Description Action

Failed to startup probe The probe failed to start, probably
due to an invalid combination of
properties set in the
message_bus.props file.

Check the values set for the Host,
Port Username, and Password
properties.

Failed to transform The probe is unable to transform
the XML into name-value pairs.

Check the entries in the
transformer file. Then test the
XSLT file created for the event
source.

Failed to parse message The probe could not parse the
event data.

Check the format of the event
generated by the XML event
source.

Failed to record data
into backup file

The probe could not write record
data into the backup file.

Check that the backup file is
specified correctly by the
DataBackupFile property in the
message_bus.props file and
that the file has the appropriate
permissions set.

Chapter 1. Probe for Message Bus 87

Table 26. Error messages (continued)

Error Description Action

Failed to start
Transport module for
connection

The transport module failed to
start.

Check the value set for the
TransportType property and the
details specified in the
TransportFile.

Failed to subscribe
Transport module to the
interface

The transport module failed to
subscribe to the event source.

Check the details specified in the
TransportFile.

Failed to get active
alarms during resync

The probe failed to received active
alarms during resynchronization
with the event source.

Check the details specified in the
TransportFile.

Exception caught in
WebSocketClientHandler:
Queue full

Note: This error message only
applies when the Probe for
Message Bus runs with the
WebSocket transport.

The WebSocket transport event
queue has reached its limit and
has started to discard events. This
usually occurs in a flooding
scenario or if the event processing
is slow or blocked.

Verify that no other error occurred
in the probe log or ObjectServer
logs that could potentially slow
down or block the probe event
processing.

Verify that the probe is not under a
flood or denial-of-service attack.

Common error messages
The transporter and transformer modules generate error messages that relate to both the Gateway for
Message Bus and the Probe for Message Bus.

The following table describes the error messages that are generated by the transporter and transformer
modules.

Table 27. Common error messages

Error Description Action

Failed to get message
text

The JMS transport module failed
to get the text from the JMS
message that it received.

There was a problem with the
format of the message received
from the JMS.

Unsupported message
type

The JMS has received a message
that is not a text message.

Only messages in text format are
supported.

No transformer defined
for name name

The gateway is trying to find the
correct transformer to use to
transform an event, but the
message ID for that transformer is
not present in the
transformers.xml file.

Add a transformer to the
transformers.xml file that
corresponds to the message ID.

No endpoint defined for
name name

The gateway is trying to find the
correct endpoint to send a
message to, but the transformer in
the transformers.xml file for
this message does not specify an
endpoint.

Specify an endpoint for the
transformer that corresponds to
this message.

88 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Table 27. Common error messages (continued)

Error Description Action

No transformer defined
for endpoint endpoint

The probe has received an event
from an endpoint for which there
is no transformer in the
transformers.xml file.

Add a transformer to the
transformers.xml file for this
endpoint.

Invalid entry in
transformer definition
file - duplicate
endpoint endpoint in
southbound transformer
entry

Two southbound transformers in
the transformers.xml file have
been specified with the same
endpoint.

You can only create one
southbound transformer for each
endpoint. Remove one of the
transformers from the
transformers.xml file.

Invalid entry in
transformer definition
file - duplicate name
name in northbound
transformer entry

Two northbound transformers in
the transformers.xml file have
been specified with the same
name.

You cannot create two northbound
transformers with the same name.
Rename one of the transformers.

Invalid transformer
type type specified in
transformers file

A transformer in the
transformers.xml file specifies
a transformer type that is not
supported.

The message type should either
be northbound or southbound.
Update the transformer in the
transformers.xml file.

Property type type does
not exist

The type specified for a property
definition with a transformer is not
a Java object.

Correct the transformer in the
transformers.xml file by
specifying a valid Java object
name, for example,
java.lang.String.

Invalid property name
propName in transformer
name

The name specified for a property
definition with a transformer is not
valid.

Correct the transformer in the
transformers.xml file by
specifying a valid name. This
should be XSLT file name.

Method method_name in
class transformerClass
has thrown an exception

The method specified in the
transformer definition file has
failed.

Use the information in the
message to diagnose the problem.

Failed to read
transformer definition
file

The transformer module failed to
read the transformer definition file
(transformers.xml).

Check that the file is specified
correctly and that the permissions
on the transformers.xml file
are set correctly.

Unknown property A transformer in the
transformers.xml file
contained a property that is not
recognized.

Update the transformer in the
transformers.xml file.

Failed to transform
message

The transformer module could not
transform an XML event.

There may be a problem with the
XLST file. Try testing it using the
transformer validation tool.

Chapter 1. Probe for Message Bus 89

Table 27. Common error messages (continued)

Error Description Action

Failed to read XSLT
file

The transformer module failed to
read an XSLT file specified within
the transformer definition file.

Check that the file is specified
correctly and that the permissions
on the .xsl file are set correctly.

Invalid transformer
class name found

A transformer in the
transformers.xml file contains
an invalid transformer class name.

Check that you have specified the
transformer class correctly in the
transformers.xml file.

Failed to close file

Failed to find file

The named file was not found. Check that the name of the file has
been specified correctly in the
properties file.

Stream file filename is
not a stream capture
file

The file identified is not a stream
capture file and cannot be used by
the transport module.

Specify an alternative file name in
the transport properties file.

I/O exception whilst
opening file

The transport module could not
open the file specified.

Check the permissions on the file
indicated.

Failed to read object
from file

The probe failed to read the
stream capture file.

Try recreating the stream capture
file and running it through the
probe again.

Error in stream capture
file

The stream capture file identified
contains an error.

Try recreating the stream capture
file and running it through the
probe again.

Failed to find initial
context

The class name in the transport
properties file is incorrect.

Check the setting of the
initialContextFactory
property.

Failed to create
subscriber for topic:
topicName

The transport module failed to
subscribe to a topic with the JMS.

Use the information in the
message to diagnose the problem.

JNDI lookup for topic:
topicName

Failed to find
topicName in JNDI

The transport module could not
find one of the topics specified in
the JNDI.

Check that the topic has been
specified correctly in the transport
file.

Failed to start JMS
subscriber

The transport module failed to
start the JMS subscriber.

Use the information in the
message to diagnose the problem.

Failed to send message The transport module failed to
send a message to the endpoint
specified in the transformer.

Use the information in the
message to diagnose the problem.

Failed to find
topicName in JNDI

The transport module cannot find
one of the topics in the JNDI.

Check that the topic has been
specified correctly in the transport
file.

90 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Table 27. Common error messages (continued)

Error Description Action

Failed to close topic
connection

The transport module failed to
close a topic connection within
JMS.

Use the information in the
message to diagnose the problem.

Invalid property
propName

The transport properties file
contains a property that is not
supported.

Update the transport properties
file.

Invalid transport class
name found

The transportModule property
of the transport file contains an
invalid class name.

Change the value of the
transportModule property to a
class that exists in the jar file.

Failed to load
properties file

The transport module could not
read the transport properties file.

Check that the properties file
exists and that the permissions
are set correctly.

Invalid property
propName in file
transportFile does not
exist in transport
class transportClass

The transport file contained a
property that is not supported by
the transport module.

Update the transport properties
file. For a description of the
properties that the transport files
supports, see “Configuring the
transport properties files” on page
18.

Method methodName in
class transportClass
has thrown an exception

The method specified in the
transport file has failed.

It depends on the method but the
method would probably tell you
what's wrong.

Use the information in the
message to diagnose the problem.

key + " contains non-
existent environment
variable value

A value in the transport properties
file or in the transformer file
contains an environment variable
which does not exist.

Set the environment variable
specified to an appropriate value.

Failed to create JMS
connection

The transport module failed to
create a connection to the JMS.

Check that you have specified the
parameters correctly in the
transport properties file.

Failed to parse message The probe failed to parse the
message. This could be caused by
an invalid character such as a non-
printable character in the raw
data.

Verify that the inbound data is in
the correct format and structure.

Timed out waiting for
response

The probe sent an HTTP request
but the response did not arrive
within the timeout period. This
applies to the REST/Websocket
transport.

Check the URI used for each
request. Check that the target
received the HTTP request from
the probe and responded within
the specified timeout period.

Chapter 1. Probe for Message Bus 91

ProbeWatch messages
During normal operations, the probe generates ProbeWatch messages and sends them to the
ObjectServer. These messages tell the ObjectServer how the probe is running.

The following table describes the raw ProbeWatch error messages that the probe generates. For
information about generic ProbeWatch messages, see the IBM Tivoli Netcool/OMNIbus Probe and
Gateway Guide.

Table 28. ProbeWatch messages

ProbeWatch message Description Triggers/causes

Connection to source
lost

The connection to the XML source
has been lost.

The target system might have
disconnected or gone down.

Failed to open stream
capture file

Failed to write to
stream capture file

Failed to close stream
capture file

The probe is unable to use the
specified stream capture file.

Check the permissions set for the
file and the directory in which it is
being written. Then check the
value specified for the
StreamCaptureFile property.

Start resynchronization The resynchronization process
started.

The probe started with the
InitialResync property set to
true.

Finish
resynchronization

The resynchronization process
ended.

The probe completed the
resynchronization process.

Using the probe with the Gateway for Message Bus
You can use the Probe for Message Bus with the Gateway for Message Bus to process XML messages
stored in a file or transmitted using the JMS, Webhook, or MQTT transport protocols.

You can use the probe and gateway together as a single implementation. In this scenario, the probe uses
the transport module to acquire XML events, uses the transformer module to convert them into name-
value pairs, tokenizes them, and then sends them as Netcool events to the ObjectServer. The gateway
reads Netcool XML events from the ObjectServer, uses the transformer module to convert them into a
format appropriate for the destination application, and uses the transport module to send the
transformed events to their destination application.

The following sections describe how to use the probe and gateway together as a single implementation:

• “Requirements” on page 92
• “Sample implementation using JMS” on page 93

Requirements
Several software packages are required to operate the Probe for Message Bus and the Gateway for
Message Bus together.

You can download the probe, the gateway, and all required installation packages from the IBM Passport
Advantage® Online website:

http://www-306.ibm.com/software/howtobuy/passportadvantage/

To use the probe and the gateway together, you will require the following packages:

• omnibus-arch-common-transformer-version

92 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

http://www-306.ibm.com/software/howtobuy/passportadvantage/

• omnibus-arch-common-transportmodule-version
• omnibus-arch-gateway-libngjava-version
• omnibus-arch-probe-nonnative-base-version
• omnibus-arch-gateway-nco-g-xml-version
• omnibus-arch-probe-nco-p-xml-version

where arch is the operating system you are installing the components on and version is the package
version.

Sample implementation using JMS
This section describes an implementation of the probe and gateway working together.

The following diagram shows an example of the probe and gateway working together, with an Enterprise
Service Bus (ESB) using JMS:

Figure 1. Probe and gateway working with ESB using JMS

The flow of data between XML event sources and consumers, and Netcool/OMNIbus is as follows:

1. Applications generate XML events and publish them to topics in the ESB.
2. The probe uses the transport module to subscribe to the topics in the ESB and receives the XML

events published to those topics.
3. The probe uses the transformer module to convert the XML events in name-value pairs using the

transformation defined by the transformers.xml file.

Chapter 1. Probe for Message Bus 93

For each event source, the transformers.xml file contains a transformer entry. This entry identifies
the source of the XML event and determines which .xsl file to use to convert the XML event.

4. The probe parses the name-value pairs in Netcool events and sends them to the ObjectServer.
5. The ObjectServer generates events that need to be written in XML format to various applications.
6. The gateway reads the Netcool events generated by the ObjectServer.
7. The gateway uses the transformer module to convert the Netcool events into XML events using the

transformation defined by the transformers.xml file.

For each event source, the transformers.xml file contains a transformer entry. Within this entry,
the transformation name (which equates to the message ID of the Netcool event) determines
which .xsl file to use to convert the event to XML format and to which endpoint to publish the XML
event.

8. The gateway uses the transport module to publish the transformed XML events to topics in the ESB.
9. The applications subscribe to the topics and receive the XML events published by the gateway.

Note: XML events are not always transformed. For example, if the event source is a Gateway for Message
Bus and the event consumer is a Probe for Message Bus, the XML events are not transformed by the
transformer module.

Frequently asked questions
Various questions arise as users work with the probe. Answers to these questions are provided for your
reference.

The probe is running but not parsing the .xml file. What is wrong?

The probe is running correctly and there are no errors in the probe debug log, but the probe is not parsing
anything in the .xml file.

The .xml file is not correctly specified. Ensure that the .xml file conforms to the standard specified by
W3C. The standard is documented at:

http://www.w3.org/TR/xslt

Use the transformer testing tool to ensure that the .xml file conforms to the W3C standard. For
information about using the tool, see “Using the transformer testing tool” on page 68.

Troubleshooting
This topic provides troubleshooting assistance for running the Message Bus Probe.

Performing an access token request when running the probe with either the Kafka or EventSource
transport

The Message Bus Probe running with either the Kafka or EventSource transport can be configured with
one or more REST API request such as to perform an access token request and to create a subscription
request with the target system after initiating a connection (login). If an error occurs before the
connection stage completes (after the probe has sent out the login HTTP request(s)), the probe may not
send the configured logout requests to revoke the access token and to remove the subscription. For
some systems that limits the number of client access token or subscription, it may reject subsequent
login requests from the probe.

Solution

After several connection attempts, if the probe is still unable to login to a target system although it has
been configured to construct a valid HTTP request for the REST API request, it could be that the target
system has reached its limit and is rejecting the probe login request until the previous logins are
cleaned up on the target system.

94 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

http://www.w3.org/TR/xslt

Check whether there are any invalid tokens or subscriptions on the target system and clear them if
necessary.

Known issues with the Probe for Message Bus
This section explains some known issues with the Probe for Message Bus.

Recommendation when using SSL

If the probe is running on Java 6 and encounters an SSLHandshakeException with a fatal alert
handshake failure message using TLSv1 , TLSv1.1, or TLSv1.2 protocol, you should upgrade to Java 7. To
use TLSv1.2 SecurityProtocol, Java 7 is required.

You have the following options:

• Either install OMNIbus V8.1 (because it comes with JRE 7)
• or, install JRE 7 separately

Upgrading the common TransportModule library

After upgrading the TransportModule, the probe can fail to start due to a ClassNotFoundException
being thrown during startup. This is possibly due to the probe missing a dependency libraries in its
CLASSPATH.

TransportModule version 12 contains the following new files to set the CLASSPATH used:

• TransportModule.env (for UNIX operating systems)
• TransportModule.bat (for Windows operating systems)

You can configure the probe to call these files and include the TRANSPORT_CLASSPATH variable in the
probe's CLASSPATH.

Update the probe’s environment file or batch file with the following lines to replace old variables which
defines the path to the libraries used by the TransportModule and make sure the
TRANSPORT_CLASSPATH is used.

On UNIX operating systems:

Load TransportModule and dependency JARS
. $OMNIHOME/java/jars/TransportModule.env
CLASSPATH_SETTING=${TRANSFORMER_JAR}:${TRANSPORT_CLASSPATH}:${JACKSON_JAR};

On Windows operating systems:

REM Set TRANSPORT_CLASSPATH as specified in TransportModule
call %OMNIHOME%\java\jars\TransportModule.bat
set MESSAGEBUS_CLASSPATH=%TRANSFORMER_CLASSPATH%;%TRANSPORT_CLASSPATH%;
%JACKSON_CLASSPATH%

Incorrect setting for the keyStorePassword property in the HTTP transport properties

If an incorrect password is set using the keyStorePassword property in the HTTP transport properties
file, the probe will fail to load the Keystore during initialization. This will make the probe hang, instead of
shutting down. To shutdown the probe, kill the probe process manually. The following log message is
printed when this error occurs:

2017-02-24T05:06:56: Debug: D-JPR-000-000: com.ibm.tivoli.oidk.ProbeImpl.connect
 EXITING
2017-02-24T05:06:56: Information: I-JPR-000-000: [HttpParser]:
 Max http payload size: 2097152
2017-02-24T05:06:56: Error: E-JPR-000-000: Failed to create server listening socket
 'null:5490'. [java.net.SocketException: java.security.NoSuchAlgorithmException:
 Error constructing implementation (algorithm: Default, provider:
 IBMJSSE2, class: com.ibm.jsse2.ec)]
2017-02-24T05:06:56: Error: E-JPR-000-000: Fail to subscribe Transport module
 to the interface

Chapter 1. Probe for Message Bus 95

2017-02-24T05:06:56: Error: E-JPR-000-000: Failed to connect; ProbeException:
 Fail to subscribe Transport module to the interface;
 TransportSubscribeException:
 Failed to start all HTTP Server ports.
2017-02-24T05:06:56: Debug: D-JPR-000-000:
 com.ibm.tivoli.netcool.omnibus.probe.ProbeException:
 Fail to subscribe Transport module to the interface
at com.ibm.tivoli.oidk.ProbeImpl.subscribe(Unknown Source)
at com.ibm.tivoli.netcool.omnibus.probe.framework.ProbeRunner.
 connect(Unknown Source)
at com.ibm.tivoli.netcool.omnibus.probe.framework.ProbeRunner.
 connectAndRun(Unknown Source)
at com.ibm.tivoli.netcool.omnibus.probe.framework.ProbeRunner.run(Unknown Source)
at com.ibm.tivoli.netcool.omnibus.oidk.Probe.start(Unknown Source)
at com.ibm.tivoli.netcool.omnibus.oidk.Probe.main(Unknown Source)
Caused by: com.ibm.tivoli.netcool.integrations.transportmodule.
 TransportSubscribeException:
 Failed to start all HTTP Server ports.
at com.ibm.tivoli.netcool.integrations.transportmodule.HttpTransport.
 subscribe(Unknown Source)
... 6 more
2017-02-24T05:06:56: Information: I-UNK-000-000: Probewatch: Unable to get events.
 Failed to connect; ProbeException:
 Fail to subscribe Transport module to the interface;
 TransportSubscribeException: Failed to start all HTTP Server ports.
2017-02-24T05:06:56: Debug: D-UNK-000-000: Rules file processing took 18 usec.
2017-02-24T05:06:56: Debug: D-UNK-000-000: Flushing events to object servers
2017-02-24T05:06:56: Debug: D-UNK-000-000: 1 buffered alerts
2017-02-24T05:06:56: Debug: D-UNK-000-000: Flushing events to object servers
2017-02-24T05:06:56: Debug: D-UNK-000-000: 0 buffered alerts
2017-02-24T05:06:56: Debug: D-JPR-000-000:
 com.ibm.tivoli.netcool.omnibus.probe.framework.
 ProbeRunner.connect EXITING
2017-02-24T05:06:56: Information: I-JPR-000-000: DISCONNECT 'Unable to connect'
2017-02-24T05:06:56: Debug: D-JPR-000-000:
 com.ibm.tivoli.netcool.omnibus.probe.framework.
 ProbeRunner.resetForRetry ENTERING
2017-02-24T05:06:56: Debug: D-JPR-000-000:
 com.ibm.tivoli.netcool.omnibus.probe.framework.
 ProbeRunner.haltScheduledTasks ENTERING
2017-02-24T05:06:56: Debug: D-JPR-000-000:
 com.ibm.tivoli.netcool.omnibus.probe.framework.
 ProbeRunner.haltScheduledTasks EXITING
2017-02-24T05:06:56: Debug: D-JPR-000-000:
 com.ibm.tivoli.netcool.omnibus.probe.framework.
 ProbeRunner.disconnectProbe ENTERING
2017-02-24T05:06:56: Debug: D-JPR-000-000:
 com.ibm.tivoli.oidk.ProbeImpl.disconnect
 ENTERING
 Exception in thread "MessageSenderThread" java.lang.NullPointerException
at com.ibm.tivoli.netcool.integrations.transportmodule.http.HttpServer.
 isRunning(Unknown Source)
at com.ibm.tivoli.netcool.integrations.transportmodule.HttpTransport.
 httpServerIsAlive(Unknown Source)
at com.ibm.tivoli.netcool.integrations.transportmodule.HttpTransport.
 isConnected(Unknown Source)
at com.ibm.tivoli.oidk.ProbeImpl.disconnect(Unknown Source)
at com.ibm.tivoli.netcool.omnibus.probe.framework.ProbeRunner.
 disconnectProbe(Unknown Source)
at com.ibm.tivoli.netcool.omnibus.probe.framework.ProbeRunner.
 resetForRetry(Unknown Source)
at com.ibm.tivoli.netcool.omnibus.probe.framework.ProbeRunner.
 messageReceived(Unknown Source)
at com.ibm.tivoli.netcool.omnibus.probe.services.impl.
 SimpleMessageService$SenderThread.
 send(Unknown Source)
at com.ibm.tivoli.netcool.omnibus.probe.services.impl.
 SimpleMessageService$SenderThread.
 run(Unknown Source)

Recommended Action: Ensure the correct keystore password is set when securing the HTTP transport.

Probe fails to start when using a JSON parser configuration file as a TransformerFile due to an
incompatible Java version

Java 7 is required by the supporting libraries used to load the JSON parser configuration file. If a lower
Java version is used, the probe will fail to initialize when loading the parser configuration file and will print
the following error message:

96 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Exception in thread "ProbeRunner" java.lang.UnsupportedClassVersionError:
JVMCFRE003 bad major version; class=com/fasterxml/jackson/databind/
ObjectMapper, offset=6

Consider upgrading to Netcool/OMNIbus V8.1 which includes JRE 7, or install JRE 7 separately.

When integrating with iDirect Pulse

Disconnection during a clean start

In the first connection to iDirect (clean start), the probe creates a WebSocket connection with
the /api/1.0/dde/alarm?start_time__gte=0 URI to query historical alarms and continue listening
for new alarms or updates to existing alarms. However, the URI time window maybe too large, which may
cause the server to disconnect from the probe.

Recommended action: Use a smaller time window, or configure the probe to enable Retry so that it
reconnects using the WebSocket Persistent URI /api/1.0/dde/alarm?start_time__gte=+
+ProbeDisconnectTime++. You must set the DataBackupFile’ property for the probe to record the
last disconnection time in the backup file.

During beta testing, the following query windows were tested and the results are as below:

Table 29. Beta testing results

Query window Connection status

Past 1 day OK

Past 1 week OK

Past 1 month OK

Past 1 year Probe disconnected

No events received through WebSocket while the Pulse server still initializing after a restart

If the Pulse server is restarted and is still initializing when the probe connects, the server might accept
the WebSocket connection but then send an event with error code 500 (Internal Server Error) and then
send no further alarms or a close connection request to the probe. The probe continues listening but is
unaware that the server is not sending any alarms.

Recommended action: Increase the value set by the RetryInterval property to give sufficient time for
the server to be ready before attempting to connect. The probe only retries the connection if it has
successfully established a WebSocket connection before the server was restarted.

Configure the probe to disconnect and shutdown due to a period of inactivity by setting the Inactivity
property to a time (in seconds) greater than zero to shut down the probe. The probe will then need to be
restarted. You can configure a Process Agent to manage the probe process and restart it automatically if it
is down.

No new updates received after a period upon successful WebSocket connection

If the server stops sending updates but does not disconnect the probe, the probe session may have
ended on the server but the server did not request to close the connection.

Recommended Action: Enable the following set of properties in the WebSocket transport to send a
periodic HTTP request as a keep-alive mechanism and inform the server that the probe is still listening.
The following configuration is a suggestion and should be changed to use the correct URI if necessary.
The subscribeRefreshInterval must be configured to a period before the probe session ends.

subscribeRefreshURI=/api/1.0/config/element/user?limit=1
subscribeRefreshMethod=GET

Chapter 1. Probe for Message Bus 97

subscribeRefreshContent=
subscribeRefreshInterval=30

Recommendation when using WebSocketTransport or WebhookTransport with autoReconnect=ON

If HeartbeatInterval is set to too a low number, AutoReconnect may not arrive at the maximum
count.

For example:

The attempts of autoReconnect are run by an exponentially increased interval. For a count of 5 attempts
(1s, 2s, 4s, 8s, 16s) a total of 31s is required to complete 5 attempts.

If the HeartbeatInterval probe property is configured to 10s and the probe detects that the transport
is not in an active connection state, it may shutdown earlier, after the 3rd try, leaving the 4th and 5th tries
un-attempted.

Recommend Action: When using WebSocketTransport or WebhookTransport with autoReconnect=ON,
set the HeatbeatInterval to a value greater than 31s (one minute is recommended).

Recommendation when using WebSocketTransport and WebhookTransport with
autoReconnect=ON and the httpHeaders transport property

The httpHeaders transport property is used for all outgoing HTTP messages and is capable of accepting
the HTTP header token substituted from the probe properties file or from tokens retrieved from an EMS at
runtime.

However, httpHeaders tokens may be set to a nullvalue during the early phase of probe initialization
before tokens from the EMS are retrieved, which may risk request failure.

Recommend Action: When in use, set the probe properties as tokens using httpHeaders.

When in use, set dynamically retrieved tokens from EMS with the header properties specifically designed
for its use case to delay the use of the following external token names:

• loginRequestHeaders
• loginRefreshHeaders
• logoutRequestHeaders
• resyncRequestHeaders
• subscribeRequestHeaders
• subscribeRefreshHeaders

Monitoring updates from ZooKeeper

Updates to topics or brokers are monitored by the ZooKeeper's topic/broker watch function when used.

Updates to topics or brokers are not displayed via ProbeWatch messages. They can be found in the probe
log.

TLS handshake issue in Message Bus 8.0 when connecting to a server which only accepts TLSv1.2
Security Protocol using Webhook or Websocket transport

The Message Bus Probe Webhook and WebSocket transports have an HTTP client component which is
used to make REST API calls to a remote target system. This component has an OAuth2.0 Module to
request an access token from servers using the OAuth2.0 standard.

Known Issue Symptom

When configured to request an access token from a remote server which only accepts the TLS v1.2
protocol, the probe will throw a TransportAuthorizeException error due to a TLS handshake failure.

98 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

This is due to that the OAuth2.0 module in the HTTP client component of the transport starts the SSL
handshake with a lower TLS version which is rejected by the server.

Resolution

Configure the probe's Webhook or Websocket transport to use loginRequest properties, instead of
tokenEndpointURI to create a HTTP request to request an access token. For example, to create the
HTTP request below, use the settings:

POST /token HTTP/1.1
Host: server.example.com
Authorization:Basic VXNlckZvckJhc2ljQXV0aGVudGljYXRpb246UGFzc3dvcmRGb3JCYXNpY0F1dGhlbnRpY2F0aW9u
Content-Type: application/x-www-form-urlencoded

grant_type=password&username=johndoe&password=A3ddj3w

Configure the probe properties file:

Host: 'server.example.com'
Port: 443
Username : 'UserForBasicAuthentication'
Password: 'PasswordForBasicAuthentication'
EnableSSL: 'true'
Keystore file should contain the target server certificate imported.
KeyStore : '/home/keystore.jks'
KeyStorePassword: 'TheKeystorePassword'

Configure the transport properties file:

httpVersion=1.1
loginRequestURI=/token
loginRequestMethod=POST
loginRequestHeaders=
 Authorization=Basic ++Username++:++Password++,Content-Type=application/x-www-form-urlencoded
loginRequestContent=grant_type=password&username=johndoe&password=A3ddj3w

For TLSv1.2 enabled server
securityProtocol=TLSv1.2

Additional troubleshooting topics

For additional troubleshooting topics for issues on common libraries such as Non-native, see https://
www.ibm.com/support/knowledgecenter/SSSHTQ/omnibus/probes/all_probes/wip/reference/
troubleshoot_probe_mtupacketissue.html.

Chapter 1. Probe for Message Bus 99

https://www.ibm.com/support/knowledgecenter/SSSHTQ/omnibus/probes/all_probes/wip/reference/troubleshoot_probe_mtupacketissue.html
https://www.ibm.com/support/knowledgecenter/SSSHTQ/omnibus/probes/all_probes/wip/reference/troubleshoot_probe_mtupacketissue.html
https://www.ibm.com/support/knowledgecenter/SSSHTQ/omnibus/probes/all_probes/wip/reference/troubleshoot_probe_mtupacketissue.html

100 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Appendix A. Notices and Trademarks
This appendix contains the following sections:

• Notices
• Trademarks

Notices
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing 2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA

© Copyright IBM Corp. 2015, 2020 101

3605 Highway 52 N
Rochester, MN 55901
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
IBM, the IBM logo, ibm.com, AIX, Tivoli, zSeries, and Netcool are trademarks of International Business
Machines Corporation in the United States, other countries, or both.

Adobe, Acrobat, Portable Document Format (PDF), PostScript, and all Adobe-based trademarks are either
registered trademarks or trademarks of Adobe Systems Incorporated in the United States, other
countries, or both.

102 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Appendix A. Notices and Trademarks 103

104 IBM Tivoli Netcool/OMNIbus Probe for Message Bus: Reference Guide

IBM®

Part Number:

SC27-8701-14

(1
P)
 P

/N
:

	Contents
	About this guide
	Document control page
	Conventions used in this guide

	Chapter 1. Probe for Message Bus
	Summary
	Installing probes
	Migrating to the Probe for Message Bus
	Identifying new and changed features of the Probe for Message Bus
	Configuration files

	Configuring the probe
	Enabling the max_line_length property
	Enabling the max_http_payload_size property
	Configuring the parser with a different JsonMessageDepth
	Generating events from a nested JSON
	Specifying multiple parser configurations to parse different JSON structures
	Configuring the JSON parser to parse different JSON structures
	Example configuration

	Upgrading to Probe for Message Bus version 5 or newer
	Migrating the probe parser configuration to the JSON parser configuration file
	Migrating the WebSocketID property to the Websocket transport properties file

	Using the transport module
	Configuring the transport properties files
	Configuring the JMS transport
	Connecting to ActiveMQ using SSL
	Determining the SSL port and certificate from the Active MQ system
	Importing the SSL certificate and enable the SSL connection

	Configuring the data file transport
	Configuring the MQTT transport
	Configuring the Web Socket transport
	Authenticating the probe Using OAuth authentication
	Authenticating the probe using REST or WebSocket
	Connecting to WebSocket using SSL
	Resynchronizing the probe with the REST API
	Configuring HTTP requests
	Subscribing to receive notifications using WebSocket
	Restarting the probe and re-connecting with the persistent URI

	Configuring the Web Hook transport
	Authenticating the probe Using OAuth authentication
	Specifying a callback URL
	Subscribing to receive notifications using an HTTP server

	Configuring the Cometd transport
	Configuring the socket transport
	Configuring the Kafka transport

	Message Bus Probe integrations with event sources
	Probe integration for Amazon Web Services
	Probe integration for Ciena Blue Planet MCP
	Probe integration for IBM Cloud Platform Common Services (CS) Monitoring
	Configuring the Message Bus Probe to receive notifications from Prometheus
	Configuring Prometheus in Kubernetes from the command line
	Configuring the Message Bus Probe to receive notifications from Logstash
	Configuring Logstash in ICP from the command line

	Probe integration for IBM Event Streams for IBM Cloud
	Probe integration for iDirect Pulse
	Probe integration for Kafka
	Probe integration for Microsoft Azure Monitoring
	Probe integration for Nokia 1350 OMS
	Probe integration for Nokia NSP

	Using the transformer module
	Using XSLT files to transform events
	Using the transformer testing tool
	Configuring the transformer definition file
	Using the XML validation tool

	Running the probe
	Data acquisition
	Peer-to-peer failover functionality
	Example property file settings

	HTTP/HTTPS command interface
	Configuring the command interface
	Format of the nco_http command line
	Probe commands
	disconnectProbe
	shutdownProbe

	Messages in the log file
	Storing commands in the nco_http properties file

	Properties and command line options
	Properties and command line options provided by the Java Probe Integration Library (probe-sdk-java) version 11.0
	Elements
	Error messages
	Common error messages
	ProbeWatch messages
	Using the probe with the Gateway for Message Bus
	Requirements
	Sample implementation using JMS

	Frequently asked questions
	Troubleshooting
	Known issues with the Probe for Message Bus

	Appendix A. Notices and Trademarks
	Notices
	Trademarks

